Sample records for melanins

  1. Study of melanin bleaching after immunohistochemistry of melanin-containing tissues.

    PubMed

    Shen, Hongwu; Wu, Wenqiao

    2015-04-01

    Melanin may interfere with immunohistochemical staining. The goal of this study was to investigate the effects of trichloroisocyanuric acid (TCCA) bleaching, potassium permanganate bleaching, and potassium dichromate bleaching on melanin, tissue antigen, and 3,3'-diaminobenzidine (DAB) using melanin-containing and melanin-free tissue samples. Our results demonstrated that all 3 bleaching methods efficiently bleached melanin and partially destroyed tissue antigen. In addition, potassium permanganate bleaching and potassium dichromate bleaching clearly destroyed DAB, whereas TCCA bleaching had no significant effect on DAB. Therefore, neither potassium permanganate nor potassium dichromate is an ideal solution, whereas TCCA might be an ideal solution for melanin bleaching after the immunohistochemical staining of melanin-containing tissues. After immunostaining followed by TCCA bleaching, the melanin could be completely removed in all 120 malignant melanoma tissue sections. Compared with the control, the DAB intensity was clear, and the tissue structure and cellular nuclei were well maintained. It is worth noting that TCCA should be freshly prepared before each experiment, and used within 2 hours of its preparation. In addition, sections should not be incubated with TCCA for over 30 minutes.

  2. Fluorescent quantification of melanin.

    PubMed

    Fernandes, Bruno; Matamá, Teresa; Guimarães, Diana; Gomes, Andreia; Cavaco-Paulo, Artur

    2016-11-01

    Melanin quantification is reportedly performed by absorption spectroscopy, commonly at 405 nm. Here, we propose the implementation of fluorescence spectroscopy for melanin assessment. In a typical in vitro assay to assess melanin production in response to an external stimulus, absorption spectroscopy clearly overvalues melanin content. This method is also incapable of distinguishing non-melanotic/amelanotic control cells from those that are actually capable of performing melanogenesis. Therefore, fluorescence spectroscopy is the best method for melanin quantification as it proved to be highly specific and accurate, detecting even small variations in the synthesis of melanin. This method can also be applied to the quantification of melanin in more complex biological matrices like zebrafish embryos and human hair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Synthesis and assembly of fungal melanin

    PubMed Central

    Casadevall, Arturo

    2015-01-01

    Melanin is a unique pigment with myriad functions that is found in all biological kingdoms. It is multifunctional, providing defense against environmental stresses such as ultraviolet (UV) light, oxidizing agents and ionizing radiation. Melanin contributes to the ability of fungi to survive in harsh environments. In addition, it plays a role in fungal pathogenesis. Melanin is an amorphous polymer that is produced by one of two synthetic pathways. Fungi may synthesize melanin from endogenous substrate via a 1,8-dihydroxynaphthalene (DHN) intermediate. Alternatively, some fungi produce melanin from l-3,4-dihydroxyphenylalanine (l-dopa). The detailed chemical structure of melanin is not known. However, microscopic studies show that it has an overall granular structure. In fungi, melanin granules are localized to the cell wall where they are likely cross-linked to polysaccharides. Recent studies suggest the fungal melanin may be synthesized in internal vesicles akin to mammalian melanosomes and transported to the cell wall. Potential applications of melanin take advantage of melanin's radioprotective properties and propensity to bind to a variety of substances. PMID:22173481

  4. Photothermal imaging of melanin

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; DiMarzio, Charles A.

    2013-02-01

    We present photothermal images of melanin using modulation with two laser beams. Strong melanin absorption followed by efficient nonradiative relaxation caused heating and an increase in temperature. This temperature effect was used as an imaging contrast to detect melanin. Melanin from several samples including Sepia officinalis, black human hair, and live zebra fish, were imaged with a high signal-to-noise ratio. For the imaging, we focused two near infrared laser beams (pump and probe) collinearly with different wavelengths and the pump was modulated in amplitude. The thermally induced variations in the refractive index, at the modulation frequency, were detected by the scattering of the probe beam. The Photothermal method brings several imaging benefits including the lack of background interference and the possibility of imaging for an extended period of time without photodamage to the melanin. The dependence of the photothermal signal on the laser power, modulation frequency, and spatial offset of the probe is discussed. The new photothermal imaging method is promising and provides background-free and label-free imaging of melanin and can be implemented with low-cost CW lasers.

  5. Role of Melanin in Oncogenesis

    DTIC Science & Technology

    2011-08-01

    the primary defense in the skin and eyes against the mutagenic effects of UV radiation. Melanin forms an envelope over the nucleus and prevents UV ... role of undamaged melanin in oncogenesis. To answer this question, it is imperative to separate the UV - protective role of melanin from its other...suggested that in its UV - protective role , melanin forms an envelope over

  6. Photoacoustic measurement of epidermal melanin

    NASA Astrophysics Data System (ADS)

    Viator, John A.; Svaasand, Lars O.; Aguilar, Guillermo; Choi, Bernard; Nelson, J. Stuart

    2003-06-01

    Most dermatologic laser procedures must consider epidermal melanin, as it is a broadband optical absorber which affects subsurface fluence, effectively limiting the amount of light reaching the dermis and targeted chromophores. An accurate method for quantifying epidermal melanin content would aid clinicians in determining proper light dosage for therapeutic laser procedures. While epidermal melanin content has been quantified non-invasively using optical methods, there is currently no way to determine the melanin distribution in the epidermis. We have developed a photoacoustic probe that uses a Q-switched, frequency doubled Nd:YAG laser operating at 532nm to generate acoustic pulses in skin in vivo. The probe contained a piezoelectric element that detected photoacoustic waves which were then analyzed for epidermal melanin content, using a photoacoustic melanin index (PAMI). We tested 15 human subjects with skin types I--VI using the photoacoustic probe. We also present photoacoustic data for a human subject with vitiligo. Photoacoustic measurement showed melanin in the vitiligo subject was almost completely absent.

  7. Urine melanin test

    MedlinePlus

    Thormahlen's test; Melanin - urine ... A clean-catch urine sample is needed. ... this substance that it shows up in the urine. ... Normally, melanin is not present in urine. Normal value ranges may ... measurements or test different samples. Talk to your health ...

  8. Melanin-binding radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Packer, S; Fairchild, R G; Watts, K P

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  9. Pneumocystis Melanins Confer Enhanced Organism Viability

    PubMed Central

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H.

    2006-01-01

    Pneumocystis continues to represent an important opportunistic fungal pathogen of those with compromised immunity. Thus, it is crucial to identify factors that affect its viability and pathogenicity. We previously reported the first identification of melanins in Pneumocystis. In the present study, we sought to further characterize these components and define the function for these melanins. Melanins extracted from Pneumocystis and melanized Pneumocystis cells were analyzed by electron spin resonance spectroscopy, revealing spectra consistent with melanins from other fungi. Immunofluorescence assays using anti-melanin monoclonal antibodies showed that melanins are widely present across Pneumocystis host species, including mouse-, ferret-, and human-derived Pneumocystis organisms, as well as Pneumocystis carinii derived from rat. Using immunoelectron microscopy, melanins were found to localize to the cell wall and cytoplasm of P. carinii cysts, as well as to intracystic bodies within mature cysts. Next, the role of melanins on the maintenance of Pneumocystis viability was determined by using quantitative reverse transcription-PCR measurement of the heat shock protein mRNA under adverse environmental conditions. Using a new method to promote the melanization of Pneumocystis, we observed that strongly melanized Pneumocystis retained viability to a greater degree when exposed to UV irradiation or desiccation compared to less-pigmented organisms. These studies support our previous identification of Pneumocystis melanins across the genus, further characterize these Pneumocystis components, and demonstrate that melanins protect Pneumocystis from environmental stressors. PMID:16757739

  10. Spiders do have melanin after all.

    PubMed

    Hsiung, Bor-Kai; Blackledge, Todd A; Shawkey, Matthew D

    2015-11-01

    Melanin pigments are broadly distributed in nature - from bacteria to fungi to plants and animals. However, many previous attempts to identify melanins in spiders were unsuccessful, suggesting that these otherwise ubiquitous pigments were lost during spider evolution. Yet, spiders exhibit many dark colours similar to those produced by melanins in other organisms, and the low solubility of melanins makes isolation and characterization difficult. Therefore, whether melanins are truly absent or have simply not yet been detected is an open question. Raman spectroscopy provides a reliable way to detect melanins in situ, without the need for isolation. In this study, we document the presence of eumelanin in diverse species of spiders using confocal Raman microspectroscopy. Comparisons of spectra with theoretically calculated data falsify the previous hypothesis that dark colours are produced solely by ommochromes in spiders. Our data indicate that melanins are present in spiders and further supporting that they are present in most living organisms. © 2015. Published by The Company of Biologists Ltd.

  11. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  12. Fungal Melanins Differ in Planar Stacking Distances

    PubMed Central

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R.; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments. PMID:22359541

  13. 1,8-Dihydroxynaphthalene (DHN)-Melanin Biosynthesis Inhibitors Increase Erythritol Production in Torula corallina, and DHN-Melanin Inhibits Erythrose Reductase

    PubMed Central

    Lee, Jung-Kul; Jung, Hyung-Moo; Kim, Sang-Yong

    2003-01-01

    The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina. PMID:12788746

  14. Synthetic Melanin E-Ink.

    PubMed

    Chang, Lingqian; Chen, Feng; Zhang, Xiaokang; Kuang, Tairong; Li, Mi; Hu, Jiaming; Shi, Junfeng; Lee, Ly James; Cheng, Huanyu; Li, Yiwen

    2017-05-17

    Extensive efforts have been devoted to the development of surfactant-free electronic ink (E-ink) with excellent display resolution for high-definition resolution display. Herein, we report the use of polydopamine-based synthetic melanin, a class of functional nanoparticles with similar chemical compositions and physical properties to those of naturally occurring melanin, as a new E-ink material. It was found that such E-ink displays could achieve ultrahigh resolution (>10 000 ppi) and low power consumption (operation voltage of only 1 V) in aqueous solutions. Interestingly, simple oxidation of synthetic melanin nanoparticles enables the generation of intrinsic fluorescence, allowing further development of fluorescent E-ink displays with nanoscale resolution. We describe these bioinspired materials in an initial proof-of-concept study and propose that synthetic melanin nanoparticles will be suitable for electronic nanoinks with a potential wide range of applications in molecular patterning and fluorescence bioimaging.

  15. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance.

    PubMed

    Okazaki, M; Kuwata, K; Miki, Y; Shiga, S; Shiga, T

    1985-10-01

    Electron spin lattice relaxation times (T1) and the phase memory times (Tm) were obtained for the synthetic melanin system from 3-hydroxytyrosine (dopa) by means of electron spin echo spectroscopy at 77 degrees K. Saturation behavior of the ESR spectra of melanins in melanin-containing tissue and of the synthetic melanin was also determined at the same temperature. The spin lattice relaxation time and the spectral diffusion time of the synthetic melanin are very long (4.3 ms and 101 microseconds, respectively, in the solid state), and the ESR signal saturates readily at low microwave powers. On the other hand, ESR spectra of natural melanins from the tissues chosen for this study, as well as those of synthetic melanins which contain Fe3+ of g = 4.3 and Mn2+ of g = 2, are relatively difficult to saturate compared with samples without such metal ions. These results show clearly that a large part of those two metal ions in sites responsible for the ESR spectral components with these particular g values are coordinated to melanin in melanin-containing tissue, and modify the magnetic relaxation behavior of the melanin. Accumulations of these metal ions in melanins are different from system to system, and they increase in the order: hair (black), retina and choroid (brown), malignant melanoma of eye and skin, and lentigo and nevus of skin.

  16. Melanin-templated rapid synthesis of silver nanostructures

    PubMed Central

    2014-01-01

    Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food

  17. Fungal melanins and their interactions with metals.

    PubMed

    Fogarty, R V; Tobin, J M

    1996-09-01

    Fungal melanins are dark brown or black pigments located in cell walls. They also exist as extracellular polymers. Melanized fungi possess increased virulence and resistance to microbial attack as well as enhanced survival while under environmental stress. Melanins contain various functional groups which provide an array of multiple nonequivalent binding sites for metal ions. Pigmented Cladosporium cladosporoides was shown to biosorb 2.5- to four-fold more Ni, Cu, Zn, Cd, and Pb than albino Penicillium digitatum and at four- to six-fold higher rates. Metal desorption was significantly lower for extracellular melanin than from pigmented or albino biomass which indicated the strength of the melanin-metal bond. At equilibrium, tributyltin chloride (TBTC) concentrations of 2.5 mM, pigmented and albino Aureobasidium pullulans absorbed approximately 0.9 and 0.7 mumol TBTC mg -1 dry wt, respectively, whereas purified extracellular melanin exhibited uptake levels of approximately 22 mumol TBTC mg-1 dry wt at an equilibrium concentration of only 0.4 mM. Addition of melanin to the growth medium reduced the toxic effect of CuSO4 and TBTC due to melanin metal binding and sequestration.

  18. Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering.

    PubMed

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Bentley, William E; Payne, Gregory F

    2016-08-17

    Parkinson's disease is a neurodegenerative disorder associated with oxidative stress and the death of melanin-containing neurons of the substantia nigra. Epidemiological evidence links exposure to the pesticide paraquat (PQ) to Parkinson's disease, and this link has been explained by a redox cycling mechanism that induces oxidative stress. Here, we used a novel electrochemistry-based reverse engineering methodology to test the hypothesis that PQ can undergo reductive redox cycling with melanin. In this method, (i) an insoluble natural melanin (from Sepia melanin) and a synthetic model melanin (having a cysteinyldopamine-melanin core and dopamine-melanin shell) were entrapped in a nonconducting hydrogel film adjacent to an electrode, (ii) the film-coated electrode was immersed in solutions containing PQ (putative redox cycling reductant) and a redox cycling oxidant (ferrocene dimethanol), (iii) sequences of input potentials (i.e., voltages) were imposed to the underlying electrode to systematically engage reductive and oxidative redox cycling, and (iv) output response currents were analyzed for signatures of redox cycling. The response characteristics of the PQ-melanin systems to various input potential sequences support the hypothesis that PQ can directly donate electrons to melanin. This observation of PQ-melanin redox interactions demonstrates an association between two components that have been individually linked to oxidative stress and Parkinson's disease. Potentially, melanin's redox activity could be an important component in understanding the etiology of neurological disorders such as Parkinson's disease.

  19. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    PubMed Central

    2017-01-01

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications. PMID:28718807

  20. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules.

    PubMed

    Solano, Francisco

    2017-07-18

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  1. [Effect of Pseudomonas aeruginosa melanin on antibiotic activity].

    PubMed

    Rozhavin, M A

    1978-08-01

    The properties of microbial melanines are very diverse. Melanine of P. aeruginosa is little studied. The pigment was isolated from a strain of P. aeruginosa possessing all characteristic properties of the species. Interaction of P. aeruginosa melanine with various antibiotics was determined by the method of serial dilutions in beaf-peptone broth, using Staph. aureus 209 as a test-microbe, which was added to the medium in an amount of 10(6) cells to each tube. It was found that P. aeruginosa melanine differed from DOPA-melanine in a concentration of 1 mg/ml and did not change the activity of penicillin, tetracycline, oleandomycin, kanamycin and gentamicin with respect to Staph. aureus.

  2. Extracellular and intracellular melanin in inflammatory middle ear disease.

    PubMed

    Fritz, Mark A; Roehm, Pamela C; Bannan, Michael A; Lalwani, Anil K

    2014-06-01

    Melanin is a pigmented polymer with a known role in dermal solar protection. In vertebrates, melanogenesis has been reported in leukocyte populations, suggesting a potential role in innate immunity. In this study, we report the novel finding of melanin associated with chronic inflammation and speculate on its potential role in the middle ear and mastoid. Retrospective review of case series. Medical records of six patients who demonstrated melanin in the ear were reviewed. Six patients from 1 to 63 years of age were identified with extracellular melanin and melanin-laden histiocytes within the middle ear and/or mastoid air cells at time of surgery. Concurrent intraoperative findings included cholesteatoma (n = 3), chronic suppurative otitis media (n = 2), and coalescent mastoiditis (n = 1). Histologically, extracellular melanin and melanin-laden histiocytes were identified by Fontana-Masson stain; absence of melanocytes was confirmed by the absence of Melan-A staining. One patient had a positive stain for CD163 (a marker for macrophages). This case series is the first demonstration of melanin within middle ear mucosa without melanocytes in immediate proximity or metastatic melanocytic lesions. Melanin's presence in the setting of inflammation suggests that there may be a heretofore unreported link between the pigmentary and immune systems in the middle ear. 4.

  3. Melanin may promote photooxidation of linoleic acid

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Lam, Kwok-Wai

    1995-05-01

    We have previously shown that laser-exposed melanin granules isolated from the retinal pigment epithelium (RPE) are capable of oxidizing ascorbic acid. We are now characterizing the reactions of light- activated melanin with other cellular components such as linoleic acid, a polyunsaturated fatty acid. Commercial linoleic acid, and melanin granules isolated from bovine RPE cells, are mixed and exposed to the broad band output of a 150 W Xenon arc lamp or the CW output of an Argon laser. Native linoleic acid is separated from its hydroperoxides by HPLC, and the relative amounts of each are detected by UV absorbance at 210 and 232 nm, respectively. Exposure of the linoleic acid alone to the xenon arc source results in production of linoleic hydroperoxides (LHP) in an intensity-dependent reaction that doubles in extent over the temperature range of 0° to 80°C. Addition of melanin granules at a density of 108 granules/ml reduces the production of LHP, probably because of light absorption and self-screening by the melanin. At or below a density of 107 granules/ml, however, the light-driven production of LHP is enhanced, especially during exposure to the blue- green output of the Argon laser. Physiological antioxidants (Vit. C,E protect the linoleic acid from photo-oxidation in the presence or absence of melanin. These observations support the hypothesis that light-activated melanin can react with some cellular components and thereby contribute to photochemical damage, especially if endogenous antioxidants are depleted.

  4. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.

    PubMed

    Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We

  5. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies

    PubMed Central

    Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I.; Hermosilla, Germán; Olate, Verónica R.; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V.

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8–15.6) and 19.5/(15.6–31.2) μg/mL, respectively, for human melanin; 273.4/(125–>500) and 367.2/(125.5–>500) μg/mL for C. neoformans melanin and 125/(62.5–250) and 156.2/(62–250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin

  6. Does melanin matter in the dark?

    PubMed

    Płonka, Przemysław M; Picardo, Mauro; Slominski, Andrzej T

    2017-07-01

    In living cells, melanin pigment is formed within melanosomes, which not only protect the cells from autodestruction, but also serve as second messenger organelles regulating important skin functions, with melanocytes acting as primary sensory and regulatory cells of the epidermis. Yet, one can argue that skin melanin, which may negatively affect cellular homeostasis in melanoma, really exerts protective functions. Consequently, the actual functions of melanin and the melanogenic pathway in skin biology remains enigmatic. Yet, the solution of this riddle seems simple - to check the actual influence of natural melanin on skin cells in the dark. Since many interesting hypotheses and theories put forward in this respect did not survive confrontation with the experiment, a leading pigment research group from Naples was brave to "jump off the cliff" by confronting theory with experimental reality. They showed that, in the dark, human hair-derived melanin promotes inflammatory responses in keratinocytes, lowers their viability, promotes oxidative stress, and that pheomelanin does so more strongly than eumelanin. Thus, pheomelanin hardly protects red-haired individuals, even when avoiding the sun. Black hairs do not do much better either, unless they undergo graying. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Role of Melanin in Oncogenesis

    DTIC Science & Technology

    2011-02-28

    the skin and eyes against the mutagenic effects of UV radiation. Through poorly understood mechanisms, melanin forms an envelope over the nucleus...it is compelling to question the role of undamaged melanin in oncogenesis. To answer this question, it is imperative to separate the UV - protective ...by the oncogenic MITF transcription factor2,3. It has been suggested that in its UV - protective role ,

  8. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution.

    PubMed

    Galván, Ismael; Solano, Francisco

    2016-04-08

    Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.

  9. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution

    PubMed Central

    Galván, Ismael; Solano, Francisco

    2016-01-01

    Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models. PMID:27070583

  10. Non-contact assessment of melanin distribution via multispectral temporal illumination coding

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).

  11. Identification of 180 million years old, probably unchanged melanine

    NASA Technical Reports Server (NTRS)

    Beyermann, K.; Hasenmaier, D.

    1977-01-01

    The comparison of the infrared spectra of recent sepia melanine and of the content of the ink sac of fossilized cuttlefish indicates that the 180 million years old substance is unchanged melanine. Both substances behave identically on heating. Other procedures for identification of melanine are surveyed critically.

  12. Melanin-Based Coatings as Lead-Binding Agents

    PubMed Central

    Sono, Karin; Lye, Diane; Moore, Christine A.; Boyd, W. Christopher; Gorlin, Thomas A.; Belitsky, Jason M.

    2012-01-01

    Interactions between metal ions and different forms of melanin play significant roles in melanin biochemistry. The binding properties of natural melanin and related synthetic materials can be exploited for nonbiological applications, potentially including water purification. A method for investigating metal ion-melanin interactions on solid support is described, with lead as the initial target. 2.5 cm discs of the hydrophobic polymer PVDF were coated with synthetic eumelanin from the tyrosinase-catalyzed polymerization of L-dopa, and with melanin extracted from human hair. Lead (Pb2+) binding was quantified by atomic absorption spectroscopy (flame mode), and the data was well fit by the Langmuir model. Langmuir affinities ranged from 3.4 · 103 to 2.2 · 104 M−1. At the maximum capacity observed, the synthetic eumelanin coating bound ~9% of its mass in lead. Binding of copper (Cu2+), zinc (Zn2+), and cadmium (Cd2+) to the synthetic-eumelanin-coated discs was also investigated. Under the conditions tested, the Langmuir affinities for Zn2+, Cd2+, and Cu2+ were 35%, 53%, and 77%, respectively, of the Langmuir affinity for Pb2+. The synthetic-eumelanin-coated discs have a slightly higher capacity for Cu2+ on a per mole basis than for Pb2+, and lower capacities for Cd2+ and Zn2+. The system described can be used to address biological questions and potentially be applied toward melanin-based water purification. PMID:22611345

  13. Degradation of melanin by Aspergillus fumigatus.

    PubMed Central

    Luther, J P; Lipke, H

    1980-01-01

    A strain of Aspergillus fumigatus from composted coffee and garden wastes utilized natural deproteinized insect, banana, hair, octopus, and synthetic tyrosine and dopa melanins as sole sources of carbon. With a sucrose supplement, degradation was essentially complete after 50 days in Czapek medium pH 6.5 at 30 degrees C. The catabolic rate differed for each substrate pigment, as did the molecular weight distribution of products accumulating in the medium. After incubation with L-[U-14C]melanin, over 50% was recovered in a dark fungal pigment, the remainder appearing as cell protein, chitin, lipid, CO2, and polar metabolites. When grown on melanin, the normally pale mycelia darkened with the production of a fungal allomelanin, with infrared spectrum and alkali fusion products differing from those of the substrate pigment. Isotope distribution in amino acids for A. fumigatus grown on labeled melanin supplemented with sucrose suggested separate pools for synthesis of cell proteins and melanoproteins. Deposition of allomelanin increased resistance of conidia, sterigma, and conidiophores to lytic carbohydrases as judged by scanning electron microscopy. Images PMID:6996615

  14. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy.

    PubMed

    Jiang, Qin; Luo, Zimiao; Men, Yongzhi; Yang, Peng; Peng, Haibao; Guo, Ranran; Tian, Ye; Pang, Zhiqing; Yang, Wuli

    2017-10-01

    Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT. The as-obtained natural melanin nanoparticles demonstrated strong absorption at NIR region, higher photothermal conversion efficiency (∼40%) than synthesized melanin-like polydopamine nanoparticles (∼29%), as well as favorable biocompatibility and biodegradability. It was shown that RBC membrane coating on melanin nanoparticles retained their excellent photothermal property, enhanced their blood retention and effectively improved their accumulation at tumor sites. With the guidance of their inherited photoacoustic imaging capability, optimal accumulation of Melanin@RBC at tumors was achieved around 4 h post intravenous injection. Upon irradiation by an 808-nm laser, the developed Melanin@RBC nanoparticles exhibited significantly higher PTT efficacy than that of bare melanin nanoparticles in A549 tumor-bearing mice. Given that both melanin nanoparticles and RBC membrane are native biomaterials, the developed Melanin@RBC platform could have great potential in clinics for anticancer PTT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  16. Isolation and characterization of melanin pigment from yesso scallop Patinopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Sun, Xiujun; Wu, Biao; Zhou, Liqing; Liu, Zhihong; Dong, Yinghui; Yang, Aiguo

    2017-04-01

    Melanin is one of the essential compounds in the pigments of molluscan shells. However, the effects of melanin on color variations in molluscs are largely unknown. Our previous study suggests that Yesso scallop Patinopecten yessoensis might contain melanin pigment in the dark brown shell. We therefore isolated melanin from the pigmented shells using hydrochloric acid method, and characterized the types of melanin pigments by spectrophotometry. The purified melanin, which was verified by spectrophotometry scanning and HPLC analysis, showed the typical characteristics of melanin absorption spectra and HPLC chromatograms. The contents of pheomelanin and eumelanin in pigmented shells, which were determined by the linear standard curve of melanin at 405 nm and 350 nm absorbance, were 48.23 ± 1.350 and 157.65 ± 5.905 mg, respectively. The present results indicate that the brown-pigmented shells of scallops comprise approximately 76.6% of eumelanin and 23.4% of pheomelanin, which supports the presence of eumelanin-rich pigment in scallop shells. Therefore, the combination of hydrochloric acid extraction and spectrophotometric quantification is a rapid and efficient method to isolate and quantify melanin in shells. This will facilitate the melanin studies related to shell color polymorphism and the selective breeding of bivalves with different shell colors.

  17. Neuroprotective action of bacterial melanin in rats after corticospinal tract lesions.

    PubMed

    Petrosyan, Tigran R; Gevorkyan, Olga V; Meliksetyan, Irina B; Hovsepyan, Anna S; Manvelyan, Levon R

    2012-04-01

    Experiments were performed on 48 albino rats. Part of the experimental animals were initially trained to a balancing instrumental conditioned reflex (ICR). Unilateral bulbar pyramidotomy performed in all rats caused contralateral hemiparesis. On the next day following the operation 24 rats were injected intramuscularly with bacterial melanin solution. 12 of these rats were initially trained to ICR. Recovery periods of ICR and paralyzed hindlimb movements were registered for melanin injected rats (n=24) and for operated rats, not treated with melanin (n=24). In rats injected with bacterial melanin the posttraumatic recovery is shorter than in animals not treated with melanin. The fastest and complete recovery was registered in rats initially trained to ICR and injected after the operation with bacterial melanin. Electrophysiological experiments were performed in transected animals treated with melanin, transected animals without melanin treatment and intact animals. Spiking activity of motoneurons was registered in lumbar motoneurons of rats in response to high frequency stimulation above the corticospinal tract transection. Spiking activity was very similar in motoneurons of melanin injected and intact or non operated animals. In animals, not dosed with bacterial melanin after the operation, areactivity or no change in firing rate was registered in response to stimulus. Stimulation of the corticospinal tract of melanin injected rats produced potentiation of the motoneuronal firing rate and is an evidence of regeneration in corticospinal tract. Similarity in spiking activity of intact and melanin injected rats shows the recovery of conductance in pyramidal tract. Morphohistochemical examination was carried out to confirm the results of behavioral and electrophysiological experiments. Medulla slices were prepared to trace the regeneration of nerve fibers. Examination of transection area revealed that bacterial melanin increases vascularization, dilates the

  18. Dispersive Raman spectroscopy allows the identification and quantification of melanin types

    PubMed Central

    Galván, Ismael; Jorge, Alberto

    2015-01-01

    Melanins are the most prevalent pigments in animals and are involved in visual communication by producing colored traits that often evolve as intraspecific signals of quality. Identifying and quantifying melanins are therefore essential to understand the function and evolution of melanin-based signals. However, the analysis of melanins is difficult due to their insolubility and the lack of simple methods that allow the identification of their chemical forms. We recently proposed the use of Raman spectroscopy as a simple, noninvasive technique that can be used to identify and quantify melanins in feathers and hairs. Contrarily, other authors later stated that melanins are characterized by a lack of defined Raman signals. Here, we use confocal Raman microscopy to confirm previous analyses showing that the two main chemical forms of melanins (eumelanin and pheomelanin) exhibit distinct Raman signal and compare different excitation wavelengths to analyze synthetic pheomelanin and natural melanins in feathers of different species of birds. Our analyses indicate that only laser excitation wavelengths below 1064 nm are useful for the analysis of melanins by Raman spectroscopy, and only 780-nm laser in the case of melanins in feathers. These findings show that the capacity of Raman spectroscopy to distinguish different chemical forms of melanins depends on laser power and integration time. As a consequence, Raman spectroscopy should be applied after preliminar analyses using a range of these parameters, especially in fragile biological tissues such as feathers. PMID:25897382

  19. Biosynthesis and Functions of Melanin in Sporothrix schenckii

    PubMed Central

    Romero-Martinez, Rafael; Wheeler, Michael; Guerrero-Plata, Antonieta; Rico, Guadalupe; Torres-Guerrero, Haydée

    2000-01-01

    Sporothrix schenckii is a human pathogen that causes sporotrichosis, an important cutaneous mycosis with a worldwide distribution. It produces dark-brown conidia, which infect the host. We found that S. schenckii synthesizes melanin via the 1,8-dihydroxynaphthalene pentaketide pathway. Melanin biosynthesis in the wild type was inhibited by tricyclazole, and colonies of the fungus were reddish brown instead of black on tricyclazole-amended medium. Two melanin-deficient mutant strains were analyzed in this study: an albino that produced normal-appearing melanin on scytalone-amended medium and a reddish brown mutant that accumulated and extruded melanin metabolites into its medium. Scytalone and flaviolin obtained from cultures of the reddish brown mutant were identified by thin-layer chromatography, high-performance liquid chromatography, and UV spectra. Transmission electron microscopy showed an electron-dense granular material believed to be melanin in wild-type conidial cell walls, and this was absent in conidial walls of the albino mutant unless the albino was grown on a scytalone-amended medium. Melanized cells of wild-type S. schenckii and the albino grown on scytalone-amended medium were less susceptible to killing by chemically generated oxygen- and nitrogen-derived radicals and by UV light than were conidia of the mutant strains. Melanized conidia of the wild type and the scytalone-treated albino were also more resistant to phagocytosis and killing by human monocytes and murine macrophages than were unmelanized conidia of the two mutants. These results demonstrate that melanin protects S. schenckii against certain oxidative antimicrobial compounds and against attack by macrophages. PMID:10816530

  20. Evaluation of melanin production by Sporothrix luriei.

    PubMed

    Cruz, Ingrid Ludmilla Rodrigues; Figueiredo-Carvalho, Maria Helena Galdino; Zancopé-Oliveira, Rosely Maria; Almeida-Paes, Rodrigo

    2018-01-01

    There is a paucity of studies on the cell biology of Sporothrix luriei, the less common of the pathogenic Sporothrix species worldwide. The production of DHN-melanin, eumelanin, and pyomelanin were evaluated on the mycelial and yeast forms of the S. luriei ATCC 18616 strain. The mycelial form of this species produced only pyomelanin, which protected the fungus against environmental stressors such as ultraviolet light, heat, and cold. The yeast form was unable to produce any of the tested melanin types. The lack of melanin in the parasitic form of S. luriei may be an explanation for its low frequency in human infections.

  1. Melanin as an active layer in biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12.more » EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.« less

  2. Melanins and Resistance of Fungi to Lysis

    PubMed Central

    Bloomfield, B. J.; Alexander, M.

    1967-01-01

    Hyphal walls of Aspergillus phoenicis and Sclerotium rolfsii are composed of large amounts of glucose- and N-acetylhexosamine-containing polysaccharides, and the walls are extensively digested by streptomycete culture filtrates or by a mixture of purified chitinase and β-(1 → 3) glucanase preparations with the release of the monomeric units. A. phoenicis conidial walls also contain polymers of glucose and N-acetylhexosamine, but these walls are resistant to digestion by microorganisms or the enzyme combination active on the hyphae. When the melanin-containing spicules were removed from the spore surface, however, the chitinase and glucanase partially digested the underlying structural components. Microorganisms decomposing hyphal walls of S. rolfsii did not attack the melanin-covered sclerotia produced by this fungus. No microorganism capable of lysing two fungi, Rhizoctonia solani and Cladosporium sp., producing hyphae containing abundant melanin was found. The ecological significance of these findings and possible mechanisms for the protective influence associated with melanins are discussed. PMID:6032507

  3. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals

    PubMed Central

    2010-01-01

    Background The pathogenic fungus Fonsecaea pedrosoi constitutively produces the pigment melanin, an important virulence factor in fungi. Melanin is incorporated in the cell wall structure and provides chemical and physical protection for the fungus. We evaluated the production of nitric oxide (NO) in macrophages, the oxidative burst and the inducible nitric oxide synthase (i-NOS) activity in interactions between activated murine macrophages and F. pedrosoi. Experiments were carried out with or without tricyclazole (TC) treatment, a selective inhibitor of the dihydroxynaphthalene (DHN)-melanin biosynthesis pathway in F. pedrosoi. The paramagnetisms of melanin and the TC-melanin were analysed by electron spin resonance. The fungal growth responses to H2O2 and to S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide donor, were also evaluated. Results Melanised F. pedrosoi cells were more resistant to both H2O2 and NO. Nitrite was not detected in the supernatant of macrophages incubated with melanised fungal cells. However, i-NOS expression was unaffected by the presence of either untreated control F. pedrosoi or TC-treated F. pedrosoi. In addition, the inhibition of the DHN-melanin pathway by TC improved the oxidative burst capability of the macrophages. Conclusion The NO-trapping ability of F. pedrosoi melanin is an important mechanism to escape the oxidative burst of macrophages. PMID:20233438

  4. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells

    PubMed Central

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro

    2017-01-01

    ABSTRACT Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds

  5. Gingival melanin depigmentation by Er:YAG laser: A literature review.

    PubMed

    Pavlic, Verica; Brkic, Zlata; Marin, Sasa; Cicmil, Smiljka; Gojkov-Vukelic, Mirjana; Aoki, Akira

    2018-04-01

    Laser ablation is recently suggested as a most effective and reliable technique for depigmentation of melanin hyperpigmented gingiva. To date, different lasers have been used for gingival depigmentation (CO 2 , diode, Nd:YAG, Er:YAG and Er,Cr:YSGG lasers). The use of Er:YAG laser for depigmentation of melanin hyperpigmented gingiva has gained increasing importance in recent years. The purpose of this study was to report removal of gingival melanin pigmentation using an Er:YAG laser in a literature review. The main outcomes, such as improvement of signs (clinical parameters of bleeding, erythema, swelling and wound healing), symptoms (pain) and melanin recurrence/repigmentation were measured. The literature demonstrated that depigmentation of gingival melanin pigmentation can be performed safely and effectively by Er:YAG laser resulting in healing and an esthetically significant improvement of gingival discoloration. Thus, Er:YAG laser seems to be safe and useful in melanin depigmentation procedure. However, the main issue in giving the final conclusion of the optimal Er:YAG laser use in melanin depigmentation is that, to date, studies are offering completely discrepant Er:YAG laser procedure protocols (complex settings of laser parameters), and different criteria for the assessment of depigmentation and repigmentation (recurrence), thus hampering the comparison of the results. Therefore, further studies are necessary to give an optimal recommendation on the use of Er:YAG laser in gingival melanin hyperpigmentation.

  6. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  7. Melanins and their possible roles through biological evolution

    NASA Astrophysics Data System (ADS)

    Césarini, J. P.

    Melanins are biopolymers which structures can be very simple or very complex. From a single essential amino acid, phenylalanine, to fully mature melanosomes, a series of events takes place: melanogenesis. A part of haemoglobin, melanins are the only pigment endogenously synthesised in humans. Their synthesis takes place in the melanocyte, a cell from neurectodermal origin (neural crest, neural tube, melanoblasts). Two important functions have been attributed to melanin: optical efficiency of the eye and colour pattern, but their role might have been much larger in lower vertebrates and several micro-organisms. By their structure, melanins have very original biophysical bioproperties. They could act as intrinsic semiconductors and may de-excite certain biological molecules by converting electronic energy into heat. Being themselves free radicals, they certainly play a major role in the quenching of free radicals produced by ultraviolet radiation. In their granular or particular form, they absorb or reflect the non-ionising radiations. Furthermore, like weak cation exchange polymers, eumelanins have the capacity to bind substantial amount of metal ions or drugs. Phaeomelanins, sulphur containing low molecular weight, may have controlled the redox state of the early steps of life on earth. In human, the skin protection role attributed to melanins is controversial. If melanins have played a major role in the establishment of a North South gradient of skin colour, it is by no mean, an adaptation phenomenon for the darker population living under strong sun exposures.

  8. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  9. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro; Doh-Ura, Katsumi

    2017-03-15

    Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and

  10. Melanin, Radiation, and Energy Transduction in Fungi.

    PubMed

    Casadevall, Arturo; Cordero, Radames J B; Bryan, Ruth; Nosanchuk, Joshua; Dadachova, Ekaterina

    2017-03-01

    Melanin pigments are found in many diverse fungal species, where they serve a variety of functions that promote fitness and cell survival. Melanotic fungi inhabit some of the most extreme habitats on earth such as the damaged nuclear reactor at Chernobyl and the highlands of Antarctica, both of which are high-radiation environments. Melanotic fungi migrate toward radioactive sources, which appear to enhance their growth. This phenomenon, combined with the known capacities of melanin to absorb a broad spectrum of electromagnetic radiation and transduce this radiation into other forms of energy, raises the possibility that melanin also functions in harvesting such energy for biological usage. The ability of melanotic fungi to harness electromagnetic radiation for physiological processes has enormous implications for biological energy flows in the biosphere and for exobiology, since it provides new mechanisms for survival in extraterrestrial conditions. Whereas some features of the way melanin-related energy transduction works can be discerned by linking various observations and circumstantial data, the mechanistic details remain to be discovered.

  11. Different culture media containing methyldopa for melanin production by Cryptococcus species.

    PubMed

    Menezes, Ralciane de Paula; Penatti, Mário Paulo Amante; Pedroso, Reginaldo dos Santos

    2011-10-01

    Melanin production by species of Cryptococcus is widely used to characterize C. neoformans complex in mycology laboratories. This study aims to test the efficacy of methyldopa from pharmaceutical tablet as a substrate for melanin production, to compare the production of melanin using different agar base added with methyldopa, and to compare the melanin produced in those media with that produced in Niger seed agar and sunflower seed agar by C. neoformans, C. laurentii, and C. albidus. Two isolates of each species, C. neoformans, C. laurentii, and C. albidus, and one of Candida albicans were used to experimentally detect conditions for melanin production. The following media were tested: Mueller-Hinton agar (MHA), brain and heart infusion agar (BHIA), blood agar base (BAB), and minimal medium agar (MMA), all added with methyldopa, and the media Niger seed agar (NSA) and sunflower seed agar (SSA). All isolates grew in most of the culture media after 24h. Strains planted on media BAB and BHIA showed growth only after 48h. All isolates produced melanin in MMA, MHA, SSA, and NSA media. Methyldopa in the form pharmaceutical tablet can be used as a substrate for melanin production by Cryptococcus species; minimal medium plus methyldopa was more efficient than the BAB, MHA, and BHIA in the melanin production; and NSA and SSA, followed by MMA added with methyldopa, were more efficient than other media studied for melanin production by all strains studied.

  12. Melanin fluorescence spectra by step-wise three photon excitation

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.

    2012-03-01

    Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.

  13. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    PubMed

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs

    PubMed Central

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M. A.; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E.; Casadevall, Arturo

    2015-01-01

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. PMID:26711773

  15. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors.

    PubMed

    Schweitzer, Andrew D; Howell, Robertha C; Jiang, Zewei; Bryan, Ruth A; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean; Casadevall, Arturo; Dadachova, Ekaterina

    2009-09-30

    Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14.10(18), 7.09.10(18), and 9.05.10(17) spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy ((137)Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. We propose that due to melanin's numerous aromatic oligomers containing multiple pi-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species.

  16. Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors

    PubMed Central

    Schweitzer, Andrew D.; Howell, Robertha C.; Jiang, Zewei; Bryan, Ruth A.; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean

    2009-01-01

    Background Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. Methodology/Principal Findings We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·1018, 7.09·1018, and 9.05·1017 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy (137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. Conclusions/Significance We propose that due to melanin's numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species. PMID:19789711

  17. Melanin determination by high performance liquid chromatography (HPLC) for K. marxianus

    USDA-ARS?s Scientific Manuscript database

    Ultraviolet light (UV) mutated K. marxianus was found to turn dark brown during a growth assay. This brown color was hypothesized to be melanin overproduction influenced by the UV exposure. Cell cultures were oxidized and HPLC analyzed to determine melanin concentrations. The resulting melanin con...

  18. UVA phototransduction drives early melanin synthesis in human melanocytes.

    PubMed

    Wicks, Nadine L; Chan, Jason W; Najera, Julia A; Ciriello, Jonathan M; Oancea, Elena

    2011-11-22

    Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  20. Melanin content in melanoma metastases affects the outcome of radiotherapy.

    PubMed

    Brożyna, Anna A; Jóźwicki, Wojciech; Roszkowski, Krzysztof; Filipiak, Jan; Slominski, Andrzej T

    2016-04-05

    Melanin possess radioprotective and scavenging properties, and its presence can affect the behavior of melanoma cells, its surrounding environment and susceptibility to the therapy, as showed in vitro experiments. To determine whether melanin presence in melanoma affects the efficiency of radiotherapy (RTH) we evaluated the survival time after RTH treatment in metastatic melanoma patients (n = 57). In another cohort of melanoma patients (n = 84), the relationship between melanin level and pT and pN status was determined. A significantly longer survival time was found in patients with amelanotic metastatic melanomas in comparison to the melanotic ones, who were treated with either RTH or chemotherapy (CHTH) and RTH. These differences were more significant in a group of melanoma patients treated only with RTH. A detailed analysis of primary melanomas revealed that melanin levels were significantly higher in melanoma cells invading reticular dermis than the papillary dermis. A significant reduction of melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and T2 tumors was observed. However, melanin levels measured in pT3-pT4 melanomas developing metastases (pN1-3, pM1) were higher than in pN0 and pM0 cases. The presence of melanin in metastatic melanoma cells decreases the outcome of radiotherapy, and melanin synthesis is related to higher disease advancement. Based on our previous cell-based and clinical research and present research we also suggest that inhibition of melanogenesis can improve radiotherapy modalities. The mechanism of relationship between melanogenesis and efficacy of RTH requires additional studies, including larger melanoma patients population and orthotopic, imageable mouse models of metastatic melanoma.

  1. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    PubMed

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  2. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  3. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    PubMed

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  4. UV-induced Melanin Chemiexcitation: A New Mode of Melanoma Pathogenesis.

    PubMed

    Brash, Douglas E

    2016-06-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These "dark CPDs" constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed "chemiexcitation," is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. © The Author(s) 2016.

  5. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    PubMed

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  6. Melanin chemistry and the ecology of stress.

    PubMed

    Galván, Ismael; Solano, Francisco

    2015-01-01

    Knowledge of melanin chemistry has important implications for the study of the evolutionary ecology of animal pigmentation, but the actual chemical diversity of these widely expressed biological pigments has been largely overlooked. Considering all melanin forms and the different conditions of endogenous oxidative stress during their synthesis provides information about physiological costs and benefits of different pigmentation patterns and opens a new perspective to understanding the evolution of color phenotypes in animals.

  7. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity.

    PubMed

    Vijayan, Vijitha; Jasmin, Chekidhenkuzhiyil; Anas, Abdulaziz; Parakkaparambil Kuttan, Sreelakshmi; Vinothkumar, Saradavey; Perunninakulath Subrayan, Parameswaran; Nair, Shanta

    2017-09-01

    Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml -1 ), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml -1 ) and MMRF 546 (30 mg ml -1 ). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC 50 -9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

  8. Keratinocyte-derived Laminin-332 Protein Promotes Melanin Synthesis via Regulation of Tyrosine Uptake*

    PubMed Central

    Chung, Heesung; Jung, Hyejung; Lee, Jung-hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-01-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. PMID:24951591

  9. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    PubMed

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Role of semiconductivity and ion transport in the electrical conduction of melanin

    PubMed Central

    Mostert, Albertus B.; Powell, Benjamin J.; Pratt, Francis L.; Hanson, Graeme R.; Sarna, Tadeusz; Gentle, Ian R.; Meredith, Paul

    2012-01-01

    Melanins are pigmentary macromolecules found throughout the biosphere that, in the 1970s, were discovered to conduct electricity and display bistable switching. Since then, it has been widely believed that melanins are naturally occurring amorphous organic semiconductors. Here, we report electrical conductivity, muon spin relaxation, and electron paramagnetic resonance measurements of melanin as the environmental humidity is varied. We show that hydration of melanin shifts the comproportionation equilibrium so as to dope electrons and protons into the system. This equilibrium defines the relative proportions of hydroxyquinone, semiquinone, and quinone species in the macromolecule. As such, the mechanism explains why melanin at neutral pH only conducts when “wet” and suggests that both carriers play a role in the conductivity. Understanding that melanin is an electronic-ionic hybrid conductor rather than an amorphous organic semiconductor opens exciting possibilities for bioelectronic applications such as ion-to-electron transduction given its biocompatibility. PMID:22615355

  11. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries).

    PubMed

    Arun, G; Eyini, M; Gunasekaran, P

    2015-06-01

    Melanins are enigmatic pigments produced by a wide variety of microorganisms including bacteria and fungi. Here, we have isolated and characterized extracellular melanin from mushroom fungus, Schizophyllum commune. The extracellular dark pigment produced by the broth culture of S. commune, after 21 days of incubation was recovered by hot acid-alkali treatment. The melanin nature of the pigment was characterized by biochemical tests and further, confirmed by UV, IR, EPR, NMR and MALDI-TOF Mass Spectra. Extracellular melanin, at 100 μg/ml, showed significant antibacterial activity against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas fluorescens and antifungal activity against Trichophyton simii and T. rubrum. At a concentration of 50 μg/ml, melanin showed high free radical scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) indicating its antioxidant potential. It showed concentration dependent inhibition of cell proliferation of Human Epidermoid Larynx Carcinoma Cell Line (HEP-2). This study has demonstrated characterization of melanin from basidiomycetes mushroom fungus, Schizophyllum commune and its applications.

  12. Synthesis of Melanin-Like Pigments by Sporothrix schenckii In Vitro and during Mammalian Infection

    PubMed Central

    Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L.; Aisen, Phil; Hay, Roderick J.; Nosanchuk, Joshua D.; Casadevall, Arturo; Hamilton, Andrew J.

    2003-01-01

    Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis. PMID:12819091

  13. Ions doped melanin nanoparticle as a multiple imaging agent.

    PubMed

    Ha, Shin-Woo; Cho, Hee-Sang; Yoon, Young Il; Jang, Moon-Sun; Hong, Kwan Soo; Hui, Emmanuel; Lee, Jung Hee; Yoon, Tae-Jong

    2017-10-10

    Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy. Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions. They are capable of specifically targeting epidermal growth factor receptor (EGFR)-expressing cancer cells by being anchored with a specific antibody. Ion-doped melanin nanoparticles were found to have high bioavailability with long-term stability in solution, without any cytotoxicity in both in vitro and in vivo systems. By combining different imaging modalities with melanin particles, we can use the complexes to obtain faster diagnoses by computed tomography deep-body imaging and greater detailed pathological diagnostic information by magnetic resonance imaging. The ion-doped melanin nanoparticles also have applications for radio-diagnostic treatment and radio imaging-guided surgery, warranting further proof of concept experimental.

  14. Purification and characterization of a melanin biodegradation enzyme from Geotrichum sp.

    PubMed

    Kim, B S; Blaghen, M; Hong, H-S; Lee, K-M

    2016-12-01

    Melanin is a black or brown phenolic polymer present mainly in skin and hair. Although melanin can be degraded by some microbial species, the melanin degradation capacity of Geotrichum sp. is unknown. The aim of this study was to characterize a melanin biodegradation enzyme from Geotrichum sp. In this study, we assessed the melanin degradation activity of Geotrichum sp. in comparison with the major melanin-degrading enzymes, manganese-dependent peroxidase (MnP), manganese-independent peroxidase, lignin peroxidase and laccase. Furthermore, the effect of several carbohydrates on melanin degradation by Geotrichum sp. was determined. The MnP enzyme was purified using ammonium sulphate precipitation and Sephadex G-200 column chromatography, and then the conditions for optimal enzymatic activity were determined by adjusting the pH, temperature and Tween-80 concentration. Compared with extracellular ligninolytic enzymes of Geotrichum sp., MnP had the highest ligninolytic enzyme activity; and the highest enzymatic activity was observed in the presence of glucose. The final purified MnP enzyme exhibited 6 U mL -1 activity and had a molecular weight of 54.2 kDa. The enzymatic activity was highest at pH 4.5 and 25-35°C in the absence of Tween-80. These results indicate the potential of MnP purified from Geotrichum sp. as a skin-lightening agent in the cosmetic industry. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  16. Suppression of Melanin Production by Expression of HSP70*

    PubMed Central

    Hoshino, Tatsuya; Matsuda, Minoru; Yamashita, Yasuhiro; Takehara, Masaya; Fukuya, Masayo; Mineda, Kazutaka; Maji, Daisuke; Ihn, Hironobu; Adachi, Hiroaki; Sobue, Gen; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Skin hyperpigmentation disorders due to abnormal melanin production induced by ultraviolet (UV) irradiation are both a clinical and cosmetic problem. UV irradiation stimulates melanin production in melanocytes by increasing intracellular cAMP. Expression of heat shock proteins (HSPs), especially HSP70, is induced by various stressors, including UV irradiation, to provide cellular resistance to such stressors. In this study we examined the effect of expression of HSP70 on melanin production both in vitro and in vivo. 3-Isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, stimulated melanin production in cultured mouse melanoma cells, and this stimulation was suppressed in cells overexpressing HSP70. IBMX-dependent transcriptional activation of the tyrosinase gene was also suppressed in HSP70-overexpressing cells. Expression of microphthalmia-associated transcription factor (MITF), which positively regulates transcription of the tyrosinase gene, was up-regulated by IBMX; however, this up-regulation was not suppressed in HSP70-overexpressing cells. On the other hand, immunoprecipitation and immunostaining analyses revealed a physical interaction between and co-localization of MITF and HSP70, respectively. Furthermore, the transcription of tyrosinase gene in nuclear extract was inhibited by HSP70. In vivo, UV irradiation of wild-type mice increased the amount of melanin in the basal layer of the epidermis, and this increase was suppressed in transgenic mice expressing HSP70. This study provides the first evidence of an inhibitory effect of HSP70 on melanin production both in vitro and in vivo. This effect seems to be mediated by modulation of MITF activity through a direct interaction between HSP70 and MITF. PMID:20177067

  17. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula

    PubMed Central

    Prados-Rosales, Rafael; Toriola, Stacy; Nakouzi, Antonio; Chatterjee, Subhasish; Stark, Ruth; Gerfen, Gary; Tumpowsky, Paul; Dadachova, Ekaterina; Casadevall, Arturo

    2016-01-01

    Many of the most widely consumed edible mushrooms are pigmented, and these have been associated with some beneficial health effects. Nevertheless, the majority of the reported compounds associated with these desirable properties are non-pigmented. We have previously reported that melanin pigment from the edible mushroom Auricularia auricula can protect mice against ionizing radiation, although no physicochemical characterization was reported. Consequently, in this study we have characterized commercial A. auricula mushroom preparations for melanin content and carried out structural characterization of isolated insoluble melanin materials using a panel of sophisticated spectroscopic and physical/imaging techniques. Our results show that approximately 10% of the dry mass of A. auricula is melanin and that the pigment has physicochemical properties consistent with those of eumelanins, including hosting a stable free radical population. Electron microscopy studies show that melanin is associated with the mushroom cell wall in a manner similar to that of melanin from the model fungus C. neoformans. Elemental analysis of melanin indicated C, H, and N ratios consistent with 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and 1,8-dihydroxynaphthalene eumelanin. Validation of the identity of the isolated product as melanin was achieved by EPR analysis. A. auricula melanin manifested structural differences, relative to the C. neoformans melanin, with regard to the variable proportions of alkyl chains or oxygenated carbons. Given the necessity for new oral and inexpensive radioprotective materials coupled with the commercial availability of A. auricula mushrooms, this product may represent an excellent source of edible melanin. PMID:26244793

  18. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    PubMed

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  19. Applying photoacoustics to quantification of melanin concentration in retinal pigment epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Zhang, Hao F.; Liu, Wenzhong

    2016-03-01

    The melanin in the retinal pigment epithelium (RPE) protects retina and other ocular tissues by photo-screening and acting as antioxidant and free radical scavenger. It helps maintain normal visual functions since human eye is subjected to lifelong high oxygen stress and photon exposure. Loss of the RPE melanin weakens the protection mechanism and jeopardizes ocular health. Local decrease in the RPE melanin concentration is believed to be both a cause and a sign of early-stage age-related macular degeneration (AMD), the leading blinding disease in developed world. Current technology cannot quantitatively measure the RPE melanin concentration which might be a promising marker in early AMD screening. Photoacoustic ophthalmoscopy (PAOM), as an emerging optical absorption-based imaging technology, can potentially be applied to measure the RPE melanin concentration if the dependence of the detectable photoacoustic (PA) signal amplitudes on the RPE melanin concentrations is verified. In this study, we tested the feasibility of using PA signal ratio from RPE melanin and the nearby retinal blood vessels as an indicator of the RPE melanin variation. A novel whole eye optical model was designed and Monte Carlo modeling of light (MCML) was employed. We examined the influences on quantification from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness. The results show that the scheme is robust to individual histological and illumination variations. This study suggests that PAOM is capable of quantitatively measuring the RPE melanin concentration in vivo.

  20. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    PubMed

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  1. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    PubMed

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.

    PubMed

    Kim, Miri; Kim, Hyun Soo; Kim, Min Ah; Ryu, Hyanghwa; Jeong, Hwan-Jeong; Lee, Chang-Moon

    2017-05-01

    Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long-term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol-Mel) does not show any precipitation and shows sol-gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm -2 for 3 min, the photothermal conversion efficiency of Pol-Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol-Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol-Mel can become an attractive PTA for photothermal cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    NASA Astrophysics Data System (ADS)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  4. Hyperosmotic Stress Reduces Melanin Production by Altering Melanosome Formation

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure. PMID:25170965

  5. Hyperosmotic stress reduces melanin production by altering melanosome formation.

    PubMed

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

  6. Lasers in esthetic treatment of gingival melanin hyperpigmentation: a review article.

    PubMed

    Bakhshi, Mahin; Rahmani, Somayeh; Rahmani, Ali

    2015-11-01

    The health and suitability of mouth components play an important role towards defining facial attractiveness. An important component of the oral cavity is the color of the gingival tissue. Gingival melanin hyperpigmentation is caused by several reasons and affects people across ethnicity, race, age, and both gender. Lasers are presently being used for gingival melanin depigmentation. In this article, we reviewed studies on laser parameters, duration of gingival healing, pain perception during and after the operation, scores used for the evaluation of gingival melanin hyperpigmentation, follow-up period, treatment results, and recurrence reports. We conclude that laser ablation for gingival depigmentation is one of the most pleasant, reliable, acceptable, and impressive techniques available for treating gingival melanin hyperpigmentation.

  7. Natural melanin: a potential pH-responsive drug release device.

    PubMed

    Araújo, Marco; Viveiros, Raquel; Correia, Tiago R; Correia, Ilídio J; Bonifácio, Vasco D B; Casimiro, Teresa; Aguiar-Ricardo, Ana

    2014-07-20

    This work proposes melanin as a new nanocarrier for pH-responsive drug release. Melanin is an abundant natural polymer that can be easily extracted from cuttlefish as nanoparticles with a suitable size range for drug delivery. However, despite its high potentiality, the application of this biopolymer in the pharmaceutical and biomedical fields is yet to be explored. Herein, melanin nanoparticles were impregnated with metronidazole, chosen as model antibiotic drug, using supercritical carbon dioxide. The drug release profile was investigated at acidic and physiologic pH, and the dominant mechanism was found to follow a non-Fickian transport. Drug release from melanin shows a strong pH dependency, which allied to its biocompatibility and lack of cytotoxicity envisages its potential application as nanocarrier in formulations for colon and intestine targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Imaging of Melanin Disruption in Age-Related Macular Degeneration Using Multispectral Imaging.

    PubMed

    Dugel, Pravin U; Zimmer, Cheryl N

    2016-02-01

    To investigate whether multispectral imaging (MSI) is able to obtain a noninvasive view of melanin disruption associated with age-related macular degeneration (AMD), which could support early diagnosis and potential treatment strategies. A single retinal center, retrospective, observational, image analysis study of MSI images of 43 patients was done to determine the extent of melanin pigment exhibited in association with AMD, based on the Age-Related Eye Disease Study classification and grading scale. Corresponding fundus photos were also graded for 12 of the eyes. Fifty-one of 61 eyes (84%) of 43 patients with AMD were determined to have melanin disruption in their MSI images in at least the central and/or one of four inner ETDRS areas. There was a relationship between severity of disease and the degree of melanin disruption. The sensitivity of fundus photography for melanin pigment as compared to MSI was only 62.5%, with three false-negatives. A direct, noninvasive, unobstructed view of melanin disruption associated with AMD can be observed using MSI. Copyright 2016, SLACK Incorporated.

  9. The impact of epidermal melanin on objective measurements of human skin colour.

    PubMed

    Alaluf, Simon; Atkins, Derek; Barrett, Karen; Blount, Margaret; Carter, Nik; Heath, Alan

    2002-04-01

    Objective measurements of human skin colour were made with a tristimulus (L*a*b*) chromameter in a range of different ethnic skin types. These were compared with biochemical measurements of melanin content, melanin composition and melanosome size in skin biopsies obtained from the same sites. L*, a* and b* values were found to vary significantly with ethnicity. In general, constitutively dark skin types have lower L* values, higher a* values and higher b* values than constitutively light skin types. Total epidermal melanin content appears to be the primary determinant of L* values in human skin (r = -0.88; P < 0.00001), whilst melanosome size also has a significant but more subtle influence on L* values (r = -0.73; P < 0.00001). There is also a strong positive contribution to a* values from epidermal melanin (r = 0.66, P < 0.00001), which accounts for the ethnic variation in a* values observed in this study. Melanin is also a major contributor to b* values in lighter skin types (r = 0.71, P < 0.00001). However, this relationship breaks down in darker skin types where b* values actually reach a maximum and then decrease as the concentration of melanin in the skin increases. This appears to be because of optical masking of yellow light by high concentrations of melanin in the epidermis. Analysis of the relationships between L*, a* and b* values in human skin indicate that they are very closely interrelated, and suggest that the optical properties of melanin in the epidermis are very similar to those of a dye on a fabric substrate.

  10. Sub-nm 3D observation of human hair melanin by high-voltage STEM.

    PubMed

    Imai, Takehito; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Nakano, Takashi; Tanaka, Nobuo

    2016-04-01

    The ultrastructure of melanin granules in human hair was studied using 1,000 kV high-voltage scanning transmission electron microscopy to successfully reconstruct three-dimensional images of the whole melanin granule. It was revealed that the melanin granule was composed of a membrane-like outer structure that included many spherical vesicles, and an inner matrix containing a sheet-like structure in the elongated direction of the melanin granule and a sheet-like arrays structure in the cross direction. The outer structure of the melanin granule was maintained even after exposure to hair-bleaching agents to decompose the melanin granule, suggesting that the outer structure was a highly robust structure and composition compared with the inner matrix . © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    PubMed

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  12. Uncovering of melanin fluorescence in human skin tissue

    NASA Astrophysics Data System (ADS)

    Scholz, Matthias; Stankovic, Goran; Seewald, Gunter; Leupold, Dieter

    2007-07-01

    Due to its extremely low fluorescence quantum yield, in the conventionally (one-photon) excited autofluorescence of skin tissue, melanin fluorescence is masked by several other endogenous and possibly also exogenous fluorophores (e.g. NADH, FAD, Porphyrins). A first step to enhance the melanin contribution had been realized by two-photon fs-pulse excitation in the red/near IR, based on the fact that melanin can be excited by stepwise two-photon absorption, whereas all other fluorophores in this spectral region allow only simultaneous two-photon excitation. Now, the next and decisive step has been realized: Using an extremely sensitive detection system, for the first time twophoton fluorescence of skin tissue excited with pulses in the ns-range could be measured. The motivation for this step was based on the fact that the population density of the fluorescent level resulting from a stepwise excitation has a different dependence of the pulse duration than that from a simultaneous excitation (Δt2 vs. Δt). Due to this strong discrimination between the fluorophores, practically pure melanin fluorescence can be obtained. Examples for in-vivo, ex-vivo as well as paraffin embedded skin tissue will be shown. The content of information with respect to early diagnosis of skin deseases will be discussed.

  13. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy.

    PubMed

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  14. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  15. Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi

    PubMed Central

    Dadachova, Ekaterina; Bryan, Ruth A.; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D.; Aisen, Philip; Nosanchuk, Joshua D.; Casadevall, Arturo

    2007-01-01

    Background Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Methodology/Principal Findings Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of 14C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Conclusions/Significance Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and

  16. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi.

    PubMed

    Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2007-05-23

    Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.

  17. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity.

    PubMed

    Park, Jisu; Jung, Hyejung; Kim, Kyuri; Lim, Kyung-Min; Kim, Ji-Young; Jho, Eek-Hoon; Oh, Eok-Soo

    2018-05-01

    Although L-tyrosine is well known for its melanogenic effect, the contribution of D-tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L-tyrosine, D-tyrosine dose-dependently reduced the melanin contents of human MNT-1 melanoma cells and primary human melanocytes. In addition, 500 μM of D-tyrosine completely inhibited 10 μM L-tyrosine-induced melanogenesis, and both in vitro assays and L-DOPA staining MNT-1 cells showed that tyrosinase activity is reduced by D-tyrosine treatment. Thus, D-tyrosine appears to inhibit L-tyrosine-mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D-tyrosine inhibited melanogenesis induced by α-MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D-tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte-derived cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Detection of antibodies against Paracoccidioides brasiliensis melanin in in vitro and in vivo studies during infection.

    PubMed

    Urán, Martha E; Nosanchuk, Joshua D; Restrepo, Angela; Hamilton, Andrew J; Gómez, Beatriz L; Cano, Luz E

    2011-10-01

    Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice.

  19. Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus).

    PubMed

    Lanisnik Rizner, Tea; Wheeler, Michael H

    2003-02-01

    Curvularia lunata (teleomorph: Cochliobolus lunatus) is a known plant and human pathogen. Tricyclazole, a specific inhibitor of pentaketide melanin biosynthesis, blocked the biosynthesis of melanin in Curvularia lunata and caused the accumulation of the melanin metabolites flaviolin and 2-hydroxyjuglone. This showed that melanin in Curvularia lunata is produced by a pentaketide pathway from 1,8-dihydroxynaphthalene. The 1,3,8-trihydroxynaphthalene reductase (3HNR) gene, associated with the melanin pathway of Curvularia lunata, was identified and characterized. An alignment of 3HNR sequences enabled the design of primers covering conserved regions. A PCR-amplified fragment of Curvularia lunata genomic DNA was used for screening the cDNA library. Three independent cDNA clones revealed an 801-bp open reading frame encoding a 267 amino acid protein. The protein was expressed in Escherichia coli and purified to homogeneity. The predicted amino acid sequence of the 28.6-kDa protein demonstrated homology to other fungal 3HNR and other members of the short-chain dehydrogenase super family. Northern analyses revealed that 3HNR from Curvularia lunata is expressed synchronously with melanization after 3 days of Curvularia lunata growth in malt extract medium. No 3HNR reductase gene expression nor melanization was observed when Curvularia lunata was grown in yeast nitrogen base medium.

  20. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    PubMed Central

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  2. Quantification method for the appearance of melanin pigmentation using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Okiyama, Natsuko; Okaguchi, Saya; Tsumura, Norimichi; Nakaguchi, Toshiya; Hori, Kimihiko; Miyake, Yoichi

    2005-04-01

    In the cosmetics industry, skin color is very important because skin color gives a direct impression of the face. In particular, many people suffer from melanin pigmentation such as liver spots and freckles. However, it is very difficult to evaluate melanin pigmentation using conventional colorimetric values because these values contain information on various skin chromophores simultaneously. Therefore, it is necessary to extract information of the chromophore of individual skins independently as density information. The isolation of the melanin component image based on independent component analysis (ICA) from a single skin image was reported in 2003. However, this technique has not developed a quantification method for melanin pigmentation. This paper introduces a quantification method based on the ICA of a skin color image to isolate melanin pigmentation. The image acquisition system we used consists of commercially available equipment such as digital cameras and lighting sources with polarized light. The images taken were analyzed using ICA to extract the melanin component images, and Laplacian of Gaussian (LOG) filter was applied to extract the pigmented area. As a result, for skin images including those showing melanin pigmentation and acne, the method worked well. Finally, the total amount of extracted area had a strong correspondence to the subjective rating values for the appearance of pigmentation. Further analysis is needed to recognize the appearance of pigmentation concerning the size of the pigmented area and its spatial gradation.

  3. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    PubMed

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  4. Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate.

    PubMed

    Zheng, Weifa; Campbell, Bradley S; McDougall, Barbara M; Seviour, Robert J

    2008-11-01

    Aureobasidium pullulans produced pullulan and melanin when grown in medium containing low nitrate levels. With high nitrate concentrations, however, this fungus produced a mixture of exopolysaccharides (EPS) without melanin synthesis. At 0.78 g l(-1) N as nitrate, where no melanin synthesis occurred, maximum EPS yields reached 6.92 g l(-1) and then decreased to the final yield of 2.36 g l(-1). Following melanin addition (0.1 g l(-1)), yields reached 7.02 g l(-1) at 48 h and fell to a final yield of 5.21 g l(-1). The EPS produced in high nitrate medium contained both pullulan and (1-->3)-beta-glucan, but only pullulan was produced with melanin-supplementation. With melanin addition a doubling of (1-->3)-beta-glucanase activity was observed in high nitrate medium compared to that without supplementation. On the other hand amylolytic activities disappeared in medium with melanin production or addition. Culture filtrates sustained a higher reducing capacity (RC) when melanin was present. Low RC appeared to reduce (1-->3)-beta-glucanase activity and increase amylolytic activities. Thus, higher RC appears to inhibit production/activity of amylose-degrading enzymes capable of degrading pullulan, and stimulates (1-->3)-beta-glucanase synthesis/activity, leading to a preferential accumulation of pullulan.

  5. Inhibition of melanin content by Punicalagins in the super fruit pomegranate (Punica granatum).

    PubMed

    Rana, Jatinder; Diwakar, Ganesh; Saito, Lisa; Scholten, Jeffrey D; Mulder, Timothy

    2013-01-01

    Current efforts to develop effective skin lightening products through the inhibition of melanin production have focused on compounds that inhibit the function and activity of tyrosinase, the rate-limiting enzyme in the melanin biosynthesis pathway. Synthetic tyrosinase inhibitors, such as hydroquinone, kojic acid, and arbutin, have been reported to cause skin irritation or acute dermatitis, raising concerns about the safety of these compounds. As a result, there is a need for safe natural ingredients that show effective skin lightening. In this report, we have identified a natural ingredient, pomegranate fruit extract, that inhibits melanin production in melanocytes and shows potential for use as a cosmetic skin lightening agent. In addition, we have identified a polyphenolic compound, punicalagins, as the active melanin inhibitor in pomegranate fruit extract based on its capacity to directly inhibit melanin production.

  6. Condition-dependent expression of melanin-based coloration in the Eurasian kestrel

    NASA Astrophysics Data System (ADS)

    Piault, Romain; van den Brink, Valentijn; Roulin, Alexandre

    2012-05-01

    Melanin is the most common pigment in animal integuments and is responsible for some of the most striking ornaments. A central tenet of sexual selection theory states that melanin-based traits can signal absolute individual quality in any environment only if their expression is condition-dependent. Significant costs imposed by an ornament would ensure that only the highest quality individuals display the most exaggerated forms of the signal. Firm evidence that melanin-based traits can be condition-dependent is still rare in birds. In an experimental test of this central assumption, we report condition-dependent expression of a melanin-based trait in the Eurasian kestrel ( Falco tinnunculus). We manipulated nestling body condition by reducing or increasing the number of nestlings soon after hatching. A few days before fledging, we measured the width of sub-terminal black bands on the tail feathers. Compared to nestlings from enlarged broods, individuals raised in reduced broods were in better condition and thereby developed larger sub-terminal bands. Furthermore, in 2 years, first-born nestlings also developed larger sub-terminal bands than their younger siblings that are in poorer condition. This demonstrates that expression of melanin-based traits can be condition-dependent.

  7. Gingival melanin depigmentation by 810 nm diode laser.

    PubMed

    Elemek, Eser

    2018-01-01

    The color of gingiva is determined by number and size of blood vessels, thickness of epithelium, keratinization degree, and melanin pigments present in epithelium. Melanocytes, located in basal and suprabasal layers of epithelium, are the cells that produce melanin pigments which play a main role for pigmentation of gingiva. In this case series, the use of 810 nm diode laser for depigmentation of gingiva is presented. Two female patients applied with a chief complaint of "darkened gums" due to heavy smoking. In intraoral examination, diffuse melanin pigmentation was observed in both the maxilla and mandible. Under the local anesthesia, 810 nm diode laser was applied for depigmentation at 1.3 W power in continuous mode. Patients were recalled at weeks 1, 4, and 12 to evaluate the healing and recurrence rate. Both the patients had no postoperative pain or edema, and complete healing was observed at week 12. This study revealed that depigmentation with 810 nm diode laser is successful in terms of esthetics and patient comfort.

  8. Recyclable Cu(i)/melanin dots for cycloaddition, bioconjugation and cell labelling

    DOE PAGES

    Sun, Yao; Hong, Suhyun; Ma, Xiaowei; ...

    2016-05-20

    We successfully transferred melanin into a novel catalytic platform. Ligand-free, water-soluble, recyclable and biocompatible Cu(i)-loaded melanin dots [Cu(i)/M-dots] was easily prepared and demonstrate excellent properties for classic CuAAC, bioconjugation and cell labelling.

  9. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    PubMed

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Detection of Antibodies against Paracoccidioides brasiliensis Melanin in In Vitro and In Vivo Studies during Infection ▿

    PubMed Central

    Urán, Martha E.; Nosanchuk, Joshua D.; Restrepo, Angela; Hamilton, Andrew J.; Gómez, Beatriz L.; Cano, Luz E.

    2011-01-01

    Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice. PMID:21813659

  11. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation

    PubMed Central

    2014-01-01

    The presence of melanocytes in the oral epithelium is a well-established fact, but their physiological functions are not well defined. Melanin provides protection from environmental stressors such as ultraviolet radiation and reactive oxygen species; and melanocytes function as stress-sensors having the capacity both to react to and to produce a variety of microenvironmental cytokines and growth factors, modulating immune, inflammatory and antibacterial responses. Melanocytes also act as neuroendocrine cells producing local neurotransmitters including acetylcholine, catecholamines and opioids, and hormones of the melanocortin system such as proopiomelanocortin, adrenocorticotropic hormone and α-melanocyte stimulating hormone, that participate in intracellular and in intercellular signalling pathways, thus contributing to tissue homeostasis. There is a wide range of normal variation in melanin pigmentation of the oral mucosa. In general, darker skinned persons more frequently have oral melanin pigmentation than light-skinned persons. Variations in oral physiological pigmentation are genetically determined unless associated with some underlying disease. In this article, we discuss some aspects of the biophysiology of oral melanocytes, of the functions of melanin, and of physiological oral pigmentation. PMID:24661309

  12. Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity.

    PubMed

    Akoumianaki, Tonia; Kyrmizi, Irene; Valsecchi, Isabel; Gresnigt, Mark S; Samonis, George; Drakos, Elias; Boumpas, Dimitrios; Muszkieta, Laetitia; Prevost, Marie-Christine; Kontoyiannis, Dimitrios P; Chavakis, Triantafyllos; Netea, Mihai G; van de Veerdonk, Frank L; Brakhage, Axel A; El-Benna, Jamel; Beauvais, Anne; Latge, Jean-Paul; Chamilos, Georgios

    2016-01-13

    Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, β-glucan surface exposure during Aspergillus fumigatus germination activates an Atg5-dependent autophagy pathway termed LC3-associated phagocytosis (LAP), which promotes fungal killing. We found that LAP activation also requires the genetic, biochemical or biological (germination) removal of A. fumigatus cell wall melanin. The attenuated virulence of melanin-deficient A. fumigatus is restored in Atg5-deficient macrophages and in mice upon conditional inactivation of Atg5 in hematopoietic cells. Mechanistically, Aspergillus melanin inhibits NADPH oxidase-dependent activation of LAP by excluding the p22phox subunit from the phagosome. Thus, two events that occur concomitantly during germination of airborne fungi, surface exposure of PAMPs and melanin removal, are necessary for LAP activation and fungal killing. LAP blockade is a general property of melanin pigments, a finding with broad physiological implications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dual-wavelength pump-probe microscopy analysis of melanin composition

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-11-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.

  14. Dual-wavelength pump-probe microscopy analysis of melanin composition

    PubMed Central

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-01-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147

  15. Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation

    PubMed Central

    Upadhyay, Srijana; Xu, Xinping

    2016-01-01

    ABSTRACT Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. PMID:27879337

  16. Pharmacological Properties of Melanin and its Function in Health.

    PubMed

    ElObeid, Adila Salih; Kamal-Eldin, Afaf; Abdelhalim, Mohamed Anwar K; Haseeb, Adil M

    2017-06-01

    The biological pigment melanin is present in most of the biological systems. It manifests a host of biological and pharmacological properties. Its role as a molecule with special properties and functions affecting general health, including photoprotective and immunological action, are well recognized. Its antioxidant, anti-inflammatory, immunomodulatory, radioprotective, hepatic, gastrointestinal and hypoglycaemic benefits have only recently been recognized and studied. It is also associated with certain disorders of the nervous system. In this MiniReview, we consider the steadily increasing literature on the bioavailability and functional activity of melanin. Published literature shows that melanin may play a number of possible pharmacological effects such as protective, stimulatory, diagnostic and curative roles in human health. In this MiniReview, possible health roles and pharmacological effects are considered. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Production and Cytotoxicity of Extracellular Insoluble and Droplets of Soluble Melanin by Streptomyces lusitanus DMZ-3

    PubMed Central

    Madhusudhan, D. N.; Mazhari, Bi Bi Zainab; Dastager, Syed G.

    2014-01-01

    A Streptomyces lusitanus DMZ-3 strain with potential to synthesize both insoluble and soluble melanins was detected. Melanins are quite distinguished based on their solubility for varied biotechnological applications. The present investigation reveals the enhanced production of insoluble and soluble melanins in tyrosine medium by a single culture. Streptomyces lusitanus DMZ-3 was characterized by 16S rRNA gene analysis. An enhanced production of 5.29 g/L insoluble melanin was achieved in a submerged bioprocess following response surface methodology. Combined interactive effect of temperature (50°C), pH (8.5), tyrosine (2.0 g/L), and beef extract (0.5 g/L) were found to be critical variables for enhanced production in central composite design analysis. An optimized indigenous slant culture system was an innovative approach for the successful production (264 mg/L) of pure soluble melanin from the droplets formed on the surface of the culture. Both insoluble and soluble melanins were confirmed and characterized by Chemical, reactions, UV, FTIR, and TLC analysis. First time, cytotoxic study of melanin using brine shrimps was reported. Maximum cytotoxic activity of soluble melanin was Lc50-0.40 µg/mL and insoluble melanin was Lc50-0.80 µg/mL. PMID:24839603

  18. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    PubMed

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  19. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    PubMed Central

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Sylvestersen, Rene Lyng; Gabbott, Sarah E.; Vinther, Jakob

    2015-01-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  20. An objective assessment of melanin in vitiligo skin treated with Balneo PUVA therapy.

    PubMed

    Hegyi, V; Petrovajová, M; Novotný, M

    2014-02-01

    Visual clinical methods of skin color evaluation for diagnostic purposes are so far mostly subjective and thus inaccurate. We present a modified method of melanin amount measurement based on diffuse reflectance spectroscopy (DRS). This method is non-invasive and objective, and allows easy quantification and comparison of melanin levels. Skin pigmentation was measured by DRS method in 0-18 year old patients at the Department of Pediatric Dermatovenerology, School of Medicine Comenius University Bratislava. Patients were treated for their vitiligo by Balneo PUVA treatment twice weekly. Each patient had measured his remittance spectra from the treated vitiliginous skin before the treatment was started, after 10 irradiations of Balneo PUVA and at the end of the treatment after 25 irradiations of Balneo PUVA. In our study as a reference skin for spectroscopic assessment of melanin in vivo was used the averaged remittance spectra (measured on the inner arm) from the sample of 10 albino patients. The remittance spectra obtained from the vitiligo patients were ratioed against the newly described remittance reference albino skin. We exploited the linear behavior of the spectral curve in the 620-720 nm interval (significant for melanin absorption) and used the slope of the regression line to compute the quantification index α. By clinical examination before the Balneo PUVA therapy, after the 10th dose of Balneo PUVA therapy as well as at the end of the complete course of Balneo PUVA therapy (after 25 irradiations) we recorded a marked increase of pigmentation in all treated patients for their vitiligo. In each patient the values of melanin quantification angle α were calculated. Statistically we found a significant difference between the melanin quantification angle α in vitiliginous skin before, during the 10th dose of treatment and after the treatment. Similar significant difference was also observed between treated and non-involved skin. We could confirm a clear

  1. Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically.

    PubMed

    Joly-Tonetti, Nicolas; Wibawa, Judata I D; Bell, Mike; Tobin, Desmond

    2016-07-01

    Melanin is the predominant pigment responsible for skin colour and is synthesized by the melanocyte in the basal layer of the epidermis and then transferred to surrounding keratinocytes. Despite its optical properties, melanin is barely detectable in unstained sections of human epidermis. However, identification and localization of melanin is of importance for the study of skin pigmentation in health and disease. Current methods for the histologic quantification of melanin are suboptimal and are associated with significant risk of misinterpretation. The aim of this study was to reassess the existing literature and to develop a more effective histological method of melanin quantification in human skin. Moreover, we confirm that Warthin-Starry (WS) stain provides a much more sensitive and more specific melanin detection method than the commonplace Fontana-Masson (FM) stain. For example, WS staining sensitivity allowed the visualization of melanin even in very pale Caucasian skin that was missed by FM or Von Kossa (VK) stains. From our reassessment of the histology-related literature, we conclude that so-called melanin dust is most likely an artifact of discoloration due to non-specific silver deposition in the stratum corneum. Unlike FM and VK, WS was not associated with this non-specific stratum corneum darkening, misinterpreted previously as 'degraded' melanin. Finally, WS melanin particle counts were largely similar to previously reported manual counts by transmission electron microscopy, in contrast to both FM and VK. Together these findings allow us to propose a new histology/Image J-informed method for the accurate and precise quantification of epidermal melanin in skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Mechanistic insights into the bleaching of melanin by alkaline hydrogen peroxide.

    PubMed

    Smith, R A W; Garrett, B; Naqvi, K R; Fülöp, A; Godfrey, S P; Marsh, J M; Chechik, V

    2017-07-01

    This work aims to determine the roles of reactive oxygen species HO∙ and HO 2 - in the bleaching of melanins by alkaline hydrogen peroxide. Experiments using melanosomes isolated from human hair indicated that the HO∙ radical generated in the outside solution does not contribute significantly to bleaching. However, studies using soluble Sepia melanin demonstrated that both HO 2 - and HO∙ will individually bleach melanin. Additionally, when both oxidants are present, bleaching is increased dramatically in both rate and extent. Careful experimental design enabled the separation of the roles and effects of these key reactive species, HO∙ and HO 2 - . Rationalisation of the results presented, and review of previous literature, allowed the postulation of a simplified general scheme whereby the strong oxidant HO∙ is able to pre-oxidise melanin units to o-quinones enabling more facile ring opening by the more nucleophilic HO 2 - . In this manner the efficiency of the roles of both species is maximised. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin.

    PubMed

    Alaluf, Simon; Atkins, Derek; Barrett, Karen; Blount, Margaret; Carter, Nik; Heath, Alan

    2002-04-01

    We have examined the quantity and composition of melanin in both photoprotected (volar upper arm) and chronically photoexposed (dorsal forearm) skin from a range of different ethnic skin types including African, Indian, Mexican, Chinese and European. The most lightly pigmented (European, Chinese and Mexican) skin types have approximately half as much epidermal melanin as the most darkly pigmented (African and Indian) skin types. However, the composition of melanin in these lighter skin types is comparatively more enriched with lightly coloured, alkali-soluble melanin components (up to three-fold). Regardless of ethnicity, epidermal melanin content is significantly greater in chronically photoexposed skin than it is in corresponding photoprotected skin (up to two-fold). However, by comparison there is only a modest enrichment of lightly coloured, alkali soluble melanin components in photoprotected skin (up to 1.3-fold). Analysis of melanosomes extracted from the epidermis in these subjects indicates that the proportion of spheroidal melanosomes is low in all skin types examined (<10%). This suggests that in human skin, pheomelanin is a very minor component of epidermal melanin, even in the lightest (European) skin types. Analysis of melanosome size revealed a significant and progressive variation in size with ethnicity: African skin having the largest melanosomes followed in turn by Indian, Mexican, Chinese and European. On the basis of these findings, we propose that variation in skin pigmentation is strongly influenced by both the amount and the composition (or colour) of the melanin in the epidermis. Variation in melanosome size may also play a significant role. However, the data also suggest that in human skin there are subtle differences in the mechanisms associated with the maintenance of constitutive pigmentation and facultative hyperpigmentation, respectively.

  4. Interpreting melanin-based coloration through deep time: a critical review

    PubMed Central

    Lindgren, Johan; Moyer, Alison; Schweitzer, Mary H.; Sjövall, Peter; Uvdal, Per; Nilsson, Dan E.; Heimdal, Jimmy; Engdahl, Anders; Gren, Johan A.; Schultz, Bo Pagh; Kear, Benjamin P.

    2015-01-01

    Colour, derived primarily from melanin and/or carotenoid pigments, is integral to many aspects of behaviour in living vertebrates, including social signalling, sexual display and crypsis. Thus, identifying biochromes in extinct animals can shed light on the acquisition and evolution of these biological traits. Both eumelanin and melanin-containing cellular organelles (melanosomes) are preserved in fossils, but recognizing traces of ancient melanin-based coloration is fraught with interpretative ambiguity, especially when observations are based on morphological evidence alone. Assigning microbodies (or, more often reported, their ‘mouldic impressions’) as melanosome traces without adequately excluding a bacterial origin is also problematic because microbes are pervasive and intimately involved in organismal degradation. Additionally, some forms synthesize melanin. In this review, we survey both vertebrate and microbial melanization, and explore the conflicts influencing assessment of microbodies preserved in association with ancient animal soft tissues. We discuss the types of data used to interpret fossil melanosomes and evaluate whether these are sufficient for definitive diagnosis. Finally, we outline an integrated morphological and geochemical approach for detecting endogenous pigment remains and associated microstructures in multimillion-year-old fossils. PMID:26290071

  5. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  6. Melanine value in the stria vascularis of pigmented guinea-pigs treated by kanamycin.

    PubMed

    Attard, A; Gratacap, B; Charachon, R; Stoebner, P; Laurent, A

    1988-01-01

    In a previous report, kanamycin (400 mg/kg/d) seemed to increase the number of melanine granulations in intermediate cells of the stria vascularis, especially in the second and third turns. To precise these data, melanine was studied in those turns by ultrastructural morphometry in a control group with 12 animals. We observed a large intra-individual and inter-individual variation before intoxication. Thus, the meaning of melanine modifications by kanamycin must be carefully evaluated.

  7. Fruit over sunbed: carotenoid skin colouration is found more attractive than melanin colouration.

    PubMed

    Lefevre, Carmen E; Perrett, David I

    2015-01-01

    Skin colouration appears to play a pivotal part in facial attractiveness. Skin yellowness contributes to an attractive appearance and is influenced both by dietary carotenoids and by melanin. While both increased carotenoid colouration and increased melanin colouration enhance apparent health in Caucasian faces by increasing skin yellowness, it remains unclear, firstly, whether both pigments contribute to attractiveness judgements, secondly, whether one pigment is clearly preferred over the other, and thirdly, whether these effects depend on the sex of the face. Here, in three studies, we examine these questions using controlled facial stimuli transformed to be either high or low in (a) carotenoid colouration, or (b) melanin colouration. We show, firstly, that both increased carotenoid colouration and increased melanin colouration are found attractive compared to lower levels of these pigments. Secondly, we show that carotenoid colouration is consistently preferred over melanin colouration when levels of colouration are matched. In addition, we find an effect of the sex of stimuli with stronger preferences for carotenoids over melanin in female compared to male faces, irrespective of the sex of the observer. These results are interpreted as reflecting preferences for sex-typical skin colouration: men have darker skin than women and high melanization in male faces may further enhance this masculine trait, thus carotenoid colouration is not less desirable, but melanin colouration is relatively more desirable in males compared to females. Taken together, our findings provide further support for a carotenoid-linked health-signalling system that is highly important in mate choice.

  8. Screening of micro-organisms for decolorization of melanins produced by bluestain fungi.

    PubMed

    Rättö, M; Chatani, M; Ritschkoff, A C; Viikari, L

    2001-03-01

    A total of 17 fungi and four bacteria were screened for their ability to decolorize melanin, using isolated extracellular melanin of the bluestain fungus Aureobasidium pullulans as substrate. On agar media, decolorization was observed by four fungal strains: Bjerkandera adusta VTT-D-99746, Galactomyces geotrichum VTT-D-84228, Trametes hirsuta VTT-D-95443 and Trametes versicolor VTT-D-99747. The four fungi were more efficient on nitrogen-limited medium than on complete medium. The melanin-decolorizing activity of G. geotrichum appeared to be located on the mycelium and could be liberated into the medium enzymatically.

  9. Melanins and melanogenesis: methods, standards, protocols.

    PubMed

    d'Ischia, Marco; Wakamatsu, Kazumasa; Napolitano, Alessandra; Briganti, Stefania; Garcia-Borron, José-Carlos; Kovacs, Daniela; Meredith, Paul; Pezzella, Alessandro; Picardo, Mauro; Sarna, Tadeusz; Simon, John D; Ito, Shosuke

    2013-09-01

    Despite considerable advances in the past decade, melanin research still suffers from the lack of universally accepted and shared nomenclature, methodologies, and structural models. This paper stems from the joint efforts of chemists, biochemists, physicists, biologists, and physicians with recognized and consolidated expertise in the field of melanins and melanogenesis, who critically reviewed and experimentally revisited methods, standards, and protocols to provide for the first time a consensus set of recommended procedures to be adopted and shared by researchers involved in pigment cell research. The aim of the paper was to define an unprecedented frame of reference built on cutting-edge knowledge and state-of-the-art methodology, to enable reliable comparison of results among laboratories and new progress in the field based on standardized methods and shared information. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis.

    PubMed

    Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C

    2014-04-01

    The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.

  11. The interaction of melanin with ionizing and UVC radiations: Characterization of thymine damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huselton, C.A.

    1988-01-01

    These studies were undertaken to determine whether melanin could protect DNA against the harmful effects of ionizing or UVC radiations. A simple, in vitro, model system was developed to evaluate eumelanin (Sigma melanin) as a radioprotector of solutions of 0.1 mM thymine or thymidine exposed to 570Gy of ionizing radiation. Sigma melanin was compared to several amino acids, other biomolecules or to other forms of melanin. To investigate the role of melanin as a passive screen of UVC radiation, melanotic (I{sub 3}), amelanotic (AMEL) cells (both derived from a Cloudman S91 melanoma) and non-melanotic (EMT6) cells were labelled with radioactivemore » dTHd and exposed to 0, 1, 5 or 10KJ/m{sup 2} of UVC. The DNA was extracted; the bases hydrolyzed with concentrated HCl. Thymine bases were separated by reverse phase HPLC. No difference in dimer content was observed between I{sub 3} and AMEL cells, but EMT6 cells had nearly twice the amount of dimer. Overall thymine degradation was more pronounced in I{sub 3} cells than in the other two cell lines, due to the production of non-dimer thymine damage. This damage was identified as thymine glycol by HPLC and mass spectrometry. Melanin, upon exposure to UVC, appears to enhance thymine damage by producing oxidative damage.« less

  12. Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes.

    PubMed

    Durairaj, Chandrasekar; Chastain, James E; Kompella, Uday B

    2012-05-01

    The purpose of this study was to quantify the melanin pigment content in sclera, choroid-RPE, and retina, three tissues encountered during transscleral drug delivery to the vitreous, in human, rabbit, monkey, minipig, and dog models. Strain differences were assessed in NZW × NZR F1 and Dutch belted rabbits and Yucatan and Gottingen minipigs. The choroid-RPE and retina tissues were divided into central (posterior pole area) and peripheral (away from posterior pole) regions while the sclera was analyzed without such division. Melanin content in the tissues was analyzed using a colorimetric assay. In all species the rank order for pigment content was: choroid-RPE >retina ≥ sclera, except in humans, where scleral melanin levels were higher than retina and central choroid. The melanin content in a given tissue differed between species. Further, while the peripheral tissue pigment levels tended to be generally higher compared to the central regions, these differences were significant in human in the case of choroid-RPE and in human, monkey, and dogs in the case of retina. Strain difference was observed only in the central choroid-RPE region of rabbits (NZW × NZR F1 >Dutch Belted). Species, strain, and regional differences exist in the melanin pigment content in the tissues of the posterior segment of the eye, with Gottingen minipig being closest to humans among the animals assessed. These differences in melanin content might contribute to differences in drug binding, delivery, and toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway.

    PubMed

    Zhu, Ping-Ya; Yin, Wei-Han; Wang, Meng-Ran; Dang, Yong-Yan; Ye, Xi-Yun

    2015-07-01

    Tyrosinase (TYR) is the key enzyme controlling the production of melanin. Very few papers have reported that andrographolide can inhibit melanin content. To investigate the effects of andrographolide on melanin synthesis. Cell viability, melanin content, TYR activity, transcriptional and protein expression levels of TYR family and other kinds of proteins involved in melanogenesis were measured after the treatments of andrographolide. It was found that andrographolide decreased melanin content, TYR activity and transcriptional and protein expression of TYR family and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells. Data showed andrographolide also decreased melanin content and TYR content in ultraviolet B (UVB) irradiation induced brown guinea pigs. Moreover, we found that melanin content and TYR activity were effectively inhibited in Human Epidermis Melanocyte (HEM) treated with andrographolide at the medium concentrations without apparent effect on cell viability. Results in experiments treated with MG-132 or cycloheximide (CHX) showed that andrographolide lowered the content of β-catenin in cell nucleus resulting from accelerating the degradation of β-catenin. Phosphorylation of glycogen synthase kinase 3β (GSK3β) and Akt decreased simultaneously. 6-Bromoindirubin-3'-oxime (BIO, inhibitor of GSK3β) and insulin-like growth factors-1 (IGF-1, activator of Akt) could reverse the decline of β-catenin in B16F10 cells induced by andrographolide. These results demonstrate that andrographolide can effectively suppress melanin content and TYR activity in B16F10 cells, HEM cells and UVB-induced brown guinea pig skin by decreasing phosphorylation of GSK3β dependent on Akt, promoting the degradation of β-catenin, inhibiting β-catenin into the nucleus and decreasing the expression of MITF and TYR family. Data indicate that andrographolide may be a potential whiting agent which can have great market in cosmetics and in clinical such as

  14. Melanin-based coloration and host–parasite interactions under global change

    PubMed Central

    Côte, J.; Boniface, A.; Blanchet, S.; Hendry, A. P.; Gasparini, J.

    2018-01-01

    The role of parasites in shaping melanin-based colour polymorphism, and the consequences of colour polymorphism for disease resistance, remain debated. Here we review recent evidence of the links between melanin-based coloration and the behavioural and immunological defences of vertebrates against their parasites. First we propose that (1) differences between colour morphs can result in variable exposure to parasites, either directly (certain colours might be more or less attractive to parasites) or indirectly (variations in behaviour and encounter probability). Once infected, we propose that (2) immune variation between differently coloured individuals might result in different abilities to cope with parasite infection. We then discuss (3) how these different abilities could translate into variable sexual and natural selection in environments varying in parasite pressure. Finally, we address (4) the potential role of parasites in the maintenance of melanin-based colour polymorphism, especially in the context of global change and multiple stressors in human-altered environments. Because global change will probably affect both coloration and the spread of parasitic diseases in the decades to come, future studies should take into account melanin-based coloration to better predict the evolutionary responses of animals to changing disease risk in human-altered environments. PMID:29848644

  15. Melanin Biosynthesis in Cryptococcus neoformans

    PubMed Central

    Williamson, Peter R.; Wakamatsu, Kazumasa; Ito, Shosuke

    1998-01-01

    Pigment production by Cryptococcus neoformans is virulence associated. Dopamine- and 3,4-dihydroxyphenylalanine–melanin products were identified after acidic permanganate oxidation, alkaline hydrogen peroxide oxidation, or hydrolysis with hydriodic acid. These data provide direct chemical evidence for the formation of eumelanin polymers by catecholamine oxidation by laccase alone followed by oxidative coupling of dihydroxyindole. PMID:9515929

  16. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling.

    PubMed

    Yang, Zhibo; Zeng, Biyun; Pan, Yi; Huang, Pan; Wang, Chang

    2018-01-01

    Melanin is the pigment responsible for the color of human skin and hair. Melanin serves as a double-edge sword which can exert both protective and spot-causing effects on skin. Although melanin has an important role in protecting the skin against UV damage, an excessive or uneven melanin production can lead to the formation of freckles and age spots. Isoliquiritigenin (ISL) has been reported to inhibit melanin synthesis; however, its role in melanin degradation remains unclear. In the present study, we evaluated the detailed function of ISL in melanin degradation in human epidermal keratinocytes. Since autophagy has been reported to be related to melanin degradation, we also examined the activation of autophagy by ISL treatment in keratinocytes by measurement of autophagy-related proteins, ATG7, LC3 and p62. Moreover, si-ATG7-induced ATG7 knockdown and autophagy inhibitor 3-MA decreased LC3 II protein levels and increased PMEL17, p62 and melanin levels in HaCaT cells, which could be partially reversed by ISL treatment, indicating that autophagy participated in melanin degradation. The decreased p-AKT and p-mTOR proteins upon ISL treatment indicated the involvement of PI3K/AKT/mTOR signaling in ISL-induced melanin degradation. Taken together, we demonstrated that autophagy participates in ISL-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer.

    PubMed

    Schweitzer, Andrew D; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina

    2010-12-01

    Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation. The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody. Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin

  18. Bioinspired Functionalized Melanin Nanovariants with a Range of Properties Provide Effective Color Matched Photoprotection in Skin.

    PubMed

    Vij, Manika; Grover, Ritika; Gotherwal, Vishvabandhu; Wani, Naiem Ahmad; Joshi, Prashant; Gautam, Hemlata; Sharma, Kanupriya; Chandna, Sudhir; Gokhale, Rajesh S; Rai, Rajkishor; Ganguli, Munia; Natarajan, Vivek T

    2016-09-12

    Melanin and related polydopamine hold great promise; however, restricted fine-tunabilility limits their usefulness in biocompatible applications. In the present study, by taking a biomimetic approach, we synthesize peptide-derived melanin with a range of physicochemical properties. Characterization of these melanin polymers indicates that they exist as nanorange materials with distinct size distribution, shapes, and surface charges. These variants demonstrate similar absorption spectra but have different optical properties that correlate with particle size. Our approach enables incorporation of chemical groups to create functionalized polyvalent organic nanomaterials and enables customization of melanin. Further, we establish that these synthetic variants are efficiently taken up by the skin keratinocytes, display appreciable photoprotection with minimal cytotoxicity, and thereby function as effective color matched photoprotective agents. In effect we demonstrate that an array of functionalized melanins with distinct properties could be synthesized using bioinspired green chemistry, and these are of immense utility in generating customized melanin/polydopamine like materials.

  19. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages.

    PubMed

    Cunha, Marcel M L; Franzen, Anderson J; Alviano, Daniela S; Zanardi, Erica; Alviano, Celuta S; De Souza, Wanderley; Rozental, Sonia

    2005-12-15

    Fonsecaea pedrosoi produces melanin, a pigment related to virulence in pathogenic fungi. To understand the involvement of melanin in the protection of fungi, the authors used tricyclazole to inhibit the melanin pathway in F. pedrosoi. Experiments of pigmentation suggested that F. pedrosoi uniquely produces dihydroxynaphthalene-melanin. Pigments produced on cultures modified or not with tricyclazole were extracted by an alkali-acid method and submitted to infrared and ion exchange chromatography analysis; also cytochemistry analysis for cationized ferritin of whole cells was carried out. This group of experiments showed that the tricyclazole treatment on F. pedrosoi produced a melanin-like pigment, but less negatively charged and with less affinity for iron ions than that without the tricyclazole treatment, and this in turn lead to a less negatively charge cell wall surface. Scanning electron microscopy of such pigments showed that the melanin from control cultures maintained their hyphae-like structures, which have been described as "melanin-ghosts," whereas the tricyclazole pigment showed an amorphous surface. Interaction of conidia from cultures of F. pedrosoi, modified by tricyclazole or not, with peritoneal activated macrophages suggested that tricyclazole causes higher association of fungus with macrophages, weakens the fungus capacity to destroy the macrophages, and diminishes the resistance to dry fracture procedures on samples prepared for high resolution scanning electron microscopy. Copyright (c) 2005 Wiley-Liss, Inc.

  20. Photodynamic therapy does not induce cyclobutane pyrimidine dimers in the presence of melanin.

    PubMed

    Mudambi, Shaila; Pera, Paula; Washington, Deschana; Remenyik, Eva; Fidrus, Eszter; Shafirstein, Gal; Bellnier, David; Paragh, Gyorgy

    2018-04-24

    Photodynamic therapy (PDT) is an office-based treatment for precancerous and early cancerous skin changes. PDT induces cell death through the production of reactive oxygen species (ROS). Cyclobutane pyrimidine dimers (CPDs) are the most important DNA changes responsible for ultraviolet (UV) carcinogenesis. Recently ROS induced by UVA were shown to generate CPDs via activating melanin. This raised the possibility that PDT induced ROS may also induce CPDs and mutagenesis in melanin containing cells. Previously the effect of PDT on CPDs in melanin containing cells has not been assessed. Our current work aimed to compare the generation of CPDs in melanin containing cells subjected to UVA treatment and porfimer sodium red light PDT. We used ELISA to detect CPDs. After UVA we found a dose dependent increase in CPDs in melanoma cells (B16-F10, MNT-1) with CPD levels peaking hours after discontinuation of UVA treatment. This indicated the generation of UVA induced dark-CPDs in the model. Nevertheless, PDT in biologically relevant doses was unable to induce CPDs. Our work provides evidence for the lack of CPD generation by PDT in melanin containing cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy.

    PubMed

    Saager, Rolf B; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J; Kelly, Kristen M; Tromberg, Bruce J

    2015-06-01

    The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ~30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R² = 0.8895). SFDS melanin distribution thickness is correlated to MPM values (R² = 0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.

  2. Melanin: spin behaviour and implications for bioelectronic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Meredith, Paul; Sheliakina, Margarita; Mostert, Bernard

    2015-10-01

    The melanins are a broad class of pigmentary macromolecules found through nature that perform a wide range of functions including photo-protection [1]. The most common melanin - the brown, black pigment eumelanin, has been much studied because of its role in melanoma and also for its functional material properties [2]. Synthetic eumelanin has been shown to be photoconductive in the solid state and also possess a water content dependent dark conductivity [3]. It is now well established that these electrical properties arise from hybrid ionic-electronic behaviour, leading to the proposition that melanins could be model biocompatible systems for ion-to-electron transduction in bioelectronics. In my talk, I will discuss the basic science behind these bioelectronics properties - electrical and optical. In this context I will also describe recent electron paramagnetic spin studies which isolate the role of the various chemical moieties responsible for the hybrid ionic-electronic behaviour. I will also highlight preliminary results on prototype melanin-based bioelectronics devices and discuss possible architectures to realise elements such as solid-state switches and transducers. [1] "The physical and chemical properties of eumelanin", P. Meredith and T. Sarna, Pigment Cell Research, 19(6), pp572-594 (2006). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013). [3] "Is melanin a semiconductor: humidity induced self doping and the electrical conductivity of a biopolymer", A.B. Mostert, B.J. Powell, F.L. Pratt, G.R. Hanson, T. Sarna, I.R. Gentle and P. Meredith, Proceedings of the National Academy of Sciences of the USA, 109(23), 8943-8947 (2012).

  3. Melanin-based colour polymorphism responding to climate change.

    PubMed

    Roulin, Alexandre

    2014-11-01

    Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is

  4. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.

    PubMed

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo

    2017-11-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  5. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture

    PubMed Central

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J. B.; Liporagi-Lopes, Livia; Stark, Ruth E.; Casadevall, Arturo

    2017-01-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  6. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  7. Effects of melanin from Sepiella Maindroni ink (MSMI) on the intestinal Microbiome of mice.

    PubMed

    Dong, Hui; Song, Weiwei; Wang, Chunlin; Mu, Changkao; Li, Ronghua

    2017-07-03

    By the search for new natural compounds with beneficial health effects, cephalopod ink has been considered as an attempt to develop new drugs and functional foods, which is an especially active field in Asia, where cephalopods are a major fishery catch, for which ink sacs are a bi-product and where homeopathic medicine has deep roots. There is a demand to evaluate the safety and influence to the organism. The specific composition and relative abundance of the gut microbiota, which is potentially a major modulator of host metabolism, drives the interaction between functional foods and host health. We explore the effects of melanin from Sepiella Maindroni, most common cuttlefish in China, on the intestinal microbiome of mice. ICR mice were randomly divided four groups, which were normal group (S), low melanin dose group (D; 120 mg/kg), medium melanin dose group (Z; 240 mg/kg), and high melanin dose group (G; 480 mg/kg). Melanin was delivered for 28 consecutive days. Fecal samples were used to generate 7715 operational taxonomic units (OTUs) via high-throughput sequencing. There were significant shifts in relative abundance of the dominant taxa at the phylum, class, order, family, and genus levels following melanin treatment. MSMI had no significant effect on the structure of intestinal flora in mice. The main effect was in the proportion of dominant bacterial communities. The effect positively correlated with the dose. From a health point of view, the use of melanin does not cause intestinal flora disorder. Our results may have important implications for MSMI as functional food component and potential therapeutic for manipulating gut microbiota.

  8. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora.

    PubMed

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2007-10-01

    The filamentous ascomycete Sordaria macrospora accumulates melanin during sexual development. The four melanin biosynthesis genes pks, teh, sdh and tih were isolated and their homology to genes involved in 1,8 dihydroxynaphthalene (DHN) melanin biosynthesis was shown. The presence of DHN melanin in S. macrospora was further confirmed by disrupting the pks gene encoding a putative polyketide synthase and by RNA interference-mediated silencing of the sdh gene encoding a putative scytalone dehydratase. Because melanin occurs in fruiting bodies that develop through several intermediate stages within 7 days of growth, a Northern analysis of a developmental time-course was conducted. These data revealed a time-dependent regulation of teh and sdh transcript levels. Comparing the transcriptional expression by real-time PCR of melanin biosynthesis genes in the wild type under conditions allowing or repressing sexual development, a significant downregulation during vegetative growth was detected. Quantitative real-time PCR and Northern blot analysis of melanin biosynthesis gene expression in different developmental mutants confirmed that melanin biosynthesis is linked to fruiting body development and is under the control of specific regulatory genes that participate in sexual differentiation.

  9. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair

    NASA Astrophysics Data System (ADS)

    Herrling, Thomas; Jung, Katinka; Fuchs, Jürgen

    2008-05-01

    Throughout the body, melanin is a homogenous biological polymer containing a population of intrinsic, semiquinone-like radicals. Additional extrinsic free radicals are reversibly photo-generated by UV and visible light. Melanin photochemistry, particularly the formation and decay of extrinsic radicals, has been the subject of numerous electron spin resonance (ESR) spectroscopy studies. Several melanin monomers exist, and the predominant monomer in a melanin polymer depends on its location within an organism. In skin and hair, melanin differs in content of eumelanin or pheomelanin. Its bioradical character and its susceptibility to UV irradiation makes melanin an excellent indicator for UV-related processes in both skin and hair. The existence of melanin in skin is strongly correlated with the prevention against free radicals/ROS generated by UV radiation. Especially in the skin melanin (mainly eumelanin) ensures the only natural UV protection by eliminating the generated free radicals/ROS. Melanin in hair can be used as a free radical detector for evaluating the efficacy of hair care products. The aim of this study was to investigate the suitability of melanin as protector of skin against UV generated free radicals and as free radical indicator in hair.

  10. Adsorption of Pb(II) and Cd(II) by Squid Ommastrephes bartrami Melanin

    PubMed Central

    Chen, Shiguo; Xue, Changhu; Wang, Jingfeng; Feng, Hui; Wang, Yuming; Ma, Qin; Wang, Dongfeng

    2009-01-01

    The adsorption of Cd(II) and Pb(II) by squid melanin was investigated. At a metal ion concentration of 2 mM/L, the biosorption efficiency of melanin reached 95% for Cd(II) and Pb(II). The maximum content of bound Cd(II) and Pb(II) was 0.93 mM/g and 0.65 mM/g, respectively. Temperature had no obvious effect on the adsorption of the metals, and in a pH range of 4.0–7.0, the adsorption yield was high and stable. Macrosalts such as NaCl, MgCl2, and CaCl2 had no obvious effect on the binding of Pb(II) but greatly diminished the adsorption of Cd(II), which indicated that different functional groups in squid melanin are responsible for their adsorption. IR analysis of metal ion-enriched squid melanin demonstrated that the possible functional groups responsible for metal binding were phenolic hydroxyl (OH), carboxyl (COOH), and amine groups (NH). This study reports a new material for the removal of heavy metals from low-strength wastewater. PMID:20148082

  11. Genetic Basis of Melanin Pigmentation in Butterfly Wings

    PubMed Central

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W.; van der Burg, Karin R. L.; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D.

    2017-01-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui. This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. PMID:28193726

  12. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    PubMed

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  13. Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism

    PubMed Central

    Khajo, Abdelahad; Bryan, Ruth A.; Friedman, Matthew; Burger, Richard M.; Levitsky, Yan; Casadevall, Arturo; Magliozzo, Richard S.; Dadachova, Ekaterina

    2011-01-01

    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown. PMID:21966422

  14. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-11-01

    Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect's higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).

  15. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy

    PubMed Central

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-01-01

    Abstract. Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect). PMID:27830262

  16. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy.

    PubMed

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M; Maly, Tyler; Booth, Nicholas; Durkin, Anthony J; Farkas, Daniel L

    2016-11-01

    Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).

  17. Melanin deposition ruled out as cause of color changes in the red-eared sliders (Trachemys scripta elegans).

    PubMed

    Cao, Dainan; Gong, Shiping; Yang, Jiangbo; Li, Weiye; Ge, Yan; Wei, Yufeng

    2018-03-01

    Animal coloration primarily depends on the presence of pigments and the mixing ratio of eumelanin and pheomelanin. The color of red-eared slider's carapace varies with age, from an olive green to a yellow green, and then to a yellow brown in juveniles, generally. The purpose of the present study was to investigate whether this color change is related to the difference in melanin expression. Melanin deposition levels were examined in the carapace, skin, eye and muscle of the three color-types using hematoxylin and eosin staining. Moreover, the full-length coding sequence (CDS) of red-eared slider turtle melanin biosynthesis regulatory genes TYR, TYRP1, MITF and SLC24A5 were cloned, sequenced and quantitatively analyzed. Both histological view of melanin deposition and quantitative real-time PCR test of melanin-regulated gene expressions showed that there are significant differences among different tissues of red-eared slider, but no significant difference among different color-types, indicating that melanin deposition is not associated with ontogenetic color change in the carapace of red-eared slider. This study initially explore the melanin deposition and the mRNA expression of melanin biosynthesis regulatory genes in red-eared slider, which serve as a foundation for further insight into the pigmentation patterns and the mechanism of body color change in turtles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy

    PubMed Central

    Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.

    2015-01-01

    Abstract. The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ∼5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ∼30–65  μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types. PMID:26065839

  19. Diffuse Reflectance Spectroscopy Versus Mexameter(®) MX18 Measurements of Melanin and Erythema in an African Population.

    PubMed

    Wright, Caradee Y; Karsten, Aletta E; Wilkes, Marcus; Singh, Ann; du Plessis, Johan; Albers, Patricia N; Karsten, Petrus A

    2016-07-01

    Melanin provides protection against excess exposure to solar ultraviolet radiation (UVR) and related adverse health effects. Diffuse reflectance spectroscopy (DRS) can be used to calculate cutaneous melanin and erythema, but this is complex and has been mostly used for light-to-medium pigmented skin. Handheld reflectance spectrophotometers, such as the Mexameter(®) MX18, can also be used. We compared DRS-calculated melanin and erythema values with Mexameter melanin and erythema index values to understand how these techniques/measurements correlate in an African population of predominantly deeply pigmented skin. Five hundred and three participants comprised 68.5% self-identified Black African, 9.9% Indian/Asian, 18.4% White and 2.9% Colored. The majority of Black African (45%), Indian/Asian (34%) and Colored (53%) participants self-identified their skin as being "brown." Measured melanin levels increased with darker self-reported skin color. DRS-calculated and Mexameter melanin values demonstrated a positive correlation (Spearman rho = 0.87, P < 0.001). The results from both instruments showed erythema values were strongly correlated with their own melanin values. This finding is considered spurious and may result from the complexity of separating brown and red pigment when using narrowband reflectance techniques. Further work is needed to understand melanin, erythema and color in Black skin given sun-related health risks in vulnerable groups in Africa. © 2016 The American Society of Photobiology.

  20. A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana.

    PubMed

    Maeda, Kazuhisa; Naitou, Tomoko; Umishio, Kenichi; Fukuhara, Tadao; Motoyama, Akira

    2007-05-01

    We isolated a novel inhibitor of melanin biosynthesis from the flowers of Arnica montana L. (Compositae), and identified it as a traxastane-type triterpene (3beta,16beta-dihydroxy-21alpha-hydroperoxy-20(30)-taraxastene) [1] by means of 1D or 2D-NMR and liquid chromatography/high-resolution mass spectrometry (LC-HR-MS). Compound [1] at the concentration of 0.53 muM completely inhibited melanin accumulation in cultured B16 melanoma cells. It is one of the most potent among known plant inhibitors of melanin biosynthesis in cultured cells, being 50 times more potent than 4-methoxyphenol, which is used as an anti-pigmentation agent. Its mechanism of action is considered to involve inhibition of transcriptional factor MITF-M (melanocyte-type isoform of microphthalmia-associated transcription factor), which would lead to a decrease of tyrosinase and related genes. We confirmed that compound [1] decreased the protein levels of tyrosinase and its related proteins in B16 melanoma cells. Further study revealed that a similar hydroperoxy triterpene also suppressed the melanin pigment accumulation of B16 melanoma cells. These results indicate that the hydroperoxy group may play an important role in the suppression of the melanin accumulation by compound [1].

  1. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis.

    PubMed

    Ganesh Kumar, C; Sahu, N; Narender Reddy, G; Prasad, R B N; Nagesh, N; Kamal, A

    2013-10-01

    Hypnea musciformis red seaweed is popularly known to produce carrageenan was collected from the Gulf of Mannar, India. Strain HMGM-7 [MTCC 11712] was isolated from the surface of this seaweed, which was capable of producing an extracellular black-coloured polymeric pigment. Based on phenotypic characterization and 16S rDNA sequencing, the strain HMGM-7 was identified as Pseudomonas stutzeri. Biophysical characterization by UV-visible, FT-IR, EPR and XRD spectroscopic studies confirmed the pigment as melanin. Further chemical characterization showed that it was acid-resistant, alkali-soluble and alkali-insoluble in most of the organic solvents and distilled water. To our knowledge, this is a first report on a marine Pseudomonas stutzeri strain producing significant amounts of melanin of about 6·7 g l(-1) without L-tyrosine supplementation in the sea-water production medium. This investigation reports a marine Pseudomonas stutzeri strain HMGM-7 [MTCC 11712] that produces significant quantities of melanin (6·7 g l(-1) ) in sea-water medium without the supplementation of L-tyrosine. The confirmation of the produced melanin was carried out by various chemical and physical characterization studies. The isolated melanin may find potential application for use in cosmetic and/or pharmaceutical industries. © 2013 The Society for Applied Microbiology.

  2. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    PubMed

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  3. The Protective Role of Melanin Against UV Damage in Human Skin

    PubMed Central

    Brenner, Michaela; Hearing, Vincent J.

    2009-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin cancer in individuals with darker skin compared to those with fair skin. Skin pigmentation is of great cultural and cosmetic importance, yet the role of melanin in photoprotection is still controversial. This article outlines the major acute and chronic effects of UV radiation on human skin, the properties of melanin, the regulation of pigmentation and its effect on skin cancer prevention. PMID:18435612

  4. Structure and Function of Iron-Loaded Synthetic Melanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiwen; Xie, Yijun; Wang, Zhao

    We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure- property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding ofmore » this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.« less

  5. Melanin directly converts light for vertebrate metabolic use: heuristic thoughts on birds, Icarus and dark human skin.

    PubMed

    Goodman, Geoffrey; Bercovich, Dani

    2008-08-01

    Pigments serve many visually obvious animal functions (e.g. hair, skin, eyes, feathers, scales). One is 'melanin', unusual in an absorption across the UV-visual spectrum which is controversial. Any polymer or macro-structure of melanin monomers is 'melanin'. Its roles derive from complex structural and physical-chemical properties e.g. semiconductor, stable radical, conductor, free radical scavenger, charge-transfer. Clinicians and researchers are well acquainted with melanin in skin and ocular pathologies and now increasingly are with internal, melanized, pathology-associated sites not obviously subject to light radiation (e.g. brain, cochlea). At both types of sites some findings puzzle: positive and negative neuromelanin effects in Parkinsons; unexpected melanocyte action in the cochlea, in deafness; melanin reduces DNA damage, but can promote melanoma; in melanotic cells, mitochondrial number was 83% less, respiration down 30%, but development similar to normal amelanotic cells. A little known, avian anatomical conundrum may help resolve melanin paradoxes. One of many unique adaptations to flight, the pecten, strange intra-ocular organ with unresolved function(s), is much enlarged and heavily melanized in birds fighting gravity, hypoxia, thirst and hunger during long-distance, frequently sub-zero, non-stop migration. The pecten may help cope with energy and nutrient needs under extreme conditions, by a marginal but critical, melanin-initiated conversion of light to metabolic energy, coupled to local metabolite recycling. Similarly in Central Africa, reduction in body hair and melanin increase may also have lead to 'photomelanometabolism' which, though small scale/ unit body area, in total may have enabled a sharply increased development of the energy-hungry cortex and enhanced human survival generally. Animal inability to utilize light energy directly has been traditionally assumed. Melanin and the pecten may have unexpected lessons also for human physiology

  6. Complexation in two-component chlortetracycline-melanin solutions

    NASA Astrophysics Data System (ADS)

    Lapina, V. A.; Pershukevich, P. P.; Dontsov, A. E.; Bel'Kov, M. V.

    2008-01-01

    The spectra and kinetics of fluorescence of two-component solutions of the chlortetracycline (CHTC)-DOPA-melanin (melanin or ME) system in water have been investigated. The data obtained have been compared to similar data for solutions of CHTC-melanosome from bull eye (MB), which contains natural melanin, in K-phosphate buffer at pH 7.4. The overall results indicate the occurrence of complexation between molecules of CHTC and ME as they are being excited. The studies of complexation in the solution of CHTC-MB in the buffer are complicated by the formation of a CHTC-buffer complex. The effect of optical radiation in the range 330-750 nm on the CHTC-ME complex shows selectivity: the greatest change in the spectrum occurs when the wavelength of the exciting radiation coincides with the long-wavelength band maximum of the fluorescence excitation spectrum of the CHTC-ME complex in aqueous solution. In this range, CHTC and especially ME show high photochemical stability. The nature of the radiation effect on the studied compounds in the hard UV range (λ < 330 nm) differs greatly from that in the range 330-750 nm. It is apparently accompanied by significant photochemical transmutations of all system components. By comparing the characteristics of the CHTC-ME systems with those of the related drug doxycycline (DC-ME), the conclusion has been made that the chlorine atom plays a vital role in formation of the short-wavelength band in the fluorescence spectrum of the CHTC-ME complex.

  7. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi-Cheng; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; Chen, Sih-Min

    It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H{sub 2}O{sub 2} stress and treatedmore » with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.« less

  8. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer.

    PubMed

    Kasraee, Behrooz; Nikolic, Damjan S; Salomon, Denis; Carraux, Pierre; Fontao, Lionel; Piguet, Vincent; Omrani, Gholamhossein R; Sorg, Olivier; Saurat, Jean-Hilaire

    2012-01-01

    We assessed the ability of ebselen, a glutathione peroxidase mimic, to reduce pigmentation in various models. In murine B16 melanocytes, 25 μm ebselen inhibited melanogenesis and induced a depolymerisation of actin filaments. In co-cultures of B16 melanocytes with BDVII keratinocytes, a pretreatment of melanocytes with ebselen resulted in a strong inhibition of melanosome transfer to keratinocytes, as shown under optical and electron microscopy. In reconstructed epidermis, topical 0.5% ebselen led to a twofold decrease of melanin without affecting the density of active melanocytes. A similar result was obtained with topical 0.5% ebselen in black guinea pig ears. Ebselen induced a decrease of epidermal melanin parallel to a localisation of melanin and melanosomes in the basal layer. Ebselen appears as a new depigmenting compound that inhibits melanin synthesis and melanosome transfer to keratinocytes. © 2011 John Wiley & Sons A/S.

  9. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  10. Sexual Dimorphism in Melanin Pigmentation, Feather Coloration and Its Heritability in the Barn Swallow (Hirundo rustica)

    PubMed Central

    Saino, Nicola; Romano, Maria; Rubolini, Diego; Teplitsky, Celine; Ambrosini, Roberto; Caprioli, Manuela; Canova, Luca; Wakamatsu, Kazumasa

    2013-01-01

    Melanin is the main pigment in animal coloration and considerable variation in the concentrations of the two melanin forms (pheo- and eumlanin) in pigmented tissues exists among populations and individuals. Melanin-based coloration is receiving increasing attention particularly in socio-sexual communication contexts because the melanocortin system has been hypothesized to provide a mechanistic basis for covariation between coloration and fitness traits. However, with few notable exceptions, little detailed information is available on inter-individual and inter-population variation in melanin pigmentation and on its environmental, genetic and ontogenetic components. Here, we investigate melanin-based coloration in an Italian population of a passerine bird, the barn swallow (Hirundo rustica rustica), its sex- and age-related variation, and heritability. The concentrations of eu- and pheomelanin in the throat (brown) and belly (white-to-brownish) feathers differed between sexes but not according to age. The relative concentration of either melanin (Pheo:Eu) differed between sexes in throat but not in belly feathers, and the concentrations in males compared to females were larger in belly than in throat feathers. There were weak correlations between the concentrations of melanins within as well as among plumage regions. Coloration of belly feathers was predicted by the concentration of both melanins whereas coloration of throat feathers was only predicted by pheomelanin in females. In addition, Pheo:Eu predicted coloration of throat feathers in females and that of belly feathers in males. Finally, we found high heritability of color of throat feathers. Melanization was found to differ from that recorded in Hirundo rustica rustica from Scotland or from H. r. erythrogaster from North America. Hence, present results show that pigmentation strategies vary in a complex manner according to sex and plumage region, and also among geographical populations, potentially

  11. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  12. Melanins and melanogenesis: from pigment cells to human health and technological applications.

    PubMed

    d'Ischia, Marco; Wakamatsu, Kazumasa; Cicoira, Fabio; Di Mauro, Eduardo; Garcia-Borron, Josè Carlos; Commo, Stephane; Galván, Ismael; Ghanem, Ghanem; Kenzo, Koike; Meredith, Paul; Pezzella, Alessandro; Santato, Clara; Sarna, Tadeusz; Simon, John D; Zecca, Luigi; Zucca, Fabio A; Napolitano, Alessandra; Ito, Shosuke

    2015-09-01

    During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine-based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature. A closer intersectoral interaction between research centers is essential to raise the interests and increase the awareness of the biomedical, biomaterials science and hi-tech sectors of the manifold opportunities offered by pigment cells and related metabolic pathways. Starting from a survey of biological roles and functions, the present review aims at providing an interdisciplinary perspective of melanin pigments and related pathway with a view to showing how it is possible to translate current knowledge about physical and chemical properties and control mechanisms into new bioinspired solutions for biomedical, dermocosmetic, and technological applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response

    PubMed Central

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.

    2014-01-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666

  14. Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D

    2012-09-01

    In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Estimating melanin location in the pigmented skin lesions by hue-saturation-lightness color space values of dermoscopic images.

    PubMed

    Sakai, Hiroshi; Ando, Yoshimi; Ikinaga, Kuniko; Tanaka, Masaru

    2017-05-01

    The depth of melanin in the skin can be estimated roughly by observation of the color exhibited on dermoscopy. Currently, there are no objective methods to estimate it. The aim of the present study was to clarify the relationship between the depth of melanin in the skin and the color variation exhibited, and to objectively estimate the 3-D location of melanin in the pigmented skin lesions from dermoscopic images. Representative colors in dermoscopic images of acral compound nevus, Spitz nevus and blue nevus were evaluated by the subjectively perceived color on dermoscopy and objective values in hue-saturation-lightness color space values. Brown colors due to small quantities of superficial melanin in the skin had high saturation and low lightness values, whereas black colors due to large quantities of superficial melanin had low saturation and low lightness values. On the other hand, colors due to melanin in the dermis were perceived as blue-gray on dermoscopy, but extracted colors showed gray-brown hue and intermediate saturation and high lightness values. In all cases, extracted representative colors of pigmented skin lesions had similar hue values within the red-orange range. Objective estimation of the 3-D location of melanin in the pigmented skin lesions is possible by the saturation and lightness values of the colors extracted from dermoscopic images. Subjectively perceived colors of melanin, especially in the dermis, can be modified by the surrounding environment effect and blue color perception. © 2017 Japanese Dermatological Association.

  16. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Response of transformed and normal mouse cell lines to anti-melanin compounds, hyperthermia, and radiation.

    PubMed

    Raaphorst, G P; Azzam, E I

    1992-02-01

    Five cell lines (one parental, two transformed melanin producing, and two transformed non-melanin producing) were evaluated for the responses to 2- and 4-hydroxyanisole (2HA, 4HA) alone or combined with hyperthermia or radiation. All cells exhibited a non-specific toxic response to the two compounds and the effect was exposure time and concentration dependent and was greater for 4HA compared to 2HA. In addition, the two melanin-producing cell lines were more sensitive, demonstrating specific toxicity to such cell lines. The treatment with either 2HA or 4HA combined with heat and radiation resulted mostly in additive or antagonistic effects, except for one combination of 2HA plus radiation in the melanin-producing R25 cells. Thus, while these compounds may be useful in therapy for pigmented melanomas, combined treatment with radiation is not recommended.

  18. Melanin-based color of plumage: role of condition and of feathers' microstructure

    USGS Publications Warehouse

    D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.

    2014-01-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  19. Cuttlefish Ink Melanin Encapsulated in Nanolipid Bubbles and Applied Through a Micro-Needling Procedure Easily Stains White Hair Facilitating Photoepilation.

    PubMed

    Trelles, Mario A; Almudever, Patricia; Alcolea, Justo M; Cortijo, Julio; Serrano, Gabriel; Expósito, Inmaculada; Royo, Josefina; Leclère, Franck Marie

    2016-05-01

    Photothermolysis of unwanted hair depends on the presence of melanin in the hair follicle as the chromophore, but is not effective in patients with non-pigmented, melanin-sparse hair shafts and follicles. This split-scalp, double-blind study was to monitor the efficacy of melanin bound in nanosomes to inject exogenous melanin into the hair follicles thus potentiating successful photothermolysis.
    Twelve patients, phototypes II-III, with white or very fair hair, were treated with a compound containing melanin encapsulated in nanosomes (Melaser®) together with a fluorescent marker. Two equal 6 cm² areas were marked on each side of the occiput of the subjects. The compound was applied to a randomly selected experimental side on each patient (area A), and a saline solution applied in the same manner to the contralateral control side (area B). Penetration of the melanin into the hair follicle was assessed using optical and fluorescence microscopy. Also, condition of hair structure was checked in vivo after standard laser settings used for epilation.
    A slight transient erythema was observed in those areas where the compound was applied with some perifollicular edema. No such effects were noticed in those areas where saline solution was applied. No persistent complications such as scarring, hypo- or hyperpigmentation were observed in any of the experimental or control areas. Under fluorescence microscopy, the hair structures in the areas to which the compound had been applied showed a clear melanin deposit confirmed by the immunofluorescence intensity, which was highest at 2 hours after application. By optical microscopy, external melanin was deposited in hair follicles. Tests with standard settings for epilation were efficacious in damaging melanin-marked white hair.
    This study strongly suggests the safety and efficacy of the application of nanosomes encapsulating melanin for the introduction of melanin into hair follicles. Changes noticed

  20. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora.

    PubMed

    Yu, Xi; Huo, Liang; Liu, Heng; Chen, Longfei; Wang, Yu; Zhu, Xudong

    2015-10-01

    Melanin plays an important role in regulating various biological processes in many fungi. However, its biological role in conidiation remains largely elusive. We report here that conidia production, morphogenesis, integrity, germination and their viability in Pestalotiopsis microspora require the polyketide-derived melanin. A polyketide synthase gene, pks1, was identified and demonstrated responsible for melanin biosynthesis in this fungus. A targeted deletion mutant strain Δpks1 displayed a defect in pigmentation of conidia and had an albino colonial phenotype. Interestingly, Δpks1 produced approximately 6-fold as many conidia as the wild type did, suggesting a negative modulation of melanin on conidia production in this fungus. Moreover, the conidia failed to develop into the normal five-cell morphology, rather the three main-body cells separated via constriction at the original septum position to generate three independent mutant conidia. This result suggests a novel role of melanin in the formation of the multi-cellular conidia. Germ tubes could develop from the three different types of mutant conidia and kept elongating, despite a significantly lower germination rate was observed for them. Still more, the unpigmented conidia became permeable to Calcofluor White and DAPI, suggesting the integrity of the conidia was impaired. Deliberate inhibition of melanin biosynthesis by a specific inhibitor, tricyclazole, led to a similar phenotypes. This work demonstrates a new function of fungal melanin in conidial development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Melanocyte biology and function with reference to oral melanin hyperpigmentation in HIV-seropositive subjects.

    PubMed

    Feller, Liviu; Chandran, Rakesh; Kramer, Beverley; Khammissa, Razia A G; Altini, Mario; Lemmer, Johan

    2014-09-01

    The color of normal skin and of oral mucosa is not determined by the number of melanocytes in the epithelium but rather by their melanogenic activity. Pigmented biopolymers or melanins are synthesized in melanosomes. Tyrosinase is the critical enzyme in the biosynthesis of both brown/black eumelanin and yellow/red pheomelanin. The number of the melanosomes within the melanocytes, the type of melanin within the melanosomes, and the efficacy of the transfer of melanosomes from the melanocytes to the neighboring keratinocytes all play an important role in tissue pigmentation. Melanin production is regulated by locally produced factors including proopiomelanocortin and its derivative peptides, particularly alpha-melanocyte-stimulating hormone (α-MSH), melanocortin 1 receptor (MC1R), adrenergic and cholinergic agents, growth factors, cytokines, and nitric oxide. Both eumelanin and pheomelanin can be produced by the same melanocytes, and the proportion of the two melanin types is influenced by the degree of functional activity of the α-MSH/MC1R intracellular pathway. The cause of HIV oral melanosis is not fully understood but may be associated with HIV-induced cytokine dysregulation, with the medications commonly prescribed to HIV-seropositive persons, and with adrenocortical dysfunction, which is not uncommon in HIV-seropositive subjects with AIDS. The purpose of this article is to discuss some aspects of melanocyte biology and HIV-associated oral melanin hyperpigmentation.

  2. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    PubMed

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Neural Stem Cells and Its Derivatives as a New Material for Melanin Inhibition

    PubMed Central

    Hwang, Insik

    2017-01-01

    The pigment molecule, melanin, is produced from melanosomes of melanocytes through melanogenesis, which is a complex process involving a combination of chemical and enzymatically catalyzed reactions. The synthesis of melanin is primarily influenced by tyrosinase (TYR), which has attracted interest as a target molecule for the regulation of pigmentation or depigmentation in skin. Thus, direct inhibitors of TYR activity have been sought from various natural and synthetic materials. However, due to issues with these inhibitors, such as weak or permanent ability for depigmentation, allergy, irritant dermatitis and rapid oxidation, in vitro and in vivo, the development of new materials that inhibit melanin production is essential. A conditioned medium (CM) derived from stem cells contains many cell-secreted factors, such as cytokines, chemokines, growth factors and extracellular vesicles including exosomes. In addition, the secreted factors could negatively regulate melanin production through stimulation of a microenvironment of skin tissue in a paracrine manner, which allows the neural stem cell CM to be explored as a new material for skin depigmentation. In this review, we will summarize the current knowledge regulating depigmentation, and discuss the potential of neural stem cells and their derivatives, as a new material for skin depigmentation. PMID:29271951

  4. Methionine supplementation influences melanin-based plumage colouration in Eurasian kestrel, Falco tinnunculus, nestlings.

    PubMed

    Parejo, Deseada; Silva, Nadia

    2009-11-01

    The extent to which the expression of melanin-based plumage colouration in birds is genetically or environmentally determined is controversial. Here, we performed a between-nest design supplementation with either the sulphur amino acid dl-methionine or with water to investigate the importance of the non-genetic component of melanin-based plumage colouration in the Eurasian kestrel, Falco tinnunculus. Methionine affects growth and immunity, thus we aimed to modify nestling growth and immunity before feather development. Then, we measured the effect of the experiment on colouration of two melanin-based plumage patches of nestling kestrels. We found that methionine slowed down nestling growth through treatment administration and that nestlings compensated by speeding up their growth later. We did not find any effects of methionine on nestling immunity (i.e. lymphocyte counts, natural antibody levels or complement-mediated immunity). Effects on growth seemed to be mirrored by changes in nestling colouration in the two sexes: methionine-nestlings showed less intense brown plumage on their backs compared with control nestlings. These results provide support for a non-genetic determination of a melanin-based plumage patch in the two sexes of nestling kestrels.

  5. Melanin-targeted nonlinear microscopy for label-free molecular diagnosis and staining (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Warren, Warren S.

    2017-02-01

    Visible absorption in tissue is dominated by a very small number of chromophores (hemoglobins and melanins) with broad optical spectra; for melanins in particular, the optical absorption spectrum is typically featureless. In addition, scattering limits penetration depth. As a result, the most common microscopy application by far is with excised tissue, which can be stained. However, nonlinear optical methods have the additional advantages of greater penetration depth and reduced sensitivity to scattering. Traditional nonlinear microscopy relies on mechanisms which produce light of a different color than the irradiating lasers, such as second harmonic generation or two photon induced fluorescence, and this contrast is sparse in biological issue without expressing or injecting different chromophores. Recently, stable laser sources and pulse shaping/pulse train modulation methods have made it possible to detect a much wider range of nonlinear molecular signatures, even at modest laser powers (much less than a laser pointer). Here we show the utility of a variety of such signatures (pump-probe, pulse-shaped stimulated Raman, cross-phase modulation) to quantitatively image the biochemical composition of transparent or pigmented tissue in a variety of applications, ranging from thin, unstained tissue sections to live knockout mice. The rich biochemical information provided by this method can be used as an indicator of melanocyte activity, which in turn (for example) reflects the status of melanocytic lesions. Comparisons with model systems (synthetic melanin nanoparticles, sepia melanin) and analysis of melanin degradation pathways in vivo have led to a quantitative understanding of the molecular basis of these changes.

  6. Neural stem cells inhibit melanin production by activation of Wnt inhibitors.

    PubMed

    Hwang, Insik; Park, Ju-Hwang; Park, Hang-Soo; Choi, Kyung-Ah; Seol, Ki-Cheon; Oh, Seung-Ick; Kang, Seongman; Hong, Sunghoi

    2013-12-01

    Melanin for skin pigmentation is synthesized from tyrosine via an enzymatic cascade that is controlled by tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase/tyrosinase related protein 2 (Dct/TRP2), which are the targets of microphthalmia-associated transcription factor (MITF). MITF is a master regulator of pigmentation and a target of β-catenin in Wnt/β-catenin signaling during melanocyte differentiation. Stem cells have been used in skin pigmentation studies, but the mechanisms were not determined for the conditioned medium (CM)-mediated effects. In this study, the inhibition and mechanisms of melanin synthesis were elucidated in B16 melanoma cells and UV-B irradiated C57/BL-6 mice that were treated with human neural stem cell-conditioned medium (NSC-CM). B16-F10 melanoma cells (1.5×10(4)cells/well) and the shaved dorsal skin of mice were pretreated with various amount (5, 10, 20, 50, and 100%) of NSC-CM. Melanin contents and TYR activity were measured by a Spectramax spectrophotometer. The expression of TYR, TRP1, Dct/TRP2, MITF, β-catenin and Wnt inhibitors were evaluated by RT-PCR and western blot. The dorsal skin samples were analyzed by immunofluorescence with various antibodies and compared with that control of tissues. Marked decreases were evident in melanin content and TYR, TRP1, DCT/TRP2, MITF, and β-catenin expression in B16 cells and C57/BL-6 mice. NSC-CM negatively regulated Wnt/β-catenin signaling by decreasing the expression of β-catenin protein, which resulted from robust expression of Wnt inhibitors Dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (sFRP2). These results demonstrate that NSC-CM suppresses melanin production in vitro and in vivo, suggesting that factors in NSC-CM may play an important role in deregulation of epidermal melanogenesis. Copyright © 2013 Japanese Society for Investigative Dermatology. All rights reserved.

  7. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration.

    PubMed

    Roulin, Alexandre

    2016-05-01

    The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.

  8. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells.

    PubMed

    Kim, Eun-Hyun; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2013-10-15

    Menadione is a synthetic vitamin K3 derivative. Here, we examined the effects of menadione on melanogenesis and its related signaling pathways. Our results showed that melanin content was significantly reduced after menadione treatment in a dose-dependent manner. However, menadione treatment did not reduce tyrosinase activity directly. Wnt signaling is known to play a major role in the control of melanin synthesis. Thus, we tested the effects of menadione treatment on GSK3β and β-catenin signaling, but found that menadione did not influence either of these signaling pathways. We also investigated changes in the phosphorylation of ERK, which is related to melanin regulation. These results indicated that menadione treatment led to the phosphorylation of ERK. Additionally, menadione treatment reduced both MITF and tyrosinase protein levels. Treatment with PD98059, a specific ERK pathway inhibitor, restored menadione-induced melanin reduction and also prevented MITF and tyrosinase downregulation by menadione. These results suggest that the hypopigmentary action of menadione is due to MITF and tyrosinase downregulation by ERK activation. © 2013 Elsevier B.V. All rights reserved.

  9. Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice.

    PubMed

    Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min

    2016-09-01

    Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with (89)Zr, a long half-life (78.4h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with (89)Zr directly at pH5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The (89)Zr-MP was stable in human plasma and PBS for at least 48h. The half-life of (89)Zr-MP was about 15.70±1.74h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that (89)Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Flavonoids and Melanins: A Common Strategy across Two Kingdoms

    PubMed Central

    Carletti, Giorgia; Nervo, Giuseppe; Cattivelli, Luigi

    2014-01-01

    Ultraviolet (UV) radiations alter a number of metabolic functions in vivant. They produce damages to lipids, nucleic acids and proteins, generating reactive oxygen species such as singlet oxygen (O2), hydroxyl radical (HO) and superoxide anion (O2-). Plants and animals, after their water emersion, have developed biochemical mechanisms to protect themselves from that environmental threat through a common strategy. Melanins in animals and flavonoids in plants are antioxidant pigments acting as free radical scavenging mechanisms. Both are phenol compounds constitutively synthesized and enhanced after exposure to UV rays, often conferring a red-brown-dark tissue pigmentation. Noteworthy, beside anti-oxidant scavenging activity, melanins and flavonoids have acquired secondary functions that, both in plants and animals, concern reproductions and fitness. Plants highly pigmented are more resistant to biotic and abiotic stresses. Darker wild vertebrates are generally more aggressive, sexually active and resistant to stress than lighter individuals. Flavonoids have been associated with signal attraction between flowers and insects and with plant-plant interaction. Melanin pigmentation has been proposed as trait in bird communication, acting as honest signals of quality. This review shows how the molecular mechanisms leading to tissue pigmentation have many functional analogies between plants and animals and how their origin lies in simpler organisms such as Cyanobacteria. Comparative studies between plant and animal kingdoms can reveal new insight of the antioxidant strategies in vivant. PMID:25516714

  11. Flavonoids and Melanins: a common strategy across two kingdoms.

    PubMed

    Carletti, Giorgia; Nervo, Giuseppe; Cattivelli, Luigi

    2014-01-01

    Ultraviolet (UV) radiations alter a number of metabolic functions in vivant. They produce damages to lipids, nucleic acids and proteins, generating reactive oxygen species such as singlet oxygen (O2), hydroxyl radical (HO) and superoxide anion (O2 (-)). Plants and animals, after their water emersion, have developed biochemical mechanisms to protect themselves from that environmental threat through a common strategy. Melanins in animals and flavonoids in plants are antioxidant pigments acting as free radical scavenging mechanisms. Both are phenol compounds constitutively synthesized and enhanced after exposure to UV rays, often conferring a red-brown-dark tissue pigmentation. Noteworthy, beside anti-oxidant scavenging activity, melanins and flavonoids have acquired secondary functions that, both in plants and animals, concern reproductions and fitness. Plants highly pigmented are more resistant to biotic and abiotic stresses. Darker wild vertebrates are generally more aggressive, sexually active and resistant to stress than lighter individuals. Flavonoids have been associated with signal attraction between flowers and insects and with plant-plant interaction. Melanin pigmentation has been proposed as trait in bird communication, acting as honest signals of quality. This review shows how the molecular mechanisms leading to tissue pigmentation have many functional analogies between plants and animals and how their origin lies in simpler organisms such as Cyanobacteria. Comparative studies between plant and animal kingdoms can reveal new insight of the antioxidant strategies in vivant.

  12. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An alternative method for the analysis of melanin production in Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato.

    PubMed

    Brilhante, Raimunda S N; España, Jaime D A; de Alencar, Lucas P; Pereira, Vandbergue S; Castelo-Branco, Débora de S C M; Pereira-Neto, Waldemiro de A; Cordeiro, Rossana de A; Sidrim, José J C; Rocha, Marcos F G

    2017-10-01

    Melanin is an important virulence factor for several microorganisms, including Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato, thus, the assessment of melanin production and its quantification may contribute to the understanding of microbial pathogenesis. The objective of this study was to standardise an alternative method for the production and indirect quantification of melanin in C. neoformans sensu lato and C. gattii sensu lato. Eight C. neoformans sensu lato and three C. gattii sensu lato, identified through URA5 methodology, Candida parapsilosis ATCC 22019 (negative control) and one Hortaea werneckii (positive control) were inoculated on minimal medium agar with or without L-DOPA, in duplicate, and incubated at 35°C, for 7 days. Pictures were taken from the third to the seventh day, under standardised conditions in a photographic chamber. Then, photographs were analysed using grayscale images. All Cryptococcus spp. strains produced melanin after growth on minimal medium agar containing L-DOPA. C. parapsilosis ATCC 22019 did not produce melanin on medium containing L-DOPA, while H. werneckii presented the strongest pigmentation. This new method allows the indirect analysis of melanin production through pixel quantification in grayscale images, enabling the study of substances that can modulate melanin production. © 2017 Blackwell Verlag GmbH.

  14. Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave.

    PubMed

    De la Rosa, José Maria; Martin-Sanchez, Pedro M; Sanchez-Cortes, Santiago; Hermosin, Bernardo; Knicker, Heike; Saiz-Jimenez, Cesareo

    2017-10-18

    Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13 C and 15 N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13 C and 15 N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.

  15. Objective evaluation of choroidal melanin contents with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Miura, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki; Ikuno, Yasushi; Uematsu, Sato; Iwasaki, Takuya; Goto, Hiroshi

    2018-02-01

    We non-invasively evaluated choroidal melanin contents in human eyes with PS-OCT. We calculated the percentage area of low DOPU in the choroidal interstitial stroma for Vogt-Koyanagi- Harada disease with sunset glow fundus, without sunset glow fundus, control group and tessellated fundus with high myopia. The mean percentage area of low DOPU in the sunset group was significantly lower than the other groups. PS-OCT provides an in vivo objective evaluation of choroidal melanin loss in vivo human eyes.

  16. Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-07-01

    Isoprenoid-substituted flavonoids were isolated from the wood of Artocarpus heterophyllus by means of activity-guided fractionation. Artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5) and albanin A (6) inhibited melanin biosynthesis in B16 melanoma cells without inhibiting tyrosinase. A structure-activity investigation indicated that the presence of the isoprenoid-substituted moiety enhanced the inhibitory activity on melanin production in B16 melanoma cells.

  17. Coumestrol Down-Regulates Melanin Production in Melan-a Murine Melanocytes through Degradation of Tyrosinase.

    PubMed

    Hwang, Jeong Ah; Park, Nok Hyun; Na, Yong Joo; Lee, Hae Kwang; Lee, John Hwan; Kim, Yong Jin; Lee, Chang Seok

    2017-01-01

    Pigmentation reflects skin darkening caused by melanin production, but excessive melanin synthesis may cause problems, such as melasma, solar lentigo, dark spots, and freckles. Considerable effort has been devoted to alleviating these undesired symptoms through the development of safe and effective depigmenting agents. Coumestrol, a plant-derived natural isoflavone with an estrogen-like structure and actions, is known to have anti-aging ability, but its potential depigmenting efficacy has not been evaluated. In the present study, we investigated the effects of coumestrol on melanin synthesis in normal melan-a murine melanocytes. Coumestrol significantly reduced melanin synthesis in a concentration-dependent manner up to a concentration of 25 µM without causing cytotoxicity. It also brightened tissue in an artificial skin model (MelanoDerm) that incorporates both human keratinocytes and melanocytes. Interestingly, although coumestrol did not inhibit tyrosinase activity or transcript level in melan-a cells, it clearly decreased the expression level of tyrosinase protein at a concentration of 25 µM. This coumestrol-induced reduction in tyrosinase protein levels was prevented by pretreatment with the proteasome inhibitor MG-132 or the lysosomal proteolysis inhibitor chloroquine. Collectively, our findings indicate that coumestrol exerts an inhibitory effect on melanin synthesis in melan-a cells, at least in part, through degradation of tyrosinase. These findings suggest that coumestrol is a good candidate for use in depigmentary reagents from a cosmetic and clinical perspective.

  18. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode.

    PubMed

    Terán Hilares, Ruly; Orsi, Camila Ayres; Ahmed, Muhammad Ajaz; Marcelino, Paulo Franco; Menegatti, Carlos Renato; da Silva, Silvio Silvério; Dos Santos, Júlio César

    2017-04-01

    Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L -1 of pullulan with high melanin content (45.70UA 540nm .g -1 ) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L -1 of pullulan with reduced content of melanin (4.46UA 540nm .g -1 ). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L -1 ) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Compositional changes of human hair melanin resulting from bleach treatment investigated by nanoscale secondary ion mass spectrometry.

    PubMed

    Kojima, Toru; Yamada, Hiromi; Isobe, Mitsuru; Yamamoto, Toshihiko; Takeuchi, Miyuki; Aoki, Dan; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2014-11-01

    It is important to understand the influence of bleach treatment on human hair because it is one of the most important chemical treatments in hair cosmetic processes. A comparison of the elemental composition of melanin between virgin hair and bleached hair would provide important information about the structural changes of melanin. To investigate the elemental composition of melanin granules in virgin black hair and bleached hair, these hair cross-sections are analyzed by using a nanoscale secondary ion mass spectrometry (NanoSIMS). The virgin black hair and bleached hair samples were embedded in resin and smooth hair cross-sections were obtained using an ultramicrotome. NanoSIMS measurements were performed using a Cs(+) primary ion beam to detect negative secondary ions. More intensive (16) O(-) ions were detected from the melanin granules of bleached hair than from those of virgin black hair in NanoSIMS (16) O(-) ion image. In addition, it was indicated that (16) O(-) ion intensity and (16) O(-) /(12) C(14) N(-) ion intensity ratio of melanin granules in bleached hair were higher than those in virgin black hair. Nanoscale secondary ion mass spectrometry analysis of the cross-sections of virgin black hair and bleached hair indicated that the oxygen content in melanin granules was increased by bleach treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei.

    PubMed

    Sapmak, Ariya; Boyce, Kylie J; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type.

  1. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules.

    PubMed

    Dontsov, A E; Sakina, N L; Ostrovsky, M A

    2017-08-01

    The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.

  2. Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration.

    PubMed

    McGraw, K J; Hill, G E

    2000-08-07

    The striking diversity of sexual dimorphisms in nature begs the question: Why are there so many signal types? One possibility is that ornamental traits convey different sets of information about the quality of the sender to the receiver. The colourful, pigmented feathers of male birds seem to meet the predictions of this hypothesis. Evidence suggests that carotenoid pigmentation reflects the nutritional condition of males during moult, whereas in many instances melanin pigmentation is a reliable indicator of social status. However, as of yet there have been no experimental tests to determine how these two ornament types respond to the same form of environmental stress. In this study, we tested the effect of endoparasitic infection by intestinal coccidians (Isospora sp.) on the expression of both carotenoid- and melanin-based ornamental coloration in captive male American goldfinches (Carduelis tristis). We found that the carotenoid-based plumage and bill coloration of parasitized males was less saturated than that developed by unparasitized males, but that the brightness and size of melanin-based black caps did not differ between the groups. These findings provide the most robust empirical support to date for the notion that carotenoid and melanin ornaments reveal different information to conspecifics.

  3. Compton scattering by internal shields based on melanin-containing mushrooms provides protection of gastrointestinal tract from ionizing radiation.

    PubMed

    Revskaya, Ekaterina; Chu, Peter; Howell, Robertha C; Schweitzer, Andrew D; Bryan, Ruth A; Harris, Matthew; Gerfen, Gary; Jiang, Zewei; Jandl, Thomas; Kim, Kami; Ting, Li-Min; Sellers, Rani S; Dadachova, Ekaterina; Casadevall, Arturo

    2012-11-01

    There is a need for radioprotectors that protect normal tissues from ionizing radiation in patients receiving high doses of radiation and during nuclear emergencies. We investigated the possibility of creating an efficient oral radioprotector based on the natural pigment melanin that would act as an internal shield and protect the tissues via Compton scattering followed by free radical scavenging. CD-1 mice were fed melanin-containing black edible mushrooms Auricularia auricila-judae before 9 Gy total body irradiation. The location of the mushrooms in the body before irradiation was determined by in vivo fluorescent imaging. Black mushrooms protected 80% of mice from the lethal dose, while control mice or those given melanin-devoid mushrooms died from gastrointestinal syndrome. The crypts of mice given black mushrooms showed less apoptosis and more cell division than those in control mice, and their white blood cell and platelet counts were restored at 45 days to preradiation levels. The role of melanin in radioprotection was proven by the fact that mice given white mushrooms supplemented with melanin survived at the same rate as mice given black mushrooms. The ability of melanin-containing mushrooms to provide remarkable protection against radiation suggests that they could be developed into oral radioprotectors.

  4. Metal exposure influences the melanin and carotenoid-based colorations in great tits.

    PubMed

    Giraudeau, M; Mateos-Gonzalez, F; Cotín, J; Pagani-Nuñez, E; Torné-Noguera, A; Senar, J C

    2015-11-01

    Metals are naturally found in the environment but are also emitted through anthropogenic activities, raising some concerns about the potential deleterious effects of these elements on wildlife. The potential effects of metals on bird coloration have been the focus of several recent studies since animal colored-signals often reflect the physiology of their bearers and are thus used by animals to assess the quality of another individual as a mate or competitor. These studies have shown that the melanin pigmentation seems to be positively associated and the carotenoid-based coloration negatively associated with metal exposure in wild birds. Although these studies have been very useful to show the associations between metal exposure and coloration, only few of them have actually quantified the levels of metal exposure at the individual level; always focusing on one or two of them. Here, we measured the concentrations of eight metals in great tits' feathers and then assessed how these levels of metals were associated with the carotenoid and melanin-based colorations. We found that the melanin pigmentation was positively associated with the copper concentration and negatively correlated with the chromium concentration in feathers. In addition, we have shown that the carotenoid-based coloration was negatively associated with the feather's mercury concentration. This study is the first one to identify some metals that might affect positively and negatively the deposition of melanin and carotenoid into the plumage of wild birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Diagnostic utility of melanin production by fungi: study on tissue sections and culture smears with Masson-Fontana stain.

    PubMed

    Sundaram, Challa; Shantveer, G Uppin; Umabala, Pamidi; Lakshmi, Vemu

    2014-01-01

    Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15), Zygomycetes (4/5), and fungi with both hyphal and yeast morphology (4/4) showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  6. [Decolorization of skin and hair-derived melanin by three ligninolytic enzymes].

    PubMed

    Miao, F; Lei, T C; Su, M Y; Yi, W J; Jiang, S; Xu, S Z

    2017-11-21

    Objective: To compare the decolorization efficiency of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase on eumelanin and pheomelanin, and to investigate the effect of topical administration of LiP solution on hyperpigmented guinea pigs skin induced by 308 nm excimer light. Methods: Pheomelanin-enriched specimens were prepared from human hair and cutaneous melanoma tissue using alkaline lysis method.Synthetic eumelanin was purchased from a commercial supplier.The same amount (0.02%) of melanin was incubated with the equal enzyme activity (0.2 U/ml) of ligninolytic enzymes for 3 h respectively.The absorbance at 475 nm ( A (475)) in the enzyme-catalyzed solution was measured using ELISA microplate reader.The experimental hyperpigmentation model was established in the dorsal skin of brownish guinea pigs using 308 nm excimer light radiation.LiP and heat-inactivated LiP solution were topically applied at each site.Meanwhile, 3% hydroquinone and vehicle cream were used as control.The skin color (L value) was recorded using a CR-10 Minolta chromameter.Corneocytes were collected using adhesive taping method.The amount and distribution of melanin in the corneocytes and skin tissues was visualized by Fontana-Masson staining. Results: All three ligninolytic enzymes showed various degree of eumelanin and pheomelanin decolorization activity.The decolorization activity of LiP, MnP and laccase was 40%-70%, 22%-42% and 9%-21%, respectively.The similar lightening was shown in the skin treated with LiP solution and 3% hydroquinone.The amount of melanin granules in the corneocytes was 199±11 by LiP, which was less than that in untreated control (923±12) and heat-inactive control (989±13). The amount of melanin was decreased in the whole epidermis treated with hydroquinone, the epidermis thickness was increased as well. In contrast, melanin of LiP group was decreased only in the superficial epidermis, the epidermis thickness seemed to be normal. Conclusion: LiP exerts

  7. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores.

    PubMed

    Wong, Sarah Sze Wah; Rani, Manjusha; Dodagatta-Marri, Eswari; Ibrahim-Granet, Oumaima; Kishore, Uday; Bayry, Jagadeesh; Latgé, Jean-Paul; Sahu, Arvind; Madan, Taruna; Aimanianda, Vishukumar

    2018-03-30

    Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus , but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus , galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D -/- mice challenged intranasally with wildtype conidia or melanin ghosts ( i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Quick analysis of optical spectra to quantify epidermal melanin and papillary dermal blood content of skin.

    PubMed

    Jacques, Steven L

    2015-04-01

    This paper presents a practical approach for assessing the melanin and blood content of the skin from total diffuse reflectance spectra, R(λ), where λ is wavelength. A quick spectral analysis using just three wavelengths (585 nm, 700 nm and 800 nm) is presented, based on the 1985 work of Kollias and Baquer who documented epidermal melanin of skin using the slope of optical density (OD) between 620 nm and 720 nm. The paper describes the non-rectilinear character of such a quick analysis, and shows that almost any choice of two wavelengths in the 600-900 range can achieve the characterization of melanin. The extrapolation of the melanin slope to 585 nm serves as a baseline for subtraction from the OD (585 nm) to yield a blood perfusion score. Monte Carlo simulations created spectral data for a skin model with epidermis, papillary dermis and reticular dermis to illustrate the analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors.

    PubMed

    Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A

    2016-10-01

    Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.

  10. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo.

    PubMed

    Krasieva, Tatiana B; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L; Gratton, Enrico; Tromberg, Bruce J

    2013-03-01

    Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λ(ex)=1000  nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6 ± 0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5 ± 0.05 and 0.17 ± 0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.

  11. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.

    2013-03-01

    Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.

  12. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    PubMed Central

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico

    2012-01-01

    Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000  nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo. PMID:23235925

  13. The pbrB Gene Encodes a Laccase Required for DHN-Melanin Synthesis in Conidia of Talaromyces (Penicillium) marneffei

    PubMed Central

    Sapmak, Ariya; Boyce, Kylie J.; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type. PMID:25866870

  14. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    PubMed

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effects of Sophora angustifolia and other natural plant extracts on melanogenesis and melanin transfer in human skin cells.

    PubMed

    Singh, Suman K; Baker, Richard; Wibawa, Judata I D; Bell, Mike; Tobin, Desmond J

    2013-01-01

    Skin pigmentation is a multistep process of melanin synthesis by melanocytes, its transfer to recipient keratinocytes and its degradation. As dyspigmentation is a prominent marker of skin ageing, novel effective agents that modulate pigmentation safely are being sought for both clinical and cosmetic use. Here, a number of plant extracts were examined for their effect on melanogenesis (by melanin assay and Western blotting) and melanin transfer (by confocal immunomicroscopy of gp100-positive melanin granules in cocultures and by SEM analysis of filopodia), in human melanocytes and in cocultures with phototype-matched normal adult epidermal keratinocytes. Mulberry, Kiwi and Sophora extracts were assessed against isobutylmethylxanthine, hydroquinone, vitamin C and niacinamide. Compared with unstimulated control, all extracts significantly reduced melanogenesis in human melanoma cells and normal adult epidermal melanocytes. These extracts also reduced melanin transfer and reduced filopodia expression on melanocytes, similar to hydroquinone and niacinamide, indicating their effectiveness as multimode pigmentation actives. © 2013 John Wiley & Sons A/S.

  16. Three-photon fluorescence imaging of melanin with a dual-wedge confocal scanning system

    NASA Astrophysics Data System (ADS)

    Mega, Yair; Kerimo, Joseph; Robinson, Joseph; Vakili, Ali; Johnson, Nicolette; DiMarzio, Charles

    2012-03-01

    Confocal microscopy can be used as a practical tool in non-invasive applications in medical diagnostics and evaluation. In particular, it is being used for the early detection of skin cancer to identify pathological cellular components and, potentially, replace conventional biopsies. The detection of melanin and its spatial location and distribution plays a crucial role in the detection and evaluation of skin cancer. Our previous work has shown that the visible emission from melanin is strong and can be easily observed with a near-infrared CW laser using low power. This is due to a unique step-wise, (SW) three-photon excitation of melanin. This paper shows that the same SW, 3-photon fluorescence can also be achieved with an inexpensive, continuous-wave laser using a dual-prism scanning system. This demonstrates that the technology could be integrated into a portable confocal microscope for clinical applications. The results presented here are in agreement with images obtained with the larger and more expensive femtosecond laser system used earlier.

  17. Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration.

    PubMed Central

    McGraw, K J; Hill, G E

    2000-01-01

    The striking diversity of sexual dimorphisms in nature begs the question: Why are there so many signal types? One possibility is that ornamental traits convey different sets of information about the quality of the sender to the receiver. The colourful, pigmented feathers of male birds seem to meet the predictions of this hypothesis. Evidence suggests that carotenoid pigmentation reflects the nutritional condition of males during moult, whereas in many instances melanin pigmentation is a reliable indicator of social status. However, as of yet there have been no experimental tests to determine how these two ornament types respond to the same form of environmental stress. In this study, we tested the effect of endoparasitic infection by intestinal coccidians (Isospora sp.) on the expression of both carotenoid- and melanin-based ornamental coloration in captive male American goldfinches (Carduelis tristis). We found that the carotenoid-based plumage and bill coloration of parasitized males was less saturated than that developed by unparasitized males, but that the brightness and size of melanin-based black caps did not differ between the groups. These findings provide the most robust empirical support to date for the notion that carotenoid and melanin ornaments reveal different information to conspecifics. PMID:11007328

  18. Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size

    PubMed Central

    2015-01-01

    Ultrafast pump–probe measurements can discriminate the two forms of melanin found in biological tissue (eumelanin and pheomelanin), which may be useful for diagnosing and grading melanoma. However, recent work has shown that bound iron content changes eumelanin’s pump–probe response, making it more similar to that of pheomelanin. Here we record the pump–probe response of these melanins at a wider range of wavelengths than previous work and show that with shorter pump wavelengths the response crosses over from being dominated by ground-state bleaching to being dominated by excited-state absorption. The crossover wavelength is different for each type of melanin. In our analysis, we found that the mechanism by which iron modifies eumelanin’s pump–probe response cannot be attributed to Raman resonances or differences in melanin aggregation and is more likely caused by iron acting to broaden the unit spectra of individual chromophores in the heterogeneous melanin aggregate. We analyze the dependence on optical intensity, finding that iron-loaded eumelanin undergoes irreversible changes to the pump–probe response after intense laser exposure. Simultaneously acquired fluorescence data suggest that the previously reported “activation” of eumelanin fluorescence may be caused in part by the dissociation of metal ions or the selective degradation of iron-containing melanin. PMID:24446774

  19. On the origin of electrical conductivity in the bio-electronic material melanin

    NASA Astrophysics Data System (ADS)

    Bernardus Mostert, A.; Powell, Ben J.; Gentle, Ian R.; Meredith, Paul

    2012-02-01

    The skin pigment melanin is one of a few bio-macromolecules that display electrical and photo-conductivity in the solid-state. A model for melanin charge transport based on amorphous semiconductivity has been widely accepted for 40 years. In this letter, we show that a central pillar in support of this hypothesis, namely experimental agreement with a hydrated dielectric model, is an artefact related to measurement geometry and non-equilibrium behaviour. Our results cast significant doubt on the validity of the amorphous semiconductor model and are a reminder of the difficulties of electrical measurements on low conductivity, disordered organic materials.

  20. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption.

    PubMed

    Bernsmann, Falk; Frisch, Benoît; Ringwald, Christian; Ball, Vincent

    2010-04-01

    We recently showed the possibility to build dopamine-melanin films of controlled thickness by successive immersions of a substrate in alkaline solutions of dopamine [F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 113 (2009) 8234-8242]. In this work the structure and properties of such films are further explored. The zeta-potential of dopamine-melanin films is measured as a function of the total immersion time to build the film. It appears that the film bears a constant zeta-potential of (-39+/-3) mV after 12 immersion steps. These data are used to calculate the surface density of charged groups of the dopamine-melanin films at pH 8.5 that are mostly catechol or quinone imine chemical groups. Furthermore the zeta-potential is used to explain the adsorption of three model proteins (lysozyme, myoglobin, alpha-lactalbumin), which is monitored by quartz crystal microbalance. We come to the conclusion that protein adsorption on dopamine-melanin is not only determined by possible covalent binding between amino groups of the proteins and catechol groups of dopamine-melanin but that electrostatic interactions contribute to protein binding. Part of the adsorbed proteins can be desorbed by sodium dodecylsulfate solutions at the critical micellar concentration. The fraction of weakly bound proteins decreases with their isoelectric point. Additionally the number of available sites for covalent binding of amino groups on melanin grains is quantified. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas

    PubMed Central

    Beltrán-García, Miguel J.; Prado, Fernanda M.; Oliveira, Marilene S.; Ortiz-Mendoza, David; Scalfo, Alexsandra C.; Pessoa, Adalberto; Medeiros, Marisa H. G.; White, James F.; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis. PMID:24646830

  2. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis.

    PubMed

    Kyrmizi, Irene; Ferreira, Helena; Carvalho, Agostinho; Figueroa, Julio Alberto Landero; Zarmpas, Pavlos; Cunha, Cristina; Akoumianaki, Tonia; Stylianou, Kostas; Deepe, George S; Samonis, George; Lacerda, João F; Campos, António; Kontoyiannis, Dimitrios P; Mihalopoulos, Nikolaos; Kwon-Chung, Kyung J; El-Benna, Jamel; Valsecchi, Isabel; Beauvais, Anne; Brakhage, Axel A; Neves, Nuno M; Latge, Jean-Paul; Chamilos, Georgios

    2018-05-30

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca 2+ signalling pathway that depends on intracellular Ca 2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca 2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca 2+ -CaM signalling in aspergillosis. Finally, we demonstrate that Ca 2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca 2+ -CaM signalling to inhibit LAP. These findings reveal the important role of Ca 2+ -CaM signalling in antifungal immunity and identify an immunological function of Ca 2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

  3. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  4. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    PubMed Central

    Negro, Juan J.; Finlayson, Clive; Galván, Ismael

    2018-01-01

    Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV) protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence. PMID:29360744

  5. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction.

    PubMed

    Blouin, Ashley M; Fried, Itzhak; Wilson, Charles L; Staba, Richard J; Behnke, Eric J; Lam, Hoa A; Maidment, Nigel T; Karlsson, Karl Æ; Lapierre, Jennifer L; Siegel, Jerome M

    2013-01-01

    The neurochemical changes underlying human emotions and social behaviour are largely unknown. Here we report on the changes in the levels of two hypothalamic neuropeptides, hypocretin-1 and melanin-concentrating hormone, measured in the human amygdala. We show that hypocretin-1 levels are maximal during positive emotion, social interaction and anger, behaviours that induce cataplexy in human narcoleptics. In contrast, melanin-concentrating hormone levels are minimal during social interaction, but are increased after eating. Both peptides are at minimal levels during periods of postoperative pain despite high levels of arousal. Melanin-concentrating hormone levels increase at sleep onset, consistent with a role in sleep induction, whereas hypocretin-1 levels increase at wake onset, consistent with a role in wake induction. Levels of these two peptides in humans are not simply linked to arousal, but rather to specific emotions and state transitions. Other arousal systems may be similarly emotionally specialized.

  6. Molecular preservation of the pigment melanin in fossil melanosomes.

    PubMed

    Lindgren, Johan; Uvdal, Per; Sjövall, Peter; Nilsson, Dan E; Engdahl, Anders; Schultz, Bo Pagh; Thiel, Volker

    2012-05-08

    Fossil feathers, hairs and eyes are regularly preserved as carbonized traces comprised of masses of micrometre-sized bodies that are spherical, oblate or elongate in shape. For a long time, these minute structures were regarded as the remains of biofilms of keratinophilic bacteria, but recently they have been reinterpreted as melanosomes; that is, colour-bearing organelles. Resolving this fundamental difference in interpretation is crucial: if endogenous then the fossil microbodies would represent a significant advancement in the fields of palaeontology and evolutionary biology given, for example, the possibility to reconstruct integumentary colours and plumage colour patterns. It has previously been shown that certain trace elements occur in fossils as organometallic compounds, and hence may be used as biomarkers for melanin pigments. Here we expand this knowledge by demonstrating the presence of molecularly preserved melanin in intimate association with melanosome-like microbodies isolated from an argentinoid fish eye from the early Eocene of Denmark.

  7. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis.

    PubMed

    Sallam, Amal; Mira, Amira; Ashour, Ahmed; Shimizu, Kuniyoshi

    2016-09-15

    Salvia officinalis is a traditionally used herb with a wide range of medicinal applications. Many phytoconstituents have been isolated from S. officinalis, mainly phenolic diterpenes, which possess many biological activities. This study aimed to evaluate the ability of the phenolic diterpenes of S. officinalis to inhibit acetylcholine esterase (AChE) as well as their ability to inhibit melanin biosynthesis in B16 melanoma cells. The phenolic diterpenes isolated from the aerial parts of S. officinalis were tested for their effect on melanin biosynthesis in B16 melanoma cell lines. They were also tested for their ability to inhibit AChE using Ellman's method. Moreover, a molecular docking experiment was used to investigate the binding affinity of the isolated phenolic diterpenes to the amino acid residues at the active sites of AChE. Seven phenolic diterpenes-sageone, 12-methylcarnosol, carnosol, 7b-methoxyrosmanol, 7a-methoxyrosmanol, isorosmanol and epirosmanol-were isolated from the methanolic extract of the aerial parts of S. officinalis. Isorosmanol showed a melanin-inhibiting activity as potent as that of arbutin. Compounds 7a-methoxyrosmanol and isorosmanol inhibited AChE activity by 50% and 65%, respectively, at a concentration of 500 µM. The results suggest that isorosmanol is a promising natural compound for further studies on development of new medications which might be useful in ageing disorders such as the declining of cognitive functions and hyperpigmentation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells--a possible link between Parkinson-dementia complex and pigmentary retinopathy.

    PubMed

    Karlsson, Oskar; Berg, Cecilia; Brittebo, Eva B; Lindquist, Nils Gunnar

    2009-02-01

    beta-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid produced by cyanobacteria, has been suggested to be involved in the etiology of a neurodegenerative disease complex which includes Parkinson-dementia complex (PDC). In PDC, neuromelanin-containing neurons in substantia nigra are degenerated. Many PDC patients also have an uncommon pigmentary retinopathy. The aim of this study was to investigate the distribution of (3)H-BMAA in mice and frogs, with emphasis on pigment-containing tissues. Using autoradiography, a distinct retention of (3)H-BMAA was observed in melanin-containing tissues such as the eye and neuromelanin-containing neurons in frog brain. Analysis of the binding of (3)H-BMAA to Sepia melanin in vitro demonstrated two apparent binding sites. In vitro-studies with synthetic melanin revealed a stronger interaction of (3)H-BMAA with melanin during synthesis than the binding to preformed melanin. Long-term exposure to BMAA may lead to bioaccumulation in melanin- and neuromelanin-containing cells causing high intracellular levels, and potentially changed melanin characteristics via incorporation of BMAA into the melanin polymer. Interaction of BMAA with melanin may be a possible link between PDC and pigmentary retinopathy.

  9. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy.

    PubMed

    Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan

    2015-05-01

    Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Parkinson's disease-associated melanin steal.

    PubMed

    Hinz, Marty; Stein, Alvin; Cole, Ted

    2014-01-01

    Urinary dopamine fluctuations in the competitive inhibition state were first documented in 2009. At that time, it was noted that progressively higher daily dosing values of L-tyrosine decreased the magnitude of these fluctuations. While extensive statistical analysis has been performed by the authors since 2004, it was not until 2012 that a plausible explanation was formulated. In the process, correlations with L-tyrosine administration and the on/off effect of Parkinson's disease were defined. This paper documents the current knowledge with regard to the management of retrograde phase 1 dopamine fluctuations and investigates the hypothesis that they are caused by a melanin steal phenomenon.

  11. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model

    PubMed Central

    Li, Hailan; Kim, Jandi; Hahn, Hoh-Gyu; Yun, Jun; Jeong, Hyo-Soon; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Min, Young Sil; Park, Kyoung-Chan

    2014-01-01

    The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent. PMID:24976765

  12. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model.

    PubMed

    Li, Hailan; Kim, Jandi; Hahn, Hoh-Gyu; Yun, Jun; Jeong, Hyo-Soon; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Min, Young Sil; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-06-01

    The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent.

  13. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  14. High correlation between skin color based on CIELAB color space, epidermal melanocyte ratio, and melanocyte melanin content.

    PubMed

    Huang, Wen-Shyan; Wang, Yi-Wen; Hung, Kun-Che; Hsieh, Pai-Shan; Fu, Keng-Yen; Dai, Lien-Guo; Liou, Nien-Hsien; Ma, Kuo-Hsing; Liu, Jiang-Chuan; Dai, Niann-Tzyy

    2018-01-01

    To treat skin color disorders, such as vitiligo or burns, melanocytes are transplanted for tissue regeneration. However, melanocyte distribution in the human body varies with age and location, making it difficult to select the optimal donor skin to achieve a desired color match. Determining the correlations with the desired skin color measurement based on CIELAB color, epidermal melanocyte numbers, and melanin content of individual melanocytes is critical for clinical application. Fifteen foreskin samples from Asian young adults were analyzed for skin color, melanocyte ratio (melanocyte proportion in the epidermis), and melanin concentration. Furthermore, an equation was developed based on CIELAB color with melanocyte ratio, melanin concentration, and the product of melanocyte ratio and melanin concentration. The equation was validated by seeding different ratios of keratinocytes and melanocytes in tissue-engineered skin substitutes, and the degree of fitness in expected skin color was confirmed. Linear regression analysis revealed a significant strong negative correlation ( r  =  - 0.847, R 2  = 0.717) between CIELAB L * value and the product of the epidermal melanocyte ratio and cell-based melanin concentration. Furthermore, the results showed that an optimal skin color match was achieved by the formula. We found that L * value was correlated with the value obtained from multiplying the epidermal melanocyte ratio (R) and melanin content (M) and that this correlation was more significant than either L * vs M or L * vs R. This suggests that more accurate prediction of skin color can be achieved by considering both R and M. Therefore, precise skin color match in treating vitiligo or burn patients would be potentially achievable based on extensive collection of skin data from people of Asian descent.

  15. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Synthesis of (S)-(+)-decursin and its analogues as potent inhibitors of melanin formation in B16 murine melanoma cells.

    PubMed

    Lee, Kyeong; Lee, Jee-Hyun; Boovanahalli, Shanthaveerappa K; Choi, Yongseok; Choo, Soo-Jin; Yoo, Ick-dong; Kim, Dong Hee; Yun, Mi Young; Lee, Gye Won; Song, Gyu-Yong

    2010-12-01

    We report the synthesis of a novel series of highly potent melanin inhibitors which were obtained through structural modification of an anticancer compound S-(+)-decursinol. The in vitro inhibitory potencies of the newly synthesized compounds were evaluated against α-MSH induced melanin production in B16 murine melanoma cells. Among the compounds evaluated, compounds 2, 3, 6b, 7a, 7b, 8a and 8b emerged as highly potent inhibitors of melanin production. Besides, these compounds demonstrated significantly low cytotoxicity. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. A regulator of ubiquitin-proteasome activity, 2-hexyldecanol, suppresses melanin synthesis and the appearance of facial hyperpigmented spots.

    PubMed

    Hakozaki, T; Laughlin, T; Zhao, S; Wang, J; Deng, D; Jewell-Motz, E; Elstun, L

    2013-07-01

    2-Hexyldecanol has long been used in skin-care products, but has not previously been reported as an active ingredient for skin benefits. To evaluate 2-hexyldecanol in in vitro and ex vivo systems and, if found to be active, progress it to topical clinical testing to determine effects on pigmentation in skin. 2-Hexyldecanol was tested in melanocyte cell culture systems (B16 mouse melanoma cells and normal human melanocytes) for its effect on proteolytic activity and melanin production, in the absence and presence of the proteasome-specific inhibitor, MG132. It was further tested in a human skin explant model for its effect on melanin production. Lastly, topically applied 2-hexyldecanol was evaluated for its effect on the appearance of facial pigmentation in an 8-week, randomized, double-blind, vehicle-controlled, split-face incomplete block design study in Chinese women. In submerged cell culture, 2-hexyldecanol upregulated proteolytic activity and decreased melanin synthesis. These effects were antagonized by the proteasome-specific inhibitor MG132. MG132, tested in the absence of 2-hexyldecanol, increased melanin production. In a human skin explant model, topical 2-hexyldecanol suppressed the production of melanin vs. a vehicle control. In a human clinical study in Chinese women (n = 110 observations per test material), a 2-hexyldecanol-containing formulation significantly reduced the appearance of facial hyperpigmented spots vs. its control. These data indicate that regulation of proteasome activity is a viable target for control of melanin production, that 2-hexyldecanol upregulates proteasomal activity in melanocytes, and that topical 2-hexyldecanol reduces the appearance of hyperpigmentation. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  18. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging

    DOE PAGES

    Fan, Quli; Cheng, Kai; Hu, Xiang; ...

    2014-10-07

    Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (<10 nm) water-soluble melanin nanoparticle (MNP) was developed and showed unique photoacoustic property and natural binding ability with metal ions (for example, 64Cu 2+, Fe 3+). Therefore, MNP can serve not only as a photoacoustic contrast agent,more » but also as a nanoplatform for positron emission tomography (PET) and magnetic resonance imaging (MRI). Traditional passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated α vβ 3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. As a result, the multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.« less

  19. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    PubMed Central

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  20. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification.

    PubMed

    Panzarasa, Guido; Osypova, Alina; Consolati, Giovanni; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W M R

    2018-01-23

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene- alt -maleic anhydride) (P(E- alt -MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E- alt -MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  1. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification

    PubMed Central

    Osypova, Alina; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W. M. R.

    2018-01-01

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride) (P(E-alt-MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes. PMID:29360734

  2. Morpho-histology of head kidney of female catfish Heteropneustes fossilis: seasonal variations in melano-macrophage centers, melanin contents and effects of lipopolysaccharide and dexamethasone on melanins.

    PubMed

    Kumar, Ravi; Joy, K P; Singh, S M

    2016-10-01

    In the catfish Heteropneustes fossilis, the anterior kidney is a hemopoietic tissue which surrounds the adrenal homologues, interrenal (IR) and chromaffin tissues corresponding to the adrenal cortical and adrenal medulla of higher mammals. The IR tissue is arranged in cell cords around the posterior cardinal vein (PCV) and its tributaries and secretes corticosteroids. The chromaffin tissue is scattered singly or in nests of one or more cells around the epithelial lining of the PCV or blood capillaries within the IR tissue. They are ferric ferricyanide-positive. Leukemia-inhibitory factor (LIF)-like reactivity was noticed in the lining of the epithelium of the IR cell cords and around the wall of the PCV and blood capillaries. No staining was observed in the hemopoietic cells. IL-1β- and TNF-α-like immunoreactivity was seen in certain cells in the hemopoietic tissue but not in the IR region. Macrophages were identified with mammalian macrophage-specific MAC387 antibodies and are present in the hemopoietic mass but not in the IR tissue. Pigments accumulate in the hemopoietic mass as melano-macrophage centers (MMCs) and are PAS-, Schmorl's- and Perls'-positive. The pigments contain melanin (black), hemosiderin (blue) and lipofuscin/ceroid (oxidized lipid, yellowish tan), as evident from the Perls' reaction. The MMCs were TUNEL-positive as evident from FITC fluorescence, indicating their apoptotic nature. The MMCs showed significant seasonal variation with their density increasing to the peak in the postspawning phase. Melanins were characterized spectrophotometrically for the first time in fish anterior kidney. The predominant form is pheomelanin (PM), followed by eumelanin (EM) and alkali-soluble melanin (ASM). Melanins showed significant seasonal variations with the level low in the resting phase and increasing to the peak in the postspawning phase. Under in vitro conditions, lipopolysaccharide (10 µg/mL) treatment increased significantly the levels of PM and EM

  3. Melanins as biomarkers of ovarian follicular atresia in the catfish Heteropneustes fossilis: biochemical and histochemical characterization, seasonal variation and hormone effects.

    PubMed

    Kumar, Ravi; Joy, Keerikkattil P

    2015-06-01

    Follicular atresia is a common feature of the vertebrate ovary that occurs at different stages of folliculogenesis and ovarian regression. It has physiological significance to maintain homeostasis and control fecundity, and ensure removal of post-ovulatory follicular remnants for preparing the ovary for the next cycle. Pigments appear late in the atretic process as indigestible waste formed out of the degradation of the oocytes, follicle wall and granulocytes. In the present study, pigment accumulation was demonstrated by Schmorl's and Perls' staining methods in the atretic ovarian follicles of Heteropneustes fossilis during follicular development and regression. Melanins were characterized spectrophotometrically for the first time in fish ovary. The predominant form is eumelanin, followed by pheomelanin and alkali-soluble melanin. Melanins showed significant seasonal variations with levels low in gonad resting phase, increasing to the peak in the post-spawning phase. The concentration of melanins increased time-dependently in post-ovulated ovary after human chorionic gonadotropin treatment. In the spawning phase, in vitro incubation of ovary slices with estradiol-17β or dexamethasone for 8 or 16 h decreased both eumelanin and pheomelanin levels time-dependently. The alkali-soluble melanin showed a significant decrease only in the dexamethasone group at 16 h. The results show that melanin assay can be used as a biomarker of follicular atresia in fish ovary, natural or induced by environmental toxicants.

  4. Melanin Protects Paracoccidioides brasiliensis from the Effects of Antimicrobial Photodynamic Inhibition and Antifungal Drugs

    PubMed Central

    Baltazar, Ludmila Matos; Werneck, Silvia Maria Cordeiro; Soares, Betânia Maria; Ferreira, Marcus Vinicius L.; Souza, Danielle G.; Pinotti, Marcos; Santos, Daniel Assis

    2015-01-01

    Paracoccidioidomycosis (PCM) is a public health concern in Latin America and South America that when not correctly treated can lead to patient death. In this study, the influence of melanin produced by Paracoccidioides spp. on the effects of treatment with antimicrobial photodynamic inhibition (aPI) and antifungal drugs was evaluated. aPI was performed using toluidine blue (TBO) as a photosensitizer and a 630-nm light-emitting diode (LED) light. The antifungals tested were itraconazole and amphotericin B. We evaluated the effects of each approach, aPI or antifungals, against nonmelanized and melanized yeast cells by performing susceptibility tests and by quantifying oxidative and nitrosative bursts during the experiments. aPI reduced nonmelanized cells by 3.0 log units and melanized cells by 1.3 log units. The results showed that melanization protects the fungal cell, probably by acting as a scavenger of nitric oxide and reactive oxygen species, but not of peroxynitrite. Melanin also increased the MICs of itraconazole and amphotericin B, and the drugs were fungicidal for nonmelanized and fungistatic for melanized yeast cells. Our study shows that melanin production by Paracoccidioides yeast cells serves a protective function during aPI and treatment with itraconazole and amphotericin B. The results suggest that melanin binds to the drugs, changing their antifungal activities, and also acts as a scavenger of reactive oxygen species and nitric oxide, but not of peroxynitrite, indicating that peroxynitrite is the main radical that is responsible for fungal death after aPI. PMID:25896704

  5. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    PubMed

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  6. Melanin: The Effects of Dimethyl Sulfoxide on the Spectral Properties.

    DTIC Science & Technology

    1986-01-01

    the interpretation of the spectral data; Ms. Christine L. Noah-Cooper for stimulating and useful discussions; ’s. Lottie R. Applewhite for editorial...Photobiol 1978;28:75-81. 13. Gallas JP. Fluorescence of melanin. Dtiss Abstr Int 1982;43:1681. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence

  7. Melanocytes and melanin represent a first line of innate immunity against Candida albicans.

    PubMed

    Tapia, Cecilia V; Falconer, Maryanne; Tempio, Fabián; Falcón, Felipe; López, Mercedes; Fuentes, Marisol; Alburquenque, Claudio; Amaro, José; Bucarey, Sergio A; Di Nardo, Anna

    2014-07-01

    Melanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Periocular mexametric melanin and erythema indexes in adult glaucoma patients treated with topical prostaglandin analogs.

    PubMed

    Duman, Nilay; Duman, Reşat; Yavaş, Güliz Fatma; Doğruk Kaçar, Seval; Özuğuz, Pınar; Çetinkaya, Ersan

    2017-03-01

    Although topical prostaglandin analogs (PGAs) have been previously associated with periocular skin hyperpigmentation, studies using objective clinical methods are lacking. Furthermore changes in periocular skin erythema indexes associated with topical PGAs have not been reported previously. The purpose of the present study was to evaluate periocular melanin and erythema indexes in patients treated with topical PGA using an objective clinical method - Mexameter. About 45 glaucoma patients treated with topical PGA therapy, and 30 age-, and sex-matched controls were enrolled in the study. Demographic data, medical history including duration of therapy, PGA type, involved eye (unilateral, bilateral) were noted, and skin phototypes were evaluated. Melanin and erythema indexes on medial and lateral upper and lower eyelids, and normal skin from the upper cheeks were measured using Mexameter MX-18. The index of difference for lower/upper eyelid was calculated. Reading results of patients and controls were compared. Melanin and erythema indexes of upper/lower eyelids, and the index of differences for upper/lower eyelids were significantly higher in patients despite similar clinical findings (p < 0.05). Duration of therapy and type of PGA were not associated with skin changes (p > 0.05). Both periocular melanin and erythema indexes increased in both upper and lower eyelids due to PGA therapy compared to controls, despite similar clinical findings. Mexametric evaluation is more sensitive than clinical evaluation, and may be used as an objective, sensitive clinical method to evaluate periocular skin changes, even smallest changes, in such patients.

  9. Melanin and the ecology of southern pine beetle associated fungi

    Treesearch

    Kier D. Klepzig

    2006-01-01

    I report here a series of initial investigations into effects of melanins on the interactions of the three primary species of fungi associated with the southern pine beetle (SPB), and into possible means for mitigating the damaging activities of the melanistic fungus, Ophiostoma minus. Growth of the SPB mutualistic fungus Entomocorticium...

  10. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression.

    PubMed

    Lee, Shih-Chieh; Chen, Chun-Hao; Yu, Chih-Wen; Chen, Hsiao Ling; Huang, Wei-Tung; Chang, Yun-Shiang; Hung, Shu-Hsien; Lee, Tai-Lin

    2016-09-01

    Melanin contributes to skin color, and tyrosinase is the enzyme that catalyzes the initial steps of melanin formation. Therefore, tyrosinase inhibitors may contribute to the control of skin hyperpigmentation. The inhibition of tyrosinase activity by Cinnamomum zeylanicum extracts was previously reported. In this report, we test the hypothesis that Cinnamomum osmophloeum Kanehira, an endemic plant to Taiwan, contains compounds that inhibit tyrosinase activity, similar to C. zeylanicum. The cytotoxicity of three sources of C. osmophloeum Kanehira ethanol extracts was measured in B16-F10 cells using a methyl thiazolyl tetrazolium bromide (MTT) assay. At concentrations greater than 21.25 μg/mL, the ethanol extracts were toxic to the cells; therefore, 21.25 μg/mL was selected to test the tyrosinase activities. At this concentration, all three ethanol extracts decreased the melanin content by 50% in IBMX-induced B16-F10 cells. In addition to the melanin content, greater than 20% of the tyrosinase activity was inhibited by these ethanol extracts. The RT-PCR results showed that tyrosinase and transcription factor MITF mRNAs expression were down-regulated. Consistent with the mRNA results, greater than 40% of the human tyrosinase promoter activity was inhibited based on the reporter assay. Furthermore, our results demonstrate that the ethanol extracts protect cells from UV exposure. C. osmophloeum Kanehira neutralized the IBMX-induced increase in melanin content in B16-F10 cells by inhibiting tyrosinase gene expression at the level of transcription. Moreover, the ethanol extracts also partially inhibited UV-induced cell damage and prevented cell death. Taken together, we conclude that C. osmophloeum Kanehira is a potential skin-whitening and protective agent. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Inhibitory Effects of Adlay Extract on Melanin Production and Cellular Oxygen Stress in B16F10 Melanoma Cells

    PubMed Central

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2014-01-01

    The aim of this study was to determine the effects of adlay extract on melanin production and the antioxidant characteristics of the extract. The seeds were extracted by the supercritical fluid CO2 extraction (SFE) method. The effect of adlay extract on melanin production was evaluated using mushroom tyrosinase activity assay, intracellular tyrosinase activity, antioxidant properties and melanin content. Those assays were performed spectrophotometrically. In addition, the expression of melanogenesis-related proteins was determined by western blotting. The results revealed that the adlay extract suppressed intracellular tyrosinase activity and decreased the amount of melanin in B16F10 cells. The adlay extract decreased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2). The extract also exhibited antioxidant characteristics such as free radical scavenging capacity and reducing power. It effectively decreased intracellular reactive oxygen species (ROS) levels in B16F10 cells. We concluded that the adlay extract inhibits melanin production by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2. The antioxidant properties of the extract may also contribute to the inhibition of melanogenesis. The adlay extract can therefore be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:25244016

  12. Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    In some plant pathogenic fungi, turgor pressure accumulation in appressoria produces a mechanical force enabling the direct penetration of hyphae through the plant cell epidermis. Melanin has been reported to function as an impermeable barrier to osmolytes, which allow appressoria to accumulate high...

  13. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli.

    PubMed

    Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta

    2018-04-15

    To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.

    PubMed

    Fajuyigbe, Damilola; Lwin, Su M; Diffey, Brian L; Baker, Richard; Tobin, Desmond J; Sarkany, Robert P E; Young, Antony R

    2018-02-02

    Epidermal DNA damage, especially to the basal layer, is an established cause of keratinocyte cancers (KCs). Large differences in KC incidence (20- to 60-fold) between white and black populations are largely attributable to epidermal melanin photoprotection in the latter. The cyclobutane pyrimidine dimer (CPD) is the most mutagenic DNA photolesion; however, most studies suggest that melanin photoprotection against CPD is modest and cannot explain the considerable skin color-based differences in KC incidence. Along with melanin quantity, solar-simulated radiation-induced CPD assessed immediately postexposure in the overall epidermis and within 3 epidermal zones was compared in black West Africans and fair Europeans. Melanin in black skin protected against CPD by 8.0-fold in the overall epidermis and by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and upper epidermis, respectively. Protection was related to the distribution of melanin, which was most concentrated in the basal layer of black skin. These results may explain, at least in part, the considerable skin color differences in KC incidence. These data suggest that a DNA protection factor of at least 60 is necessary in sunscreens to reduce white skin KC incidence to a level that is comparable with that of black skin.-Fajuyigbe, D., Lwin, S. M., Diffey, B. L., Baker, R., Tobin, D. J., Sarkany, R. P. E., Young, A. R. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.

  15. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells.

    PubMed

    Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel

    2018-01-01

    In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.

  16. Pigmented epidermal cyst with dense collection of melanin: A rare entity – Report of a case with review of the literature

    PubMed Central

    Jayalakshmy, P. S.; Subitha, K.; Priya, P. V.; Johnson, Gerald

    2012-01-01

    Epidermal cyst is a very common benign cystic lesion of the skin. It is usual to find ulceration of the lining epithelium, rupture of the cyst wall with chronic inflammation and foreign body giant cell reaction. But, it is very rare to see an epidermal cyst with marked accumulation of melanin pigment. Only a few cases of pigmented epidermal cyst with dense collection of melanin pigment have been published in the literature. Here, we are reporting a case of ruptured epidermal cyst with keratin granuloma formation and showing dense collection of melanin pigment. PMID:23130289

  17. The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement.

    PubMed

    Dadachova, Ekaterina; Bryan, Ruth A; Howell, Robertha C; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2008-04-01

    Melanized microorganisms are often found in environments with very high background radiation levels such as in nuclear reactor cooling pools and the destroyed reactor in Chernobyl. These findings and the laboratory observations of the resistance of melanized fungi to ionizing radiation suggest a role for this pigment in radioprotection. We hypothesized that the radioprotective properties of melanin in microorganisms result from a combination of physical shielding and quenching of cytotoxic free radicals. We have investigated the radioprotective properties of melanin by subjecting the human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum in their melanized and non-melanized forms to sublethal and lethal doses of radiation of up to 8 kGy. The contribution of chemical composition, free radical presence, spatial arrangement, and Compton scattering to the radioprotective properties of melanin was investigated by high-performance liquid chromatography, electron spin resonance, transmission electron microscopy, and autoradiographic techniques. Melanin protected fungi against ionizing radiation and its radioprotective properties were a function of its chemical composition, free radical quenching, and spherical spatial arrangement.

  18. Structural Color Tuning: Mixing Melanin-Like Particles with Different Diameters to Create Neutral Colors.

    PubMed

    Kawamura, Ayaka; Kohri, Michinari; Yoshioka, Shinya; Taniguchi, Tatsuo; Kishikawa, Keiki

    2017-04-18

    We present the ability to tune structural colors by mixing colloidal particles. To produce high-visibility structural colors, melanin-like core-shell particles composed of a polystyrene (PSt) core and a polydopamine (PDA) shell, were used as components. The results indicated that neutral structural colors could be successfully obtained by simply mixing two differently sized melanin-like PSt@PDA core-shell particles. In addition, the arrangements of the particles, which were important factors when forming structural colors, were investigated by mathematical processing using a 2D Fourier transform technique and Voronoi diagrams. These findings provide new insights for the development of structural color-based ink applications.

  19. Melanogenesis effect of Cordyceps militaris culture broth on the melanin formation of B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Park, Mi-Yeon; Choi, Seung-Tae; Moon, Hyung-In; Cho, Young-Su

    2011-10-13

    The effect of Cordyceps militaris culture broth (CMB) on melanogenesis in B16F0 melanoma cells was evaluated by measurement of the melanin concentration after 3 days of incubation. The B16F0 melanoma cells were treated with various concentrations of CMB 10-100 μg/mL and arbutin of 200 μM. Phenolic content and antioxidant activity of CMB were also measured. Phenolic content of CMB was 3.28 mg/g. The DPPH radical scavenging and ferric ion donating activities were 79.64% and 0.16, respectively. The melanin concentration and cell viability of melanoma cells by arbutin treatment decreased to 43% and 91% of the control, respectively. The CMB treatment showed a significant inhibitory effect of melanin production by 29%, 50%, and 56% at 50, 80, and 100 μg/mL concentration treatment, respectively, while over 90% of cells were viable. The CMB treatment at 50, 80, and 100 μg/mL concentrations in cultivation decreased extracellular melanin release induced by 3-isobutyl-1-methylxanthine (IBMX) treatment by 19%, 38%, and 48%, respectively. The CMB showed inhibitory activity against intracellular tyrosinase extracted from melanoma cells, while it had no inhibition on the activity of mushroom tyrosinase. The cellular glutathione contents were enhanced by CMB treatment in a concentration-dependent manner. These results suggested that CMB suppressed cellular tyrosinase activity and total melanin content in cultured B16F0 melanoma cells without any significant effects on cell proliferation and it might be candidate anti-melanogenic agent.

  20. Melanin-concentrating hormone and its receptor are expressed and functional in human skin.

    PubMed

    Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J

    2002-08-23

    In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.

  1. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure

    PubMed Central

    Premi, Sanjay; Wallisch, Silvia; Mano, Camila M.; Weiner, Adam B.; Bacchiocchi, Antonella; Wakamatsu, Kazumasa; Bechara, Etelvino J. H.; Halaban, Ruth; Douki, Thierry; Brash, Douglas E.

    2015-01-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPD), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Here we show that in melanocytes, CPD are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These “dark CPD” constitute the majority of CPD and include the cytosine-containing CPD that initiate UV-signature C→T mutations. Dark CPD arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but that induces CPD by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically-generated excited electronic states are relevant to mammalian biology. PMID:25700512

  2. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Zhou, Lixiang; Jiao, Shuliang

    2012-02-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective vs. exacerbate) in the RPE in the aging process. We successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  3. Two-photon excited fluorescence spectroscopy and imaging of melanin in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Krasieva, Tatiana B.; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Tromberg, Bruce J.

    2012-03-01

    The ability to detect early melanoma non-invasively would improve clinical outcome and reduce mortality. Recent advances in two-photon excited fluorescence (TPEF) in vivo microscopy offer a powerful tool in early malignant melanoma diagnostics. The goal of this work was to develop a TPEF optical index for measuring relative concentrations of eumelanin and pheomelanin since ex vivo studies show that changes in this ratio have been associated with malignant transformation. We acquired TPEF emission spectra (λex=1000 nm) of melanin from several specimens, including human hair, malignant melanoma cell lines, and normal melanocytes and keratinocytes in different skin layers (epidermis, papillary dermis) in five healthy volunteers in vivo. We found that the pheomelanin emission peaks at around 620 nm and is blue-shifted from the eumelanin with broad maximum at 640-680nm. We defined "optical melanin index" (OMI) as a ratio of fluorescence signal intensities measured at 645 nm and 615nm. The measured OMI for a melanoma cell line MNT-1 was 1.6+/-0.2. The MNT-46 and MNT-62 lines (Mc1R gene knockdown) showed an anticipated change in melanins production ratio and had OMI of 0.55+/-0.05 and 0.17+/-0.02, respectively, which strongly correlated with HPLC data obtained for these lines. Average OMI measured for basal cells layers (melanocytes and keratinocytes) in normal human skin type I, II-III (not tanned and tanned) in vivo was 0.5, 1.05 and 1.16 respectively. We could not dependably detect the presence of pheomelanin in highly pigmented skin type V-VI. These data suggest that a non-invasive TPEF index could potentially be used for rapid melanin ratio characterization both in vitro and in vivo, including pigmented lesions.

  4. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Lo, Yi-Hsuan; Lin, Ming-Hsien; Shen, Chih-Chieh; Liu, Ren-Shyan; Wang, Hsin-Ell; Chen, Chuan-Lin

    2016-08-15

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity.

    PubMed

    El-Batal, Ahmed I; El-Sayyad, Gharieb S; El-Ghamry, Abbas; Agaypi, Kerolos M; Elsayed, Mohamed A; Gobara, Mohamed

    2017-08-01

    Melanin pigment has been deemed as a natural photoprotector with strong hydrophobicity. It allured considerable compatibility with many applications in medicine, food, and nanotechnology. Penicillium chrysogenium has been devoted to the green synthesis of melanin whereby optimizing its culture and environmental conditions. The impacts of alternative economic L-tyrosine natural sources (unprecedented alternate origins) and gamma radiation were pledged for the potential growing of the pigment. Herein, notable increases in melanin yield (6.4mg/ml; much higher than nonoptimized one by 40 folds) was obtained by optimizing the culture, and environmental requirements [potato starch (3.0%), yeast extract (5.0%), copper sulfate (0.2mM), 0.25% L-tyrosine, 0.1% L-glycine, and 0.1% Tween 20 at pH5.0, and 30°C for 7.0days using 180.0rpm shaking speed]. The addition of banana's peel (2.0%) has been led to increase the melanin production up to (8.3mg/ml; much higher than optimized one by 1.29 folds). It stimulated the induced enzymes, (i.e., tyrosinase) because it contained significant amounts of L-tyrosine, dopamine, and L-DOPA as resources for melanin biosynthesis. Then irradiated P. chrysogenium (2.5kGy) induced the pigment yield to 10.3mg/ml; much higher than optimized one by (1.61 folds). On the other hand, we tailored a methodology involved the product of melanin and gamma rays (25.0kGy) to an eco-friendly synthesis of Bismuth oxide nanoparticles (BiONPs) at the room temperature. Melanin under such alkaline condition functioning as simultaneously hydrolyzes, photoprotection of the Bi seeds, and stabilizer against the uncontrolled growth and the free radicals attack. Whereas the gamma irradiation induced the room temperature condensation reaction to occur, a novel mechanism proposal was discussed. BiONPs were characterized by UV-Vis., DLS, XRD, SEM, EDX, and FTIR. DLS and XRD calculations with TEM analysis exhibited the mean diameter of BiONPs was 29.82nm. Moreover, the as

  6. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus.

    PubMed

    Stappers, Mark H T; Clark, Alexandra E; Aimanianda, Vishukumar; Bidula, Stefan; Reid, Delyth M; Asamaphan, Patawee; Hardison, Sarah E; Dambuza, Ivy M; Valsecchi, Isabel; Kerscher, Bernhard; Plato, Anthony; Wallace, Carol A; Yuecel, Raif; Hebecker, Betty; da Glória Teixeira Sousa, Maria; Cunha, Cristina; Liu, Yan; Feizi, Ten; Brakhage, Axel A; Kwon-Chung, Kyung J; Gow, Neil A R; Zanda, Matteo; Piras, Monica; Zanato, Chiara; Jaeger, Martin; Netea, Mihai G; van de Veerdonk, Frank L; Lacerda, João F; Campos, António; Carvalho, Agostinho; Willment, Janet A; Latgé, Jean-Paul; Brown, Gordon D

    2018-03-15

    Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31 + endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.

  7. Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure.

    PubMed

    Thompson, M J W; Jones, G; Aitken, D A

    2018-06-01

    Greater skin pigmentation reduces dose equivalent cutaneous vitamin D3 production, potentially impacting lifetime vitamin D status and fracture risk. We show that melanin density was positively associated with 25-hydroxyvitamin D and total body bone mineral density. These relationships were partially explained by greater sun exposure due to more permissive skin phenotype. Higher cutaneous melanin reduces vitamin D3 production. This may impact lifetime vitamin D status and increase fracture risk. This study aimed to describe the relationship between spectrophotometrically determined constitutive melanin density, osteoporotic risk factors and potential intermediaries in a cohort of exclusively older Caucasian adults. One thousand seventy-two community-dwelling adults aged 50-80 years had constitutive melanin density quantified using spectrophotometry. Sun exposure, skin phenotype, non-melanoma skin cancer (NMSC) prevalence and smoking status were assessed by questionnaire. Bone mineral density (BMD), falls risk, physical activity and 25-hydroxyvitamin D were measured using DXA, the short form Physiological Profile Assessment, pedometer and radioimmunoassay, respectively. Higher melanin density was independently associated with greater ability to tan (RR = 1.27, p < 0.001), less propensity to sunburn (RR = 0.92, p < 0.001), fewer lifetime sunburns (RR = 0.94, p = 0.01), current smoking (RR = 1.41, p < 0.001), female sex (RR = 1.24, p < 0.001) and less photodamage (RR = 0.98, p = 0.01). The associations between melanin density and sun exposure (RR = 1.05-1.11, p < 0.001-0.01), sun protection behaviours (RR = 0.89, p < 0.001) and NMSC prevalence (RR = 0.75, p = 0.001) were no longer significant after taking into account skin phenotype and sun exposure, respectively. 25-Hydroxyvitamin D was strongly associated with higher melanin density (β = 1.71-2.05, p = 0.001). The association between

  8. Evaluation of Melanogenesis in A-375 Cells in the Presence of DMSO and Analysis of Pyrolytic Profile of Isolated Melanin

    PubMed Central

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-01-01

    The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk. PMID:22654640

  9. [Clear cell acanthoma with dendritica cells charged with melanine and fat].

    PubMed

    Sánchez Yus, E; Iglesias Díez, L

    1975-01-01

    A Clear Cell Acanthoma is presented, located in the abdominal region, in a 60-year old man, who had had it all his life. The lesion was warty in appearance and brown in colour. Histologically, among the clear cells, numerous dendrytical cells were found which simultaneously contained melanine grains and small drops of neutral fat. These findings are discussed.

  10. ULK1 Regulates Melanin Levels in MNT-1 Cells Independently of mTORC1

    PubMed Central

    Tooze, Sharon A.

    2013-01-01

    Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor) and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis. PMID:24066173

  11. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1.

    PubMed

    Kalie, Eyal; Razi, Minoo; Tooze, Sharon A

    2013-01-01

    Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor) and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis.

  12. Pigmented-MDCK (P-MDCK) Cell Line with Tunable Melanin Expression: An In Vitro Model for the Outer Blood-Retinal-Barrier

    PubMed Central

    Kadam, Rajendra S.; Scheinman, Robert. I.; Kompella, Uday B.

    2013-01-01

    Purpose Retinal pigment epithelium, which forms the outer blood-retinal-barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal-barrier to assess the influence of melanin pigment on solute permeability. Methods A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells. Melanin content, tyrosinase activity (conversion of L-dopa to dopachrome), and transepithelial electrical resistance (TEER) were measured. Expression of tyrosinase protein and p-protein in P-MDCK cells was confirmed by confocal microscopy. Effect of L-tyrosine (0 to 2 mM) in culture medium on melanin synthesis in P-MDCK cells was evaluated. Cell uptake and transepithelial transport of pigment-binding chloroquine (Log D = 1.59) and a negative control salicylic acid (Log D = −1.14) were investigated. Results P-MDCK cells expressed tyrosinase and p-protein. Tyrosinase activity was 4.5 fold higher in P-MDCK cells as compared to wild-type MDCK cells. The transepithelial electrical resistance stabilized by day 4 in both cell types, with the TEER being 871 ± 30 and 876 ± 53 Ω.cm2 for P-MDCK and wild-type cells, respectively. Melanin content in P-MDCK cells depended on the concentration of L-tyrosine in culture medium, and increased from 3 to 54 µg/mg protein with an increase in L-tyrosine content from 0 to 2 mM. When the cells were grown in 2 mM L-tyrosine, uptake of chloroquine was 2.3 fold higher and the transepithelial transport was 2.2 fold lower in P-MDCK cells when compared to wild-type MDCK cells. No significant difference was observed for both cell uptake and transport of salicylic acid. Conclusions We developed a P-MDCK cell line with tunable melanin synthesis as a rapidly developing surrogate for retinal pigment epithelium. PMID:23003570

  13. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature

    PubMed Central

    Paolo, William F; Dadachova, Ekaterina; Mandal, Piyali; Casadevall, Arturo; Szaniszlo, Paul J; Nosanchuk, Joshua D

    2006-01-01

    Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear. PMID:16784529

  14. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    PubMed

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, P<0.001). We show that if melanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (P<0.001), providing evidence for the dual roles of melanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Relationship of the eye uptake of N-isopropyl-p-(/sup 123/I)iodoamphetamine to melanin production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holman, B.L.; Wick, M.M.; Kaplan, M.L.

    1984-03-01

    Eye uptake has been a potential concern with N-isopropyl-p-(/sup 123/I)iodoamphetamine (I-123 IMP) because it has been observed in certain animal species. The authors have investigated the cause of the eye uptake and its relationship to melanin synthesis. In a 1-yr-old cynomolgus monkey, high concentration of the tracer was seen in the eyes regardless of the type of anesthesia (pentobarbital or ketamine) or the oral administration of Lugol's solution. The eye uptake at 24 hr after injection of I-123 IMP was equally high in an 8-yr-old rhesus monkey. The ratio of radioactivity in the eye of black compared with white albinomore » mice was 10:1 at 30 min, 18:1 at 2 hr and 36:1 at 24 hr after injection if I-123 IMP. No eye uptake above soft-tissue background was seen in five patients at 2, 24, and 48 hr after injection. I-123 IMP is avidly incorporated into melanocytes actively producing melanin, but substantially less in melanocytes where production of melanin has ceased as in the human eye.« less

  16. AP-1/KIF13A Blocking Peptides Impair Melanosome Maturation and Melanin Synthesis.

    PubMed

    Campagne, Cécile; Ripoll, Léa; Gilles-Marsens, Floriane; Raposo, Graça; Delevoye, Cédric

    2018-02-14

    Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1), from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here β1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.

  17. AP-1/KIF13A Blocking Peptides Impair Melanosome Maturation and Melanin Synthesis

    PubMed Central

    Campagne, Cécile; Ripoll, Léa; Gilles-Marsens, Floriane; Raposo, Graça

    2018-01-01

    Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1), from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here β1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease. PMID:29443872

  18. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell.

    PubMed

    Yao, Zeng-Yu; Qi, Jian-Hua

    2016-04-22

    Chestnut shell melanin can be used as a colorant and antioxidant, and fractionated into three fractions (Fr. 1, Fr. 2, and Fr. 3) with different physicochemical properties. Antioxidant activities of the fractions were comparatively evaluated for the first time. The fractions exhibited different antioxidative potential in different evaluation systems. Fr. 1, which is only soluble in alkaline water, had the strongest peroxidation inhibition and superoxide anion scavenging activity; Fr. 2, which is soluble in alkaline water and hydrophilic organic solvents but insoluble in neutral and acidic water, had the greatest power to chelate ferrous ions; and Fr. 3, which is soluble both in hydrophilic organic solvents and in water at any pH conditions, had the greatest hydroxyl (·OH) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH·) radicals scavenging abilities, reducing power, and phenolic content. The pigment fractions were superior to butylated hydroxytolune (BHT) in ·OH and DPPH· scavenging and to ethylene diamine tetraacetic acid (EDTA) in the Fe(2+)-chelation. They were inferior to BHT in peroxidation inhibition and O₂·(-) scavenging and reducing power. However, BHT is a synthetic antioxidant and cannot play the colorant role. The melanin fractions might be used as effective biological antioxidant colorants.

  19. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging.

    PubMed

    Zhang, Xiangyang; Zhang, Hao F; Puliafito, Carmen A; Jiao, Shuliang

    2011-08-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective versus exacerbate) in the RPE in the aging process. We have successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  20. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2011-08-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective versus exacerbate) in the RPE in the aging process. We have successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  1. Towards the development of a novel bioinspired functional material: synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles.

    PubMed

    Pezzella, Alessandro; Capelli, Luigia; Costantini, Aniello; Luciani, Giuseppina; Tescione, Fabiana; Silvestri, Brigida; Vitiello, Giuseppe; Branda, Francesco

    2013-01-01

    A large number of recent literature data focus on modification/modulation of surface chemistry of inorganic materials in order to improve their functional properties. Melanins, a wide class of natural pigments, are recently emerging as a powerful organic component for developing bioinspired active material for a large number of applications from organoelectronics to bioactive compounds. Here we report the use of the approach referred as "chimie douce", involving in situ formation of the hybrids through reactions of precursors under mild conditions, to prepare novel hybrid functional architectures based on eumelanin like 5,6 dihydroxyindole-2-carboxylic acid (DHICA) polymer and TiO2. Two synthesis procedures were carried out to get DHICA-melanin coated TiO2 nanoparticles as well as mixed DHICA/TiO2 hybrid nanostructures. Such systems were characterized through EPR, FT-IR and fluorescence spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and TEM microscopy in order to assess the effect of synthesis path as well as of DHICA content on structural, morphological and optical properties of TiO2 nanostructures. In particular, EPR, FT-IR spectra and TGA analysis confirmed the presence of DHICA-melanin in these samples. TEM measurements indicated the formation of the nanoparticles having relatively narrow size distribution with average particle size of about 10nm. DHICA-melanin does act as a morphological agent affecting morphology of hybrid nanostructures. XRD analysis proved that TiO2 hybrid nanoparticles kept anatase structures for DHICA-melanin contents within the range of investigated compositions, i.e. up to 50% wt/wt. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Positive Relationship between Abdominal Coloration and Dermal Melanin Density in Phrynosomatid Lizards

    Treesearch

    Vanessa S. Quinn; Diana K. Hews

    2003-01-01

    Phrynosomatid lizards show considerable variation among species in the occurrence of a secondary sexual trait, blue abdominal coloration. The production of blue skin may be controlled by at least two cellular components, melanin in melanophores, and guanine in iridophores. To examine the hypothesis that a mechanism producing variation in abdominal coloration is...

  3. Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail.

    PubMed

    Murdoch, Hannah; Feng, Gui-Jie; Bächner, Dietmar; Ormiston, Laura; White, Julia H; Richter, Dietmar; Milligan, Graeme

    2005-03-04

    In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.

  4. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

    PubMed

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F; Brakhage, Axel A

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

  5. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway

    PubMed Central

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F.; Brakhage, Axel A.

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected. PMID

  6. Pigmented basal cell carcinoma: increased melanin or increased melanocytes?

    PubMed

    Brankov, Nikoleta; Prodanovic, Edward M; Hurley, M Yadira

    2016-12-01

    Studies on the precise cause of increased melanization in pigmented basal cell carcinomas (BCC) are limited. We aimed to determine whether the cause of melanization is from increased number of melanocytes or increased melanin pigment, and if there is a difference in the number of melanocytes on different sun-exposed locations. A retrospective review of 45 skin biopsies from January 2011 to February 2011 was performed; 30 were diagnosed as pigmented BCC and 15 as non-pigmented BCC. Immunohistochemistry for MART-1 (melanoma-associated antigen recognized by T-cell 1)/Melan-A (clone M2-7610 + M2-9E3; Leica Microsystems Inc. Buffalo Grove, IL, USA) from Biocare Medical (Concord, CA, USA) was performed on all biopsies. Associations between histopathologic features, number of melanocytes, location, and specific diagnoses were analyzed by Mann-Whitney U test. The mean melanocyte count per high powered field in pigmented BCCs from sun-exposed skin was 101.9 and from intermittently sun-exposed skin was 122.5, as compared to the controls (nodular non-pigmented BCC) of 27.4 (p = 0.002) and 34.9 (p = 0.002), respectively. Pigmented BCCs have a higher mean melanocyte count as compared to non-pigmented BCCs irrespective of location. Therefore, the pigment is not only due to increased melanin, but also due to increased melanocytes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-09-01

    In our previous efforts to find new tyrosinase inhibitory materials, we investigated 44 Indonesian medicinal plants belonging to 24 families. Among those plants, the extract of Artocarpus heterophyllus was one of the strongest inhibitors of tyrosinase activity. By activity-guided fractionation of A. heterophyllus wood extract, we isolated artocarpanone, which inhibited both mushroom tyrosinase activity and melanin production in B16 melanoma cells. This compound is a strong candidate as a remedy for hyperpigmentation in human skin.

  8. Identification of a phenoloxidase- and melanin-dependent defence mechanism in Achatina fulica infected with Angiostrongylus vasorum.

    PubMed

    Coaglio, Aytube Lucas; Ferreira, Mônica Alves Neves Diniz; Dos Santos Lima, Walter; de Jesus Pereira, Cíntia Aparecida

    2018-02-27

    Angiostrongylus vasorum has different freshwater aquatic and terrestrial gastropod molluscs as an intermediate host, e.g. Arion spp. The mollusc Achatina fulica is a danger to public health, given the large diversity of nematodes utilizing it as an intermediate host, such as the parasites of the genus Angiostrongylus, of importance in human and veterinary medicine. Achatina fulica has been shown to have an excellent capacity for maintaining outbreaks and natural infections with A. cantonensis in Asia. Within the mollusc, the nematode parasites activate haemocytes and/or haemolymph factors and in some invertebrates, phenoloxidase (PO), that induces the release of toxic elements and eliminates the parasites. Despite the importance of A. fulica in the life-cycle of nematodes, little is known regarding the defence mechanisms involving PO in molluscs infected with nematodes. Here, the presence of PO and nitric oxide (NO) in the haemolymph and haemocytes of A. fulica infected with first-stage (L1) larvae of Angiostrongylus vasorum was evaluated, together with the presence of melanin in the cephalopod mollusc tissue. An increase in PO at one day post infection (dpi), in comparison with the control using the substrates L-tyrosine (F (4,90)  = 6.73, P = 0.00006), L-DOPA (F (4,90)  = 22.67, P = 0.02) and p-phenylenediamine (PPD) (F (4,90)  = 27.58, P = 0.0019), was observed. PO increase coincided with the presence of melanin in the cephalopodal tissue. At 8 dpi, PO activity, compared to L-DOPA (F (4,90)  = 22.67, P = 0.00002) and PPD (F (4,90)  = 27.58, P = 0.079) decreased, while melanin increased. At 13 dpi, PO decreased with PPD (F (4,90)  = 27.58, P = 0.000015) and also the amount of melanin observed in histology. At 30 dpi, PO increased along with the substrates L-DOPA and PPD, while melanin decreased. NO levels increased until 8 dpi, and decreased after 13 dpi. To our knowledge, this is the first study that

  9. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Saito, Lisa; Vredeveld, Doug; Zemaitis, Dorothy; Scholten, Jeffrey

    2014-09-01

    In recent years, dietary fatty acids have been extensively evaluated for nutritional as well as cosmetic benefits. Among the dietary fats, the omega-3 (ω3) and omega-6 (ω6) forms of polyunsaturated fatty acids (PUFAs) have been found to exhibit many biological functions in the skin such as prevention of transepidermal water loss, maintenance of the stratum corneum epidermal barrier, and disruption of melanogenesis in epidermal melanocytes. In this study, we examined the effect of chia seed extract, high in ω3 (linolenic acid) and ω6 (linoleic acid) PUFAs, for its capacity to affect melanogenesis. Chia seed extract was shown to inhibit melanin biosynthesis in Melan-a cells; however, linoleic and α-linolenic acids alone did not effectively reduce melanin content. Further investigation demonstrated that chia seed extract in combination with pomegranate fruit extract had a synergistic effect on the inhibition of melanin biosynthesis with no corresponding effect on tyrosinase activity. Investigation of the possible mechanism of action revealed that chia seed extract downregulated expression of melanogenesis-related genes (Tyr, Tyrp1, and Mc1r), alone and in combination with pomegranate fruit extract, suggesting that the inhibition of melanin biosynthesis by a novel combination of chia seed and pomegranate fruit extracts is possibly due to the downregulation of gene expression of key melanogenic enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. On the action and mechanism of withaferin-A from Withania somnifera, a novel and potent melanin dispersing agent in frog melanophores.

    PubMed

    Ali, Sharique A; Meitei, Keisham V

    2011-10-01

    The present work was carried out to determine the effects of lyophilized root extracts of Withania somnifera along with pure withaferin-A, on the isolated skin melanophores of frog, Rana tigerina which are disguised type of smooth muscle cells and offer excellent in vitro opportunities for studying the effects of pharmacological and pharmaceutical agents. The lyophilized extract of W. somnifera and its active ingredient withaferin-A induced powerful dose-dependent physiologically significant melanin dispersal effects in the isolated skin melanophores of R. tigerina, which were completely blocked by atropine as well as hyoscine. The per se melanin dispersal effects of lyophilized extracts of W. somnifera and its active ingredient withaferin-A got highly potentiated by neostigmine. It appears that the melanin dispersal effects of the extracts of W. somnifera and withaferin-A is mediated by cholino-muscarinic like receptors having similar properties.

  11. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    PubMed Central

    Al-Laaeiby, Ayat; Kershaw, Michael J.; Penn, Tina J.; Thornton, Christopher R.

    2016-01-01

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to

  12. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    PubMed

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  13. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  14. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol

    PubMed Central

    Uchida, Ryuji; Ishikawa, Seiko; Tomoda, Hiroshi

    2014-01-01

    2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L) in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH)-stimulated melanin formation in intact B16 melanoma cells. PMID:26579376

  15. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol.

    PubMed

    Uchida, Ryuji; Ishikawa, Seiko; Tomoda, Hiroshi

    2014-04-01

    2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L) in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH)-stimulated melanin formation in intact B16 melanoma cells.

  16. Visualisation of the distributions of melanin and indocyanine green in biological tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, E A; Fedosov, I V; Bashkatov, A N

    2008-03-31

    A double-wavelength laser scanning microphotometer with the high spectral and spatial resolutions is developed for studying the distribution of endogenic and exogenic dyes in biological tissues. Samples of hair and skin biopsy with hair follicles stained with indocyanine green are studied. The spatial distribution of indocyanine green and melanin in the biological tissue is determined from the measured optical transmittance. (laser biology)

  17. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.

    PubMed

    Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander

    2017-08-07

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.

  18. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications

    PubMed Central

    Longo, Dario Livio; Aime, Silvio

    2017-01-01

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106

  19. Mediation of cholino-piperine like receptors by extracts of Piper nigrum induces melanin dispersion in Rana tigerina tadpole melanophores.

    PubMed

    Sajid, Mohammed; Ali, Sharique A

    2011-08-01

    The present study was carried out to determine the effects of lyophilized dried fruit extracts of Piper nigrum and pure piperine on the tadpole melanophores of frog Rana tigerina which offer excellent in vitro opportunities for studying the effects of pharmacological and pharmaceutical agents. The nature of specific cellular receptors present on the neuro-melanophore junction and their involvement in pigmentary responses has been explored. Effects of lyophilized extracts of P. nigrum and pure piperine were studied on the isolated tail melanophores of tadpoles of the frog R. tigerina as per the modified method. The extract of P. nigrum and its active ingredient piperine caused significant melanin dispersal responses leading to darkening of the tail melanophores, which were completely antagonized by atropine and hyoscine. These per se melanin dispersal effects were also found to be markedly potentiated by neostigmine an anticholinesterase agent. It appears that the melanin dispersal effects of the extracts of P. nigrum and pure piperine leading to skin darkening are mediated by cholinergic muscarinic or piperine-like receptors having similar properties.

  20. Enhancing the Stress Tolerance and Virulence of an Entomopathogen by Metabolic Engineering of Dihydroxynaphthalene Melanin Biosynthesis Genes ▿ †

    PubMed Central

    Tseng, Min N.; Chung, Pei C.; Tzean, Shean S.

    2011-01-01

    Entomopathogenic fungi have been used for biocontrol of insect pests for many decades. However, the efficacy of such fungi in field trials is often inconsistent, mainly due to environmental stresses, such as UV radiation, temperature extremes, and desiccation. To circumvent these hurdles, metabolic engineering of dihydroxynaphthalene (DHN) melanin biosynthetic genes (polyketide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase genes) cloned from Alternaria alternata were transformed into the amelanotic entomopathogenic fungus Metarhizium anisopliae via Agrobacterium-mediated transformation. Melanin expression in the transformant of M. anisopliae was verified by spectrophotometric methods, liquid chromatography/mass spectrometry (LC/MS), and confocal microscopy. The transformant, especially under stresses, showed notably enhanced antistress capacity and virulence, in terms of germination and survival rate, infectivity, and reduced median time to death (LT50) in killing diamondback moth (Plutella xylostella) larvae compared with the wild type. The possible mechanisms in enhancing the stress tolerance and virulence, and the significance and potential for engineering melanin biosynthesis genes in other biocontrol agents and crops to improve antistress fitness are discussed. PMID:21571888

  1. Myriocin, a serine palmitoyltransferase inhibitor, increases melanin synthesis in Mel-Ab cells and a skin equivalent model.

    PubMed

    Li, Hailan; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-03-01

    The purpose of this study was to investigate effects of myriocin, an inhibitor of serine palmitoyltransferase, on melanogenesis. It was found that myriocin increased melanin synthesis in a concentration-dependent manner. Moreover, myriocin up-regulated microphthalmia-associated transcription factor (MITF) and tyrosinase expression via phosphorylation of CREB, but it did not directly activate tyrosinase, a rate-limiting melanogenic enzyme. Furthermore, we demonstrated increased melanin synthesis with myriocin on a pigmented skin equivalent model established using Cervi cornus Colla (deer antler glue). One and 5 microM of myriocin darkened the color of the skin equivalent. These results suggest that myriocin may have potential effects for the treatment of hypopigmentary skin diseases like vitiligo or for sunless tanning.

  2. Melanin- and carotenoid-dependent signals of great tits ( Parus major) relate differently to metal pollution

    NASA Astrophysics Data System (ADS)

    Dauwe, Tom; Eens, Marcel

    2008-10-01

    Due to their high phenotypic plasticity, the expression of secondary sexual characteristics is particularly sensitive to stress. Here, we investigated the expression of two conspicuous visual signals in great tits ( Parus major) in a metal pollution gradient. In three study sites with marked differences in metal contamination (mainly lead, cadmium, copper and zinc), we compared melanin and carotenoid colouration of great tits. While carotenoid colouration (yellow breast) was negatively related to metal pollution, the size of a melanin trait (breast stripe) was larger in the most polluted sites. Environmental pollutants not only affect the expression of conspicuous signals but may even enhance, directly or indirectly, a signal of male quality such as breast stripe. Our results also support the multiple messages hypothesis predicting that different signals highlight different aspects of geno- and phenotypic condition of the bearer.

  3. Determination of the optical properties of melanin-pigmented human skin equivalents using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lipscomb, Dawn; Echchgadda, Ibtissam; Peralta, Xomalin G.; Wilmink, Gerald J.

    2013-02-01

    Terahertz time-domain spectroscopy (THz-TDS) methods have been utilized in previous studies in order to characterize the optical properties of skin and its primary constituents (i.e., water, collagen, and keratin). However, similar experiments have not yet been performed to investigate whether melanocytes and the melanin pigment that they synthesize contribute to skin's optical properties. In this study, we used THz-TDS methods operating in transmission geometry to measure the optical properties of in vitro human skin equivalents with or without normal human melanocytes. Skin equivalents were cultured for three weeks to promote gradual melanogenesis, and THz time domain data were collected at various time intervals. Frequency-domain analysis techniques were performed to determine the index of refraction (n) and absorption coefficient (μa) for each skin sample over the frequency range of 0.1-2.0 THz. We found that for all samples as frequency increased, n decreased exponentially and the μa increased linearly. Additionally, we observed that skin samples with higher levels of melanin exhibited greater n and μa values than the non-pigmented samples. Our results indicate that melanocytes and the degree of melanin pigmentation contribute in an appreciable manner to the skin's optical properties. Future studies will be performed to examine whether these contributions are observed in human skin in vivo.

  4. Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri.

    PubMed

    Manirethan, Vishnu; Raval, Keyur; Rajan, Reju; Thaira, Harsha; Balakrishnan, Raj Mohan

    2018-05-15

    The difficulty in removal of heavy metals at concentrations below 10 mg/L has led to the exploration of efficient adsorbents for removal of heavy metals. The adsorption capacity of biosynthesized melanin for Mercury (Hg(II)), Chromium (Cr(VI)), Lead (Pb(II)) and Copper (Cu(II)) was investigated at different operating conditions like pH, time, initial concentration and temperature. The heavy metals adsorption process was well illustrated by the Lagergren's pseudo-second-order kinetic model and the equilibrium data fitted excellently to Langmuir isotherm. Maximum adsorption capacity obtained from Langmuir isotherm for Hg(II) was 82.4 mg/g, Cr(VI) was 126.9 mg/g, Pb(II) was 147.5 mg/g and Cu(II) was 167.8 mg/g. The thermodynamic parameters revealed that the adsorption of heavy metals on melanin is favorable, spontaneous and endothermic in nature. Binding of heavy metals on melanin surface was proved by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Contemplating the results, biosynthesized melanin can be a potential adsorbent for efficient removal of Hg(II), Cr(VI), Pb(II) and Cu(II) ions from aqueous solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    PubMed

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells.

    PubMed

    Takahashi, Makoto; Takara, Kensaku; Toyozato, Tomonao; Wada, Koji

    2012-01-01

    The methanol extract of Morus australis (shimaguwa) acts as a whitening agent due to the inhibition of tyrosinase activity. In order to explore the mechanism(s) of the whitening action, constituents of the 95% methanol extract from the dried stems of shimaguwa were isolated and their skin-whitening capacity was examined. Bioassay-guided fractionation of the methanol soluble extract of shimaguwa led to the isolation of 2, 4, 2', 4'-hydroxycalcone (chalcone 1) and three analogues of chalcone 1 with 3'-substituted resorcinol moieties (chalcones 2-4). Chalcone derivative 4 proved to be a novel compound and was fully characterized. Chalcones 1-4 were evaluated for inhibition activity on mushroom tyrosinase using L-tyrosine as the substrate. The parent chalcone 1 was a highly effective inhibitor of tyrosinase activity (IC₅₀ = 0.21 μM) compared to arbutin (IC₅₀ = 164 μM). Compared to chalcone 1, chalcones 2 and 3, which possess 3'-substituted isoprenyl or bulky 2-benzoylbiphenyl, showed significantly decreased tyrosinase activity, while chalcone 4, possessing 3'-substituted 2-hydroxy-1-pentene group, showed slightly increased activity.The effects of chalcones 1-4 on melanin synthesis, without affecting cell growth, were assayed in melanin-producing B16 murine melanoma cells. Chalcone 3 significantly reduced cell viability before reaching the IC₅₀ value for melanin synthesis. In contrast, the inhibitory effects of chalcones 1, 2 and 4 were more than 100-fold greater than that of arbutin, with little or no cytotoxicity. More significantly, chalcone 2, which exhibited less tyrosinase inhibitory activity compared to the parent chalcone 1, showed the highest inhibition of melanin synthesis in B16 cells among the chalcones tested. Accordingly, chalcones 1 and 2, and the novel chalcone 4 might be the active components responsible for the whitening ability of shimaguwa. Moreover, whitening ability was not exclusively due to tyrosinase inhibition.

  7. Anti-infective properties of the melanin-glucan complex obtained from medicinal tinder bracket mushroom, Fomes fomentarius (L.: Fr.) Fr. (Aphyllophoromycetideae).

    PubMed

    Seniuk, Olga F; Gorovoj, Leontiy F; Beketova, Galina V; Savichuk, Hatalia O; Rytik, Petr G; Kucherov, Igor I; Prilutskay, Alla B; Prilutsky, Alexandr I

    2011-01-01

    The goal of this investigation was to comparatively study the efficiency of traditionally used anti-infective drugs and biopolymer complexes originated from the medicinal mushroom Fomes fomentarius (L.:Fr.) Fr.: 1) water-soluble melanin-glucan complex (MGC; -80% melanins and -20% beta-glucans) and 2) insoluble chitin-glucan-melanin complex (ChGMC; -70% chitin, -20% beta-glucans, and -10% melanins). Infectious materials (Helicobacter pylori, Candida albicans, and Herpes vulgaris I and HIV-1(zmb) were used in pure cultures of in vitro and in vivo models on experimental animals. Comparison studies of fungal biopolymers and effective modern antifungal, antibacterial, and antiviral drugs were used in in vitro models. The comparative clinical efficiency of ChGMC and of etiotropic pharmaceuticals in models of H. pylori, C. albicans, and H. vulgaris I infection contamination were studied. Using in vitro models, it was established that MGC completely depresses growth of C. albicans. MGC had an antimicrobial effect on H. pylori identical to erythromycin in all concentrations, and had a stronger action on this bacterium than other tested antibiotics. Tested MGC possesses simultaneously weak toxicity and high anti-HIV-1 activity in comparison with zidovudine (Retrovir). The obtained results show that CLUDDT therapy in Wistar rats with the application of ChGMC is, on average, 1.35-1.43 times as effective as a traditional one. Considering the absence of MGC and ChGMC toxic properties on blood cells even in very high concentrations, these complexes may be used as a source of biopolymers for the creation of essentially new agents for wide application in infectious pathology.

  8. Substantial Effect of Melanin Influencing Factors on In vitro Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo.

    PubMed

    Amna, Touseef; Park, Kyoung Mi; Cho, In-Kyung; Choi, Tae Jeong; Lee, Seung Soo; Seo, Kang-Seok; Hwang, Inho

    2012-07-01

    The present study was designed to investigate the effect of α-melanocyte-stimulating hormone (α-MSH), nitric oxide (NO) and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with α-MSH, nitric oxide and L-cysteine at 100 nM, 50 µM and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. α-MSH and nitric oxide significantly increased (p<0.05) the amount of total melanin in black and brindle whereas eumelanin production in brown Hanwoo muzzle melanocytes. On the contrary, L-cysteine greatly (p<0.05) depressed the eumelanin production in black color but increased in brown. Simultaneously, up regulation of Tyr by nitric oxide and α-MSH and down regulation of Tyr, Tyrp-2 and MC1R genes by L-cysteine were observed in muzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and α-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes.

  9. Substantial Effect of Melanin Influencing Factors on In vitro Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo

    PubMed Central

    Amna, Touseef; Park, Kyoung Mi; Cho, In-Kyung; Choi, Tae Jeong; Lee, Seung Soo; Seo, Kang-Seok; Hwang, Inho

    2012-01-01

    The present study was designed to investigate the effect of α-melanocyte-stimulating hormone (α-MSH), nitric oxide (NO) and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with α-MSH, nitric oxide and L-cysteine at 100 nM, 50 µM and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. α-MSH and nitric oxide significantly increased (p<0.05) the amount of total melanin in black and brindle whereas eumelanin production in brown Hanwoo muzzle melanocytes. On the contrary, L-cysteine greatly (p<0.05) depressed the eumelanin production in black color but increased in brown. Simultaneously, up regulation of Tyr by nitric oxide and α-MSH and down regulation of Tyr, Tyrp-2 and MC1R genes by L-cysteine were observed in muzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and α-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes. PMID:25049660

  10. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2007-09-01

    A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.

  11. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial.

    PubMed

    Cachin, Florent; Miot-Noirault, Elisabeth; Gillet, Brigitte; Isnardi, Vanina; Labeille, Bruno; Payoux, Pierre; Meyer, Nicolas; Cammilleri, Serge; Gaudy, Caroline; Razzouk-Cadet, Micheline; Lacour, Jean Philippe; Granel-Brocard, Florence; Tychyj, Christelle; Benbouzid, Fathalah; Grange, Jean Daniel; Baulieu, Françoise; Kelly, Antony; Merlin, Charles; Mestas, Danielle; Gachon, Françoise; Chezal, Jean Michel; Degoul, Françoise; D'Incan, Michel

    2014-01-01

    Our group has developed a new radiopharmaceutical, (123)I - N-(2-diethylaminoethyl)-2-iodobenzamide ((123)I-BZA2), a benzamide derivative able to bind to melanin pigment in melanoma cells. In a prospective and multicentric phase III clinical study, the value of (18)F-FDG PET/CT and (123)I-BZA2 scintigraphy was compared for melanoma staging. Patients with a past history of cutaneous or ocular melanoma were included from 8 hospitals. (18)F-FDG imaging was performed according to a standard PET protocol. Whole-body, static planar, and SPECT/CT (if available) images were acquired 4 h after injection of a 2 MBq/kg dose of (123)I-BZA2. (18)F-FDG and (123)I-BZA2 sensitivity and specificity for the diagnosis of melanoma metastasis were calculated and compared on both a lesion basis and a patient basis. True-positive and true-negative lesion status was determined after 6 mo of clinical follow-up or according to lesion biopsies (if available). Melanin content in biopsies was evaluated with the standard Fontana-Masson silver method and was correlated with (123)I-BZA2 uptake. Based on statistical analysis, the number of inclusions was estimated at 186. In all, 87 patients were enrolled from 2008 to 2010. Of these, 45 (52%) had metastases. A total of 338 imaging abnormalities were analyzed; 86 lesions were considered metastases, and 20 of 25 lesion biopsies found melanoma metastases. In a patient-based analysis, the sensitivity of (18)F-FDG for diagnosis of melanoma metastases was higher than that of (123)I-BZA2, at 87% and 39%, respectively (P < 0.05). For specificity, (18)F-FDG and (123)I-BZA2 were not statistically different, at 78% and 94%, respectively. In a lesion-based analysis, the sensitivity of (18)F-FDG was statistically higher than that of (123)I-BZA2 (80% vs. 23%, P < 0.05). The specificity of (18)F-FDG was lower than that of (123)I-BZA2 (54% vs. 86%, P < 0.05). According to biopsy analysis, only 9 of 20 metastatic lesions (45%) were pigmented with high melanin

  12. Melanin concentration gradients in modern and fossil feathers.

    PubMed

    Field, Daniel J; D'Alba, Liliana; Vinther, Jakob; Webb, Samuel M; Gearty, William; Shawkey, Matthew D

    2013-01-01

    In birds and feathered non-avian dinosaurs, within-feather pigmentation patterns range from discrete spots and stripes to more subtle patterns, but the latter remain largely unstudied. A ∼55 million year old fossil contour feather with a dark distal tip grading into a lighter base was recovered from the Fur Formation in Denmark. SEM and synchrotron-based trace metal mapping confirmed that this gradient was caused by differential concentration of melanin. To assess the potential ecological and phylogenetic prevalence of this pattern, we evaluated 321 modern samples from 18 orders within Aves. We observed that the pattern was found most frequently in distantly related groups that share aquatic ecologies (e.g. waterfowl Anseriformes, penguins Sphenisciformes), suggesting a potential adaptive function with ancient origins.

  13. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells.

    PubMed

    Wu, Yan; Wu, Zheng-Rong; Chen, Peng; Yang-Li; Deng, Wan-Rong; Wang, You-Quan; Li, Hong-Yu

    2015-04-01

    In our searching for novel tyrosinase inhibitors from natural sources, (S)-N-trans-feruloyloctopamine isolated from garlic skin was found to be a potential mushroom tyrosinase inhibitor. Here, we examined the effects of the potential tyrosinase inhibitor in B16F10 cells on intracellular melanin contents, cytotoxicity, and the signaling mechanism involved in the expression of tyrosinase. The results showed the inhibitor displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin contents in a dose-dependent manner in the α-MSH-stimulated B16F10 cells. Real-time PCR and Western blot analysis showed that it inhibits melanogenesis signaling by down-regulates mRNA and protein expression levels of tyrosinase, which leads to a lower melanin contents. These results suggested that (S)-N-trans-feruloyloctopamine was an ideal tyrosinase inhibitor, and could be used in food and medical industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    PubMed

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans.

    PubMed

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-12-18

    Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.

  16. Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in Alternaria brassicicola

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yangrae; Srivastava, Akhil; Ohm, Robin A.

    2012-05-01

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of themore » third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of ?amr1 and characterized their phenotypes. The ?amr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.« less

  17. Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging.

    PubMed

    Knaus, Helene; Blab, Gerhard A; Agronskaia, Alexandra V; van den Heuvel, Dave J; Gerritsen, Hans C; Wösten, Han A B

    2013-10-01

    Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM. NAD(P)H, FAD, and melanin were used as biomarkers for freshness of mushrooms of Agaricus bisporus (white button mushroom) that had been stored at 4°C for 0 to 17 days. During this period, the mushrooms did not show changes in morphology or color detectable by eye. In contrast, FAD/NAD(P)H and melanin/NAD(P)H ratios increased over time. For instance, these ratios increased from 0.92 to 2.02 and from 0.76 to 1.53, respectively, at the surface of mushroom caps that had been harvested by cutting the stem. These ratios were lower under the skin than at the surface of fresh mushrooms (0.78 versus 0.92 and 0.41 versus 0.76, respectively), indicative of higher metabolism and lower pigment formation within the fruiting body. Signals were different not only between tissues of the mushroom but also between neighboring hyphae. These data show that NLSM can be used to determine the freshness of mushrooms and to monitor the postharvest browning process at an early stage. Moreover, these data demonstrate the potential of NLSM to address a broad range of fundamental and applied microbiological processes.

  18. The comparison of the melanin content and UV exposure affecting aging process: seven countries in Asia.

    PubMed

    Bae, Sung Hae; Park, Jung Jun; Song, Eun Jeung; Lee, Jung Ah; Byun, Kyung Soo; Kim, Nam Soo; Moon, Tae Kee

    2016-12-01

    The skin brightness is determined according to the amount and type of melanin. People with darker skin have a greater amount of melanin that makes their skin less susceptible to UV damages. They live in lower latitude and receive a greater amount of the intensity of the UV radiation. We wanted to know how the latitude and skin brightness affect skin aging. Three thousand volunteers from seven countries (Korea, China, India, Thailand, Vietnam, Indonesia, and Malaysia), aged 20-59 years, participated in this study. We measured skin brightness, Ra (wrinkles parameter), and R2 (elasticity parameter) under controlled environmental conditions. The skin brightness of the face was measured using the Janus ® which is a facial analysis system. Cutometer ® the elasticity was measured by on the cheeks, and PRIMOS lite ® was used to evaluate wrinkles on crow's feet. Latitude and skin brightness showed a positive correlation (0.346). Also, the correlations of Ra and R2 with skin brightness were significantly negative (-0.181) and positive (0.105), respectively. Results of comparison of Ra and R2 with age among the countries showed no significant difference among the 20s, but there was a significant difference among the 50s between countries with high latitude and low latitude. The long-term exposure of UV radiation, the natural environmental factor, seems to have more decisive effect on the skin aging process than the photoprotective effect of melanin of epidermal skin. This study helps to understand differences of the skin properties among countries in Asia. © 2016 Wiley Periodicals, Inc.

  19. Oxidation levels differentially impact melanocytes: low versus high concentration of hydrogen peroxide promotes melanin synthesis and melanosome transfer.

    PubMed

    Tang, Luyan; Li, Jian; Lin, Xiao; Wu, Wenyu; Kang, Kefei; Fu, Wenwen

    2012-01-01

    UVB light can generate potentially harmful hydrogen peroxide (H(2)O(2)) in vivo, but it can also promote the beneficial proliferation and migration of melanocytes. The successful use of UVB monotherapy for treatment of vitiligo suggests that H(2)O(2) may have a biphasic effect on melanin synthesis and melanosome transfer. To study the beneficial role of H(2)O(2) on melanogenesis and melanosome transport in living melanocytes and keratinocytes. A co-culture system model was constructed using the primary human melanocytes and keratinocytes. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine cell proliferation, NaOH was used to determine the melanin content, and real-time PCR was used to determine tyrosinase expression. Western blot was used to determine Rab-27A and protease-activated receptor 2 (PAR-2) expression. This study demonstrated that tyrosinase was activated by low concentrations of H(2)O(2) (≤0.3 mM); however, this activity was downregulated by high concentrations of H(2)O(2) (>0.3 mM). Activation of high levels of melanin synthesis was induced when cells were treated with low concentrations of H(2)O(2) (0.3 mM). Further observation using an in vitro co-culture system of fluorescein (carboxyfluorescein diacetate succinimidyl ester, CFDA-SE)-labeled melanocytes and keratinocytes indicated that melanosome transfer occurred in normal human epidermal melanocytes. Fluorescence microscopy revealed increased melanosome transfer into keratinocytes treated with 0.3 mM H(2)O(2) in the co-culture compared to the control. Examination of melanosomes in the keratinocytes by flow cytometry confirmed these results. Furthermore, treatment with H(2)O(2) (0.3 mM) upregulated the expression of Rab-27A and PAR-2, significant proteins involved in melanosome transfer, according to Western blot. These results confirmed that low concentration levels of H(2)O(2) play a major role in the regulation of human pigmentation by increasing

  20. LASER BIOLOGY: Visualisation of the distributions of melanin and indocyanine green in biological tissues

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Fedosov, I. V.; Bashkatov, A. N.; Zimnyakov, D. A.; Altshuler, G. B.; Tuchin, V. V.

    2008-03-01

    A double-wavelength laser scanning microphotometer with the high spectral and spatial resolutions is developed for studying the distribution of endogenic and exogenic dyes in biological tissues. Samples of hair and skin biopsy with hair follicles stained with indocyanine green are studied. The spatial distribution of indocyanine green and melanin in the biological tissue is determined from the measured optical transmittance.

  1. Modeling Fungal Melanin Buildup: Biomimetic Polymerization of 1,8-Dihydroxynaphthalene Mapped by Mass Spectrometry.

    PubMed

    Cecchini, Martina Maya; Reale, Samantha; Manini, Paola; d'Ischia, Marco; De Angelis, Francesco

    2017-06-12

    Due to the emerging biomedical relevance and technological potential of fungal melanins, and prompted by the virtual lack of information about their structural arrangement, an optimized synthetic protocol has been devised for a potential structural model of Ascomyces allomelanin through enzyme-catalyzed oxidative polymerization of 1,8-dihydroxynaphthalene (1,8-DHN). Electrospray ionization mass spectrometry (ESI-MS) measurements of freshly synthesized DHN-polymer recorded in the negative ion mode allowed detection of oligomers up to m/z 4000, separated by 158 Da, corresponding to the in-chain DHN-unit. The dominant peaks were assigned to singly-charged distribution, up to 23 repeating units, whereas a doubly charged polymer distribution was also detectable. Chemical derivatization, ultra-performance liquid chromatography (UPLC)-ESI MS, and MS/MS data confirmed that oxidative polymerization of 1,8-DHN proceeds through C-C coupling of the naphthalene rings. The new insights reported here into synthetic 1,8-DHN oligomers/polymers as a mimic of fungal melanins may guide novel interesting advances and applications in the field of biomimetic functional materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photobiological implications of melanin photoprotection after UVB-induced tanning of human skin but not UVA-induced tanning.

    PubMed

    Coelho, Sergio G; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Hearing, Vincent J

    2015-03-01

    Repetitive suberythemal UVA and/or UVB exposures were used to generate comparable UV-induced tans in human skin over the course of 2 weeks. To evaluate the potential photoprotective values of those UVA- and/or UVB- induced tans and to avoid the confounding issue of residual UV-induced DNA damage, we waited 1 week before challenging those areas with a 1.5 MED of UVA+UVB after which we measure DNA damage. The results show that the type of UV used to induce skin pigmentation affects the redistribution of melanin in the skin and/or de novo melanin synthesis. The UVA-induced tans failed to even provide a minimal SPF of 1.5, which suggests that producing a tan with UVA-rich sunlamps prior to a holiday or vacation is completely counterproductive. Published 2014. This article is a US Government work and is in the public domain in the USA.

  3. Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA.

    PubMed Central

    Mercado-Blanco, J; García, F; Fernández-López, M; Olivares, J

    1993-01-01

    Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b (140 MDa). Transfer of this plasmid to GR4-cured derivatives or to Agrobacterium tumefaciens enables these bacteria to produce melanin. Sequence analysis of a 3.5-kb PstI fragment of plasmid pRmeGR4b has revealed the presence of a open reading frame 1,481-bp that codes for a protein whose sequence shows strong homology to two conserved regions involved in copper binding in tyrosinases and hemocyanins. In vitro-coupled transcription-translation experiments showed that this open reading frame codes for a 55-kDa polypeptide. Melanin production in GR4 is not under the control of the RpoN-NifA regulatory system, unlike that in R. leguminosarum bv. phaseoli 8002. The GR4 tyrosinase gene could be expressed in Escherichia coli under the control of the lacZ promoter. For avoiding confusion with mel genes (for melibiose), a change of the name of the previously reported mel genes of R. leguminosarum bv. phaseoli and other organisms to mep genes (for melanin production) is proposed. Images PMID:8366027

  4. Disulfanyl peptide decreases melanin synthesis via receptor-mediated ERK activation and the subsequent downregulation of MITF and tyrosinase.

    PubMed

    Choi, H-R; Kang, Y-A; Lee, H-S; Park, K-C

    2016-06-01

    Bioactive peptides are commonly used in cosmeceutical purpose. This study was performed to search for an effective and short hypopigmenting peptide using normal human melanocytes as a screening model. A peptide that exhibits multitarget activities will be a promising peptide. Depigmenting effects were tested in normal human melanocytes. One peptide was selected, and signalling mechanism was investigated by Western blotting and immunofluorescent microscopic examination. A novel hypopigmenting peptide (dSHP) has been found to inhibit the production of melanin. This peptide significantly decreases tyrosinase activity but was not effective in a direct in vitro assay. It also induces the prolonged activation of ERK, and subsequently downregulates the levels of MITF. PD98059 abolished the dSHP-induced downregulation of MITF. These findings indicate that the dSHP-induced activation of ERK contributes to a reduced melanin synthesis via the downregulation of MITF. Fluorescent microscopic studies were consistent with such findings. Pertussis toxin reverses the downregulation of MITF, which means that the receptor-mediated ERK activation is involved. Moreover, it was also found that downregulation of MITF was clearly inhibited by lysosomal inhibitor (chloroquine). Novel tetrapeptide dSHP reduces the melanin synthesis by a receptor-mediated pathway. Furthermore, dSHP works by ERK activation and key transcription factor MITF degradation. Thus, it may be a good candidate as an effective hypopigmenting cosmetic agent. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice.

    PubMed

    Dadachova, Ekaterina; Revskaya, E; Sesay, M A; Damania, H; Boucher, R; Sellers, R S; Howell, R C; Burns, L; Thornton, G B; Natarajan, A; Mirick, G R; DeNardo, S J; DeNardo, G L; Casadevall, A

    2008-07-01

    Currently there is no satisfactory treatment for metastatic melanoma. Radioimmunotherapy (RIT) uses the antigen-antibody interaction to deliver lethal radiation to target cells. Recently we established the feasibility of targeting melanin in tumors with 188-Rhenium ((188)Re)-labeled 6D2 mAb to melanin. Here we carried out pre-clinical development of (188)Re-6D2 to accrue information necessary for a Phase I trial in patients with metastatic melanoma. TCEP proved to be effective in generating a sufficient number of -SH groups on 6D2 to ensure high radiolabeling yields with (188)Re and preserved its structural integrity. (188)Re-6D2 was quickly cleared from the blood with the half-life of approximately 5 hrs and from the body--with the half-life of 10 hr. The doses of 0.5, 1.0 and 1.5 mCi significantly (p < 0.05) slowed down A2058 tumor growth in nude mice, also causing release of melanin into the extracellular space which could provide additional target for repeated treatments. Transient effects of RIT on WBC and platelet counts resolved by Day 14 post-treatment. Tris(2-Carboxyethyl) Phosphine Hydrochloride (TCEP) was evaluated as potential agent for generation of -SH groups on 6D2 mAb. TCEP-treated 6D2 mAb was radiolabeled with (188)Re and its radiochemical purity and stability was measured by ITLC and HPLC and its immunoreactivity--by melanin-binding ELISA. The pharmacokinetics, therapeutic efficacy and acute hematologic toxicity studies were performed in nude mice bearing lightly pigmented A2058 human metastatic melanoma tumors. We have developed radiolabeling and quality control procedures for melanin-binding (188)Re-6D2 mAb which made possible currently an on-going Phase I clinical trial in patients with metastatic melanoma.

  6. Melanin-specific life-history strategies.

    PubMed

    Emaresi, Guillaume; Bize, Pierre; Altwegg, Res; Henry, Isabelle; van den Brink, Valentijn; Gasparini, Julien; Roulin, Alexandre

    2014-02-01

    The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs.

  7. Non-invasive quantification of melanin in the stratum corneum: a novel indicator of skin lesions in pigmentation diseases.

    PubMed

    Matsunaka, H; Yamamoto, Y; Furukawa, F

    2017-02-01

    Skin melanin content is an important indicator for ascertaining the pathology of skin pigmentation diseases, but its analysis necessitates a biopsy or other means of collecting tissue, posing a considerable burden to the patient, and making it difficult to observe how a given skin site changes over time. Here, we aimed to establish a non-invasive method for quantifying the eumelanin and pheomelanin content of the stratum corneum. Sun-exposed and non-exposed samples from 10 healthy Japanese subjects were compared. We harvested the outermost layer of the stratum corneum by tape-stripping, considering the outer side of the forearm as a sun-exposed area, and medial side of the upper arm as a non-exposed area. Four additional subjects were included in the analysis of change in melanin content over time at the same skin site. The anterior lower leg received a single exposure to two minimal erythema dose sunlight, and the stratum corneum was harvested from the same site over a period of 20 weeks; we subsequently quantified the levels of eumelanin and pheomelanin using high-performance liquid chromatography. We were able to accurately quantify the eumelanin and pheomelanin contents of the stratum corneum, and to observe the evolution of the same skin site over time. Eumelanin levels were significantly higher in the sun-exposed area, with a peak in melanin observed after 11-15 weeks of sun exposure. This non-invasive method can serve as a marker for pathology of skin pigmentation diseases such as malignant tumors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria.

    PubMed

    Pang, Guang Xian; Niu, Chao; Mamat, Nuramina; Aisa, Haji Akber

    2017-06-15

    A novel series of coumarin derivatives 6a-o, bearing isoxazole moieties were designed and synthesized. After that, they were evaluated for melanin synthesis in murine B16 cells and inhibitory effect on the growth of CA (Candida albicans), EC (Escherichia coli), SA (Staphylococcus aureus). It was found that eleven compounds (6b-f, 6j-o) showed a better activity on melanin synthesis than positive control (8-MOP). Among them, compounds 6d (242%) and 6f (390%), with nearly 1.6 and 2.6-fold potency compared with 8-MOP (149%) respectively, were recognized as the most promising candidate hits for further pharmacological study of anti-vitiligo. Seven halogen substituted compounds exhibited moderate antimicrobial activity against CA. It is interesting that 6e-f and 6l-m, which had two halogens on the benzene showed a comparable activity with Amphotericin B against CA. The evaluation of melanin synthesis in B16 cells and inhibitory effect on bacteria of above structurally diverse derivatives had also led to an outline of structure-activity relationship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos

    PubMed Central

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin WH; Hinton, David E; Ferguson, P Lee; Stapleton, Heather M

    2015-01-01

    Polybrominated diphenyl ethers and their hydroxyl-metabolites (OH-BDEs) are commonly detected contaminants in human serum in the US population. They are also considered to be endocrine disruptors, and are specifically known to affect thyroid hormone regulation. In this study, we investigated and compared the effects of a PBDE and its OH-BDE metabolite on developmental pathways regulated by thyroid hormones using zebrafish as a model. Exposure to 6-OHBDE 47 (10–100 nM), but not BDE 47 (1–50 μM), led to decreased melanin pigmentation and increased apoptosis in the retina of zebrafish embryos in a concentration-dependent manner in short-term exposures (4 – 30 hours). Six-OH-BDE 47 exposure also significantly decreased thyroid hormone receptor β (THRβ) mRNA expression, which was confirmed using both RT-PCR and in situ hybridization (whole mount and paraffin- section). Interestingly, exposure to the native thyroid hormone, triiodothyronine (T3) also led to similar responses: decreased THRβ mRNA expression, decreased melanin pigmentation and increased apoptosis, suggesting that 6-OH-BDE 47 may be acting as a T3 mimic. To further investigate short-term effects that may be regulated by THRβ, experiments using a morpholino gene knock down and THRβ mRNA over expression were conducted. Knock down of THRβ led to decreases in melanin pigmentation and increases in apoptotic cells in the eye of zebrafish embryos, similar to exposure to T3 and 6-OH-BDE 47, but THRβ mRNA overexpression rescued these effects. Histological analysis of eyes at 22 hpf from each group revealed that exposure to T3 or to 6-OH-BDE 47 was associated with a decrease of melanin and diminished proliferation of cells in layers of retina near the choroid. This study suggests that 6-OH-BDE 47 disrupts the activity of THRβ in early life stages of zebrafish, and warrants further studies on effects in developing humans. PMID:25767823

  10. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Validation of Eupatorium triplinerve Vahl leaves, a skin care herb from East Kalimantan, using a melanin biosynthesis assay.

    PubMed

    Arung, Enos Tangke; Kuspradini, Harlinda; Kusuma, Irawan Wijaya; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2012-04-01

    In searching for a new material made from natural resources that could be used as a whitening agent, we focused on the plants used for skin treatment by the native people of East Kalimantan. The methanol extract of the leaves of Eupatorium triplinerve Vahl showed antimelanogenesis activity in a melanin biosynthesis assay. By activity-guided fractionation, 7-methoxycoumarin (1) was isolated as an active compound. The IC50 of 1 on mushroom tyrosinase was 2360 μM (L-tyrosine was used as the substrate) and above 2840 μM (L-DOPA was used as the substrate), respectively. Regarding melanin formation inhibition in B16 melanoma cells, the IC50 of 1 was 1780 μM with 83% cell viability at IC50. Based on these results, we validated that the leaf extract is in line with the traditional use of the Dayak tribe in East Kalimantan. Copyright © 2012. Published by Elsevier B.V.

  12. Melanin-concentrating hormone: from fish skin to skinny mammals.

    PubMed

    Pissios, Pavlos; Maratos-Flier, Eleftheria

    2003-07-01

    In recent years, the key role of melanin-concentrating hormone (MCH) in regulating mammalian energy balance has been confirmed through several lines of evidence. When administered exogenously, MCH leads to a rapid and robust feeding response and chronic infusions result in the development of mild obesity. At the physiological level, it is known that MCH expression changes in states of altered energy balance, such as fasting and obesity. Genetic studies with mice have shown that ablation of either the gene for prepro-MCH or the gene encoding the MCH receptor leads to a lean phenotype. Finally, the administration of MCH antagonists appears to inhibit both feeding and the development of diet-induced obesity. The aim of this article is to review the recent data on MCH and MCH receptors in light of their emerging roles in energy homeostasis.

  13. A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis

    PubMed Central

    Parkhurst, Amy; Jeffery, William R.

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555

  14. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    PubMed

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  15. Optical properties of cells with melanin

    NASA Astrophysics Data System (ADS)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  16. Melanin concentrating hormone in central hypersomnia.

    PubMed

    Peyron, Christelle; Valentin, Françoise; Bayard, Sophie; Hanriot, Lucie; Bedetti, Christophe; Rousset, Bernard; Luppi, Pierre-Hervé; Dauvilliers, Yves

    2011-09-01

    Narcolepsy with cataplexy (NC) is a disabling disorder characterized by excessive daytime sleepiness and abnormal rapid eye movement (REM) sleep manifestations, due to a deficient hypocretin/orexin neurotransmission. Melanin concentrating hormone (MCH) neurons involved in the homeostatic regulation of REM sleep are intact. We hypothesized that an increased release of MCH in NC would be partly responsible for the abnormal REM sleep manifestations. Twenty-two untreated patients affected with central hypersomnia were included: 14 NC, six idiopathic hypersomnia with long sleep time, and two post-traumatic hypersomnia. Fourteen neurological patients without any sleep disorders were included as controls. Using radioimmunoassays, we measured hypocretin-1 and MCH levels in cerebrospinal fluid (CSF). The MCH level was slightly but significantly lower in patients with hypersomnia (98 ± 32 pg/ml) compared to controls (118 ± 20 pg/ml). After exclusion of patients affected with post-traumatic hypersomnia the difference became non-significant. We also failed to find any association between MCH level and hypocretin level, the severity of daytime sleepiness, the number of SOREMPs, the frequency of cataplexy, and the presence of hypnagogic hallucinations or sleep paralysis. This study reports the first measurement of MCH in CSF using radioimmunoassay technology. It appears to be a non-informative tool to differentiate etiologies of central hypersomnia with or without REM sleep dysregulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Amphetamine reward in food restricted mice lacking the melanin-concentrating hormone receptor-1.

    PubMed

    Geuzaine, Annabelle; Tyhon, Amélie; Grisar, Thierry; Brabant, Christian; Lakaye, Bernard; Tirelli, Ezio

    2014-04-01

    Chronic food restriction (FR) and maintenance of low body weight have long been known to increase the rewarding and motor-activating effects of addictive drugs. However, the neurobiological mechanisms through which FR potentiates drug reward remain largely unknown. Melanin-concentrating hormone (MCH) signaling could be one of these mechanisms since this peptide is involved in energy homeostasis and modulates mesolimbic dopaminergic transmission. The purpose of the present study was to test this hypothesis by investigating the impact of FR on amphetamine reward in wild-type (WT) and knockout mice lacking the melanin-concentrating hormone receptor-1 (MCHR1-KO). The rewarding effects of amphetamine (0.75-2.25 mg/kg, i.p.) were measured with the conditioned place preference (CPP) technique. The food of the mice was restricted to maintain their body weight at 80-85% of their free-feeding (FF) weight throughout the entire CPP experiment. Locomotor activity of the animals was recorded during the conditioning sessions. Our results show that locomotion of all the food-restricted mice treated with saline or amphetamine increased over the sessions whatever the genotype. On the place preference test, the amplitude of CPP induced by 0.75 mg/kg amphetamine was higher in food restricted WT mice than in free-fed WT mice and food restricted MCHR1-KO mice. However, FR did not affect amphetamine reward in MCHR1-KO mice. The present results indicate that MCH signaling could be involved in the ability of FR to increase amphetamine-induced CPP. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Coloration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking.

    PubMed

    Stavenga, Doekele G; Leertouwer, Hein L; Wilts, Bodo D

    2014-06-15

    The coloration of the common butterflies Aglais urticae (small tortoiseshell), Aglais io (peacock) and Vanessa atalanta (red admiral), belonging to the butterfly subfamily Nymphalinae, is due to the species-specific patterning of differently coloured scales on their wings. We investigated the scales' structural and pigmentary properties by applying scanning electron microscopy, (micro)spectrophotometry and imaging scatterometry. The anatomy of the wing scales appears to be basically identical, with an approximately flat lower lamina connected by trabeculae to a highly structured upper lamina, which consists of an array of longitudinal, parallel ridges and transversal crossribs. Isolated scales observed at the abwing (upper) side are blue, yellow, orange, red, brown or black, depending on their pigmentation. The yellow, orange and red scales contain various amounts of 3-OH-kynurenine and ommochrome pigment, black scales contain a high density of melanin, and blue scales have a minor amount of melanin pigment. Observing the scales from their adwing (lower) side always revealed a structural colour, which is blue in the case of blue, red and black scales, but orange for orange scales. The structural colours are created by the lower lamina, which acts as an optical thin film. Its reflectance spectrum, crucially determined by the lamina thickness, appears to be well tuned to the scales' pigmentary spectrum. The colours observed locally on the wing are also due to the degree of scale stacking. Thin films, tuned pigments and combinations of stacked scales together determine the wing coloration of nymphaline butterflies. © 2014. Published by The Company of Biologists Ltd.

  19. Estimation of melanin content in iris of human eye: prognosis for glaucoma diagnostics

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Koblova, Ekaterina V.; Genina, Elina A.; Kamenskikh, Tatyana G.; Dolotov, Leonid E.; Sinichkin, Yury P.; Tuchin, Valery V.

    2007-02-01

    Based on the experimental data obtained in vivo from digital analysis of color images of human irises, the mean melanin content in human eye irises has been estimated. For registration of the color images a digital camera Olympus C-5060 has been used. The images have been obtained from irises of healthy volunteers as well as from irises of patients with open-angle glaucoma. The computer program has been developed for digital analysis of the images. The result has been useful for development of novel and optimization of already existing methods of non-invasive glaucoma diagnostics.

  20. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells

    PubMed Central

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443

  1. Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri.

    PubMed

    Mizusawa, Kanta; Kobayashi, Yuki; Sunuma, Toshikazu; Asahida, Takashi; Saito, Yumiko; Takahashi, Akiyoshi

    2011-03-01

    Barfin flounders change their surface color pattern to match their background. We have reported evidence of the association between hormones and body color changes in this fish. First, bolus intraperitoneal injection with melanin-concentrating hormone (MCH) immediately turned the skin color pale, while injection with melanocyte-stimulating hormone (MSH) did not change the skin color. Second, gene expression levels of MCH change in response to background color, while those of MSH do not. We also reported the expression of an MCH receptor gene (Mch-r2) in the skin of this fish. In this study, we aimed to further evaluate the roles of MCH in skin color change. First, long-term adaptation of adult barfin flounder to black or white background colors induced significantly different pigment migration patterns in both melanophores and xanthophores (P<0.05). However, continuous intraperitoneal injection with MCH did not influence chromatophore proliferation. Then, using in vitro experiments, we found that MCH aggregates both melanophores and xanthophores, and inhibits the pigment-dispersing activity of MSH in a similar manner. Finally, we identified transcripts of Mch-r2 in cells isolated from both melanophores and xanthophores. Taken together, the evidence suggests that MCH aggregates pigments via MCH-R2 in concert with the nervous system by overcoming the melanin-dispersing activities of MSH in barfin flounder. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    PubMed

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  3. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study.

    PubMed

    Xiong, Xi-Xi; Ding, Gao-Zhong; Zhao, Wen-E; Li, Xue; Ling, Yu-Ting; Sun, Li; Gong, Qing-Li; Lu, Yan

    2017-07-01

    Skin color is determined by the number of melanin granules produced by melanocytes that are transferred to keratinocytes. Melanin synthesis and the distribution of melanosomes to keratinocytes within the epidermal melanin unit (EMU) within the skin of vitiligo patients have been poorly studied. The ultrastructure and distribution of melanosomes in melanocytes and surrounding keratinocytes in perilesional vitiligo and normal skin were investigated using transmission electron microscopy (TEM). Furthermore, we performed a quantitative analysis of melanosome distribution within the EMUs with scatter plot. Melanosome count within keratinocytes increased significantly compared with melanocytes in perilesional stable vitiligo (P < 0.001), perilesional halo nevi (P < 0.01) and the controls (P < 0.01), but not in perilesional active vitiligo. Furthermore, melanosome counts within melanocytes and their surrounding keratinocytes in perilesional active vitiligo skin decreased significantly compared with the other groups. In addition, taking the means-standard error of melanosome count within melanocytes and keratinocytes in healthy controls as a normal lower limit, EMUs were graded into 3 stages (I-III). Perilesional active vitiligo presented a significantly different constitution in stages compared to other groups (P < 0.001). The distribution and constitution of melanosomes were normal in halo nevi. Impaired melanin synthesis and melanosome transfer are involved in the pathogenesis of vitiligo. Active vitiligo varies in stages and in stage II, EMUs are slightly impaired, but can be resuscitated, providing a golden opportunity with the potential to achieve desired repigmentation with an appropriate therapeutic choice. Adverse milieu may also contribute to the low melanosome count in keratinocytes.

  4. Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics▿

    PubMed Central

    Cappitelli, Francesca; Nosanchuk, Joshua D.; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks. PMID:17071788

  5. Synthetic consolidants attacked by melanin-producing fungi: case study of the biodeterioration of Milan (Italy) cathedral marble treated with acrylics.

    PubMed

    Cappitelli, Francesca; Nosanchuk, Joshua D; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks.

  6. Analysis on unevenness of skin color using the melanin and hemoglobin components separated by independent component analysis of skin color image

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko

    2011-03-01

    Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.

  7. Characterization of Melanin Radicals in Paraffin-embedded Malignant Melanoma and Nevus Pigmentosus Using X-band EPR and EPR Imaging.

    PubMed

    Nakagawa, Kouichi; Minakawa, Satoko; Sawamura, Daisuke; Hara, Hideyuki

    2017-01-01

    Continuous wave electron paramagnetic resonance (CW EPR) and X-band (9 GHz) EPR imaging (EPRI) were used to nondestructively investigate the possible differentiation between malignant melanoma (MM) and nevus pigmentosus (NP) melanin radicals in paraffin-embedded specimens. The EPR spectra of both samples were analyzed using linewidth, spectral pattern, and X-band EPRI. The CW-EPR spectra of the MM showed an additional signal overlap. Eumelanin- and pheomelanin-related radicals were observed in the MM specimens. The EPR results revealed that the peak-to-peak linewidths (ΔH pp ) of paraffin-embedded MM and NP samples were 0.65 ± 0.01 and 0.69 ± 0.01 mT, respectively. The g-value was 2.005 for both samples. Moreover, the two-dimensional (2D) EPRI of the MM showed different signal intensities at the different tumor stages, unlike the NP, which displayed fewer variations in signal intensity. Thus, the present results suggest that EPR and 2D EPRI can be useful for characterization of the two melanin radicals in the MM and for determination of their size and concentration.

  8. Seasonal Changes in Colour: A Comparison of Structural, Melanin- and Carotenoid-Based Plumage Colours

    PubMed Central

    Delhey, Kaspar; Burger, Claudia; Fiedler, Wolfgang; Peters, Anne

    2010-01-01

    Background Plumage coloration is important for bird communication, most notably in sexual signalling. Colour is often considered a good quality indicator, and the expression of exaggerated colours may depend on individual condition during moult. After moult, plumage coloration has been deemed fixed due to the fact that feathers are dead structures. Still, many plumage colours change after moult, although whether this affects signalling has not been sufficiently assessed. Methodology/Principal Findings We studied changes in coloration after moult in four passerine birds (robin, Erithacus rubecula; blackbird, Turdus merula; blue tit, Cyanistes caeruleus; and great tit, Parus major) displaying various coloration types (melanin-, carotenoid-based and structural). Birds were caught regularly during three years to measure plumage reflectance. We used models of avian colour vision to derive two variables, one describing chromatic and the other achromatic variation over the year that can be compared in magnitude among different colour types. All studied plumage patches but one (yellow breast of the blue tit) showed significant chromatic changes over the year, although these were smaller than for a typical dynamic trait (bill colour). Overall, structural colours showed a reduction in relative reflectance at shorter wavelengths, carotenoid-based colours the opposite pattern, while no general pattern was found for melanin-based colours. Achromatic changes were also common, but there were no consistent patterns of change for the different types of colours. Conclusions/Significance Changes of plumage coloration independent of moult are probably widespread; they should be perceivable by birds and have the potential to affect colour signalling. PMID:20644723

  9. Melanin production through novel processing of proopiomelanocortin in the extracellular compartment of the auricular skin of C57BL/6 mice after UV-irradiation.

    PubMed

    Yamamoto, Hiroyuki; Yamane, Tomohiro; Iguchi, Kazuaki; Tanaka, Kiyotaka; Iddamalgoda, Arunasiri; Unno, Keiko; Hoshino, Minoru; Takeda, Atsushi

    2015-09-29

    The production of melanin is regulated by α-melanocyte-stimulating hormone (α-MSH), which is produced from proopiomelanocortin (POMC). Keratinocytes release POMC along with lower levels of α-MSH and ACTH. To clarify the mechanism of melanogenesis after ultraviolet (UV)-irradiation, this study focused on the expression of POMC and POMC-derived peptides after UV-irradiation. Western blot analysis and immunoassays indicated that both POMC and α-MSH-like immunoreactivity (α-MSH-LI) increased after UV-irradiation. However, other POMC-derived products were very low. In hypophysectomized mice, α-MSH-LI increased to the same level as in control mice after UV-irradiation. Structural analysis revealed that the major α-MSH-LI product was ACTH(1-8). Furthermore, ACTH(1-8) competed with [(125)I]-α-MSH for receptor binding and increased melanin production via a melanocortin-1 receptor. These results suggested that melanin was produced through ACTH(1-8) after UV-irradiation. Trypsin-like enzymatic activity, which is responsible for POMC activation, increased after UV-irradiation and was identified as tryptase. In mast cell-deficient mice, which do not produce tryptase, α-MSH-LI levels were unchanged after UV-irradiation. The present study demonstrates the production of ACTH(1-8) from POMC by tryptase, which is a novel peptide-processing mechanism in the extracellular compartment of the skin.

  10. Parental investment and its sensitivity to corticosterone is linked to melanin-based coloration in barn owls.

    PubMed

    Almasi, Bettina; Roulin, Alexandre; Jenni-Eiermann, Susanne; Jenni, Lukas

    2008-06-01

    Behavioral and physiological responses to unpredictable changes in environmental conditions are, in part, mediated by glucocorticoids (corticosterone in birds). In polymorphic species, individuals of the same sex and age display different heritable melanin-based color morphs, associated with physiological and reproductive parameters and possibly alternative strategies to cope with variation in environmental conditions. We examined whether the role of corticosterone in resolving the trade-off between self-maintenance and reproductive activities covaries with the size of melanin-based spots displayed on the ventral body side of male barn owls. Administration of corticosterone to simulate physiological stress in males revealed pronounced changes in their food-provisioning rates to nestlings compared to control males. Corticosterone-treated males with small eumelanic spots reduced nestling provisioning rates as compared to controls, and also to a greater degree than did corticosterone-treated males with large spots. Large-spotted males generally exhibited lower parental provisioning and appear insensitive to exogenous corticosterone suggesting that the size of the black spots on the breast feathers predicts the ability to cope with stressful situations. The reduced provisioning rate of corticosterone-treated males caused a temporary reduction in nestling growth rates but, did not affect fledgling success. This suggests that moderately elevated corticosterone levels are not inhibitory to current reproduction but rather trigger behavioral responses to maximize lifetime reproductive success.

  11. A comparison of diode laser and Er:YAG lasers in the treatment of gingival melanin pigmentation.

    PubMed

    Simşek Kaya, Göksel; Yapici Yavuz, Günay; Sümbüllü, Muhammed A; Dayi, Ertunç

    2012-03-01

    This study compared the use of diode and Er:YAG lasers in treating gingival melanin pigmentation (GMP) in terms of gingival depigmentation, local anesthesia requirements, postoperative pain/discomfort, depigmentation effectiveness, and total treatment duration. Twenty patients (13 female, 7 male) referred with GMP were enrolled in the study. Patients were randomly divided into 2 groups. Group 1 was treated with a gallium aluminum arsenide diode laser with a continuous wavelength of 808 nm, and group 2 was treated with an Er:YAG laser with a continuous wavelength of 2,940 nm. Gingival depigmentation was performed by applying the laser at 1 W. Treatment was administered on a weekly basis until a normal pink gingival color was observable in clinical examination and photographs. In addition, patients were asked to evaluate the procedure by using a self-administered questionnaire. Procedures were carried out without the need for any topical or local anesthetic, and no unpleasant events occurred during the actual procedure or the healing period. The total length of treatment was significantly shorter with the diode laser (group 1) than with the Er:YAG laser (group 2; P < .05). No melanin recurrence was detected during any follow-up session. Diode and Er:YAG lasers administered at 1 W both result in satisfactory depigmentation of GMP. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes.

    PubMed

    Beberok, Artur; Wrześniok, Dorota; Otręba, Michał; Miliński, Maciej; Rok, Jakub; Buszman, Ewa

    2015-03-01

    Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.

  13. Up-regulation of melanin synthesis by the antidepressant fluoxetine.

    PubMed

    Liao, Sha; Shang, Jing; Tian, Xiaoli; Fan, Xueqi; Shi, Xiupu; Pei, Siran; Wang, Qian; Yu, Boyang

    2012-08-01

    Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a potent antidepressant commonly used in clinical practice. Here, we report that fluoxetine increases cellular tyrosinase (TYR) activity, enhances the protein levels of microphthalmia-associated transcription factor (MITF), TYR and tyrosinase-related protein-1 (TRP-1) and eventually leads to a dramatic increase in melanin production in both murine B16F10 melanoma cells and normal human melanocytes (NHMCs). In well-characterized C57BL/6 mouse models, systemic application of fluoxetine increased hair pigmentation by up-regulating hair follicular MITF, TYR, TRP-1 and tyrosinase-related protein-2 (TRP-2) protein levels. Using a serotonin 1A receptor (SR1A) antagonist and RNA interference (RNAi) technique, we revealed that SR1A appears to be one of the involved pathways in the fluoxetine-induced melanogenesis in B16F10 cells. These results suggest that fluoxetine may hold a significant therapeutic potential for treating skin hypopigmentation disorders, and SR1A may serve as a novel target in modulating melanogenesis. © 2012 John Wiley & Sons A/S.

  14. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    PubMed

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  15. Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrantz, Krisztina; Wyss, Pradeep P.; Ihssen, Julian

    2017-04-01

    tNature provides functional units which can be integrated in inorganic solar cell materials, such as lightharvesting antenna proteins and photosynthetic molecular machineries, and thus help in advancing artifi-cial photosynthesis. Their integration needs to address mechanical adhesion, light capture, charge transferand corrosion resistance. We showed recently how enzymatic polymerization of melanin can immobi-lize the cyanobacterial light harvesting protein C-phycocyanin on the surface of hematite, a prospectivemetal oxide photoanode for solar hydrogen production by water splitting in photoelectrochemical cells.After the optimization of the functionalization procedure, in this work we show reproducible hydrogenproduction, measured parallel to the photocurrent on this bio-hybrid electrode inmore » benign neutral pHphosphate. Over 90% increase compared to the photocurrent of the pristine hematite could be achieved.The hydrogen evolution was monitored during the photoelectrochemical measurement in an improvedphotoelectrochemical cell. The C-phycocyanin-melanin coating on the hematite was shown to exhibit acomb-like fractal pattern. Raman spectroscopy supported the presence of the protein on the hematiteanode surface. The stability of the protein coating is demonstrated during the 2 h GC measurement andthe 24 h operando current density measurement« less

  16. Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells.

    PubMed

    Wolnicka-Glubisz, Agnieszka; Nogal, Katarzyna; Żądło, Andrzej; Płonka, Przemysław M

    2015-01-01

    Melanin, the basic skin pigment present also in the majority of melanomas, has a huge impact on the efficiency of photodynamic, radio- or chemotherapies of melanoma. Moreover, the melanoma cells produce more melanin than normal melanocytes in adjacent skin do. Thus, attention has been paid to natural agents that are safe and effective in suppression of melanogenesis. B16F10 cells were studied by electron paramagnetic resonance (EPR) spectroscopy. The cells were cultured for 24-72 h in RPMI or DMEM with or without curcumin. The results confirmed that curcumin has no significant effect on B16F10 cells viability at concentrations of 1-10 µM. Curcumin at concentration of 10 µM significantly inhibited their proliferation and stimulated differentiation. We have not stimulated melanogenesis hormonally but we found a strong increase in melanogenesis in DMEM, containing more L-Tyr, as compared to RPMI. The EPR studies revealed that the effect of curcumin on melanogenesis in RPMI-incubated cells was not significant, and only in DMEM was curcumin able to inhibit melanogenesis. The effect of curcumin was only quantitative, as it did not switch eumelanogenesis towards pheomelanogenesis under any conditions. Interestingly, we observed elevation of production of hydrogen peroxide in DMEM-incubated cells, in parallel to the facilitation of melanogenesis. Curcumin significantly but transiently intensified the already pronounced generation of H2O2 in DMEM. We conclude that the quantitative effect of curcumin on melanogenesis in melanoma is intricate. It depends on the basic melanogenetic efficiency of the cells, and can be observed only in strongly pigmented cells. Qualitatively, curcumin does not switch melanogenesis towards pheomelanogenesis, either in strongly, or in weakly melanized melanoma cells.

  17. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  18. Involvement of a Polyketide Synthetase ClPKS18 in the Regulation of Vegetative Growth, Melanin and Toxin Synthesis, and Virulence in Curvularia lunata.

    PubMed

    Gao, Jin-Xin; Chen, Jie

    2017-12-01

    The clpks18 gene was first cloned and identified in Curvularia lunata. It contains 6571 base pairs (bp) and an 6276 bp open reading frame encoding 2091 amino acids. The ClPKS18 deletion mutant displayed an albino phenotype, and almost lost the ability to product 5-(hydroxymethyl) furan-2-carboxylate (M5HF2C) toxin, implying that clpks18 gene in C. lunata is not only involved in 1,8-dihydroxynaphthalene melanin synthesis, but also relatively associated with M5HF2C toxin biosynthesis of the pathogen. The pathogenicity assays revealed that ΔClPKS18 was impaired in colonizing the maize leaves, which corresponds to the finding that ClPKS18 controls the production of melanin and M5HF2C in C. lunata . Results indicate that ClPKS18 plays a vital role in regulating pathogenicity of in C. lunata .

  19. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue

    PubMed Central

    Lee, Taek Hwan; Seo, Jae Ok; Do, Moon Ho; Ji, Eunhee; Baek, So-Hyeon; Kim, Sun Yeou

    2014-01-01

    Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure. PMID:25414774

  20. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  1. Intrinsic melanin and hemoglobin colour components for skin lesion malignancy detection.

    PubMed

    Madooei, Ali; Drew, Mark S; Sadeghi, Maryam; Atkins, M Stella

    2012-01-01

    In this paper we propose a new log-chromaticity 2-D colour space, an extension of previous approaches, which succeeds in removing confounding factors from dermoscopic images: (i) the effects of the particular camera characteristics for the camera system used in forming RGB images; (ii) the colour of the light used in the dermoscope; (iii) shading induced by imaging non-flat skin surfaces; (iv) and light intensity, removing the effect of light-intensity falloff toward the edges of the dermoscopic image. In the context of a blind source separation of the underlying colour, we arrive at intrinsic melanin and hemoglobin images, whose properties are then used in supervised learning to achieve excellent malignant vs. benign skin lesion classification. In addition, we propose using the geometric-mean of colour for skin lesion segmentation based on simple grey-level thresholding, with results outperforming the state of the art.

  2. Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert.

    PubMed

    Jiang, Hong; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2017-02-20

    A PKS1 gene responsible for the melanin biosynthesis and a NPG1 gene in Aureobasidium melanogenum XJ5-1 were cloned and characterized. An ORF of the PKS1 gene encoding a protein with 2165 amino acids contained 6495bp while an ORF of the NPG1 gene encoding a protein with 340 amino acids had 1076bp. After analysis of their promoters, it was found that expression of both the PKS1 gene and the NPG1 gene was repressed by nitrogen sources and glucose, respectively. The PKS deduced from the cloned gene consisted of one ketosynthase, one acyl transferase, two acyl carrier proteins, one thioesterase and one cyclase while the PPTase belonged to the family Sfp-type. After disruption of the PKS1 gene and the NPG1 gene, expression of the PKS1 gene and the NPG1 gene and the melanin biosynthesis in the disruptants K5 and DP107 disappeared and expression of the PKS1 gene in the disruptant DP107 was also negatively influenced. However, after the NPG1 gene was complemented in the disruptant DP107, the melanin biosynthesis in the complementary strain BP17 was restored and expression of the PKS1 gene and the NPG1 gene was greatly enhanced, suggesting that the PKS was indeed activated and regulated by the PPTase and expression of the PKS1 gene and the NPG1 gene had a coordinate regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    NASA Astrophysics Data System (ADS)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  4. Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells.

    PubMed

    Franzen, Anderson J; Cunha, Marcel M L; Batista, Evander J O; Seabra, Sergio H; De Souza, Wanderley; Rozental, Sonia

    2006-09-01

    The influence of tricyclazole (5-methyl-1,2,4-triazol[3,4]benzothiazole), a specific DHN-melanin inhibitor, on the cell walls and intracellular structures of Fonsecaea pedrosoi conidia and sclerotic cells was analyzed by transmission electron microscopy (TEM), deep-etching, and field emission scanning electron microscopy. The treatment of the fungus with 16 microg mL(-1) of tricyclazole (TC) did not significantly affect fungal viability, but electron microscopy observations showed several important morphological differences between TC-treated and non-TC treated cells. Control sclerotic cells presented patched granules, with an average diameter of 47 nm, on the cell surface, which were absent in TC-treated cells. Also, TC-treated sclerotic cells showed an undulated relief. TC treatment leads to an accumulation of electron lucent vacuoles in the fungal cytoplasm of both conidia and sclerotic cells, and treated conidia observed by deep etching showed a relevant thickening of the fungal cell wall. Together, these observations support the previous data of our group that F. pedrosoi synthesizes melanin in intracellular organelles. In addition, we suggest that melanin is not only an extracellular constituent but could also be dispersing all over the cell walls and could have an effective role in cross-linking different cell wall compounds that help maintain the regular shape of the cell wall. (c) 2006 Wiley-Liss, Inc.

  5. Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Kobayashi, Toshiya

    2014-01-01

    Whey proteins or peptides exhibit various actions, including an antioxidant action, an anticancer action, and a protective action against childhood asthma and atopic syndrome. The effects of orally administered whey peptides (WPs) on chronic ultraviolet B (UVB) radiation-induced cutaneous changes, including changes in cutaneous thickness, elasticity, wrinkle formation, etc., have not been examined. In this study, we studied the preventive effects of WPs on cutaneous aging induced by chronic UVB irradiation in melanin-possessing male hairless mice (HRM). UVB (36-180 mJ/cm(2)) was irradiated to the dorsal area for 17 wk in HRM, and the measurements of cutaneous thickness and elasticity in UVB irradiated mice were performed every week. WPs (200 and 400 mg/kg, twice daily) were administered orally for 17 wk. WPs inhibited the increase in cutaneous thickness, wrinkle formation, and melanin granules and the reduction in cutaneous elasticity associated with photoaging. Furthermore, it has been reported that UVB irradiation-induced skin aging is closely associated with the increase in expression of matrix metalloproteinase (MMP), vascular endothelial growth factor (VEGF), Ki-67-, and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells. WPs also prevented increases in the expression of MMP-2 and pro-MMP-9, VEGF, and Ki-67- and 8-OHdG-positive cells induced by chronic UVB irradiation. It was found that WPs prevent type IV collagen degradation, angiogenesis, proliferation, and DNA damage caused by UVB irradiation. Overall, these results demonstrate the considerable benefit of WPs for protection against solar UV-irradiated skin aging as a supplemental nutrient.

  6. Solid-phase synthesis and structure-activity relationships of novel biarylethers as melanin-concentrating hormone receptor-1 antagonists.

    PubMed

    Ma, Vu; Bannon, Anthony W; Baumgartner, Jamie; Hale, Clarence; Hsieh, Faye; Hulme, Christopher; Rorrer, Kirk; Salon, John; van Staden, Carlo; Tempest, Paul

    2006-10-01

    Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.

  7. Ionizing Radiation: how fungi cope, adapt, and exploit with the help of melanin

    PubMed Central

    Dadachova, Ekaterina; Casadevall, Arturo

    2008-01-01

    SUMMARY OF RECENT ADVANCES Life on Earth has always existed in the flux of ionizing radiation. However, fungi seem to interact with the ionizing radiation differently from other Earth’s inhabitants. Recent data show that melanized fungal species like those from Chernobyl’s reactor respond to ionizing radiation with enhanced growth. Fungi colonize space stations and adapt morphologically to extreme conditions. Radiation exposure causes upregulation of many key genes, and an inducible microhomology-mediated recombination pathway could be a potential mechanism of adaptive evolution in eukaryotes. The discovery of melanized organisms in high radiation environments, the space stations, Antarctic mountains, and in the reactor cooling water combined with phenomenon of ‘radiotropism’ raises the tantalizing possibility that melanins have functions analogous to other energy harvesting pigments such as chlorophylls. PMID:18848901

  8. Melanin-Concentrating Hormone: A New Sleep Factor?

    PubMed Central

    Torterolo, Pablo; Lagos, Patricia; Monti, Jaime M.

    2011-01-01

    Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation. PMID:21516258

  9. Non-toxic melanin production inhibitors from Garcinia livingstonei (Clusiaceae).

    PubMed

    Mulholland, Dulcie A; Mwangi, Elizabeth M; Dlova, Ncoza C; Plant, Nick; Crouch, Neil R; Coombes, Phillip H

    2013-09-16

    The stem bark of Garcinia livingstonei is used traditionally as a skin lightening agent. To isolate and identify compounds responsible for the observed skin lightening activity of Garcinia livingstonei and to evaluate their cytotoxicity. Constituents of the stem bark and fruits of Garcinia livingstonei were isolated using chromatographic techniques and structures were determined using 1D and 2D NMR and MS analysis. MeWo cells were used to evaluate the cytotoxicity and impact on melanin levels of extracts and compounds isolated, in vitro. Twelve known compounds, morelloflavone (1), morelloflavone-7″-sulphate (2), guttiferone A (3), sargaol (4), isojacareubin (5), 6-deoxyisojacareubin (6) and in addition to the common triterpenoids, betulin, betulin aldehyde, lupeol, lupenone, euphol and stigmasterol were isolated in this investigation. Morelloflavone, morelloflavone-7″-sulphate and sargaol, were found to be considerably less cytotoxic and more effective as skin lightening agents than hydroquinone. A range of compounds was isolated from the stem bark and fruit of Garcinia livingstonei. Although the bark extract contained the cytotoxic guttiferone A, it was found to be less toxic than hydroquinone, and morelloflavone, the 7″-sulphate derivative and sargaol show potential for development as depigmentation/skin lightening agents. © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Hayashi, Teruaki; Kimura, Yoshiyuki

    2009-04-01

    Brown sugar has been used traditionally for the treatment of skin trouble as a component of soaps or lotions. Symptoms of aging including wrinkles and pigmentation develop earlier in sun-exposed skin than unexposed skin, a phenomenon referred to as photoaging. Ultraviolet B (UVB) radiation is one of the most important environmental factors influencing photoaging. The aim of this study was to clarify whether the nonsugar fraction of brown sugar prevents chronic UVB-induced aging of the skin using melanin-possessing hairless mice. The nonsugar fraction (1% or 3% solution, 50 mul/mouse) was applied topically to the dorsal region every day for 19 weeks. Both solutions prevented an increase in skin thickness and reduction in skin elasticity caused by the UVB. The 3% solution also prevented wrinkles and melanin pigmentation as well as increases in the diameter and length of skin blood vessels. Increases in the expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in UVB-irradiated skin was inhibited by the nonsugar fraction. Prevention of UVB-induced aging of the skin by topical application of the nonsugar fraction of brown sugar may be due to inhibition of increases in MMP-2 and VEGF expression.

  11. Identification and Molecular Characterization of the Homogentisate Pathway Responsible for Pyomelanin Production, the Major Melanin Constituents in Aeromonas media WS

    PubMed Central

    Wang, He; Qiao, Yunqian; Chai, Baozhong; Qiu, Chenxi; Chen, Xiangdong

    2015-01-01

    The pigmentation of many Aeromonas species has been thought to be due to the production of a L-DOPA (L-3,4-dihydroxyphenylalanine) based melanin. However, in this study we found that although L-DOPA synthesis occurs in the high-melanin-yielding Aeromonas media strain WS, it plays a minor, if any, role in pigmentation. Instead, the pigmentation of A. media strain WS is due to the production of pyomelanin through HGA (homogentisate). Gene products of phhA (encodes phenylalanine hydroxylase), tyrB and aspC (both encode aromatic amino acid aminotransferase), and hppD (encodes 4-hydroxyphenylpyruvate dioxygenase) constitute a linear pathway of converting phenylalanine to HGA and disruption of any one of these genes impairs or blocks pigmentation of A. media strain WS. This HGA biosynthesis pathway is widely distributed in Aeromonas, but HGA is only detectable in the cultures of pigmented Aeromonas species. Heterologous expression of HppD from both pigmented and non-pigmented Aeromonas species in E. coli leads to the production of pyomelanin and thus pigmentation, suggesting that most Aeromonas species have the critical enzymes to produce pyomelanin through HGA. Taken together, we have identified a widely conserved biosynthesis pathway of HGA based pyomelanin in Aeromonas that may be responsible for pigmentation of many Aeromonas species. PMID:25793756

  12. Effects of a turmeric extract (Curcuma longa) on chronic ultraviolet B irradiation-induced skin damage in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2009-12-01

    Turmeric (the rhizomes of Curcuma longa L., Zingiberacease) is widely used as a dietary pigment and spice, and has been traditionally used for the treatment of inflammation, skin wounds and hepatic disorders in Ayurvedic, Unani and Chinese medicine. Although the topical application or oral administration of turmeric is used to improve skin trouble, there is no evidence to support this effect. The aim of this study was to clarify whether turmeric prevents chronic ultraviolet B (UVB)-irradiated skin damage. We examined the effects of a turmeric extract on skin damage including changes in skin thickness and elasticity, pigmentation and wrinkling caused by long-term, low-dose ultraviolet B irradiation in melanin-possessing hairless mice. The extract (at 300 or 1000 mg/kg, twice daily) prevented an increase in skin thickness and a reduction in skin elasticity induced by chronic UVB exposure. It also prevented the formation of wrinkles and melanin (at 1000 mg/kg, twice daily) as well as increases in the diameter and length of skin blood vessels and in the expression of matrix metalloproteinase-2 (MMP-2). Prevention of UVB-induced skin aging by turmeric may be due to the inhibition of increases in MMP-2 expression caused by chronic irradiation.

  13. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    PubMed

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  14. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru

    2018-03-01

    In a previous study, we found that both synthetic 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) increased extracellular melanin content. 34'7TMQ increased the activity of melanogenic enzymes by stimulating the p38 pathway and the expression of microphthalmia-associated transcription factor (MITF). In contrast, 3MQ increased the activity of melanogenic enzymes without the involvement of MITF, which suggests that 3MQ inhibits the degradation of melanogenic enzymes. In the present study, we investigated the effects of 3MQ and 34'7TMQ on melanogenesis in normal human melanocytes and using a commercial three-dimensional (3D) skin model system. Both 3MQ and 34'7TMQ elongated the dendrites of normal human melanocytes from a Caucasian donor, but did not stimulate melanogenesis in the melanocytes. In the 3D skin model, which included melanocytes from an Asian donor, 3MQ and 34'7TMQ increased and elongated the melanocytes and showed a tendency to stimulate melanogenesis. These results suggest that 3MQ and 34'7TMQ could be put to practical use in skin care products and agents aimed at preventing hair graying.

  15. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene ismore » a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.« less

  16. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar

    PubMed Central

    Domingos, Ana I; Sordillo, Aylesse; Dietrich, Marcelo O; Liu, Zhong-Wu; Tellez, Luis A; Vaynshteyn, Jake; Ferreira, Jozelia G; Ekstrand, Mats I; Horvath, Tamas L; de Araujo, Ivan E; Friedman, Jeffrey M

    2013-01-01

    Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5−/− mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001 PMID:24381247

  17. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expression

    PubMed Central

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  18. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    PubMed

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  19. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin.

    PubMed

    Mujahid, Nisma; Liang, Yanke; Murakami, Ryo; Choi, Hwan Geun; Dobry, Allison S; Wang, Jinhua; Suita, Yusuke; Weng, Qing Yu; Allouche, Jennifer; Kemeny, Lajos V; Hermann, Andrea L; Roider, Elisabeth M; Gray, Nathanael S; Fisher, David E

    2017-06-13

    The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Schinus terebinthifolius Raddi extract and linoleic acid from Passiflora edulis synergistically decrease melanin synthesis in B16 cells and reconstituted epidermis.

    PubMed

    Jorge, A T S; Arroteia, K F; Santos, I A; Andres, E; Medina, S P H; Ferrari, C R; Lourenço, C B; Biaggio, R M T T; Moreira, P L

    2012-10-01

    Several treatments for skin whitening are available today, but few of them are completely adequate, especially owing to the carcinogenic potential attributed to classical drugs like hydroquinone, arbutin and kojic acid. To provide an alternative and safer technology for whitening, we developed two botanical compounds originated from Brazilian biodiversity, an extract of Schinus terebinthifolius Raddi and a linoleic acid fraction isolated from Passiflora edulis oil. The whitening effect of these compounds was assessed using biochemical assays and in vitro models including cellular assays and equivalent skin. The results showed that S. terebinthifolius Raddi extract is able to reduce the tyrosinase activity in vitro, and the combination of this extract with linoleic acid is able to decrease the level of melanin produced by B16 cells cultured with melanocyte-stimulating hormone. Furthermore, melanin was also reduced in human reconstituted epidermis (containing melanocytes) treated with the compounds. The combination of the compounds may provide a synergistic positive whitening effect rather than their isolated use. Finally, we demonstrated that the performance of these mixed compounds is comparable to classical molecules used for skin whitening, as kojic acid. This new natural mixture could be considered an alternative therapeutic agent for treating hyperpigmentation and an effective component in whitening cosmetics. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Kondo, Ryuichiro

    2010-09-01

    In our efforts to find new whitening agent from natural resources, we focused on wood of Artocarpus heterophyllus which shows anti-melanogenesis activity. By activity-guided fractionation of A. heterophyllus wood extract, a new prenylated flavonoid, 3-prenyl luteolin (1) was isolated. The IC(50) of mushroom tyrosinase inhibitory activity of 1 was 76.3 microM. The results of the comparison with that of luteolin showed the prenyl substituent at C-3 position of 1 play an important role for revealing tyrosinase inhibition. In melanin formation inhibition on B16 melanoma cells, IC(50) of 1 was 56.7 microM with less cytotoxicity. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis.

    PubMed

    Mustapha, Nadia; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2015-02-01

    Poor therapeutic results have been reported for treatment of malignant melanoma; therefore in this study, we have investigated inhibitory capacity of vitexin-2''-O-rhamnoside as well as the extract from which it was isolated, i.e. the ethyl acetate extract obtained from the leaves of Crataegus azarolus, on mouse melanoma (B16F10) proliferation. Cell viability was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475nm. Ethyl acetate extract and vitexin-2''-O-rhamnoside exhibited significant anti-proliferative activity against B16F10 melanoma cells after incubation for 48hours with IC50s of 50μg/mL and 20μM, respectively. Furthermore, these two compounds have the ability to reduce the melanin content by inhibiting the tyrosinase activity of B16F10 cells. Thus, further investigations are merited to ascertain their potential application in treating hyperpigmentation disorders. Copyright © 2014. Published by Elsevier Masson SAS.

  3. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells.

    PubMed

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-11-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF.

  4. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach.

    PubMed

    Hridya, Hemachandran; Amrita, Anantharaman; Sankari, Mohan; George Priya Doss, C; Gopalakrishnan, Mohan; Gopalakrishnan, Chandrasekaran; Siva, Ramamoorthy

    2015-11-01

    In our present study, the inhibitory effect of brazilein from Caesalpinia sappan on tyrosinase activity was investigated through multi-spectroscopic and molecular docking techniques. The result has shown that brazilein reversibly inhibited tyrosinase in a mixed type manner. The interaction of brazilein with the amino acid residues of tyrosinase has been validated through fluorescence quenching studies. Copper interaction studies suggested that brazilein could bind with copper ions of the enzyme. Circular dichroism analysis confirmed that brazilein induced secondary structural changes in tyrosinase. Docking studies further authenticate that brazilein forms hydrophobic and hydrogen bonding with the active site residues of tyrosinase. Moreover, in vitro studies confirmed that the inhibitory mechanism of cellular tyrosinase and melanin synthesis by brazilein in B16F0 melanoma cells. These results suggested that brazilein act as a potential tyrosinase inhibitor and it would contribute as a of novel tyrosinase inhibitor in food, cosmetic and pharmaceutical industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation.

    PubMed

    Arthaud, Sebastien; Varin, Christophe; Gay, Nadine; Libourel, Paul-Antoine; Chauveau, Frederic; Fort, Patrice; Luppi, Pierre-Herve; Peyron, Christelle

    2015-06-01

    Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones. © 2014 European Sleep Research Society.

  6. Within-male melanin-based plumage and bill elaboration in male house sparrows.

    PubMed

    Václav, Radovan

    2006-12-01

    If there is a cost to producing a dark color patch, the size of a patch may not correspond with its pigment concentration. The plumage of male house sparrows represents a case of dark, melanin-based ornamentation, but also a case of neglecting the composite nature of dark signals in birds. Here, I investigated what kind of associations exist between the brightness, chroma, and hue of dark integumentary patches and the size of a secondary sexual trait, the bib, in male house sparrows. I found that males with a larger bib also had a darker bib and bill, and a more saturated bib, bill, epaulets, head crown, and breast than small-bibbed males. Male bib coloration in terms of brightness and chroma was more strongly related to bib size than the coloration of other integumentary patches. However, with respect to hue, only the hue of the bill and cheeks was related to bib size. My results indicate that size, brightness, and chroma of the bib, but also chroma of other deeply colored patches, convey redundant information about the signaler's quality in male house sparrows.

  7. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    NASA Astrophysics Data System (ADS)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  8. Effect of inflammatory challenge on hypothalamic neurons expressing orexinergic and melanin-concentrating hormone.

    PubMed

    Palomba, Maria; Seke Etet, Paul Faustin; Veronesi, Carlo

    2014-06-06

    Neurons containing the hypothalamic peptides orexin-A (hypocretin 1) and melanin-concentrating hormone (MCH) have been reported numerous roles in the regulation of the sleep-wake cycle, energy balance and feeding behavior. We investigated the response of these cells to repeated administration of low doses of endotoxin lipopolysaccharide (LPS) in mice. Adult male C57/6J mice where intraperitoneally (i.p.) injected with either LPS or phosphate-buffered saline (PBS) weekly for either 4 or 8 weeks, and afterwards were sacrificed at different time intervals from last injection. A significant drop in orexin-containing neuron number, but not in numbers of MCH or neuronal nuclear antigen (NeuN)-immunoreactive neurons, was observed after 8 weeks of LPS treatment, as compared to PBS treatment. Orexin expression entirely returned to control levels 30 days after the last LPS injection in mice treated for 8 weeks. These data strongly suggest the occurrence of selective alterations of orexinergic system, reversible over time, following repeated and intermittent systemic inflammatory challenge in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. To compare the gingival melanin repigmentation after diode laser application and surgical removal.

    PubMed

    Mahajan, Gaurav; Kaur, Harjit; Jain, Sanjeev; Kaur, Navnit; Sehgal, Navneet Kaur; Gautam, Aditi

    2017-01-01

    The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months ( P = 0.040), but the difference was statistically not significant at 6 months ( P = 0.118) and 9 months ( P = 0.146). On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  10. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells

    PubMed Central

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-01-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997

  11. Effect of UVC, UVB, UVA and a solar simulator on the survival of mouse melanoma cell lines differing in melanin content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, H.Z.; Hill, G.J.; Cieszka, K.

    These studies were designed to determine the survival of cells that vary in constitutive pigment levels after exposure to different UV wave lengths. The lamps employed emitted UVC (near monochromatic 254 nm), UVB (Philips TL01-88.7% of UV output is UVB), UVA (Philips HPW125-89% of output is at 365 nm) and Westinghouse FS20 (broad band UVB and UVA). Dish lids were used to cut off UVC in the UVB and FS20 experiments and 0.25 inch plate glass was used to cut off UVB in the UVA experiments. UVC photons interact with putative intracellular photosensitizers which in turn convert O{sub 2} tomore » active oxygen species which damage DNA to produce strand breaks, cross links and base damage. UVB acts by both mechanisms. The two cell lines studied were Cloudman S91/I3 (3.6 pg melanin/cell) and the closely related S91/amel (1.2 pg melanin/cell). Attached cells were covered with Ca{sup ++} and Mg{sup ++} free PBS and irradiated in the cold. Colonies were scored after 2 weeks. The two cell lines exhibit similar survival kinetics after UVC. S91/IE is more sensitive to killing by either UVB (TL01) or UVA. However, S91/amel cells are more sensitive to killing by UVB plus UVA (FS20). It is clear that UV of different qualities can interact to produce effects that would not be predicted based on responses to monochromatic wave lengths.« less

  12. Mismatch DNA repair mRNA expression profiles in oral melanin pigmentation lesion and hamartomatous polyp of a child with Peutz-Jeghers syndrome.

    PubMed

    Vageli, Dimitra P; Doukas, Sotirios G; Markou, Andreas

    2013-10-01

    Mismatch DNA repair (MMR) mRNA expression analysis was performed on a biopsy of oral mucosa melanin pigmentation lesion, a hamartomatous polyp and peripheral blood derived from a 12-year-old child with Peutz-Jeghers Syndrome (PJS). We present a deficient MMR system, in a PJS patient, which demonstrated low mRNA levels of hMSH6 and hPMS2 and an increasing MMR deficiency from the non-dysplastic lesion to hamartomatous polyp of PJS with a high risk of cancer. Copyright © 2013 Wiley Periodicals, Inc.

  13. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies.

    PubMed

    Abbas, Qamar; Raza, Hussain; Hassan, Mubashir; Phull, Abdul Rehman; Kim, Song Ja; Seo, Sung-Yum

    2017-09-01

    Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti-melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC 50 7.895 ± 0.24 μm) against tyrosinase as compared to the standard drug kojic acid (IC 50 16.84 ± 0.64 μm) and kinetic analyses showed that ACZ is a non-competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l-DOPA. Western blot results showed that ACZ significantly (P < 0.05) decreased the expression level of tyrosinase at 40 μm. Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (P < 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis

    PubMed Central

    McGlinchey, Ryan P.; Shewmaker, Frank; McPhie, Peter; Monterroso, Begoña; Thurber, Kent; Wickner, Reed B.

    2009-01-01

    Pmel17 is a melanocyte protein necessary for eumelanin deposition 1 in mammals and found in melanosomes in a filamentous form. The luminal part of human Pmel17 includes a region (RPT) with 10 copies of a partial repeat sequence, pt.e.gttp.qv., known to be essential in vivo for filament formation. We show that this RPT region readily forms amyloid in vitro, but only under the mildly acidic conditions typical of the lysosome-like melanosome lumen, and the filaments quickly become soluble at neutral pH. Under the same mildly acidic conditions, the Pmel filaments promote eumelanin formation. Electron diffraction, circular dichroism, and solid-state NMR studies of Pmel17 filaments show that the structure is rich in beta sheet. We suggest that RPT is the amyloid core domain of the Pmel17 filaments so critical for melanin formation. PMID:19666488

  15. Melanin-concentrating hormone in peripheral circulation in the human.

    PubMed

    Naufahu, J; Alzaid, F; Fiuza Brito, M; Doslikova, B; Valencia, T; Cunliffe, A; Murray, J F

    2017-03-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5-1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5-55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role. © 2017 Society for Endocrinology.

  16. Evidence for glycosylation as a regulator of the pigmentary system: key roles of sialyl(α2-6)gal/GalNAc-terminated glycans in melanin synthesis and transfer.

    PubMed

    Diwakar, Ganesh; Klump, Vincent; Lazova, Rossitza; Pawelek, John

    2015-08-01

    The major regulators of melanogenesis are glycoproteins, however no role for glycosylation in the pathway has yet been described. We stained skin biopsies and melanocyte-keratinocyte co-cultures with a panel of 20 lectins as oligosaccharide markers. Notably, the Elderberry Bark Lectin (EBL/SNA) stained melanocytes in both systems. EBL binds the sequence Neu5Ac(α(2-6)Gal/GalNAc)- at the termini of some oligosaccharide antennae. We used inhibitors of synthesis and/or binding of this sequence to assess effects on pigmentation. Cell culture, lectin histochemistry, siRNA transfection, and assays for dopa oxidase and melanin were carried out by standard techniques. 6'-sialyllactose, a short homolog of the sequence in question, anti-sialyltransferase 6 (ST6) siRNA, and cytidine, a sialyltransferase (ST) inhibitor, each inhibited EBL binding, melanogenesis and melanosome transfer. Unexpectedly, 3'-sialyllactose and siRNA for ST3, chosen as a negative controls, also inhibited these processes. Though strong inhibitors of melanization, none of the agents affected tyrosinase/dopa oxidase activity, indicating previously unrecognized post-tyrosinase regulation of melanization. We report for the first time that Neu5Ac (α(2-6)Gal/GalNAc)- and possibly Neu5Ac(α(2-3)Gal/GalNAc)-terminated oligosaccharides play multiple roles in melanin synthesis and transfer.

  17. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin

    PubMed Central

    Frandsen, Rasmus J. N.; Rasmussen, Silas A.; Knudsen, Peter B.; Uhlig, Silvio; Petersen, Dirk; Lysøe, Erik; Gotfredsen, Charlotte H.; Giese, Henriette; Larsen, Thomas O.

    2016-01-01

    Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/− 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies. PMID:27193384

  18. The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis.

    PubMed

    Nahon, Jean-Louis

    2006-08-01

    A number of different neuropeptides exert powerful concerted controls on feeding behavior and energy balance, most of them being produced in hypothalamic neuronal networks under stimulation by anabolic and catabolic peripheral hormones such as ghrelin and leptin, respectively. These peptide-expressing neurons interconnect extensively to integrate the multiple opposing signals that mediate changes in energy expenditure. In the present review I have summarized our current knowledge about two key peptidic systems involved in regulating appetite and energy homeostasis, the melanocortin system (alpha-MSH, agouti and Agouti-related peptides, MC receptors and mahogany protein) and the melanin-concentrating hormone system (proMCH-derived peptides and MCH receptors) that contribute to satiety and feeding-initiation, respectively, with concurrent effects on energy expenditure. I have focused particularly on recent data concerning transgenic mice and the ongoing development of MC/MCH receptor antagonists/agonists that may represent promising drugs to treat human eating disorders on both sides of the energy balance (anorexia, obesity).

  19. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles

    NASA Astrophysics Data System (ADS)

    Yi, Bo; Shen, Huifang

    2018-01-01

    Non-iridescent structural colors and lotus effect universally existing in the nature provide a great inspiration for artificially developing angle-independent and high hydrophobic structurally colored films. To this end, a facile strategy is put forward for achieving superhydrophobic structurally colored films with wide viewing angles and high visibility based on bumpy melanin-like polydopamine-coated polystyrene particles. Here, hierarchical and amorphous structures are assembled in a self-driven manner due to particles' protrusive surfaces. The superhydrophobicity of the structurally colored films, with water contact angle up to 151°, is realized by combining the hierarchical surface roughness with a dip-coating process of polydimethylsiloxane-hexane solution, while angle-independence revealed in the films is ascribed to amorphous arrays. In addition, benefited from an essential light-absorbing property and high refractive index of polydopamine, the visibility of as-prepared colored films is fundamentally enhanced. Moreover, the mechanical robustness of the films is considerably boosted by inletting 3-aminopropyltriethoxysilane. This fabrication strategy might provide an opportunity for promoting the open-air application of structurally colored coatings.

  20. Structure Characterization and Lead Detoxification Effect of Carboxymethylated Melanin Derived from Lachnum Sp.

    PubMed

    Zong, Shuai; Li, Lan; Li, Jinglei; Shaikh, Farnaz; Yang, Liu; Ye, Ming

    2017-06-01

    In the present study, an intracellular melanin, named LIM205, was separated from Lachnum YM205 mycelia and was purified on a Sephadex G-15 column. The molecular weight of LIM205 was determined as 522 Da, and its molecular formula was speculated as C 28 H 14 N 2 O 7 S. The possible chemical structure of LIM205 was determined according to the results of Fourier transform infrared (FT-IR), 1 H NMR, 13 C NMR, and pyrolysis/GC-MS analysis. With the aim to increase its water solubility, its carboxymethylated derivative, named CLIM205, was formed by the substitution of hydrogen atoms in LIM205 with one, two, and three carboxymethylate groups. FT-IR, UV, and ESI-MS analysis demonstrated that the carboxymethylate groups were conjugated onto LIM205. The lead detoxification activities of LIM205 and CLIM205 had also been investigated. In vivo test showed that both LIM205 and CLIM205 reduced the tissue lead concentration, enhanced lead excretion, and reversed lead-induced alterations in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) concentrations in mice, with CLIM205 showed better efficacy. The study indicates that LIM205 and CLIM205 have significant lead detoxification effect which will contribute to solve related problems.

  1. G2 accumulation and melanin overproduction in malignant melanocytes treated with a new nitrosourea.

    PubMed

    Buchdahl, C; Papon, J; Communal, Y; Bourges, M; Madelmont, J C

    1998-12-01

    Cystemustine (N'-(2-chloroethyl)-N-(2-(methylsulphonyl)ethyl)-N'-nitrosourea), a new anticancer chloroethylnitrosourea (CENU) is being tested in a phase II clinical trial of disseminated melanoma. The antitumour effect of this drug is mainly due to DNA damage in malignant melanocytes. Recently, we have shown that this damage can induce apoptosis in some melanoma cell lines. In others, apoptosis is not clearly observed, although there is a strong cytostatic effect. In this paper, we have characterized the cytological effect of cystemustine on murine malignant melanocytes (B16 cell line) which are resistant to apoptosis induced by this CENU. The results show that 3 days after cystemustine treatment, these melanocytes had accumulated in phase G2 of the cell cycle. There was then a strong morphological modification during a long cytostatic phase up to 30 days after treatment. During this cytostatic phase, there was uncontrolled DNA synthesis and marked swelling. Also, tyrosinase activity, melanin content and the number of mature melanosomes were greatly increased. These results suggest that when malignant melanocytes are not able to undergo apoptosis after treatment with CENU, they accumulate in G2 and this is followed by enhancement of melanogenesis.

  2. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  3. Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina.

    PubMed

    Coppin, Evelyne; Silar, Philippe

    2007-08-01

    In the filamentous fungus Podospora anserina, many pigmentation mutations map to the median region of the complex locus '14', called segment '29'. The data presented in this paper show that segment 29 corresponds to a gene encoding a polyketide synthase, designated PaPKS1, and identifies two mutations that completely or partially abolish the activity of the PaPKS1 polypeptide. We present evidence that the P. anserina green pigment is a (DHN)-melanin. Using the powerful genetic system of PaPKS1 cloning, we demonstrate that in P. anserina trans-duplicated sequences are subject to the RIP process as previously demonstrated for the cis-duplicated regions.

  4. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle

    PubMed Central

    Hassani, Oum Kaltoum; Lee, Maan Gee; Jones, Barbara E.

    2009-01-01

    Neurons containing melanin-concentrating hormone (MCH) are codistributed with neurons containing orexin (Orx or hypocretin) in the lateral hypothalamus, a peptide and region known to be critical for maintaining wakefulness. Evidence from knockout and c-Fos studies suggests, however, that the MCH neurons might play a different role than Orx neurons in regulating activity and sleep–wake states. To examine this possibility, neurons were recorded across natural sleep–wake states in head-fixed rats and labeled by using the juxtacellular technique for subsequent immunohistochemical identification. Neurons identified as MCH+ did not fire during wake (W); they fired selectively during sleep, occasionally during slow wave sleep (SWS) and maximally during paradoxical sleep (PS). As W-Off/Sleep-On, the MCH neurons discharged in a reciprocal manner to the W-On/Sleep-Off Orx neurons and could accordingly play a complementary role to Orx neurons in sleep–wake state regulation and contribute to the pathophysiology of certain sleep disorders, such as narcolepsy with cataplexy. PMID:19188611

  5. In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam.

    PubMed

    Raimondi, V; Agati, G; Cecchi, G; Gomoiu, I; Lognoli, D; Palombi, L

    2009-12-07

    An optical epifluorescence microscope, coupled to a CCD camera, a standard webcam and a microspectrofluorimeter, are used to record in vivo real-time changes in the autofluorescence of spores and hyphae in Aspergillus niger, a fungus containing melanin, while exposed to UV irradiation. The results point out major changes in both signal intensity and the spectral shape of the autofluorescence signal after only few minutes of exposure, and can contribute to the interpretation of data obtained with other fluorescence techniques, including those, such as GPF labeling, in which endogenous fluorophores constitute a major disturbance.

  6. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors.

    PubMed

    Diniz, Giovanne B; Bittencourt, Jackson C

    2017-01-01

    The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.

  7. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors

    PubMed Central

    Diniz, Giovanne B.; Bittencourt, Jackson C.

    2017-01-01

    The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration. PMID:28611599

  8. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    PubMed

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  9. [Selection of a melanine concentrating hormone receptor-1 (MCHR1) antagonists' focused library and its biological screening with AequoScreen].

    PubMed

    Flachner, Beáta; Hajdú, István; Dobi, Krisztina; Lorincz, Zsolt; Cseh, Sándor; Dormán, György

    2013-01-01

    Target focused libraries can be rapidly selected by 2D virtual screening methods from multimillion compounds' repositories if structures of active compounds are available. In the present study a multi-step virtual and in vitro screening cascade is reported to select Melanin Concentrating Hormone Receptor-1 (MCHR1) antagonists. The 2D similarity search combined with physicochemical parameter filtering is suitable for selecting candidates from multimillion compounds' repository. The seeds of the first round virtual screening were collected from the literature and commercial databases, while the seeds of the second round were the hits of the first round. In vitro screening underlined the efficiency of our approach, as in the second screening round the hit rate (8.6 %) significantly improved compared to the first round (1.9%), reaching the antagonist activity even below 10 nM.

  10. [18F]FE@SNAP—A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): Microfluidic and vessel-based approaches

    PubMed Central

    Philippe, Cécile; Ungersboeck, Johanna; Schirmer, Eva; Zdravkovic, Milica; Nics, Lukas; Zeilinger, Markus; Shanab, Karem; Lanzenberger, Rupert; Karanikas, Georgios; Spreitzer, Helmut; Viernstein, Helmut; Mitterhauser, Markus; Wadsak, Wolfgang

    2012-01-01

    Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [11C]SNAP-7941—the first PET-Tracer for the MCHR1, we aimed to synthesize its [18F]fluoroethylated analogue: [18F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [18F]fluoroethylation was conducted via various [18F]fluoroalkylated synthons and direct [18F]fluorination. Only the direct [18F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [18F]FE@SNAP in 44.3 ± 2.6%. PMID:22921745

  11. Mechanisms Relevant to the Enhanced Virulence of a Dihydroxynaphthalene-Melanin Metabolically Engineered Entomopathogen

    PubMed Central

    Tseng, Min-Nan; Chung, Chia-Ling; Tzean, Shean-Shong

    2014-01-01

    The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s) through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application. PMID:24662974

  12. Application of melanin-free ink as a new antioxidative gel enhancer in sardine surimi gel.

    PubMed

    Vate, Naveen Kumar; Benjakul, Soottawat; Agustini, Tri Winarni

    2015-08-30

    The squid ink that is discarded as waste during processing can be effectively utilised as a gel enhancer in surimi gels, especially those prepared from dark-fleshed fish which have poor gel properties. It also acts as an antioxidant, inhibiting lipid oxidation. This investigation aimed to study the effect of melanin-free ink (MFI) from splendid squid (Loligo formosana) on properties and oxidative stability of surimi gel from sardine (Sardinella albella). MFI (0-0.1 g kg(-1) surimi) increased the breaking force and deformation of sardine surimi gel in a dose-dependent manner (P < 0.05). The addition of MFI had no effect on whiteness of surimi gels (P > 0.05). The expressible moisture content of gels decreased as the levels of MFI increased (P < 0.05). Based on a microstructure study, gel added with MFI at a level of 0.08 g kg(-1) surimi was denser and finer than that of the control (without MFI). Surimi gels with MFI had lower peroxide values, thiobarbituric acid reactive substances, nonanal and 2-decenal. MFI could improve the properties of sardine surimi gel. Additionally, it was able to prevent lipid oxidation in surimi gels during refrigerated storage. © 2014 Society of Chemical Industry.

  13. The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected?

    PubMed

    Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F

    2013-01-01

    Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.

  14. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma.

    PubMed

    Klein, M; Lotem, M; Peretz, T; Zwas, S T; Mizrachi, S; Liberman, Y; Chisin, R; Schachter, J; Ron, I G; Iosilevsky, G; Kennedy, J A; Revskaya, E; de Kater, A W; Banaga, E; Klutzaritz, V; Friedmann, N; Galun, E; Denardo, G L; Denardo, S J; Casadevall, A; Dadachova, E; Thornton, G B

    2013-01-01

    There is a need for effective "broad spectrum" therapies for metastatic melanoma which would be suitable for all patients. The objectives of Phase Ia/Ib studies were to evaluate the safety, pharmacokinetics, dosimetry, and antitumor activity of (188)Re-6D2, a 188-Rhenium-labeled antibody to melanin. Stage IIIC/IV metastatic melanoma (MM) patients who failed standard therapies were enrolled in both studies. In Phase Ia, 10 mCi (188)Re-6D2 were given while unlabeled antibody preload was escalated. In Phase Ib, the dose of (188)Re-6D2 was escalated to 54 mCi. SPECT/CT revealed (188)Re-6D2 uptake in melanoma metastases. The mean effective half-life of (188)Re-6D2 was 12.4 h. Transient HAMA was observed in 9 patients. Six patients met the RECIST criteria for stable disease at 6 weeks. Two patients had durable disease stabilization for 14 weeks and one for 22 weeks. Median overall survival was 13 months with no dose-limiting toxicities. The data demonstrate that (188)Re-6D2 was well tolerated, localized in melanoma metastases, and had antitumor activity, thus warranting its further investigation in patients with metastatic melanoma.

  15. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    PubMed

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  16. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    PubMed

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH 1-19 , and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility

    PubMed Central

    Wu, Qi; Whiddon, Benjamin B.; Palmiter, Richard D.

    2012-01-01

    Leptin-deficient (Lepob/ob) mice are obese, diabetic, and infertile. Ablation of neurons that make agouti-related protein (AgRP) in moderately obese adult Lepob/ob mice caused severe anorexia. The mice stopped eating for 2 wk and then gradually recovered. Their body weight fell to within a normal range for WT mice, at which point food intake and glucose tolerance were restored to that of WT mice. Remarkably, both male and female Lepob/ob mice became fertile. Ablation of neurons that express melanin-concentrating hormone (MCH) in adult Lepob/ob mice had no effect on food intake, body weight, or fertility, but resulted in improved glucose tolerance. We conclude that AgRP-expressing neurons play a critical role in mediating the metabolic syndrome and infertility of Lepob/ob mice, whereas MCH-expressing neurons have only a minor role. PMID:22232663

  18. Ablation of Neurons Expressing Melanin-Concentrating Hormone (MCH) in Adult Mice Improves Glucose Tolerance Independent of MCH Signaling

    PubMed Central

    Whiddon, Benjamin B.; Palmiter, Richard D.

    2013-01-01

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on tudies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine–amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous PmchDTR/+ mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238

  19. Coenzyme Q(10) enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro.

    PubMed

    Zhang, M; Dang, L; Guo, F; Wang, X; Zhao, W; Zhao, R

    2012-06-01

    Coenzyme Q(10) (CoQ(10) ) is a well-known antioxidant and has been used in many skincare products for anti-ageing purpose. However, the molecular mechanisms of CoQ(10) function in skin cells are not fully understood. In this paper, we compared the effects of CoQ(10) on primary human dermal fibroblasts from three individuals, including adult. We demonstrated that CoQ(10) treatment promoted proliferation of fibroblasts, increased type IV collagen expression and reduced UVR-induced matrix metalloproteinases-1 (MMP-1) level in embryonic and adult cells. In addition, CoQ(10) treatment increased elastin gene expression in cultured fibroblasts and significantly decreased UVR-induced IL-1α production in HaCat cells. Taken together, CoQ(10) presented anti-ageing benefits against intrinsic ageing as well as photo damage. Interestingly, CoQ(10) was able to inhibit tyrosinase activity, resulting in reduced melanin content in B16 cells. Thus, CoQ(10) may have potential depigmentation effects for skincare. © 2012 Space Biology Research & Technology Center, CASC. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.

    PubMed

    Sherwood, Andrew; Holland, Peter C; Adamantidis, Antoine; Johnson, Alexander W

    2015-12-01

    Exposure to environmental cues associated with food can evoke eating behavior in the absence of hunger. This capacity for reward cues to promote feeding behaviors under sated conditions can be examined in the laboratory using cue-potentiated feeding (CPF). The orexigenic neuropeptide Melanin Concentrating Hormone (MCH) is expressed throughout brain circuitry critical for CPF. We examined whether deletion of the MCH receptor, MCH-1R, would in KO mice disrupt overeating in the presence of a Pavlovian CS+ associated with sucrose delivery. While both wild-type controls and KO mice showed comparable food magazine approach responses during the CPF test, MCH-1R deletion significantly impaired the ability of the CS+ to evoke overeating of sucrose under satiety. Through the use of a refined analysis of meal intake, it was revealed that this disruption to overeating behavior in KO mice reflected a reduction in the capacity for the CS+ to initiate and maintain bursts of licking behavior. These findings suggest that overeating during CPF requires intact MCH-1R signaling and may be due to an influence of the CS+ on the palatability of food and on regulatory mechanisms of peripheral control. Thus, disruptions to MCH-1R signaling may be a useful pharmacological tool to inhibit this form of overeating behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dynamic thermal effects of epidermal melanin and plasmonic nanoparticles during photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Quanzeng; Pfefer, T. Joshua

    2016-03-01

    Photoacoustic Tomography (PAT) employs high-power near-infrared (near-IR) laser pulses to generate structural and functional information on tissue chromophores up to several centimeters below the surface. Such insights may facilitate detection of breast cancer - the most common cancer in women. PAT mammography has been the subject of extensive research, including techniques based on exogenous agents for PAT contrast enhancement and molecular specificity. However, photothermal safety risks of PAT due to strong chromophores such as epidermal melanin and plasmonic nanoparticles have not been rigorously studied. We have used computational and experimental approaches to elucidate highly dynamic optical-thermal processes during PAT. A Monte Carlo model was used to simulate light propagation at 800 and 1064 nm in a multi-layer breast tissue geometry with different epidermal pigmentation levels and a tumorsimulating inclusion incorporating nanoparticles. Energy deposition results were then used in a bioheat transfer model to simulate temperature transients. Experimental measurements involved multi-layer hydrogel phantoms with inclusions incorporating gold nanoparticles. Phantom optical properties were measured using the inverse adding-doubling technique. Thermal imaging was performed as phantoms were irradiated with 5 ns near-IR pulses. Scenarios using 10 Hz laser irradiation of breast tissue containing various nanoparticle concentrations were implemented experimentally and computationally. Laser exposure levels were based on ANSI/IEC limits. Surface temperature measurements were compared to corresponding simulation data. In general, the effect of highly pigmented skin on temperature rise was significant, whereas unexpectedly small levels of temperature rise during nanoparticle irradiation were attributed to rapid photodegradation. Results provide key initial insights into light-tissue interactions impacting the safety and effectiveness of PAT.

  2. Enhanced biofilm formation and melanin synthesis by the oyster settlement-promoting Shewanella colwelliana is related to hydrophobic surface and simulated intertidal environment.

    PubMed

    Mitra, Sayani; Gachhui, Ratan; Mukherjee, Joydeep

    2015-01-01

    A direct relationship between biofilm formation and melanogenesis in Shewanella colwelliana with increased oyster recruitment is already established. Previously, S. colwelliana was grown in a newly patented biofilm-cultivation device, the conico-cylindrical flask (CCF), offering interchangeable hydrophobic/hydrophilic surfaces. Melanization was enhanced when S. colwelliana was cultivated in a hydrophobic vessel compared with a hydrophilic vessel. In the present study, melanogenesis in the CCF was positively correlated with increased architectural parameters of the biofilm (mean thickness and biovolume obtained by confocal laser scanning microscopy) and melanin gene (melA) expression observed by densitometry. Niche intertidal conditions were mimicked in a process operated in an ultra-low-speed rotating disk bioreactor, which demonstrated enhanced biofilm formation, melanogenesis, exopolysaccharide synthesis and melA gene expression compared with a process where 12-h periodic immersion and emersion was prevented. The wettability properties of the settling plane as well as intermittent wetting and drying, which influenced biofilm formation and melA expression, may affect oyster settlement in nature.

  3. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness.

    PubMed

    Palomba, M; Seke-Etet, P F; Laperchia, C; Tiberio, L; Xu, Y-Z; Colavito, V; Grassi-Zucconi, G; Bentivoglio, M

    2015-04-02

    Human African trypanosomiasis or sleeping sickness is a severe, neglected tropical disease caused by the extracellular parasite Trypanosoma brucei. The disease, which leads to chronic neuroinflammation, is characterized by sleep and wake disturbances, documented also in rodent models. In rats and mice infected with Trypanosoma brucei brucei, we here tested the hypothesis that the disease could target neurons of the lateral hypothalamus (LH) containing orexin (OX)-A or melanin-concentrating hormone (MCH), implicated in sleep/wake regulation. In the cerebrospinal fluid of infected rats, the OX-A level was significantly decreased early after parasite neuroinvasion, and returned to the control level at an advanced disease stage. The number of immunohistochemically characterized OX-A and MCH neurons decreased significantly in infected rats during disease progression and in infected mice at an advanced disease stage. A marked reduction of the complexity of dendritic arborizations of OX-A neurons was documented in infected mice. The evaluation of NeuN-immunoreactive neurons did not reveal significant neuronal loss in the LH of infected mice, thus suggesting a potential selective vulnerability of OX-A and MCH neurons. Immunophenotyping and quantitative analysis showed in infected mice marked activation of microglial cells surrounding OX-A neurons. Day/night oscillation of c-Fos baseline expression was used as marker of OX-A neuron activity in mice. In control animals Fos was expressed in a higher proportion of OX-A neurons in the night (activity) phase than in the day (rest) phase. Interestingly, in infected mice the diurnal spontaneous Fos oscillation was reversed, with a proportion of OX-A/Fos neurons significantly higher at daytime than at nighttime. Altogether the findings reveal a progressive decrease of OX-A and MCH neurons and dysregulation of OX-A neuron diurnal activity in rodent models of sleeping sickness. The data point to the involvement of these peptidergic

  4. Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies.

    PubMed

    Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen

    2009-05-01

    The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.

  5. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.

  6. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial part of Lespedeza cyrtobotrya.

    PubMed

    Lee, Mi Yeon; Kim, Jin Hee; Choi, Jung Nam; Kim, Jiyoung; Hwang, Geum Sook; Lee, Choonghwan

    2010-06-01

    The EtOAc fraction of Lespedeza cyrtobotrya showed mushroom tyrosinase inhibitory and radical scavenging activity. Four active compounds were isolated based on LH-20 chromatography and HPLC, and the structures were elucidated on the basis of their LC-MS and NMR spectral data, as 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4), respectively. 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1) showed mushroom tyrosinase inhibitory activity with an IC50 value of 5.2 micronM and acted as a competitive inhibitor. Furthermore, 37.3 micronM of compound 1 reduced 50 % of the melanin content on a human melanoma (MNT-1) cells. The radical scavenging activity of 2-(2,4-dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4) was shown with IC50 values of 11.0, 24.5, 9.0 and 36.5 micronM in an ABTS system and with IC50 values of 42.7, 36.0, 37.7 and 61.7 micronM in a DPPH system, respectively. The mushroom tyrosinase inhibitory activity of EtOAc fraction of Lespedeza cyrtobotrya was contributed by compound 1, 3 and 4, and radical scavenging activity of it was contributed by compound 1-4.

  7. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    PubMed

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure.

    PubMed

    Guesdon, Benjamin; Paradis, Eric; Samson, Pierre; Richard, Denis

    2009-03-01

    The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.

  9. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1.

    PubMed

    Tomoshige, Sakura; Kobayashi, Yuki; Hosoba, Kosuke; Hamamoto, Akie; Miyamoto, Tatsuo; Saito, Yumiko

    2017-11-01

    Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical

  10. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2

    PubMed Central

    Schrölkamp, Maren; Jennum, Poul J.; Gammeltoft, Steen; Holm, Anja; Kornum, Birgitte R.; Knudsen, Stine

    2017-01-01

    Study Objectives: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. Methods: Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition (ICSD-3) and 20 healthy controls. HCRT-1 and MCH levels were quantified by radioimmunoassay and correlated with clinical symptoms, polysomnography (PSG), and Multiple Sleep Latency Test (MSLT) parameters. Results: CSF and plasma MCH levels were not significantly different between narcolepsy patients regardless of ICSD-3 subtype, HCRT-1 levels, or compared to controls. CSF MCH and HCRT-1 levels were not significantly correlated. Multivariate regression models of CSF MCH levels, age, sex, and body mass index predicting clinical, PSG, and MSLT parameters did not reveal any significant associations to CSF MCH levels. Conclusions: Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH measurement is not an informative diagnostic marker for narcolepsy. Citation: Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal morning melanin

  11. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-10-18

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  12. Oestradiol decreases melanin-concentrating hormone (MCH) and MCH receptor expression in the hypothalamus of female rats.

    PubMed

    Santollo, J; Eckel, L A

    2013-06-01

    Previous studies have shown that oestradiol (E₂) decreases the orexigenic effect of melanin-concentrating hormone (MCH). In the present study, we examined whether this action of E₂ is mediated by its ability to decrease the expression of MCH or its receptor (MCHR1). Using immunocytochemistry and western blotting, we examined whether E₂ decreases MCH-immunoreactive neurones or MCHR1 protein content in the hypothalamus of female rats. We found that both MCH and MCHR1 protein expression was decreased by acute E₂ treatment in ovariectomised rats, and by the peri-ovulatory increase in circulating E₂ in pro-oestrous rats, relative to rats at other cycle stages. To determine whether these changes in MCH/MCHR1 protein expression may be mediated by E₂'s ability to directly regulate the transcription of MCH and MCHR1 genes, the effect of E₂ treatment on MCH and MCHR1 mRNA expression in a neuronal hypothalamic cell line was examined using real-time reverse transcriptase-polymerase chain reaction. We also determined whether MCH and oestrogen receptor (ER)α are co-expressed in the hypothalamus of female rats. E₂ treatment did not decrease MCH or MCHR1 mRNA expression in vitro, and no hypothalamic neurones were identified that co-expressed MCH and ERα. We conclude that E₂-dependent decreases in hypothalamic MCH/MCHR1 protein expression mediate the ability of E₂ to decrease MCH-induced feeding. The current findings suggest, however, that E₂ exerts these actions indirectly, most likely though interactions with other neuronal systems that provide afferent input to MCH and MCHR1 neurones. © 2013 British Society for Neuroendocrinology.

  13. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    PubMed

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  14. Cinnamomum cassia Essential Oil Inhibits α-MSH-Induced Melanin Production and Oxidative Stress in Murine B16 Melanoma Cells

    PubMed Central

    Chou, Su-Tze; Chang, Wen-Lun; Chang, Chen-Tien; Hsu, Shih-Lan; Lin, Yu-Che; Shih, Ying

    2013-01-01

    Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for the development of aromatherapy for complementary and alternative medicine. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties; however, little information is available regarding its anti-tyrosinase and anti-melanogenic activities. In this study, 16 compounds in the CC-EO have been identified; the major components of this oil are cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%). CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities; however, cis-2-methoxycinnamic acid did not demonstrate tyrosinase inhibitory activity. In murine B16 melanoma cells stimulated with α-melanocyte-stimulating hormone (α-MSH), CC-EO and cinnamaldehyde not only reduced the melanin content and tyrosinase activity of the cells but also down-regulated tyrosinase expression without exhibiting cytotoxicity. Moreover, CC-EO and cinnamaldehyde decreased thiobarbituric acid-reactive substance (TBARS) levels and restored glutathione (GSH) and catalase activity in the α-MSH-stimulated B16 cells. These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase and anti-melanogenic activities that are coupled with antioxidant properties. Therefore, CC-EO may be a good source of skin-whitening agents and may have potential as an antioxidant in the future development of complementary and alternative medicine-based aromatherapy. PMID:24051402

  15. Imaging melanin cancer growth in-vivo using raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz and 100 MHz

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Schwarz, Mathias; Soliman, Dominik; Symvoulidis, Panagiotis; Ntziachristos, Vasilis

    2016-03-01

    We used raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz, and at 100 MHz, to monitor tumor growth, and tumor angiogenesis, which is a central hallmark of cancer, in-vivo. In this study we compared the performance, and the effect of the 50 MHz, and the 100 MHz frequencies on the quality of the final image. The system is based on a reflection-mode implementation of RSOM. The detectors used are custom made, ultrawideband, and spherically focused. The use of such detectors enables light coupling from the same side as the detector, thus reflection-mode. Light is in turn coupled using a fiber bundle, and the detector is raster scanned in the xy-plane. Subsequently, to retrieve small features, the raw data are reconstructed using a multi-bandwidth, beamforming reconstruction algorithm. Comparison of the system performance at the different frequencies shows as expected a higher resolution in case of the 100 MHz detector compared to the 50 MHz. On the other hand the 50 MHz has a better SNR, can detect features from deeper layers, and has higher angular acceptance. Based on these characteristics the 50 MHz detector was mostly used. After comparing the performance we monitored the growth of B16F10 cells, melanin tumor, over the course of 9 days. We see correspondence between the optoacoustic measurements and the cryoslice validations. Additionally, in areas close to the tumor we see sprouting of new vessels, starting at day 4-5, which corresponds to tumor angiogenesis.

  16. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist.

    PubMed

    Gennemark, P; Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M

    2017-07-01

    In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non-parametric input estimation (e.g., predicting energy intake from longitudinal body-weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose-prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  17. The Role of L-DOPA on Melanization and Mycelial Production in Malassezia Furfur

    PubMed Central

    Youngchim, Sirida; Nosanchuk, Joshua D.; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch

    2013-01-01

    Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization. PMID:23762233

  18. The role of L-DOPA on melanization and mycelial production in Malassezia furfur.

    PubMed

    Youngchim, Sirida; Nosanchuk, Joshua D; Pornsuwan, Soraya; Kajiwara, Susumu; Vanittanakom, Nongnuch

    2013-01-01

    Melanins are synthesized by organisms of all biological kingdoms and comprise a heterogeneous class of natural pigments. Certain of these polymers have been implicated in the pathogenesis of several important human fungal pathogens. This study investigated whether the fungal skin pathogen Malassezia furfur produces melanin or melanin-like compounds. A melanin-binding monoclonal antibody (MAb) labelled in vitro cultivated yeast cells of M. furfur. In addition, melanization of Malassezia yeasts and hyphae was detected by anti-melanin MAb in scrapings from patients with pityriasis versicolor. Treatment of Malassezia yeasts with proteolytic enzymes, denaturant and concentrated hot acid yielded dark particles and electron spin resonance spectroscopy revealed that these particles contained a stable free radical compound, consistent with their identification as melanins. Malassezia yeasts required phenolic compounds, such as L-DOPA, in order to synthesize melanin. L-DOPA also triggered hyphal formation in vitro when combined with kojic acid, a tyrosinase inhibitor, in a dose-dependent manner. In this respect, L-DOPA is thought to be an essential substance that is linked to both melanization and yeast-mycelial transformation in M. furfur. In summary, M. furfur can produce melanin or melanin-like compounds in vitro and in vivo, and the DOPA melanin pathway is involved in cell wall melanization.

  19. Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi.

    PubMed

    Franzen, Anderson J; Cunha, Marcel M L; Miranda, Kildare; Hentschel, Joachim; Plattner, Helmut; da Silva, Moises B; Salgado, Claudio G; de Souza, Wanderley; Rozental, Sonia

    2008-04-01

    Melanin is a complex polymer widely distributed in nature and has been described as an important virulence factor in pathogenic fungi. In the majority of fungi, the mechanism of melanin formation remains unclear. In Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis, melanin is stored in intracellular vesicles, named melanosomes. This paper details the ultrastructural aspects of melanin formation, its storage and transportation to the cell wall in the human pathogenic fungus F. pedrosoi. In this fungus, melanin synthesis within melanosomes also begins with a fibrillar matrix formation, displaying morphological and structural features similar to melanosomes from amphibian and mammalian cells. Silver precipitation based on Fontana-Masson technique for melanin detection and immunocytochemistry showed that melanosome fuses with fungal cell membrane where the melanin is released and reaches the cell wall. Melanin deposition in the fungal cell wall occurs in concentric layers. Antibodies raised against F. pedrosoi melanin revealed the sites of melanin production and storage in the melanosomes. In addition, a preliminary description of the elemental composition of this organelle by X-ray microanalysis and elemental mapping revealed the presence of calcium, phosphorus and iron concentrated in its matrix, suggesting a new functional role for these organelles as iron storage compartments.

  20. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats.

    PubMed

    Pérez-Morales, Marcel; De La Herrán-Arita, Alberto K; Méndez-Díaz, Mónica; Ruiz-Contreras, Alejandra E; Drucker-Colín, René; Prospéro-García, Oscar

    2013-07-01

    Orexins/hypocretins (OX) and melanin-concentrating hormone (MCH) neurons located in the lateral hypothalamus seem to modulate different stages of the sleep-wake cycle. OX are necessary for wakefulness and MCH appears to regulate rapid eye movement sleep (REMS). Likewise, endocannabinoids, the endogenous ligands for cannabinoid receptors 1 and 2 (CB1R, CB2R), also modulate REMS in rats. Moreover, it has been shown that the activation of the CB1R in the lateral hypothalamus of rats excites MCH neurons while inhibiting OX neurons in in vitro preparations. Hence, we assessed the effects of 2-arachidonoylglicerol (2-AG, an endocannabinoid) in the lateral hypothalamus on the sleep-wake cycle of rats. We also utilized the CB1R inverse agonist AM251 to further support the involvement of this receptor, and we performed double immunofluorescence experiments to detect c-Fos, as a marker of neural activation, in OX and in MCH neurons to determine which neurons were activated. Our results indicate that 2-AG increases REMS through CB1R activation, and increases c-Fos expression in MCH neurons. These results suggest that endocannabinoid activation of the CB1R in the lateral hypothalamus, which activates MCH neurons, is one mechanism by which REMS is triggered. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Melanin concentrating hormone (MCH) is involved in the regulation of growth hormone in Cichlasoma dimerus (Cichlidae, Teleostei).

    PubMed

    Pérez Sirkin, D I; Cánepa, M M; Fossati, M; Fernandino, J I; Delgadin, T; Canosa, L F; Somoza, G M; Vissio, P G

    2012-03-01

    Growth hormone (GH) is the main pituitary hormone involved in somatic growth. In fish, the neuroendocrine control of GH is multifactorial due to the interaction of multiple inhibitors and stimulators. Melanin-concentrating hormone (MCH) is a cyclic peptide involved in skin color regulation of fish. In addition, MCH has been related to the regulation of food intake in both mammals and fish. There is only one report presenting evidences on the GH release stimulation by MCH in mammals in experiments in vitro, but there are no data on non-mammals. In the present work, we report for the first time the sequence of MCH and GH cDNA in Cichlasoma dimerus, a freshwater South American cichlid fish. We detected contacts between MCH fibers and GH cells in the proximal pars distalis region of the pituitary gland by double label confocal immunofluorescence indicating a possible functional relationship. Besides, we found that MCH increased GH transcript levels and stimulated GH release in pituitary cultures. Additionally, C. dimerus exposed to a white background had a greater number of MCH neurons with a larger nuclear area and higher levels of MCH transcript than those fish exposed to a black background. Furthermore, fish reared for 3 months in a white background showed a greater body weight and total length compared to those from black background suggesting that MCH might be related to somatic growth in C. dimerus. Our results report for the first time, that MCH is involved in the regulation of the synthesis and release of GH in vitro in C. dimerus, and probably in the fish growth rate. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia

    PubMed Central

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Study Objectives Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Methods Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. Results A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Conclusions Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke. PMID:28061506

  3. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    PubMed

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Tracking the formation of eumelanin from L-Dopa using coupled measurements

    NASA Astrophysics Data System (ADS)

    Yip, Philip; Sutter, Jens U.

    2018-04-01

    Melanin plays a crucial role as a pigment all through the animal kingdom. Being a macromolecule just on the divide between an ordered crystalline or a purely amorphous form melanin has proven a challenge to structure-function analysis. Melanin assembles from small molecules much like a jigsaw and much like in a jigsaw the fine detail quickly vanishes in the overall picture. With melanin being first and foremost a photo-active molecule we focus on spectral properties for the characterisation of its structure. We use absorption measurements to illustrate the complex nature of the formation process. To gain a better hold on the formation pathway we use coupled measurements of excitation and emission to identify ‘areas of interest’ in the excitation-emission matrix (EEM). We then probe one area for characteristic fluorescence lifetimes to track one melanin building block through the formation process. Comparison of the EEMs of L-Dopa derived melanin with natural Sepia melanin shows characteristic differences. We show how the presence of copper ions creates a melanin closer to its natural form.

  5. The Microphthalmia Transcription Factor (Mitf) Controls Expression of the Ocular Albinism Type 1 Gene: Link between Melanin Synthesis and Melanosome Biogenesis

    PubMed Central

    Vetrini, Francesco; Auricchio, Alberto; Du, Jinyan; Angeletti, Barbara; Fisher, David E.; Ballabio, Andrea; Marigo, Valeria

    2004-01-01

    Melanogenesis is the process that regulates skin and eye pigmentation. Albinism, a genetic disease causing pigmentation defects and visual disorders, is caused by mutations in genes controlling either melanin synthesis or melanosome biogenesis. Here we show that a common transcriptional control regulates both of these processes. We performed an analysis of the regulatory region of Oa1, the murine homolog of the gene that is mutated in the X-linked form of ocular albinism, as Oa1's function affects melanosome biogenesis. We demonstrated that Oa1 is a target of Mitf and that this regulatory mechanism is conserved in the human gene. Tissue-specific control of Oa1 transcription lies within a region of 617 bp that contains the E-box bound by Mitf. Finally, we took advantage of a virus-based system to assess tissue specificity in vivo. To this end, a small fragment of the Oa1 promoter was cloned in front of a reporter gene in an adeno-associated virus. After we injected this virus into the subretinal space, we observed reporter gene expression specifically in the retinal pigment epithelium, confirming the cell-specific expression of the Oa1 promoter in the eye. The results obtained with this viral system are a preamble to the development of new gene delivery approaches for the treatment of retinal pigment epithelium defects. PMID:15254223

  6. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction.

    PubMed

    Wu, Min; Dumalska, Iryna; Morozova, Elena; van den Pol, Anthony; Alreja, Meenakshi

    2009-10-06

    A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.

  7. The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle

    PubMed Central

    Santollo, Jessica; Eckel, Lisa A.

    2008-01-01

    Recently, it was shown that that the orexigenic effect of melanin concentrating hormone (MCH) is attenuated by estradiol treatment in ovariectomized (OVX) rats. This suggests that female rats may be less responsive than male rats to the behavioral effects of MCH. To investigate this hypothesis, the effects of lateral ventricular infusions of MCH on food intake, water intake, meal patterns, and running wheel activity were examined in male and female rats. To further characterize the impact of estradiol on MCH-induced food intake, female rats were OVX and tested with and without 17-β-estradiol benzoate (EB) replacement. In support of our hypothesis, food and water intakes following MCH treatment were greater in male rats, relative to female rats. Specifically, the orexigenic effect of MCH was maximal in male rats and minimal in EB-treated OVX rats. In both sexes, the orexigenic effect of MCH was mediated by a selective increase in meal size, which was attenuated in EB-treated OVX rats. MCH induced a short-term (2 h) decrease in wheel running that, unlike its effects on ingestive behavior, was similar in males and females. Thus, estradiol decreases some, but not all, of the behavioral effects of MCH. To examine the influence of endogenous estradiol, food intake was monitored following MCH treatment in ovarian-intact, cycling rats. As predicted by our findings in OVX rats, the orexigenic effect of MCH was attenuated in estrous rats, relative to diestrous rats. We conclude that the female rat’s reduced sensitivity to the orexigenic effect of MCH may contribute to sex- and estrous cycle-related differences in food intake. PMID:18191424

  8. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    PubMed

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  9. 2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: a nonphysiological substrate for fungal melanin biosynthetic enzymes.

    PubMed

    Thompson, J E; Basarab, G S; Pierce, J; Hodge, C N; Jordan, D B

    1998-02-01

    We have synthesized an alternate substrate for trihydroxynaphthalene reductase (3HNR) and scytalone dehydratase (SD), two enzymes in the fungal melanin biosynthetic pathway. The oxidation of 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO) to 4,5-dihydroxy-2H-benzopyran-2-one (DBO) with concomitant reduction of NADP+ is catalyzed by 3HNR. DDBO is dehydrated by SD to 5-hydroxy-4H-1-benzopyran-4-one (HBO). These reactions can be monitored using continuous spectrophotometric assays. DDBO race-mizes rapidly, so chiral synthesis to mimic the natural substrate is not required. DDBO, DBO, and HBO are stable in aerated aqueous solution, in contrast to the rapidly autooxidizing trihydroxynaphthalene, a physiological substrate for 3HNR and product of SD. Unlike the natural substrates, DDBO, DBO, and HBO do not change protonation state between pH's 4 and 9. Oxidation of DDBO is effectively irreversible at pH 7, as DBO deprotonates with a pKa of 2.5. At pH 7.0 and 25 degrees C, the kcat for 3HNR catalyzed DDBO oxidation is 14 s-1 and the K(m) is 5 microM; the kcat for SD catalyzed DDBO dehydration is 400 s-1 and the K(m) is 15 microM. Based on these kinetic constants, DDBO is a better substrate than the natural substrate scytalone for both 3HNR and SD at neutral pH. An explanation for the preference of DDBO over scytalone in the oxidation and dehydration reactions is offered.

  10. Effect of Melanin Free Ink Extracted From Squid (Loligo sp.) on Proximate and Sensory Characteristics of Soft-Bone Milkfish (Chanos chanos) During Storage

    NASA Astrophysics Data System (ADS)

    Winarni Agustini, Tri; Hadiyanto; Wijayanti, Ima; Amalia, Ulfah; Benjakul, Soottawat

    2018-02-01

    Antioxidant could be extracted and isolated from squid inks. Squid ink in the form of melanin free ink (MFI) could be act as an electron donor which can stabilize free radicals in lipid oxidation. This study was carried out to assess the antioxidant activity of squid inks converted into MFI in different dilution and to optimize the extraction conditions for the application of MFI as an antioxidative agent on fish product. Three different types of MFI extracts i.e : pure squid ink, squid ink with 5 times dilution and squid ink with 10 times dilutions by using cooled ionized water (4°C). The ink was then centrifuged at 18.000 x g for 30 minutes at cooled centrifuge (4°C) followed by DPPH analysis. The results showed that the IC50 of MFI extracts were 2.84 ppm; 1.11 ppm and 0.34 ppm, respectively (p < 0.05). The results indicated that squid ink with 10 times dilution in extraction of MFI had the highest value in free radical inhibitory. Although the IC50 of three different dilutions are equally low, and are considered as very strong antioxidative agent, however, it showed that the MFI extracted from squid ink had the ability to prevent free radical

  11. [Normal and abnormal skin color].

    PubMed

    Ortonne, J-P

    2012-11-01

    The varieties of normal skin color in humans range from people of "no color" (pale white) to "people of color" (light brown, dark brown, and black). Skin color is a blend resulting from the skin chromophores red (oxyhaemoglobin), blue (deoxygenated haemoglobin), yellow-orange (carotene, an exogenous pigment), and brown (melanin). Melanin, however, is the major component of skin color ; it is the presence or absence of melanin in the melanosomes in melanocytes and melanin in keratinocytes that is responsible for epidermal pigmentation, and the presence of melanin in macrophages or melanocytes in the dermis that is responsible for dermal pigmentation. Two groups of pigmentary disorders are commonly distinguished: the disorders of the quantitative and qualitative distribution of normal pigment and the abnormal presence of exogenous or endogenous pigments in the skin. The first group includes hyperpigmentations, which clinically manifest by darkening of the skin color, and leukodermia, which is characterized by lightening of the skin. Hypermelanosis corresponds to an overload of melanin or an abnormal distribution of melanin in the skin. Depending on the color, melanodermia (brown/black) and ceruloderma (blue/grey) are distinguished. Melanodermia correspond to epidermal hypermelanocytosis (an increased number of melanocytes) or epidermal hypermelanosis (an increase in the quantity of melanin in the epidermis with no modification of the number of melanocytes). Ceruloderma correspond to dermal hypermelanocytosis (abnormal presence in the dermis of cells synthesizing melanins) ; leakage in the dermis of epidermal melanin also exists, a form of dermal hypermelanosis called pigmentary incontinence. Finally, dyschromia can be related to the abnormal presence in the skin of a pigment of exogenous or endogenous origin. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Syntheses of precursors and reference compounds of the melanin-concentrating hormone receptor 1 (MCHR1) tracers [¹¹C]SNAP-7941 and [¹⁸F]FE@SNAP for positron emission tomography.

    PubMed

    Schirmer, Eva; Shanab, Karem; Datterl, Barbara; Neudorfer, Catharina; Mitterhauser, Markus; Wadsak, Wolfgang; Philippe, Cécile; Spreitzer, Helmut

    2013-09-30

    The MCH receptor has been revealed as a target of great interest in positron emission tomography imaging. The receptor's eponymous substrate melanin-concentrating hormone (MCH) is a cyclic peptide hormone, which is located predominantly in the hypothalamus with a major influence on energy and weight regulation as well as water balance and memory. Therefore, it is thought to play an important role in the pathophysiology of adiposity, which is nowadays a big issue worldwide. Based on the selective and high-affinity MCH receptor 1 antagonist SNAP-7941, a series of novel SNAP derivatives has been developed to provide different precursors and reference compounds for the radiosyntheses of the novel PET radiotracers [(11)C]SNAP-7941 and [(18)F]FE@SNAP. Positron emission tomography promotes a better understanding of physiologic parameters on a molecular level, thus giving a deeper insight into MCHR1 related processes as adiposity.

  13. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-08-01

    Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors.

  14. Skin colour, skin redness and melanin biometric measurements: comparison study between Antera(®) 3D, Mexameter(®) and Colorimeter(®).

    PubMed

    Matias, Ana Rita; Ferreira, Marta; Costa, Paulo; Neto, Patrícia

    2015-08-01

    The actual skin colorimeters analyse reflect values from a limited number of broad spectral bands and consequently present limited reproducibility and specificity when measuring skin colour. Here, Antera 3D(®) , a new device which uses reflectance mapping of seven different light wavelengths spanning the entire visible spectrum, has been compared with Mexameter(®) MX-18, an established narrow-band reflectance spectrophotometer and with Colorimeter(®) CL-400, an established tristimulus colorimetric instrument. Thirty volunteers were exposed to a controlled ultra-violet B light. Measurements with Antera 3D(®) , Mexameter(®) MX-18 and Colorimeter(®) CL-400 were done before treatment and after 2, 7 and 14 days. Antera 3D(®) showed to have a better sensitivity and specificity than Mexameter(®) MX-18 regarding the melanin parameter. A similar sensitivity between Antera 3D(®) and Mexameter(®) MX-18 was found for erythema determination and also for the Commission Internationale de l'Eclairage L*, a* and b* parameters between Antera 3D(®) and Colorimeter(®) CL-400. Good correlations were observed for all the parameters analysed. Repeatability of Mexameter(®) MX-18 and Colorimeter(®) CL-400 values were lower than that of Antera 3D(®) for all the parameters analysed. Antera 3D(®) , such as Mexameter(®) MX-18 and Colorimeter(®) CL-400, are robust, sensitive and precise equipment for the skin colour analysis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Melanosome degradation: fact or fiction.

    PubMed

    Borovanský, Jan; Elleder, Milan

    2003-06-01

    Our mini review summarizes what is known about the (bio)degradation of melanosomes. Unlike melanosome biogenesis where our knowledge enables us to explain it in molecular terms posing many interesting questions on the relation between lysosomes and melanosomes, melanosome degradation has remained 'terra incognita'. Observations at optical and ultrastructural levels describe the disintegration of melanosomes in the lysosomal compartment (in auto- and heterophagosomes). Histochemical studies suggest the participation of acid hydrolases in the process of melanosome degradation. Biochemical data confirm the ability of lysosomal hydrolases to degrade melanosome constituents except the melanin moiety. The similarity of melanin structure to that of polycyclic aromatic hydrocarbons suggests that melanin should be sensitive mainly, if not exclusively, to oxidative breakdown. In vitro melanin can indeed be decomposed by an oxidative attack and the degradation is accompanied by fluorescence and decreasing absorbance. From enzymes engaged in the biotransformation of polycyclic hydrocarbons only phagosomal NADPH oxidase meets the criteria (particularly as for compartmental and catalytic properties) to be involved in melanin biodegradation. The in vivo biodegradation of melanin has so far been clearly demonstrated in Aspergillus and fungi melanins.

  16. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    NASA Astrophysics Data System (ADS)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  17. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo.

    PubMed

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V; Roberts, Michael S

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  18. [18F]MEL050 as a melanin-targeted PET tracer: Fully automated radiosynthesis and comparison to 18F-FDG for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases.

    PubMed

    Rizzo-Padoin, Nathalie; Chaussard, Michael; Vignal, Nicolas; Kotula, Ewa; Tsoupko-Sitnikov, Vadim; Vaz, Sofia; Hontonnou, Fortune; Liu, Wang-Qing; Poyet, Jean-Luc; Vidal, Michel; Merlet, Pascal; Hosten, Benoit; Sarda-Mantel, Laure

    2016-12-01

    Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. MEL050 is a synthetic benzamide-derived molecule that specifically binds to melanin with high affinity. Our aim was to implement a fully automated radiosynthesis of [ 18 F]MEL050, using for the first time, the AllInOne™ synthesis module (Trasis), and to evaluate the potential of [ 18 F]MEL050 for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases, and to compare it with that of [ 18 F]FDG. Automated radiosynthesis of [ 18 F]MEL050, including HPLC purification and formulation, were performed on an AllInOne™ synthesis module. [ 18 F]MEL050 was synthesized using a one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumor) or intravenous (pulmonary metastases) injection of B16-F10-luc2 cells in NMRI mice. The maximum percentage of [ 18 F]MEL050 Injected Dose per g of lung tissue (%ID/g Max) was determined on PET images, compared to [ 18 F]FDG and correlated to in vivo bioluminescence imaging. The automated radiosynthesis of [ 18 F]MEL050 required an overall radiosynthesis time of 48min, with a yield of 13-18% (not-decay corrected) and radiochemical purity higher than 99%. [ 18 F]MEL050 PET/CT images were concordant with bioluminescence imaging, showing increased radiotracer uptake in all primary subcutaneous tumors and pulmonary metastases of mice. PET quantification of radiotracers uptake in tumors and muscles demonstrated similar tumor-to-background ratio (TBR) with [ 18 F]MEL050 and [ 18 F]FDG in subcutaneous tumors and higher TBR with [ 18 F]MEL050 than with [ 18 F]FDG in pulmonary metastases. We successfully implemented the radiosynthesis of [ 18 F]MEL050 using the AllInOne™ module, including HPLC purification and formulation. In vivo PET/CT validation of [ 18 F]MEL050 was obtained in mouse models of pigmented melanoma, where higher [ 18 F]MEL050 uptake was observed

  19. Melanin nanoparticles derived from a homology of medicine and food for sentinel lymph node mapping and photothermal in vivo cancer therapy.

    PubMed

    Chu, Maoquan; Hai, Wangxi; Zhang, Zheyu; Wo, Fangjie; Wu, Qiang; Zhang, Zefei; Shao, Yuxiang; Zhang, Ding; Jin, Lu; Shi, Donglu

    2016-06-01

    The use of non-toxic or low toxicity materials exhibiting dual functionality for use in sentinel lymph node (SLN) mapping and cancer therapy has attracted considerable attention during the past two decades. Herein, we report that the natural black sesame melanin (BSM) extracted from black sesame seeds (Sesamum indicum L.) shows exciting potential for SLN mapping and cancer photothermal therapy. Aqueous solutions of BSM under neutral and alkaline conditions can assemble into sheet-like nanoparticles ranging from 20 to 200 nm in size. The BSM nanoparticles were encapsulated by liposomes to improve their water solubility and the encapsulated and bare BSM nanoparticles were both non-toxic to cells. Furthermore, the liposome-encapsulated BSM nanoparticles (liposome-BSM) did not exhibit any long-term toxicity in mice. The liposome-BSM nanoparticles were subsequently used to passively target healthy and tumor-bearing mice SLNs, which were identified by the black color of the nanoparticles. BSM also strongly absorbed light in the near-infrared (NIR) range, which was rapidly converted to heat energy. Human esophagus carcinoma cells (Eca-109) were killed efficiently by liposome-BSM nanocomposites upon NIR laser irradiation. Furthermore, mouse tumor tissues grown from Eca-109 cells were seriously damaged by the photothermal effects of the liposome-BSM nanocomposites, with significant tumor growth suppression compared with controls. Given that BSM is a safe and nutritious biomaterial that can be easily obtained from black sesame seed, the results presented herein represent an important development in the use of natural biomaterials for clinical SLN mapping and cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human

    PubMed Central

    Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á.; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik

    2015-01-01

    Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections. PMID:26388735

  1. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52.

    PubMed

    Mier, Walter; Kratochwil, Clemens; Hassel, Jessica C; Giesel, Frederik L; Beijer, Barbro; Babich, John W; Friebe, Matthias; Eisenhut, Michael; Enk, Alexander; Haberkorn, Uwe

    2014-01-01

    The performance of cytotoxic drugs is defined by their selectivity of uptake and action in tumor tissue. Recent clinical responses achieved by treating metastatic malignant melanoma with therapeutic modalities based on gene expression profiling showed that malignant melanoma is amenable to systemic treatment. However, these responses are not persistent, and complementary targeted treatment strategies are required for malignant melanoma. Here we provide our experience with different labeling procedures for the radioiodination of benzamides and report on initial dosimetry data and the first therapeutic application of (131)I-BA52, a novel melanin-binding benzamide in patients with metastatic malignant melanoma. Twenty-six adults with histologically documented metastasized malignant melanoma received a single dose of 235 ± 62 MBq of (123)I-BA52 for planar and SPECT/CT imaging. Nine patients were selected for radionuclide therapy and received a median of 4 GBq (minimum, 0.51 GBq; maximum, 6.60 GBq) of the β-emitting radiopharmaceutical (131)I-BA52. A trimethyltin precursor-based synthesis demonstrated high radiochemical yields in the large-scale production of radioiodinated benzamides required for clinical application. (123)I-BA52 showed specific uptake and long-term retention in tumor tissue with low transient uptake in the excretory organs. In tumor tissue, a maximum dose of 12.2 Gy per GBq of (131)I-BA52 was calculated. The highest estimated dose to a normal organ was found for the lung (mean, 3.1 Gy/GBq). No relevant acute or mid-term toxicity was observed with the doses administered until now. Even though dosimetric calculations reveal that the doses applied in this early phase of clinical application can be significantly increased, we observed antitumor effects with follow-up imaging, and single patients of the benzamide-positive cohort of patients (3/5 of the patients receiving a dose > 4.3 GBq) demonstrated a surprisingly long survival of more than 2 y. These

  2. Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru; Inagaki, Mizuho; Suzuki, Tohru

    2015-03-01

    4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. An electrochemical study of natural and chemically controlled eumelanin

    NASA Astrophysics Data System (ADS)

    Xu, Ri; Prontera, Carmela Tania; Di Mauro, Eduardo; Pezzella, Alessandro; Soavi, Francesca; Santato, Clara

    2017-12-01

    Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions.

  4. On the possible origin of bulk third harmonic generation in skin cells

    NASA Astrophysics Data System (ADS)

    Su, Tung-Yu; Liao, Chien-Sheng; Yang, Chih-Yuan; Zhuo, Guan-Yu; Chen, Szu-Yu; Chu, Shi-Wei

    2011-09-01

    We studied third harmonic generation (THG) of melanin solution with concentrations similar to melanocytes in human skin. In contrast to conventional observation of THG at interface, bulk THG was detected inside the solution due to the formation of melanin hydrocolloids. A linear relationship between melanin concentration and THG intensity was found, suggesting THG originated from high-order hyper-Rayleigh scattering. By fitting this linear relationship, third-order hyperpolarizability of melanin hydrocolloids was determined to be three orders larger than that of water. Our result will be useful for interpretation of THG signals in skin and other tissues containing colloidal particles.

  5. Autolytic enzymes are responsible for increased melanization of carbon stressed Aspergillus nidulans cultures.

    PubMed

    Szilágyi, Melinda; Anton, Fruzsina; Pócsi, István; Emri, Tamás

    2018-05-01

    Melanization of carbon stressed Aspergillus nidulans cultures were studied. Melanin production showed strong positive correlation with the activity of the secreted chitinase and ß-1,3-glucanase. Deletion of either chiB encoding an autolytic endochitinase or engA encoding an autolytic ß-1,3-endoglucanase, or both, almost completely prevented melanization of carbon stressed cultures. In contrast, addition of Trichoderma lyticase to cultures induced melanin production. Synthetic melanin could efficiently inhibit the purified ChiB chitinase activity. It could also efficiently decrease the intensity of hyphal fragmentation and pellet disorganization in Trichoderma lyticase treated cultures. Glyphosate, an inhibitor of L-3,4-dihydroxyphenylalanine-type melanin synthesis, could prevent melanization of carbon-starved cultures and enhanced pellet disorganization, while pyroquilon, a 1,8-dihydroxynaphthalene-type melanin synthesis inhibitor, enhanced melanization, and prevented pellet disorganization. We concluded that cell wall stress induced by autolytic cell wall hydrolases was responsible for melanization of carbon-starved cultures. The produced melanin can shield the living cells but may not inhibit the degradation and reutilization of cell wall materials of dead hyphae. Controlling the activity of autolytic hydrolase production can be an efficient approach to prevent unwanted melanization in the fermentation industry, while applying melanin synthesis inhibitors can decrease the resistance of pathogenic fungi against the chitinases produced by the host organism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Zhang, Lei

    2017-02-01

    Melanosome is an organelle for synthesis, storage and transport the melanin, a major intrinsic pigment. In retinal pigmented epithelium (RPE), it is generally accepted that melanosome plays a critical photoprotective role, and it has been shown that that loss of melanin from RPE could be an early event towards age-related macular degeneration (AMD). Meanwhile, melanosome is also the major contributor to the optical properties of RPE, due to its high refractive index and the strong optical absorption of melanin. Therefore, a characterization and understanding the optical properties of melanin is of great interest to relate the physical and chemical changes of melanosomes, and their fundamental roles in RPE-related retinal diseases such as AMD. Here, we present a theoretical study to characterize the full optical properties of melanosomes. We modeled melanosomes as uniformly melanin filled spheroids, based on their morphology under transmission electron microscopy. T-matrix method was used to simulate the wavelength dependent total scattering, backscattering, absorption cross sections, and anisotropy factor. We verified our simulation on backscattering cross section of melanosome by comparing optical coherence tomography taken in visible and NIR ranges. In addition, we studied the changes of the optical properties of melanosomes on melanin bleaching. The results suggested a spectroscopic mechanism for optical detection of melanin loss by inverse spectroscopic optical coherence tomography.

  7. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  8. Stress alters asenapine-induced Fos expression in the Meynert's nucleus: response of adjacent hypocretin and melanin-concentrating hormone neurons in rat.

    PubMed

    Majercikova, Z; Kiss, A

    2016-01-01

    Asenapine (ASE), an atypical antipsychotic drug used in the treatment of schizophrenia, induces Fos expression in forebrain. Effect of ASE on activity of basal nucleus of Meynert (NBM) cells, a part of the striatal-cortical circuits, was studied. We were also interested to reveal whether a chronic unpredictable variable mild stress (CMS) preconditioning might affect the ASE impact. Rats were divided into as follows: controls-vehicle, controls-ASE, stressed-vehicle and stressed-ASE groups. CMS included restrain, social isolation, crowding, swimming and cold applied for 21 days. On the 22nd day, rats were subcutaneously injected with ASE (0.3 mg/kg) or vehicle (saline 300 μl/rat), 90 min prior euthanizing. After transcardial fixation, brains were cut into 30 μm thick coronal sections. Fos protein presence, as indicator of cell activity, was detected by ABC immunohistochemistry. Hypocretin (Hcrt) and melanin-concentrating hormone (MCH) containing cells were visualized with fluorescent dyes. ASE induced significant increase in Fos expression in NBM in both controls and CMS preconditioned rats in comparison with the related vehicle-treated controls. CMS preconditioning, however, significantly lowered the Fos response to ASE in NBM. From Hrct and MCH cells, only Hcrt ones displayed Fos presence in response to ASE. This study demonstrates for the first time that ASE may target a special group of cells occupying NBM, which effect can be modulated by CMS preconditioning. This finding extends a view that ASE impact may extend beyond the classical forebrain target areas common for the action of all antipsychotics and might be helpful in the identification of sites and side effects of its therapeutic actions.

  9. The effect of melanin-free extract from Sepia esculenta ink on lipid peroxidation, protein oxidation and water-holding capacity of tilapia fillet during cold storage.

    PubMed

    Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun

    2018-03-14

    Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.

  10. Vitamin D Levels and Related Genetic Polymorphisms, Sun Exposure, Skin Color, and Risk of Aggressive Prostate Cancer

    DTIC Science & Technology

    2011-07-01

    sun exposure, and dietary calcium and vitamin D intake are ascertained. Finally, the melanin content of the skin is measured using a skin reflectance...meter called a Dermaspectrometer, to measure baseline skin melanin content, which is known to inhibit vitamin D synthesis from sunlight. This...three hospitals in Chicago, along with demographic and medical information, BMI, and skin melanin content using a portable narrow-band reflectometer

  11. Effects of Noise on Hearing International Symposium (5th) Held in Gothenburg, Sweden on May 12-14, 1994

    DTIC Science & Technology

    1994-05-14

    in the stria vascularis. (Supported by the Research Service of the Veterans Administration and NIDCD grant DC00139.) MELANIN IN THE NORMAL AND NOISE...DAMAGED COCHLZA Marie-Louise Barrenas, Dept of Audiology, Sahlgrenska University Hospital, G6teborg, Sweden Melanin is an interesting molecule which...probably has a dual function. At moderate energy stimulation levels such as ultraviolet radiation or sound energy melanin could have a protective

  12. Sealing Penetrating Eye Injuries Using Photo-activated Bonding

    DTIC Science & Technology

    2013-09-01

    block this light from reaching the iris. The human iris contains melanin in the stromal layer and in a pigmented epithelial layer on the...posterior surface. When the melanin absorbs green light, the light (electromagnetic) energy is converted into thermal energy. If the rate of light energy...varies the standard is not clear. The distribution and amount of melanin and vasculature in the iris differs from that of the retina; consequently

  13. The role of melanin concentrating hormone (MCH) in the central chemoreflex: a knockdown study by siRNA in the lateral hypothalamus in rats.

    PubMed

    Li, Ningjing; Nattie, Eugene; Li, Aihua

    2014-01-01

    Melanin concentrating hormone (MCH), a neuropeptide produced mainly in neurons localized to the lateral hypothalamic area (LHA), has been implicated in the regulation of food intake, energy balance, sleep state, and the cardiovascular system. Hypothalamic MCH neurons also have multisynaptic connections with diaphragmatic motoneurons and project to many central chemoreceptor sites. However, there are few studies of MCH involvement in central respiratory control. To test the hypothesis that MCH plays a role in the central chemoreflex, we induced a down regulation of MCH in the central nervous system by knocking down the MCH precursor (pMCH) mRNA in the LHA using a pool of small interfering RNA (siRNA), and measured the resultant changes in breathing, metabolic rate, body weight, and blood glucose levels in conscious rats. The injections of pMCH-siRNA into the LHA successfully produced a ∼ 62% reduction of pMCH mRNA expression in the LHA and a ∼ 43% decrease of MCH levels in the cerebrospinal fluid relative to scrambled-siRNA treatment (P = 0.006 and P = 0.02 respectively). Compared to the pretreatment baseline and the scrambled-siRNA treated control rats, knockdown of MCH resulted in: 1) an enhanced hypercapnic chemoreflex (∼ 42 & 47% respectively; P < 0.05) only in wakefulness; 2) a decrease in body weight and basal glucose levels; and 3) an unchanged metabolic rate. Our results indicate that MCH participates not only in the regulation of glucose and sleep-wake homeostasis but also the vigilance-state dependent regulation of the central hypercapnic chemoreflex and respiratory control.

  14. Different morphologic formation patterns of dark patches in the black-spotted frog (Pelophylax nigromaculata) and the Asiatic toad (Bufo gargarizans).

    PubMed

    Guangming, Gan; Tao, Zhao; Chao, Li; Moyan, Zhao

    2017-01-01

    The black-spotted frog (Pelophylax nigromaculata) and Asiatic toad (Bufo gargarizans), two relatively distantly related species, live in different habitats with different adaptive dark patches. To explain the formation of dark patches, the distribution patterns of melanin granules were examined with light microscopy and transmission electron microscopy. Melanin granules were produced and gathered into the "cap" structures on top of the nuclei in most epidermal cells. The "cap" structures may play a role in forming the dorsal dark patches coupled with three-layer melanophores, which can give rise to three layers of interconnected melanin networks in the dorsal dermis in P. nigromaculata. Epidermal melanocytes are rare and do not have a definitive role in forming dorsal dark patches in either P. nigromaculata or B. gargarizans. In B. gargarizans, the dermal melanophores only give rise to a single-layered melanin network, which hardly results in dark patches in the dorsal skin. However, the dermal melanophores migrate twice and form into pseudostratified networks, leading to dark patch formation in the ventral skin in B. gargarizans. The melanin granules precisely coregulate dark patches in the dermis and/or epidermis in P. nigromaculata and B. gargarizans. The dark patch formation depends on melanin granules in the epidermis or/and dermis in P. nigromaculata and B. gargarizans.

  15. Metal-ion interactions and the structural organization of Sepia eumelanin.

    PubMed

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  16. Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus SCYTALONE DEHYDRATASE1 involved in fungal melanin biosynthesis.

    PubMed

    Su'udi, Mukhamad; Park, Jong-Mi; Kang, Woo-Ri; Park, Sang-Ryeol; Hwang, Duk-Ju; Ahn, Il-Pyung

    2012-12-01

    Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method's sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R(2)>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.

  17. Ultrastructural study on the retinal pigment epithelium of human embryos, with special reference to quantitative study on the development of melanin granules.

    PubMed

    Oguni, M; Tanaka, O; Shinohara, H; Yoshioka, T; Setogawa, T

    1991-01-01

    The development of the retinal pigment epithelium (RPE) was studied ultrastructurally, using 13 externally normal human embryos, Carnegie stages ranging from 13 to 23 (4-8 week of gestation). Melanosomes in the peripheral and posterior RPE were classified according to Fitzpatrick et al. The melanosome of phase I is formed from the Golgi complex and parcelled off into small vesicles. The vesicle enlarges and elongates to form an oval organelle with membranous structures in it (phase II melanosome). Subsequently, melanin deposits on the membranous structures of the melanosomes (phase III melanosomes), and the completion of this process produces a uniformly electrondense granule without discernible internal structures (phase IV melanosome). Melanosomes of phases III and IV appeared in the RPE at stage 15. As the embryonic stage advanced, the ratio of phase II melanosomes decreased and that of phase IV melanosomes increased. The number of phase III melanosomes reached a peak in the peripheral and posterior RPE at stages 15 and 18, respectively. After stage 17, the increase in melanosomes and intracellular organelles was more prominent in the posterior than in the peripheral RPE. During stages 13 and 15, gap junctions were present not only in the apical but also basal plasma membranes of the RPE. At stage 20, gap junctions in the basal plasma membrane disappeared except for the transitional areas from the RPE to the neural retina (NR). In addition, gap junctions were observed between NR and RPE only in the peripheral region at stage 20. The morphological and quantitative differences in the peripheral and posterior RPE in the embryonic period are discussed.

  18. Light-Induced Retinopathy: Young Age Protects more than Ocular Pigmentation.

    PubMed

    Polosa, Anna; Bessaklia, Hyba; Lachapelle, Pierre

    2017-06-01

    The purpose of this study was to compare the efficacy that ocular melanin confers in protecting the retina of juvenile and adult rats exposed to a bright luminous environment. Juvenile (JLE) and adult (ALE) Long-Evans pigmented rats were thus exposed to a bright cyclic light (10,000lux; white light) from postnatal day 14-28 or for 6 consecutive days, respectively. Flash electroretinograms (ERG) and retinal histology were performed at different predetermined ages, post-light exposure. Despite a significant reduction in ERG responses immediately following light exposure, with time, retinal function fully recovered in JLE compared to a 54% recovery for the ALE. In ALE, we noted a region of the supero-temporal quadrant that was highly vulnerable to light damage. This region was also devoid of melanin granules prior to the light exposure. This melanin-free zone increased in size in the days that followed the end of exposure, a process that was accompanied by the gradual degeneration of the thus uncovered photoreceptors. In contrast, melanin and photoreceptor losses were minimal in JLE. Our results suggest that the light-induced photoreceptor degeneration in ALE would be secondary to the initial destruction of the RPE and ensuing loss of melanin protection. In contrast, the melanin granules of JLE appear to be significantly more resistant to light damage, a characteristic that would explain the higher resistance of JLE photoreceptors to light damage. Our results would thus suggest that the efficacy of ocular melanin protection against light damage declines with age.

  19. Inhibitory effect of corn silk on skin pigmentation.

    PubMed

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  20. Skin Pigmentation Disorders

    MedlinePlus

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  1. Albinism

    MedlinePlus

    ... its color, melanin helps protect your skin from the sun. You know how a person's skin gets darker ... your skin to give it more protection from the sun's rays. So, without enough melanin, your skin won' ...

  2. Skin color analysis using a spectrophotometer in Asians.

    PubMed

    Yun, In Sik; Lee, Won Jai; Rah, Dong Kyun; Kim, Yong Oock; Park, Be-young Yun

    2010-08-01

    To objectively describe skin color, the Commission International d'Eclairage (CIE) L*a*b* color coordinates and melanin and erythema indexes are used. However, it was difficult to understand the relationship among these parameters and to convert them into each other. We introduced a new technique to measure L*a*b* color coordinates and the melanin and erythema indexes at the same time. We analyzed the skin color of normal Asians using this method. The skin color of the forehead, cheek, upper inner arm, dorsum of hand, and anterior chest of 148 volunteers was measured using a spectrophotometer. Using a computer analysis program, L*a*b* values and the melanin and erythema indexes were presented at the same time. The averages of these data were shown according to gender, age, body parts, and correlations among the melanin and erythema indexes and L*a*b* color coordinates, and then they were analyzed. The averages of the melanin and erythema indexes of 148 participants were 1.10 +/- 0.29 and 1.29 +/- 0.38, respectively. The averages of the L*, a*, and b* values were 64.15 +/- 4.86, 8.96 +/- 2.65, and 18.34 +/- 2.39, respectively. The melanin and erythema indexes were higher in males than in females. While the correlation of the melanin index with the L* value was negative, it was positively correlated with the a* and b* values. While the erythema index showed a weak correlation with the b* value, its correlation was negative with the L* value and positive with the a* value. Our method of skin color measurement is useful. We consider the data of this study valuable basic data for the evaluation of colors of pigmental skin diseases and scars in the future.

  3. Are there different requirements for trace elements in eumelanin- and pheomelanin-based color production? A case study of two passerine species.

    PubMed

    Zduniak, Piotr; Surmacki, Adrian; Erciyas-Yavuz, Kiraz; Chudzińska, Maria; Barałkiewicz, Danuta

    2014-09-01

    Melanin is the most common pigment in animal integuments including bird plumage. It has been shown that several trace elements may play roles in the production and signaling function of melanin-colored plumage. We investigated coloration and content of various metal elements in the rectrices of two insectivorous passerines, Common Redstarts (Phoenicurus phoenicurus) and Blackcaps (Sylvia atricapilla), which have eumelanin- and pheomelanin-based coloration, respectively. We hypothesized that 1) the two species would differ in concentrations of metals important in melanin synthesis (Ca, Fe, Cu, Zn), 2) differences in metal concentration levels would be related to feather coloration. Our study confirmed the first prediction and provides the first evidence that selected elements may play a greater role in pheomelanin than in eumelanin synthesis. Concentrations of three elements considered as important in melanin synthesis (Ca, Fe, Zn) were 52% to 93% higher in rusty colored Common Redstart feathers compared to the dark gray Blackcap feathers. However, element concentrations were not correlated with feather coloration or sex in either species. Our study suggests that, of the two melanin forms, pheomelanin synthesis may bear higher costs associated with the acquisition of specific elements or limited elements may create trade-offs between ornamentation and other physiological functions. Our findings warrant further investigations designed to better understand the roles of macro- and microelements in the synthesis of both forms of melanin. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Reconstructing in-vivo reflectance spectrum of pigmented skin lesion by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; He, Qingli; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2012-03-01

    In dermatology applications, diffuse reflectance spectroscopy has been extensively investigated as a promising tool for the noninvasive method to distinguish melanoma from benign pigmented skin lesion (nevus), which is concentrated with the skin chromophores like melanin and hemoglobin. We carried out a theoretical study to examine melanin distribution in human skin tissue and establish a practical optical model for further pigmented skin investigation. The theoretical simulation was using junctional nevus as an example. A multiple layer skin optical model was developed on established anatomy structures of skin, the published optical parameters of different skin layers, blood and melanin. Monte Carlo simulation was used to model the interaction between excitation light and skin tissue and rebuild the diffuse reflectance process from skin tissue. A testified methodology was adopted to determine melanin contents in human skin based on in vivo diffuse reflectance spectra. The rebuild diffuse reflectance spectra were investigated by adding melanin into different layers of the theoretical model. One of in vivo reflectance spectra from Junctional nevi and their surrounding normal skin was studied by compare the ratio between nevus and normal skin tissue in both the experimental and simulated diffuse reflectance spectra. The simulation result showed a good agreement with our clinical measurements, which indicated that our research method, including the spectral ratio method, skin optical model and modifying the melanin content in the model, could be applied in further theoretical simulation of pigmented skin lesions.

  5. Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

    PubMed Central

    Buskirk, Amanda D.; Templeton, Steven P.; Nayak, Ajay P.; Hettick, Justin M.; Law, Brandon F.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8+ IL-17+ (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia. PMID:23919459

  6. Black hair follicular dysplasia in Large Münsterländer dogs: clinical, histological and ultrastructural features

    PubMed Central

    von Bomhard, Wolf; Mauldin, Elizabeth A.; Schmutz, Sheila M.; Leeb, Tosso; Casal, Margret L.

    2012-01-01

    Four Large Münsterländer cross-bred dogs affected with black hair follicular dysplasia (BHFD) and one unaffected control littermate were observed, and skin was sampled weekly over the first 19 weeks of life. Affected dogs were born with silvery grey hair, a consequence of melanin clumping in the hair shafts. Hair bulb melanocytes were densely pigmented, and contained abundant stage IV melanosomes but adjacent matrix keratinocytes lacked melanosomes. Melanin clumping was not prominent in epidermal melanocytes in the haired skin but occurred in the foot pads. Follicular changes progressed from bulbar clumping, clumping in the isthmus/ infundibulum and finally to dysplastic hair shafts. Alopecia developed progressively in pigmented areas. Silver-grey hair, melanin clumping, accumulation of stage IV melanosomes within melanocytes and insufficient melanin transfer to adjacent keratinocytes are also classic features of human Griscelli syndrome. The underlying cause in Griscelli syndrome is a defect of melanocytic intracellular transport proteins leading to inadequate and disorganized melanosome transfer to keratinocytes with resultant melanin clumping. In view of the correlation in the phenotype, histology and ultrastructure between both disorders, a defect in intracellular melanosome transport is postulated as the pathogenic mechanism in BHFD. PMID:16674733

  7. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by zebrafish in vivo Assay and Computational Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang

    2015-01-01

    Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.

  8. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Emergence Time and Skin Melanin Spot Patterns Do Not Correlate with Growth Performance, Social Competitive Ability or Stress Response in Farmed Rainbow Trout.

    PubMed

    Gesto, Manuel; Skov, Peter V; Jokumsen, Alfred

    2017-01-01

    In wild salmonid fish, specific individual behavioral traits have been correlated with the timing of fry emergence from their gravel spawning nests; Early emerging fish display more aggressive behavior and have a higher probability of becoming socially dominant, compared to fish that emerge at a later stage. Apart from aggression and dominance, other behavioral and metabolic traits, such as boldness, metabolic rate, or growth, have also been linked to emergence time. Altogether, the traits of early- and late-emerging fish resemble those of the proactive and reactive stress-coping style, respectively. As proactive fish are considered more resilient to stress, it may be desirable to select these for aquaculture production. However, it is currently unclear to what extent the link between emergence time and stress-coping styles is maintained in the selective breeding of farmed fish. In the present study, eyed eggs from a commercial supplier were hatched, and larvae fractionated according to their emergence time. Later on, juvenile fish from different emergence fractions were subjected to a stress challenge and also tested to evaluate their competitive ability for food. Beyond some slight dissimilarities in the acute stress responses, emergence fraction displayed no correlation with growth rates, or the ability to compete for feed. Within the whole group of fish utilized in the experiments, no relationship between skin melanin spot pattern and growth performance, stress response intensity, or competitive ability was found. Altogether, the differences in physiological traits related to emergence time were not as strong as those found in earlier studies. It is hypothesized, that the origin and degree of domestication of the fish might be partly responsible for this. The predictive value of skin spots or emergence time to infer the fish stress coping style in farmed fish is also discussed.

  10. [¹²³I]ICF01012 melanoma imaging and [¹³¹I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models.

    PubMed

    Viallard, Claire; Perrot, Yann; Boudhraa, Zied; Jouberton, Elodie; Miot-Noirault, Elisabeth; Bonnet, Mathilde; Besse, Sophie; Mishellany, Florence; Cayre, Anne; Maigne, Lydia; Rbah-Vidal, Latifa; D'Incan, Michel; Cachin, Florent; Chezal, Jean-Michel; Degoul, Françoise

    2015-01-01

    Melanin-targeting radiotracers are interesting tools for imaging and treatment of pigmented melanoma metastases. However, variation of the pigment concentration may alter the efficiency of such targeting. A clear assessment of both tumor melanin status and dosimetry are therefore prerequisites for internal radiotherapy of disseminated melanoma. The melanin tracer ICF01012 was labelled with iodine-123 for melanoma imaging in pigmented murine B16F0 and human SK-Mel 3 melanomas. In vivo imaging showed that the uptake of [(123)I]ICF01012 to melanomas correlated significantly with melanin content. Schedule treatment of 3 × 25 MBq [(131)I]ICF01012 significantly reduced SK-Mel 3 tumor growth and significantly increased the median survival in treated mice. For this protocol, the calculated delivered dose was 53.2 Gy. Radio-iodinated ICF01012 is a good candidate for both imaging and therapeutic purposes for patients with metastatic pigmented melanomas.

  11. Express RGB mapping of three to five skin chromophores

    NASA Astrophysics Data System (ADS)

    Oshina, Ilze; Spigulis, Janis; Rubins, Uldis; Kviesis-Kipge, Edgars; Lauberts, Kalvis

    2017-07-01

    Skin melanin, oxy- and deoxy-hemoglobin were snapshot-mapped under simultaneous 448-532-659 nm laser illumination by a smartphone RGB camera. Experimental prototypes for double-snapshot RGB mapping of four (melanin, bilirubin, oxy- and deoxy-hemoglobin) and five (melanin, bilirubin, lipids, oxy- and deoxy-hemoglobin) skin chromophores with reduced laser speckle artefacts have been developed and tested. A set of 405-448-532-659 nm lasers were used for four chromophores mapping, and a set of 405-448-532-659-842 nm lasers for five chromophores mapping. Clinical tests confirmed functionality of the developed devices.

  12. [Amelanotic melanoma and nuclear magnetic resonance tomography--case report].

    PubMed

    Schilling, A; Seiler, T; Bende, T; Wollensak, J

    1989-01-01

    In MRI choroidal melanoma shows a very short relaxation time (T2), shorter than that of any other intraocular tumor. This short T2 time is referred to the high concentration of paramagnetic melanine in this tumor. Therefore, it is of interest to measure the relaxation time in an amelanotic melanoma and compare it with the histological analysis. The duration of T2 for the amelanotic melanoma examined ranged from 130 to 160 ms. The small concentration of melanine is not a sufficient explanation, but it is possible that there are some precursors of melanine with paramagnetic characteristics.

  13. Discrimination between cutaneous pigmentation and erythema: comparison of the skin colorimeters Dermacatch and Mexameter.

    PubMed

    Baquié, M; Kasraee, B

    2014-05-01

    Reproducibility and specificity of the present skin colorimeters is still limited as alterations in erythema can bias the measurement of melanin and vice versa. Here, Dermacatch(®) , a new colorimeter covering the visible light spectrum, has been compared with Mexameter(®) , an established narrow-band reflectance spectrophotometer. Repeated measurements with both devices were initially collected on colour charts. Then, measures were compared on 12 human volunteers before and after exposure to UVB, and/or modulation of skin erythema. In vitro sensitivity of Dermacatch to erythema/melanin covered a broader wavelength spectrum than Mexameter while in vivo sensitivity of both devices was similar. Interestingly, Mexameter's melanin and erythema values were falsely affected by an increase in erythema or variation in pigmentation respectively. On the contrary, Dermacatch's melanin and erythema values remained constant in the same circumstances. Furthermore, as Mexameter was at least twice less reproducible than Dermacatch, Mexameter showed an increased risk of a confusion over the detection of erythema or melanin fluctuations. The analysis of more than 18,000 measures indicated that, Dermacatch has a significantly higher specificity and reproducibility than Mexameter in the measurement of skin pigmentation and erythema. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region

    PubMed Central

    Firooz, Alireza; Sadr, Bardia; Babakoohi, Shahab; Sarraf-Yazdy, Maryam; Fanian, Ferial; Kazerouni-Timsar, Ali; Nassiri-Kashani, Mansour; Naghizadeh, Mohammad Mehdi; Dowlati, Yahya

    2012-01-01

    Background. Understanding the physiological, chemical, and biophysical characteristics of the skin helps us to arrange a proper approach to the management of skin diseases. Objective. The aim of this study was to measure 6 biophysical characteristics of normal skin (sebum content, hydration, transepidermal water loss (TEWL), erythema index, melanin index, and elasticity) in a normal population and assess the effect of sex, age, and body location on them. Methods. Fifty healthy volunteers in 5 age groups (5 males and females in each) were enrolled in this study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH, Germany) was used to measure skin sebum content, hydration, TEWL, erythema index, melanin index, and elasticity in 8 different locations of the body. Results. There were significant differences between the hydration, melanin index, and elasticity of different age groups. Regarding the locations, forehead had the highest melanin index, where as palm had the lowest value. The mean values of erythema index and melanin index and TEWL were significantly higher in males and anatomic location was a significant independent factor for all of 6 measured parameters. Conclusion. Several biophysical properties of the skin vary among different gender, age groups, and body locations. PMID:22536139

  15. Raman spectroscopy analysis of the skin of patients with melasma before standard treatment with topical corticosteroids, retinoic acid, and hydroquinone mixture.

    PubMed

    Moncada, B; Castillo-Martínez, C; Arenas, E; León-Bejarano, F; Ramírez-Elías, M G; González, F J

    2016-05-01

    Melasma is an abnormal acquired hyperpigmentation of the face of unknown origin, it is considered a single disease and very little has been found regarding its pathogenesis. It is usually assumed that melasma is due to excessive melanin production, but previous work using Raman spectroscopy showed degraded molecules of melanin in some melasma subjects, which may help to explain the success or failure of the standard therapy. We perform Raman spectroscopy measurements on in vivo skin from melasma patients before treatment to identify the molecular structure of melanin within every melasma lesion. The Raman spectra were grouped according to the treatment response from patient, and the Raman spectra were analyzed. Raman spectroscopy measurements showed a different molecular structure of the patients who did not respond to treatment, those patients shows atypical Raman skin spectrum with peaks associated with melanin not well defined, which is consistent with molecular degradation and protein breakdown. Our results are consistent with our previous work in the sense that melasma patients who do not respond to treatment have an abnormal melanin. We believe it will eventually help to decide the treatment of melasma in clinical dermatology. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Using Solid-state NMR to Monitor the Molecular Consequences of Cryptococcus neoformans Melanization with Different Catecholamine Precursors

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Frases, Susana; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2012-01-01

    Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using 13C and 1H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions. PMID:22765382

  17. The influence of hair bleach on the ultrastructure of human hair with special reference to hair damage.

    PubMed

    Imai, Takehito

    2011-05-01

    The influence of human hair bleaching agents with different bleaching strength on the ultrastructure of human hair was studied using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer equipped with TEM (EDS-TEM). Two kinds of bleaching agents were used: a lightener agent with a weak bleaching effect and a powder-bleach with a stronger bleaching effect. From the comparison of the bleaching properties obtained by the electronic staining of black and white hair samples, it was suggested that the permeability of hair was increased by bleaching, and there was an increase of the stainability of hair subjected to electronic staining. The bleaching action provoked the decomposition of melanin granules and the flow out of granular contents into the intermacrofibrillar matrix. Some metal elements were detected in the melanin granular matrix by EDS-TEM. As a result, the diffusion of metal elements into the intermacrofibrillar matrix promoted further damage to the hair by catalytic action with the hydrogen peroxide in the bleaching agents outside the melanin granules. Further study will lead us to the edge of the development of a new bleaching agent, which reacts only with melanin granules and causes the minimum of damage to outside the melanin granules.

  18. Inhibition of melanogenesis by Xanthium strumarium L.

    PubMed

    Li, Hailan; Min, Young Sil; Park, Kyoung-Chan; Kim, Dong-Seok

    2012-01-01

    Xanthium strumarium L. (Asteraceae) is traditionally used in Korea to treat skin diseases. In this study, we investigated the effects of a X. strumarium stem extract on melanin synthesis. It inhibited melanin synthesis in a concentration-dependent manner, but it did not directly inhibit tyrosinase, the rate-limiting melanogenic enzyme, and instead downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase expression. MITF, the master regulator of pigmentation, is a target of the Wnt signaling pathway, which includes glycogen synthase kinase 3β (GSK3β) and β-catenin. Hence, the influence of X. strumarium stem extract on GSK3β and β-catenin was further investigated. X. strumarium induced GSK3β phosphorylation (inactivation), but the level of β-catenin did not change. Moreover, a specific GSK3β inhibitor restored X. strumarium-induced melanin reduction. Hence, we suggest that X. strumarium inhibits melanin synthesis through downregulation of tyrosinase via GSK3β phosphorylation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweitzer, Andrew D.; Howard Hughes Medical Institute-Medical Fellows Program, Chevy Chase, MD; The Mount Sinai School of Medicine, New York, NY

    Purpose: Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's 'self-sieving' ability, protecting it against ionizing radiation. Methods and Materials: The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plainmore » silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of {sup 188}Re-labeled 6D2 melanin-binding antibody. Results: Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions: MNs or similar structures provide a novel approach to protection of bone marrow from ionizing

  20. Comparison of various RNA extraction methods, cDNA preparation and isolation of calmodulin gene from a highly melanized isolate of apple leaf blotch fungus Marssonina coronaria.

    PubMed

    Chauhan, Arjun; Sharma, J N; Modgil, Manju; Siddappa, Sundaresha

    2018-05-29

    Marssonina coronaria causes apple blotch disease resulting in severe premature defoliation, and is distributed in many leading apple-growing areas in the world. Effective, reliable and high-quality RNA extraction is an indispensable procedure in any molecular biology study. No method currently exists for RNA extraction from M. coronaria that produces a high quantity of melanin-free RNA. Therefore, we evaluated eight RNA extraction methods including manual and commercial kits, to yield a sufficient quantity of high-quality and melanin-free RNA. Manual methods used here resulted in low quality and black colored RNA pellets showing the presence of melanin, despite all the modifications employed to original procedures. However, these methods when coupled with clean up resulted in melanin-free RNA. On the other hand, all commercial kits used were able to yield high-quality melanin-free RNA having variable yields. TRIzol™ Reagent + RNA Clean & Concentrator™-5 and Ambion-PureLink® RNA Mini Kit were found to be the best methods as the RNA extracted with these methods from 15 day old fungal culture grown on solid medium were free of melanin with good yield. RNA extracted by this improved methodology was applied for RT-PCR, subsequent PCR amplification, and isolation of calmodulin gene sequences from M. coronaria and infected apple leaf pieces. These methods are more time effective than traditional methods and take only an hour to complete. To our knowledge, this is the first report on the method of isolation of high-quality RNA for cDNA synthesis as well as isolation of the calmodulin gene sequence from this fungus. Copyright © 2018 Elsevier B.V. All rights reserved.