Science.gov

Sample records for meloidogyne incognita suppression

  1. Exposure Time to Lethal Temperatures for Meloidogyne incognita Suppression and Its Implication for Soil Solarization.

    PubMed

    Wang, K-H; McSorley, R

    2008-03-01

    Meloidogyne incognita eggs or J2 were incubated in test tubes containing sand:peat mix and immersed in a water bath heated to 38, 39, 40, 41, 42, 43, 44 and 45 degrees C for a series of time intervals. Controls were maintained at 22 degrees C. Nematodes surviving or hatching were collected from Baermann trays after three weeks of incubation. Regression analyses between percent survival or egg hatch and hours of heat treatment were performed for each temperature. Complete suppression of egg hatch required 389.8, 164.5, 32.9, 19.7 and 13.1 hours at 38, 39, 40, 41 and 42 degrees C, respectively. Complete killing of J2 required 47.9, 46.2, 17.5 and 13.8 hours at 39, 40, 41 and 42 degrees C, respectively. J2 were not completely killed at 38 degrees C within 40 hours of treatment, but were killed within one hour at 44 and 45 degrees C. Effect of temperature on nematode killing is not determined by heat units. Oscillating temperature between cool and warm did not interfere with the nematode suppressive effect by the heat treatment. Six-week solarization in the field during the summers of 2003 and 2004 in Florida accumulated heat exposure times in the top 15 cm of soil that surpassed levels required to kill M. incognita as determined in the water bath experiments. Although near zero M. incognita were detected right after solarization, the nematode population densities increased after a cycle of a susceptible pepper crop. Therefore, future research should address failure of solarization to kill nematodes in the deeper soil layers. PMID:19259512

  2. Exposure Time to Lethal Temperatures for Meloidogyne incognita Suppression and Its Implication for Soil Solarization

    PubMed Central

    Wang, K.-H.; McSorley, R.

    2008-01-01

    Meloidogyne incognita eggs or J2 were incubated in test tubes containing sand:peat mix and immersed in a water bath heated to 38, 39, 40, 41, 42, 43, 44 and 45°C for a series of time intervals. Controls were maintained at 22°C. Nematodes surviving or hatching were collected from Baermann trays after three weeks of incubation. Regression analyses between percent survival or egg hatch and hours of heat treatment were performed for each temperature. Complete suppression of egg hatch required 389.8, 164.5, 32.9, 19.7 and 13.1 hours at 38, 39, 40, 41 and 42°C, respectively. Complete killing of J2 required 47.9, 46.2, 17.5 and 13.8 hours at 39, 40, 41 and 42°C, respectively. J2 were not completely killed at 38°C within 40 hours of treatment, but were killed within one hour at 44 and 45°C. Effect of temperature on nematode killing is not determined by heat units. Oscillating temperature between cool and warm did not interfere with the nematode suppressive effect by the heat treatment. Six-week solarization in the field during the summers of 2003 and 2004 in Florida accumulated heat exposure times in the top 15 cm of soil that surpassed levels required to kill M. incognita as determined in the water bath experiments. Although near zero M. incognita were detected right after solarization, the nematode population densities increased after a cycle of a susceptible pepper crop. Therefore, future research should address failure of solarization to kill nematodes in the deeper soil layers. PMID:19259512

  3. A susceptible weed host can compromise suppression of Meloidogyne incognita by resistant cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds can support nematode reproduction when a non-host or resistant host crop is grown. Meloidogyne incognita, the dominant nematode pathogen of cotton in many areas in the US, reproduces well on prickly sida (Sida spinosa), which is a significant weed in some cotton-producing areas. The developm...

  4. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  5. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism.

    PubMed

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  6. Phosphonate fertilizers suppressed root knot nematodes Meloidogyne javanica and M. incognita

    PubMed Central

    Habash, Samer; Al-Banna, Luma

    2011-01-01

    The efficacy of the phosphonate fertilizers, Calphos® (a.i. calcium phosphonate), Magphos® (a.i. magnesium phosphonate and potassium phosphonate) and Phosphoros® (a.i. potassium phosphonate) against two species of root knot nematodes (RKN), Meloidogyne javanica and M. incognita is evaluated. Laboratory experiments showed that Calphos®, Magphos® and their main components inhibited egg hatching and caused 100% mortality of the second stage juveniles (J2s) of the two RKN species; the hatching inhibition effects persisted after transferring the egg masses of both species to water. However, Phosphoros® (0.5%) did not suppress egg hatching or the survival of J2s of both RKN species. No hatching occurred when egg masses were treated for one week with the nematicide Vydate L® (2 ml/l), however, J2s hatched when the Vydate L® treated egg masses were moved to water. The glasshouse study indicated that Magphos®, Calphos® and Phosphoros® reduced root galling caused by M. javanica by 98, 66 and 47%, respectively, in comparison to the untreated controls. Magphos® resulted in the lowest number of root galls formed by M. incognita, the reduction was 84%. In contrast, Calphos® and Phosphoros® reduced galling by 47 and 39%, respectively. The Magphos® treatment resulted in the lowest numbers of egg masses and the lowest reproductive factor (RF) of both nematode species. However, plants treated with Phosphoros® resulted in higher foliage weights compared with the application of the other two fertilizers and the untreated plants. PMID:22791918

  7. Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloidogyne incognita.

    PubMed

    Zasada, I A; Meyer, S L F; Morra, M J

    2009-09-01

    Brassicaceous seed meals are the residual materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that potentially degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassica juncea 'Pacific Gold', B. napus 'Dwarf Essex' and 'Sunrise', and Sinapis alba 'IdaGold', against mixed stages of Pratylenchus penetrans and Meloidogyne incognita second-stage juveniles (J2). The brassicaceous seed meals were applied to soil in laboratory assays at rates ranging from 0.5 to 10.0% dry w/w with a nonamended control included. Nematode mortality was assessed after 3 days of exposure and calculated as percentage reduction compared to a nonamended control. Across seed meals, M. incognita J2 were more sensitive to the brassicaceous seed meals compared to mixed stages of P. penetrans. Brassica juncea was the most nematode-suppressive seed meal with rates as low as 0.06% resulting in > 90% suppression of both plant-parasitic nematodes. In general B. napus 'Sunrise' was the least nematode-suppressive seed meal. Intermediate were the seed meals of S. alba and B. napus 'Dwarf Essex'; 90% suppression was achieved at 1.0% and 5.0% S. alba and 0.25% and 2.5% B. napus 'Dwarf Essex', for M. incognita and P. penetrans, respectively. For B. juncea, seed meal glucosinolate-degradation products appeared to be responsible for nematode suppression; deactivated seed meal (wetted and heated at 70 °C for 48 hr) did not result in similar P. penetrans suppression compared to active seed meal. Sinapis alba seed meal particle size also played a role in nematode suppression with ground meal resulting in 93% suppression of P. penetrans compared with 37 to 46% suppression by pelletized S. alba seed meal. This study demonstrates that all seed meals are not equally suppressive to nematodes and that care should be taken when selecting a source of brassicaceous seed meal

  8. Development of Multi-Component Transplant Mixes for Suppression of Meloidogyne incognita on Tomato (Lycopersicon esculentum)

    PubMed Central

    Kokalis-Burelle, N.; Martinez-Ochoa, N.; Rodríguez-Kábana, R.; Kloepper, J. W.

    2002-01-01

    The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth. PMID:19265957

  9. Interaction of Uromyces phaseoli and Meloidogyne incognita on Bean

    PubMed Central

    Bookbinder, M. G.; Bloom, J. R.

    1980-01-01

    Uromyces phaseoli, the causal agent of bean rust, suppressed shoot and root growth of three bean cultivars, reducing root weight more than shoot weight. The greatest suppression of root weight was on the cultivar that appeared most susceptible by visual ratings of shoot symptoms. Meloidogyne incognita suppressed shoot and root growth of all test cultivars; root weight reductions differed among cultivars identical in susceptibility to this pathogen in root-gall rating tests. Infection of plants with both pathogens suppressed plant weights significantly more than did infection by either pathogen alone, evidencing an additive effect. U. phaseoli and M. incognita on the same plant influenced the reproduction of one another, presumably through effects on the host. Fungal uredia were reduced in size and sporulation capacity; M. incognita produced fewer root galls, and fewer eggs per egg mass. PMID:19300692

  10. Influence of crop production practices on Pasteuria penetrans and suppression of Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasteuria penetrans is a parasite of root-knot nematodes (Meloidogyne spp.). Infected nematodes are not killed by the bacterium, but instead of producing eggs, females produce millions of infectious endospores. In addition to sterilizing females, P. penetrans can reduce nematode infection of roots...

  11. Dynamics of concomitant populations of Pratylenchus vulnus and Meloidogyne incognita on peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between Meloidogyne incognita and Pratylenchus vulnus on nematode reproduction and vegetative growth of Prunus persica ‘Lovell’ peach was studied in field microplots. Pratylenchus vulnus suppressed the population density of M. incognita second-stage juveniles, whereas the presence o...

  12. Predicting Damage of Meloidogyne incognita on Watermelon

    PubMed Central

    Xing, Lijuan; Westphal, Andreas

    2012-01-01

    Quantitative growth response of watermelon (Citrullus lanatus) sensitive to Meloidogyne incognita is poorly understood. Determination of soil population densities of second-stage juveniles (J2) of M. incognita with Baermann funnel extraction often is inaccurate at low soil temperatures. In greenhouse experiments, three sandy soils were inoculated with dilution series of population densities of eggs or J2 of M. incognita and planted in small containers to watermelon ‘Royal Sweet’ or subjected to Baermann funnel extraction. After five weeks of incubation in the greenhouse bioassay plants in egg-inoculated soils, gall numbers on watermelon roots related more closely to inoculated population densities than J2 counts after Baermann funnel extraction. In April 2004, perpendicularly-inserted tubes (45-cm diameter, 55-cm deep) served as microplots where two methyl bromide-fumigated sandy soils were inoculated with egg suspensions of M. incognita at 0, 100, 1,000 or 10,000 eggs/100 cm3 of soil in 15-cm depth. At transplanting of 4-week old watermelon seedlings, soils were sampled for the bioassay or for extraction of J2 by Baermann funnel. In the Seinhorst function of harvested biomass in relation to nematode numbers, decline of biomass with increasing population densities of M. incognita was accurately modeled by the inoculated eggs (R2 = 0.93) and by the counts of galls on the bioassay roots (R2 = 0.98); but poorly by J2 counts (R2 = 0.68). Threshold levels of watermelon top dry weight to M. incognita were 122 eggs/100 cm3 soil, 1.6 galls on bioassay roots, or 3.6 J2/100 cm3 of soil. Using the bioassay in early spring for predicting risk of nematode damage appeared useful in integrated pest management systems of watermelon. PMID:23482631

  13. Predicting Damage of Meloidogyne incognita on Watermelon.

    PubMed

    Xing, Lijuan; Westphal, Andreas

    2012-06-01

    Quantitative growth response of watermelon (Citrullus lanatus) sensitive to Meloidogyne incognita is poorly understood. Determination of soil population densities of second-stage juveniles (J2) of M. incognita with Baermann funnel extraction often is inaccurate at low soil temperatures. In greenhouse experiments, three sandy soils were inoculated with dilution series of population densities of eggs or J2 of M. incognita and planted in small containers to watermelon 'Royal Sweet' or subjected to Baermann funnel extraction. After five weeks of incubation in the greenhouse bioassay plants in egg-inoculated soils, gall numbers on watermelon roots related more closely to inoculated population densities than J2 counts after Baermann funnel extraction. In April 2004, perpendicularly-inserted tubes (45-cm diameter, 55-cm deep) served as microplots where two methyl bromide-fumigated sandy soils were inoculated with egg suspensions of M. incognita at 0, 100, 1,000 or 10,000 eggs/100 cm(3) of soil in 15-cm depth. At transplanting of 4-week old watermelon seedlings, soils were sampled for the bioassay or for extraction of J2 by Baermann funnel. In the Seinhorst function of harvested biomass in relation to nematode numbers, decline of biomass with increasing population densities of M. incognita was accurately modeled by the inoculated eggs (R(2) = 0.93) and by the counts of galls on the bioassay roots (R(2) = 0.98); but poorly by J2 counts (R(2) = 0.68). Threshold levels of watermelon top dry weight to M. incognita were 122 eggs/100 cm(3) soil, 1.6 galls on bioassay roots, or 3.6 J2/100 cm(3) of soil. Using the bioassay in early spring for predicting risk of nematode damage appeared useful in integrated pest management systems of watermelon. PMID:23482631

  14. Detection and Investigation of Soil Biological Activity against Meloidogyne incognita

    PubMed Central

    Bent, E.; Loffredo, A.; McKenry, M. V.; Becker, J. O.; Borneman, J.

    2008-01-01

    Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay. PMID:19259527

  15. Effects of Tomato Root Exudates on Meloidogyne incognita.

    PubMed

    Yang, Guodong; Zhou, Baoli; Zhang, Xinyu; Zhang, Zijun; Wu, Yuanyuan; Zhang, Yiming; Lü, Shuwen; Zou, Qingdao; Gao, Yuan; Teng, Long

    2016-01-01

    Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR), RS2 (moderately resistant, MR) and L-402 (highly susceptible, T). The effects of the root exudates on Meloidogyne incognita (M. incognita) egg hatch, survival and chemotaxis of second-stage juveniles (J2) were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS) prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains) suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in the other

  16. Effects of Tomato Root Exudates on Meloidogyne incognita

    PubMed Central

    Yang, Guodong; Zhou, Baoli; Zhang, Xinyu; Zhang, Zijun; Wu, Yuanyuan; Zhang, Yiming; Lü, Shuwen; Zou, Qingdao; Gao, Yuan; Teng, Long

    2016-01-01

    Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR), RS2 (moderately resistant, MR) and L-402 (highly susceptible, T). The effects of the root exudates on Meloidogyne incognita (M. incognita) egg hatch, survival and chemotaxis of second-stage juveniles (J2) were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS) prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains) suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in the other

  17. Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meloidogyne incognita and Meloidogyne arenaria, are important parasitic nematodes of vegetable and ornamental crops. Field microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumbe...

  18. The multi-year effects of repeatedly growing cotton with moderate resistance to Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study documents the cumulative effect of moderate resistance on Meloidogyne incognita population density, root galling, and yield suppression in the southern United States when a moderately resistant cotton genotype was grown continuously for three years. Cotton genotypes were Phytogen PH98-31...

  19. Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproduction of Meloidogyne incognita on Capsicum annuum or Glycine max was suppressed when infective juveniles (J2) were exposed to 0.03 millimolar benzyl isothiocyanate (BITC) for 2hr prior to inoculation of the host. Infectivity assessed by gall index was significantly reduced on both G. max (co...

  20. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System

    PubMed Central

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H.; Schroeder, Jill; Libbin, James

    2008-01-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low. PMID:19259526

  1. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System.

    PubMed

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H; Schroeder, Jill; Libbin, James

    2008-06-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low. PMID:19259526

  2. Influence of Initial Population Densities of Meloidogyne incognita on Three Chile Cultivars.

    PubMed

    Lindsey, D L; Clayshulte, M S

    1982-07-01

    The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm(3) soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita. PMID:19295720

  3. Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans

    PubMed Central

    Al-Hazmi, A.S.; Al-Nadary, S.N.

    2015-01-01

    The interaction between Meloidogyne incognita (race 2) and Rhizoctonia solani (AG 4) in a root rot disease complex of green beans (Phaseolus vulgaris) was examined in a greenhouse pot experiment. Three week-old seedlings (cv. Contender) were inoculated with the nematode and/or the fungus in different combinations and sequences. Two months after last nematode inoculation, the test was terminated and data were recorded. The synchronized inoculation by both pathogens (N + F) increased the index of Rhizoctonia root rot and the number of root galls; and suppressed plant growth, compared to controls. However, the severity of root rot and suppression of plant growth were greater and more evident when inoculation by the nematode preceded the fungus (N → F) by two weeks. Nematode reproduction (eggs/g root) was adversely affected by the presence of the fungus except by the synchronized inoculation. When inoculation by nematode preceded the fungus, plant growth was severely suppressed and roots were highly damaged and rotted leading to a decrease of root galls and eggs. PMID:26288560

  4. Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans.

    PubMed

    Al-Hazmi, A S; Al-Nadary, S N

    2015-09-01

    The interaction between Meloidogyne incognita (race 2) and Rhizoctonia solani (AG 4) in a root rot disease complex of green beans (Phaseolus vulgaris) was examined in a greenhouse pot experiment. Three week-old seedlings (cv. Contender) were inoculated with the nematode and/or the fungus in different combinations and sequences. Two months after last nematode inoculation, the test was terminated and data were recorded. The synchronized inoculation by both pathogens (N + F) increased the index of Rhizoctonia root rot and the number of root galls; and suppressed plant growth, compared to controls. However, the severity of root rot and suppression of plant growth were greater and more evident when inoculation by the nematode preceded the fungus (N → F) by two weeks. Nematode reproduction (eggs/g root) was adversely affected by the presence of the fungus except by the synchronized inoculation. When inoculation by nematode preceded the fungus, plant growth was severely suppressed and roots were highly damaged and rotted leading to a decrease of root galls and eggs. PMID:26288560

  5. Brassicaceous Seed Meals as Soil Amendments to Suppress the Plant-Parasitic Nematodes Pratylenchus penetrans and Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicaceous seed meals are the soil materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassic...

  6. Meloidogyne incognita nematode resistance QTL in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (Meloidogyne spp.) are major pests attacking carrots (Daucus carota) worldwide, causing galling and forking of the storage roots, rendering them unacceptable for market. Genetic resistance could significantly reduce the need for broad-spectrum soil fumigants in carrot production....

  7. Cyperus Tubers Protect Meloidogyne incognita from 1,3-Dichloropropene

    PubMed Central

    Thomas, S. H.; Schroeder, J.; Murray, L. W.

    2004-01-01

    Meloidogyne incognita-infected and noninfected tubers of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) were treated with 56 L/ha 1,3-dichloropropene (1,3-D) in microplots and subsequently examined for tuber and nematode viability in the greenhouse using a chile pepper (Capsicum annuum) bioassay system. The study was conducted three times. Nutsedge tuber viability and M. incognita harbored in both yellow and purple nutsedge tubers were unaffected by 1,3-D treatment. Nematode reproduction on nutsedges and associated chile pepper plants varied among years, possibly due to differing levels of tuber infection or soil temperature, but was not affected by fumigation. The presence of M. incognita resulted in greater yellow nutsedge tuber germination and reproduction. The efficacy of 1,3-D for management of M. incognita in chile pepper production is likely to be reduced when nutsedges are present in high numbers, reinforcing the importance of managing these weeds and nematodes simultaneously. PMID:19262797

  8. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Abamectin

    PubMed Central

    Faske, T. R.; Starr, J. L.

    2006-01-01

    Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb. PMID:19259453

  9. Reaction of Trifolium repens Cultivars and Germplasms to Meloidogyne incognita

    PubMed Central

    Windham, G. L.; Pederson, G. A.

    1991-01-01

    Ten cultivars and 13 germplasms of white clover (Trifolium repens) were evaluated in the greenhouse for resistance to the southern root-knot nematode, Meloidogyne incognita race 4. One hundred plants of each cultivar or germplasm were rated for percentage of the root system galled (PRSG) at 60 days after inoculation with root-knot nematode eggs. Tillman (9%) and SRVR (19%) had the highest percentage of resistant plants (PRSG = 0 or 1 on a scale of 0-5 ) for the cultivars and germplasms, respectively. No resistant plants were selected from the cultivars California Ladino or Sacramento, or from the germplasms Brown Loam population or Brown Loam Synthetic #6. Resistant plants identified in this study were used to initiate are current selection program for resistance to M. incognita. PMID:19283168

  10. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram

    PubMed Central

    Faske, T. R.; Hurd, K.

    2015-01-01

    Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots. PMID:26941460

  11. Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes.

    PubMed

    McSorley, R; Dickson, D W

    1995-12-01

    In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor x S. sudanense) were effective in maintaining low population densities (<12/100 cm(3) soil) of Meloidogyne incognita race 1, whereas high population densities (>450/100 cm(3) soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (incognita. A separate microplot experiment conducted in 1994 revealed that final densities (Pf) of M. incognita race 1 following 13 different crop cultivars were lower (P suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well. PMID:19277319

  12. Impact of Soil Texture on the Reproductive and Damage Potentials of Rotylenchulus reniformis and Meloidogyne incognita on Cotton

    PubMed Central

    Koenning, S. R.; Walters, S. A.; Barker, K. R.

    1996-01-01

    The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years. PMID:19277171

  13. Resistance in Selected Corn Hybrids to Meloidogyne arenaria and M. incognita

    PubMed Central

    Davis, R. F.; Timper, P.

    2000-01-01

    A total of 33 corn hybrids were evaluated in a series of greenhouse and field trials to determine if they differed in resistance to either Meloidogyne incognita race 3 or M. arenaria race 1. Reproduction of M. incognita race 3 and M. arenaria race 1 on the hybrids was also compared. Reproduction of M. arenaria differed among corn hybrids after 58 to 65 days in greenhouse experiments; however, reproduction was similar among hybrids in the field experiment. No hybrids were consistently resistant to M. incognita. Two isolates of M. arenaria and two of M. incognita were evaluated in the greenhouse trials, and no evidence of isolate-dependent resistance was observed. Meloidogyne incognita reproduced better than M. arenaria on the hybrids in this study. A survey of 102 corn fields from 11 counties throughout southern Georgia was conducted to determine the relative frequency of M. incognita and M. arenaria. Meloidogyne species were found in 34 of the fields surveyed, and 93.9% of these were identified as M. incognita. The frequency of occurrence of M. incognita was 99.6% if the previous crop was cotton and 84.6% if the previous crop was peanut. Pratylenchus spp. were extracted from all intact corn root systems examined. PMID:19271019

  14. Phenotypic Expression of rkn1-Mediated Meloidogyne incognita Resistance in Gossypium hirsutum Populations

    PubMed Central

    Wang, C.; Matthews, W. C.; Roberts, P. A.

    2006-01-01

    The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton. PMID:19259455

  15. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita.

    PubMed

    Eloh, Kodjo; Demurtas, Monica; Mura, Manuel Giacomo; Deplano, Alessandro; Onnis, Valentina; Sasanelli, Nicola; Maxia, Andrea; Caboni, Pierluigi

    2016-06-22

    Different maleimide derivatives were synthesized and assayed for their in vitro activity on the soil inhabiting, plant-parasitic nematode Meloidogyne incognita, also known as root-knot nematode. The compounds maleimide, N-ethylmaleimide, N-isopropylmaleimide, and N-isobutylmaleimide showed the strongest nematicidal activity on the second stage juveniles of the root-knot nematode with EC50/72h values of 2.6 ± 1.3, 5.1 ± 3.4, 16.2 ± 5.4, and 19.0 ± 9.0 mg/L, respectively. We also determined the nematicidal activity of copper sulfate, finding an EC50 value of 48.6 ± 29.8 mg/L. When maleimide at 1 mg/L was tested in combination with copper sulfate at 50 mg/L, we observed 100% mortality of the nematodes. We performed a GC-MS metabolomics analysis after treating nematodes with maleimide at 8 mg/L for 24 h. This analysis revealed altered fatty acids and diglyceride metabolites such as oleic acid, palmitic acid, and 1-monopalmitin. Our results suggest that maleimide may be used as a new interesting building block for developing new nematicides in combination with copper salts. PMID:27249054

  16. Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on Selected Bean Genotypes

    PubMed Central

    France, R. A.; S.Abawi, G.

    1994-01-01

    Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop. PMID:19279917

  17. Growth of Isolates of Paecilomyces lilacinus and Their Efficacy in Biocontrol of Meloidogyne incognita on Tomato

    PubMed Central

    Cabanillas, Enrique; Barker, K. R.; Nelson, L. A.

    1989-01-01

    The potential of 13 Paecilomyces lilacinus isolates from various geographic regions as biocontrol agents against Meloidogyne incognita, the effects of temperature on their growth, and the characterization of the impact of soil temperature on their efficacy for controlling this nematode were investigated. Maximum fungal growth, as determined by dry weight of the mycelium, occurred from 24 to 30 C; least growth was at 12 and 36 C. The best control of M. incognita was provided by an isolate from Peru or a mixture of isolates of P. lilacinus. As soil temperatures increased from 16 to 28 C, both root-knot damage caused by M. incognita and percentage of egg masses infected by P. lilacinus increased. The greatest residual P. lilacinus activity on M. incognita was attained with a mixture of fungal isolates. These isolates effected lower root-galling and necrosis, egg development, and enhanced shoot growth compared with plants inoculated with M. incognita alone. PMID:19287594

  18. Response of Trifolium repens Clones to Infection by Meloidogyne incognita and Peanut Stunt Virus

    PubMed Central

    McLaughlin, M. R.; Windham, G. L.; Heagle, A. S.

    1993-01-01

    The responses of selected clones of white clover (Trifolium repens) to simultaneous infection by the southern root-knot nematode (Meloidogyne incognita) and peanut stunt virus (PSV) were determined. Two white clover clones, which were resistant (NC-R) or sensitive (NC-S) to ozone injury, were evaluated. Plant growth and M. incognita reproduction were measured. Root, stolon, and top growth were reduced by PSV infection, which affected NC-R more than NC-S. Both clones were tolerant of M. incognita, but NC-R had less root galling and less nematode reproduction than NC-S, and thus was less susceptible to M. incognita. Reductions in root growth of plants infected with both M. incognita and PSV were greater than in plants infected by either pathogen alone. Nematode reproduction tended to be lower on PSV-infected plants. PMID:19279855

  19. Mustard seed meal mixtures: management of Meloidogyne incognita on pepper and potential phytotoxicity

    PubMed Central

    Zasada, Inga A.; Orisajo, Samuel B.; Morra, Matthew J.

    2011-01-01

    Meals produced when oil is extracted from seeds in the Brassicaceae have been shown to suppress weeds and soilborne pathogens. These seed meals are commonly used individually as soil amendments; the goal of this research was to evaluate seed meal mixes of Brassica juncea (Bj) and Sinapis alba (Sa) against Meloidogyne incognita. Seed meals from Bj ‘Pacific Gold’ and Sa ‘IdaGold’ were tested alone and in combinations to determine rates and application times that would suppress M. incognita on pepper (Capsicum annuum) without phytotoxicity. Rates of soil application (% w/w) for the phytotoxicity study were: 0.5 Sa, 0.2 Bj, 0.25 Sa + 0.25 Bj, 0.375 Sa + 0.125 Bj, 0.125 Sa + 0.375 Bj, and 0, applied 0 – 5 weeks before transplant. Overall, 0.2% Bj was the least toxic meal to pepper seedlings. By comparison, 0.5% S. alba seed meal did not reduce lettuce (Lactuca sativa) seed germination at week 0, but all seed meal treatments containing B. juncea prevented or significantly reduced germination at week 0. The seed meals did not affect lettuce seed germination at weeks 1-5, but hypocotyl growth was reduced by all except 0.2% Bj at weeks 1, 4 and 5. Brassica juncea and Sa meals were tested for M. incognita suppression at 0.2, 0.15, 0.1 and 0.05%; mixtures were 0.1% Sa + 0.1% Bj, 0.15% Sa + 0.05% Bj, and 0.05% Sa + 0.15% Bj. All treatments were applied 2 weeks before transplant. The 0.2% Bj and 0.05% Sa + 0.15% Bj treatments overall had the longest shoots and highest fresh weights. Eggs per g root were lowest with 0.1 – 0.2% Bj amendments and the seed meal mixtures. The results indicate that Bj and some Bj + Sa mixtures can be applied close to transplant to suppress M. incognita populations on pepper; consequently, a seed meal mixture could be selected to provide activity against more than one pest or pathogen. For pepper, care should be taken in formulating mixtures so that Sa rates are low compared to Bj. PMID:22791910

  20. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  1. Control of Meloidogyne incognita Using Mixtures of Organic Acids.

    PubMed

    Seo, Yunhee; Kim, Young Ho

    2014-12-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  2. Evaluation of Rootstocks for Management of Meloidogyne Incognita on Grafted Bell Pepper.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematode, RKN, (Meloidogyne incognita) is a serious problem for vegetable production in the southeastern US for many Solanaceous crops including peppers, tomatoes and eggplant. The use of alternative methods to methyl bromide includes finding suitable rootstocks for resistance to this nem...

  3. Virulence of Meloidogyne incognita to expression of N gene in pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five root-knot nematode resistant pepper genotypes and three susceptible pepper genotypes were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be pathogenic to bell pepper (Capsicum annuum) in preliminary tests. The pepp...

  4. Tolerance of sweet sorghum to Meloidogyne incognita and crop effect on nematode population density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet sorghum (Sorghum bicolor) is a sugar-producing crop that can be used for biofuel and plastics production, and the crop could be incorporated into annual cropping systems in the southern US. The effect of Meloidogyne incognita on sweet sorghum yield and sugar content has not been reported. Beca...

  5. Evaluating the predatory potential of carnivorous nematodes against Rotylenchulus reniformis and Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predatory behavior of a nematode is usually determined through gut content observation or prey delimitation counts. In this experiment, Mononchus and Neoactinolaimus predation of Rotylenchulus reniformis or Meloidogyne incognita was determined using a PCR-based nematode gut content analysis. Soil sa...

  6. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild mustard (Brassica juncea L.), an invasive weed of winter crops in Brazil, was evaluated for glucosinolate content of its plant tissues and nematicidal activity of its dry leaf meal (LM), whole seed meal (WSM) and hexane defatted seed meal (DSM) against Meloidogyne incognita on tomato plants...

  7. Protease inhibition by Heterodera glycines cyst content: evidence for effects on the Meloidogyne incognita proteasome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteases from Heterodera glycines and Meloidogyne incognita juveniles were inhibited by heat-stable content of H. glycines female cysts (HglCE), and by the plant polyphenol epigallocatechin gallate (EGCG). General protease activities detected using the nematode peptide KSAYMRFa were inhibited by EG...

  8. RESPONSES OF HETERODERA GLYCINES AND MELOIDOGYNE INCOGNITA TO EXOGENOUSLY APPLIED NEUROMODULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogenic amines dopamine, octopamine and serotonin each have significant but differing effects on behavior in juveniles of the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita. Body movement frequency was increased 2-fold in H. glycines by 5mM dopamine (P = 0.00013), while...

  9. Efficacy of rootstocks for control of Meloidogyne incognita on grafted tomato and cantaloupe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microplot experiment was conducted to evaluate root-knot nematode (Meloidogyne incognita) resistance in rootstocks used for producing grafted tomato (Solanum esculentum) and muskmelon (Cucumis melo). Three tomato rootstocks including ‘TX301’ (Syngenta Seeds), ‘Multifort’ (De Ruiter Seeds), and ‘A...

  10. Efficacy of MIDAS™ for Control of Meloidogyne incognita on Celosia in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of iodomethane:chloropicrin (50:50 Midas™, Arysta LifeScience Corp., Cary, NC) was evaluated for control of root-knot nematodes (Meloidogyne incognita) on Celosia argentea var. cristata. A field trial was conducted on a commercial farm in southeastern Florida in 2006. Midas applied at ...

  11. Interactions of Heterodera daverti, H. goldeni and H. zeae with Meloidogyne incognita on rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions of the cyst nematodes Heterodera daverti, H. goldeni and H. zeae with the root-knot nematode Meloidogyne incognita on rice (Oryza sativa) cultivars Giza 178 and Sakha 101 were studied in the greenhouse. Inoculation with H. goldeni alone or one week before inoculation with M. incogni...

  12. Pathogenicity of Heterodera daverti, H. zeae, and Meloidogyne incognita on rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reactions of five rice cultivars to the cyst nematodes Heterodera daverti and H. zeae and the root-knot nematode Meloidogyne incognita were determined in the greenhouse. The results showed that both H. daverti and H. zeae infected and reproduced successfully on some of the tested rice cultivars....

  13. Susceptibility of several common subtropical weeds to Meloidogyne incognita, M. arenaria, and M. javanica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in the greenhouse to assess galling and egg production of three root-knot nematode species, Meloidogyne incognita, M. arenaria, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Aeschynomen...

  14. Meloidogyne incognita and M. arenaria Reproduction on Dwarf Hollies and Lantana.

    PubMed

    Williams-Woodward, J L; Davis, R F

    2001-12-01

    Meloidogyne incognita and M. arenaria reproduction and host plant tolerance were assessed in field and greenhouse experiments on seven holly cultivars including Ilex glabra 'Shamrock', I. vomitoria 'Schelling's Dwarf', I. cornuta 'Carissa', red holly hybrid (Ilex Little Red), and I. crenata 'Compacta', 'Green Luster', and 'Helleri' as well as Japanese boxwood (Buxus microphylla) and two lantana cultivars (Lantana camara 'Miss Huff' and 'New Gold'). Boxwood had the highest M. arenaria and M. incognita gall rating of any of the plants evaluated. Gall ratings from M. arenaria and M. incognita on I. crenata 'Green Luster' and 'Helleri' were not different from boxwood. Ilex crenata 'Compacta' had less root galling than boxwood, but the roots averaged up to 20% galling by M. incognita and 30% galling by M. arenaria. Ilex glabra 'Shamrock', I. vomitoria 'Schelling's Dwarf', I. cornuta 'Carissa', Ilex Little Red, and the two lantana cultivars had little or no root galling after 2 years of growth. Neither M. incognita nor M. arenaria affected the growth of any of the plants evaluated in the field or greenhouse. Reproduction of M. incognita was much lower than that of M. arenaria on the holly cultivars. Nematode reproduction in the greenhouse was greatest on the three I. crenata cultivars, followed by Ilex Little Red and B. microphylla. Ilex glabra 'Shamrock', I. vomitoria 'Schelling's Dwarf', I. cornuta 'Carissa', and L. camara 'Miss Huff' and 'New Gold' could be useful as Meloidogyne-resistant landscape plants. PMID:19265898

  15. Evaluation of roselle (Hibiscus sabdariffa) leaf and pomegranate (Punica granatum) fruit rind for activity against Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pomegranate (Punica granatum) fruit and roselle (Hibiscus sabdariffa) leaves have been used in traditional medicine, including as anthelmintics. Methanolic extracts from these plants were investigated for activity against the southern root-knot nematode (RKN) Meloidogyne incognita. Dried, ground p...

  16. Evaluation of roselle (Hibiscus sabdariffa) leaf and pomegranate (Punica granatum) fruit (skin/peel) for activity against Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pomegranate (Punica granatum) fruit and roselle (Hibiscus sabdariffa) leaves have been used in traditional medicine, including as anthelmintics. Methanolic extracts from these plants were investigated for activity against the southern root-knot nematode (RKN) Meloidogyne incognita. Dried, ground p...

  17. Meloidogyne incognita emigration from cotton roots may be induced by the resistance QTL qMi-C11

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland cotton (Gossypium hirsutum) is one of the most widely grown crops in the southern US, and Meloidogyne incognita is the most significant pathogen of cotton in the US. Two QTLs, qMi-C11 and qMi-C14, conferring resistance to M. incognita have been identified in cotton. Previous research docume...

  18. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis.

    PubMed

    Cao, Yi; Tian, Baoyu; Ji, Xinglai; Shang, Shenghua; Lu, Chaojun; Zhang, Keqin

    2015-08-01

    The root knot nematode (RKN), Meloidogyne incognita, belongs to the most damaging plant pathogens worldwide, and is able to infect almost all cultivated plants, like tomato. Recent research supports the hypothesis that bacteria often associated with plant-parasitic nematodes, function as nematode parasites, symbionts, or commensal organisms etc. In this study, we explored the bacterial consortia associated with M. incognita at different developmental stages, including egg mass, adult female and second-stage juvenile using the pyrosequencing approach. The results showed that Proteobacteria, with a proportion of 71-84%, is the most abundant phylum associated with M. incognita in infected tomato roots, followed by Actinobacteria, Bacteroidetes, Firmicutes etc. Egg mass, female and second-stage juvenile of M. incognita harbored a core microbiome with minor difference in communities and diversities. Several bacteria genera identified in M. incognita are recognized cellulosic microorganisms, pathogenic bacteria, nitrogen-fixing bacteria and antagonists to M. incognita. Some genera previously identified in other plant-parasitic nematodes were also found in tomato RKNs. The potential biological control microorganisms, including the known bacterial pathogens and nematode antagonists, such as Actinomycetes and Pseudomonas, showed the largest diversity and proportion in egg mass, and dramatically decreased in second-stage juvenile and female of M. incognita. This is the first comprehensive report of bacterial flora associated with the RKN identified by pyrosequencing-based analysis. The results provide valuable information for understanding nematode-microbiota interactions and may be helpful in the development of novel nematode-control strategies. PMID:25809195

  19. Suitability of Zucchini and Cucumber Genotypes to Populations of Meloidogyne arenaria, M. incognita, and M. javanica.

    PubMed

    López-Gómez, Manuel; Flor-Peregrín, Elena; Talavera, Miguel; Verdejo-Lucas, Soledad

    2015-03-01

    The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber. PMID:25861120

  20. Suitability of Zucchini and Cucumber Genotypes to Populations of Meloidogyne arenaria, M. incognita, and M. javanica

    PubMed Central

    López-Gómez, Manuel; Flor-Peregrín, Elena; Talavera, Miguel; Verdejo-Lucas, Soledad

    2015-01-01

    The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber. PMID:25861120

  1. Effects of 1,3-Dicliloropropene for Meloidogyne incognita Management on Cotton Produced under Furrow Irrigation

    PubMed Central

    Thomas, S. H.; Smith, D. W.

    1993-01-01

    Field trials were conducted during 1990 to evaluate the effects of preplant soil fumigation with 1,3-dichloropropene (1,3-D) on yield and fiber quality of furrow-irrigated cotton cultivars subjected to high population densities of Meloidogyne incognita. We measured the responses of eight upland cotton cultivars with different levels of root-knot nematode resistance and compared the responses of upland and Pima cottons. Reductions in lint weight ranged from 10 to 52% among cultivars grown in soil without 1,3-D fumigation compared with those grown in treated soil. Meloidogyne incognita reduced yields primarily by reducing the number of bolls on each plant, rather than by decreasing boll size. Cotton fiber quality varied among cultivars but was unaffected by M. incognita in either study. Upland cotton cultivar Acala 1517-88 and M-315/240 sustained less than half the yield reductions observed with M. incognita-susceptible cultivars Deltapine 41 and Paymaster 145. Sixty days after cotton emergence, fewer M. incognita second-stage juveniles were recovered from M-315/240 than all other cultivars. PMID:19279835

  2. Influence of low temperature on development of Meloidogyne incognita and M. hapla eggs in egg masses.

    PubMed

    Vrain, T C; Barker, K R

    1978-10-01

    Egg masses of Meloidogyne incognita and M. hapla were placed in soil at 10, 12, 16, and 20 C. At regular intervals, eggs from samples of egg masses were released from the gelatinous matrices and their developmental stages recorded. The number of days necessary to complete each stage from gastrulation to hatch is given for each temperature. The minimal temperature threshold for the development of eggs was computed by linear regression to be 8.26 C for M. incognita and 6.74 C for M. hapla. PMID:19305859

  3. Influence of Low Temperature on Development of Meloidogyne incognita and M. hapla Eggs in Egg Masses

    PubMed Central

    Vrain, T. C.; Barker, K. R.

    1978-01-01

    Egg masses of Meloidogyne incognita and M. hapla were placed in soil at 10, 12, 16, and 20 C. At regular intervals, eggs from samples of egg masses were released from the gelatinous matrices and their developmental stages recorded. The number of days necessary to complete each stage from gastrulation to hatch is given for each temperature. The minimal temperature threshold for the development of eggs was computed by linear regression to be 8.26 C for M. incognita and 6.74 C for M. hapla. PMID:19305859

  4. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  5. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  6. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  7. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine

    PubMed Central

    Gao, Huijuan; Qi, Gaofu; Yin, Rong; Zhang, Hongchun; Li, Chenggang; Zhao, Xiuyun

    2016-01-01

    Plant-parasitic nematodes cause serious crop losses worldwidely. This study intended to discover the antagonistic mechanism of Bacillus cereus strain S2 against Meloidogyne incognita. Treatment with B. cereus strain S2 resulted in a mortality of 77.89% to Caenorhabditis elegans (a model organism) and 90.96% to M. incognita. In pot experiment, control efficiency of B. cereus S2 culture or supernatants were 81.36% and 67.42% towards M. incognita, respectively. In field experiment, control efficiency was 58.97% towards M. incognita. Nematicidal substances were isolated from culture supernatant of B. cereus S2 by polarity gradient extraction, silica gel column chromatography and HPLC. Two nematicidal compounds were identified as C16 sphingosine and phytosphingosine by LC-MS. The median lethal concentration of sphingosine was determined as 0.64 μg/ml. Sphingosine could obviously inhibit reproduction of C. elegans, with an inhibition rate of 42.72% for 24 h. After treatment with sphingosine, ROS was induced in intestinal tract, and genital area disappeared in nematode. Furthermore, B. cereus S2 could induce systemic resistance in tomato, and enhance activity of defense-related enzymes for biocontrol of M. incognita. This study demonstrates the nematicidal activity of B. cereus and its product sphingosine, as well provides a possibility for biocontrol of M. incognita. PMID:27338781

  8. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine.

    PubMed

    Gao, Huijuan; Qi, Gaofu; Yin, Rong; Zhang, Hongchun; Li, Chenggang; Zhao, Xiuyun

    2016-01-01

    Plant-parasitic nematodes cause serious crop losses worldwidely. This study intended to discover the antagonistic mechanism of Bacillus cereus strain S2 against Meloidogyne incognita. Treatment with B. cereus strain S2 resulted in a mortality of 77.89% to Caenorhabditis elegans (a model organism) and 90.96% to M. incognita. In pot experiment, control efficiency of B. cereus S2 culture or supernatants were 81.36% and 67.42% towards M. incognita, respectively. In field experiment, control efficiency was 58.97% towards M. incognita. Nematicidal substances were isolated from culture supernatant of B. cereus S2 by polarity gradient extraction, silica gel column chromatography and HPLC. Two nematicidal compounds were identified as C16 sphingosine and phytosphingosine by LC-MS. The median lethal concentration of sphingosine was determined as 0.64 μg/ml. Sphingosine could obviously inhibit reproduction of C. elegans, with an inhibition rate of 42.72% for 24 h. After treatment with sphingosine, ROS was induced in intestinal tract, and genital area disappeared in nematode. Furthermore, B. cereus S2 could induce systemic resistance in tomato, and enhance activity of defense-related enzymes for biocontrol of M. incognita. This study demonstrates the nematicidal activity of B. cereus and its product sphingosine, as well provides a possibility for biocontrol of M. incognita. PMID:27338781

  9. Differential effects on nematode development of two QTLs for resistance to Meloidogyne incognita in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QTLs qMi-C11 and qMi-C14 impart resistance to Meloidogyne incognita in cotton. Breeders had backcrossed both QTLs into Coker 201 (C201; susceptible) to create M-120 RNR (M-120; highly resistant), and we crossed C201 and M-120 to create near isogenic lines with either qMi-C11 or qMi-C14. Previous wor...

  10. Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon.

    PubMed

    Kokalis-Burelle, Nancy

    2015-09-01

    Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 10(5) endospores/cm(3) to 3 × 10(5) endospores/cm(3) of transplant mix applied at seeding. Additional applications of 1.5 × 10(5) endospores/cm(3) of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber. PMID:26527842

  11. Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon

    PubMed Central

    Kokalis-Burelle, Nancy

    2015-01-01

    Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber. PMID:26527842

  12. Effect of Meloidogyne incognita and Importance of the Inoculum on the Yield of Eggplant

    PubMed Central

    Vito, M. Di; Greco, N.; Carella, A.

    1986-01-01

    The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite. PMID:19294216

  13. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of

  14. Relationship of Aerial Broad Band Reflectance to Meloidogyne incognita Density in Cotton.

    PubMed

    Wheeler, T A; Kaufman, H W

    2003-03-01

    Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita. PMID:19265974

  15. Microplot Evaluation of Rootstocks for Control of Meloidogyne incognita on Grafted Tomato, Muskmelon, and Watermelon

    PubMed Central

    Kokalis-Burelle, Nancy; Rosskopf, Erin N.

    2011-01-01

    Microplot experiments were conducted over two years (four growing seasons) to evaluate Meloidogyne incognita resistance in rootstocks used for grafted tomato (Solanum lycopersicum), muskmelon (Cucumis melo), and watermelon (Citrullus lanatus). Three tomato rootstocks; ‘TX301’, ‘Multifort’, and ‘Aloha’, were tested in addition to the nongrafted scion, ‘Florida-47’. Two muskmelon rootstocks; Cucumis metuliferus and ‘Tetsukabuto’ (Cucurbita maxima × Cucurbita moschata) were evaluated with the nongrafted scion ‘Athena’. Two watermelon rootstocks included ‘Emphasis’, a lagenaria-type, and an interspecific squash hybrid ‘StrongTosa’, which were grafted to the scion ‘TriX Palomar’ and planted only in the second year. Microplots were infested with M. incognita eggs in September each year. Tomatoes were planted in September followed by melons in March. In both years of the study, M. incognita juveniles (J2) in soil were similar among all tomato rootstocks, but numbers in roots were higher in the nongrafted Florida 47 than in all grafted rootstocks. In muskmelon only C. metuliferus rootstock reduced galling in nematode infested soil. Tetsukabuto did not reduce numbers of M. incognita J2 in either soil or roots either year. There were no differences in nematode numbers, galling, or plant growth parameters among the watermelon rootstocks tested. The use of resistant rootstocks has great potential for improving nematode control in the absence of soil fumigants. PMID:23431109

  16. Pepper Rootstock Graft Compatibility and Response to Meloidogyne javanica and M. incognita.

    PubMed

    Oka, Yuji; Offenbach, Rivka; Pivonia, Shimon

    2004-06-01

    Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper. PMID:19262798

  17. Pepper Rootstock Graft Compatibility and Response to Meloidogyne javanica and M. incognita

    PubMed Central

    Oka, Yuji; Offenbach, Rivka; Pivonia, Shimon

    2004-01-01

    Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper. PMID:19262798

  18. Relationship of Aerial Broad Band Reflectance to Meloidogyne incognita Density in Cotton

    PubMed Central

    Wheeler, T. A.; Kaufman, H. W.

    2003-01-01

    Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita. PMID:19265974

  19. Microplot Evaluation of Rootstocks for Control of Meloidogyne incognita on Grafted Tomato, Muskmelon, and Watermelon.

    PubMed

    Kokalis-Burelle, Nancy; Rosskopf, Erin N

    2011-09-01

    Microplot experiments were conducted over two years (four growing seasons) to evaluate Meloidogyne incognita resistance in rootstocks used for grafted tomato (Solanum lycopersicum), muskmelon (Cucumis melo), and watermelon (Citrullus lanatus). Three tomato rootstocks; 'TX301', 'Multifort', and 'Aloha', were tested in addition to the nongrafted scion, 'Florida-47'. Two muskmelon rootstocks; Cucumis metuliferus and 'Tetsukabuto' (Cucurbita maxima × Cucurbita moschata) were evaluated with the nongrafted scion 'Athena'. Two watermelon rootstocks included 'Emphasis', a lagenaria-type, and an interspecific squash hybrid 'StrongTosa', which were grafted to the scion 'TriX Palomar' and planted only in the second year. Microplots were infested with M. incognita eggs in September each year. Tomatoes were planted in September followed by melons in March. In both years of the study, M. incognita juveniles (J2) in soil were similar among all tomato rootstocks, but numbers in roots were higher in the nongrafted Florida 47 than in all grafted rootstocks. In muskmelon only C. metuliferus rootstock reduced galling in nematode infested soil. Tetsukabuto did not reduce numbers of M. incognita J2 in either soil or roots either year. There were no differences in nematode numbers, galling, or plant growth parameters among the watermelon rootstocks tested. The use of resistant rootstocks has great potential for improving nematode control in the absence of soil fumigants. PMID:23431109

  20. Population Dynamics of Meloidogyne incognita on Corn Grown in Soil in Fested with Arthrobotrys conoides.

    PubMed

    Al-Hazmi, A S; Schmitt, D P; Sasser, J N

    1982-01-01

    Microplot and greenhouse experiments were conducted to evaluate the effects of soil incorporation of the nematophagous fungus Arthrobotrys conoides and green alfalfa mulch on the population dynamics of Meloidogyne incognita on corn. Reproduction of M. incognita and the incidence of root galling were reduced by the addition of A. conoides and/or green alfalfa in all tests. Numbers of juveniles were reduced by as much as 84%, and eggs were fewest in early to mid-season soil samples from microplots. Yields increased in treatments with A. conoides and/or green alfalfa in greenhouse tests and in the microplot tests in 1979. No interaction was found between the fungus and green alfalfa in the reduction of the nematode population. PMID:19295673

  1. Resistance as a Tactic for Management of Meloidogyne incognita on Cotton in North Carolina

    PubMed Central

    Koenning, S. R.; Barker, K. R.; Bowman, D. T.

    2001-01-01

    Selected cotton cultivars were evaluated for resistance to the southern root-knot nematode, Meloidogyne incognita, in greenhouse and field experiments. Cotton cultivars LA 887, Auburn 634, and NemX cotton were highly resistant to three North Carolina populations of root-knot nematode in greenhouse experiments compared to susceptible cultivars. The relative susceptibility of cultivars tested in the greenhouse from most to least susceptible were Deltapine 16 > Deltapine 50 > LA 887 or NemX > Auburn 634. The yields of resistant and susceptible cotton cultivars were increased by fumigation in fields infested with root-knot nematode. Reproduction of M. incognita in field plots on NemX, Paymaster H 1560, and Stoneville LA 887 was less than on susceptible cultivars. Diminished reproduction of the nematode on resistant cultivars may reduce the need for nematode control tactics in subsequent years. PMID:19266008

  2. Influence of Low Temperature on Rate of Development of Meloidogyne incognita and M. hapla Larvae

    PubMed Central

    Vrain, T. C.; Barker, K. R.; Holtzman, G. I.

    1978-01-01

    Development of Meloidogyne incognita and M. hapla larvae in clover roots was studied at 20, 16, 12, and 8 C in growth chambers and in the field from fall through spring, in North Carolina. Larvae of both species invaded roots and developed at 20, 16, and 12 C, but not at 8 C. The time necessary to complete the larval stages at each temperature was determined. The minimal temperature for development of M. incognita larvae was 10.08 C and 8.8 C for M. hapla larvae. In the field, soil temperature at 10 cm deep was favorable for development of larvae until the end of November, and again from February on. All stages of the nematodes survived freezing temperatures in the roots. Reproduction of both species was evident in March or Apri1 after inoculation and accumulation of 8,500 to 11,250 degree-hours. PMID:19305832

  3. Influence of low temperature on rate of development of Meloidogyne incognita and M. hapla larvae.

    PubMed

    Vrain, T C; Barker, K R; Holtzman, G I

    1978-04-01

    Development of Meloidogyne incognita and M. hapla larvae in clover roots was studied at 20, 16, 12, and 8 C in growth chambers and in the field from fall through spring, in North Carolina. Larvae of both species invaded roots and developed at 20, 16, and 12 C, but not at 8 C. The time necessary to complete the larval stages at each temperature was determined. The minimal temperature for development of M. incognita larvae was 10.08 C and 8.8 C for M. hapla larvae. In the field, soil temperature at 10 cm deep was favorable for development of larvae until the end of November, and again from February on. All stages of the nematodes survived freezing temperatures in the roots. Reproduction of both species was evident in March or Apri1 after inoculation and accumulation of 8,500 to 11,250 degree-hours. PMID:19305832

  4. Reproduction of Meloidogyne incognita Race 3 on Flue-cured Tobacco Homozygous for Rk1 and/or Rk2 Resistance Genes.

    PubMed

    Pollok, Jill R; Johnson, Charles S; Eisenback, J D; Reed, T David

    2016-06-01

    Most commercial tobacco cultivars possess the Rk1 resistance gene to races 1 and 3 of Meloidogyne incognita and race 1 of Meloidogyne arenaria, which has caused a shift in population prevalence in Virginia tobacco fields toward other species and races. A number of cultivars now also possess the Rk2 gene for root-knot resistance. Experiments were conducted in 2013 to 2014 to examine whether possessing both Rk1 and Rk2 increases resistance to a variant of M. incognita race 3 compared to either gene alone. Greenhouse trials were arranged in a completely randomized design with Coker 371-Gold (C371G; susceptible), NC 95 and SC 72 (Rk1Rk1), T-15-1-1 (Rk2Rk2), and STNCB-2-28 and NOD 8 (Rk1Rk1 and Rk2Rk2). Each plant was inoculated with 5,000 root-knot nematode eggs; data were collected 60 d postinoculation. Percent galling and numbers of egg masses and eggs were counted, the latter being used to calculate the reproductive index on each host. Despite variability, entries with both Rk1 and Rk2 conferred greater resistance to a variant of M. incognita race 3 than plants with Rk1 or Rk2 alone. Entries with Rk1 alone were successful in reducing root galling and nematode reproduction compared to the susceptible control. Entry T-15-1-1 did not reduce galling compared to the susceptible control but often suppressed reproduction. PMID:27418700

  5. Reproduction of Meloidogyne incognita Race 3 on Flue-cured Tobacco Homozygous for Rk1 and/or Rk2 Resistance Genes

    PubMed Central

    Pollok, Jill R.; Johnson, Charles S.; Eisenback, J. D.; Reed, T. David

    2016-01-01

    Most commercial tobacco cultivars possess the Rk1 resistance gene to races 1 and 3 of Meloidogyne incognita and race 1 of Meloidogyne arenaria, which has caused a shift in population prevalence in Virginia tobacco fields toward other species and races. A number of cultivars now also possess the Rk2 gene for root-knot resistance. Experiments were conducted in 2013 to 2014 to examine whether possessing both Rk1 and Rk2 increases resistance to a variant of M. incognita race 3 compared to either gene alone. Greenhouse trials were arranged in a completely randomized design with Coker 371-Gold (C371G; susceptible), NC 95 and SC 72 (Rk1Rk1), T-15-1-1 (Rk2Rk2), and STNCB-2-28 and NOD 8 (Rk1Rk1 and Rk2Rk2). Each plant was inoculated with 5,000 root-knot nematode eggs; data were collected 60 d postinoculation. Percent galling and numbers of egg masses and eggs were counted, the latter being used to calculate the reproductive index on each host. Despite variability, entries with both Rk1 and Rk2 conferred greater resistance to a variant of M. incognita race 3 than plants with Rk1 or Rk2 alone. Entries with Rk1 alone were successful in reducing root galling and nematode reproduction compared to the susceptible control. Entry T-15-1-1 did not reduce galling compared to the susceptible control but often suppressed reproduction. PMID:27418700

  6. Dose-response effects of clove oil from Syzygium aromaticum on the root-knot nematode Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Clove oil, derived from the plant Syzygium aromaticum (L.) Merr. & Perry, is active against various organisms, and was prepared in a soy lecithin/detergent formulation to determine concentrations active against the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. RE...

  7. Evaluation of regional and standard sweetpotato entries for reaction to southern root-knot nematode, Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2007 regional sweetpotato breeding lines from the National Sweetpotato Collaborator’s Group were evaluated for reaction to southern root-knot nematode (Meloidogyne incognita) race 3 in a greenhouse test at the U.S. Vegetable Laboratory, USDA, ARS, Charleston, SC. Four replicates of five field g...

  8. SSR markers for marker assisted selection of root-knot nematode (Meloidogyne incognita) resistant plants in cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L) cultivars highly resistant to the southern root-knot nematode (RKN) [Meloidogyne incognita (Kofoid & White) Chitwood] are not available. Recently, molecular markers on chromosomes 11 and 14 have been associated with RKN resistance, thus opening the way for marker assis...

  9. Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse tests were conducted to evaluate 1) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark adapted quantum yield of photosystem II, and leaf area, and 2) the extent to which moderate or high leve...

  10. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides) Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Southern root-knot nematode (Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the US and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (C. lanatus var. citroides) have been shown...

  11. Effect of mowing cotton stalks and preventing plant re-growth on post-harvest reproduction of Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the US, and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce the nematode population in the field, which should red...

  12. Response of cucurbit rootstocks for grafted melon (Cucumis melo) to southern root-knot nematode, Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (RKN) are an important re-emerging pest of melon (Cucumis melo), due largely to the loss of methyl bromide as a pre-plant soil fumigant. Melon is highly susceptible to southern RKN, Meloidogyne incognita, which causes severe root galling and reduced melon fruit yields. Cucurbit...

  13. Use of crop residues for the control of Meloidogyne incognita under laboratory conditions.

    PubMed

    Piedrabuena, Ana; García-Alvarez, Avelino; Díez-Rojo, Miguel A; Bello, Antonio

    2006-10-01

    This laboratory study evaluates the biofumigant effect of different organic materials with the aim of developing non-chemical alternatives for the management of Meloidogyne incognita (Kofoid & White) Chitwood populations. Sources of organic material from the production system were selected with the aim of reducing agricultural residue accumulation problems as well as decreasing the costs due to the use of chemical fertilizers and pesticides. The selected materials were residues from pepper, strawberry, tomato and cucumber crops, orange juice industry residues, commercial manure and sheep manure, applied at different dosages. Two biofumigation assays were performed under laboratory conditions, using alkaline soils from the Torreblanca area (Murcia, Spain) and acidic soils from the Villa del Prado area (Madrid, Spain). The assays evaluated the effect of the treatments on M. incognita juveniles and other soil organisms, the nematode galling index on tomato roots (susceptible cv. Marmande) grown in the biofumigated soil and soil fertility parameters. The results showed that all biofumigant materials significantly decreased M. incognita populations and galling indices in tomato cv. Marmande. A greater effect was observed on galling indices when applying crop residues together with manure than with the residues alone. Biofumigation had a general beneficial effect on soil fertility, generally increasing nitrogen, organic carbon, pH and potassium levels, and also calcium levels when crop residues of pepper and strawberry were applied. There were no important variations in the number of saprophagous nematodes, dorylaimids and enchytraeids. PMID:16927410

  14. Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from caper (Capparis spinosa) against Meloidogyne incognita.

    PubMed

    Caboni, Pierluigi; Sarais, Giorgia; Aissani, Nadhem; Tocco, Graziella; Sasanelli, Nicola; Liori, Barbara; Carta, Annarosa; Angioni, Alberto

    2012-08-01

    New pesticides based on plant extracts have recently gained interest in the development of nontoxic crop protection chemicals. Numerous research studies are focused on the isolation and identification of new active compounds derived from plants. In this manuscript we report about the use of the Mediterranean species Capparis spinosa as a potent natural nematicidal agent against the root knot nematodes Meloidogyne incognita. Leaves, stems, and caper buds of Capparis spinosa were used to obtain their methanol extracts (LME, SME, BME) that were successively in vitro tested against second stage nematode juveniles (J2). In terms of paralysis induction, the methanol extract of the stem part (SME) was found more effective against M. incognita and then the caper methanol buds and leaves extracts. The chemical composition analysis of the extracts carried out by GC/MS and LC/MS techniques showed that methylisothiocyanate was the main compound of SME. The EC50 for SME after 3 days of immersion was 215 ± 36 mg/L. The constituent components of SME such as 2-thiophenecarboxaldehyde and methylisothiocyanate were successively in vitro tested for their nematicidal activity against J2. Both compounds induced paralysis on root knot nematodes ranking first (EC50 = 7.9 ± 1.6, and 14.1 ± 1.9 mg/L respectively) for M. incognita. Moreover, 2-thiophenecarboxaldehyde showed a strong fumigant activity. PMID:22769561

  15. Influence of infection of cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the production of enzymes involved in systemic acquired resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR ...

  16. Expression of Phenylalanine Ammonia Lyase Genes in Maize Lines Differing in Susceptibility to Meloidogyne incognita

    PubMed Central

    Yang, W.; Yan, Y.; Crutcher, F.; Kolomiets, M.

    2014-01-01

    Maize is a well-known host for Meloidogyne incognita, and there is substantial variation in host status among maize genotypes. In previous work it was observed that nematode reproduction increased in the moderately susceptible maize inbred line B73 when the ZmLOX3 gene from oxylipid metabolism was knocked out. Additionally, in this mutant line, use of a nonspecific primer for phenyl alanine ammonialyase (PAL) genes indicated that expression of these genes was reduced in the mutant maize plants whereas expression of several other defense related genes was increased. In this study, we used more specific gene primers to examine the expression of six PAL genes in three maize genotypes that were good, moderate, and poor hosts for M. incognita, respectively. Of the six PAL genes interrogated, two (ZmPAL3 and ZmPAL6) were not expressed in either M. incognita–infected or noninfected roots. Three genes (ZmPAL1, ZmPAL2, and ZmPAL5) were strongly expressed in all three maize lines, in both nematode-infected and noninfected roots, between 2 and 16 d after inoculation (DAI). In contrast, ZmPAL4 was most strongly expressed in the most-resistant maize line W438, was not detected in the most-susceptible maize line CML, and was detected only at 8 DAI in the maize line B73 that supported intermediate levels of reproduction by M. incognita. These observations are consistent with at least one PAL gene playing a role in modulating host status of maize toward M. incognita and suggest a need for additional research to further elucidate this association. PMID:25580029

  17. Host suitability of Ixora spp. for the Root-knot Nematodes Meloidogyne incognita Race 1 and M. javanica.

    PubMed

    Giblin-Davis, R M; Meerow, A W; Bilz, F G

    1992-12-01

    Eight commonly cultivated Ixora species or cultivars were tested for their suitability as hosts and their level of tolerance to Meloidogyne incognita race 1 and M. javanica in a greenhouse study. Twenty weeks postinoculation with 5,000 eggs per pot, M. incognita race 1 and M. javanica produced galls and formed egg masses on roots of all eight Ixora species or cultivars tested. However, only M. javanica-infected 'Petite Yellow' and 'Maui' had decreases (P Meloidogyne species was based on the relative number of galls, galls per gram root weight, egg masses, and second-stage juveniles produced per plant. 'Bonnie Lynn,' 'Maui,' and 'Petite Red' were good to excellent hosts for both Meloidogyne spp. Ixora coccinea was a good host for M. incognita race 1 but less suitable for M. javanica. 'Singapore' and 'Petite Yellow' were poor hosts for M. incognita race 1 but excellent hosts for M. javanica. 'Nora Grant' and I. casei 'Super King' were poor hosts for both species of root-knot nematodes. PMID:19283052

  18. Host suitability of Ixora spp. for the Root-knot Nematodes Meloidogyne incognita Race 1 and M. javanica

    PubMed Central

    Giblin-Davis, Robin M.; Meerow, Alan W.; Bilz, Frank G.

    1992-01-01

    Eight commonly cultivated Ixora species or cultivars were tested for their suitability as hosts and their level of tolerance to Meloidogyne incognita race 1 and M. javanica in a greenhouse study. Twenty weeks postinoculation with 5,000 eggs per pot, M. incognita race 1 and M. javanica produced galls and formed egg masses on roots of all eight Ixora species or cultivars tested. However, only M. javanica-infected 'Petite Yellow' and 'Maui' had decreases (P ≤ 0.05) in root wet weights, suggesting that the other cultivars were more tolerant to these root-knot nematode species. Differential host suitability to each Meloidogyne species was based on the relative number of galls, galls per gram root weight, egg masses, and second-stage juveniles produced per plant. 'Bonnie Lynn,' 'Maui,' and 'Petite Red' were good to excellent hosts for both Meloidogyne spp. Ixora coccinea was a good host for M. incognita race 1 but less suitable for M. javanica. 'Singapore' and 'Petite Yellow' were poor hosts for M. incognita race 1 but excellent hosts for M. javanica. 'Nora Grant' and I. casei 'Super King' were poor hosts for both species of root-knot nematodes. PMID:19283052

  19. Behavioral Response of Meloidogyne incognita to Benzyl Isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One reported mechanism of plant-parasitic nematode suppression by brassicaceous cover crops is the production of isothiocyanates (ITC) in soil after biomass incorporation. While plant-parasitic nematode mortality is the objective when using these cover crops for biofumigation, very little is known ...

  20. Infection of Cultured Thin Cell Layer Roots of Lycopersicon esculentum by Meloidogyne incognita.

    PubMed

    Radin, D N; Eisenback, J D

    1991-10-01

    A new aseptic culture system for studying interactions between tomato (Lycopersicon esculentum) and Meloidogyne incognita is described. Epidermal thin cell layer explants from peduncles of tomato produced up to 20 adventitious roots per culture in 4-9 days on Murashige &Scoog medium plus kinetin and indole acetic acid. Rooted cultures were transferred to Gamborg's B-5 medium and inoculated with infective second-stage juveniles. Gall formation was apparent 5 days after inoculation and egg production by mature females occurred within 25 days at 25 C in the susceptible genotypes Rutgers and Red Alert. Resistant genotypes LA655, LA656, and LA1022 exhibited a characteristic hypersensitive response. This system provides large numbers of cultured root tips for studies on the molecular basis of the host-parasite relationship. PMID:19283152

  1. Yield-loss Models for Tobacco Infected with Meloidogyne incognita as Affected by Soil Moisture.

    PubMed

    Wheeler, T A; Barker, K R; Schneider, S M

    1991-10-01

    Yield-loss models were developed for tobacco infected with Meloidogyne incognita grown in microplots under various irrigation regimes. The rate of relative yield loss per initial nematode density (Pi), where relative yield is a proportion of the value of the harvested leaves in uninfected plants with the same irrigation treatment, was greater under conditions of water stress or with high irrigation than at an intermediate level of soil moisture. The maximum rate of plant growth per degree-day (base 10 C) was reduced as nematode Pi increased when plots contained adequate water. When plants were under water stress, increasing Pi did not luther reduce the maximum rate of plant growth (water stress was the limiting factor). Cumulative soil matric potential values were calculated to describe the relationship between available water in the soil (matric potential) due to the irrigation treatments and subsequent plant growth. PMID:19283140

  2. Histopathology of Root-knot Nematode (Meloidogyne incognita) Infection on White Yam (Dioscorea rotundata) Tubers

    PubMed Central

    Fawole, B.

    1988-01-01

    White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber. PMID:19290181

  3. Sensitive PCR Detection of Meloidogyne arenaria, M. incognita, and M. javanica Extracted from Soil

    PubMed Central

    Qiu, Jinya Jack; Westerdahl, Becky B.; Anderson, Cindy; Williamson, Valerie M.

    2006-01-01

    We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination. PMID:19259460

  4. Sensitivity of Bedding Plants to Southern Root-knot Nematode, Meloidogyne incognita Race 3.

    PubMed

    Walker, J T; Melin, J B; Davis, J

    1994-12-01

    Thirty-two cultivars of 10 commonly-grown bedding plants, representing eight families, were evaluated for their response to infection by the root-knot nematode, Meloidogyne incognita race 3, under greenhouse conditions. Four ageratum cultivars, two marigold, and two salvia cultivars were rated resistant after exposure for 8 weeks. Four begonia, four celosia, one dianthus, one verbena, one vinca, and three pansy cultivars were susceptible. Three salvia, one begonia, one gerber, one verbena, and three vinca cultivars were slightly susceptible with an average of

  5. [Eupolyphaga frass and its extracts protected tomato from Meloidogyne incognita infestation].

    PubMed

    Wang, Xiao-yun; Wang, Xiu-feng; Wei, Min; Shi, Qing-hua; Yang, Feng-juan

    2015-08-01

    The control effects of Eupolyphaga (Eupolyphaga sinensis Walker) frass and its extracts on Meloidogyne incognita were studied through laboratory assays and pot experiments, and the organic volatile compounds and oligochitosan contents in the frass were analyzed. The results indicated that the nematode immobility and mortality was significantly increased with increasing the extract concentration and treatment time. Compared with the control, egg hatching was significantly inhibited when the extract concentration was beyond 20%. Pot experiment indicated that root galling of tomato seedlings was reduced and the relative control effect was significantly improved with the increasing frass application. Meanwhile, plant height, stem diameter and leaf number of tomato increased with the increasing dosage of eupolyphaga frass. The ingredients analysis showed that the content of oligochitosan was about 4.35% and there were 9 categories and 110 kinds of volatile compounds in the frass. PMID:26685616

  6. Transcriptome Analysis of Resistant and Susceptible Alfalfa Cultivars Infected With Root-Knot Nematode Meloidogyne incognita

    PubMed Central

    Postnikova, Olga A.; Hult, Maria; Shao, Jonathan; Skantar, Andrea; Nemchinov, Lev G.

    2015-01-01

    Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance

  7. Susceptibility of Several Common Subtropical Weeds to Meloidogyne arenaria, M. incognita, and M. javanica.

    PubMed

    Kokalis-Burelle, Nancy; Rosskopf, Erin N

    2012-06-01

    Experiments were conducted in the greenhouse to assess root galling and egg production of three root-knot nematode species, Meloidogyne arenaria, M. incognita, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Cyperus esculentus (yellow nutsedge), Eleusine indica (goosegrass), Portulaca oleracea (common purslane), and Solanum americanum (American black nightshade). Additionally, although it is recommended as a cover crop in southern regions of the U.S., Aeschynomene americana (American jointvetch) was evaluated as a weed following the detection of root galling in a heavy volunteer infestation of an experimental field in southeastern Florida. Weeds were propagated from seed and inoculated with 1000 nematode eggs when plants reached the two true-leaf stage. Tomato (Solanum lycopersicum 'Rutgers') was included as a positive control. Aeschynomene americana and P. oleracea roots supported the highest number of juveniles (J2) and had the highest number of eggs/g of root for all three species of Meloidogyne tested. However, though P. oleracea supported very high root levels of the three nematode species tested, its fleshy roots did not exhibit severe gall symptoms. Low levels of apparent galling, combined with high egg production, increase the potential for P. oleracea to support populations of these three species of root-knot nematodes to a degree that may not be appropriately recognized. This research quantifies the impact of P. oleracea as a host for M. arenaria, M. incognita, and M. javanica compared to several other important weeds commonly found in Florida agricultural production, and the potential for A. americana to serve as an important weed host of the three species of root-knot nematode tested in southern regions of Florida. PMID:23482324

  8. Susceptibility of Several Common Subtropical Weeds to Meloidogyne arenaria, M. incognita, and M. javanica

    PubMed Central

    Kokalis-Burelle, Nancy; Rosskopf, Erin N.

    2012-01-01

    Experiments were conducted in the greenhouse to assess root galling and egg production of three root-knot nematode species, Meloidogyne arenaria, M. incognita, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Cyperus esculentus (yellow nutsedge), Eleusine indica (goosegrass), Portulaca oleracea (common purslane), and Solanum americanum (American black nightshade). Additionally, although it is recommended as a cover crop in southern regions of the U.S., Aeschynomene americana (American jointvetch) was evaluated as a weed following the detection of root galling in a heavy volunteer infestation of an experimental field in southeastern Florida. Weeds were propagated from seed and inoculated with 1000 nematode eggs when plants reached the two true-leaf stage. Tomato (Solanum lycopersicum ‘Rutgers’) was included as a positive control. Aeschynomene americana and P. oleracea roots supported the highest number of juveniles (J2) and had the highest number of eggs/g of root for all three species of Meloidogyne tested. However, though P. oleracea supported very high root levels of the three nematode species tested, its fleshy roots did not exhibit severe gall symptoms. Low levels of apparent galling, combined with high egg production, increase the potential for P. oleracea to support populations of these three species of root-knot nematodes to a degree that may not be appropriately recognized. This research quantifies the impact of P. oleracea as a host for M. arenaria, M. incognita, and M. javanica compared to several other important weeds commonly found in Florida agricultural production, and the potential for A. americana to serve as an important weed host of the three species of root-knot nematode tested in southern regions of Florida. PMID:23482324

  9. Management of Meloidogyne incognita with Chemicals and Cultivars in Cotton in a Semi-Arid Environment

    PubMed Central

    Wheeler, T. A.; Siders, K. T.; Anderson, M. G.; Russell, S. A.; Woodward, J. E.; Mullinix, B. G.

    2014-01-01

    Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of

  10. Colored Mulches Affect Yield of Fresh-market Tomato Infected with Meloidogyne incognita.

    PubMed

    Fortnum, B A; Decoteau, D R; Kasperbauer, M J

    1997-12-01

    The effects of different-colored polyethylene mulches on the quantity and spectra of reflected light, earliness of fruit set, fruit yield and quality, and root-knot disease were studied in field-grown, staked tomato (Lycopersicon esculentum). White mulch reflected more photosynthetic light and a lower far-red-to-red ratio than red mulch, whereas black mulch reflected less than 5 percent of any color. Soil temperatures and fruit yields were recorded for tomato plants inoculated with Meloidogyne incognita race 3 at initial populations of 0, 1,000, 10,000, 50,000, or 100,000 eggs/plant and grown over black, white, or red plastic mulch in both spring and fall. Soil temperatures were lower under white mulch than under red or black mulch. Tomato yields declined as inoculum level increased. Plants grown over red mulch in the spring and inoculated with 50,000 eggs of M. incognita had greater early marketable yields than similarly inoculated plants grown over black or white mulch. Tomato plants inoculated with 100,000 eggs and grown over white mulch or red mulch in the spring had greater total yields per plot than similar plants grown over black mulch (7.39 kg and 7.71 kg vs. 3.65 kg, respectively). PMID:19274191

  11. Reaction of Ten Cultivars of Watermelon (Citrullus lanatus) to a Puerto Rican population of Meloidogyne incognita

    PubMed Central

    Montalvo, A. E.; Esnard, J.

    1994-01-01

    Ten cultivars of watermelon were evaluated for their response to a Puerto Rican population of Meloidogyne incognita under greenhouse conditions in a 2-year study (1989 and 1990). Ten-day-old seedlings were planted in steam-sterilized soil in 15-cm-d plastic pots. The nematode inoculum consisted of 10,000 eggs and (or) second-stage juveniles (J2)/plant. The cultivars were Sugar Baby, Charleston Gray, Seedless, Prince Charles, Charleston 76, Jubilee, Florida Giant, Royal Charleston, Royal Sweet, and Royal Jubilee, with tomato cv. Rutgers included as a susceptible check. A completely randomized design with 10 replications was used. Fifty-five days after soil infestation, root-gall indices, numbers of nematode eggs per root system, and J2 per 250 cm³ of soil were recorded. All cultivars were susceptible. Sugar Baby had the lowest root-gall index, egg and J2 numbers, and a reproductive factor (Rf) of 2.89. Rf differed (P ≤ 0.05) among cultivars and ranged up to 7.36. Sugar Baby, Seedless, and Florida Giant showed the lowest susceptibility to M. incognita, whereas Charleston 76 and Charleston Gray were the most susceptible. PMID:19279940

  12. Reaction of Ten Cultivars of Watermelon (Citrullus lanatus) to a Puerto Rican population of Meloidogyne incognita.

    PubMed

    Montalvo, A E; Esnard, J

    1994-12-01

    Ten cultivars of watermelon were evaluated for their response to a Puerto Rican population of Meloidogyne incognita under greenhouse conditions in a 2-year study (1989 and 1990). Ten-day-old seedlings were planted in steam-sterilized soil in 15-cm-d plastic pots. The nematode inoculum consisted of 10,000 eggs and (or) second-stage juveniles (J2)/plant. The cultivars were Sugar Baby, Charleston Gray, Seedless, Prince Charles, Charleston 76, Jubilee, Florida Giant, Royal Charleston, Royal Sweet, and Royal Jubilee, with tomato cv. Rutgers included as a susceptible check. A completely randomized design with 10 replications was used. Fifty-five days after soil infestation, root-gall indices, numbers of nematode eggs per root system, and J2 per 250 cm(3) of soil were recorded. All cultivars were susceptible. Sugar Baby had the lowest root-gall index, egg and J2 numbers, and a reproductive factor (Rf) of 2.89. Rf differed (P incognita, whereas Charleston 76 and Charleston Gray were the most susceptible. PMID:19279940

  13. Use of Cucumis metuliferus as a Rootstock for Melon to Manage Meloidogyne incognita

    PubMed Central

    Sigüenza, Concepcion; Schochow, Martin; Turini, Tom; Ploeg, Antoon

    2005-01-01

    Root-knot nematode-susceptible melons (Cantaloupe) were grown in pots with varying levels of Meloidogyne incognita and were compared to susceptible melons that were grafted onto Cucumis metuliferus or Cucurbita moschata rootstocks. In addition, the effect of using melons as transplants in nematode-infested soil was compared to direct seeding of melons in nematode-infested soil. There were no differences in shoot or root weight, or severity of root galling between transplanted and direct-seeded non-grafted susceptible melon in nematode-infested soil. Susceptible melon grafted on C. moschata rootstocks had lower root gall ratings and, at high nematode densities, higher shoot weights than non-grafted susceptible melons. However, final nematode levels were not lower on the grafted than on the non-grafted plants, and it was therefore concluded that grafting susceptible melon on to C. moschata rootstock made the plants tolerant, but not resistant, to the nematodes. Grafting susceptible melons on C. metuliferus rootstocks also reduced levels of root galling, prevented shoot weight losses, and resulted in significantly lower nematode levels at harvest. Thus, C. metuliferus may be used as a rootstock for melon to prevent both growth reduction and a strong nematode buildup in M. incognita-infested soil. PMID:19262873

  14. Modification of Resistance Expression of Phaseolus vulgaris to Meloidogyne incognita by Elevated Soil Temperatures

    PubMed Central

    Mullin, B. A.; Abawi, G. S.; Pastor-Corrales, M. A.

    1991-01-01

    The effect of temperature on the reaction of susceptible (Canario Divex) and resistant (A 211) bean pure lines to Meloidogyne incognita was studied with soil temperature tanks housed in a growth chamber at 22 or 24 C. Soil temperature remained constant at 16, 22, 24, 26, 30, or 32 C in several trials. Bean line A 211 was resistant at 16 and 22 C but was susceptible at 24 C and above. Resistance to root-knot nematode reproduction was affected by a lower temperature (24 C) than was resistance to root galling (26 C) in A 211. Incubation of A 211 at 30 C for 3 and 16 days after inoculation with M. incognita resulted in a significant increase in nematode reproduction and root galling, respectively. The resistant reactions of A 211 to nematode reproduction and root galling were retained when inoculated plants were incubated at 21 C for a minimum of 16 and 23 days, respectively, prior to high temperature treatment. PMID:19283110

  15. Modification of Resistance Expression of Phaseolus vulgaris to Meloidogyne incognita by Elevated Soil Temperatures.

    PubMed

    Mullin, B A; Abawi, G S; Pastor-Corrales, M A

    1991-04-01

    The effect of temperature on the reaction of susceptible (Canario Divex) and resistant (A 211) bean pure lines to Meloidogyne incognita was studied with soil temperature tanks housed in a growth chamber at 22 or 24 C. Soil temperature remained constant at 16, 22, 24, 26, 30, or 32 C in several trials. Bean line A 211 was resistant at 16 and 22 C but was susceptible at 24 C and above. Resistance to root-knot nematode reproduction was affected by a lower temperature (24 C) than was resistance to root galling (26 C) in A 211. Incubation of A 211 at 30 C for 3 and 16 days after inoculation with M. incognita resulted in a significant increase in nematode reproduction and root galling, respectively. The resistant reactions of A 211 to nematode reproduction and root galling were retained when inoculated plants were incubated at 21 C for a minimum of 16 and 23 days, respectively, prior to high temperature treatment. PMID:19283110

  16. Cowpea-Meloidogyne incognita interaction: Root proteomic analysis during early stages of nematode infection.

    PubMed

    Villeth, Gabriela R C; Carmo, Lilian S T; Silva, Luciano P; Fontes, Wagner; Grynberg, Priscila; Saraiva, Mario; Brasileiro, Ana C M; Carneiro, Regina M D; Oliveira, José T A; Grossi-de-Sá, Maria F; Mehta, Angela

    2015-05-01

    Cowpea (Vigna unguiculata L. Walp) is an important legume species well adapted to low fertility soils and prolonged drought periods. One of the main problems that cause severe yield losses in cowpea is the root-knot nematode Meloidogyne incognita. The aim of this work was to analyze the differential expression of proteins in the contrasting cultivars of cowpea CE 31 (highly resistant) and CE 109 (slightly resistant) during early stages of M. incognita infection. Cowpea roots were collected at 3, 6, and 9 days after inoculation and used for protein extraction and 2-DE analysis. From a total of 59 differential spots, 37 proteins were identified, mostly involved in plant defense, such as spermidine synthase, patatin, proteasome component, and nitrile-specifier protein. A follow-up study was performed by quantitative RT-PCR analysis of nine selected proteins and the results revealed a very similar upregulation trend between the protein expression profiles and the corresponding transcripts. This study also identified ACT and GAPDH as a good combination of reference genes for quantitative RT-PCR analysis of the pathosystem cowpea/nematode. Additionally, an interactome analysis showed three major pathways affected by nematode infection: proteasome endopeptidase complex, oxidative phosphorylation, and flavonoid biosynthesis. Taken together, the results obtained by proteome, transcriptome, and interactome approaches suggest that oxidative stress, ubiquitination, and glucosinolate degradation may be part of cowpea CE 31 resistance mechanisms in response to nematode infection. PMID:25736976

  17. Influence of Chilling and Freezing Temperatures on Infectivity of Meloidogyne incognita and M. hapla

    PubMed Central

    Vrain, T. C.

    1978-01-01

    Egg masses and second-stage larvae of Meloidogyne incognita and M. hapla in soil were exposed to temperatures ranging from 20 to -8 C. Temperature was lowered in 2-day intervals to 16, 12, 8, 4, 0, -4, and -8 C, and the nematodes remained at 4, 0, -4, or -8 C for 18, 14, 10, or 6 days, respectively. Unhatched larvae of both species were more resistant to low temperatures than were embryonic stages. Within the eggs of M. incognita, 7.5% of embryos and 48% of larval stages survived 14 days at 0 C, whereas 9% of embryos and 90% of larval stages in the eggs of M. hapla survived 10 days at -4 C. Second-stage larvae of both species remained infective in sol.1 at 4 or 0 C, but were injured at -4 and -8 C. Infectivily of these larvae was lower in saturated soil than in soil at 51 cm moisture tension at all temperatures. PMID:19305834

  18. Influence of chilling and freezing temperatures on infectivity of Meloidogyne incognita and M. hapla.

    PubMed

    Vrain, T C

    1978-04-01

    Egg masses and second-stage larvae of Meloidogyne incognita and M. hapla in soil were exposed to temperatures ranging from 20 to -8 C. Temperature was lowered in 2-day intervals to 16, 12, 8, 4, 0, -4, and -8 C, and the nematodes remained at 4, 0, -4, or -8 C for 18, 14, 10, or 6 days, respectively. Unhatched larvae of both species were more resistant to low temperatures than were embryonic stages. Within the eggs of M. incognita, 7.5% of embryos and 48% of larval stages survived 14 days at 0 C, whereas 9% of embryos and 90% of larval stages in the eggs of M. hapla survived 10 days at -4 C. Second-stage larvae of both species remained infective in sol.1 at 4 or 0 C, but were injured at -4 and -8 C. Infectivily of these larvae was lower in saturated soil than in soil at 51 cm moisture tension at all temperatures. PMID:19305834

  19. Development of enzyme linked immunosorbent assay (ELISA) for the detection of root-knot nematode Meloidogyne incognita.

    PubMed

    Kapur-Ghai, J; Kaur, M; Goel, P

    2014-09-01

    Root-knot nematodes (Meloidogyne incognita) are obligate, sedentary plant endoparasites that are extremely polyphagous in nature and cause severe economic losses in agriculture. Hence, it is essential to control the parasite at an early stage. For any control strategy to be effective, an early and accurate diagnosis is of paramount importance. Immunoassays have the inherent advantages of sensitivity and specificity; have the potential to identify and quantify these plant-parasitic nematodes. Hence, in the present studies, enzyme-linked immunosorbent assay (ELISA) has been developed for the detection of M.incognita antigens. First an indirect ELISA was developed for detection and titration of anti-M.incognita antibodies. Results indicated as high as 320 K titre of the antisera. Finally competitive inhibition ELISA was developed employing these anti-M.incognita antibodies for detection of M.incognita antigens. Sensitivity of ELISA was 10 fg. Competitive inhibition ELISA developed in the present studies has the potential of being used as an easy, rapid, specific and sensitive diagnostic tool for the detection of M.incognita infection. PMID:25035590

  20. Optimal Release Rates for Attracting Meloidogyne incognita, Rotylenchulus reniformis, and Other Nematodes to Carbon Dioxide in Sand

    PubMed Central

    Robinson, A. F.

    1995-01-01

    Movement of vermiform stages of Meloidogyne incognita, Rotylenchulus reniformis, Ditylenchus phyllobius, Steinernema glaseri, and Caenorhabditis elegans in response to carbon dioxide was studied in 40- and 72-mm-long cylinders of moist sand inside 38-mm-d acrylic tubes. Meloidogyne incognita, R. reniformis, and S. glaseri were attracted to CO₂ when placed on a linear gradient of 0.2%/cm at a mean CO₂ concentration of 1.2%. When CO₂ was delivered into the sand through a syringe needle at flow rates between 2 and 130 μl/minute, the optimal flow rate for attracting M. incognita and R. reniformis was 15 μl/minute, and maximal attraction of the two species from a distance of 52 mm was achieved after 29 and 40 hours, respectively. After 24 hours, a total CO₂ volume of 20 cm³ was sufficient to induce 96% of all M. incognita introduced to move into the half of the cylinder into which CO₂ was delivered and more than 75 % to accumulate in the 9 cm³ of sand volume nearest the source. Results indicate it may be possible to use a chemical or biological source of CO₂ to attract nematodes to nematicide granules or biocontrol agents. PMID:19277260

  1. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density

    PubMed Central

    Wheeler, T. A.; Leser, J. F.; Keeling, J. W.; Mullinix, B.

    2008-01-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty. PMID:19259531

  2. Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon

    PubMed Central

    Meyer, Susan L. F.; Everts, Kathryne L.; Gardener, Brian McSpadden; Masler, Edward P.; Abdelnabby, Hazem M. E.; Skantar, Andrea M.

    2016-01-01

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R, and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogyne incognita (root-knot nematode: RKN) and Fusarium oxysporum f. sp. niveum (Fon). In a greenhouse trial, Wayne 1R root dip suppressed numbers of RKN eggs per gram root on ‘Charleston Gray’ watermelon by 28.9%. However, in studies focused on ‘Sugar Baby’ watermelon, which is commercially grown in Maryland, a Wayne 1R root dip did not inhibit RKN reproduction or plant death caused by Fon. When all three isolates were applied as seed coats, plant stand in the greenhouse was reduced up to 60% in treatments that included Fon ± P. fluorescens, and eggs per gram root did not differ among treatments. In a microplot trial with Clinto 1R and Wayne 1R root dips, inoculation with P. fluorescens and/or Fon resulted in shorter vine lengths than treatment with either P. fluorescens isolate plus RKN. Root weights, galling indices, eggs per gram root, and second-stage juvenile (J2) numbers in soil were similar among all RKN-inoculated treatments, and fruit production was not affected by treatment. Plant death was high in all treatments. These studies demonstrated that the tested P. fluorescens isolates resulted in some inhibition of vine growth in the field, and were not effective for enhancing plant vigor or suppressing RKN or Fon on watermelon. PMID:27168652

  3. Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon.

    PubMed

    Meyer, Susan L F; Everts, Kathryne L; Gardener, Brian McSpadden; Masler, Edward P; Abdelnabby, Hazem M E; Skantar, Andrea M

    2016-03-01

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R, and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogyne incognita (root-knot nematode: RKN) and Fusarium oxysporum f. sp. niveum (Fon). In a greenhouse trial, Wayne 1R root dip suppressed numbers of RKN eggs per gram root on 'Charleston Gray' watermelon by 28.9%. However, in studies focused on 'Sugar Baby' watermelon, which is commercially grown in Maryland, a Wayne 1R root dip did not inhibit RKN reproduction or plant death caused by Fon. When all three isolates were applied as seed coats, plant stand in the greenhouse was reduced up to 60% in treatments that included Fon ± P. fluorescens, and eggs per gram root did not differ among treatments. In a microplot trial with Clinto 1R and Wayne 1R root dips, inoculation with P. fluorescens and/or Fon resulted in shorter vine lengths than treatment with either P. fluorescens isolate plus RKN. Root weights, galling indices, eggs per gram root, and second-stage juvenile (J2) numbers in soil were similar among all RKN-inoculated treatments, and fruit production was not affected by treatment. Plant death was high in all treatments. These studies demonstrated that the tested P. fluorescens isolates resulted in some inhibition of vine growth in the field, and were not effective for enhancing plant vigor or suppressing RKN or Fon on watermelon. PMID:27168652

  4. [Efficiency of Trichoderma longibrachiatum T6 in the control of Meloidogyne incognita and its rhizosphere colonization in cucumber].

    PubMed

    Zhang, Shu-wu; Xu, Bing-liang; Xue, Ying-yu; Liang, Qiao-lan; Liu, Jia

    2016-01-01

    Efficiency of different concentrations of Trichoderma longibrachiatum T6 against Meloidogyne incognita and its rhizosphere colonization in cucumber were determined in greenhouse experiments. The results of rhizosphere colonization experiments showed that the number of colonies in cucumber soil and root increased significantly ten weeks after inoculation with the second stage juveniles of M. incognita and different concentrations of T. longibrachiatum T6, and there was significant difference in different concentrations of T. longibrachiatum T6, e.g., the maximum numbers of colonies in soil and root were 7.8 x 10⁷ and 6.3 x 10⁵ CFU · mL⁻¹ respectively after treated with the spore suspension of 1.5 x 10⁷ CFU · mL⁻¹. Greenhouse experiments results showed that different concentrations of T. longibrachiatum T6 had significant control effect on different life stages of M. incognita, and the control effect increased with the concentration of T. longibrachiatum T6. T. longibrachiatum T6 significantly increased plant height, root length, above-ground and root fresh mass o cucumber inoculated by M. incognita. T. longibrachiatum T6 could colonize in cucumber rhizosphere, had control effect on M. incognita, and significantly improved the growth of cucumber. PMID:27228616

  5. Growth and Energy Demand of Meloidogyne incognita on Susceptible and Resistant Vitis vinifera Cultivars.

    PubMed

    Melakeberhan, H; Ferris, H

    1988-10-01

    Food (energy) consumption rates ofMeloidogyne incognita were calculated on Vitis vinifera cv. French Colombard (highly susceptible) and cv. Thompson Seedless (moderately resistant). One-month-old grape seedlings in styrofoam cups were inoculated with 2,000 or 8,000 M. incognita second-stage juveniles (J2) and maintained at 17.5 degree days (DD - base 10 C)/day until maximum adult female growth and (or) the end of oviposition. At 70 DD intervals, nematode fresh biomass was calculated on the basis of volumes of 15-20 nematodes per plant obtained with a digitizer and computer algorithm. Egg production was measured at 50-80 DD intervals by weighing 7-10 egg masses and counting the number of eggs. Nematode growth and food (energy) consumption rates were calculated up to 1,000 DD based on biomass increase, respiratory requirements, and an assumption of 60 % assimilation efficiency. The growth rate of a single root-knot nematode, excluding egg production, was similar in both cultivars and had a logistic form. The maximum fresh weight of a mature female nematode was ca. 29-32 mug. The total biomass increase, including egg production, also had a logistic form. Maximum biomass (mature adult female and egg mass) was 211 mug on French Colombard and 127 mug on Thompson Seedless. The calculated total cost to the host for the development of a single J2 from root penetration to the end of oviposition for body growth and total biomass was 0.535 and 0.486 calories with a total energy demand of 1.176 and 0.834 calories in French Colombard and Thompson Seedless, respectively. PMID:19290253

  6. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    PubMed Central

    El-Hadad, M.E.; Mustafa, M.I.; Selim, Sh.M.; El-Tayeb, T.S.; Mahgoob, A.E.A.; Abdel Aziz, Norhan H.

    2011-01-01

    In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB) Paenibacillus polymyxa (four strains), the phosphate solubilizing bacteria (PSB) Bacillus megaterium (three strains) and the potassium solubilizing bacteria (KSB) B. circulans (three strains) were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm), number of leaves / plant, shoot dry weight (g) / plant and root dry weight (g) / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium) and for the biological control of M. incognita. PMID:24031611

  7. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  8. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality.

    PubMed

    Davis, R F; Earl, H J; Timper, P

    2014-06-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  9. Physiological Effects of Meloidogyne incognita Infection on Cotton Genotypes with Differing Levels of Resistance in the Greenhouse

    PubMed Central

    Lu, Ping; Davis, Richard F.; Kemerait, Robert C.; van Iersel, Marc W.; Scherm, Harald

    2014-01-01

    Greenhouse tests were conducted to evaluate (i) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark-adapted quantum yield of photosystem II, and leaf area; and (ii) the extent to which moderate or high levels of resistance to M. incognita influenced these effects. Cultivars FiberMax 960 BR (susceptible to M. incognita) and Stoneville 5599 BR (moderately resistant) were tested together in three trials, and PD94042 (germplasm, susceptible) and 120R1B1 (breeding line genetically similar to PD94042, but highly resistant) were paired in two additional trials. Inoculation with M. incognita generally resulted in increases in root gall ratings and egg counts per gram of root compared with the noninoculated control, as well as reductions in plant dry weight, root weight, leaf area, boll number, and boll dry weight, thereby confirming that growth of our greenhouse-grown plants was reduced in the same ways that would be expected in field-grown plants. In all trials, M. incognita caused reductions in height-to-node ratios. Nematode infection consistently reduced the area under the height-to-node ratio curves for all genotypes, and these reductions were similar for resistant and susceptible genotypes (no significant genotype × inoculation interaction). Our study is the first to show that infection by M. incognita is associated with reduced chlorophyll content in cotton leaves, and the reduction in the resistant genotypes was similar to that in the susceptible genotypes (no interaction). The susceptible PD94042 tended to have increased leaf temperature compared with the genetically similar but highly resistant 120R1B1 (P < 0.08), likely attributable to increased water stress associated with M. incognita infection. PMID:25580028

  10. Response of five lettuce cultivars to root-knot nematode, Meloidogyne incognita.

    PubMed

    Pedroche, Nordalyn B; Villanueva, Luciana M; De Dirk, Waele

    2007-01-01

    The root-knot nematode, Meloidogyne incognito (Kofoid et White) Chitwood is an important pathogen of vegetables. Five commercial cultivars of lettuce (Lactuca sativa L.) were evaluated under greenhouse conditions for resistance to Meloidogyne incognita, Benguet population. Plants were inoculated with 1000 eggs collected from 'Apollo' tomato (Lycopersicon esculentum) roots. The degree of galling and number of egg masses were assessed 4 and 8 weeks after inoculation. Host plant response was classified as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, and highly susceptible based on the resistance index of Kouamè et at., 1998 [RI = (gall2 + egg2)]. Inoculation of 1000 eggs/plant significantly affected the growth and yield of the five lettuce cultivars 4 and 8 weeks after inoculation. A significant interaction was observed between treatment and cultivar during the two evaluation periods in terms of marketable and non-marketable yield, plant height, root weight, number of galls and number of egg masses. A reduction in growth and yield was observed in the cultivars Ballon, Lollo Rosa and Red Wave. Significant differences were noted in the number of galls and egg masses among the different cultivars tested. The highest average number of galls was obtained from the cultivars Red Wave, Ballon and Lollo Rosa. Cultivar Ballon had the highest average number of recovered nematode while Gilaben had the lowest with 15 and 4 per roots, respectively after 4 weeks inoculation. After 8 weeks, nematode was highest in cultivar Red Wave (615) and lowest in Great Lakes (70). Based on the host response, cultivars Great Lakes and Gilaben were rated highly resistant and resistant, respectively, while Red Wave, Ballon and Lollo Rosa were rated intermediate. PMID:18399501

  11. Resistance of upland-rice lines to root-knot nematode, Meloidogyne incognita.

    PubMed

    Souza, D C T; Botelho, F B S; Rodrigues, C S; Furtini, I V; Smiderle, E C; de Matos, D L; Bruzi, A T

    2015-01-01

    Despite the benefits of crop rotation, occurrence of nematodes is a common problem for almost all crops within the Cerrado biome, especially for rice. The use of resistant cultivars is one of the main methods for control of nematodes. Thus, the present study aimed to evaluate the reaction of 36 upland-rice lines, with desirable agronomic characteristics, according to their resistance to root-knot nematodes (Meloidogyne incognita). The experimental design was entirely randomized with four replications. Each plot of land consisted of two rice plants in a 3-L vase. The plants were inoculated with 1000 eggs and eventual juveniles of the respective nematodes. Fifty-five days after the inoculation, the roots and the aerial part of the plant were weighed and the egg mass (EM) as well as the reproduction factor (Rf) were estimated. It was determined that the isolated use of EM was not beneficial in selecting rice lines resistant to the root-knot nematode. This procedure must, therefore, take into account the egg counting and the Rf, in order to improve the reliability of the selection. In our study, 30 evaluated lines were observed to be resistant. Among the recommended cultivars, only BRS Monarca had its performance susceptible to the studied nematode species. PMID:26782379

  12. Nematicidal activity of allylisothiocyanate from horseradish (Armoracia rusticana) roots against Meloidogyne incognita.

    PubMed

    Aissani, Nadhem; Tedeschi, Paola; Maietti, Annalisa; Brandolini, Vincenzo; Garau, Vincenzo Luigi; Caboni, Pierluigi

    2013-05-22

    In recent years, there has been a great development in the search for new natural pesticides for crop protection aiming a partial or total replacement of currently used chemical nematicides. Glucosinolate breakdown products are volatile and are therefore good candidates for nematodes fumigants. In this article, the methanol-aqueous extract (1:1, w/v) of horseradish (Armoracia rusticana) fresh roots (MAH) was in vitro tested for nematicidal activity against second stage (J2) Meloidogyne incognita. The EC50 of MAH after 3 days of J2 immersion in test solutions was 251 ± 46 mg/L. The chemical composition analysis of the extract carried out by the GC-MS technique showed that allylisothicyanate was the most abundant compound. This pure compound induced J2 paralysis with an EC50 of 52.6 ± 45.6 and 6.6 ± 3.4 mg/L after 1 h and 3 days of incubation. The use of LC-MS/MS showed for the first time that horseradish root is rich in polyphenols. The study of isothiocyanate degradation in soil showed that allylisothiocyanate was the most quickly degradable compound (half-life <10 min), whereas no significant differences in half-life time were noted between degradation in regular and autoclaved soil. PMID:23627288

  13. Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita.

    PubMed

    Caboni, Pierluigi; Saba, Marco; Tocco, Graziella; Casu, Laura; Murgia, Antonio; Maxia, Andrea; Menkissoglu-Spiroudi, Urania; Ntalli, Nikoletta

    2013-10-16

    The nematicidal activity and chemical characterization of aqueous extracts and essential oils of three mint species, namely, Mentha × piperita , Mentha spicata , and Mentha pulegium , were investigated. The phytochemical analysis of the essential oils was performed by means of GC-MS, whereas the aqueous extracts were analyzed by LC-MS. The most abundant terpenes were isomenthone, menthone, menthol, pulegone, and carvone, and the water extracts yielded mainly chlorogenic acid, salvianolic acid B, luteolin-7-O-rutinoside, and rosmarinic acid. The water extracts exhibited significant nematicidal activity against Meloidogyne incognita , and the EC50/72h values were calculated at 1005, 745, and 300 mg/L for M. × piperita, M. pulegium, and M. spicata, respectively. Only the essential oil from M. spicata showed a nematicidal activity with an EC50/72h of 358 mg/L. Interestingly, menthofuran and carvone showed EC50/48h values of 127 and 730 mg/L, respectively. On the other hand, salicylic acid, isolated in the aqueous extracts, exhibited EC50 values at 24 and 48 h of 298 ± 92 and 288 ± 79 mg/L, respectively. PMID:24050256

  14. Does the Presence of Detached Root Border Cells of Zea mays Alter the Activity of the Pathogenic Nematode Meloidogyne incognita?

    PubMed

    Rodger, S; Bengough, A G; Griffiths, B S; Stubbs, V; Young, I M

    2003-09-01

    ABSTRACT The root-knot nematode Meloidogyne incognita is a major pathogen of a range of important crops. Currently, control is typically achieved by the use of nematicides. However, recent work suggests that manipulating the ability of roots to slough off border cells, which then act as a decoy to the nematode, can significantly decrease damage to the roots. We investigated the attractiveness of border cells to M. incognita and the response of the nematode to border cells in close proximity. We found very limited attraction, in that nematodes did not preferentially alter direction to move toward the border cells, but a large and significant increase in nematode speed was observed once they were in the immediate vicinity of border cells. We discuss the results in the context of physical and biological mechanisms in relation to the control of pathogenic nematodes. PMID:18944094

  15. Repulsion of Meloidogyne incognita by Alginate Pellets Containing Hyphae of Monacrosporium cionopagum, M. ellipsosporum, or Hirsutella rhossiliensis.

    PubMed

    Robinson, A F; Jaffee, B A

    1996-06-01

    The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-mum particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO (20 mul/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm(3) of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots. PMID:19277129

  16. Repulsion of Meloidogyne incognita by Alginate Pellets Containing Hyphae of Monacrosporium cionopagum, M. ellipsosporum, or Hirsutella rhossiliensis

    PubMed Central

    Robinson, A. F.; Jaffee, B. A.

    1996-01-01

    The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots. PMID:19277129

  17. Solanum torvum responses to the root-knot nematode Meloidogyne incognita

    PubMed Central

    2013-01-01

    Background Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseases as bacterial, fungal wilts and root-knot nematodes. The little information on Solanum torvum (hereafter Torvum) resistance mechanisms, is mostly attributable to the lack of genomic tools (e.g. dedicated microarray) as well as to the paucity of database information limiting high-throughput expression studies in Torvum. Results As a first step towards transcriptome profiling of Torvum inoculated with the nematode M. incognita, we built a Torvum 3’ transcript catalogue. One-quarter of a 454 full run resulted in 205,591 quality-filtered reads. De novo assembly yielded 24,922 contigs and 11,875 singletons. Similarity searches of the S. torvum transcript tags catalogue produced 12,344 annotations. A 30,0000 features custom combimatrix chip was then designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples resulting in 390 differentially expressed genes (DEG). We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena. An in-silico validation strategy was developed based on assessment of sequence similarity among Torvum probes and eggplant expressed sequences available in public repositories. GO term enrichment analyses with the 390 Torvum DEG revealed enhancement of several processes as chitin catabolism and sesquiterpenoids biosynthesis, while no GO term enrichment was found with eggplant DEG. The genes identified from S. torvum catalogue, bearing high similarity to known nematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. Conclusions By combining 454 pyrosequencing and microarray technology we were able to conduct a cost-effective global transcriptome profiling

  18. Nematicidal Activity of the Volatilome of Eruca sativa on Meloidogyne incognita.

    PubMed

    Aissani, Nadhem; Urgeghe, Pietro Paolo; Oplos, Chrisostomos; Saba, Marco; Tocco, Graziella; Petretto, Giacomo Luigi; Eloh, Kodjo; Menkissoglu-Spiroudi, Urania; Ntalli, Nikoletta; Caboni, Pierluigi

    2015-07-15

    Research on new pesticides based on plant extracts, aimed at the development of nontoxic formulates, has recently gained increased interest. This study investigated the use of the volatilome of rucola (Eruca sativa) as a powerful natural nematicidal agent against the root-knot nematode, Meloidogyne incognita. Analysis of the composition of the volatilome, using GC-MS-SPME, showed that the compound (Z)-3-hexenyl acetate was the most abundant, followed by (Z)-3-hexen-1-ol and erucin, with relative percentages of 22.7 ± 1.6, 15.9 ± 2.3, and 8.6 ± 1.3, respectively. Testing of the nematicidal activity of rucola volatile compounds revealed that erucin, pentyl isothiocyanate, hexyl isothiocyanate, (E)-2-hexenal, 2-ethylfuran, and methyl thiocyanate were the most active with EC50 values of 3.2 ± 1.7, 11.1 ± 5.0, 11.3 ± 2.6, 15.0 ± 3.3, 16.0 ± 5.0, and 18.1 ± 0.6 mg/L, respectively, after 24 h of incubation. Moreover, the nematicidal activity of fresh rucola used as soil amendant in a containerized culture of tomato decreased the nematode infection in a dose-response manner (EC50 = 20.03 mg/g) and plant growth was improved. On the basis of these results, E. sativa can be considered as a promising companion plant in intercropping strategies for tomato growers to control root-knot nematodes. PMID:26082278

  19. Development of controlled release formulations of carbofuran and evaluation of their efficacy against Meloidogyne incognita.

    PubMed

    Choudhary, Gunanand; Kumar, Jitendra; Walia, Suresh; Parsad, Rajender; Parmar, Balraj S

    2006-06-28

    Controlled release (CR) formulations of the insecti-nematicide carbofuran have been prepared using commercially available rosin, sodium carboxymethylcellulose and sodium carboxymethylcellulose with clay (bentonite, kaolinite, and Fuller's earth). The kinetics of carbofuran release in soil from the different formulations were studied in comparison with that of the commercially available granules (3G). Release from the commercial formulation was faster than with the new CR formulations. Addition of clay in the biodegradable polymer matrix reduced the rate of release. The diffusion exponent (n value) of carbofuran in soil ranged from 0.462 to 0.740 in the tested formulations. The half-release (t1/2) values ranged between 4.79 and 25.11 days, and the period of optimum availability (POA) of carbofuran ranged from 15.10 to 43.97 days. The mean EC50 of the commercial formulation against Meloidogyne incognita was quite high as compared to those of CR formulations. The effective duration (te) of carbofuran from the CR and commercial formulations was predicted by fitting the mean EC50 values of test formulations in the model (M(infinity) - Me)/M(infinity) = Kdte. It was 0.7 day in commercial 3G in comparison with 17.8 days for CMC-bentonite. The bioassay studies revealed that with the rosin-yellow polymer, the dose of carbofuran could be reduced to half of its recommended dose for nematode control. Overall, a comparison of CR formulations with the commercial one showed an earlier degradation of carbofuran in the latter and relatively prolonged activity in the former. PMID:16787021

  20. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides)

    PubMed Central

    Thies, Judy A.; Ariss, Jennifer J.; Kousik, Chandrasekar S.; Hassell, Richard L.; Levi, Amnon

    2016-01-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  1. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    PubMed

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  2. Effect of Broccoli (Brassica oleracea) Tissue, Incorporated at Different Depths in a Soil Column, on Meloidogyne incognita

    PubMed Central

    Roubtsova, Tatiana; López-Péŕez, Jose-Antonio; Edwards, Scott; Ploeg, Antoon

    2007-01-01

    Brassicas have been used frequently for biofumigation, a pest-management strategy based on the release of biocidal volatiles during decomposition of soil-incorporated tissue. However, the role of such volatiles in control of plant-parasitic nematodes is unclear. The goal of this study was to determine the direct localized and indirect volatile effects of amending soil with broccoli tissue on root-knot nematode populations. Meloidogyne incognita-infested soil in 50-cm-long tubes was amended with broccoli tissue, which was mixed throughout the tube or concentrated in a 10-cm layer. After three weeks at 28°C, M. incognita populations in the amended tubes were 57 to 80% smaller than in non-amended tubes. Mixing broccoli throughout the tubes reduced M. incognita more than concentrating broccoli in a 10-cm layer. Amending a 10-cm layer reduced M. incognita in the non-amended layers of those tubes by 31 to 71%, probably due to a nematicidal effect of released volatiles. However, the localized direct effect was much stronger than the indirect effect of volatiles. The strong direct effect may have resulted from the release of non-volatile nematicidal compounds. Therefore, when using biofumigation with broccoli to control M. incognita, the tissue should be thoroughly and evenly mixed through the soil layer(s) where the target nematodes occur. Effects on saprophytic nematodes were the reverse. Amended soil layers had much greater numbers of saprophytic nematodes than non-amended layers, and there was no indirect effect of amendments on saprophytic nematodes in adjacent non-amended layers. PMID:19259479

  3. Influence of Citrullus lanatus var. citroides rootstocks and their F1 hybrids on yield and response to root-knot nematode, Meloidogyne incognita, in grafted watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Southern root-knot nematodes (Meloidogyne incognita) are an important re-emerging pest of watermelon in the U.S. and worldwide. The re-emergence of root-knot nematodes (RKN) in watermelon and other cucurbits is largely due to the intensive cultivation of vegetable crops on limited agricultural land...

  4. Sampling techniques and detection methods for developing risk assessments for root-knot nematode (Meloidogyne incognita) on lima bean (Phaseolus lunatus) in the Mid-Atlantic region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lima bean, Phaseolus lunatus, is a cornerstone crop in the Mid-Atlantic region and Meloidogyne incognita, the southern root knot nematode (RKN), causes significant yield loss. The RKN has become more pervasive as toxic nematicides have been removed from the market, and risk evaluation research is ne...

  5. Comparison between the N and Me3 gene conferring resistance to the root-knot nematode (Meloidogyne incognita) in genetically different pepper lines (Capsicum annuun).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to Meloidogyne incognita in pepper (Capsicum annuum L.) has been well characterized for the N and Me3 resistance genes. However, there are no studies comparing the effects of these two genes directly or are there studies investigating the combined effects when both genes are pres...

  6. In vitro proteolysis of nematode FLPs by preparations from the free-living nematode Panagrellus redivivus and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the la...

  7. Effect of irrigation rates on three cotton (Gossypium Hirsutum L.) cultivars in a root-know nematode (Meloidogyne Incognita) infested field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large-plot study was conducted for five years to determine the effect of irrigation rate and fertigated nitrogen on the performance of Fibermax (FM) 989BR, Stoneville (ST) 5599BR, and Paymaster (PM) 2280 BG/RR in a field infested with the root-knot nematode (Meloidogyne incognita). The objective w...

  8. Impact of direct and indirect application of rising furfural concentrations on viability, infectivity and reproduction of the root-knot nematode, Meloidogyne incognita in Pisum sativum.

    PubMed

    Abdelnabby, Hazem; Wang, Yunhe; Xiao, Xueqiong; Wang, Gaofeng; Yang, Fan; Xiao, Yannong

    2016-07-01

    The gradual withdraw of several broadly used nematicides from market has enhanced the need to develop sustainable and eco-friendly alternatives with nematicidal properties. Furfural is one of the promising alternatives to fill this need. Baseline information about the impact of furfural on egg hatch, penetration potential and ultrastructure of nematode is lacking. In this study, the reagent-grade (purity ≥ 99.0%) of furfural was applied against Meloidogyne incognita. In vitro tests showed gradual reduction in either the rate of egg hatch or second stage juvenile (J2) viability of M. incognita when immersed in concentrations ranging from 0 to 10.0 μl/ml furfural. The mean EC50 for J2 and egg hatch was 0.37 and 0.27 μl/ml furfural, respectively. Furfural, even at low concentrations, resulted in a considerable suppression in egg hatch. Hatch was <5% after 8 days at 0.63 μl/ml furfural. The same furfural concentrations after 12 h caused 57.25% loss of viability in J2. Moreover, the penetration rate of juveniles to pea roots was suppressed when furfural was even applied at low rates. In pot experiments, furfural was applied as liquid (direct) or vapor (indirect) treatments at rates of 0-1.5 ml/kg soil. Significant reduction in galling, egg production and population density of M. incognita observed when furfural was applied at rates >0.2 ml/kg soil. No adverse effect was detected on plants or free-living nematodes as a result of furfural application. Liquid furfural proved to have superior juvenile-suppressive effect whereas its vapor has such superiority against eggs. Scanning electron microscope (SEM) study showed irregular appearance of the body surface accompanied with some cuticle disfigurement of furfural-treated juveniles. These results indicated that furfural can adversely affect egg hatch, juvenile viability, penetration potential and ultrastructure of M. incognita. Furfural may therefore be of a considerable potential as an appropriate

  9. Efficacy Evaluation of Fungus Syncephalastrum racemosum and Nematicide Avermectin against the Root-Knot Nematode Meloidogyne incognita on Cucumber

    PubMed Central

    Huang, Wen-Kun; Sun, Jian-Hua; Cui, Jiang-Kuan; Wang, Gang-Feng; Kong, Ling-An; Peng, Huan; Chen, Shu-Long; Peng, De-Liang

    2014-01-01

    The root-knot nematode (RKN) is one of the most damaging agricultural pests.Effective biological control is need for controlling this destructive pathogen in organic farming system. During October 2010 to 2011, the nematicidal effects of the Syncephalastrum racemosum fungus and the nematicide, avermectin, alone or combined were tested against the RKN (Meloidogyne incognita) on cucumber under pot and field condition in China. Under pot conditions, the application of S. racemosum alone or combined with avermectin significantly increased the plant vigor index by 31.4% and 10.9%, respectively compared to the M. incognita-inoculated control. However, treatment with avermectin alone did not significantly affect the plant vigor index. All treatments reduced the number of root galls and juvenile nematodes compared to the untreated control. Under greenhouse conditions, all treatments reduced the disease severity and enhanced fruit yield compared to the untreated control. Fewer nematodes infecting plant roots were observed after treatment with avermectin alone, S. racemosum alone or their combination compared to the M. incognita-inoculated control. Among all the treatments, application of avermectin or S. racemosum combined with avermectin was more effective than the S. racemosum treatment. Our results showed that application of S. racemosum combined with avermectin not only reduced the nematode number and plant disease severity but also enhanced plant vigor and yield. The results indicated that the combination of S. racemosum with avermectin could be an effective biological component in integrated management of RKN on cucumber. PMID:24586982

  10. Host Transcriptional Profiling at Early and Later Stages of the Compatible Interaction Between Phaseolus vulgaris and Meloidogyne incognita.

    PubMed

    Santini, Luciane; Munhoz, Carla de Freitas; Bonfim, Mauro Ferreira; Brandão, Marcelo Mendes; Inomoto, Mário Massayuki; Vieira, Maria Lucia Carneiro

    2016-03-01

    The root-knot nematode (Meloidogyne incognita) is one of most devastating pathogens that attack the common bean crop. Although there is evidence that some cultivars have race-specific resistance against M. incognita, these resistance sources have not proved effective, and nematodes are able to circumvent the host's defense system. We constructed RNA-seq based libraries and used a high-throughput sequencing platform to analyze the plant responses to M. incognita. Assessments were performed at 4 and 10 days after inoculation corresponding to the stages of nematode penetration and giant cell development, respectively. Large-scale transcript mapping to the common bean reference genome (G19833) resulted in the identification of 27,195 unigenes. Of these, 797 host genes were found to be differentially expressed. The functional annotation results confirm the complex interplay between abiotic and biotic stress signaling pathways. High expression levels of the wounding-responsive genes were observed over the interaction. At early response, an overexpression of the N gene, a TIR-NBS-LRR resistance gene, was understood as a host attempt to overcome the pathogen attack. However, the repression of heat shock proteins resulted in a lack of reactive oxygen species accumulation and absence of a hypersensitive response. Furthermore, the host basal response was broken by the repression of the ethylene/jasmonate pathway later in the response, resulting in a continuous compatible process with consequent plant susceptibility. PMID:26551451

  11. Efficacy evaluation of fungus Syncephalastrum racemosum and nematicide avermectin against the root-knot nematode Meloidogyne incognita on cucumber.

    PubMed

    Huang, Wen-Kun; Sun, Jian-Hua; Cui, Jiang-Kuan; Wang, Gang-Feng; Kong, Ling-An; Peng, Huan; Chen, Shu-Long; Peng, De-Liang

    2014-01-01

    The root-knot nematode (RKN) is one of the most damaging agricultural pests.Effective biological control is need for controlling this destructive pathogen in organic farming system. During October 2010 to 2011, the nematicidal effects of the Syncephalastrum racemosum fungus and the nematicide, avermectin, alone or combined were tested against the RKN (Meloidogyne incognita) on cucumber under pot and field condition in China. Under pot conditions, the application of S. racemosum alone or combined with avermectin significantly increased the plant vigor index by 31.4% and 10.9%, respectively compared to the M. incognita-inoculated control. However, treatment with avermectin alone did not significantly affect the plant vigor index. All treatments reduced the number of root galls and juvenile nematodes compared to the untreated control. Under greenhouse conditions, all treatments reduced the disease severity and enhanced fruit yield compared to the untreated control. Fewer nematodes infecting plant roots were observed after treatment with avermectin alone, S. racemosum alone or their combination compared to the M. incognita-inoculated control. Among all the treatments, application of avermectin or S. racemosum combined with avermectin was more effective than the S. racemosum treatment. Our results showed that application of S. racemosum combined with avermectin not only reduced the nematode number and plant disease severity but also enhanced plant vigor and yield. The results indicated that the combination of S. racemosum with avermectin could be an effective biological component in integrated management of RKN on cucumber. PMID:24586982

  12. Geographical Distributions of Rotylenchulus reniformis, Meloidogyne incognita, and Tylenchulus semipenetrans in the Lower Rio Grande Valley as Related to Soil Texture and Land Use.

    PubMed

    Robinson, A F; Heald, C M; Flanagan, S L; Thames, W H; Amador, J

    1987-10-01

    A survey was conducted over a 22-year period to evaluate the influence of soil texture and land use on the geographical distributions of Rotylenchulus reniformis, Meloidogyne incognita, and Tylenchulus semipenetrans in the lower Rio Grande valley. The distributions of R. reniformis and M. incognita were related to soil texture, whereas T. semipenetrans occurred wherever host plants were present regardless of soil texture. The incidence of M. incognita was greatest in elevated sandy loams and moderately well-drained silts of modern flood terraces of the Rio Grande river. Rotylenchulus reniformis occurred predominantly in clay silts and clays of ancient flood terraces. Clay loams and sandy clay loams of the central, irrigated portion of the lower Rio Grande valley appeared favorable for M. incognita and R. reniformis. Differences between the geographical distributions of these two species could not be attributed to host crops. PMID:19290268

  13. Geographical Distributions of Rotylenchulus reniformis, Meloidogyne incognita, and Tylenchulus semipenetrans in the Lower Rio Grande Valley as Related to Soil Texture and Land Use

    PubMed Central

    Robinson, A. F.; Heald, C. M.; Flanagan, S. L.; Thames, W. H.; Amador, J.

    1987-01-01

    A survey was conducted over a 22-year period to evaluate the influence of soil texture and land use on the geographical distributions of Rotylenchulus reniformis, Meloidogyne incognita, and Tylenchulus semipenetrans in the lower Rio Grande valley. The distributions of R. reniformis and M. incognita were related to soil texture, whereas T. semipenetrans occurred wherever host plants were present regardless of soil texture. The incidence of M. incognita was greatest in elevated sandy loams and moderately well-drained silts of modern flood terraces of the Rio Grande river. Rotylenchulus reniformis occurred predominantly in clay silts and clays of ancient flood terraces. Clay loams and sandy clay loams of the central, irrigated portion of the lower Rio Grande valley appeared favorable for M. incognita and R. reniformis. Differences between the geographical distributions of these two species could not be attributed to host crops. PMID:19290268

  14. Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles.

    PubMed

    Dalzell, Johnathan J; McMaster, Steven; Fleming, Colin C; Maule, Aaron G

    2010-01-01

    The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence, increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles. Both knockdown at the transcript level through quantitative (q)PCR analysis and functional data derived from migration assay, indicate that siRNAs targeting certain areas of the FMRFamide-like peptide (FLP) transcripts are potent and specific in the silencing of gene function. In addition, we present a method of manipulating siRNA activity through the management of strand thermodynamics. Initial evaluation of strand thermodynamics as a determinant of RNA-Induced Silencing Complex (RISC) strand selection (inferred from knockdown efficacy) in the siRNAs presented here suggested that the purported influence of 5' stand stability on guide incorporation may be somewhat promiscuous. However, we have found that on strategically incorporating base mismatches in the sense strand of a G. pallida-specific siRNA, we could specifically increase or decrease the knockdown of its target (specific to the antisense strand), presumably through creating more favourable thermodynamic profiles for incorporation of either the sense (non-target-specific) or antisense (target

  15. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita

    PubMed Central

    Perfus-Barbeoch, Laetitia; Castagnone-Sereno, Philippe; Reichelt, Michael; Fneich, Sara; Roquis, David; Pratx, Loris; Cosseau, Céline; Grunau, Christoph; Abad, Pierre

    2014-01-01

    Root-knot nematodes of the genus Meloidogyne are biotrophic plant parasites that exhibit different life cycles and reproduction modes, ranging from classical amphimixis to obligatory mitotic parthenogenesis (apomixis), depending on the species. Meloidogyne incognita, an apomictic species, exhibits a worldwide distribution and a wide host range affecting more than 3000 plant species. Furthermore, evidences suggest that apomixis does not prevent M. incognita from adapting to its environment in contrast to what is expected from mitotic parthenogenesis that should theoretically produce clonal progenies. This raises questions about mechanisms of genome plasticity leading to genetic variation and adaptive evolution in apomictic animals. We reasoned that epigenetic mechanisms might in part be responsible for the generation of phenotypic variants that provide potential for rapid adaptation. We established therefore a pipeline to investigate the principal carriers of epigenetic information, DNA methylation and post-translational histone modifications. Even if M. incognita possesses the epigenetic machinery i.e., chromatin modifying enzymes, 5-methyl-cytosine and 5-hydroxy-methyl-cytosine content is absent or very weak. In contrast, we demonstrated that the canonical histone modifications are present and chromatin shows typical nucleosome structure. This work is the first characterization of carriers of epigenetic information in M. incognita and constitutes a preamble to further investigate if M. incognita development and its adaptation to plant hosts are under epigenetic control. Our pipeline should allow performing similar types of studies in any non-model organism. PMID:24936189

  16. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita.

    PubMed

    Perfus-Barbeoch, Laetitia; Castagnone-Sereno, Philippe; Reichelt, Michael; Fneich, Sara; Roquis, David; Pratx, Loris; Cosseau, Céline; Grunau, Christoph; Abad, Pierre

    2014-01-01

    Root-knot nematodes of the genus Meloidogyne are biotrophic plant parasites that exhibit different life cycles and reproduction modes, ranging from classical amphimixis to obligatory mitotic parthenogenesis (apomixis), depending on the species. Meloidogyne incognita, an apomictic species, exhibits a worldwide distribution and a wide host range affecting more than 3000 plant species. Furthermore, evidences suggest that apomixis does not prevent M. incognita from adapting to its environment in contrast to what is expected from mitotic parthenogenesis that should theoretically produce clonal progenies. This raises questions about mechanisms of genome plasticity leading to genetic variation and adaptive evolution in apomictic animals. We reasoned that epigenetic mechanisms might in part be responsible for the generation of phenotypic variants that provide potential for rapid adaptation. We established therefore a pipeline to investigate the principal carriers of epigenetic information, DNA methylation and post-translational histone modifications. Even if M. incognita possesses the epigenetic machinery i.e., chromatin modifying enzymes, 5-methyl-cytosine and 5-hydroxy-methyl-cytosine content is absent or very weak. In contrast, we demonstrated that the canonical histone modifications are present and chromatin shows typical nucleosome structure. This work is the first characterization of carriers of epigenetic information in M. incognita and constitutes a preamble to further investigate if M. incognita development and its adaptation to plant hosts are under epigenetic control. Our pipeline should allow performing similar types of studies in any non-model organism. PMID:24936189

  17. Proteome of Soybean Seed Exudates Contains Plant Defense-Related Proteins Active against the Root-Knot Nematode Meloidogyne incognita.

    PubMed

    Rocha, Raquel O; Morais, Janne K S; Oliveira, Jose T A; Oliveira, Hermogenes D; Sousa, Daniele O B; Souza, Carlos Eduardo A; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; de Souza Júnior, José Dijair Antonino; de Sá, Maria F Grossi; Vasconcelos, Ilka M

    2015-06-10

    Several studies have described the effects of seed exudates against microorganisms, but only few of them have investigated the proteins that have defensive activity particularly against nematode parasites. This study focused on the proteins released in the exudates of soybean seeds and evaluated their nematicidal properties against Meloidogyne incognita. A proteomic approach indicated the existence of 63 exuded proteins, including β-1,3-glucanase, chitinase, lectin, trypsin inhibitor, and lipoxygenase, all of which are related to plant defense. The presence of some of these proteins was confirmed by their in vitro activity. The soybean exudates were able to reduce the hatching of nematode eggs and to cause 100% mortality of second-stage juveniles (J2). The pretreatment of J2 with these exudates resulted in a 90% reduction of the gall number in tobacco plants. These findings suggest that the exuded proteins are directly involved in plant defense against soil pathogens, including nematodes, during seed germination. PMID:26034922

  18. Preplanting tall fescue grass for controlling Meloidogyne incognita in a young peach orchard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preplant fumigant nematicides have traditionally been used to control Meloidogyne spp. in peach in the southeastern United States. The current preplant nematicides recommended for managing Meloidogyne spp. in peach include the soil fumigants, 1,3-dichloropropene and metam sodium. Because the econo...

  19. Volatile Substances Produced by Fusarium oxysporum from Coffee Rhizosphere and Other Microbes affect Meloidogyne incognita and Arthrobotrys conoides

    PubMed Central

    Freire, E. S.; Campos, V. P.; Pinho, R. S. C.; Oliveira, D. F.; Faria, M. R.; Pohlit, A. M.; Noberto, N. P.; Rezende, E. L.; Pfenning, L. H.; Silva, J. R. C.

    2012-01-01

    Microorganisms produce volatile organic compounds (VOCs) which mediate interactions with other organisms and may be the basis for the development of new methods to control plant-parasitic nematodes that damage coffee plants. In the present work, 35 fungal isolates were isolated from coffee plant rhizosphere, Meloidogyne exigua eggs and egg masses. Most of the fungal isolates belonged to the genus Fusarium and presented in vitro antagonism classified as mutual exclusion and parasitism against the nematode-predator fungus Arthrobotrys conoides (isolated from coffee roots). These results and the stronger activity of VOCs against this fungus by 12 endophytic bacteria may account for the failure of A. conoides to reduce plant-parasitic nematodes in coffee fields. VOCs from 13 fungal isolates caused more than 40% immobility to Meloidogyne incognita second stage juveniles (J2), and those of three isolates (two Fusarium oxysporum isolates and an F. solani isolate) also led to 88-96% J2 mortality. M. incognita J2 infectivity decreased as a function of increased exposure time to F. oxysporum isolate 21 VOCs. Gas chromatography-mass spectrometry (GC-MS) analysis lead to the detection of 38 VOCs produced by F. oxysporum is. 21 culture. Only five were present in amounts above 1% of the total: dioctyl disulfide (it may also be 2-propyldecan-1-ol or 1-(2-hydroxyethoxy) tridecane); caryophyllene; 4-methyl-2,6-di-tert-butylphenol; and acoradiene. One of them was not identified. Volatiles toxic to nematodes make a difference among interacting microorganisms in coffee rhizosphere defining an additional attribute of a biocontrol agent against plant-parasitic nematodes. PMID:23482720

  20. Influence of 1,3-Dichloropropene, Fenamiphos, and Carbofuran on Meloidogyne incognita Populations and Yield of Chile Peppers.

    PubMed

    Thomas, S H

    1994-12-01

    Field trials were conducted during 1986, 1988, 1989, and 1991 to compare the effects of 1,3-dichloropropene, fenamiphos, and carbofuran on yield and quality of chile peppers (Capsicum annuum) in soil infested with Meloidogyne incognita. When compared with untreated plots, numbers of M. incognita juveniles recovered from soil 60 and(or) 90 days after chile pepper emergence were reduced (P = 0.05) following 1,3-D treatment every year except 1986. Nematode numbers were also reduced (P = 0.05) by fenamiphos in 1989. Chile pepper yields were significantly higher than those in untreated control plots (P = 0.05) all 4 years in plots treated with 1,3-D and in 1989 in plots treated with fenamiphos. Use of carbofuran did not significantly reduce nematode numbers or enhance yields in these experiments. Green chile pepper fruit quality was enhanced (P = 0.05) following 1,3-D treatments in 1988 and 1989 but was unaffected by fenamiphos or carbofuran application. Increasing placement depth of 1,3-D from 28 to 48 cm increased (P = 0.05) red chile pepper yield compared with that obtained with conventional placement in 1988 only, and did not affect green chile pepper yield. PMID:19279948

  1. Transcriptional Changes of the Root-Knot Nematode Meloidogyne incognita in Response to Arabidopsis thaliana Root Signals

    PubMed Central

    Teillet, Alice; Dybal, Katarzyna; Kerry, Brian R.; Miller, Anthony J.; Curtis, Rosane H. C.; Hedden, Peter

    2013-01-01

    Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression. PMID:23593446

  2. Influence of 1,3-Dichloropropene, Fenamiphos, and Carbofuran on Meloidogyne incognita Populations and Yield of Chile Peppers

    PubMed Central

    Thomas, S. H.

    1994-01-01

    Field trials were conducted during 1986, 1988, 1989, and 1991 to compare the effects of 1,3-dichloropropene, fenamiphos, and carbofuran on yield and quality of chile peppers (Capsicum annuum) in soil infested with Meloidogyne incognita. When compared with untreated plots, numbers of M. incognita juveniles recovered from soil 60 and(or) 90 days after chile pepper emergence were reduced (P = 0.05) following 1,3-D treatment every year except 1986. Nematode numbers were also reduced (P = 0.05) by fenamiphos in 1989. Chile pepper yields were significantly higher than those in untreated control plots (P = 0.05) all 4 years in plots treated with 1,3-D and in 1989 in plots treated with fenamiphos. Use of carbofuran did not significantly reduce nematode numbers or enhance yields in these experiments. Green chile pepper fruit quality was enhanced (P = 0.05) following 1,3-D treatments in 1988 and 1989 but was unaffected by fenamiphos or carbofuran application. Increasing placement depth of 1,3-D from 28 to 48 cm increased (P = 0.05) red chile pepper yield compared with that obtained with conventional placement in 1988 only, and did not affect green chile pepper yield. PMID:19279948

  3. Suppression of Meloidogyne incognita population densities with DIBOA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoxazinoids produced by rye (Secale cereale) can be nematotoxic. To test effects of one of these compounds on nematode population densities, the benzoxazinoid 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) was added to soil at concentrations ranging from 9.4 to 150 micrograms per ml (disso...

  4. Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles.

    PubMed

    Dalzell, Johnathan J; McMaster, Steven; Johnston, Michael J; Kerr, Rachel; Fleming, Colin C; Maule, Aaron G

    2009-11-01

    Nine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4h soaks in 0.1 mg/ml dsRNA had no negative impact on M. incognita J2 stage worms, yet a 10-fold increase in concentration to 1 mg/ml for the same 4h time period had an even greater qualitative and quantitative impact on worm phenotype and motility. Further, a 10-fold increase of J2s soaked in 0.1 mg/ml dsRNA did not significantly alter the observed phenotypic aberration, which suggests that dsRNA uptake of the soaked J2s is not saturated under these conditions. This phenomenon was not initially observed in potato cyst nematode G. pallida J2s, which displayed no aberrant phenotype, or diminution of migratory activity in response to the same 0.1 mg/ml dsRNA 24h soaks. However, a 10-fold increase in dsRNA to 1mg/ml was found to elicit comparable irregularity of phenotype and inhibition of motility in G. pallida, to that initially observed in M. incognita following a 24h soak in 0.1 mg/ml dsRNA. Again, a 10-fold increase in the number of G. pallida J2s soaked in the same volume of 1 mg/ml dsRNA preparation did not significantly affect the observed phenotypic deviation. We do not observe any global impact on transcript abundance in either M. incognita or G. pallida J2s following 0.1 mg/ml dsRNA soaks, as revealed by reverse transcriptase-PCR and quantitative PCR data. This study aims to raise awareness of a phenomenon which we observe consistently and which we believe signifies a more expansive deficiency in our knowledge and

  5. Mi-flp-18 and Mi-mpk-1 Genes are Potential Targets for Meloidogyne incognita Control.

    PubMed

    Dong, Linlin; Xu, Jiang; Chen, Shilin; Li, Xiaolin; Zuo, Yuanmei

    2016-04-01

    Meloidogyne incognita is a major plant parasite that causes root-knot disease in numerous agricultural crops. This nematode has severely affected greenhouse crops in China. Chemical insecticides are generally used to control this pest, but they have adverse environmental and human toxicity effects; hence, safe and effective strategies for controlling the root-knot nematode (RKN) are necessary. FMRFamide-like peptides (FLPs) have diverse physiological and biological effects on the locomotory, feeding, and reproductive functions of nematodes, and mitogen-activated protein (MAP) kinase plays an important role in the regulation of transcription factors and protein kinases. These candidates are the common targets of RKN control. They are encoded by Mi-flp-18 and Mi-mpk-1 genes, respectively, in M. incognita . In this study, we used the RNA interference (RNAi) method to silence the transcription of these genes and determined the effects on the pathogenicity of RKN in potted plants. Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) revealed that Mi-mpk-1 gene expression could be reduced by 33% by RNAi. The RNAi-treated infective nematodes were inoculated with dsRNAs of Mi-flp-18 and Mi-mpk-1 in pot experiments. The root-knot numbers were reduced by 51% after Mi-flp-18 RNAi treatment. Further, the relative abundance of Mi-flp-18 was downregulated by 79% in the endoparasitic M. incognita . Mi-flp-18 RNAi treatment decreased egg masses by 92% and egg numbers by 58%. Mi-mpk-1 RNAi treatment reduced the root-knot numbers by 32% and, remarkably, lowered the relative abundance of Mi-mpk-1 in the endoparasitic M. incognita . Egg masses and numbers were reduced by 42 and 22%, respectively, after RKN was inoculated for 35 days with Mi-mpk-1 RNAi. Therefore, Mi-flp-18 and Mi-mpk-1 genes are susceptible to RNAi and can be used as potential targets for RKN control by regulating nematode infection, parasitism, and reproduction. PMID:26785173

  6. Identification of MicroRNAs in Meloidogyne incognita Using Deep Sequencing

    PubMed Central

    Wang, Yunsheng; Mao, Zhenchuan; Yan, Jin; Cheng, Xinyue; Liu, Feng; Xiao, Luo; Dai, Liangying; Luo, Feng; Xie, Bingyan

    2015-01-01

    MicroRNAs play important regulatory roles in eukaryotic lineages. In this paper, we employed deep sequencing technology to sequence and identify microRNAs in M. incognita genome, which is one of the important plant parasitic nematodes. We identified 102 M. incognita microRNA genes, which can be grouped into 71 nonredundant miRNAs based on mature sequences. Among the 71 miRANs, 27 are known miRNAs and 44 are novel miRNAs. We identified seven miRNA clusters in M. incognita genome. Four of the seven clusters, miR-100/let-7, miR-71-1/miR-2a-1, miR-71-2/miR-2a-2 and miR-279/miR-2b are conserved in other species. We validated the expressions of 5 M. incognita microRNAs, including 3 known microRNAs (miR-71, miR-100b and let-7) and 2 novel microRNAs (NOVEL-1 and NOVEL-2), using RT-PCR. We can detect all 5 microRNAs. The expression levels of four microRNAs obtained using RT-PCR were consistent with those obtained by high-throughput sequencing except for those of let-7. We also examined how M. incognita miRNAs are conserved in four other nematodes species: C. elegans, A. suum, B. malayi and P. pacificus. We found that four microRNAs, miR-100, miR-92, miR-279 and miR-137, exist only in genomes of parasitic nematodes, but do not exist in the genomes of the free living nematode C. elegans. Our research created a unique resource for the research of plant parasitic nematodes. The candidate microRNAs could help elucidate the genomic structure, gene regulation, evolutionary processes, and developmental features of plant parasitic nematodes and nematode-plant interaction. PMID:26241472

  7. Influence of Infection of Cotton by Rotylenchulus Reniformis and Meloidogyne Incognita on the Production of Enzymes Involved in Systemic Acquired Resistance

    PubMed Central

    Aryal, Sudarshan K.; Davis, Richard F.; Stevenson, Katherine L.; Timper, Patricia; Ji, Pingsheng

    2011-01-01

    Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR in cotton, but biochemical evidence of SAR was lacking. Our objective was to determine whether infection of cotton by M. incognita and R. reniformis increases the levels of P-peroxidase, G-peroxidase, and catalase enzymes which are involved in induced resistance. A series of greenhouse trials was conducted; each trial included six replications of four treatments applied to one of three cotton genotypes in a randomized complete block design. The four treatments were cotton plants inoculated with i) R. reniformis, ii) M. incognita, iii) BTH (Actigard), and iv) a nontreated control. Experiments were conducted on cotton genotypes DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (resistant to R. reniformis), and M-120 RNR (resistant to M. incognita), and the level of P-peroxidase, G-peroxidase, and catalase activity was measured before and 2, 4, 6, 10, and 14 d after treatment application. In all cotton genotypes, activities of all three enzymes were higher (P ≤ 0.05) in leaves of plants infected with M. incognita and R. reniformis than in the leaves of control plants, except that M. incognita did not increase catalase activity on LONREN-1. Increased enzyme activity was usually apparent 6 d after treatment. This study documents that infection of cotton by M. incognita or R. reniformis increases the activity of the enzymes involved in systemic acquired resistance; thereby providing biochemical evidence to substantiate previous reports of nematode-induced SAR in cotton. PMID:23431029

  8. Meloidogyne Incognita Host Suitability and Benzoxazinoid Content of Rye (secale cereale) Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was conducted to investigate factors which may aid in the selection of a rye cultivar for plant-parasitic nematode management. Six geographically diverse cultivars of rye (Secale cereale) wheat (Triticum aestivum) and hairy vetch (Vicia villosa), were screened for Meloidogyne incognit...

  9. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are one of the major limiting factors in alfalfa production. Root knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops (Castagnone-Sereno et al. 2013) and they may inflict significant damage to alfalfa fields...

  10. Management of root-knot nematode (Meloidogyne incognita) in bottle gourd using different botanicals in pots.

    PubMed

    Singh, Tulika; Patel, B A

    2015-09-01

    A pot experiment was conducted to study the efficacy of different botanicals in varying doses for management of root-knot nematode, M. incognita in bottle gourd. The results exhibited that madar (Calotropis procera) and neem (Azadirachta indica) leaves application proved to be more effective in improving plant growth characters and reducing root-knot index and final nematode population. Among the doses tested, higher dose of 1.5 % (w/w) was more effective than lower ones. PMID:26345048

  11. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    PubMed

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita. PMID:27197670

  12. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita.

    PubMed

    Xiang, Ni; Lawrence, Kathy S

    2016-01-01

    Heterodera glycines (Soybean Cyst nematode, or SCN) and Meloidogyne incognita (Root-Knot nematode, or RKN) are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2) is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05) to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds. PMID:27144277

  13. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita

    PubMed Central

    2016-01-01

    Heterodera glycines (Soybean Cyst nematode, or SCN) and Meloidogyne incognita (Root-Knot nematode, or RKN) are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2) is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05) to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds. PMID:27144277

  14. Increased size of cotton root system does not impart tolerance to Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant tolerance or intolerance to parasitic nematodes represent a spectrum describing the degree of damage inflicted by the nematode on the host plant. Tolerance is typically measured in terms of yield suppression. Instances of plant tolerance to nematodes have been documented in some crops, inclu...

  15. Response of Resistant and Susceptible Bell Pepper (Capsicum annuum) to a Southern California Meloidogyne incognita Population from a Commercial Bell Pepper Field.

    PubMed

    Aguiar, Jose Luis; Bachie, Oli; Ploeg, Antoon

    2014-12-01

    To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy. PMID:25580027

  16. Inheritance and Identification of a Major Quantitative Trait Locus (QTL) that Confers Resistance to Meloidogyne incognita and a Novel QTL for Plant Height in Sweet Sorghum.

    PubMed

    Harris-Shultz, Karen R; Davis, Richard F; Knoll, Joseph E; Anderson, William; Wang, Hongliang

    2015-12-01

    Southern root-knot nematodes (Meloidogyne incognita) are a pest on many economically important row crop and vegetable species and management relies on chemicals, plant resistance, and cultural practices such as crop rotation. Little is known about the inheritance of resistance to M. incognita or the genomic regions associated with resistance in sorghum (Sorghum bicolor). In this study, an F2 population (n = 130) was developed between the resistant sweet sorghum cultivar 'Honey Drip' and the susceptible sweet cultivar 'Collier'. Each F2 plant was phenotyped for stalk weight, height, juice Brix, root weight, total eggs, and eggs per gram of root. Strong correlations were observed between eggs per gram of root and total eggs, height and stalk weight, and between two measurements of Brix. Genotyping-by-sequencing was used to generate single nucleotide polymorphism markers. The G-Model, single marker analysis, interval mapping, and composite interval mapping were used to identify a major quantitative trait locus (QTL) on chromosome 3 for total eggs and eggs per gram of root. Furthermore, a new QTL for plant height was also discovered on chromosome 3. Simple sequence repeat markers were developed in the total eggs and eggs per gram of root QTL region and the markers flanking the resistance gene are 4.7 and 2.4 cM away. These markers can be utilized to move the southern root-knot nematode resistance gene from Honey Drip to any sorghum line. PMID:26574655

  17. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery.

    PubMed

    Terefe, Metasebia; Tefera, Tadele; Sakhuja, P K

    2009-02-01

    Bacillus firmus, commercial WP formulation (BioNem) was evaluated against the root-knot nematode Meloidogyne incognita in a laboratory, greenhouse and under field conditions on tomato plants. In the laboratory tests, an aqueous suspension of BioNem at 0.5%, 1%, 1.5% and 2% concentration reduced egg hatching from 98% to 100%, 24-days after treatment. Treatment of second-stage juveniles with 2.5% and 3% concentration of BioNem, caused 100% inhibition of mobility, 24 h after treatment. In the green house trials, BioNem applied at 8 g/pot (1200 cc soil) planted with a tomato seedlings reduced gall formation by 91%, final nematode populations by 76% and the number of eggs by 45%. Consequently, plant height and biomass was increased by 71% and 50%, respectively, compared to the untreated control, 50-days after treatment application. Application of BioNem at 16 g/pot was phytotoxic to plants. In the field trails, BioNem applied at 200 and 400 kg ha(-1) was effective in reducing the number of galls (75-84%), and increased shoot height (29-31%) and weight (20-24%) over the untreated control, 45-days after treatment. Our results indicate that B. firmus is a promising microorganism for the biological control of M. incognita in tomato pots. PMID:19041655

  18. Evaluation of the Effect of Ecologic on Root Knot Nematode, Meloidogyne incognita, and Tomato Plant, Lycopersicon esculenum

    PubMed Central

    Ladner, Debora C.; Tchounwou, Paul B.; Lawrence, Gary W.

    2008-01-01

    Nonchemical methods and strategies for nematode management including cultural methods and engineered measures have been recommended as an alternative to methyl bromide (a major soil fumigant), due to its role in the depletion of the ozone layer. Hence, an international agreement has recently been reached calling for its reduced consumption and complete phasing out. This present research evaluates the potential of Ecologic, a biological, marine shell meal chitin material, as a soil amendment management agent for root knot nematode, Meloidogyne incognita, control, and its effect on the growth of Floradel tomato plant, Lycopersicon esculentum. To accomplish this goal, studies were conducted during which, experimental pots were set up in greenhouse environments using sterilized soil inoculated with 5,000 root-knot eggs per 1500 g soil. There were 4 treatments and 5 replications. Treatments were: No chitin; 50 g chitin; 100 g chitin; and 200 g chitin. A two-week wait period following Ecologic amendment preceded Floradel tomato planting to allow breakdown of the chitin material into the soil. Fresh and dry weights of shoot and root materials were taken as growth end-points. A statistically significant difference (p ≤ 0.05) was obtained with regard to the growth rate of L. esculentum at 100 g chitin treatment compared to the control with no chitin. Mean fresh weights of Floradel tomato were 78.0 ± 22.3g, 81.0 ± 20.3g, 109.0 ± 25.4g and 102.0 ± 33.3g at 0, 50, 100 and 200g chitin, respectively. The analysis of root knot nematode concentrations indicated a substantial effect on reproduction rate associated with chitin amendment. Study results showed a significant decrease in both root knot nematode eggs and juveniles (J2) at 100g and 200g Ecologic chitin levels, however, an increase in nematode concentrations was recorded at the 50g Ecologic chitin level (p ≤ 0.05). The mean amounts of J2 population, as expressed per 1500cm3 soil, were 49,933 ± 38,819, 86,050

  19. Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita.

    PubMed

    Chan, Yuan-Li; He, Yong; Hsiao, Tsen-Tsz; Wang, Chii-Jeng; Tian, Zhihong; Yeh, Kai-Wun

    2015-02-01

    Meloidogyne incognita, one of the major root-knot nematode (RKN) species in agriculture, attacks many plant species, causing severe economic losses. Genetic engineering of plants with defense-responsive genes has been demonstrated to control RKN. These studies, however, focused on controlling RKN at certain growth stages. In the present study, a dual gene overexpression system, utilizing a plant cysteine proteinase inhibitor (CeCPI) and a fungal chitinase (PjCHI-1), was used to transform tomato (Solanum lycopersicum) in order to provide protection from all growth stages of RKN. A synthetic promoter, pMSPOA, containing NOS-like and SP8a elements, was employed to drive the expression of introduced genes. Gall formation and the proportion of female nematodes in the population, as well as effects on the reproduction of RKN, were monitored in both transgenic and control plants. RKN eggs collected from transgenic plants displayed reduced chitin content and retardation in embryogenesis. The results demonstrated that transgenic plants had inhibitory effects on RKN that were superior to plants transformed with a single gene. The pyramiding expression system produced synergistic effects by the two defense-responsive genes, leading to a detrimental effect on all growth stages of RKN. PMID:25575993

  20. Population Dynamics of Meloidogyne incognita, M. arenaria,and Other Nematodes and Crop Yields in Rotations of Cotton, Peanut, and Wheat Under Minimum Tillage

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Handoo, Z. A.

    2000-01-01

    Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States. PMID:19270949

  1. Influence of fungicides on a nematode-suppressive soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified a field in Georgia, USA that was moderately suppressive to Meloidogyne spp. In the greenhouse, reproduction of both M. incognita on cotton and M. arenaria on peanut was greater in microwave-heated soil than in natural soil from this field suggesting that nematode suppression was cause...

  2. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogy...

  3. Greenhouse Studies on the Effect of Marigolds (Tagetes spp.) on Four Meloidogyne Species

    PubMed Central

    Ploeg, Antoon T.

    1999-01-01

    The effects of preplanted marigold on tomato root galling and multiplication of Meloidogyne incognita, M. javanica, M. arenaria, and M. hapla were studied. Marigold cultivars of Tagetes patula, T. erecta, T. signata, and a Tagetes hybrid all reduced galling and numbers of second-stage juveniles in subsequent tomato compared to the tomato-tomato control. All four Meloidogyne spp. reproduced on T. signata 'Tangerine Gem'. Several cultivars of T. patula and T. erecta suppressed galling and reproduction of Meloidogyne spp. on tomato to levels lower than or comparable to a fallow control. Phytotoxic effects of marigold on tomato were not observed. Several of the tested marigold cultivars are ready for full-scale field evaluation against Meloidogyne spp. PMID:19270876

  4. Relationship Between Levels of Cyanide in Sudangrass Hybrids Incorporated into Soil and Suppression of Meloidogyne hapla

    PubMed Central

    Widmer, T. L.; Abawi, G. S.

    2002-01-01

    Sudangrass cv. Trudan 8 has been demonstrated to suppress infection of vegetables by Meloidogyne hapla (Mh). Hydrogen cyanide, released from the degradation of the cyanogenic glucoside (dhurrin) during decomposition of Trudan 8, was the primary factor involved in suppression of Mh on vegetables. The cyanide ion level in leaf tissue of 14 hybrids of sudangrass varied between 0.04 (cv. SX-8) to 1.84 parts per million (cv. 840F). The suppressive activity of the sudangrass hybrids against Mh was assessed in greenhouse tests by incorporating various amounts of leaf tissue into organic soil. After 1 week, eggs of Mh were added to the soil (8 eggs/cm[sup3] soil), which was then planted with lettuce as a bioassay plant. After 8 weeks, the lettuce roots were washed and rated for root-gall severity (RGS). Incorporation of sudangrass tissue resulted in a reduction of RGS up to 54%. There was a correlation between the amount of free cyanide incorporated into the soil and the reduction in RGS. Other green manures of cyanogenic plants tested were white clover, which resulted in a 45% reduction in RGS, and flax, which resulted in a 53% reduction in Mh penetration of lettuce roots. These results suggest that cyanogenic plants have potential as nematicidal green manures. PMID:19265902

  5. Relationship Between Levels of Cyanide in Sudangrass Hybrids Incorporated into Soil and Suppression of Meloidogyne hapla.

    PubMed

    Widmer, T L; Abawi, G S

    2002-03-01

    Sudangrass cv. Trudan 8 has been demonstrated to suppress infection of vegetables by Meloidogyne hapla (Mh). Hydrogen cyanide, released from the degradation of the cyanogenic glucoside (dhurrin) during decomposition of Trudan 8, was the primary factor involved in suppression of Mh on vegetables. The cyanide ion level in leaf tissue of 14 hybrids of sudangrass varied between 0.04 (cv. SX-8) to 1.84 parts per million (cv. 840F). The suppressive activity of the sudangrass hybrids against Mh was assessed in greenhouse tests by incorporating various amounts of leaf tissue into organic soil. After 1 week, eggs of Mh were added to the soil (8 eggs/cm[sup3] soil), which was then planted with lettuce as a bioassay plant. After 8 weeks, the lettuce roots were washed and rated for root-gall severity (RGS). Incorporation of sudangrass tissue resulted in a reduction of RGS up to 54%. There was a correlation between the amount of free cyanide incorporated into the soil and the reduction in RGS. Other green manures of cyanogenic plants tested were white clover, which resulted in a 45% reduction in RGS, and flax, which resulted in a 53% reduction in Mh penetration of lettuce roots. These results suggest that cyanogenic plants have potential as nematicidal green manures. PMID:19265902

  6. Effects of Meloidogyne spp. and Rhizoctonia solani on the Growth of Grapevine Rootings.

    PubMed

    Walker, G E

    1997-06-01

    A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were

  7. Occurrence of Meloidogyne spp. in Argentina

    PubMed Central

    Doucet, M. E.; Pinochet, J.

    1992-01-01

    A record of 84 plant species in 32 families that are hosts to the root-knot nematode species found in Argentina is presented. The genus Meloidogyne appears to be widely distributed in the country, with Meloidogyne incognita and M. javanica the most frequently detected species. Other species found in Argentina include M. arenaria, M. cruciani, M. decalineata, M. hapla, and M. ottersoni. The present survey is supplemented with existing published information. PMID:19283059

  8. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    PubMed Central

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  9. Pathogencity and reproductive potential of Meloidogyne mayaguensis and M. floridensis compared with three common Meloidogyne spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity and reproductive potential of Meloidogyne mayaguensis and M. floridensis, two new species reported in Florida agriculture, were compared to those of M. arenaria race 1, M. incognita race 4, and M. javanica race 1 on tomato (Lycopersicon esculentum Mill.) in field microplots. Two tr...

  10. Suppression of Meloidogyne hapla and Its Damage to Lettuce Grown in a Mineral Soil Amended with Chitin and Biocontrol Organisms

    PubMed Central

    Chen, J.; Abawi, G. S.; Zuckerman, B. M.

    1999-01-01

    Chitin was used as soil amendment in fiberglass field microplots, alone or with one or a combination of two to three species of Hirsutella rhossiliensis, Paecilomyces marquandii, Verticillium chlamydosporium, Bacillus thuringiensis, and Streptomyces costaricanus. Sudangrass and rapeseed were planted as cover crops and incorporated into soil as green manure amendments. Chitin amendment alone increased the marketable yield of lettuce in 1995 and reduced root-galling ratings and the reproduction of Meloidogyne hapla in both 1995 and 1996. Green manure amendments of sudangrass and rapeseed increased total and marketable yields of lettuce, and decreased root-galling ratings and the reproduction of M. hapla in 1996. Hirsutella rhossiliensis in combination with chitin increased total yield of lettuce over the chitin amendment alone in 1995. The combination of B. thuringiensis, S. costaricanus, and chitin either with or without P. marquandii increased total yield of lettuce over the chitin amendment alone in 1996. In most cases, however, the nematode-antagonistic organisms did not improve lettuce yield or further suppression of M. hapla compared to the chitin amendment alone. The introduced fungi were recoverable from the infested soil. The rifampicin-resistant mutant of B. thuringiensis was not isolated at the end of the season. PMID:19270942

  11. Suppression of Meloidogyne hapla and Its Damage to Lettuce Grown in a Mineral Soil Amended with Chitin and Biocontrol Organisms.

    PubMed

    Chen, J; Abawi, G S; Zuckerman, B M

    1999-12-01

    Chitin was used as soil amendment in fiberglass field microplots, alone or with one or a combination of two to three species of Hirsutella rhossiliensis, Paecilomyces marquandii, Verticillium chlamydosporium, Bacillus thuringiensis, and Streptomyces costaricanus. Sudangrass and rapeseed were planted as cover crops and incorporated into soil as green manure amendments. Chitin amendment alone increased the marketable yield of lettuce in 1995 and reduced root-galling ratings and the reproduction of Meloidogyne hapla in both 1995 and 1996. Green manure amendments of sudangrass and rapeseed increased total and marketable yields of lettuce, and decreased root-galling ratings and the reproduction of M. hapla in 1996. Hirsutella rhossiliensis in combination with chitin increased total yield of lettuce over the chitin amendment alone in 1995. The combination of B. thuringiensis, S. costaricanus, and chitin either with or without P. marquandii increased total yield of lettuce over the chitin amendment alone in 1996. In most cases, however, the nematode-antagonistic organisms did not improve lettuce yield or further suppression of M. hapla compared to the chitin amendment alone. The introduced fungi were recoverable from the infested soil. The rifampicin-resistant mutant of B. thuringiensis was not isolated at the end of the season. PMID:19270942

  12. Expression of Arabidopsis genes AtNPR1 and AtTGA2 in transgenic soybean roots of composite plants confers resistance to root-knot nematode (Meloidogyne incognita)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (RKN; Meloidogyne spp.) are among the most destructive of the plant parasitic nematodes, infecting almost all cultivated plants and resulting in yield losses of billions of dollars annually. NPR1 (nonexpresser of pathogenesis related genes 1, AtNPR1) plays a positive role in the ...

  13. Comparative Studies on Root Invasion, Root Galling, and Fecundity of Three Meloidogyne spp. on a Susceptible Tobacco Cultivar

    PubMed Central

    Arens, M. L.; Rich, J. R.; Dickson, D. W.

    1981-01-01

    Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation. PMID:19300745

  14. Survey of Meloidogyne spp. in Tomato Production Fields of Baix Llobregat County, Spain

    PubMed Central

    Sorribas, F. J.; Verdejo-Lucas, S.

    1994-01-01

    A survey was conducted to determine the frequency and abundance of Meloidogyne spp. in tomato production sites located in Baix Llobregat County, Barcelona, Spain. Forty-five sites were sampled before planting and at harvest from February to October, 1991. Meloidogyne spp. occurred in 49% of the sites sampled. Preplant population densities ranged from 10 to 220 (x̄ = 110)juveniles/ 250 cm³ soil, and final population densities ranged from 20 to 1,530 (x̄ = 410)juveniles/250 cm³ soil. Final population densities were higher in open fields than in field greenhouses, but initial population densities were higher in greenhouses than in fields. Meloidogyne incognita, M. javanica, and M. arenaria were found in this survey. Meloidogyne populations that reproduced on M. incognita-resistant tomato cultivars in the field sites did not circumvent the Mi gene resistance in greenhouse tests. PMID:19279955

  15. Evidence of Differences between the Communities of Arbuscular Mycorrhizal Fungi Colonizing Galls and Roots of Prunus persica Infected by the Root-Knot Nematode Meloidogyne incognita▿

    PubMed Central

    Alguacil, Maria del Mar; Torrecillas, Emma; Lozano, Zenaida; Roldán, Antonio

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) play important roles as plant protection agents, reducing or suppressing nematode colonization. However, it has never been investigated whether the galls produced in roots by nematode infection are colonized by AMF. This study tested whether galls produced by Meloidogyne incognita infection in Prunus persica roots are colonized by AMF. We also determined the changes in AMF composition and biodiversity mediated by infection with this root-knot nematode. DNA from galls and roots of plants infected by M. incognita and from roots of noninfected plants was extracted, amplified, cloned, and sequenced using AMF-specific primers. Phylogenetic analysis using the small-subunit (SSU) ribosomal DNA (rDNA) data set revealed 22 different AMF sequence types (17 Glomus sequence types, 3 Paraglomus sequence types, 1 Scutellospora sequence type, and 1 Acaulospora sequence type). The highest AMF diversity was found in uninfected roots, followed by infected roots and galls. This study indicates that the galls produced in P. persica roots due to infection with M. incognita were colonized extensively by a community of AMF, belonging to the families Paraglomeraceae and Glomeraceae, that was different from the community detected in roots. Although the function of the AMF in the galls is still unknown, we hypothesize that they act as protection agents against opportunistic pathogens. PMID:21984233

  16. Pathogenicity and control of Heterodera schachtii and Meloidogyne spp. on some cruciferous plant cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of the sugar beet cyst nematode Heterodera schachtii and the root-knot nematodes Meloidogyne arenaria, M. incognita and M. javanica on cabbage cvs. Balady, Brunswick and Ganzouri, cauliflower cv. Balady, turnip cv. Balady, and radish cv. Balady was determined in several greenhouse ...

  17. Host status of endophyte-infected and noninfected tall fescue grass to Meloidogyne spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) ...

  18. IDENTIFICATION OF RESISTANCE TO MELOIDOGYNE ARENARIA RACE 1 IN U.S. WATERMELON PLANT INTRODUCTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (Meloidogyne arenaria, M. incognita, and M. javanica) reduce yields of watermelon (Citrullus lanatus var. lanatus) in the southern U.S. and world-wide. Root-knot nematodes are controlled in watermelon by pre-plant soil fumigation with methyl bromide or treatment with other nemat...

  19. Assessment of selected pecan and peach rootstocks for resistance to Meloidogyne partityla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open pollinated pecan seedling rootstocks were evaluated for susceptibility to Meloidogyne partityla, M. arenaria, and M. incognita in the greenhouse. Cultivars tested included seed from ‘Apache’, ‘Caddo’, ‘Curtis’, ‘Moneymaker’, ‘Pawnee’, ‘Schley’, ‘Stuart’, and ‘Wichita’ parent trees. ‘Elliott’...

  20. Response of Peach Scion Cultivars and Rootstocks to Meloidogyne incognitain Vitro and in Microplots.

    PubMed

    Huettel, R N; Hammerschlag, F A

    1993-09-01

    The response of the peach scion cultivars, Jerseyqueen, Redhaven, Compact Redhaven, and Rio Oso Gem and rootstocks 'Lovely and 'Nemaguard' to inoculation with Meloidogyne incognita was compared in vitro and in microplots. One or more parameters monitored in vitro correlated with at least one parameter monitored in microplots, 4 years after tree planting (1989). A range of responses was observed from highlysusceptible in Lovell to resistant in Nemaguard. In vitro and microplot data suggest high and moderate levels of resistance to M. incognita in Compact Redhaven and Redhaven, respectively. Both Jerseyqueen and Rio Oso Gem were susceptible to M. incognita, but not as susceptible as Lovell. The response of self-rooted peach cultivars and rootstocks to M. incognita in vitro appears to be a reliable method for predicting the reaction of each to these nematodes under field conditions. PMID:19279797

  1. Effects of cover crops with potential for use in anaerobic soil disinfestation (asd) on reproduction of meloidogyne spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several cover crops were assessed for their susceptibility to invasion and galling by three species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on their potential for use as the organic amendment component in anaerobic soil disinfestation (AS...

  2. Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disin...

  3. RESISTANCE OF WATERMELON (CITRULLUS SPP.) GERMPLASM TO THE PEANUT ROOT-KNOT NEMATODE (MELOIDOGYNE ARENARIA RACE 1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (Meloidogyne arenaria, M. incognita, and M. javanica) are serious pests of watermelon (Citrullus lanatus) in the southern U.S. and world-wide. Currently, root-knot nematodes (RKN) are controlled in watermelon by pre-plant soil fumigation with methyl bromide or other nematicides....

  4. Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes limit carrot production around the world by inducing taproot forking and galling deformities that render carrots unmarketable. In warmer climates, Meloidogyne javanica and M. incognita are most prevalent. In F2 and F3 progeny from the cross between an Asian carrot resistant to M....

  5. Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida

    PubMed Central

    Brito, J.; Powers, T. O.; Mullin, P. G.; Inserra, R. N.; Dickson, D. W.

    2004-01-01

    The discovery of Meloidogyne mayaguensis is confirmed in Florida; this is the first report for the continental United States. Meloidogyne mayaguensis is a virulent species that can reproduce on host cultivars bred for nematode resistance. The perineal patterns of M. mayaguensis isolates from Florida show morphological variability and often are similar to M. incognita. Useful morphological characters for the separation of M. mayaguensis from M. incognita from Florida are the male stylet length values (smaller for M. mayaguensis than M. incognita) and J2 tail length values (greater for M. mayaguensis than M. incognita). Meloidogyne mayaguensis values for these characters overlap with those of M. arenaria and M. javanica from Florida. Enzyme analyses of Florida M. mayaguensis isolates show two major bands (VS1-S1 phenotype) of esterase activity, and one strong malate dehydrogenase band (Rm 1.4) plus two additional weak bands that migrated close together. Their detection requires larger amounts of homogenates from several females. Amplification of two separate regions of mitochondrial DNA resulted in products of a unique size. PCR primers embedded in the COII and 16S genes produced a product size of 705 bp, and amplification of the 63-bp repeat region resulted in a single product of 322 bp. Nucleotide sequence comparison of these mitochondrial products together with sequence from 18S rDNA and ITS1 from the nuclear genome were nearly identical with the corresponding regions from a M. mayaguensis isolate from Mayaguez, Puerto Rico, the type locality of the species. Meloidogyne mayaguensis reproduced on cotton, pepper, tobacco, and watermelon but not on peanut. Preliminary results indicate the M. mayaguensis isolates from Florida can reproduce on tomato containing the Mi gene. Molecular techniques for the identification of M. mayaguensis will be particularly useful in cases of M. mayaguensis populations mixed with M. arenaria, M. incognita, and M. javanica, which are the

  6. CONTROL OF MELOIDOGYNE MARYLANDI ON BERMUDA GRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meloidogyne marylandi is widely distributed on turf in Texas and is frequently associated with poor turf appearance and growth. Suppression of population densities of M. marylandi on established Bermudagrass through application of a new formulation of 1,3-dichloropropene (Curfew), fenamiphos (Nemacu...

  7. MiRNAs from cotton roots infected with Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular activities associated with the resistance of Upland cotton (Gossypium hirsutum L.) to the root-knot nematode (RKN) are largely unknown. Small RNAs or microRNAs (miRNA), a well-conserved gene regulatory system, have an important role in plant development, stress responses, and epigeneti...

  8. Response of some common annual bedding plants to three species of meloidogyne.

    PubMed

    McSorley, R; Frederick, J J

    1994-12-01

    Twelve ornamental bedding plant cultivars were grown in soil infested with isolates of Meloidogyne incognita race 1, M. javanica, or M. arenaria race 1 in a series of tests in containers in a growth room. Root galling (0-5 scale) and eggs/plant were evaluated 8-10 weeks after soil infestation and seedling transplantation. Snapdragon, Antirrhinum majus cv. First Ladies, was extensively galled and highly susceptible (mean gall rating >/=4.2 and >/=14,500 eggs/plant), and Celosia argentea cv. Century Mix and Coleus blumei cv. Rainbow were susceptible (>1,500 eggs/plant) to all three Meloidogyne isolates. Response of Petunia x hybrida varied with cultivar and nematode isolate. Little or no galling or egg production from any Meloidogyne isolate was observed on Ageratum houstonianum cv. Blue Mink, Lobularia maritima cv. Rosie O'Day, or Tagetes patula cv. Dwarf Primrose. Galling was slight (mean rating 4.0 and >/=7,900 eggs/plant) by M. javanica and M. arenaria but was nearly free of galling from M. incognita. Zinna elegans cv. Scarlet was nearly free of galling from M. incognita and M. arenaria but was susceptible (mean gall rating = 2.9; 3,400 eggs/plant) to M. javanica. PMID:19279963

  9. Mapping luna incognita

    NASA Astrophysics Data System (ADS)

    Westfall, John E.

    1990-11-01

    The portion of the moon near the south and southwestern limbs was poorly photographed by the 1960s lunar missions, and is accordingly designated 'luna incognita'. The Association of Lunar and Planetary Observers accordingly undertook a study of this region from 1972 to 1990 which ultimately encompassed 1509 photographs by terrestrial observers, photographs from the Lunar Orbiters IV and V and from Zond 8, radar maps and images, and charts of the moon's limb profile. On these bases, a shaded-relief topographic map was compiled and executed by a computerized 'shading' program at 1:2.5 million scale. This map is presently reproduced in 1:3.5 million scale.

  10. RKN Lethal DB: A database for the identification of Root Knot Nematode (Meloidogyne spp.) candidate lethal genes

    PubMed Central

    Ismail, Ahmed; Matthews, Benjamin F; Alkharouf, Nadim W

    2012-01-01

    Root Knot nematode (RKN; Meloidogyne spp.) is one of the most devastating parasites that infect the roots of hundreds of plant species. RKN cannot live independently from their hosts and are the biggest contributors to the loss of the world's primary foods. RNAi gene silencing studies have demonstrated that there are fewer galls and galls are smaller when RNAi constructs targeted to silence certain RKN genes are expressed in plant roots. We conducted a comparative genomics analysis, comparing RKN genes of six species: Meloidogyne Arenaria, Meloidogyne Chitwoodi, Meloidogyne Hapla, Meloidogyne Incognita, Meloidogyne Javanica, and Meloidogyne Paranaensis to that of the free living nematode Caenorhabditis elegans, to identify candidate genes that will be lethal to RKN when silenced or mutated. Our analysis yielded a number of such candidate lethal genes in RKN, some of which have been tested and proven to be effective in soybean roots. A web based database was built to house and allow scientists to search the data. This database will be useful to scientists seeking to identify candidate genes as targets for gene silencing to confer resistance in plants to RKN. Availability The database can be accessed from http://bioinformatics.towson.edu/RKN/ PMID:23144556

  11. Interaction of concurrent populations of Meloidogyne partityla and Mesocriconema xenoplax on pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between Meloidogyne partityla and Mesocriconema xenoplax on nematode reproduction and growth of Desirable pecan was studied in field microplots. Meloidogyne partityla suppressed reproduction of M. xenoplax, whereas the presence of M. xenoplax did not affect the population density of...

  12. Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla.

    PubMed

    Hugall, A; Stanton, J; Moritz, C

    1997-01-01

    Mitochondrial DNA of the root knot nematode Meloidogyne hapla was investigated for intraspecific diversity and divergence from other parthenogenetic root knot nematodes. A 1,900-bp fragment containing COII, tRNAHis, 16S rRNA, ND3 and Cyt b genes has been cloned and sequenced from one individual and an 1,188-bp region within this region was sequenced from four other Australian isolates. M. hapla mtDNA is more than 80% AT-rich, like other Meloidogyne spp. Nucleotide diversity within M. hapla is some 10-fold higher than across three other parthenogenetic species of root-knot nematode (M. arenaria, M. javanica, and M. incognita), implying an earlier origin for M. hapla. Nucleotide divergence between M. hapla and its congener M. javanica is as great as that between Ascaris suum and Caenorhabditis elegans, members of different nematode subclasses, while amino acid sequence difference between Meloidogyne is more than twice as great. This is interpreted as an AT-bias-induced acceleration of the amino acid substitution rate, over and above saturation of nucleotide divergence in the strongly AT-biased DNA, on three lines of evidence: (1) in conserved blocks in 16S rDNA congeneric Meloidogyne have no more differences than between A. suum and C. elegans; (2) the Meloidogyne lineage has more amino acid changes relative to the Ascaris/Caenorhabditis lineage with respect to four of five outgroups, the exceptional outgroup being the only species (Apis) as AT-rich as Meloidogyne; and (3) between the two Meloidogyne there are more first and second but fewer third codon position changes than between the other nematode species. M. hapla is also found to contain a 102-bp tandem repeat of at least 40 copies; a size, arrangement, and position the same as in M. javanica, but sequence comparisons did not demonstrate homology between the two repeats. PMID:9000752

  13. Bahiagrass for the Management of Meloidogyne arenaria in Peanut

    PubMed Central

    Rodríguez-Kábana, R.; Weaver, C. F.; Robertson, D. G.; Ivey, H.

    1988-01-01

    Bahiagrass (Paspalum notatum) cultivars Argentine, Pensacola, and Tifton-9 were non-hosts for Meloidogyne arenaria, M. incognita, and Heterodera glycines in a greenhouse experiment using field soil infested with these nematodes. The effect of Pensacola bahiagrass in rotation with peanut (Arachis hypogaea) on M. arenaria was studied in 1986 and 1987 in a field at the Wiregrass substation near Headland, Alabama. Each year soil densities of second-stage juveniles of M. arenaria, determined near peanut harvest, were 96-98% lower under bahiagrass than under peanut. In 1987 peanut yields in plots following bahiagrass were 27% higher than in plots under peanut monoculture. Juvenile population densities in bahiagrass-peanut plots were 41% lower than in plots with continuous peanut. Using bahiagrass for reducing population densities of M. arenaria and increasing peanut yield was as effective as using aldicarb at the recommended rates for peanut. PMID:19290315

  14. Broad Meloidogyne Resistance in Potato Based on RNA Interference of Effector Gene 16D10.

    PubMed

    Dinh, Phuong T Y; Zhang, Linhai; Mojtahedi, Hassan; Brown, Charles R; Elling, Axel A

    2015-03-01

    Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas R Mc1(blb) , the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion. PMID:25861119

  15. Peroxidase Isozymes from Meloidogyne spp. and Their Origin

    PubMed Central

    Starr, J. L.

    1979-01-01

    Two peroxidase isozymes (Ef 0.43 and 0.53) were detected by electrophoretic analysis in homogenates of Meloidogyne arenaria, M. hapla, M. javanica, and M. incognita females reared on tomato. No peroxidase isozymes were detected electrophoretically in homogenates of adult males, preparasitic larvae, or eggs. Peroxidase isozymes from females reared on bean, eggplant, or tobacco differed from those from females reared on tomato. Bean and eggplant populations had a single peroxidase isozyme each, respectively Ef 0.21 and 0.28. No peroxidase isozymes were detected in tobacco populations under the conditions used, although total activity assays did reveal low levels of peroxidase activity in homogenates of tobacco populations. The peroxidase isozymes detected in females reared on tomato or bean appear similar to the peroxidase isozymes present in root-knot galls, adjacent ungalled roots, and roots from uninoculated plants of the corresponding hosts. The probability is discussed that most of the peroxittase activity associated with Meloidogyne spp. females is of host origin. PMID:19305520

  16. Clove oil and fungus compounds: Can nematode suppression be achieved without phytotoxicity?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products from a plant (Syzygium aromaticum) and a fungus (Aspergillus sp.) were examined for the presence of compounds with potential for application as novel nematicides. The plant-derived material, clove oil, was tested in the greenhouse against the nematode Meloidogyne incognita on cucum...

  17. Molecular and Morphological Characterization of an Unusual Meloidogyne arenaria Population from Traveler's Tree, Ravenala madagascariensis

    PubMed Central

    Carta, LK; Handoo, ZA

    2008-01-01

    An unusual variant of Meloidogyne arenaria was discovered on roots of a traveler's tree (Ravenala madagascariensis) intended for display at a public arboretum in Pennsylvania. The population aroused curiosity by the lack of visible galling on the roots of the infected plant, and the female vulval region was typically surrounded by egg sacs. Most morphometrics of the population fit within the ranges reported for M. arenaria, with a mosaic of features in common with either M. platani or other tropical Meloidogyne spp. Molecular characterization included analysis of four loci. The mitochondrial sequence, extending from cytochrome oxidase II (COII) to the 16S (1RNA) gene, was nearly identical to another M. arenaria population and closely related to sequences from M. morocciensis and M. thailandica. The 28S D2-D3 expansion segment was most similar to those from M. arenaria, M. incognita and M. paranaensis, and the IGS-2 was most related to those from M. thailandica, M. arenaria and M. incognita. Analysis of partial Hsp90 genomic sequences revealed the greatest similarity to M. arenaria, M. thailandica and an Hsp90 haplotype from M. floridensis, and a composite sequence comprised of EST from M. arenaria. No morphological or molecular features clearly distinguished this population as a new species, and, when considered as a whole, the evidence points to its identification as M. arenaria. PMID:19440257

  18. Biochemical studies of M. incognita and M. javanica towards their identification.

    PubMed

    Sharma, Charul; Singh, Sohini

    2016-06-01

    Biochemical analysis is a reliable, quick, yet effective way for profiling any organism. The same tools when employed in taxonomic queries, they aid substantially and support the process. Taxonomic queries have been since beginning presenting numerable challenges towards the studies of different plant parasitic nematodes. In the present study various biochemical tests have been employed to assess the differentiation among the two dominant sps. of Meloidogyne i.e., M. incognita and M. javanica. Some of the biochemical parameters considered were the specific concentrations of carbohydrates and cholesterol and were monitored in the juvenile and the female of the respective species. Results have been discussed in details along with its employability towards the taxonomical studies especially with reference to plant parasitic nematodes. PMID:27413284

  19. Identification of transcripts induced during the cotton - root-knot nematode incompatible interaction by suppressive subtractive hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meloidogyne incognita, the root-knot nematode (RKN), is a destructive sedentary endoparasite of Upland cotton (Gossypium hirsutum). G. hirsutum lines resistant to RKN have been developed and considerable effort expended toward the genetic mapping of RKN resistance loci within these lines. However,...

  20. SUPPRESSION OF DAMPING-OFF OF CUCUMBER CAUSED BY PYTHIUM ULTIMUM WITH LIVE CELLS AND EXTRACTS OF SERRATIA MARCESCENS N4-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmentally friendly control measures are needed for the soilborne pathogens Pythium ultimum and Meloidogyne incognita. These pathogens can cause severe losses to field- and greenhouse-grown cucumber and other cucurbits. Live cells and ethanol extracts of cultures of the bacterium Serratia mar...

  1. Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne

    PubMed Central

    Kokalis-Burelle, Nancy; Butler, David M.; Rosskopf, Erin N.

    2013-01-01

    Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disinfestation (ASD) applications. Nematode juvenile (J2) numbers in soil and roots, egg production, and host plant root galling were evaluated on arugula (Eruca sativa, cv. Nemat), cowpea (Vigna unguiculata, cv. Iron & Clay), jack bean (Canavalia ensiformis, cv. Comum), two commercial mixtures of Indian mustard and white mustard (Brassica juncea & Sinapis alba, mixtures Caliente 61 and Caliente 99), pearl millet (Pennisetum glaucum, cv. Tifleaf III), sorghum-sudangrass hybrid (Sorghum bicolor × S. bicolor var. sudanense, cv. Sugar Grazer II), and three cultivars of sunflower (Helianthus annuus, cvs. 545A, Nusun 660CL, and Nusun 5672). Tomato (Solanum lycopersicum, cv. Rutgers) was included in all trials as a susceptible host to all three nematode species. The majority of cover crops tested were less susceptible than tomato to M. arenaria, with the exception of jack bean. Sunflower cv. Nusun 5672 had fewer M. arenaria J2 isolated from roots than the other sunflower cultivars, less galling than tomato, and fewer eggs than tomato and sunflower cv. 545A. Several cover crops did not support high populations of M. incognita in roots or exhibit significant galling, although high numbers of M. incognita J2 were isolated from the soil. Arugula, cowpea, and mustard mixture Caliente 99 did not support M. incognita in soil or roots. Jack bean and all three cultivars of sunflower were highly susceptible to M. javanica, and all sunflower cultivars had high numbers of eggs isolated from roots. Sunflower, jack bean, and both mustard mixtures exhibited significant galling in response to M. javanica. Arugula, cowpea, and sorghum-sudangrass consistently had low numbers of all three

  2. Crop Rotation Studies with Velvetbean (Mucuna deeringiana) for the Management of Meloidogyne spp.

    PubMed

    Rodríguez-Kábana, R; Pinochet, J; Robertson, D G; Wells, L

    1992-12-01

    Results from a greenhouse experiment at Cabrils, Spain, with two velvetbean (Mucuna deeringiana) accessions (Florida and Mozambique) growing in sterilized sandy loam and inoculated with Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica revealed that the legume was not a host for these nematodes. In contrast, roots of 'Clemson Spineless' okra (Hibiscus esculentum), 'Summer Crookneck' squash (Cucurbita pepo), and 'Davis' soybean (Glycine max) were galled by all three root-knot nematodes. Greenhouse experiments at Auburn, Alabama, using soils infested with Heterodera glycines (race 14) + M. incognita or with H. glycines + M. arenaria (race 2) showed that, in contrast to Davis soybean, a Mexican and the Florida velvetbean accessions were not hosts for the nematodes. An experiment with 'Florunner' peanut (Arachis hypogaea) and the Florida velvetbean in a field infested with M. arenaria (race 1), near Headland, Alabama, showed that significant juvenile populations of the nematode at peanut harvest time were present only in plots with peanut. A microplot rotation experiment demonstrated that 'Black Beauty' eggplant (Solanum melongena) following the Florida velvetbean had heavier shoots and lower numbers of M. arenaria juveniles in the roots and in the soil than eggplant after Summer Crookneck squash or Davis soybean. PMID:19283043

  3. Variability of Meloidogyne exigua on Coffee in the Zona da Mata of Minas Gerais State, Brazil

    PubMed Central

    Oliveira, D. S.; Oliveira, R. D. L.; Freitas, L. G.; Silva, R. V.

    2005-01-01

    Minas Gerais is the major coffee-producing state of Brazil, with 28% of its production coming from the region of Zona da Mata. Four major species of root-knot nematode attacking coffee (Meloidogyne incognita, M. paranaensis, M. coffeicola, and M. exigua) have been reported from Brazil. To determine the variability in Meloidogyne spp. occurring in that region, 57 populations from 20 localities were evaluated for morphological, enzymatic, and physiological characteristics. According to the perineal pattern, all the populations were identified as M. exigua; however populations from the municipality of São João do Manhuaçu exhibited patterns very similar to M. arenaria. The identity of all the populations was confirmed by the phenotypes of esterase, malate dehydrogenase, superoxide dismutase, and glutamate-oxaloacetate transaminase. Thirteen populations (22.8%) showed the typical one-band (E1) esterase phenotype, whereas the others (77.2%) had a novel two-band phenotype (E2). No intraspecies variability was found in any population. All populations were able to reproduce on tomato, pepper, beans, cacao, and soybean. Reproduction was greater on tomato and pepper than on coffee seedlings, the susceptible standard. PMID:19262880

  4. Effects of metabolites of Gliocladium Roseum on egg hatch and juvenile mortality of Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot disease caused by root-knot nematode is a serious yield limiting factor for several economically important crops including soybean, vegetables, fruit trees, tea, tobacco, and medicinal plants. Control of nematode is currently mostly limited to application of soil nematicides, which are cos...

  5. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita.

    PubMed

    Papolu, Pradeep K; Dutta, Tushar K; Tyagi, Nidhi; Urwin, Peter E; Lilley, Catherine J; Rao, Uma

    2016-01-01

    Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield. PMID:27516765

  6. Tall fescue ‘Jesup (Max-Q)’: Meloidogyne incognita development in roots and nematotoxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue cv. Jesup (Max-Q) was recently recommended as a preplant ground cover for managing plant-parasitic nematodes on peach trees in the southeastern United States. Jesup (Max-Q) is associated with a strain of the endosymbiotic fungus Neotyphodium coenophialum that does not produce ergot alka...

  7. Greenhouse evaluation of capsicum rootstocks for management of meloidogyne incognita on grafted bell pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth, development, and nematode susceptibility of various rootstock genotypes grafted to a commercial bell pepper variety scion were evaluated in a series of greenhouse experiments. Nine rootstocks including ‘Caribbean Red Habanero’, ‘ PA-136’ , ‘Keystone Resistant Giant’, ‘Yolo Wonder’, ‘Car...

  8. Row replacement is ineffective as a cultural control practice for Meloidogyne incognita in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if planting cotton into the space between the previous year's rows reduces crop loss due to nematodes compared to planting in the same row every year. In 2004, nematode counts were lower in plots planted in the previous year’s rows on 4 Aug (P = 0.064) a...

  9. Alternate row placement is ineffective for cultural control of Meloidogyne incognita in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if planting cotton into the space between the previous year's rows reduces crop loss due to nematodes compared to planting in the same row every year. Row placement had a significant (P = 0.05) effect on nematode counts only on 8 July 2005. Plots receiv...

  10. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita

    PubMed Central

    Papolu, Pradeep K.; Dutta, Tushar K.; Tyagi, Nidhi; Urwin, Peter E.; Lilley, Catherine J.; Rao, Uma

    2016-01-01

    Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant–nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield. PMID:27516765

  11. Grafting for Management of Southern Root-knot Nematode, Meloidogyne Incognita, in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four bottlegourd (Lagenaria siceraria) cultivars, one squash (Cucurbita moschata x C. maxima) hybrid, four wild watermelon (Citrullus lanatus var. citroides) germplasm lines, and one commercial wild watermelon (C. lanatus var. citroides) cultivar were evaluated as rootstocks for cultivated watermelo...

  12. Utility of Grafting for Managing Southern Root-knot Nematode, Meloidogyne Incognita, in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four bottlegourd (Lagenaria siceraria) cultivars, one squash (Cucurbita moschata x C. maxima) hybrid, four wild watermelon (Citrullus lanatus var. citroides) germplasm lines, and one commercial wild watermelon (C. lanatus var. citroides) cultivar were evaluated as rootstocks for cultivated watermelo...

  13. Influence of Six Vegetable Cultivars on Reproduction of Meloidogyne javanica.

    PubMed

    Bafokuzara, N D

    1983-10-01

    Replicated field and greenhouse experiments were used to evaluate the effect of tomato, cabbage, cucumber, carrot, Amaranthus hybridus, and pepper on growth and fecundity of Meloidogyne spp., particularly M. javanica. In the field tests, tomato, cucumber, and carrot favored population increases of Meloidogyne spp., while Amaranthus, pepper, and cabbage limited them. Some cropping sequences that included crops from the latter group had a suppressive effect on population growth. Thus, of the 36 cropping sequences that were investigated, the following kept the pests in check: tomato-pepper; tomato-Amaranthus; cabbage-pepper; Amaranthus-pepper; carrot-cabbage; pepper-pepper; pepper-Amaranthus; and Amaranthus-pepper. In the greenhouse tests, tomato, cucumber, and carrot had a high number of galls per 50 cm of root, large, conspicuous galls and egg masses, and a high number of larvae per egg mass. Thus, they were highly susceptible. Cabbage and Amaranthus were unsuitable hosts as reflected in the absence of galls or a low number per 50 cm of root. small size of galls and egg masses, and few progeny on the subsequent crop of pepper. The length of time required for eggs to hatch on different hosts varied considerably and is thought to be a significant factor in infection of hosts. PMID:19295847

  14. Comparison of Sequences from the Ribosomal DNA Intergenic Region of Meloidogyne mayaguensis and Other Major Tropical Root-Knot Nematodes

    PubMed Central

    Blok, V. C.; Phillips, M. S.; Fargette, M.

    1997-01-01

    The unusual arrangement of the 5S ribosomal gene within the intergenic sequence (IGS) of the ribosomal cistron, previously reported for Meloidogyne arenaria, was also found in the ribosomal DNA of two other economically important species of tropical root-knot nematodes, M, incognita and M. javanica. This arrangement also was found in M. hapla, which is important in temperate regions, and M. mayaguensis, a virulent species of concern in West Africa. Amplification of the region between the 5S and 18S genes by PCR yielded products of three different sizes such that M. mayaguensis could be readily differentiated from the other species in this study. This product can be amplified from single juveniles, females, or egg masses. The sequences obtained in this region for one line of each of M. incognita, M. arenaria, and M. javanica were very similar, reflecting the close relationships of these lineages. The M. mayaguensis sequence for this region had a number of small deletions and insertions of various sizes, including possible sequence duplications. PMID:19274129

  15. Reproduction of Belonolaimus longicaudatus, Meloidogyne javanica, Paratrichodorus minor, and Pratylenchus brachyurus on Pearl Millet (Pennisetum glaucum)

    PubMed Central

    Timper, P.; Hanna, W. W.

    2005-01-01

    Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid 'TifGrain 102' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet ('HGM-100' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica. PMID:19262863

  16. Analysis of 1,3-Dichloropropene for Control of Meloidogyne spp. in a Tobacco Pest Management System

    PubMed Central

    Fortnum, B. A.; Johnson, A. W.; Lewis, S. A.

    2001-01-01

    1,3-Dichloropropene (1,3-D) and nonfumigant nematicides were evaluated for control of Meloidogyne spp. and soil and foliar insects in a tobacco pest management system. In a field with a high Meloidogyne spp. population density (root gall index 4.0 to 4.5 on a 0 to 10 scale in untreated controls), tobacco yields and crop values increased (482 kg/ha and $1,784/ha for 1, 3-D; 326 kg/ha and $1,206/ha for fenamiphos; 252 kg/ha and $933/ha for ethoprop) with nematicide application over an untreated control. In fields with a low population density of Meloidogyne arenaria or M. incognita (root gall index 2.3 to 2.5 in untreated controls), yields ranged from 1,714 to 2,027 kg/ha and were not altered by fumigant or nonfumigant nematicide application. Carbofuran, a soil-applied nonfumigant nematicide/insecticide, reduced the number of foliar insecticide applications required to keep insect populations below treatment threshold (3.8 vs. 4.5, respectively, for treated vs. untreated). Carbofuran reduced the cost ($23/ha) of foliar insecticide treatments when compared to an untreated control. Although nonfumigant nematicides provided some soil and foliar insect control, the cost of using a fumigant plus a lower insecticidal rate of a soil insecticide/nematicide was comparable to the least expensive non-fumigant nematicide when the cost of foliar insecticide applications was included in the cost estimates. Savings in foliar insecticide cost by use of soil-applied nonfumigant nematicide/insecticides were small ($23/ha) in comparison to potential value reductions by root-knot nematodes when the nonfumigant nematicides fenamiphos or ethoprop ($578/ha and $851/ha, respectively) were used instead of 1,3-D. PMID:19265897

  17. Cytogenetic Status of Meloidogyne (Hypsoperine) spartinae in Relation to Other Meloidogyne Species.

    PubMed

    Triantaphyllou, A C

    1987-01-01

    Four populations of Meloidogyne spartinae from the coast of North and South Carolina were identical cytogenetically. Fourteen rod-shaped chromosomes were present in oogonia and spermatogonia, whereas seven bivalents were observed in oocytes and spermatocytes. There were no distinguishable sex chromosomes. Chromosome behavior was similar to that of other Meloidogyne species. A slight deviation in morphology of prometaphase bivalents was attributed to an increase in frequency of chiasmata that may be associated with the obligatorily amphimictic reproduction of this nematode. The anatomy of the oviduct-spermatotheca region and most cytogenetic features studied suggested that M. spartinae can be regarded as a root-knot nematode. Its position in the genus Meloidogyne or Hypsoperine can be decided by taxonomists. Its small chromosome number (n = 7) compared to the larger number (n = 13-19) of other Meloidogyne species suggests that, cytologically, M. spartinae stands closer to the ancestral form from which the prescent day root-knot nematodes have evolved. PMID:19290099

  18. Morphological and Molecular Evaluation of a Meloidogyne hapla Population Damaging Coffee (Coffea arabica) in Maui, Hawaii

    PubMed Central

    Handoo, Z. A.; Skantar, A. M.; Carta, L. K.; Schmitt, D. P.

    2005-01-01

    An unusual population of Meloidogyne hapla, earlier thought to be an undescribed species, was found causing large galls, without adventitious roots, and substantial damage to coffee in Maui, Hawaii. Only in Brazil had similar damage to coffee been reported by this species. Unlike M. exigua from South and Central America, this population reproduced well on coffee cv. Mokka and M. incognita-susceptible tomato but poorly on tomato with the Mi resistance gene. Characterization included SEM images, esterase isozymes, and five DNA sequences: i) the D3 segment of the large subunit (LSU-D3 or 28S) rDNA, ii) internal transcribed spacer (ITS-1) rDNA, iii) intergenic spacer (IGS) rDNA, iv) the mitochondrial interval from cytochrome oxidase (CO II) to 16S mtDNA, and v) the nuclear gene Hsp90. Sequences for ITS-1, IGS, and COII were similar to other M. hapla populations, but within species ITS-1 variability was not less than among species. One LSU-D3 haplotype was similar to a previously analyzed population with two minor haplotypes. Hsp90 exhibited some variation between Maryland and Hawaiian populations distinct from other species. Females were narrow with wide vulval slits, large interphasmidial distances, and more posterior excretory pores; 20% of perineal patterns had atypical perivulval lines. Males had a low b ratio (<12 µm). Juveniles had a short distance between stylet and dorsal gland orifice. Juvenile body length was short (<355 µm) and was different between summer and winter populations. PMID:19262853

  19. The Multi-Resistant Reaction of Drought-Tolerant Coffee 'Conilon Clone 14' to Meloidogyne spp. and Late Hypersensitive-Like Response in Coffea canephora.

    PubMed

    Lima, Edriana A; Furlanetto, Cleber; Nicole, Michel; Gomes, Ana C M M; Almeida, Maria R A; Jorge-Júnior, Aldemiro; Correa, Valdir R; Salgado, Sônia Maria; Ferrão, Maria A G; Carneiro, Regina M D G

    2015-06-01

    Root-knot nematodes (RKN), Meloidogyne spp., have major economic impact on coffee production in Central and South America. Genetic control of RKN constitutes an essential part for integrated pest management strategy. The objective of this study was to evaluate the resistance of Coffea canephora genotypes (clones) to Meloidogyne spp. Sensitive and drought-tolerant coffee genotypes were used to infer their resistance using nematode reproduction factor and histopathology. Eight clonal genotypes were highly resistant to M. paranaensis. 'Clone 14' (drought-tolerant) and 'ESN2010-04' were the only genotypes highly resistant and moderately resistant, respectively, to both M. incognita races 3 and 1. Several clones were highly resistant to both avirulent and virulent M. exigua. Clone 14 and ESN2010-04 showed multiple resistance to major RKNs tested. Roots of 'clone 14' (resistant) and 'clone 22' (susceptible) were histologically studied against infection by M. incognita race 3 and M. paranaensis. Reduction of juvenile (J2) penetration in clone 14 was first seen at 2 to 6 days after inoculation (DAI). Apparent early hypersensitive reaction (HR) was seen in root cortex between 4 and 6 DAI, which led to cell death and prevention of some nematode development. At 12 to 20 DAI, giant cells formed in the vascular cylinder, besides normal development into J3/J4. From 32 to 45 DAI, giant cells were completely degenerated. Late, intense HR and cell death were frequently observed around young females and giant cells reported for the first time in coffee pathosystem. These results provide rational bases for future studies, including prospection, characterization, and expression profiling of genomic loci involved in both drought tolerance and resistance to multiple RKN species. PMID:25738554

  20. Tinea Incognita in a Patient with Crest Syndrome: Case Report.

    PubMed

    Gorgievska-Sukarovska, Biljana; Skerlev, Mihael; Žele-Starčević, Lidija

    2015-01-01

    Tinea incognita is a dermatophytic infection that is difficult to diagnose, usually modified by inappropriate topical or systemic corticosteroid therapy. We report an extensive case of tinea incognita caused by the zoophilic dermatophyte Trichophyton mentagrophytes (var. granulosa) in a 49-year-old female patient with CREST (Calcinosis; Raynaud phenomenon; Esophageal involvement; Sclerodactyly; Teleangiectasia) syndrome. Immunocompromised patients, as well as patients with keratinization disorders, seem to be especially susceptible to dermatophytic infections with atypical clinical presentation that is sometimes bizarre and difficult to recognize. Therefore, close monitoring and mycological skin examination is recommended in order to avoid misdiagnosis and to give the patient the best chance of recovery. PMID:26476904

  1. Biological Relationship of Meloidogyne hapla Populations to Alfalfa Cultivars

    PubMed Central

    Griffin, G. D.; Gray, F. A.

    1995-01-01

    Greenhouse and growth chamber studies were established to determine if there are pathological and physiological differences among Meloidogyne hapla populations from California (CA), Nevada (NV), Utah (UT), and Wyoming (WY) on alfalfa cultivars classified as resistant or susceptible to root-knot nematodes. In the greenhouse, plant survival was not consistent with resistance classifications. While all highly resistant Nevada Synthetic germplasm (Nev Syn XX) plants survived inoculation with all nematode populations, two cultivars classified as moderately resistant ('Chief' and 'Kingstar') survived (P ≤ 0.05) inoculation with M. hapla populations better than did 'Lobo' cultivar, which is classified as resistant. Plant growth of Nev Syn XX was suppressed by only the CA population, whereas growth of the other alfalfa cultivars classified as M. hapla resistant or moderately resistant was suppressed by all nematode populations. Excluding Nev Syn XX, all alfalfa cultivars were severely galled and susceptible to all nematode populations. Except for Nev Syn XX, reproduction did not differ among the nematode populations on alfalfa cultivars. Nev Syn XX was not as favorable a host to CA as were the other cultivars; but, it was a good host (reproductive factor [Rf] = 37). Temperature affected plant resistance; the UT and WY populations were more pathogenic at 15-25 C, and CA was more pathogenic at 30 C. Nev Syn XX was susceptible to all nematode populations, except for CA, at only 30 C, and all other alfalfa cultivars were susceptible to all nematode populations at all temperatures. PMID:19277299

  2. Behaviour of Heterodera glycines and Meloidogyne incognita infective juveniles exposed to nematode FMRFamide-like peptides in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-parasitic nematodes depend upon a family of neuropeptides, the FMRFamide-like peptides (FLPs), to regulate locomotion and behavior. To exploit FLPs as leads to novel nematode control agents, an understanding of how specific FLPs affect behavior, and what differences exist between species, is i...

  3. Greenhouse Evaluation of a commercial Bell Pepper scion grafted onto various Capsicum rootstocks for management of Meloidogyne incognita.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth, development, and nematode susceptibility of various rootstock genotypes grafted to a commercial bell pepper variety scion were evaluated in conventional and climate controlled greenhouses. Eight rootstocks including ‘Caribbean Red Habanero’, ‘PA-136’, ‘Keystone Resistant Giant’, ‘Yolo W...

  4. Precision mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance because they exhibit the highest level of resistance to RKN known to date in Upland cotton (Gossypium hirsutum L). Prior genetic mapping analy...

  5. The use of root gall ratings to determine high risk zones in cotton fields infested by Meloidogyne Incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton farmers need a reliable, accurate, and inexpensive method for determining the potential threat of root-knot nematodes (RKN) to cotton within individual fields for site specific application of nematicides. Evaluation of cotton roots for RKN galling at harvest may be an alternative to soil ana...

  6. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  7. Nematotoxicity of drupacine and a Cephalotaxus alkaloid preparation against the plant-parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of Cephalotaxus (the plum yews) produce nematotoxic compounds of unknown identity. Consequently, bioassay-guided fractionation was employed to identify the compound(s) in Cephalotaxus fortunei twigs and leaves with activity against plant-parasitic nematodes. A crude alkaloid extract, particu...

  8. Meloidogyne javanica on Peanut in Florida

    PubMed Central

    Cetintas, R.; Lima, R. D.; Mendes, M. L.; Brito, J. A.; Dickson, D. W.

    2003-01-01

    A mixed population of Meloidogyne arenaria race 1 and M. javanica race 3 is reported on peanut from a field in Levy County, Florida. Confirmation of M. javanica on peanut is based on esterase and malate dehydrogenase isozyme patterns resolved on polyacrylamide slab gels following electrophoresis, and perineal patterns. Up to 29% of 290 individual females collected from peanut roots in the field in autumn 2002 showed a typical esterase J3 phenotype for M. javanica. This is the third report of M. javanica infecting peanut in the United States. PMID:19262776

  9. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    PubMed Central

    Park, Jiyeong; Seo, Yunhee; Kim, Young Ho

    2014-01-01

    We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla. PMID:25289015

  10. Meloidogyne paranaensis n. sp. (Nemata: Meloidogynidae), a Root-Knot Nematode Parasitizing Coffee in Brazil

    PubMed Central

    Carneiro, R. M. D. G.; Carneiro, R. G.; Abrantes, I. M. O.; Santos, M. S. N. A.; Almeida, M. R. A.

    1996-01-01

    A root-knot nematode parasitizing coffee in Paran  State, Brazil, is described as Meloidogyne paranaensis n. sp. The suggested common name is Paraná coffee root-knot nematode. The perineal pattern is similar to that of M. incognita; the labial disc and medial lips of the female are fused and asymmetric and rectangular; the lateral lips are small, triangular, and fused laterally with the head region. The female stylet is 15.0-17.5 μm long, with broad, distinctly set-off knobs; the distance from the dorsal esophageal gland orifice (DGO) to the stylet base is 4.2-5.5 μm. Males have a high, round head cap continuous with the body contour. The labial disc is fused with the medial lips to form an elongate lip structure. The head region is frequently marked by an incomplete annulation. The stylet is robust, 20-27 μm long, usually with round to transversely elongate knobs, sometimes with one or two projections protruding from the shaft. The stylet length of second-stage juveniles is 13-14 μm, the distance of the DGO to the stylet base is 4.0-4.5 μm, and the tail length is 48-51 μm. Biochemically, the esterase (F₁) and malate dehydrogenase (N₁) phenotypes are the most useful characters to differentiate M. paranaensis from other species. However, the esterase phenotype appears similar to that of M. konaensis. Reproduction is by mitotic parthenogenesis, 3n = 50-52. In differential host tests, tobacco, watermelon, and tomato were good hosts, whereas cotton, pepper, and peanut were nonhosts. PMID:19277133