Sample records for membrane devices deployed

  1. Self-Deployable Membrane Structures

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.

    2010-01-01

    Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems

  2. Review of Large Spacecraft Deployable Membrane Antenna Structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  3. A SURVEY OF INDOOR AIR CONTAMINATES USING SEMIPERMEABLE MEMBRANE DEVICES

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed in indoor areas in approximately 50 residences along the border between Arizona and Mexico to measure airborne contaminants. The results of the primary analyses and gas chromatographic/mass spectrometric confirmation for org...

  4. Concept-Development of a Structure Supported Membrane for Deployable Space Applications - From Nature to Manufacture and Testing

    NASA Technical Reports Server (NTRS)

    Zander, Martin; Belvin, W. K.

    2012-01-01

    Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.

  5. Semipermeable membrane devices used to estimate bioconcentration of polychlorinated biphenyls

    USGS Publications Warehouse

    Chambers, D.B.

    1999-01-01

    Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 ??g/L of bioavailable Aroclor 1254.

  6. Prepping the Parachute Deployment Device

    NASA Image and Video Library

    2014-05-16

    An engineer works on the Parachute Deployment Device of the Low-Density Supersonic Decelerator test vehicle in this image taken at the Missile Assembly Building at the U.S. Navy Pacific Missile Range Facility in Kauai, Hawaii.

  7. Folding Properties of Two-Dimensional Deployable Membrane Using FEM Analyses

    NASA Astrophysics Data System (ADS)

    Satou, Yasutaka; Furuya, Hiroshi

    Folding FEM analyses are presented to examine folding properties of a two-dimensional deployable membrane for a precise deployment simulation. A fold model of the membrane is proposed by dividing the wrapping fold process into two regions which are the folded state and the transient process. The cross-section of the folded state is assumed to be a repeating structure, and analytical procedures of the repeating structure are constructed. To investigate the mechanical properties of the crease in detail, the bending stiffness is considered in the FEM analyses. As the results of the FEM analyses, the configuration of the membrane and the contact force by the adjacent membrane are obtained quantitatively for an arbitrary layer pitch. Possible occurrence of the plastic deformation is estimated using the Mises stress in the crease. The FEM results are compared with one-dimensional approximation analyses to evaluate these results.

  8. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  9. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  10. Dynamic Analysis of Large In-Space Deployable Membrane Antennas

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Yang, Bingen; Ding, Hongli; Hah, John; Quijano, Ubaldo; Huang, John

    2006-01-01

    This paper presents a vibration analysis of an eight-meter diameter membrane reflectarray antenna, which is composed of a thin membrane and a deployable frame. This analysis process has two main steps. In the first step, a two-variable-parameter (2-VP) membrane model is developed to determine the in-plane stress distribution of the membrane due to pre-tensioning, which eventually yields the differential stiffness of the membrane. In the second step, the obtained differential stiffness is incorporated in a dynamic equation governing the transverse vibration of the membrane-frame assembly. This dynamic equation is then solved by a semi-analytical method, called the Distributed Transfer Function Method (DTFM), which produces the natural frequencies and mode shapes of the antenna. The combination of the 2-VP model and the DTFM provides an accurate prediction of the in-plane stress distribution and modes of vibration for the antenna.

  11. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  12. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  13. Flexural plate wave devices fabricated from silicon carbide membrane

    NASA Astrophysics Data System (ADS)

    Diagne, Ndeye Fama

    Flexural Plate Wave (FPW) devices fabricated from Silicon Carbide (SiC) membranes are presented here which exhibit electrical and mechanical characteristics in its transfer functions that makes it very useful as a low voltage probe device capable of functioning in small areas that are commonly inaccessible to ordinary devices. The low input impedance characteristic of this current driven device makes it possible for it to operate at very low voltages, thereby reducing the hazards for flammable or explosive areas to be probed. The Flexural Plate Wave (FPW) devices are of a family of gravimetric type sensors that permit direct measurements of the mass of the vibrating element. The primary objective was to study the suitability of Silicon Carbide (SiC) membranes as a replacement of Silicon Nitride (SiN) membrane in flexural plate wave devices developed by Sandia National Laboratories. Fabrication of the Flexural Plate Wave devices involves the overlaying a silicon wafer with membranes of 3C-SiC thin film upon which conducting meander lines are placed. The input excitation energy is in the form of an input current. The lines of current along the direction of the conducting Meander Lines Transducer (MLTs) and the applied perpendicular external magnetic field set up a mechanical wave perpendicular to both, exciting the membrane by means of a Lorentz force, which in turn sets up flexural waves that propagate along the thin membrane. The physical dimensions, the mass density, the tension in the membrane and the meander spacing are physical characteristics that determine resonance frequency of the Flexural Plate Wave (FPW) device. Of primary interest is the determination of the resonant frequency of the silicon carbide membrane as functions of the device physical characteristic parameters. The appropriate transduction scheme with Meander Line Transducers (IDTs) are used to excite the membrane. Equivalent circuit models characterizing the reflection response S11 (amplitude

  14. Umbilical Deployment Device

    NASA Technical Reports Server (NTRS)

    Shafer, Michael W.; Gallon, John C.; Rivellini, Tommaso P.

    2011-01-01

    The landing scheme for NASA's next-generation Mars rover will encompass a novel landing technique (see figure). The rover will be lowered from a rocket-powered descent stage and then placed onto the surface while hanging from three bridles. Communication between the rover and descent stage will be maintained through an electrical umbilical cable, which will be deployed in parallel with structural bridles. The -inch (13-mm) umbilical cable contains a Kevlar rope core, around which wires are wrapped to create a cable. This cable is helically coiled between two concentric truncated cones. It is deployed by pulling one end of the cable from the cone. A retractable mechanism maintains tension on the cable after deployment. A break-tie tethers the umbilical end attached to the rover even after the cable is cut after touchdown. This break-tie allows the descent stage to develop some velocity away from the rover prior to the cable releasing from the rover deck, then breaks away once the cable is fully extended. The descent stage pulls the cable up so that recontact is not made. The packaging and deployment technique can store a long length of cable in a relatively small volume while maintaining compliance with the minimum bend radius requirement for the cable being deployed. While the packaging technique could be implemented without the use of break-ties, they were needed in this design due to the vibratory environment and the retraction required by the cable. The break-ties used created a series of load-spikes in the deployment signature. The load spikes during the deployment of the initial three coils of umbilical showed no increase between the different temperature trials. The cold deployment did show an increased load requirement for cable extraction in the region where no break-ties were used. This increase in cable drag was superimposed on the loads required to rupture the last set of break-ties, and as such, these loads saw significant increase when compared to

  15. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds.

    PubMed

    Söderström, Hanna S; Bergqvist, Per-Anders

    2004-09-15

    Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.

  16. A venturi device reduces membrane fouling in a submerged membrane bioreactor.

    PubMed

    Kayaalp, Necati; Ozturkmen, Gokmen

    2016-01-01

    In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m(2).h); however, at a medium flux (32 L/m(2).h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m(2).h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system.

  17. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    PubMed

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  18. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  19. A stowing and deployment strategy for large membrane space systems on the example of Gossamer-1

    NASA Astrophysics Data System (ADS)

    Seefeldt, Patric

    2017-09-01

    Deployment systems for innovative space applications such as solar sails require a technique for a controlled and autonomous deployment in space. The deployment process has a strong impact on the mechanism and structural design and sizing. On the example of the design implemented in the Gossamer-1 project of the German Aerospace Center (DLR), such a stowing and deployment process is analyzed. It is based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. The deployment geometry and forces introduced by the mechanism considered are explored in order to reveal how the loads are transferred through the membranes to structural components such as the booms. The folding geometry and force progressions are described by function compositions of an inverse trigonometric function with the considered trigonometric function itself. If these functions are evaluated over several periods of the trigonometric function, a non-smooth oscillating curve occurs. Depending on the trigonometric function, these are often vividly described as zig-zag or sawtooth functions. The developed functions are applied to the Gossamer-1 design. The deployment geometry reveals a tendency that the loads are transferred along the catheti of the sail segments and therefore mainly along the boom axes. The load introduced by the spool deployment mechanism is described. By combining the deployment geometry with that load, a prediction of the deployment load progression is achieved. The mathematical description of the stowing and deployment geometry, as well as the forces inflicted by the mechanism provides an understanding of how exactly the membrane deploys and through which edges the deployment forces are transferred. The mathematical analysis also gives an impression of sensitive parameters that could be influenced by manufacturing tolerances or unsymmetrical deployment of the sail segments. While the mathematical model was applied on the design of

  20. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  1. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  2. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  3. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.

    PubMed

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias

    2015-08-07

    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  4. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    NASA Astrophysics Data System (ADS)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  5. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.

    2012-07-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.

  6. Relationship between Device Size and Body Weight in Dogs with Patent Ductus Arteriosus Undergoing Amplatz Canine Duct Occluder Deployment.

    PubMed

    Wesselowski, S; Saunders, A B; Gordon, S G

    2017-09-01

    Deployment of the Amplatz Canine Duct Occluder (ACDO) is the preferred method for minimally invasive occlusion of patent ductus arteriosus (PDA) in dogs, with appropriate device sizing crucial to successful closure. Dogs of any body weight can be affected by PDA. To describe the range of ACDO sizes deployed in dogs of various body weights for improved procedural planning and inventory selection and to investigate for correlation between minimal ductal diameter (MDD) and body weight. A total of 152 dogs undergoing ACDO deployment between 2008 and 2016. Body weight, age, breed, sex, and MDD obtained by angiography (MDD-A), MDD obtained by transesophageal echocardiography (MDD-TEE), and ACDO size deployed were retrospectively evaluated. Correlation between body weight and ACDO size, MDD-A and MDD-TEE was poor, with R-squared values of 0.4, 0.36, and 0.3, respectively. Femoral artery diameter in the smallest population of dogs placed inherent limitations on the use of larger device sizes, with no limitations on the wide range of device sizes required as patient size increased. The most commonly used ACDO devices were size 3 through 6, representing 57% of the devices deployed within the entire study population. Patent ductus arteriosus anatomy varies on an individual basis, with poor correlation between MDD and body weight. Weight-based assumptions about expected ACDO device size for a given patient are not recommended. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  8. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  9. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  10. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE PAGES

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.; ...

    2016-07-23

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  11. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  12. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  13. Obstacles delaying the prompt deployment of piston-type mechanical cardiopulmonary resuscitation devices during emergency department resuscitation: a video-recording and time-motion study.

    PubMed

    Huang, Edward Pei-Chuan; Wang, Hui-Chih; Ko, Patrick Chow-In; Chang, Anna Marie; Fu, Chia-Ming; Chen, Jiun-Wei; Liao, Yen-Chen; Liu, Hung-Chieh; Fang, Yao-De; Yang, Chih-Wei; Chiang, Wen-Chu; Ma, Matthew Huei-Ming; Chen, Shyr-Chyr

    2013-09-01

    The quality of cardiopulmonary resuscitation (CPR) is important to survival after cardiac arrest. Mechanical devices (MD) provide constant CPR, but their effectiveness may be affected by deployment timeliness. To identify the timeliness of the overall and of each essential step in the deployment of a piston-type MD during emergency department (ED) resuscitation, and to identify factors associated with delayed MD deployment by video recordings. Between December 2005 and December 2008, video clips from resuscitations with CPR sessions using a MD in the ED were reviewed using time-motion analyses. The overall deployment timeliness and the time spent on each essential step of deployment were measured. There were 37 CPR recordings that used a MD. Deployment of MD took an average 122.6 ± 57.8s. The 3 most time-consuming steps were: (1) setting the device (57.8 ± 38.3s), (2) positioning the patient (33.4 ± 38.0 s), and (3) positioning the device (14.7 ± 9.5s). Total no flow time was 89.1 ± 41.2s (72.7% of total time) and associated with the 3 most time-consuming steps. There was no difference in the total timeliness, no-flow time, and no-flow ratio between different rescuer numbers, time of day of the resuscitation, or body size of patients. Rescuers spent a significant amount of time on MD deployment, leading to long no-flow times. Lack of familiarity with the device and positioning strategy were associated with poor performance. Additional training in device deployment strategies are required to improve the benefits of mechanical CPR. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor.

    PubMed

    Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C

    2000-01-01

    Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.

  15. Multiscale modeling of a Chemofilter device for filtering chemotherapy toxins from blood

    NASA Astrophysics Data System (ADS)

    Maani, Nazanin; Beyhaghi, Saman; Yee, Daryl; Nosonovsky, Micheal; Greer, Julia; Hetts, Steven; Rayz, Vitaliy

    2016-11-01

    Purpose: Chemotherapy drugs injected intra-arterially to treat cancer can cause systemic toxic effects. A catheter-based Chemofilter device, temporarily deployed in a vein during the procedure can filter excessive drug from the blood thus reducing chemotherapy side-effects. CFD modeling is used to design the membrane of the Chemofilter in order to optimize its hemodynamic performance. Methods: Multiscale approach is used to model blood flow through the Chemofilter. The toxins bind to the Chemofilter's membrane formed by a lattice of numerous micro cells deployed in a blood vessel of much larger size. A detailed model of the flow through a 2x2 microcell matrix with periodic boundary conditions is used to determine the permeability of the membrane. The results are used to simulate the flow through the whole device modeled as a uniform porous membrane. The finite-volume solver Fluent is used to obtain the numerical solution. Results: The micro cell matrix has a porosity of 0.92. The pressure drop across the resolved microcells was found to be 630 Pa, resulting in the permeability of 6.21 x10-11 m2 in the normal direction. These values were used to optimize the device geometry in order to increase the contact area of the membrane, while minimizing its obstruction to the flow. NIH NCI R01CA194533.

  16. Biodegradable membrane-covered stent from chitosan-based polymers.

    PubMed

    Thierry, Benjamin; Merhi, Yahye; Silver, Jim; Tabrizian, Maryam

    2005-12-01

    Membrane-covered devices could help treat disease of the vasculature such as aneurysm, rupture, and fistulas. They are also investigated to reduce embolic complication associated with revascularization of saphenous vein graft. The aim of this study is to design a clinically applicable biodegradable membrane-covered stent based on the natural polysaccharide chitosan, which has been developed. The mechanical properties of the membrane is optimized through blending with polyethylene oxide (70:30% Wt CH:PEO). The membrane was able to sustain the mechanical deformation of the supporting self-expandable metallic stents during its deployment. The membrane was demonstrated to resist physiological transmural pressure (burst pressure resistance >500 mm Hg) and presented a high-water permeation resistance (1 mL/cm(2) min(-1) at 120 mmHg). The CH-PEO membrane showed a good hemocompatibility in an ex vivo assay. Heparin and hyaluronan surface complexation with the membrane further reduced platelet adhesion by 50.1 and 63% (p = 0.05). The ability of the membrane-covered devices to be used as a drug reservoir was investigated using the nitric oxide donor sodium nitroprusside (SNP). SNP-loaded membranes displayed significantly reduced platelet adhesion. (c) 2005 Wiley Periodicals, Inc.

  17. An Experimental Study on the Deployment Behavior of Membrane Structure under Spin Motion

    NASA Astrophysics Data System (ADS)

    Murakami, T.

    load fuel, so to speak, is an ideal propellant system. As a large film is deployed in the space, solar radiation presses it. However, force of solar radiation is tiny, and so it is necessary for it to have a large square in order to use for propulsive force. As larger it becomes, bigger the weigh is. For realizing good efficient Solar Sail it is indispensable to develop a material. sail spacecraft mission realistic. However, to install a solar sail in the real mission, it is found that there are a lot of problems to be solved. Among them is a technology of deployment. attitude stability by rotating a film constantly. It is true that there are some difficulties to change an attitude, still in general, interplanetary missions does not require frequent attitude change. So the solar sail can be realistic if the mission is interplanetary. velocity, the estimation of a necessary deployment force, and the influence of outer force acting to the film. Moreover, it is necessary to consider a shape after deployment because of using it as a propellant system. That is to say, as larger difference from an ideal circular shape is, lower the efficiency as a propellant system is. numerical simulation, but also micro-gravity experiment. In numerical simulation membrane should be modeled carefully, because a dynamics of a film deployment is transitional and includes a large transformation. In this report a simple model which consists of many rigid boards is dealt with. A film is approximated to an aggregate of tiny rigid boards and the shape is calculated by solving additional force of each board. For showing a validity of this modeling, micro-gravity experiment is necessary to be conducted. Because there is a limitation of space and an experiment is conducted by using a small scaling model, similar parameters should be selected carefully.

  18. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    PubMed

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  19. The use of semipermeable membrane devices (SPMDs) to concentrate inducers of fish hepatic mixed function oxygenase (MFO): Chapter 12

    USGS Publications Warehouse

    Parrott, Joanne L.; Tillitt, Donald E.

    1997-01-01

    Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those

  20. Glaucoma aqueous drainage device erosion repair with buccal mucous membrane grafts.

    PubMed

    Rootman, Dan B; Trope, Graham E; Rootman, David S

    2009-01-01

    Glaucoma aqueous drainage devices are important and effective in the management of recalcitrant glaucoma. One complication of this procedure is erosion and exposure of the tube or plate. Strategies to re-cover glaucoma aqueous drainage devices in such cases have met with variable success. The majority of these interventions use conjunctiva for superficial coverage. However, conjunctiva can be in limited supply, and subject to reerosion. In this report, we discuss the use of oral buccal mucous membrane in combination with a lamellar corneal patch graft for repair of 3 exposed tubes, 2 plates, and a pars plana clip. Mean time to exposure was 4.8 years. Five eyes from 4 patients are presented and the surgical technique is described. Buccal membrane repairs were considered a surgical success in 5 out of 6 cases (83%) with mean follow-up of 1.5 years. We advocate the use of buccal membrane in the repair of glaucoma aqueous drainage device tube/plate erosions in patients for whom local conjunctiva is of variable quality or limited supply. Advantages of this procedure and tissue option are discussed.

  1. Using SPMDs To Assess Natural Recovery Of PCB-Contaminated Sediments In Lake Hartwell, SC: I. A Field Test Of New In-Situ Deployment Methods

    EPA Science Inventory

    Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...

  2. Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation.

    PubMed

    Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro

    2012-02-13

    We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Atrial septal defect closure with the new Cardia Ultrasept II™ device with interposed Goretex patch: Mexican experience - has the perforation of Ivalon's membrane been solved?

    PubMed

    Mijangos-Vázquez, Roberto; García-Montes, Antonio J; Soto-López, Elena M; Guarner-Lans, Verónica; Zabal, Carlos

    2018-05-01

    The objective of this study was to demonstrate the safety and feasibility of using the new Cardia Ultrasept II™ device with interposed Goretex patch referring to the perforation of polyvinyl alcohol membrane. Great advances have been made in the development of devices for closure of atrial septal defect. The Cardia Ultrasept II™ with interposed Goretex patch is the modified last generation of Cardia devices, having the advantage of a super-low profile within the atria and an integral locking delivery-retrieval mechanism that ensures safe deployment. In addition, with the interposition of the Goretex, it has been possible to abolish perforation of Ivalon's membrane as a complication.Methods and resultsPatients with ostium secundum atrial septal defect with surrounding rims with a minimum length of 5 mm and who underwent atrial septal defect closure with the new Ultrasept II™ with Goretex patch were included from two paediatric cardiac centres. Primary end point was to determine perforation of the Goretex membrane at follow-up; secondary end point included right ventricular diastolic diameter. In total, 30 patients underwent atrial septal defect closure at a median age of 6 (1-29) years. At follow-up for 6 (range, 1-15) months, freedom from perforations was 100%. A continuous decrease in right ventricular diastolic diameter was found with an initial median of 30 (25-49) mm and after catheterisation of 27.5 (18-33) mm, p=0.01, and Z-score of 2.6 (1.7-3.6) versus 1.9 (1-2.9) after procedure, p=0.01. The new modified generation of the Ultrasept II™ device with interposed Goretex patch is a good alternative to achieve atrial septal defect closure safely and feasibly with no membrane perforation at follow-up.

  4. Variable porosity of the pipeline embolization device in straight and curved vessels: a guide for optimal deployment strategy.

    PubMed

    Shapiro, M; Raz, E; Becske, T; Nelson, P K

    2014-04-01

    Low-porosity endoluminal devices for the treatment of intracranial aneurysms, also known as flow diverters, have been in experimental and clinical use for close to 10 years. Despite rigorous evidence of their safety and efficacy in well-controlled trials, a number of key factors concerning their use remain poorly defined. Among these, none has received more attention to date than the debate on how many devices are optimally required to achieve a safe, effective, and economical outcome. Additional, related questions concern device sizing relative to the parent artery and optimal method of deployment of the devices. While some or all of these issues may be ultimately answered on an empiric basis via subgroup analysis of growing treatment cohorts, we believe that careful in vitro examination of relevant device properties can also help guide its in vivo use. We conducted a number of benchtop experiments to investigate the varied porosity of Pipeline Embolization Devices deployed in a simulated range of parent vessel diameters and applied these results toward conceptualizing optimal treatment strategies of fusiform and wide-neck aneurysms. The results of our studies confirm a predictable parabolic variability in device porosity based on the respective comparative sizes of the device and recipient artery, as well as device curvature. Even modest oversizing leads to a significant increase in porosity. The experiments demonstrate various deleterious effects of device oversizing relative to the parent artery and provide strategies for addressing size mismatches when they are unavoidable.

  5. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  6. Smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza

    2016-04-01

    This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation

  7. Hollow-Fiber Membrane Chamber as a Device for In Situ Environmental Cultivation▿

    PubMed Central

    Aoi, Yoshiteru; Kinoshita, Tomoyuki; Hata, Toru; Ohta, Hiroaki; Obokata, Haruko; Tsuneda, Satoshi

    2009-01-01

    A hollow-fiber membrane chamber (HFMC) was developed as an in situ cultivation device for environmental microorganisms. The HFMC system consists of 48 to 96 pieces of porous hollow-fiber membrane connected with injectors. The system allows rapid exchange of chemical compounds, thereby simulating a natural environment. Comparative analysis through the cultivation of three types of environmental samples was performed using this newly designed device and a conventional agar-based petri dish. The results show that the ratios of novel phylotypes in isolates, species-level diversities, and cultivabilities in HFMC-based cultivation are higher than those in an agar-based petri dish for all three samples, suggesting that the new in situ cultivation device is effective for cultivation of various environmental microorganisms. PMID:19329655

  8. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  9. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    NASA Astrophysics Data System (ADS)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  10. Microfluidic device and methods for focusing fluid streams using electroosmotically induced pressures

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2010-06-01

    A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either electric current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to electrokinetically inducing fluid flow to confine a selected material in a region of a microchannel that is not influenced by an electric field. Other structures for inducing fluid flow in accordance with this invention include nanochannel bridging membranes and alternating current fluid pumping devices. Applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.

  11. Field-based evaluation of semipermeable membrane devices (SPMDs) as passive air samplers of polyaromatic hydrocarbons (PAHs)

    USGS Publications Warehouse

    Bartkow, M.E.; Huckins, J.N.; Muller, J.F.

    2004-01-01

    Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV<20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m3 d-1. SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. ?? 2004 Elsevier Ltd. All rights reserved.

  12. Conformal Membrane Reflectors for Deployable Optics

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.

  13. Nanoporous membrane device for ultra high heat flux thermal management

    NASA Astrophysics Data System (ADS)

    Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.

    2018-02-01

    High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

  14. Interactions of aquatic animals with the ORPC OCGen® in Cobscook Bay, Maine: Monitoring behavior change and assessing the probability of encounter with a deployed MHK device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle Barbin; Staines, Garrett; Viehman, Haley

    Commercial viability of the marine hydrokinetic (MHK) energy industry is contingent on numerous and diverse factors. A major factor is the effects deployed devices have on animals. This factor is multi-faceted since it is dependent on the availability of appropriate scientific approaches to detect these effects. One of the animal groups with overlapping distributions of MHK devices are fishes. As such, individual fish behavior is likely to be influenced by the presence and operation of MHK devices. Depending on the scale of deployment there are implications for changes to essential fish habitat and effects that can be explored during deploymentmore » of a single device yet most changes are likely to be realized when multiple devices are deployed over large areas. It is not only important to document these effects and examine the need for mitigation, but also determine whether the methods involved can be used within the economic constraints of this nascent industry. The results presented in this report benefit the MHK industry by providing transferrable environmental monitoring approaches for MHK projects, specifically related to the interactions between static and dynamic tidal turbines and fish. In addition, some of the data can be used to generalize conditions (e.g., the temporal periodicity of fish presence in tidal regions and probability of fish encountering a device) at other MHK sites with similar physical conditions and fish assemblages. Ocean Renewable Power Company, LLC (ORPC) deployed and tested a prototype OCGen® tidal module in Cobscook Bay, Maine, in the summer of 2014. University of Maine researchers proposed an approach to inform other researchers, regulators, and industry members of the effects of this deployment on fish. While the approach was specifically applied to the OCGen® module, results are applicable to other pilot projects and inform future array deployments. Research funded under this grant allowed us to quantify fish presence as

  15. Membrane Protein Incorporation into Nano-Bioelectronics: An insight into Rhodopsin Controlled SiNW-FET Devices

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Ramya

    Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate

  16. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  17. Deployment Health

    DTIC Science & Technology

    2006-08-11

    thermo luminescent dosimeter ( TLD badge)) are required for performing specific tasks in a safe manner while deployed, personnel must be trained on the...monitoring devices (e.g., thermo luminescent dosimeter ( TLD badge)) as required by occupational specialty of personnel. (E4.A1.1.5.) 5.5.8 X X...assigned, attached, on temporary duty, or temporary additional duty to deployed units. Report the data electronically to the DMDC (at the SECRET level

  18. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device.

    PubMed

    Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A

    2014-03-21

    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.

  19. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    PubMed

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces.

    PubMed

    Mendoza-Meinhardt, Arturo; Botto, Lorenzo; Mata, Alvaro

    2018-02-13

    Membrane materials formed at the interface between two liquids have found applications in a large variety of technologies, from sensors to drug-delivery and catalysis. However, studying the formation of these membranes in real-time presents considerable challenges, owing to the difficulty of prescribing the location and instant of formation of the membrane, the difficulty of observing time-dependent membrane shape and thickness, and the poor reproducibility of results obtained using conventional mixing procedures. Here we report a fluidic device that facilitates characterisation of the time-dependent thickness, morphology and mass transport properties of materials self-assembled at fluid-fluid interfaces. In the proposed device the membrane forms from the controlled coalescence of two liquid menisci in a linear open channel. The linear geometry and controlled mixing of the solutions facilitate real-time visualisation, manipulation and improve reproducibility. Because of its small dimensions, the device can be used in conjunction with standard microscopy methods and reduces the required volumes of potentially expensive reagents. As an example application to tissue engineering, we use the device to characterise interfacial membranes formed by supra-molecular self-assembly of peptide-amphiphiles with either an elastin-like-protein or hyaluronic acid. The device can be adapted to study self-assembling membranes for applications that extend beyond bioengineering.

  1. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    USGS Publications Warehouse

    Bartkow, M.E.; Kennedy, K.E.; Huckins, J.N.; Holling, N.; Komarova, T.; Muller, J.F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-19

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  3. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  4. Advanced Deployable Structural Systems for Small Satellites

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  5. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  6. Trouble-shooting deployment and recovery options for various stationary passive acoustic monitoring devices in both shallow- and deep-water applications.

    PubMed

    Dudzinski, Kathleen M; Brown, Shani J; Lammers, Marc; Lucke, Klaus; Mann, David A; Simard, Peter; Wall, Carrie C; Rasmussen, Marianne Helene; Magnúsdóttir, Edda Elísabet; Tougaard, Jakob; Eriksen, Nina

    2011-01-01

    Deployment of any type of measuring device into the ocean, whether to shallow or deeper depths, is accompanied by the hope that this equipment and associated data will be recovered. The ocean is harsh on gear. Salt water corrodes. Currents, tides, surge, storms, and winds collaborate to increase the severity of the conditions that monitoring devices will endure. All ocean-related research has encountered the situations described in this paper. In collating the details of various deployment and recovery scenarios related to stationary passive acoustic monitoring use in the ocean, it is the intent of this paper to share trouble-shooting successes and failures to guide future work with this gear to monitor marine mammal, fish, and ambient (biologic and anthropogenic) sounds in the ocean-in both coastal and open waters.

  7. Deployment hinge using wraparound strips

    NASA Technical Reports Server (NTRS)

    Blanc, Eric

    1992-01-01

    Aerospatiale developed a new appendage deployment concept called AMEDE (French acronym for improvement of deployment mechanisms) with a view toward increased simplicity and functional reliability. This new concept, applicable to the deployment of any type of spaceborne appendage (in particular to solar arrays), enables deployment without synchronization or speed regulation devices. On the other hand, it requires the use of hinges with low driving or resistive torques. The AMEDE concept is compared with the conventional deployment concept. The conceptual and functional principles for the ADELE hinge are presented, as well as the hinges' main characteristics. The development status of both the AMEDE concept and the ADELE (French acronym for deployment hinge using wraparound strips) hinge are addressed.

  8. Deployment of Mobile Learning Course Materials to Android Powered Mobile Devices

    ERIC Educational Resources Information Center

    Chao, Lee

    2012-01-01

    The objective of this article is to facilitate mobile teaching and learning by providing an alternative course material deployment method. This article suggests a course material deployment platform for small universities or individual instructors. Different from traditional course material deployment methods, the method discussed deploys course…

  9. Deploying Solid Targets in Dense Plasma Focus Devices for Improved Neutron Yields

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Chapman, S.; Povilus, A.; Falabella, S.; Link, A.; Shaw, B. H.; Cooper, C. M.; Higginson, D.; Holod, I.; Sipe, N.; Gall, B.; Schmidt, A. E.

    2017-10-01

    We report on recent progress in using solid targets in dense plasma focus (DPF) devices. DPFs have been observed to generate energetic ion beams during the pinch phase; these beams interact with the dense plasma in the pinch region as well as the background gas and are believed to be the primary neutron generation mechanism for a D2 gas fill. Targets can be placed in the beam path to enhance neutron yield and to shorten the neutron pulse if desired. In this work, we measure yields from placing titanium deuteride foils, deuterated polyethylene, and non-deuterated control targets in deuterium filled DPFs at both megajoule and kilojoule scales. Furthermore, we have deployed beryllium targets in a helium gas-filled, kilojoule scale DPF for use as a potential AmBe radiological source replacement. Neutron yield, neutron time of flight, and optical images are used to diagnose the effectiveness of target deployments relative to particle-in-cell simulation predictions. A discussion of target holder engineering for material compatibility and damage control will be shown as well. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by the Office of Defense Nuclear Nonproliferation Research and Development within U.S. DOE's National Nuclear Security Administration and the LLNL Institutional Computing Grand Challenge program.

  10. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  11. Stent deployment protocol for optimized real-time visualization during endovascular neurosurgery.

    PubMed

    Silva, Michael A; See, Alfred P; Dasenbrock, Hormuzdiyar H; Ashour, Ramsey; Khandelwal, Priyank; Patel, Nirav J; Frerichs, Kai U; Aziz-Sultan, Mohammad A

    2017-05-01

    Successful application of endovascular neurosurgery depends on high-quality imaging to define the pathology and the devices as they are being deployed. This is especially challenging in the treatment of complex cases, particularly in proximity to the skull base or in patients who have undergone prior endovascular treatment. The authors sought to optimize real-time image guidance using a simple algorithm that can be applied to any existing fluoroscopy system. Exposure management (exposure level, pulse management) and image post-processing parameters (edge enhancement) were modified from traditional fluoroscopy to improve visualization of device position and material density during deployment. Examples include the deployment of coils in small aneurysms, coils in giant aneurysms, the Pipeline embolization device (PED), the Woven EndoBridge (WEB) device, and carotid artery stents. The authors report on the development of the protocol and their experience using representative cases. The stent deployment protocol is an image capture and post-processing algorithm that can be applied to existing fluoroscopy systems to improve real-time visualization of device deployment without hardware modifications. Improved image guidance facilitates aneurysm coil packing and proper positioning and deployment of carotid artery stents, flow diverters, and the WEB device, especially in the context of complex anatomy and an obscured field of view.

  12. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant

  13. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  14. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph [Placitas, NM; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Nelson, Ciji L [Albuquerque, NM; Dasch, Cameron J [Boomfield Hills, MI; Moore, David G [Albuquerque, NM

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  15. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  16. CFD modeling of catheter-based Chemofilter device for filtering chemotherapy drugs from venous flow

    NASA Astrophysics Data System (ADS)

    Maani, Nazanin; Yee, Daryl; Nosonovsky, Michael; Greer, Julia; Hetts, Steven; Rayz, Vitaliy

    2017-11-01

    Purpose: Intra-arterial chemotherapy, a procedure where drugs are injected into arteries supplying a tumor, may cause systemic toxicity. The Chemofilter device, deployed in a vein downstream of the tumor, can chemically filter the excessive drugs from the circulation. In our study, CFD modeling of blood flow through the Chemofilter is used to optimize its hemodynamic performance. Methods:The Chemofilter consists of a porous membrane attached to a stent-like frame of the RX Accunet distal protection filters used for capturing blood clots. The membrane is formed by a lattice of symmetric micro-cells. This design provides a large surface area for the drug binding, and allows blood cells to pass through the lattice. A two-scale modeling approach is used, where the flow through individual micro-cells is simulated to determine the lattice permeability and then the entire device is modeled as a porous membrane. Results: The simulations detected regions of flow stagnation and recirculation caused by the membrane and its supporting frame. The effect of the membrane's leading angle on the velocity and pressure fields was determined. The device optimization will help the efficacy of drug absorption, while the risk of blood clotting reduces. NIH NCI R01CA194533.

  17. Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device.

    PubMed

    Baptista-Pires, Luis; Mayorga-Martínez, Carmen C; Medina-Sánchez, Mariana; Montón, Helena; Merkoçi, Arben

    2016-01-26

    We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness. Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.

  18. A reusable device for electrochemical applications of hydrogel supported black lipid membranes.

    PubMed

    Mech-Dorosz, Agnieszka; Heiskanen, Arto; Bäckström, Sania; Perry, Mark; Muhammad, Haseena B; Hélix-Nielsen, Claus; Emnéus, Jenny

    2015-02-01

    Black lipid membranes (BLMs) are significant in studies of membrane transport, incorporated proteins/ion transporters, and hence in construction of biosensor devices. Although BLMs provide an accepted mimic of cellular membranes, they are inherently fragile. Techniques are developed to stabilize them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently "sandwiched" between the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent "sandwiching" of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hsBLMs on average in 10 min. The determined specific membrane capacitance and resistance were shown to vary in the range 0.31-0.49 μF/cm(2) and 45-65 kΩ cm(2), respectively, corresponding to partially solvent containing BLMs with an average life time of 60-80 min. The characterized hsBLM formation and devised equivalent circuit models lead to a schematic model to illustrate lipid molecule distribution in hydrogel-supported apertures. The functionality of stabilized hsBLMs and detection sensitivity of the platform were verified by monitoring the effect of the ion transporter valinomycin.

  19. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  20. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  1. Spatial and temporal benthic species assemblage responses with a deployed marine tidal energy device: a small scaled study.

    PubMed

    Broadhurst, Melanie; Orme, C David L

    2014-08-01

    The addition of man-made structures to the marine environment is known to increase the physical complexity of the seafloor, which can influence benthic species community patterns and habitat structure. However, knowledge of how deployed tidal energy device structures influence benthic communities is currently lacking. Here we examined species biodiversity, composition and habitat type surrounding a tidal energy device within the European Marine Energy Centre test site, Orkney. Commercial fishing and towed video camera techniques were used over three temporal periods, from 2009 to 2010. Our results showed increased species biodiversity and compositional differences within the device site, compared to a control site. Both sites largely comprised of crustacean species, omnivore or predatory feeding regimes and marine tide-swept EUNIS habitat types, which varied over the time. We conclude that the device could act as a localised artificial reef structure, but that further in-depth investigations are required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Deployment Effects of Marin Renewable Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Polagye; Mirko Previsic

    2010-06-17

    . Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments

  3. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2015-02-27

    ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.

  4. Shape Memory Polymer Self-Deploying Membrane Reflectors

    DTIC Science & Technology

    2007-01-30

    stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and

  5. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  6. Applications of Dynamic Deployment of Services in Industrial Automation

    NASA Astrophysics Data System (ADS)

    Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.

    Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.

  7. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests

    USGS Publications Warehouse

    Petty, J.D.; Jones, S.B.; Huckins, J.N.; Cranor, W.L.; Parris, J.T.; McTague, T.B.; Boyle, T.P.

    2000-01-01

    As an integral part of our continued development of water quality assessment approaches, we combined integrative sampling, instrumental analysis of widely occurring anthropogenic contaminants, and the application of a suite of bioindicator tests as a specific part of a broader survey of ecological conditions, species diversity, and habitat quality in the Santa Cruz River in Arizona, USA. Lipid-containing semipermeable membrane devices (SPMDs) were employed to sequester waterborne hydrophobic chemicals. Instrumental analysis and a suite of bioindicator tests were used to determine the presence and potential toxicological relevance of mixtures of bioavailable chemicals in two major water sources of the Santa Cruz River. The SPMDs were deployed at two sites; the effluent weir of the International Wastewater Treatment Plant (IWWTP) and the Nogales Wash. Both of these systems empty into the Santa Cruz River and the IWWTP effluent is a potential source of water for a constructed wetland complex. Analysis of the SPMD sample extracts revealed the presence of organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The bioindicator tests demonstrated increased liver enzyme activity, perturbation of neurotransmitter systems and potential endocrine disrupting effects (vitellogenin induction) in fish exposed to the extracts. With increasing global demands on limited water resources, the approach described herein provides an assessment paradigm applicable to determining the quality of water in a broad range of aquatic systems.

  8. Development of a Device to Deploy Fluid Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; Chai, An-Ti

    1997-01-01

    A free-floating droplet in microgravity is ideal for scientific observation since it is free of confounding factors such as wetting and nonsymmetrical heat transfer introduced by contact with surfaces. However, the technology to reliably deploy in microgravity has not yet been developed. In some recent fluid deployment experiments, droplets are either shaken off the dispenser or the dispenser is quickly retracted from the droplet. These solutions impart random residual motion to deployed droplet, which can be undesirable for certain investigations. In the present study, two new types of droplet injectors were built and tested. Testing of the droplet injectors consisted of neutral buoyancy tank tests, 5-sec drop tower tests at the NASA Lewis Zero Gravity Facility, and DC-9 tests. One type, the concentric injector, worked well in the neutral buoyancy tank but did not do well in low-gravity. However, it appeared that it makes a fine apparatus for constructing bubbles in low-gravity conditions. The other type, the T-injector, showed the most promise for future development. In both neutral buoyancy and DC-9 tests, water droplets were formed and deployed with some control and repeatability, although in low-gravity the residual velocities were higher than desirable. Based on our observations, further refinements are suggested for future development work.

  9. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  10. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1981-01-01

    An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.

  11. A Female Urinary Diversion Device for Military Women in the Deployed Environment

    DTIC Science & Technology

    2016-10-27

    Deployment Survey” at 3 and 6 months during deployment. Sample: MW (n = 94) deployed for ≥ 6 months to austere locations in support of Operation Enduring...provided support for the FUDD’s utility in austere environments. Clinically significant differences in urinary symptoms between groups were determined...This research provides scientifically based support for the FUDD’s feasibility for MW in austere settings and clinical support for the FUDD as a

  12. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  13. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  14. Deployable centralizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Su, Jiann-Cherng; Knudsen, Steven D.

    2017-02-28

    A centralizer assembly is disclosed that allows for the assembly to be deployed in-situ. The centralizer assembly includes flexible members that can be extended into the well bore in situ by the initiation of a gas generating device. The centralizer assembly can support a large load carrying capability compared to a traditional bow spring with little or no installation drag. Additionally, larger displacements can be produced to centralize an extremely deviated casing.

  15. Biomimetic devices functionalized by membrane channel proteins

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  16. A Middleware Based Approach to Dynamically Deploy Location Based Services onto Heterogeneous Mobile Devices Using Bluetooth in Indoor Environment

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Pampa; Sen, Rijurekha; Das, Pradip K.

    Several methods for providing location based service (LBS) to mobile devices in indoor environment using wireless technologies like WLAN, RFID and Bluetooth have been proposed, implemented and evaluated. However, most of them do not focus on heterogeneity of mobile platforms, memory constraint of mobile devices, the adaptability of client or device to the new services it discovers whenever it reaches a new location. In this paper, we have proposed a Middleware based approach of LBS provision in the indoor environment, where a Bluetooth enabled Base Station (BS) detects Bluetooth enabled mobile devices and pushes a proper client application only to those devices that belong to some registered subscriber of LBS. This dynamic deployment enables the mobile clients to access any new service without having preinstalled interface to that service beforehand and thus the client's memory consumption is reduced. Our proposed work also addresses the other issues like authenticating the clients before providing them LBSs and introducing paid services. We have evaluated its performance in term of file transfer time with respect to file size and throughput with respect to distance. Experimental results on service consumption time by the mobile client for different services are also presented.

  17. ActiviTeen: A Protocol for Deployment of a Consumer Wearable Device in an Academic Setting.

    PubMed

    Ortiz, Alexa M; Tueller, Stephen J; Cook, Sarah L; Furberg, Robert D

    2016-07-25

    Regular physical activity (PA) can be an important indicator of health across an individual's life span. Consumer wearables, such as Fitbit or Jawbone, are becoming increasingly popular to track PA. With the increased adoption of activity trackers comes the increased generation of valuable individual-based data. Generated data has the potential to provide detailed insights into the user's behavior and lifestyle. The primary objective of the described study is to evaluate the feasibility of individual data collection from the selected consumer wearable device (the Fitbit Zip). The rate of user attrition and barriers preventing the use of consumer wearable devices will also be evaluated as secondary objectives. The pilot study will occur in two stages and employs a long-term review and analysis with a convenience sample of 30 students attending Research Triangle High School. For the first stage, students will initially be asked to wear the Fitbit Zip over the course of 4 weeks. During which time, their activity data and step count will be collected. Students will also be asked to complete a self-administered survey at the beginning and conclusion of the first stage. The second stage will continue to collect students' activity data and step count over an additional 3-month period. We are anticipating results for this study by the end of 2016. This study will provide insight into the data collection procedures surrounding consumer wearable devices and could serve as the future foundation for other studies deploying consumer wearable devices in educational settings.

  18. Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry.

    PubMed

    Yue, Guihua Eileen; Roper, Michael G; Jeffery, Erin D; Easley, Christopher J; Balchunas, Catherine; Landers, James P; Ferrance, Jerome P

    2005-06-01

    In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.

  19. DRAGON - 8U Nanosatellite Orbital Deployer

    NASA Technical Reports Server (NTRS)

    Dobrowolski, Marcin; Grygorczuk, Jerzy; Kedziora, Bartosz; Tokarz, Marta; Borys, Maciej

    2014-01-01

    The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing.

  20. Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2015-12-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organson- a-chip", which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass based devices have long been utilised in the field of microfluidics but the integration of alternative functional elements within multi-layered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimised on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650 °C) and quartz/fused silica bonding (1050 °C) processes, this method maintains the integrity and functionality of the membrane (Tg 150 °C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 hours, indicating sufficient bond strength for long term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  1. Security Issues and Resulting Security Policies for Mobile Devices

    DTIC Science & Technology

    2013-03-01

    protecting it. The Army has requested that the capabilities of these devices be delivered rapidly to the battlefield. Programs like Joint Battle...Explosives (ATF) has already deployed 50 iPads, with interest in deploying 50 additional devices. Despite the desire to rapidly deploy these devices, little...come in many different forms, such as personal data assistants, smart phones, and tablets . Today, the most popular mobile devices are characterized by

  2. National evaluation of the SafeTrip-21 initiative : I-95 corridor coalition test bed final evaluation report, North Carolina deployment of portable traffic-monitoring devices.

    DOT National Transportation Integrated Search

    2010-06-11

    The purpose of this document is to present the findings of the national evaluation of the deployment of portable traffic monitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The ...

  3. National evaluation of the SafeTrip-21 initiative : I-95 corridor coalition test bed final evaluation report, North Carolina deployment of portable traffic-monitoring devices.

    DOT National Transportation Integrated Search

    2010-06-11

    The purpose of this document is to present the findings of the national evaluation of the deployment of portable trafficmonitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The N...

  4. Electrostatic Inflation of Membrane Space Structures

    NASA Astrophysics Data System (ADS)

    Stiles, Laura A.

    Membrane space structures provide a lightweight and cost effective alternative to traditional mechanical systems. The low-mass and high deployed-to-stored volume ratios allow for larger structures to be launched, expanding on-orbit science and technology capabilities. This research explores a novel method for deployment of membrane space structures using electrostatic pressure as the inflation mechanism. Applying electric charge to a layered gossamer structure provides an inflationary pressure due to the repulsive electrostatic forces between the charged layers. The electrostatic inflation of membrane structures (EIMS) concept is particularly applicable to non-precision structures such as sunshields or drag de-orbiting devices. This research addresses three fundamental topics: necessary conditions for EIMS in a vacuum, necessary conditions for EIMS in a plasma, and charging methods. Vacuum demonstrations show that less than 10 kiloVolts are required for electrostatic inflation of membrane structures in 1-g. On-orbit perturbation forces can be much smaller, suggesting feasible voltage requirements. Numerical simulation enables a relationship between required inflation pressure (to offset disturbances) and voltage. 100's of Volts are required for inflation in geosynchronous orbits (GEO) and a few kiloVolts in low Earth orbit (LEO). While GEO plasma has a small impact on the EIMS performance, Debye shielding at LEO reduces the electrostatic pressure. The classic Debye shielding prediction is far worse than actual shielding, raising the `effective' Debye length to the meter scale in LEO, suggesting feasibility for EIMS in LEO. Charged particle emission and remote charging methods are explored as inflation mechanisms. Secondary electron emission characteristics of EIMS materials were determined experimentally. Nonlinear fits to the Sternglass curve determined a maximum yield of 1.83 at 433 eV for Aluminized Kapton and a maximum yield of 1.78 at 511 eV for Aluminized

  5. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, Robert W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.

  6. [Comparative estimation of laser devices in complex treatment of oral cavity mucous membrane diseases].

    PubMed

    Tatishvili, N G; Iverieli, M B; Abashidze, N O; Gogishvili, Kh V

    2009-05-01

    The aim of the study was to compare laser devices "Optodan" and portative laser "Baure" in complex treatment of oral cavity mucous membrane diseases. We studied 90 patients: 54 female (60,0+/-0,77%) and 36 (30,0+/-0,7%) men from 18 to 45 years old. All patients had different forms of oral mucosal diseases: Stomatitis aphtosa chronica recidiva had 36 patients (28,9+/-0,9%); Erythema exudativum multiforme - 10 patients (6,7+/-1,5%), Candidosis angulitis - 26 patients (17,8+/-1,46%), Lichen ruber planus ulceroza - 4 patients (4,44+/-1,03%), Trauma mechanicum acutium - 12 patients (11,06+/-2,8%), Stomatitis herpetica - 28 patients (31,1+/-1,48%). All the patients were practically healthy and had no contraindications for physiotherapy. Before treatment to all patients had been recommended means of individual hygiene and several recommendations. The patients were divided into two groups. Every group consisted of 45 patients. 13 patients with Stomatitis aphtosa chronica recidiva, 14 - Stomatitis herpetica, 3 - Erythema exudativum multiforme, 8 - Candidosis angulitis, 2 - Lichen ruber planus ulceroza, 5 - Trauma mechanicum acutium. All the patients underwent symptomatic treatment according to the form and gravity of disease. Patients in a first group in addition had laserotherapy with a laser device "Optodan". Patients in a second group underwent laserotherapy with a portative device (Baurer). The positive results were achieved in both groups, though the first group patients mentioned considerable reduce of pain right after procedures. Our research proved the high effectiveness of laserotherapy in complex treatment of oral cavity mucous membrane diseases. Treatment with device "Optodan" is the most preferable.

  7. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  8. Anesthesiology Devices; Reclassification of Membrane Lung for Long-Term Pulmonary Support; Redesignation as Extracorporeal Circuit and Accessories for Long-Term Respiratory/Cardiopulmonary Failure. Final order.

    PubMed

    2016-02-12

    The Food and Drug Administration (FDA) is issuing a final order to redesignate membrane lung devices for long-term pulmonary support, a preamendments class III device, as extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure, and to reclassify the device to class II (special controls) in patients with acute respiratory failure or acute cardiopulmonary failure where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent. A membrane lung device for long-term pulmonary support (>6 hours) refers to the oxygenator in an extracorporeal circuit used during long-term procedures, commonly referred to as extracorporeal membrane oxygenation (ECMO). Because a number of other devices and accessories are used with the oxygenator in the circuit, the title and identification of the regulation are revised to include extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure. Although an individual device or accessory used in an ECMO circuit may already have its own classification regulation when the device or accessory is intended for short-term use (<=6 hours), such device or accessory will be subject to the same regulatory controls applied to the oxygenator (i.e., class II, special controls) when evaluated as part of the ECMO circuit for long-term use (>6 hours). On its own initiative, based on new information, FDA is revising the classification of the membrane lung device for long-term pulmonary support.

  9. Molecular devices: Caroviologens as an approach to molecular wires—synthesis and incorporation into vesicle membranes

    PubMed Central

    Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques

    1986-01-01

    Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731

  10. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  11. A viable circulating tumor cell isolation device with high retrieval efficiency using a reversibly deformable membrane barrier

    NASA Astrophysics Data System (ADS)

    Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum

    2017-02-01

    Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.

  12. Using Consumer Electronics and Apps in Industrial Environments - Development of a Framework for Dynamic Feature Deployment and Extension by Using Apps on Field Devices

    NASA Astrophysics Data System (ADS)

    Schmitt, Mathias

    2014-12-01

    The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions

  13. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  14. Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment.

    PubMed

    Pogorzelec, Marta; Piekarska, Katarzyna

    2018-08-01

    The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  16. CIRSE Vascular Closure Device Registry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Mueller-Huelsbeck, Stefan; Libicher, Martin

    2011-02-15

    Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0-14.5] for antegrade access and 1.8% (95% CI 1.1-2.9) for retrograde access (Pmore » = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only <0.5% of patients. Postdeployment bleeding occurred in 6.4%, and most these (51.5%) could be managed with light manual compression. During follow-up, other device-related complications were reported in 1.3%: seven false aneurysms, three hematoma >5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.« less

  17. CIRSE Vascular Closure Device Registry

    PubMed Central

    Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2010-01-01

    Purpose Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only <0.5% of patients. Postdeployment bleeding occurred in 6.4%, and most these (51.5%) could be managed with light manual compression. During follow-up, other device-related complications were reported in 1.3%: seven false aneurysms, three hematoma >5.9 cm, and two vessel occlusions. Conclusion The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters. PMID:20981425

  18. Deployment of Large-Size Shell Constructions by Internal Pressure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.

    2015-11-01

    A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.

  19. Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs

    NASA Technical Reports Server (NTRS)

    Footdale, Joseph N.; Murphey, Thomas W.

    2014-01-01

    The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.

  20. Deployment Mechanism for the Space Technology 5 Micro Satellite

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Cooperrider, Caner; Durback, Gerard

    2004-01-01

    Space Technology 5 (ST5) is a technology mission that will send three spin-stabilized, 25-kg satellites into a highly elliptical Earth orbit. Each of these satellites must be deployed separately from the same launch vehicle with a spin rate of 3.4 rads (32.4 rpm). Because of the satellite's small size and the requirement to achieve its mission spin rate on deploy, typical spin table, pyrotechnic deployment devices or spin up thrusters could not be used. Instead, this new mechanism design employs a "Frisbee" spin up strategy with a shape memory alloy actuated Pinpuller to deploy each satellite. The mechanism has undergone several design and test iterations and has been successfully qualified for flight.

  1. Deployment Mechanism for the Space Technology 5 Micro Satellite

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Cooperrider, Caner; Durback, Gerard

    2004-01-01

    Space Technology 5 (ST5) is a technology mission that will send three spin-stabilized, 25-kg satellites into a highly elliptical Earth orbit. Each of these satellites must be deployed separately from the same launch vehicle with a spin rate of 3.4 rad/s (32.4 rpm). Because of the satellite's small size and the requirement to achieve its mission spin rate on deploy, typical spin table, pyrotechnic deployment devices or spin up thrusters could not be used. Instead, this new mechanism design employs a 'Frisbee' spin up strategy with a shape memory alloy actuated Pinpuller to deploy each satellite. The mechanism has undergone several design and test iterations and has been successfully qualified for flight.

  2. USE OF SEMI-PERMEABLE MEMBRANE DEVICES TO MONITOR POLLUTANTS IN WATER AND ASSESS THEIR EFFECTS: A LABORATORY TEST AND FIELD VERIFICATION. (U915464)

    EPA Science Inventory

    Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...

  3. Deployable reflector configurations

    NASA Astrophysics Data System (ADS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  4. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  5. Membrane Based Thermal Control Development

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen

    1997-01-01

    The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.

  6. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  7. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  8. Comparison of semipermeable membrane device (SPMD) and large-volume solid-phase extraction techniques to measure water concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in Lake Chelan, Washington.

    PubMed

    Ellis, Steven G; Booij, Kees; Kaputa, Mike

    2008-07-01

    Semipermeable membrane devices (SPMDs) spiked with the performance reference compound PCB29 were deployed 6.1 m above the sediments of Lake Chelan, Washington, for a period of 27 d, to estimate the dissolved concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Water concentrations were estimated using methods proposed in 2002 and newer equations published in 2006 to determine how the application of the newer equations affects historical SPMD data that used the older method. The estimated concentrations of DDD, DDE, and DDD calculated using the older method were 1.5-2.9 times higher than the newer method. SPMD estimates from both methods were also compared to dissolved and particulate DDT concentrations measured directly by processing large volumes of water through a large-volume solid-phase extraction device (Infiltrex 300). SPMD estimates of DDD+DDE+DDT (SigmaDDT) using the older and newer methods were lower than Infiltrex concentrations by factors of 1.1 and 2.3, respectively. All measurements of DDT were below the Washington State water quality standards for the protection of human health (0.59 ng l(-1)) and aquatic life (1.0 ng l(-1)).

  9. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  10. An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-12-15

    Enzymatic biofuel cells can generate electricity directly from the chemical energy of biofuels in physiological fluids, but their power density is significantly limited by the performance of the cathode which is based on oxygen reduction for in vivo applications. An oxygen-independent and membrane-less glucose biobattery was prepared that consists of a dealloyed nanoporous gold (NPG) supported glucose dehydrogenase (GDH) bioanode, immobilised with the assistance of conductive polymer/Os redox polymer composites, and a solid-state NPG/MnO 2 cathode. In a solution containing 10mM glucose, a maximum power density of 2.3µWcm -2 at 0.21V and an open circuit voltage (OCV) of 0.49V were registered as a biobattery. The potential of the discharged MnO 2 could be recovered, enabling a proof-of-concept biobattery/supercapacitor hybrid device. The resulting device exhibited a stable performance for 50 cycles of self-recovery and galvanostatic discharge as a supercapacitor at 0.1mAcm -2 over a period of 25h. The device could be discharged at current densities up to 2mAcm -2 supplying a maximum instantaneous power density of 676 μW cm -2 , which is 294 times higher than that from the biobattery alone. A mechanism for the recovery of the potential of the cathode, analogous to that of RuO 2 (Electrochim. Acta 42(23), 3541-3552) is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A space release/deployment system actuated by shape memory wires

    NASA Astrophysics Data System (ADS)

    Fragnito, Marino; Vetrella and, Sergio

    2002-11-01

    In this paper, the design of an innovative hold down/release and deployment device actuated by shape memory wires, to be used for the first time for the S MA RT microsatellite solar wings is shown. The release and deployment mechanisms are actuated by a Shape Memory wire (Nitinol), which allows a complete symmetrical and synchronous release, in a very short time, of the four wings in pairs. The hold down kinematic mechanism is preloaded to avoid vibration nonlinearities and unwanted deployment at launch. The deployment mechanism is a simple pulley system. The stiffness of the deployed panel-hinge system needs to be dimensioned in order to meet the on-orbit requirement for attitude control. One-way roller clutches are used to keep the panel at the desired angle during the mission. An ad hoc software has been developed to simulate both the release and deployment operations, coupling the SMA wire behavior with the system mechanics.

  12. Nanoengineered field induced charge separation membranes manufacture thereof

    DOEpatents

    O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary

    2016-08-02

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  13. A late and failure of airbag deployment case study for drivers of passenger cars in rear-end collisions

    NASA Astrophysics Data System (ADS)

    Toganel, George-Radu; Ovidiu Soica, Adrian

    2017-10-01

    The presented study was directed at two types of airbag miss-deployments: late deployment and non-deployment. Late deployment can be a product of override or underride road traffic accidents. Non-deployment can be a product of technical failure or trigger algorithm’s inability to correctly assume the state of the accident to happen. In order to analyse the phenomena through physical tests, a specialized test device was used for a series of 8 non-deployment tests and a series of 4 airbag firing tests, totalling 12 tests. Acceleration based data was recorded and analysed for the movement of the device part simulating the driver head. High speed video recording was used to analyse the mechanics of airbag deployment and correlate with the acceleration based data. It has been determined, in the limitations of the laboratory testing environment, a significant variation of the time frame for the airbag deployments, despite using similar testing conditions and identical tested products. Also, the initial time frame for airbag deployment delay was overshadowed by other factors such as time to impact.

  14. Biomechanics of an Expandable Lumbar Interbody Fusion Cage Deployed Through Transforaminal Approach

    PubMed Central

    Mica, Michael Conti; Voronov, Leonard I.; Carandang, Gerard; Havey, Robert M.; Wojewnik, Bartosz

    2017-01-01

    Introduction A novel expandable lumbar interbody fusion cage has been developed which allows for a broad endplate footprint similar to an anterior lumbar interbody fusion (ALIF); however, it is deployed from a minimally invasive transforaminal unilateral approach. The perceived benefit is a stable circumferential fusion from a single approach that maintains the anterior tension band of the anterior longitudinal ligament. The purpose of this biomechanics laboratory study was to evaluate the biomechanical stability of an expandable lumbar interbody cage inserted using a transforaminal approach and deployed in situ compared to a traditional lumbar interbody cage inserted using an anterior approach (control device). Methods Twelve cadaveric spine specimens (L1-L5) were tested intact and after implantation of both the control and experimental devices in two (L2-L3 and L3-L4) segments of each specimen; the assignments of the control and experimental devices to these segments were alternated. Effect of supplemental pedicle screw-rod stabilization was also assessed. Moments were applied to the specimens in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). The effect of physiologic preload on construct stability was evaluated in FE. Segmental motions were measured using an optoelectronic motion measurement system. Results The deployable expendable TLIF cage and control devices significantly reduced FE motion with and without compressive preload when compared to the intact condition (p<0.05). Segmental motions in LB and AR were also significantly reduced with both devices (p<0.05). Under no preload, the deployable expendable TLIF cage construct resulted in significantly smaller FE motion compared to the control cage construct (p<0.01). Under all other testing modes (FE under 400N preload, LB, and AR) the postoperative motions of the two constructs did not differ statistically (p>0.05). Adding bilateral pedicle screws resulted in further reduction of ROM

  15. An analysis of using semi-permeable membrane devices to assess persistent organic pollutants in ambient air of Alaska

    NASA Astrophysics Data System (ADS)

    Wu, Ted Hsin-Yeh

    A region of concern for persistent organic pollutants (POPS) contamination is the Arctic, because of POPs' ability to migrate long distances through the atmosphere toward cold regions, condense out of the atmosphere in those region, deposit in sensitive arctic ecosystems and bioaccumulate in Arctic species. Thus, monitoring of POP concentrations in the Arctic is necessary. However, traditional active air monitoring techniques for POPs may not be feasible in the Arctic, because of logistics and cost. While these issues may be overcome using passive air sampling devices, questions arise about the interpretation of the contaminant concentrations detected using the passive air samplers. In this dissertation semi-permeable membrane devices (SPMDs) containing triolein were characterized and evaluated for use in sampling the ambient air of Alaska for three classes of POPS (organochlorines [OCs], polychlorinated biphenyls [PCBs] and polyaromatic hydrocarbons [PAHs]). In addition, a SPMD-based sampling campaign for POPS was conducted simultaneously at five sites in Alaska during a one-year period. The POP concentrations obtained from the SPMDs were examined to determine the spatial and seasonal variability at the locations. POP concentrations detected in SPMDs were influenced by exposure to sunlight, concentrations of particulate-bound contaminants and changes in temperature. PAH concentrations in a SPMD mounted in a sunlight-blocking deployment unit were higher than in a SPMD exposed to sunlight (P = 0.007). PCB concentrations in SPMD exposed to filtered and non-filtered air were significantly different (P < 0.0001). Derived PAH air concentrations measured using SPMD were within a factor of approximately 7 of those obtained from an air sampler in Barrow, Alaska. The field study showed three distinct groups of samples. Barrow was separated from the sub-Arctic samples and a Homer sample (September-December) was distinct from the sub-Arctic samples. The separations suggest

  16. Light-Addressed Electrodeposition of Enzyme-Entrapped Chitosan Membranes for Multiplexed Enzyme-Based Bioassays Using a Digital Micromirror Device

    PubMed Central

    Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long

    2013-01-01

    This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR). PMID:23959236

  17. Light-addressed electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device.

    PubMed

    Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long

    2013-08-16

    This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).

  18. Importance of Adjunct Delivery Techniques to Optimize Deployment Success of Distal Protection Filters During Vein Graft Intervention.

    PubMed

    Kaliyadan, Antony G; Chawla, Harnish; Fischman, David L; Ruggiero, Nicholas; Gannon, Michael; Walinsky, Paul; Savage, Michael P

    2017-02-01

    This study assessed the impact of adjunct delivery techniques on the deployment success of distal protection filters in saphenous vein grafts (SVGs). Despite their proven clinical benefit, distal protection devices are underutilized in SVG interventions. Deployment of distal protection filters can be technically challenging in the presence of complex anatomy. Techniques that facilitate the delivery success of these devices could potentially improve clinical outcomes and promote greater use of distal protection. Outcomes of 105 consecutive SVG interventions with attempted use of a FilterWire distal protection device (Boston Scientific) were reviewed. In patients in whom filter delivery initially failed, the success of attempted redeployment using adjunct delivery techniques was assessed. Two strategies were utilized sequentially: (1) a 0.014" moderate-stiffness hydrophilic guidewire was placed first to function as a parallel buddy wire to support subsequent FilterWire crossing; and (2) if the buddy-wire approach failed, predilation with a 2.0 mm balloon at low pressure was performed followed by reattempted filter delivery. The study population consisted of 80 men and 25 women aged 73 ± 10 years. Mean SVG age was 14 ± 6 years. Complex disease (American College of Cardiology/American Heart Association class B2 or C) was present in 92%. Initial delivery of the FilterWire was successful in 82/105 patients (78.1%). Of the 23 patients with initial failed delivery, 8 (35%) had successful deployment with a buddy wire alone, 7 (30%) had successful deployment with balloon predilation plus buddy wire, 4 (17%) had failed reattempt at deployment despite adjunct maneuvers, and in 4 (17%) no additional attempts at deployment were made at the operator's discretion. Deployment failure was reduced from 21.9% initially to 7.6% after use of adjunct delivery techniques (P<.01). No adverse events were observed with these measures. Deployment of distal protection devices can be

  19. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells.

    PubMed

    Zheng, Siyang; Lin, Henry; Liu, Jing-Quan; Balic, Marija; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2007-08-31

    This paper presents development of a parylene membrane microfilter device for single stage capture and electrolysis of circulating tumor cells (CTCs) in human blood, and the potential of this device to allow genomic analysis. The presence and number of CTCs in blood has recently been demonstrated to provide significant prognostic information for patients with metastatic breast cancer. While finding as few as five CTCs in about 7.5mL of blood (i.e., 10(10) blood cells in) is clinically significant, detection of CTCs is currently difficult and time consuming. CTC enrichment is performed by either gradient centrifugation of CTC based on their buoyant density or magnetic separation of epithelial CTC, both of which are laborious procedures with variable efficiency, and CTC identification is typically done by trained pathologists through visual observation of stained cytokeratin-positive epithelial CTC. These processes may take hours, if not days. Work presented here provides a micro-electro-mechanical system (MEMS)-based option to make this process simpler, faster, better and cheaper. We exploited the size difference between CTCs and human blood cells to achieve the CTC capture on filter with approximately 90% recovery within 10 min, which is superior to current approaches. Following capture, we facilitated polymerase chain reaction (PCR)-based genomic analysis by performing on-membrane electrolysis with embedded electrodes reaching each of the individual 16,000 filtering pores. The biggest advantage for this on-membrane in situ cell lysis is the high efficiency since cells are immobilized, allowing their direct contact with electrodes. As a proof-of-principle, we show beta actin gene PCR, the same technology can be easily extended to real time PCR for CTC-specific transcript to allow molecular identification of CTC and their further characterization.

  20. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  1. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very

  2. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices

    USGS Publications Warehouse

    Huckins, J.N.; Petty, J.D.; Lebo, J.A.; Almeida, F.V.; Booij, K.; Alvarez, D.A.; Cranor, W.L.; Clark, R.C.; Mogensen, B.B.

    2002-01-01

    Permeability/performance reference compounds (PRCs) are analytically noninterfering organic compounds with moderate to high fugacity from semipermeable membrane devices (SPMDs) that are added to the lipid prior to membrane enclosure. Assuming that isotropic exchange kinetics (IEK) apply and that SPMD-water partition coefficients are known, measurement of PRC dissipation rate constants during SPMD field exposures and laboratory calibration studies permits the calculation of an exposure adjustment factor (EAF). In theory, PRC-derived EAF ratios reflect changes in SPMD sampling rates (relative to laboratory data) due to differences in exposure temperature, membrane biofouling, and flow velocity-turbulence at the membrane surface. Thus, the PRC approach should allow for more accurate estimates of target solute/vapor concentrations in an exposure medium. Under some exposure conditions, the impact of environmental variables on SPMD sampling rates may approach an order of magnitude. The results of this study suggest that most of the effects of temperature, facial velocity-turbulence, and biofouling on the uptake rates of analytes with a wide range of hydrophobicities can be deduced from PRCs with a much narrower range of hydrophobicities. Finally, our findings indicate that the use of PRCs permits prediction of in situ SPMD sampling rates within 2-fold of directly measured values.

  3. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12

  4. Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.

  5. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  6. Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2016-08-01

    Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.

  7. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  8. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirko Previsic

    2010-06-17

    with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally

  9. Energy absorption device for shock loading

    NASA Astrophysics Data System (ADS)

    Howard, C. D.; Lagrange, Donald E.; Beatty, David A.; Littman, David C.

    1995-02-01

    A shock energy absorbing device provides shock protection for the riser line employed to attach an aerodynamic deceleration device to a primary body during deployment of the system into an airstream. During deployment, for example, by dropping an unopened parachute and attached load or by rocket delivery of the unopened parachute and attached load, the parachute is made to open at a desired altitude whereupon very large shock tension forces are generated which are applied to the line. In order to protect the line from failing under these forces and to reduce the requirement for a bulky, heavy line, a shock absorber is provided in the form of a block having one or more breakable web portions formed therein and through which the riser line is threaded. Upon deployment of the system into an airstream, the shock tension forces operate to fracture some or all of the breakable web portions thereby dissipating the shock energy generated during deployment and protecting the riser line from failure.

  10. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary support...

  11. 21 CFR 868.5610 - Membrane lung for long-term pulmonary support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Membrane lung for long-term pulmonary support. 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5610 Membrane lung for long-term pulmonary support. (a) Identification. A membrane lung for long-term pulmonary support...

  12. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  13. Organic membrane photonic integrated circuits (OMPICs).

    PubMed

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  14. A deployable mechanism concept for the collection of small-to-medium-size space debris

    NASA Astrophysics Data System (ADS)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small

  15. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  16. Surgical Membranes as Directional Delivery Devices to Generate Tissue: Testing in an Ovine Critical Sized Defect Model

    PubMed Central

    Knothe Tate, Melissa L.; Chang, Hana; Moore, Shannon R.; Knothe, Ulf R.

    2011-01-01

    Purpose Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing. Methods Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1), periosteum derived cells (Group 2), and autogenic periosteal strips (Group 3). Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control). Results Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control). Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1) as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute. Conclusion Periosteum-derived cells as well

  17. Cellulose membrane modified with polypyrrole as an extraction device for the determination of emerging contaminants in river water with GC-MS.

    PubMed

    de Noronha, Bárbara Viero; Bergamini, Márcio Fernando; Marcolino Junior, Luiz Humberto; da Silva, Bruno José Gonçalves

    2018-05-21

    In this study, a simple, efficient, and reusable device based on cellulose membranes modified with polypyrrole was developed to extract 14 emerging contaminants from aqueous matrices. For chemical polymerization, a low-cost cellulose membrane was immersed in 0.1 mol L -1 pyrrole and 0.5 mol L -1 ammonium persulfate for 40 min in an ice/water bath. The cellulose membranes modified with polypyrrole were accommodated in a polycarbonate holder suitable for solid-phase extraction disks. Solid-phase extraction parameters that affect extraction efficiency, such as sample volume, pH, flow-rate, and desorption were optimized. Subsequently, determination of target compounds was performed by gas chromatography with mass spectrometry. The linear range for analytes ranged from 0.05 to 500 μg L -1 , with coefficients of determination above 0.990. The limits of quantification varied between 0.05 and 10 μg L -1 , with relative standard deviations lower than 17%. The performance of the proposed cellulose membranes modified with polypyrrole device for real samples was evaluated after extraction of emerging contaminants from a river water sample from the city of Curitiba-Brazil. Bisphenol A (6.39 μg L -1 ), caffeine (17.83 μg L -1 ), and paracetamol (19.28 μg L -1 ) were found in these samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  19. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  20. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  1. Hearing loss associated with US military combat deployment

    PubMed Central

    Wells, Timothy S.; Seelig, Amber D.; Ryan, Margaret A. K.; Jones, Jason M.; Hooper, Tomoko I.; Jacobson, Isabel G.; Boyko, Edward J.

    2015-01-01

    The objective of this study was to define the risk of hearing loss among US military members in relation to their deployment experiences. Data were drawn from the Millennium Cohort Study. Self-reported data and objective military service data were used to assess exposures and outcomes. Among all 48,540 participants, 7.5% self-reported new-onset hearing loss. Self-reported hearing loss showed moderate to substantial agreement (k = 0.57-0.69) with objective audiometric measures. New-onset hearing loss was associated with combat deployment (adjusted odds ratio [AOR] = 1.63, 95% confidence interval [CI] = 1.49-1.77), as well as male sex and older age. Among deployers, new-onset hearing loss was also associated with proximity to improvised explosive devices (AOR = 2.10, 95% CI = 1.62-2.73) and with experiencing a combat-related head injury (AOR = 6.88, 95% CI = 3.77-12.54). These findings have implications for health care and disability planning, as well as for prevention programs. PMID:25599756

  2. Advanced membrane devices. Interim report for October 1996--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laciak, D.V.; Langsam, M.; Lewnard, J.J.

    1997-12-31

    Under this Cooperative Agreement, Air Products and Chemicals, Inc. has continued to investigate and develop improved membrane technology for removal of carbon dioxide from natural gas. The task schedule for this reporting period included a detailed assessment of the market opportunity (Chapter 2), continued development and evaluation of membranes and membrane polymers (Chapter 3) and a detailed economic analysis comparing the potential of Air Products membranes to that of established acid gas removal processes (Chapter 4).

  3. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  4. Rapid deployment of internet-connected environmental monitoring devices

    USDA-ARS?s Scientific Manuscript database

    Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the ...

  5. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  6. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.L.

    2000-01-01

    Semipermeable membrane devices (SPMDs) are used with increasing frequency, and throughout the world as samplers of organic contaminants. The devices can be used to detect a variety of lipophilic chemicals in water, sediment/soil, and air. SPMDs are designed to sample nonpolar, hydrophobic chemicals. The maximum concentration factor achievable for a particular chemical is proportional to its octanol–water partition coefficient. Techniques used for cleanup of SPMD extracts for targeted analytes and for general screening by full-scan mass spectrometry do not differ greatly from techniques used for extracts of other matrices. However, SPMD extracts contain potential interferences that are specific to the membrane–lipid matrix. Procedures have been developed or modified to alleviate these potential interferences. The SPMD approach has been demonstrated to be applicable to sequestering and analyzing a wide array of environmental contaminants including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans, selected organophosphate pesticides and pyrethroid insecticides, and other nonpolar organic chemicals. We present herein an overview of effective procedural steps for analyzing exposed SPMDs for trace to ultra-trace levels of contaminants sequestered from environmental matrices.

  7. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  8. Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms

    PubMed Central

    Pyne, Jeffrey M.; Constans, Joseph I.; Wiederhold, Mark D.; Gibson, Douglas P.; Kimbrell, Timothy; Kramer, Teresa L.; Pitcock, Jeffery A.; Han, Xiaotong; Williams, D. Keith; Chartrand, Don; Gevirtz, Richard N.; Spira, James; Wiederhold, Brenda K.; McCraty, Rollin; McCune, Thomas R.

    2017-01-01

    Heart rate variability is a physiological measure associated with autonomic nervous system activity. This study hypothesized that lower pre-deployment HRV would be associated with higher post-deployment post-traumatic stress disorder (PTSD) symptoms. Three-hundred-forty-three Army National Guard soldiers enrolled in the Warriors Achieving Resilience (WAR) study were analyzed. The primary outcome was PTSD symptom severity using the PTSD Checklist – Military version (PCL) measured at baseline, 3- and 12-month post-deployment. Heart rate variability predictor variables included: high frequency power (HF) and standard deviation of the normal cardiac inter-beat interval (SDNN). Generalized linear mixed models revealed that the pre-deployment PCL*ln(HF) interaction term was significant (p < 0.0001). Pre-deployment SDNN was not a significant predictor of post-deployment PCL. Covariates included age, pre-deployment PCL, race/ethnicity, marital status, tobacco use, childhood abuse, pre-deployment traumatic brain injury, and previous combat zone deployment. Pre-deployment heart rate variability predicts post-deployment PTSD symptoms in the context of higher pre-deployment PCL scores. PMID:27773678

  9. Development of a flat membrane based device for electromembrane extraction: a new approach for exhaustive extraction of basic drugs from human plasma.

    PubMed

    Huang, Chuixiu; Eibak, Lars Erik Eng; Gjelstad, Astrid; Shen, Xiantao; Trones, Roger; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2014-01-24

    In this work, a single-well electromembrane extraction (EME) device was developed based on a thin (100μm) and flat porous membrane of polypropylene supporting a liquid membrane. The new EME device was operated with a relatively large acceptor solution volume to promote a high recovery. Using this EME device, exhaustive extraction of the basic drugs quetiapine, citalopram, amitriptyline, methadone and sertraline was investigated from both acidified water samples and human plasma. The volume of acceptor solution, extraction time, and extraction voltage were found to be important factors for obtaining exhaustive extraction. 2-Nitrophenyl octyl ether was selected as the optimal organic solvent for the supported liquid membrane. From spiked acidified water samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 15min and with an extraction voltage of 250V. Under these conditions, extraction recoveries were in the range 89-112%. From human plasma samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 30min and with an extraction voltage of 300V. Under these conditions, extraction recoveries were in the range of 83-105%. When combined with LC-MS, the new EME device provided linearity in the range 10-1000ng/ml for all analytes (R(2)>0.990). The repeatability at low (10ng/ml), medium (100ng/ml), and high (1000ng/ml) concentration level for all five analytes were less than 10% (RSD). The limits of quantification (S/N=10) were found to be in the range 0.7-6.4ng/ml. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. USDOT guidance summary for connected vehicle deployments : application deployment.

    DOT National Transportation Integrated Search

    2016-07-01

    This document provides guidance material in regards to the Application Deployment Plan for the CV Pilots DeploymentConcept Development Phase. Methods for application deployment are discussed with definitions for the successfulmanagement of each aspec...

  11. USDOT guidance summary for connected vehicle deployments : deployment outreach.

    DOT National Transportation Integrated Search

    2016-07-01

    This document provides guidance material in regards to the outreach activities in the CV Pilot Deployment ConceptDevelopment Phase and deployment outreach plan in the Deployment Phases. This guidance provides keyrequirements and references in develop...

  12. Virtual evaluation of stent graft deployment: a validated modeling and simulation study.

    PubMed

    De Bock, S; Iannaccone, F; De Santis, G; De Beule, M; Van Loo, D; Devos, D; Vermassen, F; Segers, P; Verhegghe, B

    2012-09-01

    The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated in vitro with placement of the device in a silicone mock aneurysm, using high resolution CT scans to evaluate the result. The presented work confirms the capability of finite element computer simulations to predict the deformed configuration after endovascular aneurysm repair (EVAR). These simulations can be used to quantify mechanical parameters, such as neck dilations, radial forces and stresses in the device, that are difficult or impossible to obtain from medical imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Stent-protected carotid angioplasty using a membrane stent: a comparative cadaver study.

    PubMed

    Müller-Hülsbeck, Stefan; Gühne, Albrecht; Tsokos, Michael; Hüsler, Erhard J; Schaffner, Silvio R; Paulsen, Friedrich; Hedderich, Jürgen; Heller, Martin; Jahnke, Thomas

    2006-01-01

    To evaluate the performance of a prototype membrane stent, MembraX, in the prevention of acute and late embolization and to quantify particle embolization during carotid stent placement in human carotid explants in a proof of concept study. Thirty human carotid cadaveric explants (mild stenoses 0-29%, n = 23; moderate stenoses 30-69%, n = 3; severe stenoses 70-99%, n = 2) that included the common, internal and external carotid arteries were integrated into a pulsatile-flow model. Three groups were formed according to the age of the donors (mean 58.8 years; sample SD 15.99 years) and randomized to three test groups: (I) MembraX, n = 9; (II) Xpert bare stent, n = 10; (III) Xpert bare stent with Emboshield protection device, n = 9. Emboli liberated during stent deployment (step A), post-dilatation (step B), and late embolization (step C) were measured in 100 microm effluent filters. When the Emboshield was used, embolus penetration was measured during placement (step D) and retrieval (step E). Late embolization was simulated by compressing the area of the stented vessel five times. Absolute numbers of particles (median; >100 microm) caught in the effluent filter were: (I) MembraX: A = 7, B = 9, C = 3; (II) bare stent: A = 6.5, B = 6, C = 4.5; (III) bare stent and Emboshield: A = 7, B = 7, C.=.5, D = 8, E = 10. The data showed no statistical differences according to whether embolic load was analyzed by weight or mean particle size. When summing all procedural steps, the Emboshield caused the greatest load by weight (p = 0.011) and the largest number (p = 0.054) of particles. On the basis of these limited data neither a membrane stent nor a protection device showed significant advantages during ex vivo carotid angioplasty. However, the membrane stent seems to have the potential for reducing the emboli responsible for supposed late embolization, whereas more emboli were observed when using a protection device. Further studies are necessary and warranted.

  14. Stent-Protected Carotid Angioplasty Using a Membrane Stent: A Comparative Cadaver Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller-Huelsbeck, Stefan, E-mail: muehue@rad.uni-kiel.de; Guehne, Albrecht; Tsokos, Michael

    2006-08-15

    Purpose. To evaluate the performance of a prototype membrane stent, MembraX, in the prevention of acute and late embolization and to quantify particle embolization during carotid stent placement in human carotid explants in a proof of concept study. Methods. Thirty human carotid cadaveric explants (mild stenoses 0-29%, n = 23; moderate stenoses 30-69%, n = 3; severe stenoses 70-99%, n = 2) that included the common, internal and external carotid arteries were integrated into a pulsatile-flow model. Three groups were formed according to the age of the donors (mean 58.8 years; sample SD 15.99 years) and randomized to three testmore » groups: (I) MembraX, n 9; (II) Xpert bare stent, n = 10; (III) Xpert bare stent with Emboshield protection device, n = 9. Emboli liberated during stent deployment (step A), post-dilatation (step B), and late embolization (step C) were measured in 100 {mu}m effluent filters. When the Emboshield was used, embolus penetration was measured during placement (step D) and retrieval (step E). Late embolization was simulated by compressing the area of the stented vessel five times. Results. Absolute numbers of particles (median; >100 {mu}m) caught in the effluent filter were: (I) MembraX: A = 7, B = 9, C = 3; (II) bare stent: A 6.5, B = 6, C = 4.5; (III) bare stent and Emboshield: A = 7, B = 7, C.=.5, D = 8, E = 10. The data showed no statistical differences according to whether embolic load was analyzed by weight or mean particle size. When summing all procedural steps, the Emboshield caused the greatest load by weight (p 0.011) and the largest number (p = 0.054) of particles. Conclusions. On the basis of these limited data neither a membrane stent nor a protection device showed significant advantages during ex vivo carotid angioplasty. However, the membrane stent seems to have the potential for reducing the emboli responsible for supposed late embolization, whereas more emboli were observed when using a protection device. Further studies are

  15. An ARM Mobile Facility Designed for Marine Deployments

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  16. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  17. EDITORIAL Wireless sensor networks: design for real-life deployment and deployment experiences Wireless sensor networks: design for real-life deployment and deployment experiences

    NASA Astrophysics Data System (ADS)

    Gaura, Elena; Roedig, Utz; Brusey, James

    2010-12-01

    modalities and (iv) system solutions with high end-user added value and cost benefits. The common thread is deployment and deployment evaluation. In particular, satisfaction of application requirements, involvement of the end-user in the design and deployment process, satisfactory system performance and user acceptance are concerns addressed in many of the contributions. The contributions form a valuable set, which help to identify the priorities for research in this burgeoning area: Robust, reliable and efficient data collection in embedded wireless multi-hop networks are essential elements in creating a true deploy-and-forget user experience. Maintaining full connectivity within a WSN, in a real world environment populated by other WSNs, WiFi networks or Bluetooth devices that constitute sources of interference is a key element in any application, but more so for those that are safety-critical, such as disaster response. Awareness of the effects of wireless channel, physical position and line-of-sight on received signal strength in real-world, outdoor environments will shape the design of many outdoor applications. Thus, the quantification of such effects is valuable knowledge for designers. Sensors' failure detection, scalability and commercialization are common challenges in many long-term monitoring applications; transferable solutions are evidenced here in the context of pollutant detection and water quality. Innovative, alternative thinking is often needed to achieve the desired long-lived networks when power-hungry sensors are foreseen components; in some instances, the very problems of wireless technology, such as RF irregularity, can be transformed into advantages. The importance of an iterative design and evaluation methodology—from analysis to simulation to real-life deployment—should be well understood by all WSN developers. The value of this is highlighted in the context of a challenging WPAN video-surveillance application based on a novel Nomadic Access

  18. Commercial vehicle (CV) retrofit safety device (RSD) kits project.

    DOT National Transportation Integrated Search

    2014-07-01

    Retrofit Safety Device (RSD) kits were developed and deployed on commercial vehicles as part of the U.S. DOT Connected Vehicle Safety Pilot to gain insight into the unique aspects of deploying connected vehicle technology in a commercial vehicle envi...

  19. Air removal device. [life support systems

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A.

    1981-01-01

    The disclosure concerns a device suitable for removing air from water under both zero and one 'g' gravity conditions. The device is comprised of a pair of spaced membranes on being hydrophobic and the other being hydrophilic. The air-water mixture is introduced into the space therebetween, and the selective action of the membranes yields removal of the air from the water.

  20. More About Thin-Membrane Biosensor

    NASA Technical Reports Server (NTRS)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  1. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  2. Post-deployment Mental Health in Reserve and National Guard Service Members: Deploying With or Without One's Unit and Deployment Preparedness.

    PubMed

    Ursano, Robert J; Wang, Jing; Fullerton, Carol S; Ramsawh, Holly; Gifford, Robert K; Russell, Dale; Cohen, Gregory H; Sampson, Laura; Galea, Sandro

    2018-01-01

    Given the greater prevalence of post-deployment mental health concerns among reservists, the higher likelihood of deploying without their regular unit, and potentially lower rates of deployment preparedness, we examined associations between deploying with or without one's regular unit (individual augmentee status, IAS), deployment preparedness, and mental health problems including post-traumatic stress disorder (PTSD), depression (MDD), and binge drinking in a nationally representative sample of Reserve Component (RC) Army and Marine-enlisted males (n = 705). A series of multivariate regressions examined the association of mental health with IAS and deployment preparedness, adjusting for demographics. To examine whether deployment preparedness varied by IAS, an IAS × deployment preparedness interaction was included. In an adjusted model, being an individual augmentee and low deployment preparedness were associated with any mental health problem (screening positive for PTSD, MDD, binge drinking, or any combination of the three). There was a significant IAS × deployment preparedness interaction. Mental health problems did not vary by preparedness among individual augmentees. Participants deploying with regular units with low-medium preparedness had greater risk for mental health problems (odds ratio [OR] = 3.69, 95% confidence interval [CI] = 1.78-7.62 and OR = 2.29, 95% CI = 1.12-4.71), than those with high preparedness. RC-enlisted male personnel who deployed without their regular unit were five times more likely to have a mental health problem, and were 61% more likely to report binge drinking. Additionally, those with lower levels of deployment preparedness were up to three times more likely to have a mental health problem and up to six times more likely to report PTSD. The current investigation found that both IAS and deployment preparedness were associated with negative mental health outcomes in a large representative sample of previously deployed RC

  3. Enterprise Deployment Through PulseRider To Treat Anterior Communicating Artery Aneurysm Recurrence.

    PubMed

    Valente, Iacopo; Limbucci, Nicola; Nappini, Sergio; Rosi, Andrea; Laiso, Antonio; Mangiafico, Salvatore

    2018-02-01

    PulseRider (Pulsar Vascular, Los Gatos, California, USA) is a new endovascular device designed to treat wide-neck bifurcation intracranial aneurysms. Deployment of a stent through a PulseRider to treat an aneurysm's recurrence has never been described before. We report the case of a 55-year-old man who underwent coiling of an 8-mm anterior communicating artery aneurysm with assistance of a PulseRider neck reconstruction device. The 6-month digital subtraction angiography control showed aneurysm recurrence, so we deployed an Enterprise 2 closed-cell stent (Codman, Miami Lakes, Florida, USA) in the A1-A2 segment passing across the previously implanted PulseRider. Enterprise correctly expanded and allowed for adequate coiling of the aneurysm. An Enterprise stent can be safely opened through a PulseRider in order to treat aneurysm recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  5. Overview of Robotic Devices for Nursing Care Project.

    PubMed

    Hirukawa, Hirohisa

    2017-01-01

    METI/AMED are conducting a project on the development and deployment of robotic devices for nursing care to enhance the autonomy of elderly persons and assist care givers. An evaluation protocol is presented and the devices developed in the project are introduced. The devices consist of transfer assist devices (wearable/non-wearable), walking assist devices (outdoor/indoor), safety surveillance sensors (nursing home/private home), bath lift and toilet assist.

  6. Bacteria/virus filter membrane

    NASA Technical Reports Server (NTRS)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  7. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less

  8. Connected Vehicle Pilot Deployment Program phase 1 : application deployment plan : New York City : final application deployment plan.

    DOT National Transportation Integrated Search

    2016-08-04

    This document is the Task 7 Application Deployment Plan deliverable for the New York City Connected Vehicle Pilot Deployment. It describes the process that the deployment team will follow to acquire and test the connected vehicle safety applications....

  9. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  10. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  11. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  12. Ground-Based Fabry-Perot Interferometry of the Terrestrial Nightglow with a Bare Charge-Coupled Device: Remote Field Site Deployment

    NASA Technical Reports Server (NTRS)

    Niciejewski, Rick; Killeen, Timothy L.; Turnbull, Matthew

    1994-01-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to "upgrade" our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPls but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.

  13. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  14. A membrane stirrer for product recovery and substrate feeding.

    PubMed

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.

  15. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  16. Use of semipermeable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.

    1992-01-01

    A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.

  17. Pre-deployment Year Mental Health Diagnoses and Treatment in Deployed Army Women

    PubMed Central

    Adams, Rachel Sayko; Mohr, Beth A.; Jeffery, Diana D.; Funk, Wendy; Williams, Thomas V.; Larson, Mary Jo

    2016-01-01

    We estimated the prevalence of select mental health diagnoses (MHDX) and mental health treatment (MHT), and identified characteristics associated with MHT during the pre-deployment year (365 days before deployment) in active duty Army women (N = 14,633) who returned from Iraq or Afghanistan deployments in FY2010. Pre-deployment year prevalence estimates were: 26.2 % for any select MHDX and 18.1 % for any MHT. Army women who had physical injuries since FY2002 or any behavioral health treatment between FY2002 and the pre-deployment year had increased odds of pre-deployment year MHT. During the pre-deployment year, a substantial percentage of Army women had MHDX and at least one MHT encounter or stay. Future research should determine if pre-deployment MHDX among Army women reflect vulnerability to future MHDX, or if pre-deployment MHT results in protection from chronic symptoms. PMID:27368233

  18. Pre-deployment Year Mental Health Diagnoses and Treatment in Deployed Army Women.

    PubMed

    Wooten, Nikki R; Adams, Rachel Sayko; Mohr, Beth A; Jeffery, Diana D; Funk, Wendy; Williams, Thomas V; Larson, Mary Jo

    2017-07-01

    We estimated the prevalence of select mental health diagnoses (MHDX) and mental health treatment (MHT), and identified characteristics associated with MHT during the pre-deployment year (365 days before deployment) in active duty Army women (N = 14,633) who returned from Iraq or Afghanistan deployments in FY2010. Pre-deployment year prevalence estimates were: 26.2 % for any select MHDX and 18.1 % for any MHT. Army women who had physical injuries since FY2002 or any behavioral health treatment between FY2002 and the pre-deployment year had increased odds of pre-deployment year MHT. During the pre-deployment year, a substantial percentage of Army women had MHDX and at least one MHT encounter or stay. Future research should determine if pre-deployment MHDX among Army women reflect vulnerability to future MHDX, or if pre-deployment MHT results in protection from chronic symptoms.

  19. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  1. Medical Devices Transition to Information Systems: Lessons Learned

    PubMed Central

    Charters, Kathleen G.

    2012-01-01

    Medical devices designed to network can share data with a Clinical Information System (CIS), making that data available within clinician workflow. Some lessons learned by transitioning anesthesia reporting and monitoring devices (ARMDs) on a local area network (LAN) to integration of anesthesia documentation within a CIS include the following categories: access, contracting, deployment, implementation, planning, security, support, training and workflow integration. Areas identified for improvement include: Vendor requirements for access reconciled with the organizations’ security policies and procedures. Include clauses supporting transition from stand-alone devices to information integrated into clinical workflow in the medical device procurement contract. Resolve deployment and implementation barriers that make the process less efficient and more costly. Include effective field communication and creative alternatives in planning. Build training on the baseline knowledge of trainees. Include effective help desk processes and metrics. Have a process for determining where problems originate when systems share information. PMID:24199054

  2. A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip.

    PubMed

    Moghadas, Hajar; Saidi, Mohammad Said; Kashaninejad, Navid; Nguyen, Nam-Trung

    2018-03-01

    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1 w/w). The membrane-integrated microfluidic device could withstand a flow rate of up to 50  μ l/min. As a proof of concept, we demonstrated that such a compartmentalized microfluidic platform could be successfully used for cell culture with the capability of providing a more realistic in vivo -like condition. Human lung cancer epithelial cells (A549) were seeded on the membrane from the top microchannel, while the continuous flow of the culture medium through the bottom microchannel provided a shear-free cell culture condition. The tortuous micro-/nanofibers of the membrane immobilized the cells within the hydrophobic micropores and with no need of extracellular matrix for cell adhesion and cell growth. The hydrophobic surface conditions of the membrane were suitable for anchorage-independent cell types. To further extend the application of the device, we qualitatively showed that rinsing the membrane with ethanol prior to cell seeding could temporarily render the membrane hydrophilic and the platform could also be used for anchorage-dependent cells. Due to the three-dimensional (3D) topography of the membranes, three different configurations were observed, including individual single cells, monolayer cells, and 3D cell clusters. This cost-effective and robust compartmentalized

  3. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  4. Role of ENT Surgeon in Managing Battle Trauma During Deployment.

    PubMed

    Rajguru, Renu

    2013-01-01

    With technological improvements in body armour and increasing use of improvised explosive devices, it is the injuries to head, face and neck are the cause for maximum fatalities as military personnel are surviving wounds that would have otherwise been fatal. The priorities of battlefield surgical treatment are to save life, eyesight and limbs and then to give the best functional and aesthetic outcome for other wounds. Modern day battlefields pose unique demands on the deployed surgical teams and management of head and neck wounds demands multispecialty approach. Optimal result will depend on teamwork of head and neck trauma management team, which should also include otolaryngologist. Data collected by various deployed HFN surgical teams is studied and quoted in the article to give factual figures. Otorhinolaryngology becomes a crucial sub-speciality in the care of the injured and military otorhinolaryngologists need to be trained and deployed accordingly. The otolaryngologist's clinical knowledge base and surgical domain allows the ENT surgeon to uniquely contribute in response to mass casualty incident. Military planners need to recognize the felt need and respond by deploying teams of specialist head and neck surgeons which should also include otorhinolaryngologists.

  5. A Prototype Actuator Concept for Membrane Boundary Vibration Control

    NASA Technical Reports Server (NTRS)

    Solter, Micah J.

    2005-01-01

    In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.

  6. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, Michael R.

    2009-01-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596????g kg- 1 wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (< 51????g kg- 1 ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  7. Connected commercial vehicles — retrofit safety device kit project : model deployment operational analysis report.

    DOT National Transportation Integrated Search

    2014-03-01

    Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...

  8. Membrane-based microchannel device for continuous quantitative extraction of dissolved free sulfide from water and from oil.

    PubMed

    Toda, Kei; Ebisu, Yuki; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2012-09-05

    Underground fluids are important natural sources of drinking water, geothermal energy, and oil-based fuels. To facilitate the surveying of such underground fluids, a novel microchannel extraction device was investigated for in-line continuous analysis and flow injection analysis of sulfide levels in water and in oil. Of the four designs investigated, the honeycomb-patterned microchannel extraction (HMCE) device was found to offer the most effective liquid-liquid extraction. In the HMCE device, a thin silicone membrane was sandwiched between two polydimethylsiloxane plates in which honeycomb-patterned microchannels had been fabricated. The identical patterns on the two plates were accurately aligned. The extracted sulfide was detected by quenching monitoring of fluorescein mercuric acetate (FMA). The sulfide extraction efficiencies from water and oil samples of the HMCE device and of three other designs (two annular and one rectangular channel) were examined theoretically and experimentally. The best performance was obtained with the HMCE device because of its thin sample layer (small diffusion distance) and large interface area. Quantitative extraction from both water and oil could be obtained using the HMCE device. The estimated limit of detection for continuous monitoring was 0.05 μM, and sulfide concentrations in the range of 0.15-10 μM could be determined when the acceptor was 5 μM FMA alkaline solution. The method was applied to natural water analysis using flow injection mode, and the data agreed with those obtained using headspace gas chromatography-flame photometric detection. The analysis of hydrogen sulfide levels in prepared oil samples was also performed. The proposed device is expected to be used for real time survey of oil wells and groundwater wells. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Family adjustment of deployed and non-deployed mothers in families with a parent deployed to Iraq or Afghanistan

    PubMed Central

    Gewirtz, Abigail H.; McMorris, Barbara J.; Hanson, Sheila; Davis, Laurel

    2014-01-01

    Almost nothing is known about the family and individual adjustment of military mothers who have deployed to the conflicts in Iraq or Afghanistan (Operations Iraqi and Enduring Freedom, and Operation New Dawn; OIF, OEF, OND), constituting a gap in psychologists’ knowledge about how best to help this population. We report baseline data on maternal, child, parenting, and couple adjustment for mothers in 181 families in which a parent deployed to OIF/OEF/OND. Among this sample, 34 mothers had deployed at least once, and 147 mothers had experienced the deployment of a male spouse/partner. Mothers completed self-report questionnaires assessing past year adverse life events, war experiences (for deployed mothers only), posttraumatic stress disorder (PTSD) and depression symptoms, difficulties in emotion regulation, parenting, couple adjustment, and child functioning. Mothers who had deployed reported greater distress than non-deployed mothers (higher scores on measures of PTSD and depression symptoms), and slightly more past year adverse events. A moderate number of war experiences (combat and post-battle aftermath events) were reported, consistent with previous studies of women in current and prior conflicts. However, no differences were found between the two groups on measures of couple adjustment, parenting, or child functioning. Results are discussed in terms of the dearth of knowledge about deployed mothers, and implications for psychologists serving military families. PMID:25663739

  10. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  11. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.

    PubMed

    Aran, Kiana; Sasso, Lawrence A; Kamdar, Neal; Zahn, Jeffrey D

    2010-03-07

    A method for integrating porous polymer membranes such as polycarbonate, polyethersulfone and polyethylene terephthalate to microfluidic devices is described. The use of 3-aminopropyltriethoxysilane as a chemical crosslinking agent was extended to integrate membranes with PDMS and glass microfluidic channels. A strong, irreversible bond between the membranes and microfluidic structure was achieved. The bonding strength in the APTES treated devices was significantly greater than in devices fabricated using either a PDMS "glue" or two-part epoxy bonding method. Evaluation of a filtering microdevice and the pore structure via SEM indicates the APTES conjugation does not significantly alter the membrane transport function and pore morphology.

  12. Pre-deployment dissociation and personality as risk factors for post-deployment post-traumatic stress disorder in Danish soldiers deployed to Afghanistan

    PubMed Central

    Ponce de León, Beatriz; Andersen, Søren; Karstoft, Karen-Inge; Elklit, Ask

    2018-01-01

    ABSTRACT Objective: This study investigated whether pre-deployment dissociation was associated with previously identified post-traumatic stress disorder (PTSD) symptom trajectories from before to 2.5 years after military deployment. Furthermore, it examined whether the tendency to dissociate, pre-deployment personality factors, conceptualized by the Big Five model, and previous trauma represented independent risk factors for post-deployment PTSD symptoms. Method: This prospective study included the entire team of 743 soldiers from the Danish Contingent of the International Security Assistance Force 7 deployed to Afghanistan in 2009. Data consisted of self-report measures and were collected six times: before deployment; during deployment; and 1–3 weeks, 2 months, 7 months and 2.5 years after homecoming. Results: The findings indicate significant associations between pre-deployment dissociation and six PTSD trajectories (p < 0.001, η2 = 0.120). Based on mean differences in dissociation for the six trajectories, two main groups emerged: a group with high dissociation scores at pre-deployment, which had moderate PTSD symptom levels at pre-deployment and fluctuated over time; and a group with low dissociation scores at pre-deployment, which had low initial PTSD symptom levels and diverged over time. Our study also confirmed previous findings of a positive association between neuroticism and dissociation (r = 0.31, p < 0.001). This suggests that negative emotionality may be a vulnerability that enhances dissociative experiences, although a causal link cannot be concluded from the findings. Finally, pre-deployment dissociation, pre-deployment neuroticism and a history of traumatic events, as independent factors, were significant predictors of post-deployment PTSD (p < 0.001, R2 = 0.158). Conclusions: The study emphasizes the multiplicity of factors involved in the development of PTSD, and group differences in dissociative symptoms support the

  13. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk

    NASA Astrophysics Data System (ADS)

    Long, C. C.; Marsden, A. L.; Bazilevs, Y.

    2014-10-01

    In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.

  14. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between

  15. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  16. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  17. Deployed Communications in an Austere Environment: A Delphi Study

    DTIC Science & Technology

    2013-12-01

    gateways to access the Global Information Grid ( GIG ) will escalate dramatically. The ability simply to “deploy” a unit similar to the RF- SATCOM network...experts had divergent views on how deployed communications systems would link back to the GIG . The scenario uses both projected technologies. First...the self-configuring RF-SATCOM network link acts as a gateway to the GIG , providing wireless RF connectivity to autho- rized devices within the area

  18. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.

    PubMed

    Pensabene, Virginia; Costa, Lino; Terekhov, Alexander Y; Gnecco, Juan S; Wikswo, John P; Hofmeister, William H

    2016-08-31

    The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 μm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.

  19. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  20. Initial experience with the Cardiva Boomerang vascular closure device in diagnostic catheterization.

    PubMed

    Doyle, Brendan J; Godfrey, Michael J; Lennon, Ryan J; Ryan, James L; Bresnahan, John F; Rihal, Charanjit S; Ting, Henry H

    2007-02-01

    The authors studied the safety and efficacy of the Cardiva Boomerang vascular closure device in patients undergoing diagnostic cardiac catheterization. Conventional vascular closure devices (sutures, collagen plugs, or metal clips) have been associated with catastrophic complications including arterial occlusion and foreign body infections; furthermore, they cannot be utilized in patients with peripheral vascular disease or vascular access site in a vessel other than the common femoral artery. The Cardiva Boomerang device facilitates vascular hemostasis without leaving any foreign body behind at the access site, can be used in peripheral vascular disease, and can be used in vessels other than the common femoral artery A total of 96 patients undergoing transfemoral diagnostic cardiac catheterization were included in this study, including 25 (26%) patients with contraindications to conventional closure devices. Femoral angiography was performed prior to deployment of the Cardiva Boomerang closure device. Patients were ambulated at 1 hr after hemostasis was achieved. The device was successfully deployed and hemostasis achieved with the device alone in 95 (99%) patients. The device failed to deploy in 1 (1%) patient and required conversion to standard manual compression. Minor complications were observed in 5 (5%) patients. No patients experienced major complications including femoral hematoma > 4 cm, red blood cell transfusion, retroperitoneal bleed, arteriovenous fistula, pseudoaneurysm, infection, arterial occlusion, or vascular surgery. The Cardiva Boomerang device is safe and effective in patients undergoing diagnostic cardiac catheterization using the transfemoral approach, facilitating early ambulation with low rates of vascular complications. (c) 2006 Wiley-Liss, Inc.

  1. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  2. Analysis of emboli during carotid stenting with distal protection device.

    PubMed

    Chen, Chin-I; Iguchi, Yasuyuki; Garami, Zsolt; Malkoff, Marc D; Smalling, Richard W; Campbell, Morgan S; Alexandrov, Andrei V

    2006-01-01

    The newly developed multi-frequency transcranial Doppler (TCD) is able to differentiate gaseous from solid emboli. Our goal was to apply this technology to initially characterize emboli detected during carotid stenting with distal protection. Patients undergoing carotid angiography and stenting were monitored with 2-2.5 MHz TCD (Embo-Dop, DWL) over the middle cerebral artery unilateral to stent deployment. Sonographers insured optimal signal recordings during the procedures. Automated emboli detection and classification software (MultiXLab version 2.0) was applied for offline count and analysis. Monitoring using the Filter Wire EX (Boston Scientific) and ACCUNET system (Guidant Corporation) was performed. A total of 9,649 embolic signals were detected during 11 angiographic and 10 stenting procedures. An observer confirmed the signals using the International Consensus definition. Automated software classified these events into 5,900 gaseous and 3,749 solid emboli. During contrast injections without the protection device, 1,013 emboli were detected with 28% of these being solid. With deployment of the distal protection device, 8,636 emboli were found with 40% being solid (p < 0.001). During stenting and angioplasty with the protection device, 7,395 emboli with 42% solids were detected (p < 0.001). Finally injection of contrast after the procedure, with the protection device still deployed, yielded 1,241 emboli with 31% solids (NS). Only 1 patient developed transient hemiparesthesia during ballooning that reduced the flow velocity to zero for 14 s. Neither gaseous nor solid emboli resulted in a mean flow velocity decrease or clinical symptoms. Microembolization frequently occurs during stenting even with deployment of the distal protection device. More solid emboli are seen during manipulations associated with lesion crossing. Although novel TCD methods yield a high frequency of embolic signals, further validation of this technique to determine the true nature, size

  3. Validity of using semipermeable membrane devices for determining aqueous concentrations of freely dissolved PAHs

    USGS Publications Warehouse

    Prest, Harry; Petty, J.D.; Huckins, J.N.

    1998-01-01

    An in-depth review of the recent contribution to this journal by Gustafson and Dickhut [1] prompts us to share our concerns regarding some of their conclusions. The paper presents data comparing three techniques for determining aqueous concentrations of freely dissolved polycyclic aromatic hydrocarbons (PAHs) gas sparging, lipid-containing semipermeable membrane devices (SPMDs) of the U.S. Geological Survey (USGS) design, and filtration followed by sorption using XAD-2 resin. Space limitations force us to limit our comments to problems resulting from an apparent lack of understanding of how SPMDs function. Several recent publications [2–13] have described the theoretical and practical considerations of SPMD usage. Gustafson and Dickhut fail to cite any papers describing SPMDs published after 1992, even though some 18 papers have been published in American and European journals since then and several SPMD studies have been presented at many major meetings.

  4. Basic investigation into the electrical performance of solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1982-01-01

    The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.

  5. Deployment Pulmonary Health

    DTIC Science & Technology

    2015-02-11

    A similar risk-based approach may be appropriate for deploying military personnel. e) If DoD were to consider implementing a large- scale pre...quality of existing spirometry programs prior to considering a larger scale pre-deployment effort. Identifying an accelerated decrease in spirometry...baseline spirometry on a wider scale . e) Conduct pre-deployment baseline spirometry if there is a significant risk of exposure to a pulmonary hazard based

  6. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.

    PubMed

    Pham, Phu; Vo, Thanh; Luo, Xiaolong

    2017-01-17

    Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.

  7. Solid Surface Wetting and the Deployment of Drops in Microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  8. Purification of triolein for use in semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Lebo, J.A.; Almeida, F.V.; Cranor, W.L.; Petty, J.D.; Huckins, J.N.; Rastall, A.; Alvarez, D.A.; Mogensen, B.B.; Johnson, B. Thomas

    2004-01-01

    Analyses of triolein-containing semipermeable membrane devices (SPMDs) have sometimes been impeded by interferences caused by impurities endemic to triolein that codialyze with the analytes. Oleic acid and methyl oleate have been the most troublesome of these impurities because of their relatively high concentrations in triolein and because significant residues of both can persist even after size exclusion chromatographic (SEC) fractionation. These residues have also been blamed for false-positive signals during bioindicator testing of SPMD dialysates. To prevent these problems, a simple, cost-effective procedure was developed for purifying triolein destined for use in SPMDs: the bulk triolein is repeatedly (6×) partitioned against methanol. Tests of the procedure show that 14C-oleic acid is completely removed from the triolein. After SEC fractionation, dialysates of standard-size SPMDs made with the purified triolein contain less than 5 μg of methyl oleate as compared to sometimes more than 500 μg for dialysates (also after SEC) of SPMDs made with unpurified triolein. Gas chromatographic analyses with flame ionization and electron capture detection show that the purification treatment also greatly reduces the number and size of peaks caused by unidentified contaminants in the triolein. Microtox basic assay of dialysates of SPMDs shows that those made with the purified triolein have lower acute toxicities than dialysates of SPMDs made with unpurified triolein. Yeast estrogen screen (YES) testing of SPMDs fabricated with unpurified and purified triolein demonstrates that the purification process removes all background estrogenic activity.

  9. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  10. Evaluation of advanced air bag deployment algorithm performance using event data recorders.

    PubMed

    Gabler, Hampton C; Hinch, John

    2008-10-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.

  11. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  12. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  13. Driver and front seat passenger fatalities associated with air bag deployment. Part 2: A review of injury patterns and investigative issues.

    PubMed

    Shkrum, Michael J; McClafferty, Kevin J; Nowak, Edwin S; German, Alan

    2002-09-01

    Assessment of the role of air bag deployment in injury causation in a crash of any severity requires analysis of occupant, vehicle, and impact data. The potential injurious role of an air bag is independent of crash severity and is more obvious in minor collisions, particularly those involving "out-of-position" occupants. Factors such as occupant height and other constitutional and medical factors, intoxication, age, type, and proper use of other restraint systems, pre-impact braking and multiple impacts can contribute to an occupant being "out-of-position." Two injury mechanisms are described in out-of-position occupants: "punch-out" when the individual covers the air bag module before deployment and "membrane-force" when the occupant contacts a partly deployed air bag. Each mechanism is associated with injury patterns. In adults, "punch-out" can cause thoraco-abdominal trauma and "membrane-force" loading can lead to craniocervical injury. This can also occur in short-statured occupants including children subjected to both types of loading. In more severe collisions, other factors, e.g., intrusion, steering column and seatbelt loading and other occupant compartment contacts, can contribute to trauma.

  14. Parylene as a new membrane material for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Lu, Bo

    The work in this thesis aims to use MEMS and microfabrication technologies to develop two types of parylene membrane devices for biomedical applications. The first device is the parylene membrane filter for cancer detection. The presence of circulating tumor cells (CTC) in patient blood is an important sign of cancer metastasis. However, currently there are two big challenges for CTC detection. First, CTCs are extremely rare, especially at the early stage of cancer metastasis. Secondly, CTCs are very fragile, and are very likely to be damaged during the capturing process. By using size-based membrane filtration through the specially designed parylene filters, together with a constant-pressure filtration system, we are able to capture the CTCs from patient blood with high capture efficiency, high viability, moderate enrichment, and high throughput. Both immunofluorescence enumeration and telomerase activity detection have been used to detect and differentiate the captured CTCs. The feasibility of further cell culture of the captured CTCs has also been demonstrated, which could be a useful way to increase the number of CTCs for future studies. Models of the time-dependent cell membrane damage are developed to predict and prevent CTC damage during this detection process. The results of clinical trials further demonstrate that the parylene membrane filter is a promising device for cancer detection. The second device is the parylene artificial Bruch's membrane for age-related macular degeneration (AMD). AMD is usually characterized by an impaired Bruch's membrane with much lowered permeability, which impedes the transportation of nutrients from choroid vessels to nourish the retinal pigment epithelial (RPE) cells and photoreceptors. Parylene is selected as a substitute material because of its good mechanical properties, transparency, biocompatibility, and machinability. More importantly, it is found that the permeability of submicron parylene is very similar to that of

  15. Memcomputing with membrane memcapacitive systems

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Traversa, F. L.; Di Ventra, M.

    2015-06-01

    We show theoretically that networks of membrane memcapacitive systems—capacitors with memory made out of membrane materials—can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices.

  16. Devices, systems, and methods for microscale isoelectric fractionation

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.

    2016-08-09

    Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.

  17. Devices, systems, and methods for microscale isoelectric fractionation

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Wang, Ying-Chih; Singh, Anup K

    2015-04-14

    Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.

  18. Evaluation of tissue interactions with mechanical elements of a transscleral drug delivery device.

    PubMed

    Cohen, Sarah J; Chan, Robison V Paul; Keegan, Mark; Andreoli, Christopher M; Borenstein, Jeffrey T; Miller, Joan W; Gragoudas, Evangelos S

    2012-03-12

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device-one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  19. Apparent Softening of Wet Graphene Membranes on a Microfluidic Platform.

    PubMed

    Ferrari, Gustavo A; de Oliveira, Alan B; Silvestre, Ive; Matos, Matheus J S; Batista, Ronaldo J C; Fernandes, Thales F D; Meireles, Leonel M; Eliel, Gomes S N; Chacham, Helio; Neves, Bernardo R A; Lacerda, Rodrigo G

    2018-05-22

    Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

  20. Radio link design framework for WSN deployment and performance prediction

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Giannetti, Filippo

    2017-05-01

    For an easy implementation of wireless sensor and actuator networks (WSAN), the state-of-the-art is offering single-chip solutions embedding in the same device a microcontroller core with a wireless transceiver. These internet-on-chip devices support different protocols (Bluetooth, ZigBee, Bluetooth Low Energy, sub- GHz links), from about 300 MHz to 6 GHz, with max. sustained bit-rates from 250 kb/s (sub-GHz links) to 4 Mb/s (Wi-Fi), and different trade-offs between RX sensitivity (from -74 to -100 dBm), RX noise figure (few dB to 10 dB), maximum TX power (from 0 to 22 dBm), link distances, power consumption levels (from few mW to several hundreds of mW). One limit for their successful application is the missing of an easy-to-use modeling and simulation environment to plan their deployment. The need is to predict, before installing a network, at which distances the sensors can be deployed, the real achievable bit-rate, communication latency, outage probability, power consumption, battery duration. To this aim, this paper presents the H2AWKS (Harsh environment and Hardware Aware Wireless linK Simulator) simulator, which allows the planning of a WSAN taking into account environment constraints and hardware parameters. Applications of H2AWKS to real WSAN case studies prove that it is an easy to use simulation environment, which allows design exploration of the system performance of a WSAN as a function of the operating environment and of the hardware parameters of the used devices.

  1. Integration of lateral porous silicon membranes into planar microfluidics.

    PubMed

    Leïchlé, Thierry; Bourrier, David

    2015-02-07

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  2. Morphology and Proton Transport in Sulfonated Block Copolymer and Mesoporous Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash

    2013-03-01

    In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.

  3. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    PubMed

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  4. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    PubMed Central

    Cohen, Sarah J.; Chan, Robison V. Paul; Keegan, Mark; Andreoli, Christopher M.; Borenstein, Jeffrey T.; Miller, Joan W.; Gragoudas, Evangelos S.

    2012-01-01

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation. PMID:24300189

  5. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  6. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  7. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  8. Large membrane deflection via capillary force actuation

    NASA Astrophysics Data System (ADS)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  9. Laceration of the Common Femoral Artery Following Deployment of the StarClose{sup TM} Vascular Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, Michael, E-mail: drmag1975@gmail.com; Walkden, Miles, E-mail: rwalkden@nhs.net; Belli, Anna Maria, E-mail: Anna.Belli@stgeorges.nhs.u

    2008-07-15

    StarClose is a novel arterial closure device which achieves hemostasis, following arteriotomy, via a nitinol clip deployed on the outer arterial wall. Since its introduction to the market, several studies have shown StarClose to be both safe and effective, with few major complications encountered. We report a case of common femoral artery laceration following deployment of the StarClose vascular closure system. We conclude that the injury occurred secondary to intravascular misplacement of the nitinol clip.

  10. A passively controlled appendage deployment system for the San Marco D/L spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, W. E.; Frisch, H. P.; Schwartz, D. A.

    1984-01-01

    The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.

  11. Towards deployable meta-implants.

    PubMed

    Bobbert, F S L; Janbaz, S; Zadpoor, A A

    2018-06-07

    Meta-biomaterials exhibit unprecedented or rare combinations of properties not usually found in nature. Such unusual mechanical, mass transport, and biological properties could be used to develop novel categories of orthopedic implants with superior performance, otherwise known as meta-implants. Here, we use bi-stable elements working on the basis of snap-through instability to design deployable meta-implants. Deployable meta-implants are compact in their retracted state, allowing them to be brought to the surgical site with minimum invasiveness. Once in place, they are deployed to take their full-size load-bearing shape. We designed five types of meta-implants by arranging bi-stable elements in such a way to obtain a radially-deployable structure, three types of auxetic structures, and an axially-deployable structure. The intermediate stable conditions ( i.e. multi-stability features), deployment force, and stiffness of the meta-implants were found to be strongly dependent on the geometrical parameters of the bi-stable elements as well as on their arrangement.

  12. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  13. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  14. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  15. Preparation, characterization, physical testing and performance of flurocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1983-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. The membranes of paragraph two were successfully fluorinated.

  16. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  17. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  18. Embedded Volttron specification - benchmarking small footprint compute device for Volttron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanyal, Jibonananda; Fugate, David L.; Woodworth, Ken

    An embedded system is a small footprint computing unit that typically serves a specific purpose closely associated with measurements and control of hardware devices. These units are designed for reasonable durability and operations in a wide range of operating conditions. Some embedded systems support real-time operations and can demonstrate high levels of reliability. Many have failsafe mechanisms built to handle graceful shutdown of the device in exception conditions. The available memory, processing power, and network connectivity of these devices are limited due to the nature of their specific-purpose design and intended application. Industry practice is to carefully design the softwaremore » for the available hardware capability to suit desired deployment needs. Volttron is an open source agent development and deployment platform designed to enable researchers to interact with devices and appliances without having to write drivers themselves. Hosting Volttron on small footprint embeddable devices enables its demonstration for embedded use. This report details the steps required and the experience in setting up and running Volttron applications on three small footprint devices: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the BeagleBone Black. In addition, the report also details preliminary investigation of the execution performance of Volttron on these devices.« less

  19. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.

    PubMed

    van der Goot, F G; Harder, T

    2001-04-01

    While the existence of cholesterol/sphingolipid (raft) membrane domains in the plasma membrane is now supported by strong experimental evidence, the structure of these domains, their size, their dynamics, and their molecular composition remain to be understood. Raft domains are thought to represent a specific physical state of lipid bilayers, the liquid-ordered phase. Recent observations suggest that in the mammalian plasma membrane small raft domains in ordered lipid phases are in a dynamic equilibrium with a less ordered membrane environment. Rafts may be enlarged and/or stabilized by protein-mediated cross-linking of raft-associated components. These changes of plasma membrane structure are perceived by the cells as signals, most likely an important element of immunoreceptor signalling. Pathogens abuse raft domains on the host cell plasma membrane as concentration devices, as signalling platforms and/or entry sites into the cell. Elucidation of these interactions requires a detailed understanding raft structure and dynamics. Copyright 2001 Academic Press.

  20. Preparation, characterization, physical testing and performance of fluorocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1982-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.

  1. Programmable carbon nanotube membrane-based transdermal nicotine delivery with microdialysis validation assay.

    PubMed

    Gulati, Gaurav Kumar; Chen, Tao; Hinds, Bruce Jackson

    2017-01-01

    To evaluate the performance of switchable carbon nanotubes (CNT) membrane devices for transdermal nicotine delivery, we have developed an in-vitro microdialysis method that allow us to detect variable transdermal fluxes of nicotine through CNT devices and can be applied directly to in-vivo studies. Microdialysis membranes were placed beneath the porcine skin and its nicotine levels increased 6-8 times when the CNT membrane on skin was turned from OFF to ON state by application of bias. Fluxes in the ON state were approximately 3 times that of commercial nicotine patches and switching times were less than two hours, thus suggesting the improved therapeutic potential of our device. Blue tooth enabled CNT devices that can be programmed by smartphone and coupled with remote counseling application for enhanced smoking cessation treatments. Copyright © 2016. Published by Elsevier Inc.

  2. A Novel Nitinol Spherical Occlusion Device for Liver Cancer

    PubMed Central

    Hsiao, Hao-Ming; Wang, Yi-Ping; Ko, Chun-Yi; Cheng, Yu-Han; Lee, Han-Yu

    2016-01-01

    Liver cancer or hepatic cancer is a cancer that originates in the liver. It is formed from either the liver itself or from structures within the liver, including blood vessels or the bile duct. Liver cancer can be a life-threatening condition, but it may be cured if found early. Hepatic artery embolization is one of the treatment options involving the injection of substances to reduce the blood flow to cancer cells in the livers of patients with tumors that cannot be removed by surgery; however, this treatment has some limitations. In this paper, we propose a novel nitinol “spherical occlusion device” concept, the first of its kind in the world. Our proposed spherical occlusion device is able to reduce the blood flow to cancer cells by deploying it in the upstream hepatic artery supplying blood to the liver. Moreover, it could carry multiple chemotherapy or radioactive drugs for delivery directly to the target site. Nitinol alloy was chosen as the device material due to its excellent super-elastic property. Computational models were developed to predict the mechanical response of the device during manufacturing and deployment procedures, as well as its hemodynamic behavior. Simulation results showed that the presence of the spherical occlusion device with 14%–27% metal density deployed at the upstream location of the right hepatic artery had significant occlusion effects, with the average blood flow rate cut down by 30%–50%. A pulsed fiber laser and a series of expansions and heat treatments were developed to make the first prototype of the spherical occlusion device for the demonstration of our novel concept. PMID:28787820

  3. Design of a Shape Memory Alloy deployment hinge for reflector facets

    NASA Technical Reports Server (NTRS)

    Anders, W. S.; Rogers, C. A.

    1991-01-01

    A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.

  4. Occurrence of polycyclic aromatic hydrocarbons in urban streams as assessed using semipermeable membrane devices, Dallas-Fort Worth metropolitan area, Texas

    USGS Publications Warehouse

    Moring, J. Bruce

    1996-01-01

    The objectives of this fact sheet are to summarize the occurrence of water-borne PAHs in three urban streams in the Dallas- Fort Worth metropolitan area and to assess the use of semipermeable membrane devices (SPMDs) as PAH samplers. One site on each of three streams was selected for monitoring the occurrence of PAHs (fig. 1). The sites were chosen to reflect varied urban land uses and the influences of point- and nonpointsource pollution. The monitoring was done using SPMDs during a 30-day period in late May and June 1994.

  5. Deployable Temporary Shelter

    NASA Technical Reports Server (NTRS)

    Shaffer, Joe R.; Headley, David E.

    1993-01-01

    Compact storable components expand to create large shelter. Fully deployed structure provides large, unobstructed bay. Deployed trusses support wall and roof blankets. Provides temporary cover for vehicles, people, and materials. Terrestrial version used as garage, hangar, or large tent.

  6. Pre-deploy operations with SPARTAN-201 during STS-64

    NASA Image and Video Library

    1994-09-12

    STS064-111-070 (9-20 Sept. 1994) --- The astronauts onboard the space shuttle Discovery used a 70mm camera to capture this view of the pre-deploy operations with the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN-201) 201. In the grasp of the robot arm device of the Remote Manipulator System (RMS), SPARTAN 201 hovers above Discovery's cargo bay prior to its two days of free-flight, some 40 miles away from the parent spacecraft. Photo credit: NASA or National Aeronautics and Space Administration

  7. Deployment-related Respiratory Issues.

    PubMed

    Morris, Michael J; Rawlins, Frederic A; Forbes, Damon A; Skabelund, Andrew J; Lucero, Pedro F

    2016-01-01

    Military deployment to Southwest Asia since 2003 in support of Operations Enduring Freedom/Iraqi Freedom/New Dawn has presented unique challenges from a pulmonary perspective. Various airborne hazards in the deployed environment include suspended geologic dusts, burn pit smoke, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents. These exposures may give rise to both acute respiratory symptoms and in some instances development of chronic lung disease. While increased respiratory symptoms during deployment are well documented, there is limited data on whether inhalation of airborne particulate matter is causally related to an increase in either common or unique pulmonary diseases. While disease processes such as acute eosinophilic pneumonia and exacerbation of preexisting asthma have been adequately documented, there is significant controversy surrounding the potential effects of deployment exposures and development of rare pulmonary disorders such as constrictive bronchiolitis. The role of smoking and related disorders has yet to be defined. This article presents the current evidence for deployment-related respiratory symptoms and ongoing Department of Defense studies. Further, it also provides general recommendations for evaluating pulmonary health in the deployed military population.

  8. Parametric Study of the Effect of Membrane Tension on Sunshield Dynamics

    NASA Technical Reports Server (NTRS)

    Ross, Brian; Johnston, John D.; Smith, James

    2002-01-01

    The NGST sunshield is a lightweight, flexible structure consisting of pretensioned membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. A 1/10th scale model of the sunshield has been developed for ground testing to provide data to validate modeling techniques for thin film membrane structures. The validated models can then be used to predict the behaviour of the full scale sunshield. This paper summarizes the most recent tests performed on the 1/10th scale sunshield to study the effect of membrane preload on sunshield dynamics. Topics to be covered include the test setup, procedures, and a summary of results.

  9. Distraction during Deployment: Marital Relationship Associations with Spillover for Deployed Army Soldiers

    PubMed Central

    Carter, S. P.; Loew, B.; Allen, E. S.; Osborne, L.; Stanley, S. M.; Markman, H. J.

    2015-01-01

    Military spouses often have concerns regarding the impact of their communication on soldiers during deployment. However, literature is mixed regarding how communication between soldiers and spouses may impact soldiers’ self-reported work functioning during deployment, suggesting the need to evaluate moderating factors. In the current study, three relationship factors (marital satisfaction, conflictual communication, and proportion of conversation focused on problems) were tested as moderators of communication frequency and negative marriage-to-work spillover for soldiers. Whereas the three relationship factors were independently related to negative spillover, none significantly moderated the relationship between communication frequency and spillover. The overall pattern of results suggests that (a) lower marital satisfaction, a focus on problems during communication, and conflictual communication are each strongly linked to spillover for deployed soldiers, and (b) military couples may be self-restricting deployment communication frequency when experiencing less marital satisfaction and higher rates of negative communication. Implications for communication during deployment are discussed. PMID:26236093

  10. Nanowire–quantum-dot lasers on flexible membranes

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.

  11. Single crystal diamond membranes for nanoelectronics.

    PubMed

    Bray, Kerem; Kato, Hiromitsu; Previdi, Rodolfo; Sandstrom, Russell; Ganesan, Kumaravelu; Ogura, Masahiko; Makino, Toshiharu; Yamasaki, Satoshi; Magyar, Andrew P; Toth, Milos; Aharonovich, Igor

    2018-02-22

    Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm 2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.

  12. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    DOE PAGES

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; ...

    2017-11-21

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSEmore » of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.« less

  13. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSEmore » of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.« less

  14. Comparison of the uptake of polycyclic aromatic hydrocarbons and organochlorine pesticides by semipermeable membrane devices and caged fish (Carassius carassius) in Taihu Lake, China

    USGS Publications Warehouse

    Ke, R.; Xu, Y.; Huang, S.; Wang, Z.; Huckins, J.N.

    2007-01-01

    Uptake of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) by triolein-containing semipermeable membrane devices (SPMDs) and by crucian carp (Carassius carassius) was studied in Taihu Lake, a shallow, freshwater lake in China. Crucian carp and SPMDs were deployed side by side for 32 d. The first-order uptake rate constants of individual PAHs and OCPs for the two matrices were calculated and compared to relate the amounts of chemicals accumulated by the matrices to dissolved water concentrations. On a wet-weight basis, total concentrations of PAHs and OCPs in crucian carp fillets averaged 49.5 and 13.6 ng/g, respectively, after the 32-d exposure, whereas concentrations in whole SPMDs averaged 716.9 and 62.3 ng/g, respectively. The uptake rate constants of PAHs and OCPs by SPMDs averaged seven- and fivefold higher, respectively, than those for crucian carp; however, the patterns of uptake rate constants derived from test chemical concentrations in the crucian carp and SPMDs were similar. Although equilibrium was not reached for some PAHs and OCPs during the 32-d exposure period, a reasonably good correlation between the concentration factors (CFs) and octanol/water partition coefficient (K ow) values of PAHs and OCPs in SPMDs (r = 0.86, p < 0.001) was observed when potential sorption to dissolved organic carbon was taken into account. Similar efforts to correlate the CFs and Kow values of PAHs and OCPs in crucian carp (r = 0.75, p < 0.001) were less successful, likely because of PAH metabolism by finfish. Overall, the present results suggest that SPMDs may serve as a surrogate for contaminant monitoring with fish in freshwater lake environments. ?? 2007 SETAC.

  15. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  16. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  17. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  18. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  19. A porous ceramic membrane tailored high-temperature supercapacitor

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  20. Fabricating PFPE Membranes for Microfluidic Valves and Pumps

    NASA Technical Reports Server (NTRS)

    Greer, Frank; White, Victor E.; Lee, Michael C.; Willis, Peter A.; Grunthaner, Frank J.; Rolland, Jason; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.

  1. Optical methods for non-contact measurements of membranes

    NASA Astrophysics Data System (ADS)

    Roose, S.; Stockman, Y.; Rochus, P.; Kuhn, T.; Lang, M.; Baier, H.; Langlois, S.; Casarosa, G.

    2009-11-01

    Structures for space applications very often suffer stringent mass constraints. Lightweight structures are developed for this purpose, through the use of deployable and/or inflatable beams, and thin-film membranes. Their inherent properties (low mass and small thickness) preclude the use of conventional measurement methods (accelerometers and displacement transducers for example) during on-ground testing. In this context, innovative non-contact measurement methods need to be investigated for these stretched membranes. The object of the present project is to review existing measurement systems capable of measuring characteristics of membrane space-structures such as: dot-projection videogrammetry (static measurements), stereo-correlation (dynamic and static measurements), fringe projection (wrinkles) and 3D laser scanning vibrometry (dynamic measurements). Therefore, minimum requirements were given for the study in order to have representative test articles covering a wide range of applications. We present test results obtained with the different methods on our test articles.

  2. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009282 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. Earth’s horizon and the blackness of space provide the backdrop for the scene.

  3. Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model.

    PubMed

    Chan, Joshua L; Mazilu, Dumitru; Miller, Justin G; Hunt, Timothy; Horvath, Keith A; Li, Ming

    2016-10-01

    Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model. An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders. The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus. These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.

  4. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  5. Solid surface wetting and the deployment of drops in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  6. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the Upper Mississippi river

    USGS Publications Warehouse

    Ellis, Geoffrey S.; Rostad, Colleen E.; Huckins, James N.; Schmitt, Christopher J.; MacCarthy, Patrick

    1995-01-01

    Organochlorine contaminants sequestered in lipid-containing semipermeable membrane devices (SPMDs) were compared to those found in tangential-flow ultrafilter permeates as part of a pilot study at 10 sites in the Upper Mississippi River system. Caged and feral fish from three primary sites were also analyzed for comparison. Concentrated organochlorine (OC) compounds were readily extracted from the SPMDs by dialysis into hexane, and samples were analyzed by gas chromatography-negative chemical ionization-mass spectrometry. Fish and water samples were processed by conventional methods. Reasonable agreement was found between analyte SPMD-derived water concentrations and measured values of ultrafilter permeates; however, concentrations of the same analytes in caged fish did not appear to be proportional to water concentrations derived from SPMDs and ultrafilter permeates. The greatest number of OC compounds was detected in SPMDs; fewer were detected in caged fish and feral fish.

  7. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  8. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  9. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  10. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

    PubMed

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2015-03-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. High-acceleration cable deployment

    NASA Technical Reports Server (NTRS)

    Barns, C. E.; Canning, T. N.; Gin, B.; King, R. W.; Murphy, J. P.

    1980-01-01

    Prototype high-acceleration umbilical-cable deployment allows electrical communication between above-ground instrumentation and ballistic projectile below surface. Cable deployment is made up of forebody and afterbody. Foreboy can be separated from afterbody by rocket, or they can be fired as unit at target that stops afterbody on impact (forebody would continue, deploying cable). Similar design could be used in study of sea ice and in other surface-penetration studies.

  12. Gender differences in the effects of deployment-related stressors and pre-deployment risk factors on the development of PTSD symptoms in National Guard Soldiers deployed to Iraq and Afghanistan.

    PubMed

    Polusny, Melissa A; Kumpula, Mandy J; Meis, Laura A; Erbes, Christopher R; Arbisi, Paul A; Murdoch, Maureen; Thuras, Paul; Kehle-Forbes, Shannon M; Johnson, Alexandria K

    2014-02-01

    Although women in the military are exposed to combat and its aftermath, little is known about whether combat as well as pre-deployment risk/protective factors differentially predict post-deployment PTSD symptoms among women compared to men. The current study assesses the influence of combat-related stressors and pre-deployment risk/protective factors on women's risk of developing PTSD symptoms following deployment relative to men's risk. Participants were 801 US National Guard Soldiers (712 men, 89 women) deployed to Iraq or Afghanistan who completed measures of potential risk/protective factors and PTSD symptoms one month before deployment (Time 1) and measures of deployment-related stressors and PTSD symptoms about 2-3 months after returning from deployment (Time 2). Men reported greater exposure to combat situations than women, while women reported greater sexual stressors during deployment than men. Exposure to the aftermath of combat (e.g., witnessing injured/dying people) did not differ by gender. At Time 2, women reported more severe PTSD symptoms and higher rates of probable PTSD than did men. Gender remained a predictor of higher PTSD symptoms after accounting for pre-deployment symptoms, prior interpersonal victimization, and combat related stressors. Gender moderated the association between several risk factors (combat-related stressors, prior interpersonal victimization, lack of unit support and pre-deployment concerns about life/family disruptions) and post-deployment PTSD symptoms. Elevated PTSD symptoms among female service members were not explained simply by gender differences in pre-deployment or deployment-related risk factors. Combat related stressors, prior interpersonal victimization, and pre-deployment concerns about life and family disruptions during deployment were differentially associated with greater post-deployment PTSD symptoms for women than men. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Deployable geodesic truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr. (Inventor); Rhodes, Marvin D. (Inventor); Simonton, J. Wayne (Inventor)

    1987-01-01

    A deployable geodesic truss structure which can be deployed from a stowed state to an erected state is described. The truss structure includes a series of bays, each bay having sets of battens connected by longitudinal cross members which give the bay its axial and torsional stiffness. The cross members are hinged at their mid point by a joint so that the cross members are foldable for deployment or collapsing. The bays are deployed and stabilized by actuator means connected between the mid point joints of the cross members. Hinged longerons may be provided to also connect the sets of battens and to collapse for stowing with the rest of the truss structure.

  14. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009286 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  15. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009285 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  16. Photocathode device that replenishes photoemissive coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, themore » linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.« less

  17. Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion

    NASA Technical Reports Server (NTRS)

    Peerawan, Wiwattananon; Bryant, Robert G.; Edmonson, William W.; Moore, William B.; Bell, Jared M.

    2015-01-01

    Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight

  18. Description of the microbial ecology evaluation device, flight equipment, and ground transporter

    NASA Technical Reports Server (NTRS)

    Chassay, C. E.; Taylor, G. R.

    1973-01-01

    Exposure of test systems in space required the fabrication of specialized hardware termed a Microbial Ecology Evaluation Device that had individual test chambers and a complex optical filter system. The characteristics of this device and the manner in which it was deployed in space are described.

  19. Tether Deployer And Brake

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  20. High-throughput process development: II. Membrane chromatography.

    PubMed

    Rathore, Anurag S; Muthukumar, Sampath

    2014-01-01

    Membrane chromatography is gradually emerging as an alternative to conventional column chromatography. It alleviates some of the major disadvantages associated with the latter including high pressure drop across the column bed and dependence on intra-particle diffusion for the transport of solute molecules to their binding sites within the pores of separation media. In the last decade, it has emerged as a method of choice for final polishing of biopharmaceuticals, in particular monoclonal antibody products. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today. This protocol describes the steps involved in performing HTPD of a membrane chromatography step. It describes operation of a commercially available device (AcroPrep™ Advance filter plate with Mustang S membrane from Pall Corporation). This device is available in 96-well format with 7 μL membrane in each well. We discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that is gathered from such a platform. A case study involving use of the protocol for examining ion exchange chromatography of Granulocyte Colony Stimulating Factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that is representative of the data obtained at the traditional lab scale. The agreement in the data is indeed very significant (regression coefficient 0.99). We think that this protocol will be of significant value to those involved in performing high-throughput process development of membrane chromatography.

  1. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    PubMed

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  2. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    PubMed Central

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  3. Use of the semipermeable membrane device (SPMD) to sample polycyclic aromatic hydrocarbon pollution in a lotic system

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Orazio, Carl E.; Petty, Jimmie D.; Huckins, James; Douglas, Ernest H.

    1996-01-01

    Relative concentrations of aqueous polycyclic aromatic hydrocarbons (PAH) were investigated in an urban creek. Samples were obtained at five sites within a 600-m segment of the creek that is critical habitat for an endangered species of fish. the sampling technique entailed immersion of semipermeable membrane devices (SPMDs) in the water for intervals as long as 64 d. SPMDs are passive, in situ, mtegrative samplers of bioavailable (truly dissolved) PAH and other hydrophobic organic contaminants. Two point sources of PAH to the 600-m segment of the creek were differentiated. Aqueous concentrations were found to wane dramatically over the relatively short section of the creek between the point sources. All samples were almost devoid of alkyl-substituted PAH, indicating that the ultimate sources were probably of pyrogenic nature.

  4. Stretching Micropatterned Cells on a PDMS Membrane

    PubMed Central

    Carpi, Nicolas; Piel, Matthieu

    2014-01-01

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment. PMID:24514571

  5. Infrared emission of a freestanding plasmonic membrane

    NASA Astrophysics Data System (ADS)

    Monshat, Hosein; Liu, Longju; McClelland, John; Biswas, Rana; Lu, Meng

    2018-01-01

    This paper reports a free-standing plasmonic membrane as a thermal emitter in the near- and mid-infrared regions. The plasmonic membrane consists of an ultrathin gold film perforated with a two-dimensional array of holes. The device was fabricated using an imprint and transfer process and fixed on a low-emissivity metal grid. The thermal radiation characteristics of the plasmonic membrane can be engineered by controlling the array period and the thickness of the gold membrane. Plasmonic membranes with two different periods were designed using electromagnetic simulation and then characterized for their transmission and infrared radiation properties. The free-standing membranes exhibit extraordinary optical transmissions with the resonant transmission coefficient as high as 76.8%. After integration with a customized heater, the membranes demonstrate narrowband thermal emission in the wavelength range of 2.5 μm to 5.5 μm. The emission signatures, including peak emission wavelength and bandwidth, are associated with the membrane geometry. The ultrathin membrane infrared emitter can be adopted in applications, such as chemical analysis and thermal imaging.

  6. The development and testing of the Lens Antenna Deployment Demonstration (LADD) test article

    NASA Technical Reports Server (NTRS)

    Pugh, Mark L.; Denton, Robert J., Jr.; Strange, Timothy J.

    1993-01-01

    The USAF Rome Laboratory and NASA Marshall Space Flight Center, through contract to Grumman Corporation, have developed a space-qualifiable test article for the Strategic Defense Initiative Organization to demonstrate the critical structural and mechanical elements of single-axis roll-out membrane deployment for Space Based Radar (SBR) applications. The Lens Antenna Deployment Demonstration (LADD) test article, originally designed as a shuttle-attached flight experiment, is a large precision space structure which is representative of operational designs for space-fed lens antennas. Although the flight experiment was cancelled due to funding constraints and major revisions in the Strategic Defense System (SDS) architecture, development of this test article was completed in June 1989. To take full advantage of the existence of this unique structure, a series of ground tests are proposed which include static, dynamic, and thermal measurements in a simulated space environment. An equally important objective of these tests is the verification of the analytical tools used to design and develop large precision space structures.

  7. Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves

    NASA Technical Reports Server (NTRS)

    Willis, Peter; Hunt, Brian; White,Victor; Grunthaner, Frank

    2008-01-01

    A microfluidic system has been designed to survive spaceflight and to function autonomously on the Martian surface. It manipulates microscopic quantities of liquid water and performs chemical analyses on these samples to assay for the presence of molecules associated with past or present living processes. This technology lies at the core of the Urey Instrument, which is scheduled for inclusion on the Pasteur Payload of the ESA ExoMars rover mission in 2013. Fabrication processes have been developed to make the microfabricated Teflon-AF microfluidic diaphragm pumps capable of surviving extreme temperature excursions before and after exposure to liquid water. Two glass wafers are etched with features and a continuous Teflon membrane is sandwiched between them (see figure). Single valves are constructed using this geometry. The microfabricated devices are then post processed by heating the assembled device while applying pneumatic pressure to force the Teflon diaphragm against the valve seat while it is softened. After cooling the device, the embossed membrane retains this new shape. This solves previous problems with bubble introduction into the fluid flow where deformations of the membrane at the valve seat occurred during device bonding at elevated temperatures (100-150 C). The use of laminated membranes containing commercial Teflon AF 2400 sheet sandwiched between spun Teflon AF 1600 layers performed best, and were less gas permeable than Teflon AF 1600 membranes on their own. Spinning Teflon AF 1600 solution (6 percent in FLOURINERT(Registered TradeMark) FC40 solvent, 3M Company) at 500 rpm for 1.5 seconds, followed by 1,000 rpm for 3 seconds onto Borofloat glass wafers, results in a 10-micron-thick film of extremely smooth Teflon AF. This spinning process is repeated several times on flat, blank, glass wafers in order to gradually build a thick, smooth membrane. After running this process at least five times, the wafer and Teflon coating are heated under vacuum

  8. Extracorporeal Membrane Oxygenation for Refractory Cardiac Arrest

    PubMed Central

    Conrad, Steven A; Rycus, Peter T

    2017-01-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) is the use of rapid deployment venoarterial (VA) extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR). Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30–60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. Percutaneous cannulation where feasible is rapid and can be performed by nonsurgeons (emergency physicians, intensivists, cardiologists, and interventional radiologists). Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management. PMID:28074817

  9. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    PubMed Central

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-01-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic–abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman–Hodgkin–Katz (GHK) solution to the Nernst–Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic–abiotic devices with increased functionality. PMID:27713411

  10. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    NASA Astrophysics Data System (ADS)

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-10-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.

  11. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  12. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  13. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  15. A new UV-LED device for automatic disinfection of stethoscope membranes.

    PubMed

    Messina, Gabriele; Burgassi, Sandra; Messina, Daniele; Montagnani, Valerio; Cevenini, Gabriele

    2015-10-01

    Stethoscopes are widely used by doctors and nurses. Poor stethoscope hygiene is a potential source of nosocomial infection. This study aimed to propose an innovative solution, based on the latest advances in ultraviolet (UV) light-emitting diodes (LEDs), for disinfecting stethoscope membranes automatically and efficiently. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis were sown on 28 stethoscope membranes and then transferred to Petri dishes. Treatment involved illuminating exposed Petri dishes with a UVC LED for 1 minute. For each microbe, the number of colony-forming units (cfu) at 36°C was compared in control and treated dishes using the Wilcoxon signed-rank test. The Kruskal-Wallis test was used to assess percent reductions in bacteria. Statistical significance was set at 99%. A significant reduction in cfu counts after UV treatment (P < .01) was found for all bacteria: 85.5% for E faecalis, 87.5% for S aureus, 94.3% for E coli, and 94.9% for P aeruginosa . No significant differences in percent reduction in cfu were found between bacteria (P > .01). The stethoscope, symbol of medicine and health care professionals, has been demonstrated to be a carrier of microorganisms. The treatment technique was effective and efficient in disinfecting the membranes. These promising results represent a step forward toward eliminating stethoscope membrane contamination with an innovative approach. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016.

    PubMed

    Trudzinski, Franziska C; Schlotthauer, Uwe; Kamp, Annegret; Hennemann, Kai; Muellenbach, Ralf M; Reischl, Udo; Gärtner, Barbara; Wilkens, Heinrike; Bals, Robert; Herrmann, Mathias; Lepper, Philipp M; Becker, Sören L

    2016-11-17

    Mycobacterium chimaera, a non-tuberculous mycobacterium, was recently identified as causative agent of deep-seated infections in patients who had previously undergone open-chest cardiac surgery. Outbreak investigations suggested an aerosol-borne pathogen transmission originating from water contained in heater-cooler units (HCUs) used during cardiac surgery. Similar thermoregulatory devices are used for extracorporeal membrane oxygenation (ECMO) and M. chimaera might also be detectable in ECMO treatment settings. We performed a prospective microbiological study investigating the occurrence of M. chimaera in water from ECMO systems and in environmental samples, and a retrospective clinical review of possible ECMO-related mycobacterial infections among patients in a pneumological intensive care unit. We detected M. chimaera in 9 of 18 water samples from 10 different thermoregulatory ECMO devices; no mycobacteria were found in the nine room air samples and other environmental samples. Among 118 ECMO patients, 76 had bronchial specimens analysed for mycobacteria and M. chimaera was found in three individuals without signs of mycobacterial infection at the time of sampling. We conclude that M. chimaera can be detected in water samples from ECMO-associated thermoregulatory devices and might potentially pose patients at risk of infection. Further research is warranted to elucidate the clinical significance of M. chimaera in ECMO treatment settings. This article is copyright of The Authors, 2016.

  17. Wireless Sensors Grouping Proofs for Medical Care and Ambient Assisted-Living Deployment.

    PubMed

    Trček, Denis

    2016-01-02

    Internet of Things (IoT) devices are rapidly penetrating e-health and assisted living domains, and an increasing proportion among them goes on the account of computationally-weak devices, where security and privacy provisioning alone are demanding tasks, not to mention grouping proofs. This paper, therefore, gives an extensive analysis of such proofs and states lessons learnt to avoid possible pitfalls in future designs. It sticks with prudent engineering techniques in this field and deploys in a novel way the so called non-deterministic principle to provide not only grouping proofs, but (among other) also privacy. The developed solution is analyzed by means of a tangible metric and it is shown to be lightweight, and formally for security.

  18. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003874 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory's robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan's fourth H-II Transfer Vehicle, Kounotori-4.

  19. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  20. Modeling and Analysis of Wrinkled Membranes: An Overview

    NASA Technical Reports Server (NTRS)

    Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.

  1. Deployable reflector structure

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin, Jr. (Inventor); Hoberman, Charles (Inventor)

    1993-01-01

    A deployable reflector structure is presented. The structure has a number of movable reflector panels pivotably supported on rigid arms. Several such arms are pivotably connected to a central structure. The arm can move in starburst fashion from a packaged stage, where all arms are vertical, to a deployed stage, where all arms are horizontal. All of the movable reflector panels are maintained at a predetermined angle to an axis of the reflector structure when the arms are pivoted. The reflector panels are stacked tightly on top of each other in the packaged state of the reflector structure. Simple mechanisms are used for avoiding interference between panels on different arms in the packaged stage and for fitting the movable panels together like tiles in the deployed stage.

  2. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009334 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment.

  3. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009458 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment.

  4. Catalytic membranes for CO oxidation in fuel cells

    DOEpatents

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  5. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  6. Abusive Relationship and Its Associated Factors Between Deployed and Un-Deployed Veterans in College.

    PubMed

    Min, Hosik

    2018-03-01

    This study is to examine the effect of student veteran status on abusive relationships, namely, emotional, physical, and sexual abuse. In addition, this study divided student veterans into two groups, deployed and un-deployed veterans, to see whether two groups demonstrate different results on abusive relationships. Logistic regression models were employed as a statistical strategy using the 2011-2014 American College Health Association National College Health Assessment II (ACHA-NCHA-II) data. The results found that deployed veterans were more likely to experience physical abuse, while un-deployed veterans were more likely to experience emotional abuse. Student veterans did not show any significant relationship with sexual abuse regardless deployment experience. It would be appropriate to consider the results of this study to address abusive relationships among student veterans, which help them to not only adjust college life but also succeed in careers and have healthy family relationships.

  7. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide

  8. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003870 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  9. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003869 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  10. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003871 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  11. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003872 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  12. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  13. What pre-deployment and early post-deployment factors predict health function after combat deployment?: a prospective longitudinal study of Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) soldiers

    PubMed Central

    2013-01-01

    Background Physical and mental function are strong indicators of disability and mortality. OEF/OIF Veterans returning from deployment have been found to have poorer function than soldiers who have not deployed; however the reasons for this are unknown. Methods A prospective cohort of 790 soldiers was assessed both pre- and immediately after deployment to determine predictors of physical and mental function after war. Results On average, OEF/OIF Veterans showed significant declines in both physical (t=6.65, p<.0001) and mental function (t=7.11, p<.0001). After controlling for pre-deployment function, poorer physical function after deployment was associated with older age, more physical symptoms, blunted systolic blood pressure reactivity and being injured. After controlling for pre-deployment function, poorer mental function after deployment was associated with younger age, lower social desirability, lower social support, greater physical symptoms and greater PTSD symptoms. Conclusions Combat deployment was associated with an immediate decline in both mental and physical function. The relationship of combat deployment to function is complex and influenced by demographic, psychosocial, physiological and experiential factors. Social support and physical symptoms emerged as potentially modifiable factors. PMID:23631419

  14. Deployment Mechanism for Thermal Pointing System

    NASA Technical Reports Server (NTRS)

    Koski, Kraig

    2014-01-01

    The Deployment Mechanism for the Total and Spectral Solar Irradiance Sensor (TSIS) is responsible for bringing the Thermal Pointing System (TPS) from its stowed, launch locked position to the on-orbit deployed, operational position. The Deployment Mechanism also provides structural support for the TSIS optical bench and two-axis gimbal. An engineering model of the Deployment Mechanism has been environmentally qualified and life tested. This paper will give an overview of the TSIS mission and then describe the development, design, and testing of the Deployment Mechanism.

  15. Boundary layer control device for duct silencers

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  16. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    PubMed

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  17. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices.

    PubMed

    Williamson, Kelly S; Petty, Jimmie D; Huckins, James N; Lebo, Jon A; Kaiser, Edwin M

    2002-11-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri-Columbia, USA; Williamson et al., Chemosphere (This issue--PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  18. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  19. Durability of PEM Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  20. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.

    PubMed

    Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A

    2018-01-15

    Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A sugar-template manufacturing method for microsystem ion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Festarini, Rio V.; Pham, Minh-Hao; Liu, Xinyue; Barz, Dominik P. J.

    2017-07-01

    In this work, we report on a novel method for producing ion-exchange membranes that can be integrated directly into polydimethylsiloxane-based micro devices. Ionomers such as NafionTM, a copolymer with high conductivity and selectivity to small cations, are generally incompatible with common micro device materials due to the chemical inertness of the tetrafluoroethylene-based skeleton and the swelling in aqueous solutions. Hence, we introduce a microfabrication concept where we use consolidated sugar granules as a template to produce a porous polydimethylsiloxane scaffold. Ionomer and scaffold are combined to a composite membrane where the cohesion of these incompatible materials is of rather mechanical nature; i.e. the ionomer is physically entrapped in the scaffold. Electrochemical impedance spectroscopy measurements reveal the excellent membrane conductivity for the upper electrolyte concentrations tested in this work.

  2. Hydrogen production by high-temperature water splitting using electron-conducting membranes

    DOEpatents

    Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam

    2004-04-27

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.

  3. Quality Control Method for a Micro-Nano-Channel Microfabricated Device

    NASA Technical Reports Server (NTRS)

    Grattoni, Alessandro; Ferrari, Mauro; Li, Xuewu

    2012-01-01

    A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration.

  4. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  5. Connected vehicle pilot deployment program phase 1, deployment outreach plan -- New York City.

    DOT National Transportation Integrated Search

    2016-07-19

    This document is a high level plan that describes the Outreach Plan for the New York City Connected Vehicle Pilot Deployment. The plan defines the communications strategy for the CV Pilot Deployment; identifies roles and responsibilities of persons t...

  6. Anomalous interface adhesion of graphene membranes

    PubMed Central

    He, Y.; Chen, W. F.; Yu, W. B.; Ouyang, G.; Yang, G. W.

    2013-01-01

    In order to understand the anomalous interface adhesion properties between graphene membranes and their substrates, we have developed a theoretical method to calibrate the interface adhesion energy of monolayer and multilayer graphene on substrates based on the bond relaxation consideration. Four kinds of interfaces, including graphene/SiO2, graphene/Cu, graphene/Cu/Ni and Cu/graphene/Ni, were taken into account. It was found that the membrane thickness and the interface confinement condition determine the adhesion energy. The relationship between the critical interface separation and the graphene thickness showed that the interface separation in the self-equilibrium state drops with decreasing membrane thickness. The size-dependent Young's modulus of graphene membrane and the interfacial condition were responsible for the novel interface adhesion energy. The proposed theory was expected to be applied to the design of graphene-based devices. PMID:24036502

  7. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  8. Satellite deployment during STS-5

    NASA Image and Video Library

    1982-11-17

    S82-39793 (11 Nov. 1982) --- The Satellite Business Systems (SBS-3) spacecraft springs from its protective ?cradle? in the cargo bay of the Earth-orbiting space shuttle Columbia and head toward a series of maneuvers that will eventually place it in a geosynchronous orbit. This moment marks a milestone for the Space Transportation System (STS) program, as the placement of the communications satellites represents the first deployment of a commercial satellite from an orbiting space vehicle. Part of Columbia?s wings can be seen on both the port and starboard sides. Also both orbital maneuvering system (OMS) pods are seen at center. The vertical stabilizer is obscured by the satellite. The closed protective cradle device shielding Telesat Canada?s ANIK C-3 spacecraft is seen between the other shield and the OMS pod. ANIK is to be launched on the mission?s second day. This photograph was exposed through the aft windows of the flight deck. Photo credit: NASA

  9. One-year outcomes after rapid-deployment aortic valve replacement.

    PubMed

    Young, Christopher; Laufer, Günther; Kocher, Alfred; Solinas, Marco; Alamanni, Francesco; Polvani, Gianluca; Podesser, Bruno K; Aramendi, Jose Ignacio; Arribas, Jose; Bouchot, Olivier; Livi, Ugolino; Massetti, Massimo; Terp, Kim; Giot, Christophe; Glauber, Mattia

    2018-02-01

    The goals of rapid-deployment aortic valve replacement include facilitation of minimally invasive surgery and reduced aortic crossclamp time. We report the short-term outcomes of a series of 493 patients undergoing rapid-deployment aortic valve replacement with the EDWARDS INTUITY valve system (Edwards Lifesciences, LLC, Irvine, Calif). Assessing Standard oF Care and Clinical Outcomes UsiNg the EDWARDS INTUITY VAlve SysTem in a European multI-center, Active, pOst-market surveillaNce Study was a prospective, multicenter (n = 26) European registry designed to evaluate the safety and performance of the valve system. During rapid-deployment aortic valve replacement, device technical success and crossclamp time were assessed. Procedural outcomes, hemodynamic performance, and various adverse events and clinical outcomes were evaluated up to 2 years. Between 2012 and 2014, 493 of 517 enrolled patients successfully received implants with the study valve (95.4% technical success). Mean crossclamp times for 163 full sternotomies, 128 mini-upper sternotomies, and 36 right anterior thoracotomies isolated aortic valve replacements were 47.3, 52.0, and 73.3 minutes, respectively. Mean follow-up was 1.8 years, with 870 total patient-years of follow-up. Mean effective orifice area increased from 0.72 (baseline) to 1.88 cm 2 , and mean pressure gradient decreased from 47.6 to 9.6 mm Hg (1 year). Mean effective orifice area index increased (0.39-1.01 cm 2 /m 2 ), and 28 of 287 patients (9.8%) exhibited severe prosthesis-patient mismatch at 1 year. After 1 year, 68.1% and 21.7% of patients were in New York Heart Association class I and II, respectively. Freedom from death, major bleeding, major perivalvular leak, reoperation, and device explant at 1 year were 0.935, 0.939, 0.976, 0.975, and 0.983, respectively. These results demonstrate commendable safety and performance of the test valve system over the short term in a broad European setting. Copyright © 2017 The

  10. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  11. Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks.

    PubMed

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing

    2017-07-12

    Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.

  12. Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks

    PubMed Central

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959

  13. A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan

    2017-06-01

    In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.

  14. Computed tomography measurement of the left atrial appendage for optimal sizing of the Watchman device.

    PubMed

    Xu, Bo; Betancor, Jorge; Sato, Kimi; Harb, Serge; Abdur Rehman, Karim; Patel, Kunal; Kumar, Arnav; Cremer, Paul C; Jaber, Wael; Rodriguez, L Leonardo; Schoenhagen, Paul; Wazni, Oussama

    Percutaneous left atrial appendage (LAA) occlusion is an emerging treatment option for patients with non-valvular atrial fibrillation who cannot tolerate oral anticoagulation. The Watchman device (Boston Scientific Corporation, Natick, MA, USA) is deployed at the ostium of the LAA, and an appropriately sized device is critical for successful occlusion. However, standardized imaging protocols for device sizing have not been established. We investigated the clinical utility of a standardized imaging protocol, with pre-procedural multi-detector cardiac computed tomography (MDCT), and intra-procedural transesophageal echocardiography (TEE), for Watchman device sizing. Patients who underwent Watchman device implantation between 2010 and 2016 at our center, and who had pre-procedural MDCT and intra-procedural TEE were included. MDCT measurements (CTmax, CTmin, CTmean), and TEE measurement (TEEmax) of the LAA ostium were determined for each case, and correlated with the final size of the Watchman device implanted. Demographic data and clinical outcomes were collected. The study included 80 patients (mean age: 75 ± 9.6 years; male: 68%; mean CHA2DS2-VASc score: 4.5 ± 1.4). CTmax of the LAA ostium correlated strongly with the final deployed Watchman device size (Spearman's rho: 0.81, p < 0.001), while TEEmax of the LAA ostium showed only moderate correlation with the final deployed Watchman device size (Spearman's rho: 0.61, p < 0.001). Implantation success rate was 100%. At a mean duration of follow-up of 197 days, there were no device-related complications (device embolization, cardiac perforation and pericardial tamponade). At follow-up, the vast majority of patients (76 patients; 95%) had either no or trivial (≤3 mm) residual peri-device leak on TEE. A standardized imaging protocol for assessment of Watchman device implantation incorporating pre-procedural MDCT and intra-procedural TEE, was associated with excellent procedural outcomes at a mean duration

  15. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009315 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A blue and white part of Earth provides the backdrop for the scene.

  16. Mining Deployment Optimization

    NASA Astrophysics Data System (ADS)

    Čech, Jozef

    2016-09-01

    The deployment problem, researched primarily in the military sector, is emerging in some other industries, mining included. The principal decision is how to deploy some activities in space and time to achieve desired outcome while complying with certain requirements or limits. Requirements and limits are on the side constraints, while minimizing costs or maximizing some benefits are on the side of objectives. A model with application to mining of polymetallic deposit is presented. To obtain quick and immediate decision solutions for a mining engineer with experimental possibilities is the main intention of a computer-based tool. The task is to determine strategic deployment of mining activities on a deposit, meeting planned output from the mine and at the same time complying with limited reserves and haulage capacities. Priorities and benefits can be formulated by the planner.

  17. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  18. Wireless Sensors Grouping Proofs for Medical Care and Ambient Assisted-Living Deployment

    PubMed Central

    Trček, Denis

    2016-01-01

    Internet of Things (IoT) devices are rapidly penetrating e-health and assisted living domains, and an increasing proportion among them goes on the account of computationally-weak devices, where security and privacy provisioning alone are demanding tasks, not to mention grouping proofs. This paper, therefore, gives an extensive analysis of such proofs and states lessons learnt to avoid possible pitfalls in future designs. It sticks with prudent engineering techniques in this field and deploys in a novel way the so called non-deterministic principle to provide not only grouping proofs, but (among other) also privacy. The developed solution is analyzed by means of a tangible metric and it is shown to be lightweight, and formally for security. PMID:26729131

  19. Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilovic, Nemanja; Ayers, Katherine

    Regenerative fuel cells (RFC) are energy storage devices that capture electrical energy in the form of hydrogen, with potential application for backup power and energy storage in remote locations, unmanned missions, and renewable energy capture. A unitized regenerative fuel cell (URFC) combines two separate electrochemical devices (fuel cell and electrolyzer) into one stack. The stack cost is driven by the platinum group metal (PGM) catalysts and the flow field components designed to withstand high potentials in acidic environments. Since the stack is the most expensive subcomponent of both the fuel cell and electrolyzer system, combining the two devices results inmore » substantial reduction in capital cost. However, in the past, combining the two stacks sacrificed device performance (operating cost) largely because the fuel cell had to operate with the thick electrolysis membranes in a URFC configuration, and due to water management issues in switching modes. Recent work in membrane-based electrolysis has resulted in more mechanically robust designs and materials that allow much thinner membranes, and work in flow cell design such as flow batteries has shown improved water transport through channel design and wet-proofing approaches. Therefore, the URFC concept is worth revisiting. At the same time, alkaline exchange membrane (AEM) devices are gathering attention due to the promise of PGM and valve metal elimination from the stack and a resulting strategic and capital cost benefit as compared with proton exchange membrane (PEM) systems. The result is a lower capital cost system that has half the precious metal group (PGM) catalysts, membrane and other stack component materials compared with discrete RFCs, although at the sacrifice of performance (operating cost). Proton has identified innovative AEM based RFC's to fulfill the role of low capital cost energy storage device owing to the use of non-precious metal containing electrodes, that enables certain markets

  20. Personal Devices in Public Settings: Lessons Learned from an iPod Touch/iPad Project

    ERIC Educational Resources Information Center

    Crichton, Susan; Pegler, Karen; White, Duncan

    2012-01-01

    Our paper reports findings from a two-phase deployment of iPod Touch and iPad devices in a large, urban Canadian school board. The purpose of the study was to gain an understanding of the infrastructure required to support handheld devices in classrooms; the opportunities and challenges teachers face as they begin to use handheld devices for…

  1. Self-expanding nanoplatinum-coated nitinol devices for atrial septal defect and patent ductus arteriosus closure: a swine model.

    PubMed

    Lertsapcharoen, Pornthep; Khongphatthanayothin, Apichai; La-orkhun, Vidhavas; Supachokchaiwattana, Pentip; Charoonrut, Phingphol

    2006-01-01

    Our purpose was to evaluate self-expanding nanoplatinum-coated nitinol devices for transcatheter closure of atrial septal defects and patent ductus arteriosus in a swine model. The devices were braided from platinum-activated nitinol wires and filled with polyester to enhance thrombogenicity. The platinum activation of the nitinol wires was carried out with the help of Nanofusion technology. The coating of platinum covers the exposed surface of the nitinol wires and prevents the release of nickel into the blood stream after the implantation of the device but does not affect its shape memory, which makes the device self-expanding after it is loaded from the catheter. Atrial septal defects were created in 12 piglets by balloon dilation of the patent foramen ovale. The size of the device was selected on the basis of the diameter of the balloon and the size of the defect, measured by transthoracic echocardiography. The devices were successfully deployed in all 12 piglets under fluoroscopic study. Transthoracic color Doppler echocardiograms showed complete closure of the atrial septal defect within 15 minutes of device implantation. Twelve patent ductus arteriosus closure devices were deployed in the right or left subclavian arteries in 10 piglets. Angiograms showed complete occlusion of the subclavian arteries within a few minutes of device deployment. In the atrial septal defect cases, the autopsy findings showed complete organizing fibrin thrombus formation and complete neo-endothelialization on the outer surface of the devices within one week and six weeks of implantation, respectively. The use of self-expanding nanoplatinum-coated nitinol devices for the transcatheter closure of atrial septal defects and patent ductus arteriosus is feasible. The excellent occlusion result and complete neo-endothelialization of the devices in the swine model is an indication of the potential of these devices in human application.

  2. Fish Behavior, Presence, and Distribution in a Tidally Dynamic Region, with and without a Tidal Energy Device

    NASA Astrophysics Data System (ADS)

    Zydlewski, G. B.; Staines, G.; Viehman, H.; Shen, H.

    2016-02-01

    Fish responses, presence, and use of tidally dynamic regions are not well documented. Baseline and effect data were collected to examine responses of fish to the introduction of a tidal power device. In 2012 Ocean Renewable Power Company's TidGen® was deployed for one year and in 2014 their OCGen® was deployed for 2.5 months. We used this opportunity to determine (1) the vertical distribution of fishes before and after device deployment; (2) how fish behaved when approaching a device; and (3) the probability of fish encountering a device. From 2010 to 2013, 21 twenty-four-hour down-looking hydroacoustic surveys were performed at a project and control site. Prior to deployment (2010-2012) fish were generally distributed near the sea floor and more evenly distributed in the water column at night than during the day and there were significant differences between two of three before/after comparisons of vertical fish distributions, indicating an effect of the device. DIDSON acoustic cameras were used to document behavioral responses to a device. Most fish observed were <10 cm and moved in the same direction as the current. Approximately 50% of individuals and 67% of schools did not interact with the turbine. Less than 1% of individuals and 15% of schools showed avoidance behavior, and 35% of individuals and 14% of schools entered or exited the turbine. Turbine rotation reduced the probability of turbine entry by 35% and increased the probability of avoiding and passing by 120% and 97%, respectively. In 2014 we combined down-looking hydroacoustics with mobile transects to determine that the probability of fish being at the depth of the moving foils ( 6-9 m) ranged from 0.083 to 0.093. These data indicate how fish respond to this novel object and are important for understanding fish use of such a dynamic ecosystem.

  3. Portable source identification device

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.

  4. Electrochemical device for converting carbon dioxide to a reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potentialmore » of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.« less

  5. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui

    2017-02-01

    This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.

  6. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  7. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  8. Design and deploying study of a new petal-type deployable solid surface antenna

    NASA Astrophysics Data System (ADS)

    Huang, He; Guan, Fu-Ling; Pan, Liang-Lai; Xu, Yan

    2018-07-01

    Deployable solid surface reflector is still one of the most important ways to fulfill the ultra-high-accuracy and ultra-large-aperture reflector antennas. However the drawback of integrate stiffness is still a main problem for solid surface reflectors in the former research. To figure out this problem, a New Petal-type Deployable Solid Surface Antenna (NPDSSA) is developed in this study. A kind of drag springs are applied as linkages with adjacent petals to improve the integrate rigidity. The structural design is introduced and the geometric parameters are analyzed to find their effects on the rotation and package capacities. The software simulations and laboratory model tests are conducted to verify the deploying process of NPDSSA. Two models are employed to study the property of linkage butts and drag springs. It is indicated that model NPDSSA with the application of linkage butts and drag springs has better integrality and stability during the deploying. Finally it is concluded that NPDSSA is feasible for space applications.

  9. Deployment Simulation of Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2002-01-01

    Dynamic deployment analyses of folded inflatable tubes are conducted to investigate modeling issues related to the deployment of solar sail booms. The analyses are necessary because ground tests include gravity effects and may poorly represent deployment in space. A control volume approach, available in the LS-DYNA nonlinear dynamic finite element code, and the ideal gas law are used to simulate the dynamic inflation deployment process. Three deployment issues are investigated for a tube packaged in a Z-fold configuration. The issues are the effect of the rate of inflation, the effect of residual air, and the effect of gravity. The results of the deployment analyses reveal that the time and amount of inflation gas required to achieve a full deployment are related to these issues.

  10. Zwitterionic materials for antifouling membrane surface construction.

    PubMed

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  11. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  12. The impact of antecedent trauma exposure and mental health symptoms on the post-deployment mental health of Afghanistan-deployed Australian troops.

    PubMed

    Searle, Amelia K; Van Hooff, Miranda; Lawrence-Wood, Ellie R; Grace, Blair S; Saccone, Elizabeth J; Davy, Carol P; Lorimer, Michelle; McFarlane, Alexander C

    2017-10-01

    Both traumatic deployment experiences and antecedent traumas increase personnel's risk of developing PTSD and depression. However, only cross-sectional studies have assessed whether antecedent trauma moderates stress reactions to deployment experiences. This study prospectively examines whether antecedent trauma moderates the association between deployment trauma and post-deployment PTSD and depressive symptoms after accounting for antecedent mental health problems, in a large Australian Defence Force (ADF) sample. In the ADF Middle East Area of Operations Prospective Study, currently-serving military personnel deployed to Afghanistan across 2010-2012 (n = 1122) completed self-reported measures at pre-deployment and post-deployment. Within multivariable regressions, associations between deployment trauma and PTSD and depressive symptoms at post-deployment were stronger for personnel with greater antecedent trauma. However, once adjusting for antecedent mental health problems, these significant interaction effects disappeared. Instead, deployment-related trauma and antecedent mental health problems showed direct associations with post-deployment mental health problems. Antecedent trauma was also indirectly associated with post-deployment mental health problems through antecedent mental health problems. Similar associations were seen with prior combat exposure as a moderator. Antecedent and deployment trauma were reported retrospectively. Self-reports may also suffer from social desirability bias, especially at pre-deployment. Our main effects results support the pervasive and cumulative negative effect of trauma on military personnel, regardless of its source. While antecedent trauma does not amplify personnel's psychological response to deployment trauma, it is indirectly associated with increased post-deployment mental health problems. Antecedent mental health should be considered within pre-deployment prevention programs, and deployment-trauma within post

  13. 5-Beam ADCP Deployment Strategy Considerations

    NASA Astrophysics Data System (ADS)

    Moore, T.; Savidge, D. K.; Gargett, A.

    2016-02-01

    With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.

  14. Arrayed water-in-oil droplet bilayers for membrane transport analysis.

    PubMed

    Watanabe, R; Soga, N; Hara, M; Noji, H

    2016-08-02

    The water-in-oil droplet bilayer is a simple and useful lipid bilayer system for membrane transport analysis. The droplet interface bilayer is readily formed by the contact of two water-in-oil droplets enwrapped by a phospholipid monolayer. However, the size of individual droplets with femtoliter volumes in a high-throughput manner is difficult to control, resulting in low sensitivity and throughput of membrane transport analysis. To overcome this drawback, in this study, we developed a novel micro-device in which a large number of droplet interface bilayers (>500) are formed at a time by using femtoliter-sized droplet arrays immobilized on a hydrophobic/hydrophilic substrate. The droplet volume was controllable from 3.5 to 350 fL by changing the hydrophobic/hydrophilic pattern on the device, allowing high-throughput analysis of membrane transport mechanisms including membrane permeability to solutes (e.g., ions or small molecules) with or without the aid of transport proteins. Thus, this novel platform broadens the versatility of water-in-oil droplet bilayers and will pave the way for novel analytical and pharmacological applications such as drug screening.

  15. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  16. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  17. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures.

    PubMed

    Song, Xiaoye; Xie, Ming; Li, Yun; Li, Guoxue; Luo, Wenhai

    2018-06-01

    Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Comparing post-deployment mental health services utilization in soldiers deployed to Balkan, Iraq and Afghanistan.

    PubMed

    Madsen, T; Sadowa Vedtofte, M; Nordentoft, M; Ravnborg Nissen, L; Bo Andersen, S

    2017-06-01

    Insight on how different missions have impacted rates of mental health service (MHS) utilization is unexplored. We compared postdeployment MHS utilization in a national cohort of first-time deployed to missions in Balkan, Iraq, and Afghanistan respectively. A prospective national cohort study of 13 246 first-time deployed in the period 1996 through 2012 to missions in Balkan area, Iraq, or Afghanistan respectively. Soldiers 'MHS utilization was also compared with a 5:1 sex-, age-, and calendar year-matched never-deployed background population. Postdeployment utilization of MHS was retrieved from national coverage registers. Using Cox survival analyses, participants were followed and compared with regard to receiving three different types of psychiatric services: (i) admission to psychiatric hospital, (ii) psychiatric outpatient contact, and (iii) prescriptions of psychotropics. Utilizing of psychiatric outpatient services and psychotropics was significantly higher in first-time deployed to Iraq and Afghanistan compared with deployed to Balkan. However, the rate of postdeployment admission to psychiatric hospital did not differ between missions. Postdeployment rates of psychiatric admission and psychiatric outpatient treatment were significantly higher in Afghanistan-deployed personnel compared with the background population. Utilization of MHS differed significantly between mission areas and was highest after the latest mission to Afghanistan. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Liu, Xiaoteng; Christensen, Paul A.; Kelly, Stephen M.; Rocher, Vincent; Scott, Keith

    2013-01-01

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved. PMID:24957065

  20. Intelligent transportation systems deployment project for the Ada County Highway District FY99 Treasure Valley ITS : final self evaluation report

    DOT National Transportation Integrated Search

    2004-11-01

    In 1999, the Treasure Valley area of the State of Idaho received a federal earmark of $441,470 to develop an Incident Management Plan for the Treasure Valley and to design/deploy Intelligent Transportation Systems (ITS) devices for Interstates 84 and...

  1. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  2. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, T.; Tegen, S.; Beiter, P.

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and themore » second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.« less

  3. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.

    PubMed

    Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J

    2015-09-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  4. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    PubMed Central

    Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899

  5. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Submerged RadBall® deployments in Hanford Site hot cells containing 137CsCl capsules.

    PubMed

    Farfán, Eduardo B; Coleman, J Rusty; Stanley, Steven; Adamovics, John; Oldham, Mark; Thomas, Andrew

    2012-07-01

    The overall objective of this study was to demonstrate that a new technology, known as RadBall®, could locate submerged radiological hazards. RadBall® is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall® deployments in hot cells containing 137CsCl capsules at the U.S. Department of Energy's Hanford Site. RadBall® can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e.g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall® deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall®'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  7. Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.

    1982-01-01

    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.

  8. Development and modeling of self-deployable structures

    NASA Astrophysics Data System (ADS)

    Neogi, Depankar

    Deployable space structures are prefabricated structures which can be transformed from a closed, compact configuration to a predetermined expanded form in which they are stable and can bear loads. The present research effort investigates a new family of deployable structures, called the Self-Deployable Structures (SDS). Unlike other deployable structures, which have rigid members, the SDS members are flexible while the connecting joints are rigid. The joints store the predefined geometry of the deployed structure in the collapsed state. The SDS is stress-free in both deployed and collapsed configurations and results in a self-standing structure which acquires its structural properties after a chemical reaction. Reliability of deployment is one of the most important features of the SDS, since it does not rely on mechanisms that can lock during deployment. The unit building block of these structures is the self-deployable structural element (SDSE). Several SDSE members can be linked to generate a complex building block such as a triangular or a tetrahedral structure. Different SDSE and SDS concepts are investigated in the research work, and the performance of SDS's are experimentally and theoretically explored. Triangular and tetrahedral prototype SDS have been developed and presented. Theoretical efforts include modeling the behavior of 2-dimensional SDSs. Using this design tool, engineers can study the effects of different packing configurations and deployment sequence; and perform optimization on the collapsed state of a structure with different external constraints. The model also predicts if any lockup or entanglement occurs during deployment.

  9. Deployable M-braced truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr. (Inventor); Rhodes, M. D. (Inventor)

    1986-01-01

    A deployable M-braced truss structure, efficiently packaged into a compact stowed position and expandable to an operative position at the use site is described. The M-braced configuration effectively separates tension compression and shear in the structure and permits efficient structural design. Both diagonals and longerons telescope from an M-braced base unit and deploy either pneumatically, mechanically by springs or cables, or by powered reciprocating mechanisms. Upon full deployment, the diagonals and longerons lock into place with a simple latch mechanism.

  10. Intelligent Membranes: Dream or Reality?

    PubMed

    Gugliuzza, Annarosa

    2013-07-15

    Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  11. Fabrication system, method and apparatus for microelectromechanical devices

    NASA Technical Reports Server (NTRS)

    Johnson, A. David (Inventor); Busta, Heinz H. (Inventor); Nowicki, Ronald S. (Inventor)

    1999-01-01

    A fabrication system and method of fabrication for producing microelectromechanical devices such as field-effect displays using thin-film technology. A spacer is carried at its proximal end on the surface of a substrate having field-effect emitters with the spacer being enabled for tilting movement from a nested position to a deployed position which is orthogonal to the plane of the substrate. An actuator is formed with one end connected with the substrate and another end connected with spacer. The actuator is made of a shape memory alloy material which contracts when heated through the material's phase-change transition temperature. Contraction of the actuator exerts a pulling force on the spacer which is tilted to the deployed position. A plurality of the spacers are distributed over the area of the display. A glass plate having a phosphor-coated surface is fitted over the distal ends of the deployed spacer.

  12. Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    PubMed Central

    Pujol, Mar; Rizo, Ramón; Rizo, Carlos

    2018-01-01

    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the

  13. Connected Vehicle Pilot Deployment Program phase I : comprehensive Pilot Deployment Plan : Tampa Hillsborough Expressway Authority (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...

  14. A generic approach for examining the effectiveness of traffic control devices in school zones.

    PubMed

    Zhao, Xiaohua; Li, Jiahui; Ding, Han; Zhang, Guohui; Rong, Jian

    2015-09-01

    The effectiveness and performance of traffic control devices in school zones have been impacted significantly by many factors, such as driver behavioral attributes, roadway geometric features, environmental characteristics, weather and visibility conditions, region-wide traffic regulations and policies, control modes, etc. When deploying traffic control devices in school zones, efforts are needed to clarify: (1) whether traffic control device installation is warranted; and (2) whether other device effectively complements this traffic control device and strengthens its effectiveness. In this study, a generic approach is developed to examine and evaluate the effectiveness of various traffic control devices deployed in school zones through driving simulator-based experiments. A Traffic Control Device Selection Model (TCDSM) is developed and two representative school zones are selected as the testbed in Beijing for driving simulation implementation to enhance its applicability. Statistical analyses are conducted to extract the knowledge from test data recorded by a driving simulator. Multiple measures of effectiveness (MOEs) are developed and adopted including average speed, relative speed difference, and standard deviation of acceleration for traffic control device performance quantification. The experimental tests and analysis results reveal that the appropriateness of the installation of certain traffic control devices can be statistically verified by TCDSM. The proposed approach provides a generic framework to assess traffic control device performance in school zones including experiment design, statistical formulation, data analysis, simulation model implementation, data interpretation, and recommendation development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  16. Micro-engineered remote palpation device for assessing tissue compliance.

    PubMed

    Hien, M; Yang, T H J; Leung, S K W; Reuben, R L; Habib, F K; McNeill, S A; Schneider, A; McBride, G; Stevens, R; Else, R W

    2008-01-01

    This paper concerns the operation of the actuator for a prototype micro-engineered mechanical palpation device for deployment via a cystoscope to measure the dynamic mechanical properties of the prostate gland in vivo. The subassembly consists of a 400x200 microm silicon (Si) piston manufactured using deep reactive ion etching (DRIE) housed within an anodically bonded glass-Si-glass sandwiched housing. The micro-channel on the Si layer was formed by powder blasting and contains the micro-piston with one end pointing to the side of the housing and the other facing a via hole leading to a capillary tube. The opening on the side of the housing was sealed by a 5 microm thick silicone membrane which acts to retain the micro-piston and act as a return spring. A 320 microm diameter capillary forms the connection between the micro-channel and a micro-syringe which is operated by a programmable syringe pump to produce a reciprocating action. A pressure sensor is connected along the capillary tube to measure the dynamic pressure within the system. The micro-piston has already been used, separately actuated to measure the dynamic mechanical properties of known viscoelastic materials and prostate tissue. The purpose of the present work is to assess the functionality of the actuator assembly.

  17. Endoscopic repair of an injured internal carotid artery utilizing femoral endovascular closure devices.

    PubMed

    Van Rompaey, Jason; Bowers, Greg; Radhakrishnan, Jay; Panizza, Benedict; Solares, C Arturo

    2014-06-01

    Injury to the internal carotid artery is a feared complication of endoscopic endonasal surgery of the skull base. Such an event, although rare, is associated with high morbidity and mortality. Even if bleeding is controlled, permanent neurological defects frequently persist. Many techniques have been developed to manage internal carotid artery rupture with varying degrees of success. The purpose of this study was to explore endoscopic management of arterial damage with endovascular closure devices used for a femoral arteriotomy. The ability to remotely suture a damaged artery permits the possible adaptation of this technology in managing endoscopic arterial complications. Technical note. After the creation of an endoscopic endonasal corridor in a cadaveric specimen, an arteriotomy was created at the cavernous portion of the internal carotid artery. The Angio-Seal, StarClose, and MynxGrip vascular closure devices were utilized under endoscopic guidance to repair the arteriotomy. Angiography was then done on a cadaver sutured with the StarClose. Both the Angio-Seal and StarClose were deployed quickly and appeared to provide sufficient closure of the arteriotomy. The Angio-Seal required the use of a guidewire and was longer to deploy when compared with the StarClose. The StarClose deployment was quick and facile. The MynxGrip also deployed without difficulty. The Angio-Seal and StarClose systems were both successfully deployed utilizing an endoscopic endonasal approach. The MynxGrip was the easiest to deploy and has the greatest potential to be of benefit in this application. Further studies with hemodynamic models are required to properly assess the appropriateness in this setting. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies

    NASA Astrophysics Data System (ADS)

    Sim, Jai S.; Zhou, You; Ramanathan, Shriram

    2012-10-01

    We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.

  19. Deployable video conference table

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Inventor); Lissol, Peter (Inventor)

    1993-01-01

    A deployable table is presented. The table is stowed in and deployed from a storage compartment based upon a non-self rigidizing, 4-hinge, arch support structure that folds upon itself to stow and that expands to deploy. The work surfaces bypass each other above and below to allow the deployment mechanism to operate. This assembly includes the following: first and second primary pivot hinges placed at the opposite ends of the storage compartment; first and second lateral frame members with proximal ends connected to the first and second pivot hinges; a medial frame member offset from and pivotally connected to distal ends of the first and second members through third and fourth medial pivot hinges; and left-side, right-side, and middle trays connected respectively to the first, second, and third frame members and being foldable into and out of the storage compartment by articulation of the first, second, third, and fourth joints. At least one of the third and fourth joints are locked to set the first, second, and third frame members in a desired angular orientation with respect to each other.

  20. Non-traditional Infrasound Deployment

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; McComas, S.; Simpson, C. P.; Diaz-Alvarez, H.; Costley, R. D.; Hayward, C.; Golden, P.; Endress, A.

    2017-12-01

    Historically, infrasound arrays have been deployed in rural environments where anthropological noise sources are limited. As interest in monitoring low energy sources at local distances grows in the infrasound community, it will be vital to understand how to monitor infrasound sources in an urban environment. Arrays deployed in urban centers have to overcome the decreased signal-to-noise ratio and reduced amount of real estate available to deploy an array. To advance the understanding of monitoring infrasound sources in urban environments, local and regional infrasound arrays were deployed on building rooftops on the campus at Southern Methodist University (SMU), and data were collected for one seasonal cycle. The data were evaluated for structural source signals (continuous-wave packets), and when a signal was identified, the back azimuth to the source was determined through frequency-wavenumber analysis. This information was used to identify hypothesized structural sources; these sources were verified through direct measurement and dynamic structural analysis modeling. In addition to the rooftop arrays, a camouflaged infrasound sensor was installed on the SMU campus and evaluated to determine its effectiveness for wind noise reduction. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.

  1. Market and policy barriers to deployment of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul; Jenkin, Thomas

    2012-04-01

    There has recently been resurgent interest in energy storage, due to a number of developments in the electricity industry. Despite this interest, very little storage, beyond some small demonstration projects, has been deployed recently. While technical issues, such as cost, device efficiency, and other technical characteristics are often listed as barriers to storage, there are a number of non-technical and policy-related issues. This paper surveys some of these main barriers and proposes some potential research and policy steps that can help address them. Furthermore, while the discussion is focused on the United States, a number of the findings and observationsmore » may be more broadly applicable.« less

  2. Evaluation of portable breath test devices for screening suspected drunken drivers by police in Hennepin County, Minnesota

    DOT National Transportation Integrated Search

    1974-06-01

    This evaluation report examines use in the field of portable breath test (PBT) devices by police in Hennepin County, Minnesota. Thirteen Brog-Warner J2 and J2A-200 "ALERT" devices were deployed by seven enforcement agencies. This report is presented ...

  3. Automated Solvent Seaming of Large Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.

    2006-01-01

    A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with

  4. From sniffer dogs to emerging sniffer devices for airport security: an opportunity to rethink privacy implications?

    PubMed

    Bonfanti, Matteo E

    2014-09-01

    Dogs are known for their incredible ability to detect odours, extracting them from a "complex" environment and recognising them. This makes sniffer dogs precious assets in a broad variety of security applications. However, their use is subject to some intrinsic restrictions. Dogs can only be trained to a limited set of applications, get tired after a relatively short period, and thus require a high turnover. This has sparked a drive over the past decade to develop artificial sniffer devices-generally known as "chemical sniffers" or "electronic noses"-able to complement and possibly replace dogs for some security applications. Such devices have been already deployed, or are intended to be deployed, at borders, airports and other critical installation security checkpoints. Similarly to dogs, they are adopted for detecting residual traces that indicate either the presence of, or recent contact with, substances like drugs and explosives. It goes without saying that, as with sniffer dogs, the use of artificial sniffer devices raises many sensitive issues. Adopting an ethical and legal perspective, the present paper discusses the privacy and data protection implications of the possible deployment of a hand-held body scanning sniffer for screening passengers at EU airport security checkpoints.

  5. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  6. Cigarette smoking and military deployment: a prospective evaluation.

    PubMed

    Smith, Besa; Ryan, Margaret A K; Wingard, Deborah L; Patterson, Thomas L; Slymen, Donald J; Macera, Caroline A

    2008-12-01

    The stress of military deployment may compound occupational stress experienced in the military and manifest in maladaptive coping behaviors such as cigarette smoking. The current study describes new smoking among never-smokers, smoking recidivism among past smokers, and change in daily smoking among smokers in relation to military deployment. The Millennium Cohort is a 21-year longitudinal study. The current analysis utilized participants (N=48,304) who submitted baseline data (July 2001-June 2003) before the current conflicts in Iraq and Afghanistan and follow-up data (June 2004-January 2006) on health measures. New smoking was identified among baseline never-smokers, smoking recidivism among baseline past smokers, and increased or decreased daily smoking among baseline smokers. Analyses were conducted March 2007-April 2007. Among never-smokers, smoking initiation was identified in 1.3% of nondeployers and 2.3% of deployers. Among past smokers, smoking resumption occurred in 28.7% of nondeployers and 39.4% of those who deployed. Smoking increased 44% among nondeployers and 57% among deployers. Those who deployed and reported combat exposures were at 1.6 times greater odds of initiating smoking among baseline never-smokers (95% CI=1.2, 2.3) and at 1.3 times greater odds of resuming smoking among baseline past smokers when compared to those who did not report combat exposures. Other deployment factors independently associated with postdeployment smoking recidivism included deploying for >9 months and deploying multiple times. Among those who smoked at baseline, deployment was not associated with changes in daily amount smoked. Military deployment is associated with smoking initiation and, more strongly, with smoking recidivism, particularly among those with prolonged deployments, multiple deployments, or combat exposures. Prevention programs should focus on the prevention of smoking relapse during or after deployment.

  7. Computational design analysis for deployment of cardiovascular stents

    NASA Astrophysics Data System (ADS)

    Tammareddi, Sriram; Sun, Guangyong; Li, Qing

    2010-06-01

    Cardiovascular disease has become a major global healthcare problem. As one of the relatively new medical devices, stents offer a minimally-invasive surgical strategy to improve the quality of life for numerous cardiovascular disease patients. One of the key associative issues has been to understand the effect of stent structures on its deployment behaviour. This paper aims to develop a computational model for exploring the biomechanical responses to the change in stent geometrical parameters, namely the strut thickness and cross-link width of the Palmaz-Schatz stent. Explicit 3D dynamic finite element analysis was carried out to explore the sensitivity of these geometrical parameters on deployment performance, such as dog-boning, fore-shortening, and stent deformation over the load cycle. It has been found that an increase in stent thickness causes a sizeable rise in the load required to deform the stent to its target diameter, whilst reducing maximum dog-boning in the stent. An increase in the cross-link width showed that no change in the load is required to deform the stent to its target diameter, and there is no apparent correlation with dog-boning but an increased fore-shortening with increasing cross-link width. The computational modelling and analysis presented herein proves an effective way to refine or optimise the design of stent structures.

  8. Commercial vehicle information systems and networks (CVISN) deployment program : benefits of CVISN level 1 deployment

    DOT National Transportation Integrated Search

    2001-09-05

    In Transportation Equity Act for the 21st Century (TEA-21), Congress established a goal to complete Commercial Vehicle Information Systems and Networks (CVISN) deployment in a majority of states by September 30, 2003. Through the CVISN Deployment Pro...

  9. Deployment-related mental disorders among Canadian Forces personnel deployed in support of the mission in Afghanistan, 2001–2008

    PubMed Central

    Boulos, David; Zamorski, Mark A.

    2013-01-01

    Background: The conflict in Afghanistan has exposed more Canadian Forces personnel to a greater degree of adversity than at any time in recent memory. We determined the incidence of Afghanistan deployment–related mental disorders and associated risk factors among personnel previously deployed in support of this mission. Methods: The study population consisted of 30 513 Canadian Forces personnel who began a deployment in support of the mission in Afghanistan before Jan. 1, 2009. The primary outcome was a mental disorder perceived by a Canadian Forces clinician to be related to the Afghanistan deployment. Data on diagnoses and perceptions were abstracted from medical records of a stratified random sample of 2014 personnel. Sample design weights were used in all analyses to generate descriptive statistics for the entire study population. Results: Over a median follow-up of 1364 days, 13.5% (95% confidence interval [CI] 12.1%–14.8%) of the study population had a mental disorder that was attributed to the Afghanistan deployment. Posttraumatic stress disorder was the most common diagnosis (in 8.0%, 95% CI 7.0%–9.0%, of personnel). Deployment to higher-threat locations, service in the Canadian Army and lower rank were independent risk factors associated with an Afghanistan-related diagnosis (e.g., hazard ratio for deployment to Kandahar Province 5.6, 95% CI 2.6–12.5, relative to deployment to the United Arab Emirates). In contrast, sex, Reserve Forces status, multiple deployments and deployment length were not independent risk factors. Interpretation: An important minority of Canadian Forces personnel deployed in support of the Afghanistan mission had a diagnosis of a mental disorder perceived to be related to the deployment. Determining long-term outcomes is an important next step. PMID:23820441

  10. Self-deploying photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J. (Inventor)

    1993-01-01

    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

  11. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  12. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    PubMed

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Flexible photonic crystal membranes with nanoparticle high refractive index layers.

    PubMed

    Karrock, Torben; Paulsen, Moritz; Gerken, Martina

    2017-01-01

    Flexible photonic crystal slabs with an area of 2 cm 2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.

  14. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : New York City : final report.

    DOT National Transportation Integrated Search

    2016-09-09

    This document describes the Deployment Readiness Summary for the New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. It demonstrates the completion of Task 1-12 deliverables of Phase 1 by the NYC team. The document also addresses h...

  15. Multifaceted Comparison of Two Cryotherapy Devices Used After Total Knee Arthroplasty: Cryotherapy Device Comparison.

    PubMed

    Schinsky, Mark F; McCune, Christine; Bonomi, Judith

    2016-01-01

    Some form of cryotherapy used after total knee arthroplasty is commonplace. However, various factors determine the specific device deployed. This study aimed to answer the following questions: : A group of 100 patients undergoing primary total knee arthroplasty by a single surgeon were enrolled in an institutional review board-approved, prospective study and randomized to receive either a circulating cold water or ice/gel pack cryotherapy device postoperatively. Demographic, pain, swelling, blood loss, range of motion, compliance, satisfaction, and adverse event outcomes were recorded until 6 weeks after surgery. Hospital staff satisfaction and economic variables were examined. The ice/gel pack cryotherapy wrap was noninferior to the cold water cryotherapy device for any patient outcome measured. Average pain level at 6 weeks postoperative was significantly less in the ice/gel pack cryotherapy wrap group. Hospital staff satisfaction was higher with the ice/gel pack cryotherapy wrap.Substantial economic savings can be realized at our institution by switching to the lower cost cryotherapy device. In this study, the lower cost ice/gel pack cryotherapy wrap was noninferior to the circulating ice water cryotherapy device with respect to objective patient outcomes and subjective patient satisfaction after total knee arthroplasty. Hospital staff satisfaction and economic considerations also favor the ice/gel pack compression cryotherapy wraps.

  16. Deployable Debris Shields For Space Station

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Cour-Palais, Burton G.; Crews, Jeanne

    1993-01-01

    Multilayer shields made of lightweight sheet materials deployed from proposed Space Station Freedom for additional protection against orbiting debris. Deployment mechanism attached at each location on exterior where extra protection needed. Equipment withdraws layer of material from storage in manner similar to unfurling sail or extending window shade. Number of layers deployed depends on required degree of protection, and could be as large as five.

  17. Accommodating Thickness in Origami-Based Deployable Arrays

    NASA Technical Reports Server (NTRS)

    Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.

    2013-01-01

    The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).

  18. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  19. Omaha Metropolitan Area, ITS Early Deployment Planning Study, Strategic Deployment Plan, Appendices E: Deployment Scenarios, F: Project Descriptions, G: Support Technologies, H: Cost Estimate Assumptions

    DOT National Transportation Integrated Search

    1995-12-15

    THE OBJECTIVE OF THE OMAHA INTELLIGENT TRANSPORTATION (ITS) EARLY DEPLOYMENT STUDY IS TO DEVELOP A STRATEGIC PLAN FOR THE DEPLOYMENT OF ITS TECHNOLOGIES IN THE OMAHA METROPOLITAN AREA. THE PLAN WILL IDENTIFY THE ITS USER SERVICES THAT WILL BE MOST BE...

  20. Supporting Knowledge Transfer in IS Deployment Projects

    NASA Astrophysics Data System (ADS)

    Schönström, Mikael

    To deploy new information systems is an expensive and complex task, and does seldom result in successful usage where the system adds strategic value to the firm (e.g. Sharma et al. 2003). It has been argued that innovation diffusion is a knowledge integration problem (Newell et al. 2000). Knowledge about business processes, deployment processes, information systems and technology are needed in a large-scale deployment of a corporate IS. These deployments can therefore to a large extent be argued to be a knowledge management (KM) problem. An effective deployment requires that knowledge about the system is effectively transferred to the target organization (Ko et al. 2005).

  1. A thin membrane artificial muscle rotary motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.

    2010-01-01

    Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.

  2. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    NASA Astrophysics Data System (ADS)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  3. Fabrication of Electrophoretic Display Driven by Membrane Switch Array

    NASA Astrophysics Data System (ADS)

    Senda, Kazuo; Usui, Hiroaki

    2010-04-01

    Electrophoretic devices (EPDs) and organic light-emitting diodes (OLEDs) have potential application in a large-area flexible displays, such as digital signage. For this purpose, a new backplane is capable of driving a large unit is required instead of thin-film transistors. In this paper we describe the fabrication of a membrane switch array suitable for driving large-scale flat-panel displays. An array of membrane switches was prepared using flexible printed circuit (FPC) technology of polyimide films, by combining low-temperature processes of lamination and copper electroplating methods. An array of 256 matrix switches with a pixel size of 7 mm2 was prepared to drive the EPD front panel. The switches were driven at a voltage of about 40 V and a frequency of 10 Hz. The operation characteristics agreed well with the result of the theoretical calculation. The calculation also suggested that driving voltage can be lowered by increasing pixel size. The contact resistance of the membrane switch was as low as 0.2 Ω, which implies the wide applicability of this device for driving a variety of elements.

  4. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  5. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  6. Deployer Performance Results for the TSS-1 Mission

    NASA Technical Reports Server (NTRS)

    Marshall, Leland S.; Geiger, Ronald V.

    1995-01-01

    Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the

  7. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  8. A cellulosic responsive "living" membrane.

    PubMed

    Qin, Guokui; Panilaitis, Bruce J; Kaplan, Zhongyuan Sun David L

    2014-01-16

    Bacterial cellulose has been demonstrated to be a remarkably versatile biomaterial and widely used in biomedical applications due to its unique physical properties. Here we reported for the first time a "living membrane" system based on recombinant Escherichia coli bacterial strains entrapped in cellulosic membranes produced by Gluconacetobacter xylinus. Biologically driven detection and identification of a range of target molecules presents unique challenges, and requires that detection methods are developed to be rapid, specific and sensitive. The compatibility of G. xylinus and recombinant E. coli strains was first investigated for co-cultivation, and the relationship between the number of entrapped E. coli and the level of inducible signal achieved was further explored by fluorescent signal observation in confocal microscopy. Finally to amplify the response to inducers for maximum fluorescent signal, a positive-feedback genetic amplifier was designed within recombinant E. coli strain entrapped in the living cellulosic membrane system, allowing for the detection mechanism to be extremely sensitive and resulting in a significant fluorescent signal from a single receptor binding event. The living membrane system proposed here will create devices of greater complexity in function for applications in biological and chemical detection. Copyright © 2013. Published by Elsevier Ltd.

  9. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hidden (end-on) patent ductus arteriosus: recognition and device closure.

    PubMed

    Garg, Naveen; Madan, Bevunahalli Kantharaj

    2016-02-01

    Sometimes, it is difficult to visualize a patent ductus arteriosus and deploy a device in the standard lateral view because of an end-on orientation. The right anterior oblique view may be helpful by separating the ductus arteriosus from the aorta. This study was undertaken to evaluate the incidence of end-on patent ductus arteriosus and the utility of the right anterior oblique view during device closure. Aortography was performed in lateral and right anterior oblique views before, during, and after successful device deployment in 117 consecutive patients. When a ductus arteriosus was not clearly visible in the lateral view due to overlapping by the aorta, it was termed "right anterior oblique view useful". The types of patent ductus arteriosus were A, B, C, and E in 86 (73.5%), 20 (17.1%), 4 (3.4%), and 7 (6.0%) patients, respectively. An end-on ductus arteriosus was present in 24 (20.5%) patients (14 type B, 10 type A). The right anterior oblique view was useful during device closure in 15 (12.8%) cases (all end-on type). Among all cases of end-on patent ductus arteriosus, it was useful in 62.5% (most type B and a few type A). In all of these, the device appeared obliquely oriented and foreshortened in the lateral view but fully profiled in the right anterior oblique view. Recognizing an end-on patent ductus arteriosus and utilizing the right anterior oblique view simplified device closure. For ducts well-profiled in the lateral view, the right anterior oblique view is unnecessary and avoidable. © The Author(s) 2016.

  11. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  12. Ultra-thin Oxide Membranes: Synthesis and Carrier Transport

    NASA Astrophysics Data System (ADS)

    Sim, Jai Sung

    Self-supported freestanding membranes are films that are devoid of any underlying supporting layers. The key advantage of such structures is that, due to the lack of substrate effects - both mechanical and chemical, the true native properties of the material can be probed. This is crucial since many of the studies done on materials that are used as freestanding membranes are done as films clamped to substrates or in the bulk form. This thesis focuses on the synthesis and fabrication as well as electrical studies of free standing ultrathin < 40nm oxide membranes. It also is one of the first demonstrations for electrically probing nanoscale freestanding oxide membranes. Fabrication of such membranes is non-trivial as oxide materials are often brittle and difficult to handle. Therefore, it requires an understanding of thin plate mechanics coupled with controllable thin film deposition process. Taking things a step further, to electrically probe these membranes required design of complex device architecture and extensive optimization of nano-fabrication processes. The challenges and optimized fabrication method of such membranes are demonstrated. Three materials are probed in this study, VO2, TiO2, and CeO2. VO2 for understanding structural considerations for electronic phase change and nature of ionic liquid gating, TiO2 and CeO2 for understanding surface conduction properties and surface chemistry. The VO2 study shows shift in metal-insulator transition (MIT) temperature arising from stress relaxation and opening of the hysteresis. The ionic liquid gating studies showed reversible modulation of channel resistance and allowed distinguishing bulk process from the surface effects. Comparing the ionic liquid gating experiments to hydrogen doping experiments illustrated that ionic liquid gating can be a surface limited electrostatic effect, if the critical voltage threshold is not exceeded. TiO2 study shows creation of non-stoichiometric forms under ion milling. Utilizing

  13. A module concept for a cable-mesh deployable antenna

    NASA Technical Reports Server (NTRS)

    Meguro, Akira

    1993-01-01

    This paper describes the design, manufacture, and deployment tests of a modular mesh deployable antenna. Reaction forces and moments created by a mesh and cable network are estimated using CASA. Deployment analysis is carried out using DADS. Three types of deployable antenna modules are developed and fabricated. Their design approach and deployment characteristics are also presented. Ground deployment tests are performed to verify design criteria.

  14. Six pitfalls in firewall deployment

    NASA Astrophysics Data System (ADS)

    Wilner, Bruce

    1996-03-01

    This note describes six key pitfalls in the deployment of popular commercial firewalls. The term `deployment' is intended to include the architecture of the firewall software itself, the integration of the firewall with the operating system platform, and the interconnection of the complete hardware/software combination within its target environment. After reviewing the evolution of Internet firewalls against the backdrop of classical trusted systems development, specific flaws and oversights in the familiar commercial deployments are analyzed in some detail. While significantly costlier solutions are available that address some of these problems, the analysis is applicable to the overwhelming majority of firewalls in use at both commercial and Government installations.

  15. Development of a Humane Slaughter Device for Green Turtles for Use by Traditional Owners in the Torres Strait Islands, Australia.

    PubMed

    Flint, Mark; Mills, Paul C; Loban, Frank; Simpson, Tristan; Lui, Stan; Fujii, Ronald; Whap, Don; Flint, Jaylene B; Owen, Helen

    2017-01-01

    Marine turtles are caught and slaughtered for consumption as part of traditional indigenous community harvest in Australia as well as in many countries in which marine turtles can be found. However, changes to the Animal Care and Protection Act 2001 in 2012 resulted in Australian indigenous hunters becoming potentially liable to prosecution for using traditional practices to slaughter marine turtles. To provide indigenous hunters with an alternative scientifically tested method to hunt, we developed and tested a humane method as an option to use in indigenous communities. Between 2012 and 2015, a device was developed, tested on 11 carcasses to determine effectiveness and repeatability, used on 5 anaesthetised animals independently diagnosed as candidates for euthanasia, and ultimately used on 2 healthy, conscious animals as part of normal indigenous community subsistence harvesting under observation before being left with the communities for use. Feedback was sought from the communities on the suitability and potential adoption of the device. The device effectively ablated the hind brain and severed the spinal cord when deployed in 81% (9/11) of the tested carcasses, with death in 100% (5/5) of turtles, on average, within 78 seconds of deployment on anaesthetised turtles and death in 100% (2/2) of turtles, on average, within 144 seconds when deployed on healthy turtles within community. Failure to ablate the hindbrain and sever the spinal cord in the cadaver cases was due to incorrect deployment of the device. This device showed promise as an alternative euthanasia method available to indigenous communities of the Torres Straits. Further work is required to encourage acceptance by hunters.

  16. Development of a Humane Slaughter Device for Green Turtles for Use by Traditional Owners in the Torres Strait Islands, Australia

    PubMed Central

    Flint, Mark; Mills, Paul C.; Loban, Frank; Simpson, Tristan; Lui, Stan; Fujii, Ronald; Whap, Don; Flint, Jaylene B.; Owen, Helen

    2017-01-01

    Marine turtles are caught and slaughtered for consumption as part of traditional indigenous community harvest in Australia as well as in many countries in which marine turtles can be found. However, changes to the Animal Care and Protection Act 2001 in 2012 resulted in Australian indigenous hunters becoming potentially liable to prosecution for using traditional practices to slaughter marine turtles. To provide indigenous hunters with an alternative scientifically tested method to hunt, we developed and tested a humane method as an option to use in indigenous communities. Between 2012 and 2015, a device was developed, tested on 11 carcasses to determine effectiveness and repeatability, used on 5 anaesthetised animals independently diagnosed as candidates for euthanasia, and ultimately used on 2 healthy, conscious animals as part of normal indigenous community subsistence harvesting under observation before being left with the communities for use. Feedback was sought from the communities on the suitability and potential adoption of the device. The device effectively ablated the hind brain and severed the spinal cord when deployed in 81% (9/11) of the tested carcasses, with death in 100% (5/5) of turtles, on average, within 78 seconds of deployment on anaesthetised turtles and death in 100% (2/2) of turtles, on average, within 144 seconds when deployed on healthy turtles within community. Failure to ablate the hindbrain and sever the spinal cord in the cadaver cases was due to incorrect deployment of the device. This device showed promise as an alternative euthanasia method available to indigenous communities of the Torres Straits. Further work is required to encourage acceptance by hunters. PMID:28076432

  17. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  18. Deployment of a Prototype Plant GFP Imager at the Arthur Clarke Mars Greenhouse of the Haughton Mars Project.

    PubMed

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Braham, Stephen; Neron, Philip; Murdoch, Trevor; Graham, Thomas; Ferl, Robert J

    2008-04-18

    The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP) as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG) an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.

  19. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments

    PubMed Central

    Robertson, A. H.; Larivière, C.; Leduc, C. R.; McGillis, Z.; Eger, T.; Godwin, A.; Larivière, M.; Dorman, S. C.

    2017-01-01

    Introduction The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Methods Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Results Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22–25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40–50%; and low: 27–37% respectively, across deployment types. Conclusions This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices. PMID:28107380

  20. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments.

    PubMed

    Robertson, A H; Larivière, C; Leduc, C R; McGillis, Z; Eger, T; Godwin, A; Larivière, M; Dorman, S C

    2017-01-01

    The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22-25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40-50%; and low: 27-37% respectively, across deployment types. This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices.

  1. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  2. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.

    PubMed

    Modestino, Miguel A; Haussener, Sophia

    2015-01-01

    Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

  3. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  4. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    PubMed

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  5. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  6. Functionalized Vesicles by Microfluidic Device.

    PubMed

    Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham

    2017-01-01

    In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.

  7. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    PubMed

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.

  8. Small expendable deployer system measurement analysis

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.

    1988-01-01

    The first on-orbit experiment of the Small Expendable Deployer System (SEDS) for tethered satellites will collect telemetry data for tether length, rate of deployment, and tether tension. The post-flight analysis will use this data to reconstruct the deployment history and determine dynamic characteristics such as tether shape and payload position. Linearized observability analysis has determined that these measurements are adequate to define states for a two-mass tether model, and two state estimators were written.

  9. PANATIKI: A Network Access Control Implementation Based on PANA for IoT Devices

    PubMed Central

    Sanchez, Pedro Moreno; Lopez, Rafa Marin; Gomez Skarmeta, Antonio F.

    2013-01-01

    Internet of Things (IoT) networks are the pillar of recent novel scenarios, such as smart cities or e-healthcare applications. Among other challenges, these networks cover the deployment and interaction of small devices with constrained capabilities and Internet protocol (IP)-based networking connectivity. These constrained devices usually require connection to the Internet to exchange information (e.g., management or sensing data) or access network services. However, only authenticated and authorized devices can, in general, establish this connection. The so-called authentication, authorization and accounting (AAA) services are in charge of performing these tasks on the Internet. Thus, it is necessary to deploy protocols that allow constrained devices to verify their credentials against AAA infrastructures. The Protocol for Carrying Authentication for Network Access (PANA) has been standardized by the Internet engineering task force (IETF) to carry the Extensible Authentication Protocol (EAP), which provides flexible authentication upon the presence of AAA. To the best of our knowledge, this paper is the first deep study of the feasibility of EAP/PANA for network access control in constrained devices. We provide light-weight versions and implementations of these protocols to fit them into constrained devices. These versions have been designed to reduce the impact in standard specifications. The goal of this work is two-fold: (1) to demonstrate the feasibility of EAP/PANA in IoT devices; (2) to provide the scientific community with the first light-weight interoperable implementation of EAP/PANA for constrained devices in the Contiki operating system (Contiki OS), called PANATIKI. The paper also shows a testbed, simulations and experimental results obtained from real and simulated constrained devices. PMID:24189332

  10. PANATIKI: a network access control implementation based on PANA for IoT devices.

    PubMed

    Moreno Sanchez, Pedro; Marin Lopez, Rafa; Gomez Skarmeta, Antonio F

    2013-11-01

    Internet of Things (IoT) networks are the pillar of recent novel scenarios, such as smart cities or e-healthcare applications. Among other challenges, these networks cover the deployment and interaction of small devices with constrained capabilities and Internet protocol (IP)-based networking connectivity. These constrained devices usually require connection to the Internet to exchange information (e.g., management or sensing data) or access network services. However, only authenticated and authorized devices can, in general, establish this connection. The so-called authentication, authorization and accounting (AAA) services are in charge of performing these tasks on the Internet. Thus, it is necessary to deploy protocols that allow constrained devices to verify their credentials against AAA infrastructures. The Protocol for Carrying Authentication for Network Access (PANA) has been standardized by the Internet engineering task force (IETF) to carry the Extensible Authentication Protocol (EAP), which provides flexible authentication upon the presence of AAA. To the best of our knowledge, this paper is the first deep study of the feasibility of EAP/PANA for network access control in constrained devices. We provide light-weight versions and implementations of these protocols to fit them into constrained devices. These versions have been designed to reduce the impact in standard specifications. The goal of this work is two-fold: (1) to demonstrate the feasibility of EAP/PANA in IoT devices; (2) to provide the scientific community with the first light-weight interoperable implementation of EAP/PANA for constrained devices in the Contiki operating system (Contiki OS), called PANATIKI. The paper also shows a testbed, simulations and experimental results obtained from real and simulated constrained devices.

  11. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan

    PubMed Central

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air “burn pits” lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe–positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health. PMID:24443711

  12. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan.

    PubMed

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air "burn pits" lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe-positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health.

  13. Hydrogen production by high temperature water splitting using electron conducting membranes

    DOEpatents

    Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.

    2006-08-08

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.

  14. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes

    NASA Astrophysics Data System (ADS)

    Carlsen, Autumn T.; Briggs, Kyle; Hall, Adam R.; Tabard-Cossa, Vincent

    2017-02-01

    We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

  15. Lightweight, Self-Deployable Wheels

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur; Sokolowski, Witold; Rand, Peter

    2003-01-01

    Ultra-lightweight, self-deployable wheels made of polymer foams have been demonstrated. These wheels are an addition to the roster of cold hibernated elastic memory (CHEM) structural applications. Intended originally for use on nanorovers (very small planetary-exploration robotic vehicles), CHEM wheels could also be used for many commercial applications, such as in toys. The CHEM concept was reported in "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 56. To recapitulate: A CHEM structure is fabricated from a shape-memory polymer (SMP) foam. The structure is compressed to a very small volume while in its rubbery state above its glass-transition temperature (Tg). Once compressed, the structure can be cooled below Tg to its glassy state. As long as the temperature remains deploy) to its original size and shape. Once thus deployed, the CHEM structure can be rigidified by cooling below Tg to the glassy state. The structure could be subsequently reheated above Tg and recompacted. The compaction/deployment/rigidification cycle could be repeated as many times as needed.

  16. Methods and Apparatus for Deployable Swirl Vanes

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2017-01-01

    An aircraft control structure for drag management includes a nozzle structure configured to exhaust a swirling fluid stream. A plurality of swirl vanes are positioned within the nozzle structure, and an actuation subsystem is configured to cause the plurality of swirl vanes to move from a deployed state to a non-deployed state. In the non-deployed state, the plurality of swirl vanes are substantially flush with the inner surface of the nozzle structure. In the deployed state, the plurality of swirl vanes produce the swirling fluid stream.

  17. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  18. Free-standing membrane polymer laser on the end of an optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie

    2016-01-25

    One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.

  19. Aquaporin-graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination.

    PubMed

    Jakowiecki, Jakub; Sztyler, Agnieszka; Filipek, Slawomir; Li, Pingzuo; Raman, Karthik; Barathiraja, Natarajan; Ramakrishna, Seeram; Eswara, Jairam R; Altaee, Ali; Sharif, Adel O; Ajayan, Pulickel M; Renugopalakrishnan, Venkatesan

    2018-06-06

    The aquaporin superfamily of hydrophobic integral membrane proteins constitutes water channels essential to the movement of water across the cell membrane, maintaining homeostatic equilibrium. During the passage of water between the extracellular and intracellular sides of the cell, aquaporins act as ultra-sensitive filters. Owing to their hydrophobic nature, aquaporins self-assemble in phospholipids. If a proper choice of lipids is made then the aquaporin biomimetic membrane can be used in the design of an artificial kidney. In combination with graphene, the aquaporin biomimetic membrane finds practical application in desalination and water recycling using mostly Escherichia coli AqpZ. Recently, human aquaporin 1 has emerged as an important biomarker in renal cell carcinoma. At present, the ultra-sensitive sensing of renal cell carcinoma is cumbersome. Hence, we discuss the use of epitopes from monoclonal antibodies as a probe for a point-of-care device for sensing renal cell carcinoma. This device works by immobilizing the antibody on the surface of a single-layer graphene, that is, as a microfluidic device for sensing renal cell carcinoma.

  20. Rover deployment system for lunar landing mission

    NASA Astrophysics Data System (ADS)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  1. Modular robotic assembly of small devices.

    PubMed

    Frauenfelder, M

    2000-01-01

    The use of robots for the automatic assembly of devices of up to 100 x 100 x 100 mm is relatively uncommon today. Insufficient return on investment and the long lead times that are required have been limiting factors. Innovations in vision technology have led to the development of robotic assembly systems that employ flexible part-feeding. The benefits of these systems are described, which suggest that better ratios of price to productivity and deployment times are now achievable.

  2. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  3. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096126 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  4. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096122 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  5. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  6. Injuries before and after deployments to Afghanistan and Iraq.

    PubMed

    Knapik, J J; Spiess, A; Grier, T; Sharp, M A; Lester, M E; Marin, R; Jones, B H

    2012-06-01

    To examine outpatient injuries before and after deployments of elements of the 10th Mountain Division to Afghanistan (n = 505 men) and the 1st Cavalry Division to Iraq (n = 3242 men). Observational. The military units provided a list of deployed soldiers, and soldiers' outpatient medical encounters were obtained from the Defense Medical Surveillance System. Cumulative injury incidence was examined for two consecutive 90-day periods before the deployments (Periods 1-2) and two consecutive 90-day periods after the deployments (Periods 3-4). Both groups showed post-deployment increases in the overall incidence of injury (Afghanistan group = 14.1%, 14.1%, 16.4, 23.4%; Iraq Group = 15.1%, 12.4%, 35.4%, 43.4%; Periods 1-4, respectively). Soldiers with pre-deployment injuries were 1.4-3.0 times more likely to experience post-deployment injuries. This study found a post-deployment increase in the incidence of outpatient injury. Also, soldiers with pre-deployment injuries were more likely to experience post-deployment injuries. Published by Elsevier Ltd.

  7. Laboratory and in vivo transport characterization of hollow fiber membranes and adjacent scar tissue that forms following their implantation in the central nervous system

    NASA Astrophysics Data System (ADS)

    Bridge, Michael John

    Hollow fiber membrane (HFM) cell encapsulation devices use a semipermeable membrane to physically immunoisolate transplanted secretory cells from host tissues and high molecular weight solutes. Advantages inherent to macroencapsulation technology have led to extensive research towards their utilization for treating a wide range of disorders including a number of neurodegenerative diseases and diabetes. Although feasibility studies have already established the therapeutic potential of macroencapsulation technology, a common observation among these and later studies is diminishing therapeutic efficacy over a span of a few weeks following implantation of devices. Progress towards fulfilling the therapeutic potential of this technology initially recognized by investigators has potentially been hampered by inadequate diffusive transport characterization of membranes employed in studies. In addition, the potential effects of host tissue responses following central nervous system (CNS) implantation of these devices is completely unknown. To address these issues a membrane characterization instrument capable of efficiently characterizing the diffusive and convective transport properties of individual HFM segments, such as they are used in devices, was developed. The instrument was then employed to study the effects of ethanol exposure, a common sterilization method, on PAN-PVC membranes commonly used in CNS implantation macro encapsulation device studies. Lastly, the solute diffusivity properties of tissue that forms adjacent to the membranes of brain implanted transcranial access devices were investigated. Coinciding with this investigation was the development of a novel technique for examining the solute diffusivity properties in the extracellular spaces of CNS tissue.

  8. 75 FR 54493 - Cardiovascular Devices; Reclassification of Certain Percutaneous Transluminal Coronary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... catheters when used for treatment of acute myocardial infarction (MI), treatment of in-stent restenosis (ISR) and/or post-deployment stent expansion. III. Device Description FDA identifies this generic type of... for the treatment of acute myocardial infarction; treatment of in-stent restenosis (ISR) and/or post...

  9. A robustness test of the braided device foreshortening algorithm

    NASA Astrophysics Data System (ADS)

    Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio

    2017-11-01

    Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.

  10. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel

    2003-01-01

    This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.

  11. Deployment and Adverse Pregnancy Outcomes: Primary Findings and Methodological Considerations.

    PubMed

    Katon, Jodie; Cypel, Yasmin; Raza, Mubashra; Zephyrin, Laurie; Reiber, Gayle; Yano, Elizabeth M; Barth, Shannon; Schneiderman, Aaron

    2017-02-01

    Objective To characterize the pregnancy outcomes of women Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans including prevalence of preterm delivery, low birth weight, and macrosomia, and to highlight methodological limitations that can impact findings. Methods A retrospective cohort study was conducted starting in 2014 analyzing data from the 2009 to 2011 National Health Study for a New Generation of US Veterans, which sampled Veterans deployed and not deployed to OIF/OEF. All pregnancies resulting in a live birth were included, and categorized as occurring among non-deployers, before deployment, during deployment, or after deployment. Outcomes included preterm birth, low birth weight, and macrosomia. The association of deployment with selected outcomes was estimated using separate general estimating equations to account for lack of outcome independence among women contributing multiple pregnancies. Adjustment variables included maternal age at outcome, and race/ethnicity. Results There were 2276 live births (191 preterm births, 153 low birth weight infants, and 272 macrosomic infants). Compared with pregnancies before deployment, pregnancies among non-deployers and those after deployment appeared to have greater risk of preterm birth [non-deployers: odds ratio (OR) = 2.16, 95 % confidence interval (CI) 1.25, 3.72; after deployment: OR = 1.90, 95 % CI 0.90, 4.02]. A similar pattern was observed for low birth weight. No association of deployment with macrosomia was detected. Discussion Compared with non-deployers, those who eventually deploy appear to have better pregnancy outcomes prior to deployment, but this advantage is no longer apparent after deployment. Non-deployers may not be an appropriate reference group to study the putative health impacts of deployment on pregnancy outcomes.

  12. Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi

    2018-04-01

    Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.

  13. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  14. Deployment of assistive living technology in a nursing home environment: methods and lessons learned

    PubMed Central

    2013-01-01

    Background With an ever-growing ageing population, dementia is fast becoming the chronic disease of the 21st century. Elderly people affected with dementia progressively lose their autonomy as they encounter problems in their Activities of Daily Living (ADLs). Hence, they need supervision and assistance from their family members or professional caregivers, which can often lead to underestimated psychological and financial stress for all parties. The use of Ambient Assistive Living (AAL) technologies aims to empower people with dementia and relieve the burden of their caregivers. The aim of this paper is to present the approach we have adopted to develop and deploy a system for ambient assistive living in an operating nursing home, and evaluate its performance and usability in real conditions. Based on this approach, we emphasise on the importance of deployments in real world settings as opposed to prototype testing in laboratories. Methods We chose to conduct this work in close partnership with end-users (dementia patients) and specialists in dementia care (professional caregivers). Our trial was conducted during a period of 14 months within three rooms in a nursing home in Singapore, and with the participation of eight dementia patients and two caregivers. A technical ambient assistive living solution, consisting of a set of sensors and devices controlled by a software platform, was deployed in the collaborating nursing home. The trial was preceded by a pre-deployment period to organise several observation sessions with dementia patients and focus group discussions with professional caregivers. A process of ground truth and system’s log data gathering was also planned prior to the trial and a system performance evaluation was realised during the deployment period with the help of caregivers. An ethical approval was obtained prior to real life deployment of our solution. Results Patients’ observations and discussions allowed us to gather a set of requirements

  15. AASHTO connected vehicle infrastructure deployment analysis.

    DOT National Transportation Integrated Search

    2011-06-17

    This report describes a deployment scenario for Connected Vehicle infrastructure by state and local transportation agencies, together with a series of strategies and actions to be performed by AASHTO to support application development and deployment.

  16. Low-autofluorescence fluoropolymer membrane filters for cell filtration

    NASA Astrophysics Data System (ADS)

    Kihara, Naoto; Kuboyama, Daiki; Onoshima, Daisuke; Ishikawa, Kenji; Tanaka, Hiromasa; Ozawa, Naoya; Hase, Tetsunari; Koguchi, Ryohei; Yukawa, Hiroshi; Odaka, Hidefumi; Hasegawa, Yoshinori; Baba, Yoshinobu; Hori, Masaru

    2018-06-01

    A fluoropolymer membrane filter with through-holes was fabricated by photolithographic patterning and the dry etching method. 380,000 highly packed through-holes, each with a diameter of 7 µm were able to cover a whole area with a diameter of 13 mm. Ethylene tetrafluoroethylene (ETFE) was used as the membrane, which was suitable for the fluorescence detection of rare cells such as circulating tumor cells (CTCs) in human blood. The device fabrication for the size based capture of rare cells in blood such as CTCs is realized in this study.

  17. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  18. ITS strategic deployment plan : executive summary

    DOT National Transportation Integrated Search

    1997-02-27

    The Salt Lake Valley ITS Early Deployment Planning Study-Phase II prepared the framework to deploy candidate Intelligent Transportation System (ITS) projects that address Salt Lake Valleys transportation needs. A planning process was used that inc...

  19. Progress on Background-Limited Membrane-Isolated TES Bolometers for Far-IR/Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.

    2006-01-01

    To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si3N4 membrane and show how this result implies that one can make membrane-isolation bolometers with a response time which is fast enough for BLISS.

  20. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  1. Gas-Permeable Membrane-Based Conductivity Probe Capable of In Situ Real-Time Monitoring of Ammonia in Aquatic Environments.

    PubMed

    Li, Tianling; Panther, Jared; Qiu, Yuan; Liu, Chang; Huang, Jianyin; Wu, Yonghong; Wong, Po Keung; An, Taicheng; Zhang, Shanqing; Zhao, Huijun

    2017-11-21

    Aquatic ammonia has toxic effects on aquatic life. This work reports a gas-permeable membrane-based conductivity probe (GPMCP) developed for real-time monitoring of ammonia in aquatic environments. The GPMCP innovatively combines a gas-permeable membrane with a boric acid receiving phase to selectively extract ammonia from samples and form ammonium at the inner membrane interface. The rate of the receiving phase conductivity increase is directly proportional to the instantaneous ammonia concentration in the sample, which can be rapidly and sensitively determined by the embedded conductivity detector. A precalibration strategy was developed to eliminate the need for an ongoing calibration. The analytical principle and GPMCP performance were systematically validated. The laboratory results showed that ammonia concentrations ranging from 2 to 50 000 μg L -1 can be detected. The field deployment results demonstrated the GPMCP's ability to obtain high-resolution continuous ammonia concentration profiles and the absolute average ammonia concentration over a prolonged deployment period. By inputting the temperature and pH data, the ammonium concentration can be simultaneously derived from the corresponding ammonia concentration. The GPMCP embeds a sophisticated analytical principle with the inherent advantages of high selectivity, sensitivity, and accuracy, and it can be used as an effective tool for long-term, large-scale, aquatic-environment assessments.

  2. Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.

    PubMed

    Rues, Ralf-Bernhardt; Gräwe, Alexander; Henrich, Erik; Bernhard, Frank

    2017-01-01

    Cell-free expression allows to synthesize membrane proteins in completely new formats that can relatively easily be customized for particular applications. Amphiphilic superstructures such as micelles, lipomicelles, or nanodiscs can be provided as nano-devices for the solubilization of membrane proteins. Defined empty bilayers in the form of nanodiscs offer native like environments for membrane proteins, supporting functional folding, proper oligomeric assembly as well as stability. Even very difficult and detergent-sensitive membrane proteins can be addressed by the combination of nanodisc technology with efficient cell-free expression systems as the direct co-translational insertion of nascent membrane proteins into supplied preassembled nanodiscs is possible. This chapter provides updated protocols for the synthesis of membrane proteins in presence of preassembled nanodiscs suitable for emerging applications such as screening of lipid effects on membrane protein function and the modulation of oligomeric complex formation.

  3. Rotating carbon nanotube membrane filter for water desalination

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  4. Rotating carbon nanotube membrane filter for water desalination

    PubMed Central

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  5. Design and implementation of a seamless and comprehensive integrated medical device interface system for outpatient electronic medical records in a general hospital.

    PubMed

    Choi, Jong Soo; Lee, Jean Hyoung; Park, Jong Hwan; Nam, Han Seung; Kwon, Hyuknam; Kim, Dongsoo; Park, Seung Woo

    2011-04-01

    Implementing an efficient Electronic Medical Record (EMR) system is regarded as one of the key strategies for improving the quality of healthcare services. However, the system's interoperability between medical devices and the EMR is a big barrier to deploying the EMR system in an outpatient clinical setting. The purpose of this study is to design a framework for a seamless and comprehensively integrated medical device interface system, and to develop and implement a system for accelerating the deployment of the EMR system. We designed and developed a framework that could transform data from medical devices into the relevant standards and then store them in the EMR. The framework is composed of 5 interfacing methods according to the types of medical devices utilized at an outpatient clinical setting, registered in Samsung Medical Center (SMC) database. The medical devices used for this study were devices that have microchips embedded or that came packaged with personal computers. The devices are completely integrated with the EMR based on SMC's long term IT strategies. First deployment of integrating 352 medical devices into the EMR took place in April, 2006, and it took about 48 months. By March, 2010, every medical device was interfaced with the EMR. About 66,000 medical examinations per month were performed taking up an average of 50GB of storage space. We surveyed users, mainly the technicians. Out of 73 that responded, 76% of the respondents replied that they were strongly satisfied or satisfied, 20% replied as being neutral and only 4% complained about the speed of the system, which was attributed to the slow speed of the old-fashioned medical devices and computers. The current implementation of the medical device interface system based on the SMC framework significantly streamlines the clinical workflow in a satisfactory manner. 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Prolonged energy harvesting for ingestible devices.

    PubMed

    Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni

    2017-01-01

    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm 2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.

  7. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is

  8. Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography

    PubMed Central

    Hirtz, Michael; Oikonomou, Antonios; Georgiou, Thanasis; Fuchs, Harald; Vijayaraghavan, Aravind

    2013-01-01

    The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene. PMID:24107937

  9. U.S. Army physical demands study: Prevalence and frequency of performing physically demanding tasks in deployed and non-deployed settings.

    PubMed

    Boye, Michael W; Cohen, Bruce S; Sharp, Marilyn A; Canino, Maria C; Foulis, Stephen A; Larcom, Kathleen; Smith, Laurel

    2017-11-01

    To compare percentages of on-duty time spent performing physically demanding soldier tasks in non-deployed and deployed settings, and secondarily examine the number of physically demanding tasks performed among five Army combat arms occupational specialties. Job task analysis. Soldiers (n=1295; over 99% serving on active duty) across five Army jobs completed one of three questionnaires developed using reviews of job and task related documents, input from subject matter experts, observation of task performance, and conduct of focus groups. Soldiers reported estimates of the total on-duty time spent performing physically demanding tasks in both deployed and non-deployed settings. One-way analyses of variance and Duncan post-hoc tests were used to compare percentage time differences by job. Two-tailed t-tests were used to evaluate differences by setting. Frequency analyses were used to present supplementary findings. Soldiers reported performing physically demanding job-specific tasks 17.7% of the time while non-deployed and 19.6% of the time while deployed. There were significant differences in time spent on job-specific tasks across settings (p<0.05) for three of five occupational specialties. When categories of physically demanding tasks were grouped, all soldiers reported spending more time on physically demanding tasks when deployed (p<0.001). Twenty-five percent reported performing less than half the physically demanding tasks represented on the questionnaire in the last two years. Soldiers spent more time performing physically demanding tasks while deployed compared to non-deployed but spent similar amounts of time performing job-specific tasks. Published by Elsevier Ltd.

  10. Design and Deployment of a Pediatric Cardiac Arrest Surveillance System.

    PubMed

    Duval-Arnould, Jordan Michel; Newton, Heather Marie; McNamara, Leann; Engorn, Branden Michael; Jones, Kareen; Bernier, Meghan; Dodge, Pamela; Salamone, Cheryl; Bhalala, Utpal; Jeffers, Justin M; Engineer, Lilly; Diener-West, Marie; Hunt, Elizabeth Anne

    2018-01-01

    We aimed to increase detection of pediatric cardiopulmonary resuscitation (CPR) events and collection of physiologic and performance data for use in quality improvement (QI) efforts. We developed a workflow-driven surveillance system that leveraged organizational information technology systems to trigger CPR detection and analysis processes. We characterized detection by notification source, type, location, and year, and compared it to previous methods of detection. From 1/1/2013 through 12/31/2015, there were 2,986 unique notifications associated with 2,145 events, 317 requiring CPR. PICU and PEDS-ED accounted for 65% of CPR events, whereas floor care areas were responsible for only 3% of events. 100% of PEDS-OR and >70% of PICU CPR events would not have been included in QI efforts. Performance data from both defibrillator and bedside monitor increased annually. (2013: 1%; 2014: 18%; 2015: 27%). After deployment of this system, detection has increased ∼9-fold and performance data collection increased annually. Had the system not been deployed, 100% of PEDS-OR and 50-70% of PICU, NICU, and PEDS-ED events would have been missed. By leveraging hospital information technology and medical device data, identification of pediatric cardiac arrest with an associated increased capture in the proportion of objective performance data is possible.

  11. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  12. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  13. Note: Force- and torque-detection of high frequency electron spin resonance using a membrane-type surface-stress sensor

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Ishimura, Kento; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi

    2018-03-01

    We developed a practical useful method for force- and torque-detected electron spin resonance (FDESR/TDESR) spectroscopy in the millimeter wave frequency region. This method uses a commercially available membrane-type surface-stress (MSS) sensor. The MSS is composed of a silicon membrane supported by four beams in which piezoresistive paths are integrated for detecting the deformation of the membrane. Although this device has a lower spin sensitivity than a microcantilever, it offers several distinct advantages, including mechanical strength, ease of use, and versatility. These advantages make this device suitable for practical applications that require FDESR/TDESR.

  14. New Developments for Radiation Enhancements from Metal Surfaces by Using Nanoscale Materials in the Membrane

    NASA Astrophysics Data System (ADS)

    Yamada, Koji; Matsuda, Masami

    2017-12-01

    The enhancements of thermal radiations from the surfaces of devices are very important for electric machines to prevent from heating up and/or efficiency degradations. In this investigation, new applications of micro-scale membrane of Si, SiO2 etc. on the metal surfaces have been studied to cool down the temperature without breaking insulations of the devices by selecting materials. The modified black-body radiations were sensitively detected by thermisters with sub-second responses. The optimum membrane thicknesses were successfully determined by subtractions a of radiation intensities between those at membranes with and without membrane, respectively. We obtained the best cooling condition in SiO2 membrane with 20μmt for an Al-plate of 10cmx10cmx1mmt. Further, we observed the detaching/attaching processes of massive molecule clusters from the metal surface as a sudden change in temperature changes just like the noises in the detectors. A characteristic pattern of temperature change was observed in diatomite membranes during the cooling process in a temperature range between 200-50°C. These radiation phenomena as a function of temperature might be available as a molecular analysis on the metal surface.

  15. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  16. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  17. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  18. Collective cell behavior on basement membranes floating in space

    NASA Astrophysics Data System (ADS)

    Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas

    The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.

  19. A Bluetooth-Based Device Management Platform for Smart Sensor Environment

    NASA Astrophysics Data System (ADS)

    Lim, Ivan Boon-Kiat; Yow, Kin Choong

    In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.

  20. Microfluidic systems with ion-selective membranes.

    PubMed

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.