Science.gov

Sample records for membrane sodium transport

  1. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters.

    PubMed

    LeVine, Michael V; Cuendet, Michel A; Khelashvili, George; Weinstein, Harel

    2016-06-01

    Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane. PMID:26892914

  2. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.

    PubMed Central

    Russell, J B; Strobel, H J; Driessen, A J; Konings, W N

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake. PMID:3136141

  3. Light-driven primary sodium ion transport in Halobacterium halobium membranes.

    PubMed

    Lanyi, J K

    1980-01-01

    Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the proton-motive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (cf 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicated the existence of a second retinal protein, addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion. PMID:7442256

  4. Membrane Na+-pyrophosphatases Can Transport Protons at Low Sodium Concentrations*

    PubMed Central

    Luoto, Heidi H.; Nordbo, Erika; Baykov, Alexander A.; Lahti, Reijo; Malinen, Anssi M.

    2013-01-01

    Membrane-bound Na+-pyrophosphatase (Na+-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na+ transport in bacteria and archaea. Each ∼75-kDa subunit of homodimeric Na+-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na+ concentrations (<5 mm), the Na+-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H+-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H+ accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2–8.2, H+ transport activity was high at 0.1 mm Na+ but decreased progressively with increasing Na+ concentrations until virtually disappearing at 5 mm Na+. In contrast, 22Na+ transport activity changed little over a Na+ concentration range of 0.05–10 mm. Conservative substitutions of gate Glu242 and nearby Ser243 and Asn677 residues reduced the catalytic and transport functions of the enzyme but did not affect the Na+ dependence of H+ transport, whereas a Lys681 substitution abolished H+ (but not Na+) transport. All four substitutions markedly decreased PPase affinity for the activating Na+ ion. These results are interpreted in terms of a model that assumes the presence of two Na+-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H+ transport activity. The inherent H+ transport activity of Na+-PPase provides a rationale for its easy evolution toward specific H+ transport. PMID:24158447

  5. Analysis of Porphyra Membrane Transporters Demonstrates Gene Transfer among Photosynthetic Eukaryotes and Numerous Sodium-Coupled Transport Systems1[C][W][OA

    PubMed Central

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R.; Prochnik, Simon E.; Blouin, Nicolas A.; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L.; Klein, Anita S.; Lin, Senjie; Levine, Ira; Brawley, Susan H.; Bhattacharya, Debashish

    2012-01-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters. PMID:22337920

  6. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    SciTech Connect

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  7. Membrane Transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The selective movement and redistribution of ions and small organic molecules is essential for plant growth and cellular homeostasis. Because of this, plants have evolved numerous proteins that facilitate the transport of minerals, sugars, metabolites, and other compounds through the limiting membra...

  8. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  9. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.

    PubMed Central

    Becker, B F; Duhm, J

    1978-01-01

    1. The passive net transport of Li+ and Na+ across the human red cell membrane was accelerated by the divalent anions carbonate, sulphite, oxalate, phosphite and malonate. Phthalate, maleate, sulphate and succinate were found additionally to stimulate downhill transport of K+. Marked differences in anion efficacy and selectivity were observed. 2. The effects of these 'carbonate type' anions were reversible and fully blocked by SITS, dipyridamole and other inhibitors of anion transfer. 3. Cation transport acceleration induced by the monovalent anions salicylate, benzoate, thiocyanate and 2,4-dinitrophenol were inhibited by dipyridamole, but not affected by SITS. A great number of mono- and polyvalent anions were without detectable influence on Li+ transport. 4. Li+ net uptake induced by oxalate exhibited a pH dependence similar to that reported for halide self exchange. 5. Transport acceleration by carbonate type anions displayed a linear, 1:1 dependence on the concentrations of both the anion and the cation and was symmetric with respect to the two sides of the membrane. 6. It is concluded that the divalent carbonate type anions form singly charged, negative 1:1 ion pairs with the respective alkali metal cations, the ion pairs traversing the red cell membrane via the anion exchange pathway. This concept of anionic formation of some of the ion pairs considered. The relative efficacies and cation selectivities of polyvalent anions can largely be explained on the basis of electrostatic interactions governing ion pair formation. However, the chelating properties, structural flexibility, polarizability of the anions and the accessibility of the ion pairs to the anion exchange pathway need also be considered. 7. An exchange of NaCO-3 ion pairs for internal HCO-3 or Cl- is discussed as a possible mode of cellular pH regulation. PMID:31458

  10. Intracellular calcium ions as regulators of renal tubular sodium transport.

    PubMed

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  11. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-04-01

    This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  13. Current-voltage relations of sodium-coupled sugar transport across the apical membrane of Necturus small intestine.

    PubMed

    Lapointe, J Y; Hudson, R L; Schultz, S G

    1986-01-01

    The current-voltage (I-V) relations of the rheogenic Na-sugar cotransport mechanism at the apical membrane of Necturus small intestine were determined from the relations between the electrical potential difference across the apical membrane, psi mc, and that across the entire epithelium, psi ms, when the latter was varied over the range +/- 200 mV, under steady conditions in the presence of galactose and after the current across the apical membrane carried by the cotransporter, ImSNa, is blocked by the addition of phloridzin to the mucosal solution. ImSNa was found to be strongly dependent upon psi mc over the range -50 mV less than psi mc less than EmSNa where EmSNa is the "zero current" or "reversal" potential. Over the range of values of psi mc encountered under physiological conditions the cotransporter may be modeled as a conductance in series with an electromotive force so that ImSNa = gmSNa (EmSNa - psi mc) where gmSNa is the contribution of this mechanism to the conductance of the apical membrane and is "near constant." In several instances ImSNa "saturated" at large hyperpolarizing or depolarizing values of psi mc. The values of EmSNa determined in the presence of 1, 5, and 15 mM galactose strongly suggest that if the Na-galactose cotransporters are kinetically homogeneous, the stoichiometry of this coupled process is unity. Finally, the shapes of the observed I-V relations are consistent with the predictions of a simple kinetic model which conforms with current notions regarding the mechanico-kinetic properties of this cotransport process. PMID:3820278

  14. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  16. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  17. Red blood cell sodium transport in patients with cirrhosis.

    PubMed

    Henriksen, Ulrik Lütken; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming; Henriksen, Jens H

    2016-09-01

    Patients with advanced cirrhosis have abnormal sodium homoeostasis. The study was undertaken to quantify the sodium transport across the plasma membrane of red blood cells (RBC) in patients with cirrhosis. RBC efflux and influx of sodium were studied in vitro with tracer (22) Na(+) according to linear kinetics in 24 patients with cirrhosis and 14 healthy controls. The sodium efflux was modified by ouabain (O), furosemide (F) and a combination of O and F (O + F). RBC sodium was significantly decreased (4·6 versus control 6·3 mmol l(-1) , P<0·001) and directly related to serum sodium (r = 0·57, P<0·05). The RBC fractional sodium efflux was higher in patients with cirrhosis (+46%, P<0·01) compared to controls. Inhibition in both high (145 mmol l(-1) )- and low (120 mmol l(-1) )-sodium buffers showed that the F-insensitive sodium efflux was twice as high in cirrhosis as in controls (P = 0·03-0·007), especially the O-sensitive, F-insensitive efflux was increased (+ 225%, P = 0·01-0·006). Fractional F-sensitive transport was normal in cirrhosis. RBC sodium influx was largely normal in cirrhosis. In conclusion, RBC sodium content is reduced in patients with cirrhosis with a direct relation to serum sodium. Increased RBC sodium efflux is especially related to ouabain-sensitive, furosemide-insensitive transport and thus most likely due to upregulated activity of the sodium-potassium pump. The study gives no evidence to an altered intracellular/extracellular sodium ratio or to a reduced fractional furosemide-sensitive sodium transport in cirrhosis. PMID:26016736

  18. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    SciTech Connect

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. )

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  19. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. Role of liquid membrane phenomenon in the anti-bacterial activity of Cefuroxime Sodium

    PubMed Central

    Nagesh, C.; Shankaraiah, M. M.; Venkatesh, J. S.; Setty, S. Ramachandra

    2010-01-01

    The role of liquid membrane phenomenon has been studied in the anti bacterial activity of cephalosporins i.e. Cefuroxime sodium. In our earlier publication [1] it was reported that hydraulic permeability data obtained to demonstrate the existence of liquid membrane in series with supporting membrane generated by Cefuroxime sodium. Transport of selected permeants (glucose, PABA, glycine, and ions like Mg++, NH4+, PO4-, Ca++, Na+, K+ and Cl-) through liquid membrane generated by Cefuroxime sodium in series with supporting membrane has been studied. The results indicated that the liquid membrane generated by Cefuroxime sodium inhibit the transport of various essential bio-molecules and permeants in to the cell. This modification in permeability of different permeants in the presence of the liquid membranes is likely to play significant role in the biological actions of Cefuroxime sodium. The anti-bacterial activity of Cefuroxime sodium further confirmed that the generation of liquid membrane by Cefuroxime sodium is also contributing for the antibacterial activity of them. PMID:24825969

  5. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  7. SGK1 regulation of epithelial sodium transport.

    PubMed

    Pearce, David

    2003-01-01

    Epithelial ion transport is regulated in vertebrates by a variety of hormonal and non-hormonal factors, including mineralocorticoids, insulin, and osmotic shock. SGK1 has been established as an important convergence point for multiple regulators of Na+transport. Unlike most serine-threonine kinases, SGK1 is under dual control: protein levels are controlled through effects on its gene transcription, while its activity is dependent on phosphatidylinositol-3-kinase (PI3K) activity. Aldosterone is the most notable regulator of SGK1 protein level in ion transporting epithelia, while insulin and other activators of the of PI3K are key regulators of its activity. Activated SGK1 regulates a variety of ion transporters, the best characterized of which is the epithelial sodium channel (ENaC). The apical targeting of ENaC is controlled by the ubiquitin ligase, Nedd4-2, and SGK1 acts, at least in part, through phosphorylation-dependent inhibition of Nedd4-2. This effect of SGK1 requires physical associations of Nedd4-2 with both SGK1 and ENaC. Moreover, direct physical association between SGK1 and ENaC may also be implicated in the formation of a tertiary complex. Osmotic shock is likely the most important non-hormonal regulator of SGK1 expression, and surprisingly, SGK1 expression can be induced by hypotonic or hypertonic stress in a cell-type dependent fashion. The SGK family represents an ancient arm of the serine-threonine kinase family, present in all eukaryotes that have been examined, including yeast. SGK1 appears to have been implicated in membrane trafficking and possibly in the control of ion transport and cell volume in early single cell eukaryotes. In metazoan epithelia, it seems likely that SGK1 was adapted to the regulation of ion transport in response to hormonal and osmotic signals. PMID:12649598

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  9. Sodium selectivity of Reissner's membrane epithelial cells

    PubMed Central

    2011-01-01

    Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media. PMID:21284860

  10. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  11. Avian lower intestine adapts to dietary salt (NaCl) depletion by increasing transepithelial sodium transport and microvillous membrane surface area.

    PubMed

    Sødring Elbrønd, V; Dantzer, V; Mayhew, T M; Skadhauge, E

    1991-09-01

    A tissue sampling scheme for tandem assessments of whole-organ physiology and ultrastructure was applied to the lower intestine (coprodaeum) of White Plymouth Rock hens on low- and high-NaCl diets. The objective was to correlate net amiloride-sensitive Na transport determined using the Ussing chamber with the plasma membrane surface areas due to microvilli at the epithelial cell apex. Hens kept on the low-NaCl diet for 3-4 weeks displayed a substantial increase in short-circuit current and in total microvillous membrane surface area. The latter rose from a group mean +/- S.E.M. of about 90 +/- 9.7 cm2 to one of 200 +/- 38 cm2 per organ. An increase in epithelial cell membrane contributed to, but did not fully explain, the increase in microvillous area. No differences in mean cell height or mean cell volume were found but the average cell in the low-NaCl birds was better developed in possessing a greater surface area of microvilli. On the high-NaCl diet, the epithelium was 33 +/- 2.7 microns tall and contained about 270 +/- 15 million cells. Each cell had a volume, on average, of 540 +/- 59 microns 3 and a microvillous surface of 32 +/- 2.6 microns 2. After NaCl depletion, there were 420 +/- 75 million cells and the average microvillous surface was 49 +/- 5.3 microns 2 per cell. The morphological adaptations alone do not explain the increased net Na transport found on the low-NaCl diet. Of cardinal importance is greater density of open Na channels in apical cell membranes. PMID:1742013

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  13. Sodium-Dependent Nitrate Transport at the Plasma Membrane of Leaf Cells of the Marine Higher Plant Zostera marina L.1

    PubMed Central

    García-Sánchez, María J.; Jaime, M. Paz; Ramos, Alberto; Sanders, Dale; Fernández, José A.

    2000-01-01

    NO3− is present at micromolar concentrations in seawater and must be absorbed by marine plants against a steep electrochemical potential difference across the plasma membrane. We studied NO3− transport in the marine angiosperm Zostera marina L. to address the question of how NO3− uptake is energized. Electrophysiological studies demonstrated that micromolar concentrations of NO3− induced depolarizations of the plasma membrane of leaf cells. Depolarizations showed saturation kinetics (Km = 2.31 ± 0.78 μm NO3−) and were enhanced in alkaline conditions. The addition of NO3− did not affect the membrane potential in the absence of Na+, but depolarizations were restored when Na+ was resupplied. NO3−-induced depolarizations at increasing Na+ concentrations showed saturation kinetics (Km = 0.72 ± 0.18 mm Na+). Monensin, an ionophore that dissipates the Na+ electrochemical potential, inhibited NO3−-evoked depolarizations by 85%, and NO3− uptake (measured by depletion from the external medium) was stimulated by Na+ ions and by light. Our results strongly suggest that NO3− uptake in Z. marina is mediated by a high-affinity Na+-symport system, which is described here (for the first time to our knowledge) in an angiosperm. Coupling the uptake of NO3− to that of Na+ enables the steep inwardly-directed electrochemical potential for Na+ to drive net accumulation of NO3− within leaf cells. PMID:10712552

  14. Nanoengineered membranes for controlled transport

    DOEpatents

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  15. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1996-01-01

    The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  18. Membrane transport of antineoplastic agents

    SciTech Connect

    Goldman, I.D. )

    1986-01-01

    This book contains 13 chapters. Some of the chapter titles are: Methods for Quantifying the Transport of Drugs Across Brain Barrier Systems; Liposomes as Drug Carriers in Cancer Chemotherapy; Genetic and Bioochemical Characterization of Multidrug Resistance; Membrane Transport of Anthracyclines; and The Cellular Pharmacology of Methotrexate.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  20. Composite oxygen transport membrane

    SciTech Connect

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  2. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  3. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    SciTech Connect

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-05-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself.

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  5. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  9. Recovery of acids and sodium hydroxide from solutions of sodium sulfate and sodium chloride with the use of bipolar membranes

    SciTech Connect

    Bobrinskaya, G.A.; Pavlova, T.V.; Shatalov, A.Ya.

    1985-09-01

    The authors examined the kinetic laws governing the electrodialysis recovery of hydrochloric acid and sulfuric acid, as well as sodium hydroxide, from 1M sodium chloride and 0.5 M sodium sulfate solutions and from a mixture of these salts with the use of the MB-1, MB-2, and MB-3 bipolar membranes. Kinetic plots of the current density and the concentration of the acid and the base in the chambers next to the bipolar membranes during the electrodialysis treatment of 1M sodium chloride, 0.5 M sodium sulfate, and solutions are presented. It was established that it is better to use the MB-3 membrane for the electrodialysis conversion of sodium chloride and sodium sulfate into acids and sodium hydroxide owing to the high rate and current efficiency and low expenditure of electrical energy and degree of contamination of the products obtained by the salts. It was also established that the resistance of the MB-1 and MB-2 bipolar membranes is almost an order of magnitude higher than that of the MB-3 membrane.

  10. Carbon Dioxide Transport through Membranes*

    PubMed Central

    Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Sommer, Klaus; Mathai, John C.; Zeidel, Mark L.; Pohl, Peter

    2008-01-01

    Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO2 transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO2 diffusion was never confirmed experimentally. Here we have monitored transmembrane CO2 flux (JCO2) by imposing a CO2 concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that JCO2 was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter JCO2 confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO2 hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO2 permeability (3.2 ± 1.6 cm/s) was estimated. It indicates that cellular CO2 uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 μm. Consequently, facilitation of CO2 transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO2 permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not. PMID:18617525

  11. Proline transport across the intestinal microvillus membrane may be regulated by membrane physical properties.

    PubMed

    Sadowski, D C; Gibbs, D J; Meddings, J B

    1992-03-23

    There is now abundant evidence that integral membrane protein function may be modulated by the physical properties of membrane lipids. The intestinal brush border membrane represents a membrane system highly specialized for nutrient absorption and, thus, provides an opportunity to study the interaction between integral membrane transport proteins and their lipid environment. We have previously demonstrated that alterations in this environment may modulate the function of the sodium-dependent glucose transporter in terms of its affinity for glucose. In this communication we report that membrane lipid-protein interactions are distinctly different for the proline transport proteins. Maximal transport rates for L-proline by either the neutral brush border or imino transport systems are reduced 10-fold when the surrounding membrane environment is made more fluid over the physiological range that exists along the crypt-villus axis. Furthermore, in microvillus membrane vesicles prepared from enterocytes isolated from along the crypt-villus axis a similar gradient exists in the functional activity of these transport systems. This would imply that either the functional activity of these transporters are regulated by membrane physical properties or that the synthesis and insertion of these proteins is coordinated in concert with membrane physical properties as the enterocyte migrates up the crypt-villus axis. PMID:1567897

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  13. Calcium and sodium transport processes in patients with cystic fibrosis 2. Mg2+- dependent, Ca2+ ATPase activity in fibroblast membrane preparations from cystic fibrosis patients and controls.

    PubMed

    Katz, S

    1978-03-01

    Mg2+-dependent Ca2+-ATPase activity was determined in membrane preparations of fibroblasts grown from skin biopsies of cystic fibrosis patients and age-matched controls. This enzyme was stimulated by increasing free calcium concentrations with an apparent Kdiss for calcium of approximately 45 micron. Although there was a great deal of variation in Ca2+-ATPase activity observed between individual strains, there was a significant decrease in the maximal activation of the Ca2+-ATPase in membrane preparations of fibroblasts obtained from cystic fibrosis patients compared to the controls (P less than 0.05). This observation indicates that decreased Ca2+-ATPase activity is a generalized phenomenon in cystic fibrosis found in more than one cell-type. This decrease in Ca2+-ATPase activity may have a number of implications that may explain some of the manifestations of the disease. PMID:148720

  14. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  15. Urea transport through composite polyallylamine membranes

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.

    1977-01-01

    Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.

  16. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  17. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  18. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  19. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  20. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  1. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  2. Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation.

    PubMed

    Zhao, Jing; Zhu, Yiwei; He, Guangwei; Xing, Ruisi; Pan, Fusheng; Jiang, Zhongyi; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi

    2016-01-27

    For the selective water-permeation across dense membrane, constructing continuous pathways with high-density ionic groups are of critical significance for the preferential sorption and diffusion of water molecules. In this study, zwitterionic graphene oxides (PSBMA@GO) nanosheets were prepared and incorporated into sodium alginate (SA) membrane for efficient water permeation and water/alcohol separation. The two-dimensional GO provides continuous pathway, while the high-density zwitterionic groups on GO confer electrostatic interaction sites with water molecules, leading to high water affinity and ethanol repellency. The simultaneous optimization of the physical and chemical structures of water transport pathway on zwitterionic GO surface endows the membrane with high-efficiency water permeation. Using dehydration of water/alcohol mixture as the model system, the nanohybrid membranes incorporating PSBMA@GO exhibit much higher separation performance than the SA membrane and the nanohybrid membrane utilizing unmodified GO as filler (with the optimal permeation flux of 2140 g m(-2) h(-1), and separation factor of 1370). The study indicates the great application potential of zwitterionic graphene materials in dense water-permeation membranes and provides a facile approach to constructing efficient water transport pathway in membrane. PMID:26765336

  3. No facilitator required for membrane transport of hydrogen sulfide

    PubMed Central

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  4. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  5. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  6. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  7. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set

  8. Swelling assisted photografting of itaconic acid onto sodium alginate membranes

    NASA Astrophysics Data System (ADS)

    Taşkın, Gülşen; Şanlı, Oya; Asman, Gülsen

    2011-09-01

    Grafting of itaconic acid (IA) was achieved onto sodium alginate (NaAlg) membranes by using UV-radiation. Process was performed under nitrogen atmosphere and benzophenone (BP) was used as a photoinitiator. Membranes were preswelled before the polymerization process and ethanol was determined as the best swelling agent among the studied solvents. The effect of polymerization time, initiator and monomer concentrations on the grafting efficiency were investigated. The best conditions for optimum grafting were obtained with IA concentration of 1.0 M, a BP concentration of 0.1 M and a reaction time of 4 h at 25 °C. Under these conditions grafting efficiency for NaAlg-g-IA membranes was found to be 14% (w/w). To obtain further increase in grafting efficiency membranes were also preswelled in IA and BP solutions and polymerization was carried out at different temperatures after UV polymerization. Grafted membranes were characterized by using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Effect of grafting on membrane properties such as intrinsic viscosity and swelling percentage were also determined.

  9. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney

    PubMed Central

    Shlyonsky, V.; Boom, A.; Mies, F.

    2016-01-01

    Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC) single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function. PMID:27073804

  10. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  11. Apical membrane sodium and chloride entry during osmotic swelling of renal (A6) epithelial cells.

    PubMed

    Crowe, W E; Ehrenfeld, J; Brochiero, E; Wills, N K

    1995-03-01

    To assess the role of chloride in cell volume and sodium transport regulation, we measured cell height changes (CH), transepithelial chloride and sodium fluxes, and intracellular chloride content during challenge with hyposmotic solutions under open circuit (OC) conditions. CH maximally increased following hyposmotic challenge within approximately 5 minutes. The change in CH was smaller under short circuit (SC) conditions or following replacement of chloride in the mucosal solution by gluconate or cyclamate (Cl(-)-freem). When corrected for the osmotically inactive cell volume (30 +/- 2%), delta CH for controls (OC) were greater than predicted for an ideal osmometer. In contrast, delta CH for Cl(-)-freem or SC conditions were similar to that predicted for an ideal osmometer. Na+ and Cl- mucosa-to-serosa fluxes increased following hyposmotic challenge. Chloride fluxes increased maximally within 5 min, then decreased. In contrast, the Na+ flux increased slowly and reached a steady state after approximately 25 min. Under isosmotic conditions, exposure to Cl(-)-freem solutions led to decreases in the transepithelial conductance, Na+ flux, and CH. Chloride permeabilities in the apical and basolateral membranes were detected using the fluorescent intracellular chloride indicator MQAE. The results indicate that during osmotic swelling, the entry of both sodium and chloride is increased. The time courses of these increases differ, suggesting distinct mechanisms for the osmotic regulation of these apical membrane transport processes. PMID:7541082

  12. Solute transporters in plant thylakoid membranes

    PubMed Central

    Schoefs, Benoît

    2010-01-01

    Plants utilize sunlight to drive photosynthetic energy conversion in the chloroplast thylakoid membrane. Here are located four major photosynthetic complexes, about which we have great knowledge in terms of structure and function. However, much less we know about auxiliary proteins, such as transporters, ensuring an optimum function and turnover of these complexes. The most prominent thylakoid transporter is the proton-translocating ATP-synthase. Recently, four additional transporters have been identified in the thylakoid membrane of Arabidopsis thaliana, namely one copper-transporting P-ATPase, one chloride channel, one phosphate transporter, and one ATP/ADP carrier. Here, we review the current knowledge on the function and physiological role of these transporters during photosynthesis and light stress in plants. Subsequently, we make a survey on the outlook of thylakoid activities awaiting identification of responsible proteins. Such knowledge is necessary to understand the thylakoid network of transporters, and to design strategies for bioengineering crop plants in the future. PMID:20585503

  13. Expressing and purifying membrane transport proteins in high yield.

    PubMed

    Hale, Calvin C; Hill, Chananada K; Price, Elmer M; Bossuyt, Julie

    2002-01-01

    Structural analysis of native or recombinant membrane transport proteins has been hampered by the lack of effective methodologies to purify sufficient quantities of active protein. We addressed this problem by expressing a polyhistidine tagged construct of the cardiac sodium-calcium exchanger (NCX1) in Trichoplusia ni larvae (caterpillars) from which membrane vesicles were prepared. Larvae vesicles containing recombinant NCX1-his protein supported NCX1 transport activity that was mechanistically not different from activity in native cardiac sarcolemmal vesicles although the specific activity was reduced. SDS-PAGE and Western blot analysis demonstrated the presence of both the 120 and 70 kDa forms of the NCX1 protein. Larvae vesicle proteins were solubilized in sodium cholate detergent and fractionated on a chelated Ni(2+) affinity chromatography column. After extensive washing, eluted fractions were mixed with soybean phospholipids and reconstituted. The resulting proteoliposomes contained NCX1 activity suggesting the protein retained native conformation. SDS-PAGE revealed two major bands at 120 and 70 kDa. Purification of large amounts of active NCX1 via this methodology should facilitate biophysical analysis of the protein. The larva expression system has broad-based application for membrane proteins where expression and purification of quantities required for physical analyses is problematic. PMID:11741710

  14. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  15. Understanding transport in model water desalination membranes

    NASA Astrophysics Data System (ADS)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  16. Polyene antibiotic that inhibits membrane transport proteins

    PubMed Central

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-01-01

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains. PMID:22733749

  17. Polyene antibiotic that inhibits membrane transport proteins.

    PubMed

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains. PMID:22733749

  18. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii.

    PubMed

    Heise, R; Müller, V; Gottschalk, G

    1992-06-01

    Inverted membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii catalyzed the hydrolysis of ATP with a rate of 100-150 nmol.min-1.mg protein-1. The ATPase was stimulated 1.4-1.6-fold by NaCl and inhibited by N,N'-dicyclohexylcarbodiimide tributyltin or azide. The degree of inhibition caused by F0-directed but not F1-directed inhibitors was affected by the Na+ concentration in the medium. These experiments indicated the presence of a sodium-translocating ATPase. This was verified by transport studies. Upon addition of ATP to inverted vesicles, 22Na+ was actively transported into the intravesicular space up to a 24-fold accumulation. Na+ transport was inhibited by the sodium ionophore N,N,N',N',-tetracyclohexyl-1,2-phenyl-enedioxydiacetamide but stimulated by valinomycin with potassium whereas the protonophore 3,5,-di-tert-butyl-4-hydroxybenzylidenemalonitrile was without effect. N,N'-dicyclohexylcarbodiimide and tributyltin inhibited 22Na+ transport. These experiments are in accordance with a primary electrogenic Na+ transport as catalyzed by a F1F0-ATPase. PMID:1534543

  19. Gymnemic acids inhibit sodium-dependent glucose transporter 1.

    PubMed

    Wang, Yu; Dawid, Corinna; Kottra, Gabor; Daniel, Hannelore; Hofmann, Thomas

    2014-06-25

    To evaluate the activity of botanicals used in Chinese Traditional Medicine as hypoglycemic agents for diabetes type II prevention and/or treatment, extracts prepared from 26 medicinal herbs were screened for their inhibitory activity on sodium-dependent glucose transporter 1 (SGLT1) by using two-electrode voltage-clamp recording of glucose uptake in Xenopus laevis oocytes microinjected with cRNA for SGLT1. Showing by far the strongest SGLT1 inhibitory effect, the phytochemicals extracted from Gymnema sylvestre (Retz.) Schult were located by means of activity-guided fractionation and identified as 3-O-β-D-glucuronopyranosyl-21-O-2-tigloyl-22-O-2-tigloyl gymnemagenin (1) and 3-O-β-D-glucuronopyranosyl-21-O-2-methylbutyryl-22-O-2-tigloyl gymnemagenin (2) by means of LC-MS/MS, UPLC-TOF/MS, and 1D/2D-NMR experiments. Both saponins exhibited low IC50 values of 5.97 (1) and 0.17 μM (2), the latter of which was in the same range as found for the high-affinity inhibitor phlorizin (0.21 μM). As SGLT1 is found in high levels in brush-border membranes of intestinal epithelial cells, these findings demonstrate for the first time the potential of these saponins for inhibiting electrogenic glucose uptake in the gastrointestinal tract. PMID:24856809

  20. Thermodynamic and transport properties of sodium liquid and vapor

    SciTech Connect

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed.

  1. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    PubMed Central

    Penumetcha, Sai S.; Kona, Ravikanth; Hardin, Jonathan L.; Molder, Andrew L.; Steinle, Erich D.

    2007-01-01

    This paper describes the use of several characterization methods to examine alumina nanotubule membranes that have been modified with specific silanes. The function of these silanes is to alter the transport properties through the membrane by changing the local environment inside the alumina nanotube. The presence of alkyl groups, either long (C18) or short and branched (isopropyl) hydrocarbon chains, on these silanes significantly decreases the rate of transport of permeant molecules through membranes containing alumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionic surfactant can alter the polarity of these modified nanotubes, which correlates to an increased transport of ions. Fluorescent spectroscopy is also utilized to enhance the sensitivity of detecting these permeant molecules. Confirmation of the alkylsilane attachment to the alumina membrane is achieved with traditional infrared spectroscopy, which can also examine the lifetime of the modified membrane. The physical parameters of these silane-modified porous alumina membranes are studied via scanning electron microscopy. The alumina nanotubes are not physically closed off or capped by the silanes that are attached to the alumina surfaces.

  2. Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit.

    PubMed Central

    Meddings, J B; DeSouza, D; Goel, M; Thiesen, S

    1990-01-01

    Both transport function and microvillus membrane physical properties evolve as the enterocyte matures and migrates up the crypt-villus axis. We isolated enriched fractions of villus tip, mid-villus, and crypt enterocytes from which microvillus membrane vesicles were prepared. Using this material we characterized the alterations that occur in microvillus membrane fluidity as the rabbit enterocyte matures and correlated these with kinetic studies of glucose transport. With increasing maturity the microvillus membrane becomes more rigid due to both an increase in the cholesterol/phospholipid ratio and alterations in individual phospholipid subclasses. Maximal rates of glucose transport were greatest in microvillus membrane vesicles prepared from mature cells. However, the glucose concentration producing half-maximal rates of transport (Km) was significantly lower in crypt microvillus membrane vesicles, suggesting that a distinct glucose transporter existed in crypt enterocytes. This distinction disappeared when differences between membrane lipid environments were removed. By fluidizing villus-tip microvillus membrane vesicles, in vitro, to levels seen in the crypt microvillus membrane, we observed a reduction in the Km of this transport system. These data suggest that the kinetic characteristics of the sodium-dependent glucose transporter are dependent upon its local membrane environment. Images PMID:2318967

  3. Effect of Polyvnylpyrrolidone (PVP) in Binary Solution on the Performance of Polyethersulfone Hollow Fibre Membrane for Sodium Chloride Separation

    NASA Astrophysics Data System (ADS)

    Bolong, N.; Ismail, A. F.; Salim, M. R.

    2010-03-01

    In membrane preparation, phase inversion is a versatile technique that allow polymer to be transformed from liquid to a solid state in a controlled manner. The preparation and process involves many factors and parameters specifically in fabricating hollow fibre membrane. In this study, dope solution factor in the process of fabricating hollow fibre membrane were explored. The effects of polymer concentration and polyvinylpyrrolidone (PVP) as additive in the dope solution on the morphology and separation performance were found able to produced high porous membranes, well interconnected pores and surface properties. Employing polyethersulfone (PES) as polymer, hollow fibre membranes were fabricated using N-methyl-2-pyrrolidone (NMP) as solvent and using water as the external coagulant. Finally the fabricated ultrafiltration membranes were characterized and evaluated based on solute transport concentration (sodium chloride) and pure water permeation properties.

  4. Sodium-Dependent Phosphate Transporters in Osteoclast Differentiation and Function

    PubMed Central

    Dolder, Silvia; Siegrist, Mark; Wagner, Carsten A.; Biber, Jürg; Hernando, Nati; Hofstetter, Willy

    2015-01-01

    Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies. PMID:25910236

  5. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver. PMID:7373293

  6. Solute rejection by porous glass membranes. I - Hyperfiltration of sodium chloride and urea feed solutions.

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Leban, M. I.

    1971-01-01

    Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.

  7. Aldosterone and thyroid hormone interaction on the sodium and potassium transport pathways of rat colonic epithelium.

    PubMed

    Edmonds, C J; Willis, C L

    1990-01-01

    The effect of hypothyroidism on potassium adaptation (shown by increased potassium secretion in response to potassium loading) and on the action of aldosterone on potassium secretion and sodium fluxes was examined in the rat distal colon. Potassium adaptation, particularly the response to an acute potassium load, was impaired by hypothyroidism which also considerably reduced the rise of transepithelial electrical potential difference (p.d.) of total and transcellular (active) lumen-to-plasma sodium fluxes and of potassium secretion normally produced by aldosterone. These changes were, in part, corrected by a short period (3 days) of tri-iodothyronine replacement. Moreover in aldosterone-treated hypothyroid rats, amiloride in the lumen was considerably less effective in reducing the p.d. and sodium fluxes than in aldosterone-treated normal rats. The intracellular sodium transport pool was greater in the hypothyroid than in the normal rats (5.0 +/- 1.1 (S.E.M.) nmol/mg dry weight compared with 2.9 +/- 0.2 nmol/mg dry weight; P less than 0.02). Aldosterone increased the pool in the normal but not in the hypothyroid rats while amiloride had little effect on the pool in the aldosterone-treated hypothyroid rats but almost abolished it in aldosterone-treated normal rats. Aldosterone plays a major part in the adaptation of colonic sodium and potassium transport to sodium depletion or potassium excess; these adaptations were much impaired in hypothyroid animals. The present results are consistent with a deficiency in aldosterone induction of potassium- and amiloride-sensitive sodium pathways in the apical membrane of colonic epithelial cells in hypothyroid rats, a deficiency which limits the stimulant effect of aldosterone on sodium and potassium transport. PMID:2299278

  8. SLC5 Sodium-Anion Cotransporters and Renal Urate Transport

    NASA Astrophysics Data System (ADS)

    Mount, David B.; Kwon, Charles Y.; Plata, Consuelo; Romero, Michael F.; Zandi-Nejad, Kambiz

    2007-04-01

    Renal urate transport plays a key role in determining the concentration of circulating uric acid. The reabsorption of filtered urate by the renal proximal tubule appears to require apical sodium-dependent anion transport and the apical URAT1 urate-anion exchanger, in that sodium-dependent transport of lactate, ketoacids, nicotinate, and pyrazinoate (PZA) increases the intracellular concentration of substrates for the subsequent exchange with luminal urate. We have identified SLC5A8 and SLC5A12 as candidates for the sodium-anion cotransporter that collaborates with URAT1. Both transporters function as sodium-dependent nicotinate/monocarboxylate/PZA transporters. Localization studies reveal serial co-expression of these transporters with URAT1, with Slc5a12 in the early proximal tubule and Slc5a8 in S2 and S3 segments. Renal urate excretion is conceivably affected by changes in the activity of SLC5A8, SLC5A12, and/or URAT1, with implications for the pathogenesis of hyperuricemia, nephrolithiasis, and related disorders.

  9. Sodium recirculation and isotonic transport in toad small intestine.

    PubMed

    Nedergaard, S; Larsen, E H; Ussing, H H

    1999-04-01

    + fluxes, is compatible with convective flow of the two alkali metal ions through the same population of water-filled pores. With a new set of equations, the fraction of the sodium flux passing the basement membrane barrier of the lateral space that is recirculated through the cellular compartment is estimated. This fraction was, on average, 0.72 +/- 0.03 (N = 5). It is concluded that isotonicity of the transportate can be maintained by producing a hypertonic fluid emerging from the lateral space combined with reuptake of salt via the cells. PMID:10191358

  10. Hydrogen transport in composite inorganic membranes

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2008-01-01

    A theoretical model simulating hydrogen transport through composite inorganic membranes is proposed. This model simulates operation of membranes made of three or more porous or metallic layers. Transport through Pd-alloy metallic layers is simulated using a comprehensive model proposed by Ward and Dao. The model accounts for external mass transfer, surface adsorption and desorption, transport to and from the bulk metal, and diffusion within the metal. Transport through porous ceramic layers is simulated following Burggraaf, who proposed an expression that combines viscous flow, Knudsen diffusion, and transition flow through porous media of complex geometrical structure. The model can also use experimentally determined permeance data when available. The theoretical model has been computationally implemented. Computations show very good agreement with experimental data available in the literature. The proposed model predicts hydrogen fluxes through composite membranes of several layers for standard operating conditions. The model can also predict which of the several layers used in manufacturing the membrane is controlling the total hydrogen flux. This information can be used to determine optimal thickness values for metallic and porous layers.

  11. Interactive effects of ethanol and silver on sodium transport across toad skin

    SciTech Connect

    Gerencser, G.A.; Loo, S.Y.; Cornette, K.M.

    1984-05-01

    Both ethanol and silver ions have been shown to affect ion transport across various epithelia. This investigation was principally undertaken to further define mechanisms of silver ions and ethanol, and their possible interactions, on sodium transport across toad skin. Isolated toad skin, mounted between identical oxygenated amphibian bicarbonate Ringer solutions, maintained stable transepithelial potential differences (serosa positive) and short-circuit currents for several hours at 25/sup 0/C. It was observed that (1) ethanol inhibited the active transcellular component of sodium absorption and this effect was reversible; (2) inhibition of sodium transport by ethanol was directly proportional to the applied concentration; (3) pretreatment with silver ions prevented any ethanol effects; and (4) pretreatment with ethanol prevented any silver ion effects. It was concluded from these results that ethanol induced its inhibitory effects on membrane phospholipids thereby perturbing the function of a sulfhydryl ligant, while silver ion or silver chloride complex binding to this ligand would maintain its function in sodium transport despite the presence of ethanol.

  12. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  13. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  14. Recent Advances in Synthetic Membrane Transporters

    PubMed Central

    McNALLY, BETH A.; LEEVY, W. MATTHEW; SMITH, BRADLEY D.

    2010-01-01

    It is 25 years since the first report of a synthetic ion channel transporter. Today, dozens of molecular and supramolecular designs have been developed to facilitate ion and small molecule transport across a bilayer membrane. Presented here is a concise summary of the advances made over the past four years. The transporters are grouped into three mechanistic classes: mobile carrier, monomeric channel, and self-assembled pore. Common building blocks are crown ethers, steroids, cyclodextrins, peptides, curcubiturils, and calixarenes. The eventual goal is to produce functional supramolecular devices such as sensors, enzyme assays, and lead candidates for pharmaceutical development. PMID:20376284

  15. High specificity in response of the sodium-dependent multivitamin transporter to derivatives of pantothenic acid.

    PubMed

    Chirapu, Srinivas Reddy; Rotter, Charles J; Miller, Emily L; Varma, Manthena V; Dow, Robert L; Finn, M G

    2013-01-01

    Essential nutrients are attractive targets for the transport of biologically active agents across cell membranes, since many are substrates for active cellular importation pathways. The sodium-dependent multivitamin transporter (SMVT) is among the best characterized of these, and biotin derivatives have been its most popular targets. We have surveyed 45 derivatives of pantothenic acid, another substrate of SMVT, long known as a competitive inhibitor of biotin transport. Variations of the β-alanyl fragment of pantothenate were uniformly rejected by the transporter, including derivatives with very similar steric and acidic characteristics to the natural substrate. The secondary hydroxyl of the 2,2-dimethyl-1,3-propanediol (pantoyl) fragment was the only position at which potential linkers could be attached while retaining activity as an inhibitor of biotin uptake and a substrate for sodium-dependent transport. However, triazole conjugates to several drug-like cargo motifs were not accepted as substrates by human SMVT in cell culture. Two compounds were observed which did not inhibit biotin uptake but were themselves transported in a sodium-dependent fashion, suggesting more complex behavior than expected. These studies represent the most extensive examination to date of pantothenate as an anchor for SMVT-mediated drug delivery, showing that this route requires further investigation before being judged promising. PMID:23578027

  16. Comparative characteristics of MA-40 and MA-41 membranes under conditions of maximal concentration of sodium chloride solutions by electrodialysis

    SciTech Connect

    Grebenyok, V.D.; Lokota-Fabulyak, Y.G.; Ponomareu, M.I.

    1985-10-01

    This paper gives a quantitative assessment of salt diffusion from brine into the diluate, and osmotic and electro-osmotic transport of water into the brine compartments in concentration of sodium chloride with the use of commercially produced ion-exchange membranes MK-40, MA-40, and MA-41. A schematic diagram of the electrochemical cell, comprising electrode compartments, desalination compartments, and concentrating compartments is presented. It is shown that although brines of higher concentration can be obtained by the use of MA-41 membranes, it is economically preferable to use MA-40 membranes for concentrating sodium chloride. The higher electrical conductivity of MA-40 in comparison with MA-41 lowers the energy consumption for brine production in the former.

  17. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.

    PubMed

    Frindt, G; Lee, C O; Yang, J M; Windhager, E E

    1988-01-01

    Experimental maneuvers that increase intracellular calcium ion levels inhibit sodium transport by renal tubules. In the isolated perfused renal tubule, intracellular calcium ion activity (aiCa) changes in response to alterations in the magnitude of the electrochemical potential gradient for sodium ions across the basolateral cell membrane. However, a potassium-induced depolarization of this cell boundary does not cause a rise but rather a fall in intracellular calcium ion levels. Ionomycin raises aiCa without causing intracellular acidification. This observation does not support the view that high cytosolic calcium produces intracellular acidification. At least in the case of ionomycin, the inhibition of sodium transport appears to be due to ionophore-induced increases in aiCa. The changes in intracellular calcium ion concentration found in the different experimental conditions studied were consistent with the notion that cytosolic calcium ions may mediate a feedback mechanism that links the luminal entry to the peritubular extrusion of sodium ions. The mechanisms by which cytosolic calcium alters entry is not yet clear but recent experiments suggest an indirect effect on sodium channel activity. PMID:3279295

  18. Molecular Transport Studies Through Unsupported Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  19. Plasma Membrane Transporters in Modern Liver Pharmacology

    PubMed Central

    Marin, Jose J. G.

    2012-01-01

    The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance. PMID:24278693

  20. Membrane Transport in Yeast, An Introduction.

    PubMed

    Kschischo, Maik; Ramos, José; Sychrová, Hana

    2016-01-01

    Research on membrane transport has made continuous progress in the last decades and remains an active field of scientific investigation. In the case of yeast, most of the research has been conducted for the model organism Saccharomyces cerevisiae, but also the so-called non-conventional yeasts are being studied, especially because of their peculiarities and, in some cases, specific transport systems. This book is based on the experience of several experts summarizing the current knowledge about important substrate transport processes in yeast. Each chapter provides both a general overview of the main transport characteristics of a specific substrate or group of substrates and the unique details that only an expert working in the field is able to transmit to the reader. PMID:26721268

  1. Sodium-coupled sugar and amino acid transport in an acidic microenvironment.

    PubMed

    Ahearn, G A; Clay, L P

    1988-01-01

    1. Nutrient transport mechanisms of lobster hepatopancreatic epithelial brush border membrane vesicles (BBMV) are strongly influenced by the acidic nature of the tubular lumen. 2. Sodium-dependent glucose uptake by BBMV was electrogenic and was stimulated at low pH by reducing sugar transport Ki, without affecting JM. 3. Glutamate was largely transported in zwitterionic form at pH 4.0 by an electrically silent cotransport mechanism with both Na and Cl. 4. Increased H+ concentration tripled the apparent membrane permeability to glutamate as well as the amino acid transport JM. 5. At pH 4.0 leucine was transported as a cation by two dissimilar carrier systems: a Na-independent process shared by polar amino acids, and an electroneutral Na-2Cl-dependent mechanism shared with non-polar amino acids. 6. A model is proposed for hepatopancreatic BBMV at acidic pH which employs ionic chemical gradients and membrane potential as nutrient transport driving forces. PMID:2902970

  2. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    SciTech Connect

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  3. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    PubMed

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes. PMID:26071768

  4. Sodium transport and mechanism(s) of sodium tolerance in Frankia strains.

    PubMed

    Srivastava, Amrita; Singh, Satya Shila; Mishra, Arun Kumar

    2013-02-01

    The mechanism(s) underlying differential salt sensitivity/tolerance were investigated in the terms of altered morphological and physiological responses against salinity such as growth, electrolyte leakage, Na⁺ uptake, efflux, accumulation and intracellular concentrations of macronutrients among the Frankia strains newly isolated from Hippöphae salicifolia D. Don. Growth was minimally reduced at 500 and 250 mM NaCl respectively in HsIi10 and rest of the strains (HsIi2, HsIi8, HsIi9) which proved that 500 and 250 mM NaCl are the critical concentrations for the respective strains. The differences in the sodium influx/efflux rate was responsible for the differential amount of remaining sodium among the frankial strains and might be one of the primary determinants for the reestablishment of macronutrients (Mg²⁺, Ca²⁺ and K⁺) during salinity. Secondly, the interactive effect of sodium influx/efflux rate, remaining sodium and intracellular macronutrients (Mg²⁺, Ca²⁺ and K⁺) concentration has been responsible for the extent of membrane damage and growth sustenance of the tolerant/sensitive frankial strains during salinity. HsIi10 showed better co-regulation of various factors and managed to tolerate salt stress up to considerable extent. Therefore, HsIi10 can serve as a potential biofertilizer in the saline soil. PMID:22733696

  5. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.

    PubMed Central

    Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J

    1985-01-01

    Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a

  6. Morphology and transport in ionic membranes

    NASA Astrophysics Data System (ADS)

    Disabb-Miller, Melanie Lisa

    Ion-containing polymers for fuel cell membranes have been studied to determine the chemical structure and ion content relationship to membrane water uptake, conductivity, and morphology. Random and block copolymer proton exchange membranes (PEMs) and anion exchange membranes (AEMs) with unique properties, such as diblock and triblock copolymers, superacidic moieties, and charge-delocalized polymer-tethered Ru-complex based cations, were investigated, and new metrics were developed to analyze fundamental ion transport behavior in these polymers. The morphology of the polymer systems was examined using small angle x-ray scattering (SAXS), small angle neutron scattering (SANS), and transmission electron microscopy (TEM). By studying a number of different ion-conducting systems using multiple techniques and deep analysis of structure-property relationships, a more complete picture of the property landscape of these materials was developed. Model diblock and unique triblock copolymer systems with center-functionalized blocks based on poly(styrene), PS, and poly(hexyl methacrylate), PHMA, were synthesized via atom transfer radical polymerization (ATRP). The PS block was functionalized for backbone-independent comparisons of PEM and AEM water uptake and conductivity to provide insight in how the properties of PEMs and AEMs compare and aid in further AEM development. The ratio of the mobile ion diffusion coefficients and dilute solution ion diffusivity (D/D0) was developed as a new metric, allowing for accurate comparison of polymer systems with different ion moieties and contents. Subsequently, it was determined that block copolymer PEMs and AEMs demonstrate the same barriers to ion transport if the mobility of the charge carrier is considered.

  7. Proton transport via the membrane surface.

    PubMed Central

    Georgievskii, Yuri; Medvedev, Emile S; Stuchebrukhov, Alexei A

    2002-01-01

    Some proton pumps, such as cytochrome c oxidase (C(c)O), translocate protons across biological membranes at a rate that considerably exceeds the rate of proton transport to the entrance of the proton-conducting channel via bulk diffusion. This effect is usually ascribed to a proton-collecting antenna surrounding the channel entrance. In this paper, we consider a realistic phenomenological model of such an antenna. In our model, a homogeneous membrane surface, which can mediate proton diffusion toward the channel entrance, is populated with protolytic groups that are in dynamic equilibrium with the solution. Equations that describe coupled surface-bulk proton diffusion are derived and analyzed. A general expression for the rate constant of proton transport via such a coupled surface-bulk diffusion mechanism is obtained. A rigorous criterion is formulated of when proton diffusion along the surface enhances the transport. The enhancement factor is found to depend on the ratio of the surface and bulk diffusional constants, pK(a) values of surface protolytic groups, and their concentration. A capture radius for a proton on the surface and an effective size of the antenna are found. The theory also predicts the effective distance that a proton can migrate on the membrane surface between a source (such as CcO) and a sink (such as ATP synthase) without fully equilibrating with the bulk. In pure aqueous solutions, protons can travel over long distances (microns). In buffered solutions, the travel distance is much shorter (nanometers); still the enhancement effect of the surface diffusion on the proton flow to a target on the surface can be tens to hundreds at physiological buffer concentrations. These results are discussed in a general context of chemiosmotic theory. PMID:12023208

  8. Shared Molecular Mechanisms of Membrane Transporters.

    PubMed

    Drew, David; Boudker, Olga

    2016-06-01

    The determination of the crystal structures of small-molecule transporters has shed light on the conformational changes that take place during structural isomerization from outward- to inward-facing states. Rather than using a simple rocking movement of two bundles around a central substrate-binding site, it has become clear that even the most simplistic transporters utilize rearrangements of nonrigid bodies. In the most dramatic cases, one bundle is fixed while the other, structurally divergent, bundle carries the substrate some 18 Å across the membrane, which in this review is termed an elevator alternating-access mechanism. Here, we compare and contrast rocker-switch, rocking-bundle, and elevator alternating-access mechanisms to highlight shared features and novel refinements to the basic alternating-access model. PMID:27023848

  9. Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.

    PubMed

    Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing

    2016-01-27

    A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments. PMID:26727650

  10. Further studies of sodium transport in feline red cells.

    PubMed

    Sha'afi, R I; Pascoe, E

    1973-06-01

    The transport of radioactive sodium in high sodium cat red blood cells has been studied under various experimental conditions. It was found that iodoacetate (IAA) and iodoacetamide (IAM) inhibit Na influx by 50% whereas NaF has no effect. Reversible dyes, such as methylene blue (Mb), also inhibit this influx by 60%. Both IAA and Mb effects show a lag period of about 40 min. Cell starvation abolishes the volume-dependent Na influx which is generally observed in these cells. IAA reduces significantly the volume-dependent Na influx but does not inhibit it completely. 5 mM magnesium chloride produces a twofold increase in Na influx. On the other hand, MgCl(2) has no effect on Na transport in human red cells or on potassium or sulfate transport in cat red cells. The effect of MgCl(2) is quite rapid and does not interfere with the volume-dependent Na influx. This effect is abolished in starved cells. Reincubation of previously stored cells in buffered solutions containing glucose and MgCl(2) causes more than one order of magnitude increase in Na influx. These several observations are discussed in terms of the possibility of a link between Na transport and Na-Mg-activated ATPase. PMID:4733097

  11. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  12. Quantitative gene expression analysis of some sodium ion transporters under salinity stress in Aeluropus littoralis.

    PubMed

    Rezaei Moshaei, Masoumeh; Nematzadeh, Ghorban Ali; Askari, Hossein; Mozaffari Nejad, Amir Sasan; Pakdin, Ali

    2014-11-01

    Plant sodium transporters activity is one of the most important salt tolerance mechanisms to keep normal status of cytosolic sodium content. In the present study, expression pattern of genes encoding Na(+)/H(+) antiporters in the plasma membrane (SOS1 gene), vacuolar membrane (NHX1 gene) and H(+)-ATPase pump (VHA gene) in Aeluropus littoralis under different treatments of NaCl was measured by the semi-quantitative RT-PCR method. Our results indicated that root and shoot sodium contents were increased along with increasing salinity pressure. In response to 200 and 400 mM NaCl, mRNA level of SOS1 and NHX1 was increased in the shoot and root tissues, while VHA transcripts were increased only under 400 mM of NaCl. Transcripts of VHA-c and NHX1 in root were higher than shoot in all treatments. In general, our results indicated that transcriptional level of SOS1, and NHX1 genes induced in parallel with VHA expression may be involved in controlling cytosolic Na(+) concentration in A. littoralis. PMID:25313273

  13. Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics.

    PubMed

    González-Montelongo, Rafaela; Barros, Francisco; Alvarez de la Rosa, Diego; Giraldez, Teresa

    2016-05-01

    The epithelial sodium channel (ENaC) constitutes the rate-limiting step for Na(+) transport across electrically tight epithelia. Regulation of ENaC activity is critical for electrolyte and extracellular volume homeostasis, as well as for lung liquid clearance and colon Na(+) handling. ENaC activity is tightly controlled by a combination of mechanisms involving changes in open probability and plasma membrane abundance. The latter reflects a combination in channel biosynthesis and trafficking to and from the membrane. Studying ENaC trafficking with different techniques in a variety of expression systems has yielded inconsistent results, indicating either fast or slow rates of insertion and retrieval, which range from the order of minutes to several hours. Here, we use Xenopus oocytes as ENaC expression system to study channel insertion rate in the membrane using two different techniques under comparable conditions: (1) confocal microscopy coupled to fluorescence recovery after photobleaching (FRAP) measurements; and (2) fluorescent bungarotoxin (BTX) binding to ENaC subunits modified to include BTX binding sites (BBSs) in their extracellular domain, a technique that has not been previously used to study ENaC trafficking. Our confocal-FRAP data indicate a fast rate of ENaC incorporation to the membrane in a process conditioned by channel subunit composition. On the other hand, BTX binding experiments indicate much slower channel insertion rates, with matching slow ENaC retrieval rates. The data support a model that includes fast recycling of endocytosed ENaC with parallel incorporation of newly synthesized channels at a slower rate. PMID:26876388

  14. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    PubMed

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics. PMID:22703479

  15. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. PMID:26945065

  16. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited.

    PubMed

    Rossier, Bernard C; Baker, Michael E; Studer, Romain A

    2015-01-01

    Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases. PMID:25540145

  17. Single molecule imaging of conformational dynamics in sodium-coupled transporters

    NASA Astrophysics Data System (ADS)

    Terry, Daniel S.

    Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na+) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed the NSS molecular architecture and has been the basis for extensive structural, biochemical, and computational investigations of the mechanism of transporter proteins with a LeuT-like fold. In this dissertation, the conformational states sampled by LeuT are explored using single-molecule fluorescence resonance energy transfer imaging methods, with special focus on the motions of transmembrane helix 1a that lead to inward release of substrate. We also explored how dynamics are modulated by substrate, Na+, and protons to produce efficient transport. These advances represent a first of a kind study of the dynamics of an integral membrane protein at a truly single-molecule scale. Advances in instrumentation, analysis tools, and organic fluorophores were all required to achieve these goals, and such advances are also described. While these experiments were performed with detergent-solubilized protein, preliminary work suggests that imaging of LeuT in proteoliposomes is feasible and a fluorescence sensor assay could be used to simultaneously detect conformational dynamics and transport function.

  18. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms. PMID:15726386

  19. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  20. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity. PMID:27141548

  1. Active sodium transport and the electrophysiology of rabbit colon.

    PubMed

    Schultz, S G; Frizzell, R A; Nellans, H N

    1977-05-12

    The electrophysiologic properties of rabbit colonic epithelial cells were investigated employing microelectrode techniques. Under open-circuit conditions, the transepithelial electrical potential difference (PD) averaged 20 mV, serosa positive, and the intracellular electrical potential (psimc) averaged -32 mV, cell interior negative with respect to the mucosal solution; under short-circuit conditions, psimc averaged -46 mV. The addition of amiloride to the mucosal solution abolishes the transepithelial PD and active Na transport, and psimc is hyperpolarized to an average value of -53 mV. These results indicate that Na entry into the mucosal cell is a conductive process which, normally, depolarized psimc. The data obtained were interpreted using a double-membrane equivalent electrical circuit model of the "active Na transport pathway" involving two voltage-independent electromotive forces (emf's) and two voltage-independent resistances arrayed in series. Our observations are consistent with the notions that: (a) The emf's and resistances across the mucosal and baso-lateral membranes are determined predominantly by the emf (64 mV) and resistance of the Na entry process and the emf (53 mV) and resistance of the process responsible for active Na extrusion across the baso-lateral membranes: that is, the electrophysiological properties of the cell appear to be determined solely by the properties and processes responsible for transcellular active Na transport. The emf of the Na entry process is consistent with the notion that the Na activity in the intracellular transport pool is approximately one-tenth that in the mucosal solution or about 14 mM. (b) In the presence of amiloride, the transcellular conductance is essentially abolished and the total tissue conductance is the result of ionic diffusion through paracellular pathways. (c) The negative intracellular potential (with respect to the mucosal solution) is due primarily to the presence of a low resistance

  2. Faropenem Transport across the Renal Epithelial Luminal Membrane via Inorganic Phosphate Transporter Npt1

    PubMed Central

    Uchino, Hiroshi; Tamai, Ikumi; Yabuuchi, Hikaru; China, Kayoko; Miyamoto, Ken-ichi; Takeda, Eiji; Tsuji, Akira

    2000-01-01

    We previously showed that the mouse inorganic phosphate transporter Npt1 operates in the hepatic sinusoidal membrane transport of anionic drugs such as benzylpenicillin and mevalonic acid. In the present study, the mechanism of renal secretion of penem antibiotics was examined by using a Xenopus oocyte expression system. Faropenem (an oral penem antibiotic) was transported via Npt1 with a Michaelis-Menten constant of 0.77 ± 0.34 mM in a sodium-independent but chloride ion-sensitive manner. When the concentration of chloride ions was increased, the transport activity of faropenem by Npt1 was decreased. Since the concentration gradient of chloride ions is in the lumen-to-intracellular direction, faropenem is expected to be transported from inside proximal tubular cells to the lumen. So, we tested the release of faropenem from Xenopus oocytes. The rate of efflux of faropenem from Npt1-expressing oocytes was about 9.5 times faster than that from control water-injected Xenopus oocytes. Faropenem transport by Npt1 was significantly inhibited by β-lactam antibiotics such as benzylpenicillin, ampicillin, cephalexin, and cefazolin to 24.9, 40.5, 54.4, and 26.2% of that for the control, respectively. Zwitterionic β-lactam antibiotics showed lesser inhibitory effects on faropenem uptake than anionic derivatives, indicating that Npt1 preferentially transports anionic compounds. Other anionic compounds, such as indomethacin and furosemide, and the anion transport inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid significantly inhibited faropenem uptake mediated by Npt1. In conclusion, our results suggest that Npt1 participates in the renal secretion of penem antibiotics. PMID:10681320

  3. Faropenem transport across the renal epithelial luminal membrane via inorganic phosphate transporter Npt1.

    PubMed

    Uchino, H; Tamai, I; Yabuuchi, H; China, K; Miyamoto, K; Takeda, E; Tsuji, A

    2000-03-01

    We previously showed that the mouse inorganic phosphate transporter Npt1 operates in the hepatic sinusoidal membrane transport of anionic drugs such as benzylpenicillin and mevalonic acid. In the present study, the mechanism of renal secretion of penem antibiotics was examined by using a Xenopus oocyte expression system. Faropenem (an oral penem antibiotic) was transported via Npt1 with a Michaelis-Menten constant of 0.77 +/- 0.34 mM in a sodium-independent but chloride ion-sensitive manner. When the concentration of chloride ions was increased, the transport activity of faropenem by Npt1 was decreased. Since the concentration gradient of chloride ions is in the lumen-to-intracellular direction, faropenem is expected to be transported from inside proximal tubular cells to the lumen. So, we tested the release of faropenem from Xenopus oocytes. The rate of efflux of faropenem from Npt1-expressing oocytes was about 9.5 times faster than that from control water-injected Xenopus oocytes. Faropenem transport by Npt1 was significantly inhibited by beta-lactam antibiotics such as benzylpenicillin, ampicillin, cephalexin, and cefazolin to 24.9, 40. 5, 54.4, and 26.2% of that for the control, respectively. Zwitterionic beta-lactam antibiotics showed lesser inhibitory effects on faropenem uptake than anionic derivatives, indicating that Npt1 preferentially transports anionic compounds. Other anionic compounds, such as indomethacin and furosemide, and the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid significantly inhibited faropenem uptake mediated by Npt1. In conclusion, our results suggest that Npt1 participates in the renal secretion of penem antibiotics. PMID:10681320

  4. Analytical Applications of Transport Through Bulk Liquid Membranes.

    PubMed

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-01

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis. PMID:26185963

  5. Nanostructured silicon membranes for control of molecular transport.

    PubMed

    Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J

    2010-11-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. PMID:24932436

  6. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  7. Glucose and fructose uptake by Limulus polyphemus hepatopancreatic brush border and basolateral membrane vesicles: evidence for Na+-dependent sugar transport activity.

    PubMed

    Sterling, Kenneth M; Ahearn, Gregory A

    2011-05-01

    [(3)H]-fructose and [(3)H]-glucose transport activities were determined in brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) from Limulus polyphemus (horseshoe crab) hepatopancreas. Glucose transport was equilibrative in the absence of sodium and sodium dependent in the presence of sodium in BBMV, suggesting GLUT-like and SGLT-like transport activity. Glucose transport by BLMV was equilibrative and sodium independent. Fructose uptake by BBMV and BLMV was equilibrative in the absence of sodium and sodium dependent in the presence of sodium. Western blot analysis using a rabbit anti-mouse SGLT-1 polyclonal antibody indicated the presence of a cross-reacting horseshoe crab BBMV protein of similar molecular weight to the mammalian SGLT1. Sequence alignment of the mouse SGLT-4 and SGLT1 with a translated, horseshoe crab-expressed sequence tag also indicated significant identity between species. Fructose and glucose uptake in the absence and presence of sodium by hepatopancreas BBMV and BLMV indicated the presence of sodium-dependent transport activity for each sugar that may result from the presence of transporters similar to those described for other species. PMID:21184084

  8. Functional expression of sodium-glucose transporters in cancer.

    PubMed

    Scafoglio, Claudio; Hirayama, Bruce A; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R; Wright, Ernest M

    2015-07-28

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  9. Functional expression of sodium-glucose transporters in cancer

    PubMed Central

    Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.

    2015-01-01

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  10. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney.

    PubMed

    Palmer, Biff F; Clegg, Deborah J; Taylor, Simeon I; Weir, Matthew R

    2016-08-01

    Diabetic ketoacidosis is a serious metabolic condition that may occur in patients with either Type 1 or Type 2 diabetes. The accumulation of ketoacids in the serum is a consequence of insulin deficiency and glucagon excess. Sodium Glucose Transporter 2 (SGLT2) inhibitors are novel therapeutic treatments for improving glucose homeostasis in patients with diabetes. Through reductions in glucose reabsorption by the kidney, they lower serum glucose in patients with Type 2 diabetes and they improve glucose control whether used alone or in combination with other therapies. Mechanistically, these drugs increase serum ketoacids and increase glucagon production, which in some individuals, can lead to formation of diabetic ketoacidosis. This review will first focus in how the kidney normally handles ketoacids, and second will discuss how the SGLT2 inhibitors affect the kidney in such a way so as to enhance the risk for development of ketoacidosis in susceptible individuals. PMID:27240541

  11. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  12. Constructing a novel zwitterionic surface of PVDF membrane through the assembled chitosan and sodium alginate.

    PubMed

    Wang, Haiye; Zhao, Xinzhen; He, Chunju

    2016-06-01

    A novel zwitterionic surface of PVDF membrane with significantly improved antifouling properties was prepared though pressure-assisted layer by layer self-assembly method based on the electrostatic interactions of chitosan (CS), sodium alginate (SA) and polyfunctional lysine. For the modified C-S-C-S-L membrane, the contact angle decreased to 35°, the bovine serum albumin (BSA) adsorption mass of static fouling on the membrane surface decreased to 10μg/cm(2), and the secondary water flux recovery rate (FRR) of dynamic fouling of BSA and humic acid (HA) pollutants increased to 98% and 99%, respectively, exhibiting excellent antifouling performance. The results demonstrated that using charged bio-macromolecules and amino acids to build zwitterionic surface was effective and convenient to change the interface properties of the separation membrane through the pressure-assisted self-assembly modification method, and provided a new way for the industrial scale hydrophilic modification of hydrophobic porous membrane materials. PMID:26944663

  13. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  14. Residues in the pathway through a membrane transporter.

    PubMed Central

    Yan, R T; Maloney, P C

    1995-01-01

    The structure of solute transporters is understood largely from analysis of their amino acid sequences, and more direct information is greatly needed. Here we report work that applies cysteine scanning mutagenesis to describe structure-function relations in UhpT, a bacterial membrane transporter. By using an impermeant SH-reactive agent to probe single-cysteine variants, we show that UhpT transmembrane segment 7 spans the membrane as an alpha-helix and that the central portion of this helix is exposed to both membrane surfaces, forming part of the translocation pathway through this transporter. Images Fig. 1 Fig. 3 Fig. 4 PMID:7597063

  15. Electrophoretic Transport of Biomolecules through Carbon Nanotube Membranes

    PubMed Central

    Sun, Xinghua; Su, Xin; Wu, Ji; Hinds, Bruce J.

    2013-01-01

    Electrophoretic transport of proteins across electrochemically oxidized multi-walled carbon nanotube (MWCNT) membranes has been investigated. Small charged protein, lysozyme, was successfully pumped across MWCNT membranes by electric field while rejecting larger bovine serum albumin (BSA). Transport of the lysozome was reduced by a factor of about 30 in comparison to bulk mobility and consistent with prediction for hindered transport. Mobilities between 0.33-1.4×10-9 m2/V-s were observed and are approximately 10 fold faster than comparable ordered nanoporous membranes and are consistent with continuum models. For mixtures of BSA and lysozyme, complete rejection of BSA is seen with electrophoretic separations PMID:21338104

  16. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets.

    PubMed

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia

    2016-08-01

    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension. PMID:27137675

  17. Thermodynamics of Ionic Transport through Functionalized Membranes

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit; Qu, Siyi; Dilenschneider, Theodore; Phillip, William A.; Whitmer, Jonathan K.

    Through microphase separation of block copolymers, highly porous solid membranes may be assembled. Further functionalization with amine and sulfonic acid groups has demonstrated promise in exquisitely controlling the flux of charged species, and in particular multivalent ions. Using coarse-grained molecular simulations, we explore the essential thermodynamics underlying salt rejection in charge-functionalized membranes, and develop a model capable of linking the performance of these membranes to their molecular character through free energy calculations.

  18. Sodium channels in membrane vesicles from cultured toad bladder cells

    SciTech Connect

    Asher, C.; Moran, A.; Rossier, B.C.; Garty, H. Ben Gurion Univ., Beer-Sheva Institut de Pharmacologie de l'Universite de Lausanne )

    1988-04-01

    Electrical potential-driven {sup 22}Na{sup +} fluxes were measured in membrane vesicles prepared from TBM-18(cl23) cells (a clone of the established cell line TB-M). Fifty to seventy percent of the tracer uptake in vesicles derived from cells that were cultivated on a porous support were blocked by the diuretic amiloride. The amiloride inhibition constant was <0.1 {mu}M, indicating that this flux is mediated by the apical Na{sup +}-specific channels. Vesicles prepared from cells that were not grown on a porous support exhibited much smaller amiloride-sensitive fluxes. Two Ca{sup 2+}-dependent processes that down-regulated the channel conductance and were previously identified in native epithelia were found in the cultured cells as well. Vesicles isolated from cells that were preincubated with 5 {times} 10{sup {minus}7} M aldosterone for 16-20 h exhibited higher amiloride-sensitive conductance than vesicles derived from control, steroid-depleted cells. Thus membrane derived from TBM-18(cl23) cells can be used to characterize the epithelial Na{sup +} channel and its hormonal regulation.

  19. Transport, signaling, and homeostasis of potassium and sodium in plants.

    PubMed

    Adams, Eri; Shin, Ryoung

    2014-03-01

    Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress. PMID:24393374

  20. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel

    PubMed Central

    Ulmschneider, Martin B.; Bagnéris, Claire; McCusker, Emily C.; DeCaen, Paul G.; Delling, Markus; Clapham, David E.; Ulmschneider, Jakob P.; Wallace, B. A.

    2013-01-01

    The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate. PMID:23542377

  1. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    SciTech Connect

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  2. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    SciTech Connect

    Schumaker, Karen S

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are

  3. Membrane Transporters as Mediators of Cisplatin Effects and Side Effects

    PubMed Central

    Ciarimboli, Giuliano

    2012-01-01

    Transporters are important mediators of specific cellular uptake and thus, not only for effects, but also for side effects, metabolism, and excretion of many drugs such as cisplatin. Cisplatin is a potent cytostatic drug, whose use is limited by its severe acute and chronic nephro-, oto-, and peripheral neurotoxicity. For this reason, other platinum derivatives, such as carboplatin and oxaliplatin, with less toxicity but still with antitumoral action have been developed. Several transporters, which are expressed on the cell membranes, have been associated with cisplatin transport across the plasma membrane and across the cell: the copper transporter 1 (Ctr1), the copper transporter 2 (Ctr2), the P-type copper-transporting ATPases ATP7A and ATP7B, the organic cation transporter 2 (OCT2), and the multidrug extrusion transporter 1 (MATE1). Some of these transporters are also able to accept other platinum derivatives as substrate. Since membrane transporters display a specific tissue distribution, they can be important molecules that mediate the entry of platinum derivatives in target and also nontarget cells possibly mediating specific effects and side effects of the chemotherapeutic drug. This paper summarizes the literature on toxicities of cisplatin compared to that of carboplatin and oxaliplatin and the interaction of these platinum derivatives with membrane transporters. PMID:24278698

  4. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate.

    PubMed

    Kuila, Sunil Baran; Ray, Samit Kumar

    2014-01-30

    Pervaporation membranes were made by solution blending of polyvinyl alcohol (PVA) and sodium alginate (SA). Accordingly, five different blends with PVA:SA weight ratio of 75:25, 50:50, 25:75, 20:80 and 10:90 designated as PS1, PS2, PS3, PS4 and PS5, respectively, were prepared. Each of these blends was crosslinked with 2, 4 and 6 wt% glutaraldehyde and the resulting fifteen (5 × 3) membranes were used for pervaporative separation of 90 wt% dioxane in water. The membranes made from PS4 and PS5 were not stable during pervaporation experiments. Among the stable membranes PS3 membrane crosslinked with 2 wt% glutaraldehyde showed the best results for flux and selectivity. Thus, it was filled with nano size sodium montmorillonite filler and used for separation of dioxane-water mixtures over the entire concentration range of 80-99.5 wt% dioxane in water. The membranes were also characterized by mechanical properties, FTIR, SEM, DTA-TGA and XRD. PMID:24299887

  5. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  6. Comparative Transport Activity of Intact Cells, Membrane Vesicles, and Mesosomes of Bacillus licheniformis

    PubMed Central

    MacLeod, Robert A.; Thurman, Paul; Rogers, H. J.

    1973-01-01

    Sodium ion was shown to stimulate strongly the transport of l-glutamic acid into cells of Bacillus licheniformis 6346 His−. Lithium ion had a slight capacity to replace Na+ in this capacity, but K+ was without effect. Three of five amino acids tested. l-glutamic acid, l-aspartic acid, and l-alanine, were concentrated against a gradient in the cells. Intracellular pools of these amino acids were extractable with 5% trichloroacetic acid. Pools of l-histidine and l-lysine could not be detected. No evidence of active transport of lysine into cells could be detected, and histidine was taken up in the absence of chloramphenicol but not in its presence. The uptake of glutamic acid by membrane vesicle preparations was strongly stimulated by reduced nicotinamide adenine dinucleotide (NADH) and to a lesser extent by succinate. The presence of phenazine methosulfate increased uptake in the presence of succinate. Either l- or d-lactate and adenosine triphosphate were without effect. None of these compounds stimulated the uptake of glutamic acid by mesosomes, although some mesosome preparations contained separable membrane which was very active. NADH strongly stimulated the uptake of aspartic acid and alanine by membrane vesicles but had only a slight effect on the uptake of histidine and lysine. No evidence of active transport of any of the amino acids into mesosomes could be detected either in the presence or absence of NADH. NADH stimulation of the uptake of glutamic acid by membrane vesicles was destroyed by exposure to light of 360 nm; this inactivation was reversible by vitamin K2(5) or K2(10). Sodium ion stimulated transport of glutamic acid by membrane vesicles. PMID:4347247

  7. Membrane distribution of sodium-hydrogen and chloride-bicarbonate exchangers in crypt and villus cell membranes from rabbit ileum.

    PubMed Central

    Knickelbein, R G; Aronson, P S; Dobbins, J W

    1988-01-01

    Present evidence suggests that in the small intestine, villus cells are primarily absorptive and crypt cells are primarily secretory. In order to further confirm that there are differences in transport properties between villus and crypt cells, we have separated villus from crypt cells, using calcium chelations techniques, and determined the distribution of Na:H and Cl:HCO3 exchange activity on brush border membrane and basolateral membrane preparations from these two cell populations. Separation of cells was determined utilizing alkaline phosphatase and maltase activity as a marker of villus cells and thymidine kinase activity as a marker of crypt cells. Utilizing these techniques, we were able to sequentially collect cells along the villus-crypt axis. Na-stimulated glucose and alanine uptake in brush border membrane vesicles diminished from the villus to the crypt region in the sequentially collected cells fractions, further suggesting separation of these cells. Brush border and basolateral membranes were then prepared from cells from the villus and crypt areas, utilizing a continuous sucrose gradient. In the villus cells, Na:H exchange activity was found associated with both the brush border and basolateral membrane, whereas, in crypt cells, Na:H exchange activity was only found on the basolateral membrane. Cl:HCO3 exchange activity was found only on the brush border membrane, in both villus and crypt cells. These studies suggest functional heterogeneity in ion transport between villus and crypt cells. PMID:2848868

  8. A micropuncture investigation of electrolyte transport in the parotid glands of sodium-replete and sodium-depleted sheep.

    PubMed Central

    Compton, J S; Nelson, J; Wright, R D; Young, J A

    1980-01-01

    concentrations fell to an average value of 20.0 mmol l-1. In final saliva it was found that the summed sodium and potassium concentrations exceeded the summed chloride, bicarbonate and phosphate (in mequiv l-1) concentrations, on average by 13.9 mequiv l-1, regardless of sodium status or flow rate. 7. The results indicate that secretion by the sheep parotid can be accounted for in terms of the standard two-state model. Phosphate seems to enter the saliva only in the primary fluid and potassium and bicarbonate appear to enter at both primary and secondary sites; sodium and chloride enter at the primary level and can be reabsorbed in the ducts. Salt depletion causes the primary fluid concentrations of sodium and chloride to fall and the content of an unidentified solute to rise markedly while, at the ductal level, it causes normally quiescent sodium and potassium transport processes to become activated. PMID:7252874

  9. Changes in erythrocyte sodium, sodium transport and /sup 3/H ouabain binding capacity during digoxin administration in the pig

    SciTech Connect

    Whittaker, J.; Hawkins, M.; Swaminathan, R.

    1983-02-14

    Time course of the changes in erthrocyte sodium content, sodium transport, /sup 3/H ouabain binding capacity and Na/sup +/, K/sup +/-ATPase activity were measured for 14 weeks, in 6 young pigs treated with digoxin and in 6 control pigs. After one week of treatment the erythrocyte sodium content increased from 5.4 mmol/kg cells and the efflux rate constant of sodium decreased. With prolonged treatment the erythrocyte sodium content returned to normal and the /sup 3/H ouabain binding capacity increased by week 5. The plasma digoxin concentration decreased from 1.1 ng/ml at week 5 to 0.6 ng/ml at week 8 probably due to the decline in dose (..mu..g/kg) of digoxin with age. The efflux rate constant of sodium and Na/sup +/, K/sup +/-ATPase activity were higher towards the end of treatment. It is concluded that with prolonged administration of digoxin there is an increase in erythrocyte sodium pump units.

  10. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  11. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  12. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  13. Transport and distribution of sodium across frog skin

    PubMed Central

    Cereijido, M.; Rotunno, Catalina A.

    1967-01-01

    1. The time course of 22Na influx across frog skin mounted as a flat sheet between two lucite chambers has been studied. The flux reaches its maximal steady value in about 30 min. 2. The time course of changes in 22Na specific activity in the cells has been followed by two different methods: (1) periodical measurements of 22Na activity in pieces of skin mounted in a special device in which the outer facing membrane was in contact with the tracer and (2) measurement of uptake of 24Na in individual pieces of skin suspended in Ringer solution. Under both circumstances the skin failed to exchange all its Na. 3. Considerations on the basis of the kinetics of 22Na influx and 22Na specific activity indicate that there exist at least two different Na compartments in the epithelium, one of them being directly involved in Na transport. 4. The 22Na specific activity profile was studied in skins which had previously been mounted as a flat sheet between two chambers with tracer in one of them. This was carried out by removing the skin from the chamber, freezing, slicing and analysing the slices for Na and 22Na. The results indicate that both Na compartments are distributed across the whole epithelium. 5. The results of these studies are taken to indicate: (a) that the Na partition in the tissue is not a result of the Na being contained in different cellular layers; (b) that Na transport across frog skin is carried out by all the epithelial cells and is not restricted to those of a particular layer; (c) that Na entry from an outer solution containing from 1 to 10 mM-Na occurs into the transporting cells down an electrochemical potential gradient and therefore need not involve an active mechanism at the outer border of the cells. PMID:6051783

  14. CO2 Gas Transport Property of Sulfonated Poly(Arylenen Ether Sulfone) Copolymer Membrane.

    PubMed

    Lee, Hye Jin; Kim, Deuk Ju; Nam, Sang Yong

    2015-03-01

    The effect of functional groups such as sulfuric acid group and metal ions on the CO2 gas transport property of membranes was investigated. Sulfonated poly(arylene ether sulfone) (SPAES) was prepared by direct copolymerization with a non-sulfonated monomer and sulfonated monomer. The sulfonation degree of SPAES was controlled from 0 to 50%. Metal ions such as lithium and sodium were substituted for the protons of the -SO3H group. The thermal properties, microstructure of polymer chains, and the permeability and selectivity of membranes were evaluated. The solubility coefficient of CO2 gas increased with an increase in sulfonation degree. But the diffusivity was largely decreased and the CO2/N2 selectivity of the membrane substituted for metal ions was increased. PMID:26413703

  15. Structural Determinants of Water Permeation through the Sodium-Galactose Transporter vSGLT

    PubMed Central

    Adelman, Joshua L.; Sheng, Ying; Choe, Seungho; Abramson, Jeff; Wright, Ernest M.; Rosenberg, John M.; Grabe, Michael

    2014-01-01

    Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1. PMID:24655503

  16. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  17. Simulating and Modeling Transport Through Atomically Thin Membranes

    NASA Astrophysics Data System (ADS)

    Ostrowski, Joseph; Eaves, Joel

    2014-03-01

    The world is running out of clean portable water. The efficacy of water desalination technologies using porous materials is a balance between membrane selectivity and solute throughput. These properties are just starting to be understood on the nanoscale, but in the limit of atomically thin membranes it is unclear whether one can apply typical continuous time random walk models. Depending on the size of the pore and thickness of the membrane, mass transport can range from single stochastic passage events to continuous flow describable by the usual hydrodynamic equations. We present a study of mass transport through membranes of various pore geometries using reverse nonequilibrium simulations, and analyze transport rates using stochastic master equations.

  18. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures. PMID:26716727

  19. Transport in Polymer-Electrolyte Membranes I. Physical Model

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2003-06-02

    In this paper, a physical model is developed that is semiphenomenological and takes into account Schroeder's paradox. Using the wealth of knowledge contained in the literature regarding polymer-electrolyte membranes as a basis, a novel approach is taken in tying together all of the data into a single coherent theory. This approach involves describing the structural changes of the membrane due to water content, and casting this in terms of capillary phenomena. By treating the membrane in this fashion, Schroeder's paradox can be elucidated. Along with the structural changes, two different transport mechanisms are presented and discussed. These mechanisms, along with the membrane's structural changes, comprise the complete physical model of the membrane. The model is shown to agree qualitatively with different membranes and different membrane forms, and is applicable to modeling perfluorinated sulfonic acid and similar membranes. It is also the first physically based comprehensive model of transport in a membrane that includes a physical description of Schroeder's paradox, and it bridges the gap between the two types of macroscopic models currently in the literature.

  20. Roles and Transport of Sodium and Potassium in Plants.

    PubMed

    Nieves-Cordones, Manuel; Al Shiblawi, Fouad Razzaq; Sentenac, Hervé

    2016-01-01

    The two alkali cations Na(+) and K(+) have similar relative abundances in the earth crust but display very different distributions in the biosphere. In all living organisms, K(+) is the major inorganic cation in the cytoplasm, where its concentration (ca. 0.1 M) is usually several times higher than that of Na(+). Accumulation of Na(+) at high concentrations in the cytoplasm results in deleterious effects on cell metabolism, e.g., on photosynthetic activity in plants. Thus, Na(+) is compartmentalized outside the cytoplasm. In plants, it can be accumulated at high concentrations in vacuoles, where it is used as osmoticum. Na(+) is not an essential element in most plants, except in some halophytes. On the other hand, it can be a beneficial element, by replacing K(+) as vacuolar osmoticum for instance. In contrast, K(+) is an essential element. It is involved in electrical neutralization of inorganic and organic anions and macromolecules, pH homeostasis, control of membrane electrical potential, and the regulation of cell osmotic pressure. Through the latter function in plants, it plays a role in turgor-driven cell and organ movements. It is also involved in the activation of enzymes, protein synthesis, cell metabolism, and photosynthesis. Thus, plant growth requires large quantities of K(+) ions that are taken up by roots from the soil solution, and then distributed throughout the plant. The availability of K(+) ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. In contrast, due to natural salinity or irrigation with poor quality water, detrimental Na(+) concentrations, toxic for all crop species, are present in many soils, representing 6 % to 10 % of the earth's land area. Three families of ion channels (Shaker, TPK/KCO, and TPC) and 3 families of transporters (HAK, HKT, and CPA) have been identified so far as contributing to K(+) and Na(+) transport across the plasmalemma and

  1. Cholesterol transport through lysosome-peroxisome membrane contacts.

    PubMed

    Chu, Bei-Bei; Liao, Ya-Cheng; Qi, Wei; Xie, Chang; Du, Ximing; Wang, Jiang; Yang, Hongyuan; Miao, Hong-Hua; Li, Bo-Liang; Song, Bao-Liang

    2015-04-01

    Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases. PMID:25860611

  2. Current topics in membranes and transport

    SciTech Connect

    Kleinzeller, A.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: Expression of the Oxytocin and Vasopressin Genes; Steroid Effects on Excitable Membranes: The Secretory Vesicle in Processing and Secretion of Neuropeptides: and Steroid Hormone Influences on Cyclic AMP-Generating Systems.

  3. Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule.

    PubMed Central

    Hays, S R; Baum, M; Kokko, J P

    1987-01-01

    Several hormones induce phosphatidylinositol turnover in cell membranes and thus activate protein kinase C. Activation of protein kinase C can, in turn, have effects on epithelial transport. These experiments were designed to investigate the effects of two activators of protein kinase C, phorbol 12-myristate,13-acetate (PMA) and L-alpha-1,2-dioctanoylglycerol (L-alpha-1,2-DOG), and two inactive analogues, 4 alpha-phorbol and 4-O-methyl phorbol 12-myristate,13-acetate, on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. Utilizing in vitro microperfusion techniques, we found that activation of protein kinase C with either PMA or L-alpha-1,2-DOG significantly inhibited net sodium absorption, net potassium secretion and transepithelial voltage in a dose-dependent manner. There was no effect on net chloride or total CO2 transport. In contrast, the inactive phorbol analogues did not alter either sodium or potassium transport. These studies demonstrate that in the rabbit cortical collecting tubule sodium and potassium transport can be inhibited by compounds known to activate proteins kinase C. Thus, hormones that induce phosphatidylinositol turnover in the rabbit cortical collecting tubule may lead to inhibition of sodium transport by activation of protein kinase C. PMID:3680514

  4. Novel macrocyclic carriers for proton-coupled liquid membrane transport

    SciTech Connect

    Lamb, J.D.

    1991-06-10

    The objective of our research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period, including selenium-containing macrocycles, new crown-4 structures, and several new crown structures containing nitrogen based heterocycles as substituents in the principal macrocyclic ring. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction, and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. It was found that the dual hollow fiber system maintains the cation selectivity and permeability of supported liquid membranes, while enhancing membrane stability. The diffusion limited transport model was expanded to account for membrane solvent effects. Furthermore, Eu{sup 2+} transport was found to be similar to that of strontium and much higher than that of the lanthanides, in supported liquid membrane systems.

  5. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch.

    PubMed

    Fines, G A; Ballantyne, J S; Wright, P A

    2001-01-01

    In elasmobranch fishes, urea occurs at high concentrations (350-600 mM) in the body fluids and tissues, where it plays an important role in osmoregulation. Retention of urea by the gill against this huge blood-to-water diffusion gradient requires specialized adaptations to the epithelial cell membranes. Experiments were performed to determine the mechanisms and structural features that facilitate urea retention by the gill of the spiny dogfish Squalus acanthias. Analysis of urea uptake by gill basolateral membrane vesicles revealed the presence of a phloretin-sensitive (half inhibition 0.09 mM), sodium-coupled, secondary active urea transporter (Michaelis constant = 10.1 mM, maximal velocity = 0.34 micromol. h(-1). mg protein(-1)). We propose that this system actively transports urea out of the gill epithelial cells back into the blood against the urea concentration gradient. Lipid analyses of the basolateral membrane revealed high levels of cholesterol contributing to the highest reported cholesterol-to-phospholipid molar ratio (3.68). This unique combination of active urea transport and modification of the phospholipid bilayer membrane is responsible for decreasing the gill permeability to urea and facilitating urea retention by the gill of Squalus acanthias. PMID:11124129

  6. Single Molecule Imaging of Conformational Dynamics in Sodium-Coupled Transporters

    ERIC Educational Resources Information Center

    Terry, Daniel S.

    2013-01-01

    Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na[superscript +]) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The…

  7. Structure and Water Transport in Nafion Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  8. ATR-FTIR characterization of transport properties of benzoic acid ion-pairs in silicone membranes.

    PubMed

    Tantishaiyakul, Vimon; Phadoongsombut, Narubodee; Wongpuwarak, Wibul; Thungtiwachgul, Jatupit; Faroongsarng, Damrongsak; Wiwattanawongsa, Kamonthip; Rojanasakul, Yon

    2004-09-28

    A novel technique based on Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to study the transport of benzoic acid ion-pairs/salts in silicone membranes. The benzoic acid ion-pairs were prepared using various counter-ions with different degrees of lipophilicity, e.g. triethylamine (TA), diethylamine (DE), tert-butylamine (t-BA), 2-amino-2-methyl-propanol (AMP), and 2-amino-2-methyl-propanediol (AMPD). Silicone membrane, treated or untreated with propylene glycol (PG), was placed on the surface of a ZnSe crystal and the transport solution was applied to the upper surface of the membrane. A mathematical model, based on Fick's second law describing the build up of permeant concentration at the membrane/crystal interface with time was applied to determine diffusion coefficients. Absorption due to the acid (1700 cm(-1)) or benzoate anion (1555 cm(-1)) was observed at different regions without the interference from PG or silicone membrane. Benzoate anion, a charged species, was observed to permeate the membrane. The permeation of benzoate anion from sodium benzoate and polar ion-pairs of AMP and AMPD was very low in contrast to their high-saturated concentrations in PG as compared to the t-BA ion-pair. This indicated that benzoate anion preferentially permeates the membrane as an ion-pair rather than a single anion; otherwise its permeation should correspond to its concentration in PG instead of the lipophilicity of the ion-pairs. Additionally, the diffusion coefficient values of benzoic acid and benzoate anions through the treated and untreated membranes were not statistically different. PMID:15363507

  9. Active Sodium and Potassium Transport in High Potassium and Low Potassium Sheep Red Cells

    PubMed Central

    Hoffman, P. G.; Tosteson, D. C.

    1971-01-01

    The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems. PMID:5112660

  10. Antiadhesive effect and safety of sodium hyaluronate-carboxymethyl cellulose membrane in thyroid surgery

    PubMed Central

    Bae, Dong Sik; Woo, Jung-Woo; Paek, Se Hyun; Kwon, Hyungju; Chai, Young Jun; Kim, Su-jin; Choi, June Young; Youn, Yeo-Kyu

    2013-01-01

    Purpose A number of researchers have suggested the use of sodium hyaluronate carboxymethyl cellulose (HA-CMC) membrane for preventing postoperative adhesion. This study evaluated the antiadhesive effect and safety of HA-CMC membrane in thyroidectomy for papillary thyroid cancer. Methods One hundred sixty-two patients who underwent thyroidectomy were prospectively randomized. In the study group of 80 patients, the 7.5 cm × 13 cm HA-CMC membrane was applied to the operative field after thyroidectomy. The subjects were asked about complications including adhesive symptoms using an 8-item questionnaire at 2 weeks, 3 months, and 6 months after surgery. In addition, items on the appearance of neck wrinkles and scars were evaluated by a physician who had no information about the patient's allocation. Results There were no significant differences in complications such as swallowing difficulty, and wrinkles between study and control groups. Both groups presented significantly decreased scores over time in swallowing difficulty, and wrinkles. There were no complications regarding the HA-CMC membrane. Conclusion The antiadhesive effect of HA-CMC membrane in thyroid surgery is still uncertain, although it is biologically safe. Further investigation is needed to confirm the antiadhesive effect of HA-CMC membrane in thyroid surgery. PMID:24266009

  11. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran; Uthamalingam

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  12. Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology.

    PubMed

    Barthmes, Maria; Liao, Jun; Jiang, Youxing; Brüggemann, Andrea; Wahl-Schott, Christian

    2016-06-01

    Sodium-calcium exchangers (NCXs) are membrane transporters that play an important role in Ca(2+) homeostasis and Ca(2+) signaling. The recent crystal structure of NCX_Mj, a member of the NCX family from the archaebacterium Methanococcus jannaschii, provided insight into the atomistic details of sodium-calcium exchange. Here, we extend these findings by providing detailed functional data on purified NCX_Mj using solid supported membrane (SSM)-based electrophysiology, a powerful but unexploited tool for functional studies of electrogenic transporter proteins. We show that NCX_Mj is highly selective for Na(+), whereas Ca(2+) can be replaced by Mg(2+) and Sr(2+) and that NCX_Mj can be inhibited by divalent ions, particularly Cd(2+) By directly comparing the apparent affinities of Na(+) and Ca(2+) for NCX_Mj with those for human NCX1, we show excellent agreement, indicating a strong functional similarity between NCX_Mj and its eukaryotic isoforms. We also provide detailed instructions to facilitate the adaption of this method to other electrogenic transporter proteins. Our findings demonstrate that NCX_Mj can serve as a model for the NCX family and highlight several possible applications for SSM-based electrophysiology. PMID:27241699

  13. Natural polyphenols: Influence on membrane transporters.

    PubMed

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  14. Natural polyphenols: Influence on membrane transporters

    PubMed Central

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  15. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  16. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries

    NASA Astrophysics Data System (ADS)

    Guin, M.; Tietz, F.

    2015-01-01

    One important issue in future scenarios predominantly using renewable energy sources is the electrochemical storage of electricity in batteries. Among all rechargeable battery technologies, Li-ion cells have the largest energy density and output voltage today, but they have yet to be optimized in terms of capacity, safety and cost for use as stationary systems. Recently, sodium batteries have been attracting attention again because of the abundant availability of Na. However, much work is still required in the field of sodium batteries in order to mature this technology. Sodium superionic conductor (NASICON) materials are a thoroughly studied class of solid electrolytes. In this study, their crystal structure, compositional diversity and ionic conductivity are surveyed and analysed in order to correlate the lattice parameters and specific crystal structure data with sodium conductivity and activation energy using as much data sets as possible. Approximately 110 compositions with the general formula Na1 + 2 w + x - y + zMw(II) Mx(III) My(V) M2 - w - x - y(IV) (SiO4)z(PO4) 3 - z were included in the data collection to determine an optimal size for the M cations. In addition, the impact of the amount of Na per formula unit on the conductivity and the substitution of P with Si are discussed. An extensive study of the size of the structural bottleneck for sodium conduction (formed by triangles of oxygen ions) was carried out to validate the influence of this geometrical parameter on sodium conductivity.

  17. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques.

    PubMed Central

    Mahajan, S; Lewis, R N; George, R; Sykes, B D; McElhaney, R N

    1988-01-01

    The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism. PMID:2973459

  18. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  20. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  1. Controlled Transport of Functionalized Nanochannel though Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Kuksenok, Olga; Balazs, Anna C.

    2012-02-01

    Via the Dissipative Particle Dynamics approach, we study the directed transport of a transmembrane nanochannel to a desired location within a lipid bilayer. Each nanochannel encompasses an ABA architecture, with a hydrophobic shaft (B) with two hydrophilic ends (A). One of the ends of the nanochannel is functionalized with hydrophilic functional groups, or hairs. The hydrophilic hairs serve a dual role: (a) control transport across the membrane barrier, and (b) enable the channel relocation to a specific membrane site. Our system comprises a lipid membrane with an embedded transmembrane nanochannel with the hairs extending into solution. First, we hold a suitably functionalized pipette above the membrane while the nanochannel freely diffuses within the membrane. For an optimal range of parameters, we demonstrate that the hairs find the pipette and spontaneously anchor onto it. We then show that by moving the pipette for a range of velocities, we can effectively transport the channel to any location within the membrane. This prototype assembly can provide guidelines for designing a number of systems for biomimetic applications.

  2. Method of making a hydrogen transport membrane, and article

    DOEpatents

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  3. Comparative genomic analysis of integral membrane transport proteins in ciliates.

    PubMed

    Kumar, Ujjwal; Saier, Milton H

    2015-01-01

    Integral membrane transport proteins homologous to those found in the Transporter Classification Database (TCDB; www.tcdb.org) were identified and bioinformatically characterized by transporter class, family, and substrate specificity in three ciliates, Paramecium tetraurelia (Para), Tetrahymena thermophila (Tetra), and Ichthyophthirius multifiliis (Ich). In these three organisms, 1,326 of 39,600 proteins (3.4%), 1,017 of 24,800 proteins (4.2%), and 504 out of 8,100 proteins (6.2%) integral membrane transport proteins were identified, respectively. Thus, an inverse relationship was observed between the % transporters identified and the number of total proteins per genome reported. This surprising observation provides insight into the evolutionary process, giving rise to genome reduction following whole genome duplication (as in the case of Para) or during pathogenic association with a host organism (Ich). Of these transport proteins in Para and Tetra, about 41% were channels (more than any other type of organism studied), 31% were secondary carriers (fewer than most eukaryotes) and 26% were primary active transporters, mostly ATP-hydrolysis driven (more than most other eukaryotes). In Ich, the number of channels was selectively reduced by 66%, relative to Para and Tetra. Para has four times more inorganic anion transporters than Tetra, and Ich has nonselectively lost most of these. Tetra and Ich preferentially transport sugars and monocarboxylates while Para prefers di- and tricarboxylates. These observations serve to characterize the transport proteins of these related ciliates, providing insight into their nutrition and metabolism. PMID:25099884

  4. Does hindered transport theory apply to desalination membranes?

    PubMed

    Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav

    2014-10-01

    As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in desalination membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning. PMID:25137614

  5. Transport in nanoporous carbon membranes: Experiments and analysis

    SciTech Connect

    Acharya, M.; Foley, H.C.

    2000-05-01

    Single-component permeances of six gases were measured on three different supported nanoporous carbon membranes prepared by spray coating and pyrolysis of poly(furfuryl alcohol) on porous stainless-steel disks. Global activation energies were regressed from data collected as a function of temperature. Permeances and global activation energies were correlated to molecular size, assuming that entropic affects dominated the transport. The permeance was best correlated to the minimum projected area of the molecule computed from first principles. The free-energy barriers to transport within the membranes were derived from the temperature dependence of the permeance data, after accounting for porosity differences between the membranes and differences in molecular adsorption. Using transition-state theory and an entropic model derived, the free energy, enthalpy, and entropic barriers to transport within the membrane were examined as a function of molecular size. Computed on the basis of size, the entropic component of this barrier did not account for the large differences in the transition-state free energies. However, when these entropic barrier values were used to compute the enthalpic portion of the barrier free energies, the minimum projected area of each molecule correlated strongly. Furthermore, these enthalpic components of the barriers were fitted nicely by the Everett-Powl mean field potential, using only the pore size as the adjustable parameter. These results shed light on the underlying mechanism by which shape-selective transport takes place in the NPC membranes and small molecules are separated.

  6. Characterization of Nanostructured Silicon Membranes for Control of Molecular Transport

    NASA Astrophysics Data System (ADS)

    Srijanto, Bernadeta; Retterer, Scott; Fowlkes, Jason; Doktycz, Mitchel

    2011-03-01

    Fabrication of nanoporous membranes for selective transport of molecular species requires precise engineering at the nanoscale. The membrane permeability can be tuned by controlling the physical structure and the surface chemistry of the pores. We use a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, to fabricate silicon membranes that are physically robust and have uniform pore sizes. Pore sizes are further reduced using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide onto the membrane surfaces. Integrating nanoporous membranes within a microfluidic network provides a platform for tailoring molecular exchange between microchannels, independent of hydrodynamic effects. In enzymatic reactions, for example, tuning the pores size will allow smaller enzymatic substrates to traverse the membrane at controlled rates while larger enzymes remain spatially separated. Our results from membrane cross-sectioning using focused ion beam milling show that pore sizes can be controlled at dimensions below 10nm. Functional characterization was performed by quantitative fluorescence microscopy to observe the selective transport of molecular species of different sizes.

  7. Vasopressin regulation of sodium transport in the distal nephron and collecting duct.

    PubMed

    Kortenoeven, M L A; Pedersen, N B; Rosenbaek, L L; Fenton, R A

    2015-08-15

    Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC. PMID:26041443

  8. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  9. Membrane transporter proteins: a challenge for CNS drug development

    PubMed Central

    Girardin, François

    2006-01-01

    Drug transporters are membrane proteins present in various tissues such as the lymphocytes, intestine, liver, kidney, testis, placenta, and central nervous system. These transporters play a significant role in drug absorption and distribution to organic systems, particularly if the organs are protected by blood-organ barriers, such as the blood-brain barrier or the maternal-fetal barrier. In contrast to neurotransmitters and receptor-coupled transporters or other modes of interneuronal transmission, drug transporters are not directly involved in specific neuronal functions, but provide global protection to the central nervous system. The lack of capillary fenestration, the low pinocytic activity, and the tight junctions between brain capillary and choroid plexus endothelial cells represent further gatekeepers limiting the entrance of endogenous and exogenous compounds into the central nervous system. Drug transport is a result of the concerted action of efflux and influx pumps (transporters) located both in the basolateral and apical membranes of brain capillary and choroid plexus endothelial cells. By regulating efflux and influx of endogenous or exogenous substances, the blood-brain barrier and, to a lesser extent, the blood-cerebrospinal barrier in the ventricles, represents the main interface between the central nervous system and the blood, ie, the rest of the body. As drug distribution to organs is dependent on the affinity of a substrate for a specific transport system, membrane transporter proteins are increasingly recognized as a key determinant of drug disposition. Many drug transporters are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily or the solute-linked carrier (SLC) class. The multidrug resistance protein MDR1 (ABCB1), also called P-glycoprotein, the multidrug resistance-associated proteins MRP1 (ABCC1) and MRP2 (ABCC2), and the breast cancer-resistance protein BCRP (ABCG2) are ATP-dependent efflux

  10. Nonisothermal water transport through hydrophobic membranes in a stirred cell

    SciTech Connect

    Vazquez-Gonzalez, M.I.; Martinez, L.

    1994-10-01

    This paper studies the transport of pure water through microporous hydrophobic membranes in a stirred cell when bathed by two phases at different temperatures. The dependence of the phenomena on the stirring rate and on the average temperature has been investigated. The influence of these operating conditions on the mass transfer rate is discussed while keeping in mind the theories of mass and heat transfer within the membrane and adjoining liquids. The concept of temperature polarization is introduced in the transport equations, and it is shown to be important in the interpretation of our experimental results.

  11. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-01

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions. PMID:27070764

  12. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-06-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  13. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  14. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species.

    PubMed

    Han, Xiaomeng; Wang, Zhiwei; Wang, Xueye; Zheng, Xiang; Ma, Jinxing; Wu, Zhichao

    2016-01-01

    Sodium hypochlorite (NaClO) is a commonly used reagent for membrane cleaning in membrane bioreactors (MBRs), while it, being a kind of disinfectant (oxidant), may impair viability of microbes or even totally inactivate them upon its diffusion into mixed liquor during membrane cleaning. In this study, we systematically examine the effects of NaClO on microorganisms in terms of microbial cell integrity, metabolism behaviours (key enzymes), and intracellular reactive oxygen species (ROS) under various NaClO concentrations. Different proportions of microbial cells in activated sludge were damaged within several minutes dependent on NaClO dosages (5-50 mg/g-SS), and correspondingly organic matters were released to bulk solution. Inhibition of key enzymes involved in organic matter biodegradation, nitrification and denitrification was observed in the presence of NaClO above 1 mg/g-SS, and thus organic matter and nitrogen removal efficiencies were decreased. It was also demonstrated that intracellular ROS production was increased with the NaClO dosage higher than 1 mg/g-SS, which likely induced further damage to microbial cells. PMID:26512807

  15. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  16. Method and system for producing hydrogen using sodium ion separation membranes

    DOEpatents

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  17. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    PubMed

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  18. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  19. Taurine transport in renal brush-border-membrane vesicles.

    PubMed Central

    Rozen, R; Tenenhouse, H S; Scriver, C R

    1979-01-01

    Taurine transport in isolated brush-border-membrane vesicles from rat kidney is concentrative and it is driven by the Na+ gradient and transmembrane potential difference; binding is not a significant component of net uptake. The Na+-dependent component of net uptake is saturable with an apparent Km of 17 microM. The taurine-transport mechanism is selective for beta-amino compounds. PMID:486101

  20. Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport

    NASA Astrophysics Data System (ADS)

    Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.

    2014-09-01

    In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.

  1. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  2. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium

    PubMed Central

    Milenkovic, Ljiljana

    2009-01-01

    The function of primary cilia depends critically on the localization of specific proteins in the ciliary membrane. A major challenge in the field is to understand protein trafficking to cilia. The Hedgehog (Hh) pathway protein Smoothened (Smo), a 7-pass transmembrane protein, moves to cilia when a ligand is received. Using microscopy-based pulse-chase analysis, we find that Smo moves through a lateral transport pathway from the plasma membrane to the ciliary membrane. Lateral movement, either via diffusion or active transport, is quite distinct from currently studied pathways of ciliary protein transport in mammals, which emphasize directed trafficking of Golgi-derived vesicles to the base of the cilium. We anticipate that this alternative route will be used by other signaling proteins that function at cilia. The path taken by Smo may allow novel strategies for modulation of Hh signaling in cancer and regeneration. PMID:19948480

  3. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    PubMed

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane. PMID:17501931

  4. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  5. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  6. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  7. Using membrane transporters to improve crops for sustainable food production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  8. Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension.

    PubMed

    Norlander, Allison E; Saleh, Mohamed A; Kamat, Nikhil V; Ko, Benjamin; Gnecco, Juan; Zhu, Linjue; Dale, Bethany L; Iwakura, Yoichiro; Hoover, Robert S; McDonough, Alicia A; Madhur, Meena S

    2016-07-01

    Angiotensin II-induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A(-/-) mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current study, we performed renal transporter profiling in mice deficient in IL-17A or the related isoform, IL-17F, after 4 weeks of Ang II infusion, the time when the blood pressure reduction in IL-17A(-/-) mice is most prominent. Deficiency of IL-17A abolished the activation of distal tubule transporters, specifically the sodium-chloride cotransporter and the epithelial sodium channel and protected mice from glomerular and tubular injury. In human proximal tubule (HK-2) cells, IL-17A increased sodium hydrogen exchanger 3 expression through a serum and glucocorticoid-regulated kinase 1-dependent pathway. In mouse distal convoluted tubule cells, IL-17A increased sodium-chloride cotransporter activity in a serum and glucocorticoid-regulated kinase 1/Nedd4-2-dependent pathway. In both cell types, acute treatment with IL-17A induced phosphorylation of serum and glucocorticoid-regulated kinase 1 at serine 78, and treatment with a serum and glucocorticoid-regulated kinase 1 inhibitor blocked the effects of IL-17A on sodium hydrogen exchanger 3 and sodium-chloride cotransporter. Interestingly, both HK-2 and mouse distal convoluted tubule 15 cells produce endogenous IL-17A. IL17F had little or no effect on blood pressure or renal sodium transporter abundance. These studies provide a mechanistic link by which IL-17A modulates renal sodium transport and suggest that IL-17A inhibition may improve renal function in hypertension and other autoimmune disorders. PMID:27141060

  9. Is it time to think about the sodium glucose co-transporter 2 sympathetically?

    PubMed

    Elliott, Rosemary H; Matthews, Vance B; Rudnicka, Caroline; Schlaich, Markus P

    2016-04-01

    Disturbances in glucose homeostasis are a key feature of the metabolic syndrome and type 2 diabetes. Renal glucose reabsorption is an important factor in glycaemic control. Glucose reabsorption in the proximal tubules is mediated by the sodium glucose co-transporter 2. The capacity for glucose reabsorption is increased in type 2 diabetes and contributes significantly to hyperglycaemia and impaired glucose control. Understanding the mechanisms underpinning the regulation of the sodium glucose co-transporter 2 is therefore of high clinical relevance. However, despite recent advances in the field and the availability of pharmacological inhibitors of this glucose transporter for the treatment of type 2 diabetes, the mechanisms that regulate sodium glucose co-transporter 2 expression are not fully understood. The sympathetic nervous system is an important modulator of glucose homeostasis, and sympathetic hyperactivity is a characteristic feature of obesity, the metabolic syndrome and type 2 diabetes. Sympathetic inhibition either achieved pharmacologically or by renal sympathetic denervation has been associated with improved glucose control. Importantly, sympathetic nerves innervate the proximal tubules of the kidney where they have been shown to regulate the expression of other transporters such as the sodium hydrogen exchanger 3. This review aims to explore the evidence for the regulation of sodium glucose co-transporter 2-mediated glucose reabsorption by the sympathetic nervous system. PMID:26369359

  10. Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Sodium arsenite can impair male reproductive function by inducing oxidative stress. Silymarin is known as a potent antioxidant. Objective: This study was performed to investigate if silymarin can prevent the adverse effect of sodium arsenite on ram sperm viability, motility and mitochondrial membrane potential. Materials and Methods: Epidydimal spermatozoa obtained from ram were divided into five groups: 1) Spermatozoa at 0 hr, 2) spermatozoa at 180 min (control), 3) spermatozoa treated with sodium arsenite (10 μM) for 180 min, 4) spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min and 5) spermatozoa treated with silymarin (20 μM) for 180 min. MTT assay and Rhodamine 123 staining were used to assess sperm viability and mitochondrial membrane potential respectively. Sperm motility was performed according to World Health Organization (WHO) guidelines. Results: Viability (p<0.01), nonprogressive motility (p<0.001) and intact mitochondrial membrane potential (p<0.001) of the spermatozoa were significantly decreased in sodium arsenite treated group compared to control group. In silymarin + sodium arsenite group, silymarin could significantly reverse the adverse effect of sodium arsenite on these sperm parameters compared to sodium arsenite group (p<0.001). In addition, the application of silymarin alone for 180 minutes could significantly increase progressively motile sperm (p<0.001) and decrease non motile sperm (p<0.01) compared to the control. Conclusion: Silymarin could compensate the adverse effect of sodium arsenite on viability, nonprogressive motility and mitochondrial membrane potential of ram sperm. PMID:27525323

  11. Transportation of Critically Ill Patients on Extracorporeal Membrane Oxygenation

    PubMed Central

    Broman, L. Mikael; Frenckner, Björn

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) may be a life-saving procedure for patients with severe reversible pulmonary or cardiac failure or for patients in need for a bridge to transplantation. ECMO is provided by specialized centers, but patients in need of ECMO are frequently taken care of at other centers. Conventional transports to an ECMO center can be hazardous and deaths have been described. For this reason, many ECMO centers have developed transport programs with mobile ECMO. After request, the mobile team including all necessary equipment to initiate ECMO is sent to the referring hospital, where the patient is cannulated and ECMO commenced. The patient is then transported on ECMO to the ECMO facility by road, helicopter, or fixed-wing aircraft depending on distance, weather conditions, etc. Eight publications have reported series of more than 50 transports on ECMO of which the largest included over 700. Together, these papers report on more than 1400 patient transports on ECMO. Two deaths during transport have occurred. A number of other adverse events are described, but without effect on patient outcome. Survival of patients transported on ECMO is equivalent to that of non-transported ECMO patients. It is concluded that long-, short-distance interhospital transports on ECMO can be performed safely. The staff should be experienced and highly competent in intensive care, ECMO cannulation, ECMO treatment, intensive care transport, and air transport medicine. PMID:27379221

  12. Transportation of Critically Ill Patients on Extracorporeal Membrane Oxygenation.

    PubMed

    Broman, L Mikael; Frenckner, Björn

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) may be a life-saving procedure for patients with severe reversible pulmonary or cardiac failure or for patients in need for a bridge to transplantation. ECMO is provided by specialized centers, but patients in need of ECMO are frequently taken care of at other centers. Conventional transports to an ECMO center can be hazardous and deaths have been described. For this reason, many ECMO centers have developed transport programs with mobile ECMO. After request, the mobile team including all necessary equipment to initiate ECMO is sent to the referring hospital, where the patient is cannulated and ECMO commenced. The patient is then transported on ECMO to the ECMO facility by road, helicopter, or fixed-wing aircraft depending on distance, weather conditions, etc. Eight publications have reported series of more than 50 transports on ECMO of which the largest included over 700. Together, these papers report on more than 1400 patient transports on ECMO. Two deaths during transport have occurred. A number of other adverse events are described, but without effect on patient outcome. Survival of patients transported on ECMO is equivalent to that of non-transported ECMO patients. It is concluded that long-, short-distance interhospital transports on ECMO can be performed safely. The staff should be experienced and highly competent in intensive care, ECMO cannulation, ECMO treatment, intensive care transport, and air transport medicine. PMID:27379221

  13. Carrier-mediated ion transport in lipid bilayer membranes.

    PubMed

    Laprade, R; Grenier, F; Pagé-Dansereau, M; Dansereau, J

    1984-08-01

    The electrical properties predicted by a widely accepted model for carrier-mediated ion transport in lipid bilayers are described. The different steps leading to ion transport and their associated rate constants are reaction at the interface between an ion in the aqueous phase and a carrier in the membrane (kRi), followed by translocation of the ion-carrier complex across the membrane interior (kis) and its dissociation at the other interface (kDi) after which the free carrier crosses back the membrane interior (ks). Results on glyceryl monooleate (GMO) membranes for a family of homologue carriers, the macrotetralide actin antibiotics (nonactin, monactin, dinactin, trinactin, and tetranactin) and a variety of ions (Na+, Cs+, Rb+, K+, NH4+, and Tl+) are presented. Internally consistent data obtained from steady-state electrical measurements (zero-current potential and conductance, current-voltage relationship) allow us to obtain the equilibrium permeability ratios for the different ions and show that for a given carrier kRi is relatively invariant from one ion to the other, except for Tl+ (larger), which implies that the ionic selectivity is controlled by the dissociation of the complex. The values of the individual rate constants obtained from current relaxation experiments are also presented and confirm the findings from steady-state measurements, as well as the isostericity concept for complexes of different ions with the same carrier (kis invariant). These also allow us to determine the aqueous phase membrane and torus membrane partition coefficients. Finally, the observed increase in kis from nonactin to tetranactin and, for all homologues, from GMO-decane to solvent-free GMO membranes, together with the concomitant decrease in kDi, can be explained in terms of modifications of electrostatic energy profiles induced by variations in carrier size and membrane thickness. PMID:6498590

  14. Membrane transport of andrographolide in artificial membrane and rat small intestine.

    PubMed

    Daodee, Supawadee; Wangboonskul, Jinda; Jarukamjorn, Kanokwan; Sripanidkulchai, Bung-orn; Murakami, Teruo

    2007-06-15

    In the present study, the possible drug interactions of andrographolide with co-administering drugs such as acetaminophen, amoxycillin, aspirin, chlorpheniramine and norfloxacin to treat various infectious and inflammatory diseases that may be induced during absorption process were examined using artificial lipophilic membrane and everted rat intestine. The membrane transport of andrographolide across the artificial membrane was not affected by different pH of the medium (simulated gastric and intestinal fluids), different concentrations of andrographolide and co-administered drugs examined. In everted rat intestine, above co-administered drugs examined showed no significant effect on andrographolide membrane transport. The participation of efflux transporters such as P-glycoprotein and MRP2 in andrographolide transport was then examined, since andrographolide is a diterpene compound and some diterpene compounds are known as P-glycoprotein substrates. Cyclosporine, a P-glycoprotein/MRP2 inhibitor, significantly suppressed the efflux transport of andrographolide in distal region of intestine, whereas probenecid, an MRP inhibitor, showed no significant effect in both proximal and distal regions of intestine. These results suggest that P-glycoprotein, but not MRP, is participated in the intestinal absorption of andrographolide and P-glycoprotein-mediated drug interactions occur depending on the co-administered drugs and its concentrations. PMID:19093450

  15. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis

    PubMed Central

    Molino, Diana; Nola, Sébastien; Lam, Sin Man; Verraes, Agathe; Proux-Gillardeaux, Véronique; Boncompain, Gaëlle; Perez, Franck; Wenk, Markus; Shui, Guanghou; Danglot, Lydia; Galli, Thierry

    2015-01-01

    Biological membranes in eukaryotes contain a large variety of proteins and lipids often distributed in domains in plasma membrane and endomembranes. Molecular mechanisms responsible for the transport and the organization of these membrane domains along the secretory pathway still remain elusive. Here we show that vesicular SNARE TI-VAMP/VAMP7 plays a major role in membrane domains composition and transport. We found that the transport of exogenous and endogenous GPI-anchored proteins was altered in fibroblasts isolated from VAMP7-knockout mice. Furthermore, disassembly and reformation of the Golgi apparatus induced by Brefeldin A treatment and washout were impaired in VAMP7-depleted cells, suggesting that loss of VAMP7 expression alters biochemical properties and dynamics of the Golgi apparatus. In addition, lipid profiles from these knockout cells indicated a defect in glycosphingolipids homeostasis. We conclude that VAMP7 is required for effective transport of GPI–anchored proteins to cell surface and that VAMP7-dependent transport contributes to both sphingolipids and Golgi homeostasis. PMID:26196023

  16. Membrane-associated DNA Transport Machines

    PubMed Central

    Burton, Briana; Dubnau, David

    2010-01-01

    DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations. PMID:20573715

  17. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    SciTech Connect

    William C. Conner

    2007-08-02

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  18. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  19. Fibroblast Growth Factor-23-mediated Inhibition of Renal Phosphate Transport in Mice Requires Sodium-Hydrogen Exchanger Regulatory Factor-1 (NHERF-1) and Synergizes with Parathyroid Hormone*

    PubMed Central

    Weinman, Edward J.; Steplock, Deborah; Shenolikar, Shirish; Biswas, Rajatsubhra

    2011-01-01

    Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10−9 m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10−9 m). Low concentrations of FGF-23 (10−13 m) and PTH (10−11 m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway. PMID:21908609

  20. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  1. Multidrug Transport Protein NorM from Vibrio cholerae Simultaneously Couples to Sodium- and Proton-Motive Force*

    PubMed Central

    Jin, Yoonhee; Nair, Asha; van Veen, Hendrik W.

    2014-01-01

    Membrane transporters belonging to the multidrug and toxic compound extrusion family mediate the efflux of unrelated pharmaceuticals from the interior of the cell in organisms ranging from bacteria to human. These proteins are thought to fall into two classes that couple substrate efflux to the influx of either Na+ or H+. We studied the energetics of drug extrusion by NorM from Vibrio cholerae in proteoliposomes in which purified NorM protein was functionally reconstituted in an inside-out orientation. We establish that NorM simultaneously couples to the sodium-motive force and proton-motive force, and biochemically identify protein regions and residues that play important roles in Na+ or H+ binding. As the positions of protons are not available in current medium and high-resolution crystal structures of multidrug and toxic compound extrusion transporters, our findings add a previously unrecognized parameter to mechanistic models based of these structures. PMID:24711447

  2. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  3. [Conus venoms: a source of toxins which interact with membrane- potential-dependent sodium channels].

    PubMed

    Le Gall, F; Favreau, P; Benoit, E; Richard, G; Molgó, J

    1999-01-01

    Marine snails of the genus Conus, as they are carnivorous predators, have a venom apparatus used to capture their prey. The toxins contained in the venoms of Conidae, called conotoxins, are of a particular high degree of diversity and represent powerful tools in the neuroscience field. Indeed, these toxins specifically bind with a high affinity to receptors and ionic channels. Therefore, they provide original pharmacological tools which receive increasing investigation both to identify and study some functions of the nervous systems and to characterize new types and closely related subtypes of receptors or ionic channels. The voltage-gated sodium channel, because of its fundamental role in cell membrane excitability, is the specific target of a large number of animal and vegetal toxins. Actually, at least seven toxin receptor sites have been identified on this channel-protein. These toxins, and in particular conotoxins, are used to precise the role of different types and/or closely related subtypes of sodium channels in the peripheral and central nervous systems. The focus of the present review is to summarize our current knowledge of the consequences of physiological interactions between different conotoxin families and sodium channels. PMID:10783706

  4. A membrane transporter for tryptophan composed of RNA

    PubMed Central

    JANAS, TERESA; JANAS, TADEUSZ; YARUS, MICHAEL

    2004-01-01

    We have incorporated an RNA binding site for the biological amino acid tryptophan within an RNA complex with affinity for phospholipid bilayer membranes. The resulting RNA (9:10Trp) creates a selective route through the bilayer for the amino acid. Binding and enhanced tryptophan permeability are nonlinear in RNA concentration, suggesting that RNA aggregation is required for both. Tryptophan permeability saturates with increased concentration, though at ~1000-fold greater level than when binding a free aptamer. The RNA (9:10Trp) complex, bound at a mean of two per liposome, halves the activation energy for tryptophan transport (to 46 kJ/mole), specifically increasing tryptophan entry to a maximal velocity of 0.5 sec-1 per liposome with little or no accompanying increase in general permeability. Individual RNAs turn over tens of thousands of times at high tryptophan concentration. Thus, a specific passive membrane transporter whose properties overlap those of single-molecule transporter proteins, can be made of RNA alone. Permeability changes probably rely on disturbances in lipid conformation as well as on an advantageous low free energy position for tryptophan at the membrane. Other RNA activities may yield other RNA-membrane nanosystems via this route. PMID:15383677

  5. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  6. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  7. Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation.

    PubMed Central

    Raphael, R M; Waugh, R E

    1996-01-01

    Biological membranes are lamellar structures composed of two leaflets capable of supporting different mechanical stresses. Stress differences between leaflets were generated during micromechanical experiments in which long thin tubes of lipid (tethers) were formed from the surfaces of giant phospholipid vesicles. A recent dynamic analysis of this experiment predicts the relaxation of local differences in leaflet stress by lateral slip between the leaflets. Differential stress may also relax by interleaflet transport of lipid molecules ("flip-flop"). In this report, we extend the former analysis to include interleaflet lipid transport. We show that transmembrane lipid flux will evidence itself as a linear increase in tether length with time after a step reduction in membrane tension. Multiple measurements were performed on 24 different vesicles composed of stearoyl-oleoyl-phosphatidylcholine plus 3% dinitrophenol-linked di-oleoyl-phosphatidylethanolamine. These tethers all exhibited a linear phase of growth with a mean value of the rate of interlayer permeation, cp = 0.009 s-1. This corresponds to a half-time of approximately 8 min for mechanically driven interleaflet transport. This value is found to be consistent with longer times obtained for chemically driven transport if the lipids cross the membrane via transient, localized defects in the bilayer. Images FIGURE 1 FIGURE 7 PMID:8874013

  8. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT.

    PubMed

    Annaba, Fadi; Sarwar, Zaheer; Gill, Ravinder K; Ghosh, Amit; Saksena, Seema; Borthakur, Alip; Hecht, Gail A; Dudeja, Pradeep K; Alrefai, Waddah A

    2012-05-15

    Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis. PMID:22403793

  9. Active membrane transport and receptor proteins from bacteria.

    PubMed

    Saidijam, M; Bettaney, K E; Szakonyi, G; Psakis, G; Shibayama, K; Suzuki, S; Clough, J L; Blessie, V; Abu-Bakr, A; Baumberg, S; Meuller, J; Hoyle, C K; Palmer, S L; Butaye, P; Walravens, K; Patching, S G; O'reilly, J; Rutherford, N G; Bill, R M; Roper, D I; Phillips-Jones, M K; Henderson, P J F

    2005-08-01

    A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides. PMID:16042616

  10. Statistical-mechanical theory of passive transport through semipermeable membranes.

    PubMed

    del Castillo, L F; Mason, E A; Revercomb, H E

    1979-09-01

    The first general multicomponent equations for transport through semipermeable membranes are derived from basic statistical-mechanical principles. The procedure follows that used earlier for open membranes, but semipermeability is modelled mathematically by the introduction of external forces on the impermeant species. Gases are treated first in order to clarify the problems involved, but the final results apply to general nonideal solutions of any concentration. The mixed-solvent effect is treated rigorously, and a mixed-solvent osmotic pressure is defined. A useful specific identification of so-called osmotic flow is given, along with a demonstration that such an identification cannot be unique. Results are obtained both for discontinuous membrane models, and for a continuous model. PMID:486702

  11. An Integrated Field-Effect Microdevice for Monitoring Membrane Transport in Xenopus laevis Oocytes via Lateral Proton Diffusion

    PubMed Central

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level. PMID:22792166

  12. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    SciTech Connect

    Hampton, L.V.; Spalaris, C.N.; Roy, P.

    1980-04-01

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted.

  13. OCTN3 is a mammalian peroxisomal membrane carnitine transporter

    SciTech Connect

    Lamhonwah, Anne-Marie; Ackerley, Cameron A.; Tilups, Aina; Edwards, Vernon D.; Wanders, Ronald J.; Tein, Ingrid . E-mail: ingrid.tein@sickkids.ca

    2005-12-30

    Carnitine is a zwitterion essential for the {beta}-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (K {sub m} 20 {mu}M), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.

  14. Control of Plasma Membrane Permeability by ABC Transporters.

    PubMed

    Khakhina, Svetlana; Johnson, Soraya S; Manoharlal, Raman; Russo, Sarah B; Blugeon, Corinne; Lemoine, Sophie; Sunshine, Anna B; Dunham, Maitreya J; Cowart, L Ashley; Devaux, Frédéric; Moye-Rowley, W Scott

    2015-05-01

    ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. PMID:25724885

  15. Isothermal titration calorimetry of ion-coupled membrane transporters

    PubMed Central

    SeCheol, Oh

    2015-01-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding - enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. PMID:25676707

  16. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.

    PubMed

    Kobayashi, T; Beuchat, M H; Lindsay, M; Frias, S; Palmiter, R D; Sakuraba, H; Parton, R G; Gruenberg, J

    1999-06-01

    The fate of free cholesterol released after endocytosis of low-density lipoproteins remains obscure. Here we report that late endosomes have a pivotal role in intracellular cholesterol transport. We find that in the genetic disease Niemann-Pick type C (NPC), and in drug-treated cells that mimic NPC, cholesterol accumulates in late endosomes and sorting of the lysosomal enzyme receptor is impaired. Our results show that the characteristic network of lysobisphosphatidic acid-rich membranes contained within multivesicular late endosomes regulates cholesterol transport, presumably by acting as a collection and distribution device. The results also suggest that similar endosomal defects accompany the anti-phospholipid syndrome and NPC. PMID:10559883

  17. Membrane transporters and drought resistance - a complex issue.

    PubMed

    Jarzyniak, Karolina M; Jasiński, Michał

    2014-01-01

    Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted. PMID:25538721

  18. Membrane transporters and drought resistance – a complex issue

    PubMed Central

    Jarzyniak, Karolina M.; Jasiński, Michał

    2014-01-01

    Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted. PMID:25538721

  19. Use of inside-out chloroplast thylakoid membrane vesicles for studying electron transport and membrane structure

    SciTech Connect

    Atta-Asafo-Adjei, E.

    1987-01-01

    Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase partitioning following mechanical fragmentation of thylakoid membranes by Yeda press treatment. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. Acetic anhydride chemical modification and uncoupler-induced proton release from dark-adapted membranes are probes for detecting the sequested proton domains in thylakoid membranes. Both assays were used to find out if inside-out membranes retain metastable, localized proton binding domains. Treatment of dark-maintained inside-out thylakoid membrane vesicles with ({sup 3}H)acetic anhydride showed no uncoupler-induced increase in acetylation of the 33, 24, and 18 kDa polypeptides of the oxygen-evolving-complex, indicating complete loss of the implicated proton domains in these polypeptides. The various steps in the inside-out preparation were studied to discern which steps(s) leads to the loss of the metastable domain proton pool.

  20. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions.

    PubMed

    Pottosin, Igor; Shabala, Sergey

    2016-03-01

    Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling. PMID:26597501

  1. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions. PMID:26721276

  2. Arsenate transport by sodium/phosphate cotransporter type IIb

    SciTech Connect

    Villa-Bellosta, Ricardo; Sorribas, Victor

    2010-08-15

    Arsenic is a metalloid that causes the dysfunction of critical enzymes, oxidative stress, and malignancies. In recent years several transporters of As{sup III} have been identified, including aquaglyceroporins (AQP) and multidrug resistance proteins (MRP). As{sup V} transport, however, has not been sufficiently studied because it has been assumed that arsenate is taken up by mammalian cells through inorganic phosphate (Pi) transporters. In this paper we have analyzed the role of Pi transporters in the uptake of arsenate by directly using {sup 73}As{sup V} as a radiotracer in phosphate transporter-expressing Xenopus laevis oocytes. The affinities of Pi transporters for H{sub 3}AsO{sub 4} were lower than the affinities for Pi. NaPiIIa, NaPiIIc, Pit1, and Pit2 showed a K{sub m} for arsenate that was > 1 mM (i.e., at least ten times lower than the affinities for Pi). The NaPiIIb isoform showed the highest affinity for As{sup V} in mouse (57 {mu}M), rat (51 {mu}M), and human (9.7 {mu}M), which are very similar to the affinities for Pi. Therefore, NaPiIIb can have a prominent role in the toxicokinetics of arsenic following oral exposure to freshwater or food contaminated with As{sup V}.

  3. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium

    PubMed Central

    Brini, Marisa; Carafoli, Ernesto

    2011-01-01

    Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range). PMID:21421919

  4. Using membrane transporters to improve crops for sustainable food production

    PubMed Central

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  5. Micro-electrode studies on the effects of exogenous cyclic adenosine monophosphate on active sodium transport in frog skin.

    PubMed Central

    Els, W J; Mahlangu, A F

    1987-01-01

    1. The electrical parameters of the sodium-transporting cells in frog skin of Rana angolensis were determined under control conditions by using the micro-electrode technique. The data were analysed in terms of an electrical model (Helman, 1979). 2. The control intracellular voltages averaged -84.7 mV while the electromotive force of the inner barrier, E'1, averaged 103.9 mV. The major portion (82%) of the transcellular resistance was situated at the outer, apical, barrier. 3. Exogenous cyclic AMP stimulated active sodium transport and the short-circuit current (Isc) increased by an average 88%. The change in Isc was mediated primarily by decreasing the resistance of the apical barrier (Ro) with little effect on the electromotive force or resistance (Ri) of the inner membranes. 4. Isoprenaline increased the Isc by an average of 165%. The major effect of isoprenaline was to decrease the apical resistance by an average 77%. 5. Forskolin (2.5 microM) stimulated the Isc by an average of 138%. Amiloride would not completely reduce the Isc, but with the low concentration of 0.2 microM-forskolin, the Isc was typically inhibited to values close to zero. The major effect of forskolin was also to reduce the resistance of the apical barrier, although it concurrently also caused the E'1 to decrease by about 13%. 6. Theophylline increased the Isc by reducing the resistance of the apical barrier by an average 61%, with little or no effect on the other parameters. Theophylline augmented the effect of cyclic AMP. 8. Our results are consistent with the theory that cyclic AMP is a second messenger in hormonal control of active sodium transport in frog skin. PMID:2821244

  6. Sum frequency generation studies of membrane transport phenomena

    SciTech Connect

    Dyer, R.B.; Shreve, A.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work is to study the transport of protons and ions across biological membranes, one of the most fundamental processes in living organisms, critical for energy transduction in respiration and photosynthesis and for a wide variety of cellular signal transduction events. Membrane protein structure and function, in particular proton and ion pumping are poorly understood. The authors have developed sum frequency generation (SFG) spectroscopy for the study of membrane phenomena, a nonlinear spectroscopic technique that is uniquely sensitive to interfaces and with demonstrated structural specificity. They have used SFG and conventional vibrational spectroscopic approaches to study proton transport processes in cytochrome c oxidase. A key finding has been the identification of vibrational modes associated with proton labile groups, including a glutamic acid near the redox active binuclear center and structural waters. These groups are sensitive to the ligation and redox states of the metal centers and hence are ideal candidates for coupling redox energy to proton transport processes.

  7. Membrane fractionation processes for removing 90% to 95% of the lactose and sodium from skim milk and for preparing lactose and sodium-reduced skim milk.

    PubMed

    Morr, C V; Brandon, S C

    2008-11-01

    Pilot-scale microfiltration (MF), microfiltration-diafiltration (MDF), ultrafiltration (UF), ultrafiltration-diafiltration (UDF), and nanofilration (NF) membrane fractionation processes were designed and evaluated for removing 90% to 95% of the lactose and sodium from skim milk. The study was designed to evaluate several membrane fractionation schemes as a function of: (1) membrane types with and without diafiltration; (2) fractionation process temperatures ranging from 17 to 45 degrees C; (3) sources of commercial drinking water used as diafiltrant; and (4) final mass concentration ratios (MCR) ranging from about 2 to 5. MF and MDF membranes provided highest flux values, but were unsatisfactory because they failed to retain all of the whey proteins. UDF fractionation processes removed more than 90% to 95% of the lactose and sodium from skim milk. NF permeate prepared from UDF cumulative permeate contained sodium and other mineral concentrations that would make them unsuitable for use as a diafiltrant for UDF applications. A method was devised for preparing simulated milk permeate (SMP) formulated with calcium, magnesium, and potassium hydroxides, and phosphoric and citric acids for use as UDF diafiltrant or for preparing lactose and sodium reduced skim milk (L-RSM). MF retentates with MCR values of 4.7 to 5.0 exhibited extremely poor frozen storage stabilities of less than 1 wk at -20 degrees C, whereas MCR 1.77 to 2.95 MDF and UDF retentates and skim milk control exhibited frozen storage stabilities of more than 16 wk. L-RSM exhibited a whiter appearance and a lower viscosity than skim milk, lacked natural milk flavor, and exhibited a metallic off-flavor. PMID:19021794

  8. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake.

    PubMed

    Huber, K; Hempel, R; Rodehutscord, M

    2006-11-01

    The objective of this study was to explore the homeostatic response of jejunal and renal epithelia regarding the inorganic phosphate (P(i)) transport capacities to variations in dietary total phosphorus (tP) supply in hens. Adaptive processes were determined by quantitative measures of intake and excretion, P(i) transport studies across brush border membranes, and semiquantitative detection of sodium-dependent phosphate transporters (NaPi II) based on mRNA expression in the jejunum and kidney. Twelve hens (4/group) were adapted to 3 tP feeding levels in a pair-fed manner (60 g/d): low P diet with 0.073% tP, medium P diet with 0.204% tP, and high P diet with 0.343% tP. Excretion was measured during the last 5 d of a 16-d feeding period. After slaughtering, jejunal mucosa and renal cortex were removed. Tissues were used for (32)P uptake studies in brush-border membrane vesicles by rapid filtration technique and NaPi II mRNA expression studies by northern analyses. Plasma P(i) concentrations were additionally measured. The NaPi II transporter mRNA could specifically be detected in chicken jejunum and kidney. Functional parameters of Na(+)-dependent P(i) transport indicated that these transporters were involved in chicken P(i) transport across the apical membranes of jejunal and renal epithelia. Increased tP intake resulted in an increased overall tP excretion. Correlating individual data from all animals by linear regression highlighted that the adaptive decrease of renal P(i) transport capacity and NaPi IIa mRNA expression was associated with an increase in plasma P(i) levels and resulted in a higher tP excretion. Jejunal P(i) transport capacity and NaPi IIb mRNA expression did not react to variations in dietary tP supply. In conclusion, the homeostatic response was mainly based on the adaptive capacity of the kidney in hens. PMID:17032833

  9. Multicomponent transport in membranes for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  10. Investigation of ionic transport in sodium scandium phosphate (NSP) and related compounds

    NASA Astrophysics Data System (ADS)

    Bhat, Kaustubh; Blügel, Stefan; Lustfeld, Hans

    Sodium ionic conductors offer significant advantages for application in large scale energy storage systems. In this study, we investigate the different pathways available for sodium ion conduction in NSP and calculate energy barriers for ionic transport using Density Functional Theory (DFT) and the Nudged Elastic Band Method. We identify the structural parameters that reduce the energy barrier, by calculating the influence of positive and negative external pressure on the energy barrier. Lattice strain can be introduced by cation or anion substitution within the NASICON structure. We substitute the scandium atom with other trivalent atoms such as aluminium and yttrium, and calculate the resulting energy barriers. Sodium thiophosphate (Na3PS4) has previously shown about two orders of magnitude higher ionic conductivity than sodium phosphate (Na3PO4). We investigate the effect of substituting oxygen with sulphur in NSP. We acknowledge discussions with our experimental colleagues F. Tietz and M. Guin toward this work