Science.gov

Sample records for memory perceptual speed

  1. Age-related slowing of memory retrieval: Contributions of perceptual speed and cerebral white matter integrity

    PubMed Central

    Bucur, Barbara; Madden, David J.; Spaniol, Julia; Provenzale, James M.; Cabeza, Roberto; White, Leonard E.; Huettel, Scott A.

    2007-01-01

    Previous research suggests that, in reaction time (RT) measures of episodic memory retrieval, the unique effects of adult age are relatively small compared to the effects aging shares with more elementary abilities such as perceptual speed. Little is known, however, regarding the mechanisms of perceptual speed. We used diffusion tensor imaging (DTI) to test the hypothesis that white matter integrity, as indexed by fractional anisotropy (FA), serves as one mechanism of perceptual slowing in episodic memory retrieval. Results indicated that declines in FA in the pericallosal frontal region and in the genu of the corpus callosum, but not in other regions, mediated the relationship between perceptual speed and episodic retrieval RT. This relation held, though to a different degree, for both hits and correct rejections. These findings suggest that white matter integrity in prefrontal regions is one mechanism underlying the relation between individual differences in perceptual speed and episodic retrieval. PMID:17383774

  2. Perceptual Simulations and Linguistic Representations Have Differential Effects on Speeded Relatedness Judgments and Recognition Memory

    PubMed Central

    Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng

    2010-01-01

    We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388

  3. Perceptual countermeasures to speeding.

    PubMed

    Fildes, Brian; Corben, Bruce; Newstead, Stuart; Macaulay, Jemima; Gunatillake, Thanuja; Tziotis, Michael

    2005-01-01

    An on-road evaluation of two perceptual countermeasure treatments (an enhanced curve post treatment and peripheral transverse edgelines on the approach to an intersection) was conducted over one year to indicate potential for reducing travel speed. Measures included speed and deceleration profiles, braking, and lateral placement observations taken from video recordings at each site. Data were collected before treatment, immediately after treatment, and 12 months after treatment. The results obtained were quite variable across sites and treatments. At curves, speed effects were mixed with both speed reductions and increases observed immediately after and 12-months later. Braking results tended to support travel speed findings and some improvement in lateral placement were also observed at these locations. At intersections, the results were more stable where speed reductions were more common both immediately after treatment as well as longer-term. There were no differences in braking and lateral placement at these straight-road locations. The findings seem to have been unduly influenced to some degree by misadventure and wear and tear at these sites. It is argued that while the effectiveness of these treatments may be site specific to some degree, they do offer a low-cost solution to reducing travel speed at hazardous locations. PMID:16179136

  4. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  5. Memory: Enduring Traces of Perceptual and Reflective Attention

    PubMed Central

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  6. Great Expectations: Temporal Expectation Modulates Perceptual Processing Speed

    ERIC Educational Resources Information Center

    Vangkilde, Signe; Coull, Jennifer T.; Bundesen, Claus

    2012-01-01

    In a crowded dynamic world, temporal expectations guide our attention in time. Prior investigations have consistently demonstrated that temporal expectations speed motor behavior. We explore effects of temporal expectation on "perceptual" speed in three nonspeeded, cued recognition paradigms. Different hazard rate functions for the cue-stimulus…

  7. False Memories Lack Perceptual Detail: Evidence from Implicit Word-Stem Completion and Perceptual Identification Tests

    ERIC Educational Resources Information Center

    Hicks, J.L.; Starns, J.J.

    2005-01-01

    We used implicit measures of memory to ascertain whether false memories for critical nonpresented items in the DRM paradigm (Deese, 1959; Roediger & McDermott, 1995) contain structural and perceptual detail. In Experiment 1, we manipulated presentation modality in a visual word-stem-completion task. Critical item priming was significant and…

  8. Perceptual-Speed Deficit in Reading-Disability Children.

    ERIC Educational Resources Information Center

    Spring, Carl

    In Study I, reading disability children were tested on perceptual encoding speed with a visual reaction-time task requiring same-different judgements. Performance of disabled children deteriorated as testing progressed, and recovered after a rest. In Study II, the poor readers of Study I were rated by their teachers on a 15-item inventory of…

  9. Infant Memory for Primitive Perceptual Features.

    ERIC Educational Resources Information Center

    Adler, Scott A.

    Textons are elongated blobs of specific color, angular orientation, ends of lines, and crossings of line segments that are proposed to be the perceptual building blocks of the visual system. A study was conducted to explore the relative memorability of different types and arrangements of textons, exploring the time course for the discrimination…

  10. Differential Effects of Intelligence, Perceptual Speed and Age on Growth in Attentional Speed and Accuracy

    ERIC Educational Resources Information Center

    Goldhammer, Frank; Rauch, Wolfgang A.; Schweizer, Karl; Moosbrugger, Helfried

    2010-01-01

    The study investigates the effects of intelligence, perceptual speed and age on intraindividual growth in attentional speed and attentional accuracy over the course of a 6-minute testing session. A sample of 193 subjects completed the Advanced Progressive Matrices and the Vienna Matrices Test representing intelligence, the tests Alertness and…

  11. Retrieval-Induced Forgetting in Perceptually Driven Memory Tests

    ERIC Educational Resources Information Center

    Bajo, M. Teresa; Gomez-Ariza, Carlos J.; Fernandez, Angel; Marful, Alejandra

    2006-01-01

    Recent data (T. J. Perfect, C. J. A. Moulin, M. A. Conway, & E. Perry, 2002) have suggested that retrieval-induced forgetting (RIF) depends on conceptual memory because the effect is not found in perceptually driven tasks. In 3 experiments, the authors aimed to show that the presence of RIF depends on whether the procedure induces appropriate…

  12. Eye movements, the perceptual span, and reading speed

    PubMed Central

    Rayner, Keith; Slattery, Timothy J.; Bélanger, Nathalie N.

    2011-01-01

    The perceptual span or region of effective vision during eye fixations in reading was examined as a function of reading speed (fast readers were compared to slow readers), font characteristics (fixed width vs. proportional width), and intra-word spacing (normal or reduced). The main findings were that fast readers (reading at about 330 wpm) had a larger perceptual span than slow readers (reading about 200 wpm) and the span was not affected by whether or not the text was fixed-width or proportional-width. Additionally, there were interesting font and intra-word spacing effects that have important implications for the optimal use of space in a line of text. PMID:21169577

  13. The objects of visuospatial short-term memory: Perceptual organization and change detection

    PubMed Central

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369

  14. The objects of visuospatial short-term memory: Perceptual organization and change detection.

    PubMed

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369

  15. Variability in visual working memory ability limits the efficiency of perceptual decision making

    PubMed Central

    Ester, Edward F.; Ho, Tiffany C.; Brown, Scott D.; Serences, John T.

    2014-01-01

    The ability to make rapid and accurate decisions based on limited sensory information is a critical component of visual cognition. Available evidence suggests that simple perceptual discriminations are based on the accumulation and integration of sensory evidence over time. However, the memory system(s) mediating this accumulation are unclear. One candidate system is working memory (WM), which enables the temporary maintenance of information in a readily accessible state. Here, we show that individual variability in WM capacity is strongly correlated with the speed of evidence accumulation in speeded two-alternative forced choice tasks. This relationship generalized across different decision-making tasks, and could not be easily explained by variability in general arousal or vigilance. Moreover, we show that performing a difficult discrimination task while maintaining a concurrent memory load has a deleterious effect on the latter, suggesting that WM storage and decision making are directly linked. PMID:24695991

  16. When Does Modality Matter? Perceptual versus Conceptual Fluency-Based Illusions in Recognition Memory

    ERIC Educational Resources Information Center

    Miller, Jeremy K.; Lloyd, Marianne E.; Westerman, Deanne L.

    2008-01-01

    Previous research has shown that illusions of recognition memory based on enhanced perceptual fluency are sensitive to the perceptual match between the study and test phases of an experiment. The results of the current study strengthen that conclusion, as they show that participants will not interpret enhanced perceptual fluency as a sign of…

  17. Fluency Effects in Recognition Memory: Are Perceptual Fluency and Conceptual Fluency Interchangeable?

    ERIC Educational Resources Information Center

    Lanska, Meredith; Olds, Justin M.; Westerman, Deanne L.

    2014-01-01

    On a recognition memory test, both perceptual and conceptual fluency can engender a sense of familiarity and elicit recognition memory illusions. To date, perceptual and conceptual fluency have been studied separately but are they interchangeable in terms of their influence on recognition judgments? Five experiments compared the effect of…

  18. Working memory effects in speeded RSVP tasks.

    PubMed

    Gil-Gómez de Liaño, Beatriz; Potter, Mary C; Rodríguez, Carmen

    2014-01-01

    The present paper examines the effects of memory contents and memory load in rapid serial visual presentation (RSVP) speeded tasks, trying to explain previous inconsistent results. We used a one target (Experiment 1) and a two-target (Experiment 2) RSVP task with a concurrent memory load of one or four items, in a dual-task paradigm. A relation between material in working memory and the target in the RSVP impaired the identification of the target. In Experiments 3 and 4, the single task was to determine whether any information in memory matched the target in the RSVP, while varying the memory load. A match was detected faster than a non-match, although only when there was some distance between targets in the RSVP (Experiment 4). The results suggest that memory contents automatically capture attention, slowing processing when the memory contents are irrelevant to the task, and speeding processing when they are relevant. PMID:23397260

  19. Dissociations between familiarity processes in explicit recognition and implicit perceptual memory.

    PubMed

    Wagner, A D; Gabrieli, J D; Verfaellie, M

    1997-03-01

    Dual-process theories of recognition posit that a perceptual familiarity process contributes to both explicit recognition and implicit perceptual memory. This putative single familiarity process has been indexed by inclusion-exclusion, remember-know, and repetition priming measures. The present studies examined whether these measures identify a common familiarity process. Familiarity-based explicit recognition (as indexed by the inclusion-exclusion and the independence remember-know procedures) increased with conceptual processing. In contrast, implicit word-identification priming and familiarity-based word-stem completion (as indexed by inclusion-exclusion) increased with study-test perceptual similarity. These dissociations indicate that familiarity-based explicit recognition may be more sensitive to conceptual than to perceptual processing and is functionally distinct from the perceptual familiarity process mediating implicit perceptual memory. PMID:9080006

  20. Fluency effects in recognition memory: are perceptual fluency and conceptual fluency interchangeable?

    PubMed

    Lanska, Meredith; Olds, Justin M; Westerman, Deanne L

    2014-01-01

    On a recognition memory test, both perceptual and conceptual fluency can engender a sense of familiarity and elicit recognition memory illusions. To date, perceptual and conceptual fluency have been studied separately but are they interchangeable in terms of their influence on recognition judgments? Five experiments compared the effect of perceptual and conceptual fluency on recognition. The results suggest that under standard intentional encoding instructions participants were influenced by conceptual and perceptual fluency manipulations to a similar degree (Experiments 1a and 1b). When the perceptual features of the stimuli were emphasized during encoding, the perceptual fluency manipulation had a stronger influence on recognition memory decisions than the conceptual fluency manipulation (Experiment 2). Enhanced conceptual processing at encoding served to nullify the influence of both perceptual and conceptual fluency on the test (Experiment 3). The nature of the test instructions also influenced the relative contribution of perceptual versus conceptual fluency manipulations to the recognition judgment. In Experiment 4, the influence of conceptual fluency was larger when the recognition instructions were meaning based (a synonym recognition test) than with standard recognition instructions. Collectively, the results suggest that the relative contribution of perceptual and conceptual fluency depends on both encoding and test factors. PMID:24001021

  1. Perceptual Organization and Operative Thought: A Study of Coherence in Memory.

    ERIC Educational Resources Information Center

    Heindel, Patricia; Kose, Gary

    Examined in three studies were the influence of perceptual organization on children's memory and the relationship between operational thought and memory performance. In the first study, 72 children at 5, 7, and 9 years of age were given a series of Piagetian tasks and a memory task. Subjects were presented with 10 color-shape pairs depicted in…

  2. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    PubMed

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location. PMID:27192995

  3. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval.

    PubMed

    Dew, Ilana T Z; Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2014-07-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested 2 days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  4. Further Explorations of Perceptual Speed Abilities in the Context of Assessment Methods, Cognitive Abilities, and Individual Differences during Skill Acquisition

    ERIC Educational Resources Information Center

    Ackerman, Phillip L.; Beier, Margaret E.

    2007-01-01

    Measures of perceptual speed ability have been shown to be an important part of assessment batteries for predicting performance on tasks and jobs that require a high level of speed and accuracy. However, traditional measures of perceptual speed ability sometimes have limited cost-effectiveness because of the requirements for administration and…

  5. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.

    PubMed

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage. PMID:26098079

  6. Perceptual chunking and its effect on memory in speech processing: ERP and behavioral evidence.

    PubMed

    Gilbert, Annie C; Boucher, Victor J; Jemel, Boutheina

    2014-01-01

    We examined how perceptual chunks of varying size in utterances can influence immediate memory of heard items (monosyllabic words). Using behavioral measures and event-related potentials (N400) we evaluated the quality of the memory trace for targets taken from perceived temporal groups (TGs) of three and four items. Variations in the amplitude of the N400 showed a better memory trace for items presented in TGs of three compared to those in groups of four. Analyses of behavioral responses along with P300 components also revealed effects of chunk position in the utterance. This is the first study to measure the online effects of perceptual chunks on the memory trace of spoken items. Taken together, the N400 and P300 responses demonstrate that the perceptual chunking of speech facilitates information buffering and a processing on a chunk-by-chunk basis. PMID:24678304

  7. Perceptual chunking and its effect on memory in speech processing: ERP and behavioral evidence

    PubMed Central

    Gilbert, Annie C.; Boucher, Victor J.; Jemel, Boutheina

    2014-01-01

    We examined how perceptual chunks of varying size in utterances can influence immediate memory of heard items (monosyllabic words). Using behavioral measures and event-related potentials (N400) we evaluated the quality of the memory trace for targets taken from perceived temporal groups (TGs) of three and four items. Variations in the amplitude of the N400 showed a better memory trace for items presented in TGs of three compared to those in groups of four. Analyses of behavioral responses along with P300 components also revealed effects of chunk position in the utterance. This is the first study to measure the online effects of perceptual chunks on the memory trace of spoken items. Taken together, the N400 and P300 responses demonstrate that the perceptual chunking of speech facilitates information buffering and a processing on a chunk-by-chunk basis. PMID:24678304

  8. Perceptual and Cognitive Factors Imposing "Speed Limits" on Reading Rate: A Study with the Rapid Serial Visual Presentation.

    PubMed

    Primativo, Silvia; Spinelli, Donatella; Zoccolotti, Pierluigi; De Luca, Maria; Martelli, Marialuisa

    2016-01-01

    Adults read at high speed, but estimates of their reading rate vary greatly, i.e., from 100 to 1500 words per minute (wpm). This discrepancy is likely due to different recording methods and to the different perceptual and cognitive processes involved in specific test conditions. The present study investigated the origins of these notable differences in RSVP reading rate (RR). In six experiments we investigated the role of many different perceptual and cognitive variables. The presence of a mask caused a steep decline in reading rate, with an estimated masking cost of about 200 wpm. When the decoding process was isolated, RR approached values of 1200 wpm. When the number of stimuli exceeded the short-term memory span, RR decreased to 800 wpm. The semantic context contributed to reading speed only by a factor of 1.4. Finally, eye movements imposed an upper limit on RR (around 300 wpm). Overall, data indicate a speed limit of 300 wpm, which corresponds to the time needed for eye movement execution, i.e., the most time consuming mechanism. Results reconcile differences in reading rates reported by different laboratories and thus provide suggestions for targeting different components of reading rate. PMID:27088226

  9. Perceptual and Cognitive Factors Imposing “Speed Limits” on Reading Rate: A Study with the Rapid Serial Visual Presentation

    PubMed Central

    Spinelli, Donatella; Zoccolotti, Pierluigi; De Luca, Maria; Martelli, Marialuisa

    2016-01-01

    Adults read at high speed, but estimates of their reading rate vary greatly, i.e., from 100 to 1500 words per minute (wpm). This discrepancy is likely due to different recording methods and to the different perceptual and cognitive processes involved in specific test conditions. The present study investigated the origins of these notable differences in RSVP reading rate (RR). In six experiments we investigated the role of many different perceptual and cognitive variables. The presence of a mask caused a steep decline in reading rate, with an estimated masking cost of about 200 wpm. When the decoding process was isolated, RR approached values of 1200 wpm. When the number of stimuli exceeded the short-term memory span, RR decreased to 800 wpm. The semantic context contributed to reading speed only by a factor of 1.4. Finally, eye movements imposed an upper limit on RR (around 300 wpm). Overall, data indicate a speed limit of 300 wpm, which corresponds to the time needed for eye movement execution, i.e., the most time consuming mechanism. Results reconcile differences in reading rates reported by different laboratories and thus provide suggestions for targeting different components of reading rate. PMID:27088226

  10. Perceptual biases are inconsistent with Bayesian encoding of speed in the human visual system.

    PubMed

    Hassan, Omar; Hammett, Stephen T

    2015-01-01

    The notion that Bayesian processes are fundamental to brain function and sensory processing has recently received much support, and a number of Bayesian accounts of how the brain encodes the speed of moving objects have been proposed that challenge earlier mechanistic models. We measured the perceived speed of low contrast patterns at both low (2.5 cd m(-2)) and high (25 cd m(-2)) luminance in order to assess these competing models of how the human visual system encodes speed. At both luminance levels low contrast stimuli are perceptually biased such that they appear slower at slow (< 8 Hz) speeds but faster at higher (16 Hz) speeds. However, we find that the reversal of the perceptual bias from under- to overestimation occurred at slower speeds at low luminance. We also found that the bias was greater at slow speeds at high luminance but greater at fast speeds at low luminance. Moreover, discrimination thresholds were found to be similar at high and low luminance. These findings can be predicted by models in which speed is encoded by the relative activity within two broadly tuned temporal channels but are inconsistent with Bayesian models of speed encoding. We conclude that Bayesian processes cannot adequately account for speed encoding in the human visual system. PMID:25761348

  11. Revisiting a Cognitive Framework for Test Design: Applications for a Computerized Perceptual Speed Test.

    ERIC Educational Resources Information Center

    Alderton, David L.

    This paper highlights the need for a systematic, content aware, and theoretically-based approach to test design. The cognitive components approach is endorsed, and is applied to the development of a computerized perceptual speed test. Psychometric literature is reviewed and shows that: every major multi-factor theory includes a clerical/perceptual…

  12. Opposite effects of perceptual and working memory load on perceptual filling-in of an artificial scotoma

    PubMed Central

    Carmel, David; Rees, Geraint

    2016-01-01

    A target presented on a background of dynamic noise disappears from awareness after a few seconds of maintained peripheral viewing. Whereas the effects of bottom-up factors in such filling-in are well documented, the roles of different top-down functions remain relatively unexplored. Here, we investigated the roles of attention and working memory (WM) by manipulating load in concurrent tasks while participants reported filling-in of a peripheral target. In Experiment 1, increasing perceptual load reduced the probability of filling-in and increased the latency of its occurrence. In Experiment 2, increasing WM load shortened the time before filling-in occurred – the opposite effect to increasing perceptual load. These results demonstrate that different top-down functions may have dissociable effects on filling-in. PMID:24168648

  13. Perceptual shrinkage of a one-way motion path with high-speed motion.

    PubMed

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  14. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  15. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions

    PubMed Central

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2016-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  16. Selection and Storage of Perceptual Groups Is Constrained by a Discrete Resource in Working Memory

    ERIC Educational Resources Information Center

    Anderson, David E.; Vogel, Edward K.; Awh, Edward

    2013-01-01

    Perceptual grouping can lead observers to perceive a multielement scene as a smaller number of hierarchical units. Past work has shown that grouping enables more elements to be stored in visual working memory (WM). Although this may appear to contradict so-called discrete resource models that argue for fixed item limits in WM storage, it is also…

  17. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    PubMed

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. PMID:26571051

  18. Working Memory Does Not Dissociate between Different Perceptual Categorization Tasks

    ERIC Educational Resources Information Center

    Lewandowsky, Stephan; Yang, Lee-Xieng; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Working memory is crucial for many higher level cognitive functions, ranging from mental arithmetic to reasoning and problem solving. Likewise, the ability to learn and categorize novel concepts forms an indispensable part of human cognition. However, very little is known about the relationship between working memory and categorization. This…

  19. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    ERIC Educational Resources Information Center

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  20. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    PubMed

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. PMID:23063888

  1. Action video games do not improve the speed of information processing in simple perceptual tasks.

    PubMed

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2014-10-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517

  2. Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation

    PubMed Central

    Weilnhammer, Veith A.; Sterzer, Philipp; Hesselmann, Guido

    2016-01-01

    Lissajous figures represent ambiguous structure-from-motion stimuli rotating in depth and have proven to be a versatile tool to explore the cognitive and neural mechanisms underlying bistable perception. They are generated by the intersection of two sinusoids with perpendicular axes and increasing phase-shift whose frequency determines the speed of illusory 3D rotation. Recently, we found that Lissajous figures of higher shifting frequencies elicited longer perceptual phase durations and tentatively proposed a “representational momentum” account. In this study, our aim was twofold. First, we aimed to gather more behavioral evidence related to the perceptual dynamics of the Lissajous figure by simultaneously varying its shifting frequency and size. Using a conventional analysis, we investigated the effects of our experimental manipulations on transition probability (i.e., the probability that the current percept will change at the next critical stimulus configuration). Second, we sought to test the impact of our experimental factors on the occurrence of transitions in bistable perception by means of a Bayesian approach that can be used to directly quantify the impact of contextual cues on perceptual stability. We thereby estimated the implicit prediction of perceptual stability and how it is modulated by experimental manipulations. PMID:27560958

  3. Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation.

    PubMed

    Weilnhammer, Veith A; Sterzer, Philipp; Hesselmann, Guido

    2016-01-01

    Lissajous figures represent ambiguous structure-from-motion stimuli rotating in depth and have proven to be a versatile tool to explore the cognitive and neural mechanisms underlying bistable perception. They are generated by the intersection of two sinusoids with perpendicular axes and increasing phase-shift whose frequency determines the speed of illusory 3D rotation. Recently, we found that Lissajous figures of higher shifting frequencies elicited longer perceptual phase durations and tentatively proposed a "representational momentum" account. In this study, our aim was twofold. First, we aimed to gather more behavioral evidence related to the perceptual dynamics of the Lissajous figure by simultaneously varying its shifting frequency and size. Using a conventional analysis, we investigated the effects of our experimental manipulations on transition probability (i.e., the probability that the current percept will change at the next critical stimulus configuration). Second, we sought to test the impact of our experimental factors on the occurrence of transitions in bistable perception by means of a Bayesian approach that can be used to directly quantify the impact of contextual cues on perceptual stability. We thereby estimated the implicit prediction of perceptual stability and how it is modulated by experimental manipulations. PMID:27560958

  4. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  5. The time course of protecting a visual memory representation from perceptual interference

    PubMed Central

    van Moorselaar, Dirk; Gunseli, Eren; Theeuwes, Jan; N. L. Olivers, Christian

    2015-01-01

    Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the stimulus onset asynchrony (SOA) between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed. PMID:25628555

  6. Imagery Rescripting: The Impact of Conceptual and Perceptual Changes on Aversive Autobiographical Memories

    PubMed Central

    Slofstra, Christien; Nauta, Maaike H.; Holmes, Emily A.; Bockting, Claudi L. H.

    2016-01-01

    Background Imagery rescripting (ImRs) is a process by which aversive autobiographical memories are rendered less unpleasant or emotional. ImRs is thought only to be effective if a change in the meaning-relevant (semantic) content of the mental image is produced, according to a cognitive hypothesis of ImRs. We propose an additional hypothesis: that ImRs can also be effective by the manipulation of perceptual features of the memory, without explicitly targeting meaning-relevant content. Methods In two experiments using a within-subjects design (both N = 48, community samples), both Conceptual-ImRs—focusing on changing meaning-relevant content—and Perceptual-ImRs—focusing on changing perceptual features—were compared to Recall-only of aversive autobiographical image-based memories. An active control condition, Recall + Attentional Breathing (Recall+AB) was added in the first experiment. In the second experiment, a Positive-ImRs condition was added—changing the aversive image into a positive image that was unrelated to the aversive autobiographical memory. Effects on the aversive memory’s unpleasantness, vividness and emotionality were investigated. Results In Experiment 1, compared to Recall-only, both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in unpleasantness, and Perceptual-ImRs led to greater decreases in emotionality of memories. In Experiment 2, the effects on unpleasantness were not replicated, and both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in emotionality, compared to Recall-only, as did Positive-ImRs. There were no effects on vividness, and the ImRs conditions did not differ significantly from Recall+AB. Conclusions Results suggest that, in addition to traditional forms of ImRs, targeting the meaning-relevant content of an image during ImRs, relatively simple techniques focusing on perceptual aspects or positive imagery might also yield benefits. Findings require replication and extension to clinical

  7. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.

    PubMed

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-04-01

    Walking-In-Place (WIP) techniques make it possible to facilitate relatively natural locomotion within immersive virtual environments that are larger than the physical interaction space. However, in order to facilitate natural walking experiences one needs to know how to map steps in place to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely, no leg movement, walking on a treadmill, and two forms of gestural input for WIP locomotion. The results suggest that WIP locomotion is accompanied by a perceptual distortion of the speed of optic flow. The second study was performed using a 4×2 factorial design and compared four different display field-of-views (FOVs) and two types of movement, walking on a treadmill and WIP locomotion. The results revealed significant main effects of both movement type and field of view, but no significant interaction between the two variables. Particularly, they suggest that the size of the display FOV is inversely proportional to the degree of underestimation of the virtual speeds for both treadmill-mediated virtual walking and WIP locomotion. Combined, the results constitute a first attempt at establishing a set of guidelines specifying what virtual walking speeds WIP gestures should produce in order to facilitate a natural walking experience. PMID:24650984

  8. Perceptual distortions of speed at low luminance: evidence inconsistent with a Bayesian account of speed encoding.

    PubMed

    Hammett, Stephen T; Champion, Rebecca A; Thompson, Peter G; Morland, Antony B

    2007-02-01

    Our perception of speed has been shown to be distorted under a number of viewing conditions. Recently the well-known reduction of perceived speed at low contrast has led to Bayesian models of speed perception that account for these distortions with a slow speed 'prior'. To test the predictive, rather than the descriptive, power of the Bayesian approach we have investigated perceived speed at low luminance. Our results indicate that, for the mesopic and photopic range (0.13-30 cd m(-2)) the perceived speed of lower luminance patterns is virtually unaffected at low speeds (<4 deg s(-1)) but is over-estimated at higher speeds (>4 deg s(-1)). We show here that the results can be accounted for by an extension to a simple ratio model of speed encoding [Hammett, S. T., Champion, R. A., Morland, A. & Thompson, P. G. (2005). A ratio model of perceived speed in the human visual system. Proceedings of Royal Society B, 262, 2351-2356.] that takes account of known changes in neural responses as a function of luminance, contrast and temporal frequency. The results are not consistent with current Bayesian approaches to modelling speed encoding that postulate a slow speed prior. PMID:17011014

  9. Effects of cross-modal and intramodal division of attention on perceptual implicit memory.

    PubMed

    Mulligan, Neil W

    2003-03-01

    Extant results motivate 3 hypotheses on the role of attention in perceptual implicit memory. The first proposes that only intramodal manipulations of attention reduce perceptual priming. The second attributes reduced priming to the effects of distractor selection operating in a central bottleneck process. The third proposes that manipulations of attention only affect priming via disrupted stimulus identification. In Experiment 1, a standard cross-modal manipulation did not disrupt priming in perceptual identification. However, when study words and distractors were presented synchronously, cross-modal and intramodal distraction reduced priming. Increasing response frequency in the distractor task produced effects of attention regardless of target-distractor synchrony. These effects generalized to a different category of distractors arguing against domain-specific interference. The results support the distractor-selection hypothesis. PMID:12696814

  10. Top-down cortical input during NREM sleep consolidates perceptual memory.

    PubMed

    Miyamoto, D; Hirai, D; Fung, C C A; Inutsuka, A; Odagawa, M; Suzuki, T; Boehringer, R; Adaikkan, C; Matsubara, C; Matsuki, N; Fukai, T; McHugh, T J; Yamanaka, A; Murayama, M

    2016-06-10

    During tactile perception, long-range intracortical top-down axonal projections are essential for processing sensory information. Whether these projections regulate sleep-dependent long-term memory consolidation is unknown. We altered top-down inputs from higher-order cortex to sensory cortex during sleep and examined the consolidation of memories acquired earlier during awake texture perception. Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons and memory consolidation. In NREM sleep and sleep-deprivation states, closed-loop asynchronous or synchronous M2-S1 coactivation, respectively, reduced or prolonged memory retention. Top-down cortical information flow in NREM sleep is thus required for perceptual memory consolidation. PMID:27229145

  11. A Role for the Perceptual Representation Memory System in Category Learning

    PubMed Central

    Casale, Michael B.; Ashby, F. Gregory

    2008-01-01

    There is growing evidence that working memory, episodic/semantic memory, and procedural memory all play important roles in at least some types of category learning. Little is known however, about the role of the perceptual representation memory system (PRS). Two experiments are reported that provide evidence that under certain conditions, the PRS, by itself, is sufficient to mediate category learning. Both experiments compared performance in (A, not A) and (A, B) prototype distortion category-learning tasks, in which category exemplars are created by randomly distorting one category prototype in the (A, not A) conditions or two prototypes in the (A, B) conditions. Results showed that (A, not A) performance was more sensitive to prototype similarity and less affected by the removal of feedback than (A, B) performance. These results support the hypothesis that (A, not A) performance was mediated by the PRS, but that (A, B) performance recruited other memory systems. PMID:18717385

  12. I "hear" what you're "saying": Auditory perceptual simulation, reading speed, and reading comprehension.

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-01-01

    Auditory perceptual simulation (APS) during silent reading refers to situations in which the reader actively simulates the voice of a character or other person depicted in a text. In three eye-tracking experiments, APS effects were investigated as people read utterances attributed to a native English speaker, a non-native English speaker, or no speaker at all. APS effects were measured via online eye movements and offline comprehension probes. Results demonstrated that inducing APS during silent reading resulted in observable differences in reading speed when readers simulated the speech of faster compared to slower speakers and compared to silent reading without APS. Social attitude survey results indicated that readers' attitudes towards the native and non-native speech did not consistently influence APS-related effects. APS of both native speech and non-native speech increased reading speed, facilitated deeper, less good-enough sentence processing, and improved comprehension compared to normal silent reading. PMID:25679796

  13. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-01

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. PMID:24374080

  14. Effects of perceptual and semantic cues on ERP modulations associated with prospective memory.

    PubMed

    Cousens, Ross; Cutmore, Timothy; Wang, Ya; Wilson, Jennifer; Chan, Raymond C K; Shum, David H K

    2015-10-01

    Prospective memory involves the formation and execution of intended actions and is essential for autonomous living. In this study (N=32), the effect of the nature of PM cues (semantic versus perceptual) on established event-related potentials (ERPs) elicited in PM tasks (N300 and prospective positivity) was investigated. PM cues defined by their perceptual features clearly elicited the N300 and prospective positivity whereas PM cues defined by semantic relatedness elicited prospective positivity. This calls into question the view that the N300 is a marker of general processes underlying detection of PM cues, but supports existing research showing that prospective positivity represents general post-retrieval processes that follow detection of PM cues. Continued refinement of ERP paradigms for understanding the neural correlates of PM is needed. PMID:26220219

  15. When past is present: Substitutions of long-term memory for sensory evidence in perceptual judgments.

    PubMed

    Fan, Judith E; Hutchinson, J Benjamin; Turk-Browne, Nicholas B

    2016-06-01

    When perception is underdetermined by current sensory inputs, memories for related experiences in the past might fill in missing detail. To evaluate this possibility, we measured the likelihood of relying on long-term memory versus sensory evidence when judging the appearance of an object near the threshold of awareness. Specifically, we associated colors with shapes in long-term memory and then presented the shapes again later in unrelated colors and had observers judge the appearance of the new colors. We found that responses were well characterized as a bimodal mixture of original and current-color representations (vs. an integrated unimodal representation). That is, although irrelevant to judgments of the current color, observers occasionally anchored their responses on the original colors in memory. Moreover, the likelihood of such memory substitutions increased when sensory input was degraded. In fact, they occurred even in the absence of sensory input when observers falsely reported having seen something. Thus, although perceptual judgments intuitively seem to reflect the current state of the environment, they can also unknowingly be dictated by past experiences. PMID:27248565

  16. When past is present: Substitutions of long-term memory for sensory evidence in perceptual judgments

    PubMed Central

    Fan, Judith E.; Hutchinson, J. Benjamin; Turk-Browne, Nicholas B.

    2016-01-01

    When perception is underdetermined by current sensory inputs, memories for related experiences in the past might fill in missing detail. To evaluate this possibility, we measured the likelihood of relying on long-term memory versus sensory evidence when judging the appearance of an object near the threshold of awareness. Specifically, we associated colors with shapes in long-term memory and then presented the shapes again later in unrelated colors and had observers judge the appearance of the new colors. We found that responses were well characterized as a bimodal mixture of original and current-color representations (vs. an integrated unimodal representation). That is, although irrelevant to judgments of the current color, observers occasionally anchored their responses on the original colors in memory. Moreover, the likelihood of such memory substitutions increased when sensory input was degraded. In fact, they occurred even in the absence of sensory input when observers falsely reported having seen something. Thus, although perceptual judgments intuitively seem to reflect the current state of the environment, they can also unknowingly be dictated by past experiences. PMID:27248565

  17. Working memory is related to perceptual processing: A case from color perception

    PubMed Central

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher-WM individuals than for lower-WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and provides a first account of the individual differences in color constancy known about for decades. PMID:21480748

  18. Memory for the perceptual and semantic attributes of information in pure amnesic and severe closed-head injured patients.

    PubMed

    Carlesimo, Giovanni A; Bonanni, Rita; Caltagirone, Carlo

    2003-05-01

    This study investigated the hypothesis that brain damaged patients with memory disorder are poorer at remembering the semantic than the perceptual attributes of information. Eight patients with memory impairment of different etiology and 24 patients with chronic consequences of severe closed-head injury were compared to similarly sized age- and literacy-matched normal control groups on recognition tests for the physical aspect and the semantic identity of words and pictures lists. In order to avoid interpretative problems deriving from different absolute levels of performance, study conditions were manipulated across subjects to obtain comparable accuracy on the perceptual recognition tests in the memory disordered and control groups. The results of the Picture Recognition test were consistent with the hypothesis. Indeed, having more time for the stimulus encoding, the two memory disordered groups performed at the same level as the normal subjects on the perceptual test but significantly lower on the semantic test. Instead, on the Word Recognition test, following study condition manipulation, patients and controls performed similarly on both the perceptual and the semantic tests. These data only partially support the hypothesis of the study; rather they suggest that in memory disordered patients there is a reduction of the advantage, exhibited by normal controls, of retrieving pictures over words (picture superiority effect). PMID:12916652

  19. Contextual consistency facilitates long-term memory of perceptual detail in barely seen images.

    PubMed

    Gronau, Nurit; Shachar, Meytal

    2015-08-01

    It is long known that contextual information affects memory for an object's identity (e.g., its basic level category), yet it is unclear whether schematic knowledge additionally enhances memory for the precise visual appearance of an item. Here we investigated memory for visual detail of merely glimpsed objects. Participants viewed pairs of contextually related and unrelated stimuli, presented for an extremely brief duration (24 ms, masked). They then performed a forced-choice memory-recognition test for the precise perceptual appearance of 1 of 2 objects within each pair (i.e., the "memory-target" item). In 3 experiments, we show that memory-target stimuli originally appearing within contextually related pairs are remembered better than targets appearing within unrelated pairs. These effects are obtained whether the target is presented at test with its counterpart pair object (i.e., when reiterating the original context at encoding) or whether the target is presented alone, implying that the contextual consistency effects are mediated predominantly by processes occurring during stimulus encoding, rather than during stimulus retrieval. Furthermore, visual detail encoding is improved whether object relations involve implied action or not, suggesting that, contrary to some prior suggestions, action is not a necessary component for object-to-object associative "grouping" processes. Our findings suggest that during a brief glimpse, but not under long viewing conditions, contextual associations may play a critical role in reducing stimulus competition for attention selection and in facilitating rapid encoding of sensory details. Theoretical implications with respect to classic frame theories are discussed. (PsycINFO Database Record PMID:26010591

  20. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    ERIC Educational Resources Information Center

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  1. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making

    PubMed Central

    Forstmann, Birte U.; Anwander, Alfred; Schäfer, Andreas; Neumann, Jane; Brown, Scott; Wagenmakers, Eric-Jan; Bogacz, Rafal; Turner, Robert

    2010-01-01

    When people make decisions they often face opposing demands for response speed and response accuracy, a process likely mediated by response thresholds. According to the striatal hypothesis, people decrease response thresholds by increasing activation from cortex to striatum, releasing the brain from inhibition. According to the STN hypothesis, people decrease response thresholds by decreasing activation from cortex to subthalamic nucleus (STN); a decrease in STN activity is likewise thought to release the brain from inhibition and result in responses that are fast but error-prone. To test these hypotheses—both of which may be true—we conducted two experiments on perceptual decision making in which we used cues to vary the demands for speed vs. accuracy. In both experiments, behavioral data and mathematical model analyses confirmed that instruction from the cue selectively affected the setting of response thresholds. In the first experiment we used ultra-high-resolution 7T structural MRI to locate the STN precisely. We then used 3T structural MRI and probabilistic tractography to quantify the connectivity between the relevant brain areas. The results showed that participants who flexibly change response thresholds (as quantified by the mathematical model) have strong structural connections between presupplementary motor area and striatum. This result was confirmed in an independent second experiment. In general, these findings show that individual differences in elementary cognitive tasks are partly driven by structural differences in brain connectivity. Specifically, these findings support a cortico-striatal control account of how the brain implements adaptive switches between cautious and risky behavior. PMID:20733082

  2. Perceptual Organization Masquerading as Phonological Storage: Further Support for a Perceptual-Gestural View of Short-Term Memory

    ERIC Educational Resources Information Center

    Jones, Dylan M.; Hughes, Robert W.; Macken, William J.

    2006-01-01

    Three experiments examined whether the survival of the phonological similarity effect (PSE) under articulatory suppression for auditory but not visual to-be-serially recalled lists is a perceptual effect rather than an effect arising from the action of a bespoke phonological store. Using a list of 5 auditory items, a list length at which the…

  3. Speed of Processing, Working Memory, and Language Impairment in Children

    ERIC Educational Resources Information Center

    Leonard, Laurence B.; Weismer, Susan Ellis; Miller, Carol A.; Francis, David J.; Tomblin, J. Bruce; Kail, Robert V.

    2007-01-01

    Purpose: Children with language impairment (LI) often perform below the level of typically developing peers on measures of both processing speed and working memory. This study examined the relationship between these 2 types of measures and attempted to determine whether such measures can account for the LI itself. Method: Fourteen-year-old…

  4. Language and Short-Term Memory: The Role of Perceptual-Motor Affordance

    PubMed Central

    2014-01-01

    The advantage for real words over nonwords in serial recall—the lexicality effect—is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are “cleaned up” via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge. PMID:24797440

  5. Language and short-term memory: the role of perceptual-motor affordance.

    PubMed

    Macken, Bill; Taylor, John C; Jones, Dylan M

    2014-09-01

    The advantage for real words over nonwords in serial recall--the lexicality effect--is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are "cleaned up" via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge. PMID:24797440

  6. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  7. Galvanic vestibular stimulation speeds visual memory recall.

    PubMed

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement. PMID:18584162

  8. Topographic amnesia: spatial memory disorder, perceptual dysfunction, or category specific semantic memory impairment?

    PubMed Central

    McCarthy, R A; Evans, J J; Hodges, J R

    1996-01-01

    A 60 year old patient, SE, who presented with a severe difficulty in finding his way around previously familiar environments and a mild prosopagnosia is described. SE had herpes simplex encephalitis resulting in selective right temporal lobe damage. He showed normal spatial learning, but was severely imparied in his ability to recognise pictures of buildings and landmarks. The disorder was not confined to the visual modality, but rather involved a loss of knowledge about famous buildings and landmarks when tested from their spoken name. SE was contrasted with a more severely prosopagnosic patient, PHD, who showed normal ability to recognise buildings and landmarks, indicating that recognition of people dissociates from recognition of buildings/landmarks. It is concluded that SE's failure of place knowledge represents a category specific supramodal semantic memory impairment. Images PMID:8609511

  9. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  10. Top-Down Activation of Spatiotopic Sensory Codes in Perceptual and Working Memory Search.

    PubMed

    Kuo, Bo-Cheng; Nobre, Anna Christina; Scerif, Gaia; Astle, Duncan E

    2016-07-01

    A critical requirement of an efficient cognitive system is the selection and prioritization of relevant information. This occurs when selecting specific items from our sensory inputs, which then receive preferential status at subsequent levels of processing. Many everyday tasks also require us to select internal representations, such as a relevant item from memory. We show that both of these types of search are underpinned by the spatiotopic activation of sensory codes, using both fMRI and MEG data. When individuals searched for perceived and remembered targets, the MEG data highlighted a sensor level electrophysiological effect that reflects the contralateral organization of the visual system-namely, the N2pc. The fMRI data were used to identify a network of frontoparietal areas common to both types of search, as well as the early visual areas activated by the search display. We then combined fMRI and MEG data to explore the temporal dynamics of functional connections between the frontoparietal network and the early visual areas. Searching for a target item resulted in significantly enhanced phase-phase coupling between the frontoparietal network and the visual areas contralateral to the perceived or remembered location of that target. This enhancement of spatially specific phase-phase coupling occurred before the N2pc effect and was significantly associated with it on a trial-by-trial basis. The combination of these two imaging modalities suggests that perceptual and working memory search are underpinned by the synchronization of a frontoparietal network and the relevant sensory cortices. PMID:26967943

  11. Specificity of auditory implicit and explicit memory: is perceptual priming for environmental sounds exemplar specific?

    PubMed

    Chiu, C Y

    2000-10-01

    Previous research (Stuart & Jones, 1995) has suggested that identification of environmental sounds may be mediated by abstract sound recognition units. This article reports the results of four repetition priming experiments that find evidence to the contrary. Participants attempted to identify environmental sounds from the initial sound stems (Experiments 1 and 2) or when the sounds were embedded in white noise (Experiments 3 and 4). Repetition of an identical exemplar sound led to more priming than did exposure to a different exemplar, provided that the perceptual difference between the two different exemplars was sufficiently large. Such an exemplar specificity effect was independent of the depth of prior encoding. A similar exemplar specificity effect was also found in explicit stem-cued recall (Experiments 1 and 2) and recognition (Experiment 3). Depth of encoding dissociated performance on tests of repetition priming and explicit memory. These results suggest that a significant amount of specific information is remembered, both implicitly and explicitly, to characterize individual exemplars of a sound category. PMID:11126936

  12. Dissociating Perceptual Confidence from Discrimination Accuracy Reveals No Influence of Metacognitive Awareness on Working Memory

    PubMed Central

    Samaha, Jason; Barrett, John J.; Sheldon, Andrew D.; LaRocque, Joshua J.; Postle, Bradley R.

    2016-01-01

    Visual awareness is hypothesized to be intimately related to visual working memory (WM), such that information present in WM is thought to have necessarily been represented consciously. Recent work has challenged this longstanding view by demonstrating that visual stimuli rated by observers as unseen can nevertheless be maintained over a delay period. These experiments have been criticized, however, on the basis that subjective awareness ratings may contain response bias (e.g., an observer may report no awareness when in fact they had partial awareness). We mitigated this issue by investigating WM for visual stimuli that were matched for perceptual discrimination capacity (d′), yet which varied in subjective confidence ratings (so-called relative blindsight). If the degree of initial subjective awareness of a stimulus facilitates later maintenance of that information, WM performance should improve for stimuli encoded with higher confidence. In contrast, we found that WM performance did not benefit from higher visual discrimination confidence. This relationship was observed regardless of WM load (1 or 3). Insofar as metacognitive ratings (e.g., confidence, visibility) reflect visual awareness, these results challenge a strong relationship between conscious perception and WM using a paradigm that controls for discrimination accuracy and is less subject to response bias (since confidence is manipulated within subjects). Methodologically, we replicate prior efforts to induce relative blindsight using similar stimulus displays, providing a general framework for isolating metacognitive awareness in order to examine the function of consciousness. PMID:27375529

  13. Dissociating Perceptual Confidence from Discrimination Accuracy Reveals No Influence of Metacognitive Awareness on Working Memory.

    PubMed

    Samaha, Jason; Barrett, John J; Sheldon, Andrew D; LaRocque, Joshua J; Postle, Bradley R

    2016-01-01

    Visual awareness is hypothesized to be intimately related to visual working memory (WM), such that information present in WM is thought to have necessarily been represented consciously. Recent work has challenged this longstanding view by demonstrating that visual stimuli rated by observers as unseen can nevertheless be maintained over a delay period. These experiments have been criticized, however, on the basis that subjective awareness ratings may contain response bias (e.g., an observer may report no awareness when in fact they had partial awareness). We mitigated this issue by investigating WM for visual stimuli that were matched for perceptual discrimination capacity (d'), yet which varied in subjective confidence ratings (so-called relative blindsight). If the degree of initial subjective awareness of a stimulus facilitates later maintenance of that information, WM performance should improve for stimuli encoded with higher confidence. In contrast, we found that WM performance did not benefit from higher visual discrimination confidence. This relationship was observed regardless of WM load (1 or 3). Insofar as metacognitive ratings (e.g., confidence, visibility) reflect visual awareness, these results challenge a strong relationship between conscious perception and WM using a paradigm that controls for discrimination accuracy and is less subject to response bias (since confidence is manipulated within subjects). Methodologically, we replicate prior efforts to induce relative blindsight using similar stimulus displays, providing a general framework for isolating metacognitive awareness in order to examine the function of consciousness. PMID:27375529

  14. Sparse distributed memory: understanding the speed and robustness of expert memory.

    PubMed

    Brogliato, Marcelo S; Chada, Daniel M; Linhares, Alexandre

    2014-01-01

    How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the "tip-of-tongue" memory event-which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842

  15. Sparse distributed memory: understanding the speed and robustness of expert memory

    PubMed Central

    Brogliato, Marcelo S.; Chada, Daniel M.; Linhares, Alexandre

    2014-01-01

    How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the “tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842

  16. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task.

    PubMed

    Schapschröer, M; Baker, J; Schorer, J

    2016-08-01

    In the context of perceptual-cognitive expertise it is important to know whether physiological loads influence perceptual-cognitive performance. This study examined whether a handball specific physical exercise load influenced participants' speed and accuracy in a flicker task. At rest and during a specific interval exercise of 86.5-90% HRmax, 35 participants (experts: n=8, advanced: n=13, novices, n=14) performed a handball specific flicker task with two types of patterns (structured and unstructured). For reaction time, results revealed moderate effect sizes for group, with experts reacting faster than advanced and advanced reacting faster than novices, and for structure, with structured videos being performed faster than unstructured ones. A significant interaction for structure×group was also found, with experts and advanced players faster for structured videos, and novices faster for unstructured videos. For accuracy, significant main effects were found for structure with structured videos solved more accurately. A significant interaction for structure×group was revealed, with experts and advanced more accurate for structured scenes and novices more accurate for unstructured scenes. A significant interaction was also found for condition×structure; at rest, unstructured and structured scenes were performed with the same accuracy while under physical exercise, structured scenes were solved more accurately. No other interactions were found. These results were somewhat surprising given previous work in this area, although the impact of a specific physical exercise on a specific perceptual-cognitive task may be different from those tested generally. PMID:27173640

  17. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map.

    PubMed

    Hedge, Craig; Oberauer, Klaus; Leonards, Ute

    2015-11-01

    We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map. PMID:26341873

  18. The effect of electroconvulsive therapy (ECT) on implicit memory: skill learning and perceptual priming in patients with major depression.

    PubMed

    Vakil, E; Grunhaus, L; Nagar, I; Ben-Chaim, E; Dolberg, O T; Dannon, P N; Schreiber, S

    2000-01-01

    While explicit memory in amnesics is impaired, their implicit memory remains preserved. Memory impairment is one of the side effects of electroconvulsive therapy (ECT). ECT patients are expected to show impairment on explicit but not implicit tasks. The present study examined 17 normal controls and 17 patients with severe major depressive disorder who underwent right unilateral ECT. Patients were tested in three sessions: 24-48 hours prior to, 24-48 hours following the first ECT, and 24-48 hours following the eighth ECT. The controls were tested in three sessions, at time intervals that paralleled those of the patients. Implicit memory was tested by the perceptual priming task - Partial Picture-Identification (PPI). The skill learning task used entailed solving the Tower of Hanoi puzzle (TOHP). Explicit memory was tested by picture recall from the PPI task, verbal recall of information regarding the TOHP, and by the Visual Paired Association (VPA) test. Results showed that explicit questions about the implicit tasks were impaired following ECT treatment. Patients' learning ability, as measured by the VPA task, was only impaired in the first testing session, prior to ECT treatment, reflecting the effect of depression. In addition, groups only differed in the first session on the learning rate of the skill learning task. Perceptual priming was preserved in the patients' group in all sessions, indicating that it is resilient to the effect of depression and ECT. The results are interpreted in terms of the differential effect of depression and ECT on explicit and implicit memory. PMID:10869584

  19. Prediction, Postdiction, and Perceptual Length Contraction: A Bayesian Low-Speed Prior Captures the Cutaneous Rabbit and Related Illusions

    PubMed Central

    Goldreich, Daniel; Tong, Jonathan

    2013-01-01

    Illusions provide a window into the brain’s perceptual strategies. In certain illusions, an ostensibly task-irrelevant variable influences perception. For example, in touch as in audition and vision, the perceived distance between successive punctate stimuli reflects not only the actual distance but curiously the inter-stimulus time. Stimuli presented at different positions in rapid succession are drawn perceptually toward one another. This effect manifests in several illusions, among them the startling cutaneous rabbit, in which taps delivered to as few as two skin positions appear to hop progressively from one position to the next, landing in the process on intervening areas that were never stimulated. Here we provide an accessible step-by-step exposition of a Bayesian perceptual model that replicates the rabbit and related illusions. The Bayesian observer optimally joins uncertain estimates of spatial location with the expectation that stimuli tend to move slowly. We speculate that this expectation – a Bayesian prior – represents the statistics of naturally occurring stimuli, learned by humans through sensory experience. In its simplest form, the model contains a single free parameter, tau: a time constant for space perception. We show that the Bayesian observer incorporates both pre- and post-dictive inference. Directed spatial attention affects the prediction-postdiction balance, shifting the model’s percept toward the attended location, as observed experimentally in humans. Applying the model to the perception of multi-tap sequences, we show that the low-speed prior fits perception better than an alternative, low-acceleration prior. We discuss the applicability of our model to related tactile, visual, and auditory illusions. To facilitate future model-driven experimental studies, we present a convenient freeware computer program that implements the Bayesian observer; we invite investigators to use this program to create their own testable predictions

  20. The Phenotypic and Genotypic Relation between Working Memory Speed and Capacity

    ERIC Educational Resources Information Center

    Polderman, Tinca J. C.; Stins, John F.; Posthuma, Danielle; Gosso, M. Florencia; Verhulst, Frank C.; Boomsma, Dorret I.

    2006-01-01

    This study examined the phenotypic and genotypic relationship between working memory speed (WMS) and working memory capacity (WMC) in 12-year-old twins and their siblings (N = 409). To asses WMS all children performed a reaction time task with three memory loads from which a basic mental speed measure and the derived slope were used. WMC was…

  1. Effects of Animation's Speed of Presentation on Perceptual Processing and Learning

    ERIC Educational Resources Information Center

    Meyer, Katja; Rasch, Thorsten; Schnotz, Wolfgang

    2010-01-01

    Animations presented at different speed are assumed to differentially interact with learners' perception and cognition due to the constraints imposed by learners' limited sensitivity to incoming dynamic information. To investigate the effects of high and low presentation speed of animation, two studies were conducted. In Study 1, participants were…

  2. Working memory capacity is associated with optimal adaptation of response bias to perceptual sensitivity in emotion perception.

    PubMed

    Lynn, Spencer K; Ibagon, Camila; Bui, Eric; Palitz, Sophie A; Simon, Naomi M; Barrett, Lisa Feldman

    2016-03-01

    Emotion perception, inferring the emotional state of another person, is a frequent judgment made under perceptual uncertainty (e.g., a scowling facial expression can indicate anger or concentration) and behavioral risk (e.g., incorrect judgment can be costly to the perceiver). Working memory capacity (WMC), the ability to maintain controlled processing in the face of competing demands, is an important component of many decisions. We investigated the association of WMC and anger perception in a task in which "angry" and "not angry" categories comprised overlapping ranges of scowl intensity, and correct and incorrect responses earned and lost points, respectively. Participants attempted to earn as many points as they could; adopting an optimal response bias would maximize decision utility. Participants with higher WMC more optimally tuned their anger perception response bias to accommodate their perceptual sensitivity (their ability to discriminate the categories) than did participants with lower WMC. Other factors that influence response bias (i.e., the relative base rate of angry vs. not angry faces and the decision costs and benefits) were ruled out as contributors to the WMC-bias relationship. Our results suggest that WMC optimizes emotion perception by contributing to perceivers' ability to adjust their response bias to account for their level of perceptual sensitivity, likely an important component of adapting emotion perception to dynamic social interactions and changing circumstances. (PsycINFO Database Record PMID:26461251

  3. Ganzfeld perceptual field and gender effects on short-term memory as a function of rate of digit presentation.

    PubMed

    Vitulli, W F; Laconsay, K L; Shepard, H A

    1996-06-01

    Efforts to enhance short term memory for digit span (in serial recall) included the Ganzfeld perceptual field and variation in the rate (interstimulus interval: 1 sec., 2 sec., 3 sec.) of 25 auditorily presented computer-generated random numbers (1 to 5). Undergraduate volunteers (52 men and 91 women) wore goggles consisting of halves of translucent ping-pong balls while viewing a red lamp and listening to 60 decibels of white noise. Control subjects wore goggles with clear plastic lenses. Participants were instructed to recall 25 random digits in the correct series (vocalized sequentially through headphones worn by the subjects) immediately after their presentations. A mixed 2 x 2 x 3 split plot analysis of variance yielded a significant effect for digit rates, and post hoc Scheffe tests of multiple comparisons showed differences in recall between interstimulus intervals of 1 and 2 sec., 1 and 3 sec., and 2 and 3 sec. Other Scheffe comparisons showed that men scored higher than women with the 3-sec. interstimulus interval and with the "clear" perceptual field. Ganzfeld may have reduced distractibility for women as compared with recall following the "clear" perceptual field. Serial-position effects favored "primacy," yet the "recency effect" was seen within the last 5 serial positions. PMID:8823899

  4. FoxP Influences the Speed and Accuracy of a Perceptual Decision in Drosophila+

    PubMed Central

    DasGupta, Shamik; Ferreira, Clara Howcroft; Miesenböck, Gero

    2014-01-01

    Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNAi knock-down of FoxP in αβ core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision towards commitment. PMID:24855268

  5. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits

    PubMed Central

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana

    2016-01-01

    Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. SIGNIFICANCE STATEMENT Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with “brain state,” from sleep to waking, but also signal with different oscillation

  6. Speed Matters: Relationship between Speed of Eye Movements and Modification of Aversive Autobiographical Memories

    PubMed Central

    van Veen, Suzanne Chantal; van Schie, Kevin; Wijngaards-de Meij, Leoniek D. N. V.; Littel, Marianne; Engelhard, Iris M.; van den Hout, Marcel A.

    2015-01-01

    Eye movement desensitization and reprocessing (EMDR) is an efficacious treatment for post-traumatic stress disorder. In EMDR, patients recall a distressing memory and simultaneously make eye movements (EM). Both tasks are considered to require limited working memory (WM) resources. Because this leaves fewer resources available for memory retrieval, the memory should become less vivid and less emotional during future recall. In EMDR analogue studies, a standardized procedure has been used, in which participants receive the same dual task manipulation of 1 EM cycle per second (1 Hz). From a WM perspective, the WM taxation of the dual task might be titrated to the WM taxation of the memory image. We hypothesized that highly vivid images are more affected by high WM taxation and less vivid images are more affected by low WM taxation. In study 1, 34 participants performed a reaction time task, and rated image vividness, and difficulty of retrieving an image, during five speeds of EM and no EM. Both a high WM taxing frequency (fast EM; 1.2 Hz) and a low WM taxing frequency (slow EM; 0.8 Hz) were selected. In study 2, 72 participants recalled three highly vivid aversive autobiographical memory images (n = 36) or three less vivid images (n = 36) under each of three conditions: recall + fast EM, recall + slow EM, or recall only. Multi-level modeling revealed a consistent pattern for all outcome measures: recall + fast EM led to less emotional, less vivid and more difficult to retrieve images than recall + slow EM and recall only, and the effects of recall + slow EM felt consistently in between the effects of recall + fast EM and recall only, but only differed significantly from recall + fast EM. Crucially, image vividness did not interact with condition on the decrease of emotionality over time, which was inconsistent with the prediction. Implications for understanding the mechanisms of action in memory modification and directions for

  7. Speed Matters: Relationship between Speed of Eye Movements and Modification of Aversive Autobiographical Memories.

    PubMed

    van Veen, Suzanne Chantal; van Schie, Kevin; Wijngaards-de Meij, Leoniek D N V; Littel, Marianne; Engelhard, Iris M; van den Hout, Marcel A

    2015-01-01

    Eye movement desensitization and reprocessing (EMDR) is an efficacious treatment for post-traumatic stress disorder. In EMDR, patients recall a distressing memory and simultaneously make eye movements (EM). Both tasks are considered to require limited working memory (WM) resources. Because this leaves fewer resources available for memory retrieval, the memory should become less vivid and less emotional during future recall. In EMDR analogue studies, a standardized procedure has been used, in which participants receive the same dual task manipulation of 1 EM cycle per second (1 Hz). From a WM perspective, the WM taxation of the dual task might be titrated to the WM taxation of the memory image. We hypothesized that highly vivid images are more affected by high WM taxation and less vivid images are more affected by low WM taxation. In study 1, 34 participants performed a reaction time task, and rated image vividness, and difficulty of retrieving an image, during five speeds of EM and no EM. Both a high WM taxing frequency (fast EM; 1.2 Hz) and a low WM taxing frequency (slow EM; 0.8 Hz) were selected. In study 2, 72 participants recalled three highly vivid aversive autobiographical memory images (n = 36) or three less vivid images (n = 36) under each of three conditions: recall + fast EM, recall + slow EM, or recall only. Multi-level modeling revealed a consistent pattern for all outcome measures: recall + fast EM led to less emotional, less vivid and more difficult to retrieve images than recall + slow EM and recall only, and the effects of recall + slow EM felt consistently in between the effects of recall + fast EM and recall only, but only differed significantly from recall + fast EM. Crucially, image vividness did not interact with condition on the decrease of emotionality over time, which was inconsistent with the prediction. Implications for understanding the mechanisms of action in memory modification and directions for

  8. Monetary Incentives in Speeded Perceptual Decision: Effects of Penalizing Errors Versus Slow Responses

    PubMed Central

    Dambacher, Michael; Hübner, Ronald; Schlösser, Jan

    2011-01-01

    The influence of monetary incentives on performance has been widely investigated among various disciplines. While the results reveal positive incentive effects only under specific conditions, the exact nature, and the contribution of mediating factors are largely unexplored. The present study examined influences of payoff schemes as one of these factors. In particular, we manipulated penalties for errors and slow responses in a speeded categorization task. The data show improved performance for monetary over symbolic incentives when (a) penalties are higher for slow responses than for errors, and (b) neither slow responses nor errors are punished. Conversely, payoff schemes with stronger punishment for errors than for slow responses resulted in worse performance under monetary incentives. The findings suggest that an emphasis of speed is favorable for positive influences of monetary incentives, whereas an emphasis of accuracy under time pressure has the opposite effect. PMID:21980316

  9. A Latent Variables Examination of Processing Speed, Response Inhibition, and Working Memory during Typical Development

    ERIC Educational Resources Information Center

    McAuley, Tara; White, Desiree A.

    2011-01-01

    This study addressed three related aims: (a) to replicate and extend previous work regarding the nonunitary nature of processing speed, response inhibition, and working memory during development; (b) to quantify the rate at which processing speed, response inhibition, and working memory develop and the extent to which the development of these…

  10. Global Processing Speed as a Mediator of Developmental Changes in Children's Auditory Memory Span

    ERIC Educational Resources Information Center

    Ferguson, A.N.; Bowey, J.A.

    2005-01-01

    This study examined the role of global processing speed in mediating age increases in auditory memory span in 5- to 13-year-olds. Children were tested on measures of memory span, processing speed, single-word speech rate, phonological sensitivity, and vocabulary. Structural equation modeling supported a model in which age-associated increases in…

  11. Role of serial order in the impact of talker variability on short-term memory: testing a perceptual organization-based account.

    PubMed

    Hughes, Robert W; Marsh, John E; Jones, Dylan M

    2011-11-01

    In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed. PMID:21638105

  12. The role of speed versus working memory in predicting learning new information in multiple sclerosis.

    PubMed

    Chiaravalloti, Nancy D; Stojanovic-Radic, Jelena; DeLuca, John

    2013-01-01

    The most common cognitive impairments in multiple sclerosis (MS) have been documented in specific domains, including new learning and memory, working memory, and information processing speed. However, little attempt has been made to increase our understanding of their relationship to one another. While recent studies have shown that processing speed impacts new learning and memory abilities in MS, the role of working memory in this relationship has received less attention. The present study examines the relative contribution of impaired working memory versus processing speed in new learning and memory functions in MS. Participants consisted of 51 individuals with clinically definite MS. Participants completed two measures of processing speed, two measures of working memory, and two measures of episodic memory. Data were analyzed via correlational and multiple regression analysis. Results indicate that the variance in new learning abilities in this sample was primarily associated with processing speed, with working memory exerting much less of an influence. Results are discussed in terms of the role of cognitive rehabilitation of new learning and memory abilities in persons with MS. PMID:23350959

  13. Perceptual Filtering in L2 Lexical Memory: A Neural Network Approach to Second Language Acquisition

    ERIC Educational Resources Information Center

    Nelson, Robert

    2012-01-01

    A number of asymmetries in lexical memory emerge when monolinguals and early bilinguals are compared to (relatively) late second language (L2) learners. Their study promises to provide insight into the internal processes that both support and ultimately limit L2 learner achievement. Generally, theory building in L2 and bilingual lexical memory has…

  14. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. PMID:25976632

  15. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks.

    PubMed

    Schwiedrzik, Caspar M; Ruff, Christian C; Lazar, Andreea; Leitner, Frauke C; Singer, Wolf; Melloni, Lucia

    2014-05-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function). PMID:23236204

  16. Children's Perceptual Organization of Seriated Displays: Evidence Against a Memory Reorganization Hypothesis

    ERIC Educational Resources Information Center

    Cromer, Richard F.

    1977-01-01

    Results of this experiment provide support for the findings by Piaget & Inhelder (1973) that children's memory drawings of a seriated display improve over time as their cognitive abilities develop. (Author)

  17. Three-year changes in leisure activities are associated with concurrent changes in white matter microstructure and perceptual speed in individuals aged 80 years and older.

    PubMed

    Köhncke, Ylva; Laukka, Erika J; Brehmer, Yvonne; Kalpouzos, Grégoria; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars; Lövdén, Martin

    2016-05-01

    Accumulating evidence suggests that engagement in leisure activities is associated with favorable trajectories of cognitive aging, but little is known about brain changes related to both activities and cognition. White matter microstructure shows experience-dependent plasticity and declines in aging. Therefore, we investigated the role of change in white matter microstructure in the activities-cognition link. We used repeated assessments of engagement, perceptual speed, and white matter microstructure (probed with diffusion tensor imaging) in a population-based sample of individuals over 80 years without dementia (n = 442, Mage = 85.1; n = 70 for diffusion tensor imaging; 2 occasions 3 years apart). Using multivariate latent change modeling, we observed positive correlations among changes in predominantly social activities, white matter microstructure, and perceptual speed. Interindividual differences in change in white matter microstructure statistically accounted for the association between change in leisure activities and change in perceptual speed. However, as analyses are based on observational data from 2 measurement occasions, causality remains unclear. PMID:27103530

  18. Microstructural White Matter Properties Mediate the Association between APOE and Perceptual Speed in Very Old Persons without Dementia

    PubMed Central

    Laukka, Erika J.; Lövdén, Martin; Kalpouzos, Grégoria; Papenberg, Goran; Keller, Lina; Graff, Caroline; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars

    2015-01-01

    Background Reduced white matter integrity, as indicated by lower fractional anisotropy (FA) and higher mean diffusivity (MD), has been related to poorer perceptual speed (PS) performance. As the ε4 allele has been associated with lower white matter integrity in old age, this represents a potential mechanism through which APOE may affect PS. Objective To examine whether the association between APOE and PS is mediated by white matter microstructure in very old persons without dementia. Method Participants were selected from the population-based SNAC-K study. After excluding persons with dementia, preclinical dementia, and other neurological disorders, 652 persons (age range 78–90) were included in the study, of which 89 had data on diffusion tensor imaging (DTI). We used structural equation modeling to form seven latent white matter factors (FA and MD) and one latent PS factor. Separate analyses were performed for FA and MD and mediational analyses were carried out for tracts where significant associations were observed to both APOE and PS. Results APOE was associated with white matter microstructure in 2 out of 14 tracts; ε4 carriers had significantly lower FA in forceps major and higher MD in the cortico-spinal tract. Allowing the white matter microstructure indicators in these tracts to mediate the association between APOE and PS resulted in a markedly attenuated association between these variables. Bootstrapping statistics in the subsample with DTI data (n = 89) indicated that FA in forceps major significantly mediated the association between APOE and PS (indirect effect: -0.070, 95% bias corrected CIs -0.197 to -0.004). Conclusion Lower white matter integrity may represent one of several mechanisms through which APOE affects PS performance in elderly persons free of dementia and preclinical dementia. PMID:26252210

  19. Transfer-Appropriate Processing in Recognition Memory: Perceptual and Conceptual Effects on Recognition Memory Depend on Task Demands

    ERIC Educational Resources Information Center

    Parks, Colleen M.

    2013-01-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…

  20. Working Memory Is Related to Perceptual Processing: A Case from Color Perception

    ERIC Educational Resources Information Center

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and…

  1. The Ineluctable Modality of the Audible: Perceptual Determinants of Auditory Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Maidment, David W.; Macken, William J.

    2012-01-01

    Classical cognitive accounts of verbal short-term memory (STM) invoke an abstract, phonological level of representation which, although it may be derived differently via different modalities, is itself amodal. Key evidence for this view is that serial recall of phonologically similar verbal items (e.g., the letter sounds "b", "c", "g", and "d") is…

  2. The Effects of Alcohol on the Speed of Memory Retrieval.

    ERIC Educational Resources Information Center

    Stempel, Jennifer J.; And Others

    Recent research has clearly indicated that intoxication with alcohol impairs memory. The present study investigated the effects of alcohol on retrieval from long-term memory by using a set of cognitive decision tasks. Subjects (N=24) were female college students in good health not taking oral contraceptives. Subjects were administered 0 or 1.0…

  3. Endurance-write-speed tradeoffs in nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Strukov, Dmitri B.

    2016-04-01

    We derive phenomenological model for endurance-write time switching tradeoff for nonvolatile memories with thermally activated switching mechanisms. The model predicts linear to cubic dependence of endurance on write time for metal oxide memristors and flash memories, which is partially supported by experimental data for the breakdown of metal oxide thin films.

  4. Perceptual symbol systems.

    PubMed

    Barsalou, L W

    1999-08-01

    Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statistics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement recording systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The storage and reactivation of perceptual symbols operates at the level of perceptual components--not at the level of holistic perceptual experiences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a common frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspection (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and abstract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinatorially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent

  5. Letter Processing and the Formation of Memory Representations in Children with Naming Speed Deficits

    ERIC Educational Resources Information Center

    Conrad, Nicole J.; Levy, Betty Ann

    2007-01-01

    The ability to recognize letter patterns within words as a single unit is important for fluent reading. This skill is based on previously established memory representations of common letter patterns. The ability to form these memory representations may be impaired in some poor readers, particularly readers with naming speed deficits (NSD). This…

  6. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    PubMed Central

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956

  7. Neural correlates of the difference between working memory speed and simple sensorimotor speed: an fMRI study.

    PubMed

    Takeuchi, Hikaru; Sugiura, Motoaki; Sassa, Yuko; Sekiguchi, Atsushi; Yomogida, Yukihito; Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings. PMID:22291992

  8. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  9. Design of a GHz high-speed memory system

    NASA Astrophysics Data System (ADS)

    Lim, Teck Y.; Foo, Say W.; Chan, Kheng Kang

    1999-12-01

    Digital application has moved towards operating speed of hundreds of Mega Hertz, with the sampling speed of ADC moving into Giga Hertz range. There is an increasing need for the design and development of a high-speed data acquisition system that is capable of capturing and processing digitized analogue signal at high speed. Due to the tight timing budget, high operating speed components, Emitter-Coupled-Logic families components with rise time of typically less than 300 ps were used in the design. With this operating speed and short rise time, signal integrity issues like reflections due to impedance mismatches and crosstalk among the traces of the printed circuit board can no longer be neglected. A quick and reliable approach was taken in the design and implementation of a 1 GHz high-speed data acquisition system using commercial-off-the-shelf discrete components. High-speed digital design issues and methodology were explored in this project and verified with the implemented hardware. This paper gives an overview of the system and focuses on the use of functional and signal- integrity computer simulation software to confirm system performance at the early design stage before actual hardware implementation. Simulation results were further confirmed with the actual hardware implemented, and was found to be close. This has helped to reduce the design cycle time and development cost of the project.

  10. Speeding in school zones: violation or lapse in prospective memory?

    PubMed

    Gregory, Bree; Irwin, Julia D; Faulks, Ian J; Chekaluk, Eugene

    2014-09-01

    Inappropriate speed is a causal factor in around one third of fatal accidents (OECD/ECMT, 2006). But are drivers always consciously responsible for their speeding behavior? Two studies are reported which show that an interruption to a journey, caused by stopping at a red traffic light, can result in failure to resume the speed of travel prior to the interruption (Study 1). In Study 2 we showed that the addition of a reminder cue could offset this interruption. These studies were conducted in a number of Australian school zone sites subject to a 40 km/h speed limit, requiring a reduction of between 20 km/h and 40 km/h. Motorists who had stopped at a red traffic signal sped on average, 8.27 km/h over the speed limit compared with only 1.76 km/h over the limit for those who had not been required to stop. In the second study a flashing "check speed" reminder cue, placed 70 m after the traffic lights, in the same school zones as those in Study 1 eliminated the interruptive effect of stopping with drivers resuming their journey at the legal speed. These findings have practical implications for the design of road environments, enforcement of speed limits, and the safety of pedestrians. PMID:24884545

  11. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  12. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    PubMed Central

    Finkel, Deborah; McArdle, John J.; Reynolds, Chandra A.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2013-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for processing speed and cognitive abilities. Longitudinal twin data from the Swedish Adoption/Twin Study of Aging, including up to 5 measurement occasions covering a 16-year period, were available from 806 participants ranging in age from 50 to 88 years at the 1st measurement wave. Factors were generated to tap 4 cognitive domains: verbal ability, spatial ability, memory, and processing speed. Model-fitting indicated that genetic variance for processing speed was a leading indicator of variation in age changes for spatial and memory ability, providing additional support for processing speed theories of cognitive aging. PMID:19413434

  13. Transcranial Direct Current Stimulation Does Not Influence the Speed-Accuracy Tradeoff in Perceptual Decision-making: Evidence from Three Independent Studies.

    PubMed

    de Hollander, Gilles; Labruna, Ludovica; Sellaro, Roberta; Trutti, Anne; Colzato, Lorenza S; Ratcliff, Roger; Ivry, Richard B; Forstmann, Birte U

    2016-09-01

    In perceptual decision-making tasks, people balance the speed and accuracy with which they make their decisions by modulating a response threshold. Neuroimaging studies suggest that this speed-accuracy tradeoff is implemented in a corticobasal ganglia network that includes an important contribution from the pre-SMA. To test this hypothesis, we used anodal transcranial direct current stimulation (tDCS) to modulate neural activity in pre-SMA while participants performed a simple perceptual decision-making task. Participants viewed a pattern of moving dots and judged the direction of the global motion. In separate trials, they were cued to either respond quickly or accurately. We used the diffusion decision model to estimate the response threshold parameter, comparing conditions in which participants received sham or anodal tDCS. In three independent experiments, we failed to observe an influence of tDCS on the response threshold. Additional, exploratory analyses showed no influence of tDCS on the duration of nondecision processes or on the efficiency of information processing. Taken together, these findings provide a cautionary note, either concerning the causal role of pre-SMA in decision-making or on the utility of tDCS for modifying response caution in decision-making tasks. PMID:27054398

  14. Blurring emotional memories using eye movements: individual differences and speed of eye movements

    PubMed Central

    van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.

    2016-01-01

    Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843

  15. High-Speed Behavior of Some Shape Memory Alloys

    SciTech Connect

    Bragov, Anatoly M.; Lomunov, Andrey K.; Sergeichev, Ivan V.

    2006-07-28

    The results of dynamic tests of shape memory alloys Ti-Ni and Cu-Al-Ni are given. Compressive tests of Ti-Ni alloy were carried out at temperatures 293-573K. Considerable influence of temperature on module of elasticity prior to the dislocation plastic flow and dislocation yield limit has been mentioned in temperature interval of reverse martensitic transformation. For Cu-Al-Ni alloy a strain rate influence on phase yield limit, module of elasticity prior to the phase unelastic flow, module of elasticity prior to the dislocation plastic flow was negligible. The method of determination of duration of reverse martensitic transformation has been realized by the example of Cu-Al-Ni alloy.

  16. The relationship between IQ, memory, executive function, and processing speed in recent-onset psychosis: 1-year stability and clinical outcome.

    PubMed

    Leeson, Verity C; Barnes, Thomas R E; Harrison, Masuma; Matheson, Elizabeth; Harrison, Isobel; Mutsatsa, Stanley H; Ron, Maria A; Joyce, Eileen M

    2010-03-01

    Studies commonly report poor performance in psychotic patients compared with controls on tasks testing a range of cognitive functions, but, because current IQ is often not matched between these groups, it is difficult to determine whether this represents a generalized deficit or specific abnormalities. Fifty-three first-episode psychosis patients and 53 healthy controls, one-to-one matched for sex, age, and full-scale current IQ, were compared on Wechsler Adult Intelligence Scale (WAIS) subtests representing indices of perceptual organization, verbal comprehension, processing speed, and working memory as well as other tests of executive function and episodic memory. The groups showed an equivalent pattern of performance on all WAIS subtests except digit symbol processing speed, on which the patients were significantly worse. Patients were also worse on measures where performance correlated with digit symbol score, namely working and verbal memory tasks. Standardized residual scores for each subtest were calculated for each patient using the difference between their actual subtest score and a predicted subtest score based on their full-scale IQ and the performance of controls. Scaled scores and residual scores were examined for relationships with clinical measures. Digit symbol-scaled score was significantly correlated with concurrent negative syndrome score at baseline, and digit symbol residual score significantly predicted residual negative symptoms at 1-year follow-up. In summary, our comparison of patients and controls precisely matched for IQ revealed that processing speed was attenuated in recent-onset schizophrenia, contributed significantly to working and episodic memory deficits, and was a prognostic factor for poor outcome at 1 year. PMID:18682375

  17. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    PubMed

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-05-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. PMID:25124507

  18. Verbal Processing Speed and Executive Functioning in Long-Term Cochlear Implant Users

    ERIC Educational Resources Information Center

    AuBuchon, Angela M.; Pisoni, David B.; Kronenberger, William G.

    2015-01-01

    Purpose: The purpose of this study was to report how "verbal rehearsal speed" (VRS), a form of covert speech used to maintain verbal information in working memory, and another verbal processing speed measure, perceptual encoding speed, are related to 3 domains of executive function (EF) at risk in cochlear implant (CI) users: verbal…

  19. High speed vision processor with reconfigurable processing element array based on full-custom distributed memory

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Jie; Shi, Cong; Qin, Qi; Liu, Liyuan; Wu, Nanjian

    2016-04-01

    In this paper, a hybrid vision processor based on a compact full-custom distributed memory for near-sensor high-speed image processing is proposed. The proposed processor consists of a reconfigurable processing element (PE) array, a row processor (RP) array, and a dual-core microprocessor. The PE array includes two-dimensional processing elements with a compact full-custom distributed memory. It supports real-time reconfiguration between the PE array and the self-organized map (SOM) neural network. The vision processor is fabricated using a 0.18 µm CMOS technology. The circuit area of the distributed memory is reduced markedly into 1/3 of that of the conventional memory so that the circuit area of the vision processor is reduced by 44.2%. Experimental results demonstrate that the proposed design achieves correct functions.

  20. Dissociations among structural-perceptual, lexical-semantic, and event-fact memory systems in Alzheimer, amnesic, and normal subjects.

    PubMed

    Gabrieli, J D; Keane, M M; Stanger, B Z; Kjelgaard, M M; Corkin, S; Growdon, J H

    1994-03-01

    Patients with Alzheimer's disease (AD), patients with global amnesia (AMN), and normal control (NC) subjects received tests of recall and recognition, word-completion priming, and incomplete-picture priming. The AD and AMN patients had impaired recall and recognition. The AD patients, but not the AMN patients, had impaired word-completion priming. In contrast, the AD patients had intact incomplete-picture priming, a form of priming shown to be perceptual in normal subjects. These results provide neuropsychological evidence for a dissociation between two components of repetition priming, perceptual priming as measured with identification tasks and nonperceptual priming as measured with generation tasks. Preserved perceptual priming in AD may be mediated by the occipital regions that are relatively spared in AD; compromised nonperceptual priming may be mediated by temporal regions that show dense neuropathological changes early in AD. PMID:8004991

  1. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  2. Size and orientation of objects in explicit and implicit memory: a reversal of the dissociation between perceptual similarity and type of test.

    PubMed

    Zimmer, H D

    1995-01-01

    Memory of size and orientation of objects was tested in explicit and implicit memory tests. Explicit memory was tested by object recognition and by recognition of the congruency of the changed sensory features. Implicit memory was tested by size assessment (Exps. 1 and 2), orientation judgement (Exps. 4 and 5), picture-fragment naming (Exp. 6), and classification (Exps. 3 and 7). Memory of sensory features was investigated by the comparison of performances of test-congruent with test-incongruent stimuli (i.e., same size or orientation vs. different size or orientation). The main result was a dissociation between these two tasks pertaining to the influence of sensory congruency on performance. However, it was in opposition to the usual relationship between the type of test and the perceptual similarity from study to test. In this study explicit, but not implicit, memory depended on sensory congruency. In the explicit tests performances were better when the stimuli were congruent than when they were incongruent. In the implicit test this variation had no influence. To get a repetition effect, it was important only that the object was repeated, and the size of this effect did not depend on sensory congruency. However, a change in another sensory feature--distortions of shape--strongly influenced the size of the repetition effect in the implicit test. Neither transfer-appropriate processing nor a system approach can easily explain this pattern of results. A multi-level, multi-token model is proposed to account for the different effects of sensory features in explicit and implicit memory. PMID:7753956

  3. A Perceptual Repetition Blindness Effect

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Before concluding Repetition Blindness is a perceptual phenomenon, alternative explanations based on memory retrieval problems and report bias must be rejected. Memory problems were minimized by requiring a judgment about only a single briefly displayed field. Bias and sensitivity effects were empirically measured with an ROC-curve analysis method based on confidence ratings. Results from five experiments support the hypothesis that Repetition Blindness can be a perceptual phenomenon.

  4. Perceptual-Gestural (Mis)Mapping in Serial Short-Term Memory: The Impact of Talker Variability

    ERIC Educational Resources Information Center

    Hughes, Robert W.; Marsh, John E.; Jones, Dylan M.

    2009-01-01

    The mechanisms underlying the poorer serial recall of talker-variable lists (e.g., alternating female-male voices) as compared with single-voice lists were examined. We tested the novel hypothesis that this "talker variability effect" arises from the tendency for perceptual organization to partition the list into streams based on voice such that…

  5. Do working memory-driven attention shifts speed up visual awareness?

    PubMed

    Pan, Yi; Cheng, Qiu-Ping

    2011-11-01

    Previous research has shown that content representations in working memory (WM) can bias attention in favor of matching stimuli in the scene. Using a visual prior-entry procedure, we here investigate whether such WM-driven attention shifts can speed up the conscious awareness of memory-matching relative to memory-mismatching stimuli. Participants were asked to hold a color cue in WM and to subsequently perform a temporal order judgment (TOJ) task by reporting either of two different-colored circles (presented to the left and right of fixation with a variable temporal interval) as having the first onset. One of the two TOJ circles could match the memory cue in color. We found that awareness of the temporal order of the circle onsets was not affected by the contents of WM, even when participants were explicitly informed that one of the TOJ circles would always match the WM contents. The null effect of WM on TOJs was not due to an inability of the memory-matching item to capture attention, since response times to the target in a follow-up experiment were improved when it appeared at the location of the memory-matching item. The present findings suggest that WM-driven attention shifts cannot accelerate phenomenal awareness of matching stimuli in the visual field. PMID:21837542

  6. Attentional modulation of perceptual stabilization.

    PubMed

    Kanai, Ryota; Verstraten, Frans A J

    2006-05-22

    Perceptual priming is generally regarded as a passive and automatic process, as it is obtained even without awareness of the prime. Recent studies have introduced a more active form of perceptual priming in which priming for a subsequent ambiguous stimulus is triggered by the subjective percept, that is, interpretation of a previous ambiguous stimulus. This phenomenon known as stabilization does not require a conscious effort to actively maintain one perceptual interpretation. In this study, we show that distraction of attention, during and even after the prime presentation, interferes with the build-up of perceptual memory for stabilization. This implies that despite the apparent automaticity, stabilization involves an active attentional process for encoding and retention. The disruption during the encoding can be attributed to the reduction in sensory signals for the prime. However, the disruption during the retention suggests that the implicit memory trace of the prime necessitates the attentional resource to fully develop. The active nature of the build-up of perceptual memory for stabilization is consistent with the idea that perceptual memory increases its strength gradually over a few seconds. These findings suggest that seemingly automatic and effortless cognitive processes can compete with online perceptual processing for common attentional resources. PMID:16720394

  7. Relationships Among Linguistic Processing Speed, Phonological Working Memory, and Attention in Children Who Stutter

    PubMed Central

    Anderson, Julie D.; Wagovich, Stacy A.

    2010-01-01

    Relatively recently, experimental studies of linguistic processing speed in children who stutter (CWS) have emerged, some of which suggest differences in performance among CWS compared to children who do not stutter (CWNS). What is not yet well understood is the extent to which underlying cognitive skills may impact performance on timed tasks of linguistic performance. The purpose of this study was to explore possible relationships between measures of linguistic processing speed and two aspects of cognition: phonological working memory and attention. Participants were 9 CWS and 14 CWNS between the ages of 3;6 and 5;2. Children participated in a computerized picture naming task (an index of linguistic processing speed) and a nonword repetition task (an index of phonological working memory). Parents completed a temperament behavior questionnaire, from which information about the children’s attentional skills was collected. Findings revealed that the groups did not differ from each other on speed of picture naming or attention; however, the CWS performed significantly worse in nonword repetition. In addition, after partialling out the effects of age, (a) for CWS only, there was a significant negative relationship between picture naming speed and nonword repetition; (b) there were no significant relationships for either group between aspects of attention and picture naming speed; and (c) only the CWNS showed a significant relationship between nonword repetition and focused attentional skills. These results underscore the need to consider the underlying skills associated with lexically-related aspects of language production when examining the task performances of CWS and CWNS. PMID:20831969

  8. Long-term repetition effects for motoric and perceptual procedures.

    PubMed

    Fendrich, D W; Healy, A F; Bourne, L E

    1991-01-01

    Two experiments examined the relationship between implicit and explicit measures of memory for information encoded in a motoric task, called data entry. In both experiments, subjects entered lists of digit sequences with a computer keypad. They were retested on the same task after a delay of up to 1 month. At retention, implicit memory for the digit lists was evidenced by faster entry of old relative to new lists in both experiments. In Experiment 1, subjects were able to discriminate old from new lists. Recognition memory of old lists was better after than before entering the lists. In Experiment 2, perceptual and motoric contributions to the old/new difference in typing speed were isolated by means of a transfer paradigm. The results showed that the entry-speed advantage for the old lists was due to the separate reinstatement at the retention test of both perceptual and motoric procedures encoded earlier. Implicit and explicit measures of memory were found to be dependent rather than independent. The findings from this study are interpreted within a framework of memory based on procedural reinstatement. PMID:1826728

  9. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed.

    PubMed

    Zhang, Fenghua; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-01-01

    Microwave technology is a highly effective approach to fast and uniform heating. This article investigates that the microwave heating as a novel method is used to rapidly foam and actuate biocompatible and biodegradable shape memory crosslinked-polycaprolactone (c-PCL) foams. The optical microscope proves that the resulting c-PCL foams have homogenous pore structure. Mechanical behavior and shape memory performance of c-PCL foams are investigated by static materials testing. Shape recovery ratio is approximately 100% and the whole recovery process takes only 98 s when trigged by microwave. Due to the unique principle of microwave heating, the recovery speed of c-PCL foams in microwave oven is several times faster than that in hot water and electric oven. Hence compared to the traditional heating methods, microwave is expected to bring more advantages to modern industry and scientific research in the field of smart materials and structures. PMID:26053586

  10. High speed switching in quantum Dot/Ti-TiOx nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Kim, Hyun-Seok; Park, Hyun-Chang

    2016-03-01

    We report a Ti-TiOx/CdSe-ZnS core-shell quantum dot based bipolar nonvolatile resistive memory device. The device exhibits an ON/OFF ratio of 100 and is reproducible. The memory device showed good retention characteristics under stress and excellent stability even after 100,000 cycles of switching operation. The switching speed measured was around 15 ns. The devices are solution processed at room temperature in ambient atmosphere. The operating mechanism is discussed based on charge trapping in quantum dots resulting in the Coulomb blockade effect with a ZnS shell layer and metal-oxide layer acting as the barrier to confine the trapped charges. The proposed mechanism is validated by a three terminal device designed exclusively for this purpose. [Figure not available: see fulltext.

  11. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed

    PubMed Central

    Zhang, Fenghua; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-01-01

    Microwave technology is a highly effective approach to fast and uniform heating. This article investigates that the microwave heating as a novel method is used to rapidly foam and actuate biocompatible and biodegradable shape memory crosslinked-polycaprolactone (c-PCL) foams. The optical microscope proves that the resulting c-PCL foams have homogenous pore structure. Mechanical behavior and shape memory performance of c-PCL foams are investigated by static materials testing. Shape recovery ratio is approximately 100% and the whole recovery process takes only 98 s when trigged by microwave. Due to the unique principle of microwave heating, the recovery speed of c-PCL foams in microwave oven is several times faster than that in hot water and electric oven. Hence compared to the traditional heating methods, microwave is expected to bring more advantages to modern industry and scientific research in the field of smart materials and structures. PMID:26053586

  12. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-06-01

    Microwave technology is a highly effective approach to fast and uniform heating. This article investigates that the microwave heating as a novel method is used to rapidly foam and actuate biocompatible and biodegradable shape memory crosslinked-polycaprolactone (c-PCL) foams. The optical microscope proves that the resulting c-PCL foams have homogenous pore structure. Mechanical behavior and shape memory performance of c-PCL foams are investigated by static materials testing. Shape recovery ratio is approximately 100% and the whole recovery process takes only 98 s when trigged by microwave. Due to the unique principle of microwave heating, the recovery speed of c-PCL foams in microwave oven is several times faster than that in hot water and electric oven. Hence compared to the traditional heating methods, microwave is expected to bring more advantages to modern industry and scientific research in the field of smart materials and structures.

  13. Cycles in Speed-Working Memory-G Relations: Towards a Developmental-Differential Theory of the Mind

    ERIC Educational Resources Information Center

    Demetriou, Andreas; Spanoudis, George; Shayer, Michael; Mouyi, Antigoni; Kazi, Smaragda; Platsidou, Maria

    2013-01-01

    This article presents three studies, two of them longitudinal, which investigated the relations between age, processing speed, working memory (WM), and fluid intelligence ("g[subscript f]") from 4 to 16 years of age. Structural equation modeling showed that speed was a powerful covariate of age ([approximately] - 0.6 to - 0.7) from 4 to 13 years,…

  14. An ASIC memory buffer controller for a high speed disk system

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Campbell, Steve

    1993-01-01

    The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.

  15. Dual N-Back Working Memory Training in Healthy Adults: A Randomized Comparison to Processing Speed Training

    PubMed Central

    Lawlor-Savage, Linette; Goghari, Vina M.

    2016-01-01

    Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141

  16. Menstrual Cycle Effects on Perceptual Closure Mediate Changes in Performance on a Fragmented Objects Test of Implicit Memory

    ERIC Educational Resources Information Center

    Hampson, E.; Finestone, J.M.; Levy, N.

    2005-01-01

    Healthy premenopausal women with regular menstrual cycles were assessed on a fragmented objects test of implicit memory. Testing took place at either the low estrogen (n=17) or the high estrogen (n=16) stages of the menstrual cycle. Concentrations of ovarian hormones were confirmed by saliva assays. Both groups of women exhibited a priming effect,…

  17. Intensive video gaming improves encoding speed to visual short-term memory in young male adults.

    PubMed

    Wilms, Inge L; Petersen, Anders; Vangkilde, Signe

    2013-01-01

    The purpose of this study was to measure the effect of action video gaming on central elements of visual attention using Bundesen's (1990) Theory of Visual Attention. To examine the cognitive impact of action video gaming, we tested basic functions of visual attention in 42 young male adults. Participants were divided into three groups depending on the amount of time spent playing action video games: non-players (<2h/month, N=12), casual players (4-8h/month, N=10), and experienced players (>15h/month, N=20). All participants were tested in three tasks which tap central functions of visual attention and short-term memory: a test based on the Theory of Visual Attention (TVA), an enumeration test and finally the Attentional Network Test (ANT). The results show that action video gaming does not seem to impact the capacity of visual short-term memory. However, playing action video games does seem to improve the encoding speed of visual information into visual short-term memory and the improvement does seem to depend on the time devoted to gaming. This suggests that intense action video gaming improves basic attentional functioning and that this improvement generalizes into other activities. The implications of these findings for cognitive rehabilitation training are discussed. PMID:23261420

  18. High-speed 1280x1024 camera with 12-Gbyte SDRAM memory

    NASA Astrophysics Data System (ADS)

    Postnikov, Konstantin O.; Yakovlev, Alexey V.

    2001-04-01

    A 600 Frame/s camera based on 1.3 Megapixel CMOS sensor (PBMV13) with wide digital data output bus (10 parallel outputs of 10 bit worlds) was developed using high capacity SCRAM memory. This architecture allows to achieve 10 seconds of continuous recording of digital data from the sensor at 600 frames per second to the memory box with up to 12 1Gbytes SDRAM modules. Acquired data is transmitted through the fibre optic channel connected to the camera via FPDP interface to a PC type computer at the speed of 100 Mbyte per second and fibre cable length up to 10 km. All camera settings such as shutter time, frame rate, image size, present for changing integration time and frame rate, can be controlled by software. Camera specifications: shutter time - from 3.3 us to full frame at 1.6 us steps at 600 fps and then 1 frame steps down to 16 ms, frame rate - from 60 fps to 600 fps, image size 1280x1024, 1280x512, 1290x256, or 1280x128, changing on a fly - presetting two step table, memory capacity - depends on frame size (6000 frames with 1280x1024 or 48000 frames with 1280x128 resolution). Program can work with monochrome or color versions of the MV13 sensor.

  19. Self-Construal Priming Affects Speed of Retrieval from Short-Term Memory

    PubMed Central

    MacDonald, Justin A.; Sandry, Joshua; Rice, Stephen

    2012-01-01

    We investigated the effects of collective or individual self-construal priming on recall in a short-term memory (STM) task. We primed participants to either their individual or their collective self-construals or a neutral control condition. Participants then completed a STM retrieval task using either random or patterned digit strings. Findings revealed that priming an individual self-construal resulted in faster retrieval of information from STM for both stimulus types. These results indicate that individual self-accessibility improves retrieval speed of digits from STM, regardless of set configuration. More broadly, the present findings extend prior research by adding further evidence of the effects of self-construal priming on cognitive information processing. PMID:23209632

  20. Comprehension of Linguistic Dependencies: Speed-Accuracy Tradeoff Evidence for Direct-Access Retrieval From Memory

    PubMed Central

    Foraker, Stephani; McElree, Brian

    2012-01-01

    Comprehenders can rapidly and efficiently interpret expressions with various types of non-adjacent dependencies. In the sentence The boy that the teacher warned fell, boy is readily interpreted as the subject of the verb fall despite the fact that a relative clause, that the teacher warned, intervenes between the two dependent elements. We review research investigating three memory operations proposed for resolving this and other types of non-adjacent dependencies: serial search retrieval, in which the dependent constituent is recovered by a search process through representations in memory, direct-access retrieval in which the dependent constituent is recovered directly by retrieval cue operations without search, and active maintenance of the dependent constituent in focal attention. Studies using speed-accuracy tradeoff methodology to examine the full timecourse of interpreting a wide range of non-adjacent dependencies indicate that comprehenders retrieve dependent constituents with a direct-access operation, consistent with the claim that representations formed during comprehension are accessed with a cue-driven, content-addressable retrieval process. The observed timecourse profiles are inconsistent with a broad class of models based on several search operations for retrieval. The profiles are also inconsistent with active maintenance of a constituent while concurrently processing subsequent material, and suggest that, with few exceptions, direct-access retrieval is required to process non-adjacent dependencies. PMID:22448181

  1. Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes.

    PubMed

    Pedale, Tiziana; Santangelo, Valerio

    2015-01-01

    One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps) in driving attention selection, hence increasing the probability for objects presented in complex and natural scenes to be successfully encoded into working memory (WM) and then correctly remembered. Here we asked whether the probability of retrieving high-saliency objects modulates the overall contents of WM, by decreasing the probability of retrieving other, lower-saliency objects. We presented pictures of natural scenes for 4 s. After a retention period of 8 s, we asked participants to verbally report as many objects/details as possible of the previous scenes. We then computed how many times the objects located at either the peak of maximal or minimal saliency in the scene (as indexed by a saliency-map; Itti et al., 1998) were recollected by participants. Results showed that maximal-saliency objects were recollected more often and earlier in the stream of successfully reported items than minimal-saliency objects. This indicates that bottom-up sensory salience increases the recollection probability and facilitates the access to memory representation at retrieval, respectively. Moreover, recollection of the maximal- (but not the minimal-) saliency objects predicted the overall amount of successfully recollected objects: The higher the probability of having successfully reported the most-salient object in the scene, the lower the amount of recollected objects. These findings highlight that bottom-up sensory saliency modulates the current contents of WM during recollection of objects from natural scenes, most likely by reducing available resources to encode and then retrieve other (lower saliency) objects. PMID:25741266

  2. Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes

    PubMed Central

    Pedale, Tiziana; Santangelo, Valerio

    2015-01-01

    One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps) in driving attention selection, hence increasing the probability for objects presented in complex and natural scenes to be successfully encoded into working memory (WM) and then correctly remembered. Here we asked whether the probability of retrieving high-saliency objects modulates the overall contents of WM, by decreasing the probability of retrieving other, lower-saliency objects. We presented pictures of natural scenes for 4 s. After a retention period of 8 s, we asked participants to verbally report as many objects/details as possible of the previous scenes. We then computed how many times the objects located at either the peak of maximal or minimal saliency in the scene (as indexed by a saliency-map; Itti et al., 1998) were recollected by participants. Results showed that maximal-saliency objects were recollected more often and earlier in the stream of successfully reported items than minimal-saliency objects. This indicates that bottom-up sensory salience increases the recollection probability and facilitates the access to memory representation at retrieval, respectively. Moreover, recollection of the maximal- (but not the minimal-) saliency objects predicted the overall amount of successfully recollected objects: The higher the probability of having successfully reported the most-salient object in the scene, the lower the amount of recollected objects. These findings highlight that bottom-up sensory saliency modulates the current contents of WM during recollection of objects from natural scenes, most likely by reducing available resources to encode and then retrieve other (lower saliency) objects. PMID:25741266

  3. Enhancing Cognitive Function Using Perceptual-Cognitive Training.

    PubMed

    Parsons, Brendan; Magill, Tara; Boucher, Alexandra; Zhang, Monica; Zogbo, Katrine; Bérubé, Sarah; Scheffer, Olivier; Beauregard, Mario; Faubert, Jocelyn

    2016-01-01

    Three-dimensional multiple object tracking (3D-MOT) is a perceptual-cognitive training system based on a 3D virtual environment. This is the first study to examine the effects of 3D-MOT training on attention, working memory, and visual information processing speed as well as using functional brain imaging on a normative population. Twenty university-aged students were recruited and divided into a training (NT) and nonactive control (CON) group. Cognitive functions were assessed using neuropsychological tests, and correlates of brain functions were assessed using quantitative electroencephalography (qEEG). Results indicate that 10 sessions of 3D-MOT training can enhance attention, visual information processing speed, and working memory, and also leads to quantifiable changes in resting-state neuroelectric brain function. PMID:25550444

  4. Perceptual-cognitive expertise in elite volleyball players.

    PubMed

    Alves, Heloisa; Voss, Michelle W; Boot, Walter R; Deslandes, Andrea; Cossich, Victor; Salles, Jose Inacio; Kramer, Arthur F

    2013-01-01

    The goal of the current study was to investigate the relationship between sport expertise and perceptual and cognitive skills, as measured by the component skills approach. We hypothesized that athletes would outperform non-athlete controls in a number of perceptual and cognitive domains and that sport expertise would minimize gender differences. A total of 154 individuals (87 professional volleyball players and 67 non-athlete controls) participated in the study. Participants performed a cognitive battery, which included tests of executive control, memory, and visuo-spatial attention. Athletes showed superior performance speed on three tasks (two executive control tasks and one visuo-spatial attentional processing task). In a subset of tasks, gender effects were observed mainly in the control group, supporting the notion that athletic experience can reduce traditional gender effects. The expertise effects obtained substantiate the view that laboratory tests of cognition may indeed enlighten the sport-cognition relationship. PMID:23471100

  5. Perceptual-Cognitive Expertise in Elite Volleyball Players

    PubMed Central

    Alves, Heloisa; Voss, Michelle W.; Boot, Walter R.; Deslandes, Andrea; Cossich, Victor; Salles, Jose Inacio; Kramer, Arthur F.

    2013-01-01

    The goal of the current study was to investigate the relationship between sport expertise and perceptual and cognitive skills, as measured by the component skills approach. We hypothesized that athletes would outperform non-athlete controls in a number of perceptual and cognitive domains and that sport expertise would minimize gender differences. A total of 154 individuals (87 professional volleyball players and 67 non-athlete controls) participated in the study. Participants performed a cognitive battery, which included tests of executive control, memory, and visuo-spatial attention. Athletes showed superior performance speed on three tasks (two executive control tasks and one visuo-spatial attentional processing task). In a subset of tasks, gender effects were observed mainly in the control group, supporting the notion that athletic experience can reduce traditional gender effects. The expertise effects obtained substantiate the view that laboratory tests of cognition may indeed enlighten the sport-cognition relationship. PMID:23471100

  6. Articulation Rate, Naming Speed, Verbal Short-Term Memory, and Phonological Awareness: Longitudinal Predictors of Early Reading Development?

    ERIC Educational Resources Information Center

    Parrila, Rauno; Kirby, John R.; McQuarrie, Lynn

    2004-01-01

    This study examines how measures of articulation rate, verbal short-term memory (STM), naming speed, and phonological awareness tasks administered in kindergarten and again in Grade 1 jointly and uniquely predict word reading and passage comprehension variance in Grades 1, 2, and 3. Results from regression and commonality analyses indicated that…

  7. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  8. Perceptual telerobotics

    NASA Technical Reports Server (NTRS)

    Ligomenides, Panos A.

    1989-01-01

    A sensory world modeling system, congruent with a human expert's perception, is proposed. The Experiential Knowledge Base (EKB) system can provide a highly intelligible communication interface for telemonitoring and telecontrol of a real time robotic system operating in space. Paradigmatic acquisition of empirical perceptual knowledge, and real time experiential pattern recognition and knowledge integration are reviewed. The cellular architecture and operation of the EKB system are also examined.

  9. Working Memory and Arithmetic Calculation in Children: The Contributory Roles of Processing Speed, Short-Term Memory, and Reading

    ERIC Educational Resources Information Center

    Berg, Derek H.

    2008-01-01

    The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing…

  10. Perceptually Augmented Simulator Design.

    PubMed

    Edmunds, T; Pai, D K

    2012-01-01

    Training simulators have proven their worth in a variety of fields, from piloting to air-traffic control to nuclear power station monitoring. Designing surgical simulators, however, poses the challenge of creating trainers that effectively instill not only high-level understanding of the steps to be taken in a given situation, but also the low-level "muscle-memory" needed to perform delicate surgical procedures. It is often impossible to build an ideal simulator that perfectly mimics the haptic experience of a surgical procedure, but by focussing on the aspects of the experience that are perceptually salient we can build simulators that effectively instill learning. We propose a general method for the design of surgical simulators that augment the perceptually salient aspects of an interaction. Using this method, we can increase skill-transfer rates without requiring expensive improvements in the capability of the rendering hardware or the computational complexity of the simulation. In this paper, we present our decomposition-based method for surgical simulator design, and describe a user-study comparing the training effectiveness of a haptic-search-task simulator designed using our method versus an unaugmented simulator. The results show that perception-based task decomposition can be used to improve the design of surgical simulators that effectively impart skill by targeting perceptually significant aspects of the interaction. PMID:26963831

  11. Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study.

    PubMed

    Mella, Nathalie; Fagot, Delphine; Lecerf, Thierry; de Ribaupierre, Anik

    2015-04-01

    Working memory (WM) and intraindividual variability (IIV) in processing speed are both hypothesized to reflect general attentional processes. In the present study, we aimed at exploring the relationship between WM capacity and IIV in reaction times (RTs) and its possible variation with development across the lifespan. Two WM tasks and six RT tasks of varying complexity were analyzed in a sample of 539 participants, consisting of five age groups: two groups of children (9-10 and 11-12 years of age), one group of young adults, and two groups of older adults (59-69 and 70-89 years of age). Two approaches were adopted. First, low-span and high-span individuals were identified, and analyses of variance were conducted comparing these two groups within each age group and for each RT task. The results consistently showed a span effect in the youngest children and oldest adults: High-span individuals were significantly faster and less variable than low-span individuals. In contrast, in young adults no difference was observed between high- and low-span individuals, whether in terms of their means or IIV. Second, multivariate analyses were conducted on the entire set of tasks, to determine whether IIV in RTs brought different information than the mean RT. The results showed that, although very strongly correlated, the mean and IIV in speed should be kept separate in terms of how they account for individual differences in WM. Overall, our results support the assumption of a link between WM capacity and IIV in RT, more strongly so in childhood and older adulthood. PMID:25537952

  12. Perceptual Repetition Blindness Effects

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  13. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    PubMed Central

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  14. [Memory systems and memory disorders].

    PubMed

    Van der Linden, Martial; Juillerat, Anne-Claude

    2003-02-15

    Recent cognitive models suggest that memory has a complex structure, composed of several independent systems (working memory, and four long-term memory systems: episodic memory, semantic memory, perceptual representation system, and procedural memory). Furthermore, neuropsychological studies show that a brain lesion can selectively impair some systems or some particular process in a system, while others are spared. In this theoretical context, the objective of assessment is to detect the impaired memory systems and processes as well as those, which remain intact. To do this, the clinician has to use various-tests specifically designed to assess the integrity of each memory system and process. PMID:12708274

  15. Between-Person and Within-Person Associations among Processing Speed, Attention Switching and Working Memory in Younger and Older Adults

    PubMed Central

    Stawski, Robert S.; Sliwinski, Martin J.; Hofer, Scott M.

    2013-01-01

    Background/Study Context Theories of cognitive aging predict associations among processes that transpire within individuals, but are often tested by examining between-person relationships. The authors provide an empirical demonstration of how associations among measures of processing speed, attention switching, and working memory are different when considered between persons versus within persons over time. Methods A sample of 108 older adults (Mage: 80.8, range: 66–95) and 68 younger adults (Mage: 20.2, range:18–24) completed measures of processing speed, attention switching, and working memory on six occasions over a 14-day period. Multilevel modeling was used to examine processing speed and attention switching performance as predictors of working memory performance simultaneously across days (within-person) and across individuals (between-person). Results The findings indicates that simple comparison and response speed predicted working memory better than attention switching between persons, whereas attention switching predicted working memory better than simple comparison and response speed within persons over time. Furthermore, the authors did not observe strong evidence of age differences in these associations either within or between persons. Conclusion The findings of the current study suggest that processing speed is important for understanding between-person and age-related differences in working memory, whereas attention switching is more important for understanding within-person variation in working memory. The authors conclude that theories of cognitive aging should be evaluated by analysis of within-person processes, not exclusively age-related individual differences. PMID:23421639

  16. Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial

    PubMed Central

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial

  17. Speed and Accuracy of Accessing Information in Working Memory: An Individual Differences Investigation of Focus Switching

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2008-01-01

    Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…

  18. Verbal Processing Speed and Executive Functioning in Long-Term Cochlear Implant Users

    PubMed Central

    Pisoni, David B.; Kronenberger, William G.

    2015-01-01

    Purpose The purpose of this study was to report how verbal rehearsal speed (VRS), a form of covert speech used to maintain verbal information in working memory, and another verbal processing speed measure, perceptual encoding speed, are related to 3 domains of executive function (EF) at risk in cochlear implant (CI) users: verbal working memory, fluency-speed, and inhibition-concentration. Method EF, speech perception, and language outcome measures were obtained from 55 prelingually deaf, long-term CI users and matched controls with normal hearing (NH controls). Correlational analyses were used to assess relations between VRS (articulation rate), perceptual encoding speed (digit and color naming), and the outcomes in each sample. Results CI users displayed slower verbal processing speeds than NH controls. Verbal rehearsal speed was related to 2 EF domains in the NH sample but was unrelated to EF outcomes in CI users. Perceptual encoding speed was related to all EF domains in both groups. Conclusions Verbal rehearsal speed may be less influential for EF quality in CI users than for NH controls, whereas rapid automatized labeling skills and EF are closely related in both groups. CI users may develop processing strategies in EF tasks that differ from the covert speech strategies routinely employed by NH individuals. PMID:25320961

  19. High speed, very large (8 megabyte) first in/first out buffer memory (FIFO)

    DOEpatents

    Baumbaugh, Alan E.; Knickerbocker, Kelly L.

    1989-01-01

    A fast FIFO (First In First Out) memory buffer capable of storing data at rates of 100 megabytes per second. The invention includes a data packer which concatenates small bit data words into large bit data words, a memory array having individual data storage addresses adapted to store the large bit data words, a data unpacker into which large bit data words from the array can be read and reconstructed into small bit data words, and a controller to control and keep track of the individual data storage addresses in the memory array into which data from the packer is being written and data to the unpacker is being read.

  20. High-speed and parallel approach for decoding of binary BCH codes with application to Flash memory devices

    NASA Astrophysics Data System (ADS)

    Prashantha Kumar, H.; Sripati, U.; Shetty, K. Rajesh

    2012-05-01

    In this article, we propose a high-speed decoding algorithm for binary BCH codes that can correct up to 7 bits in error. Evaluation of the error-locator polynomial is the most complicated and time-consuming step in the decoding of a BCH code. We have derived equations for specifying the coefficients of the error-locator polynomial, which can form the basis for the development of a parallel architecture for the decoder. This approach has the advantage that all the coefficients of the error locator polynomial are computed in parallel (in one step). The roots of error-locator polynomial can be obtained by Chien's search and inverting these roots gives the error locations. This algorithm can be employed in any application where high-speed decoding of data encoded by a binary BCH code is required. One important application is in Flash memories where data integrity is preserved using a long, high-rate binary BCH code. We have synthesized generator polynomials for binary BCH codes (error-correcting capability, s ? ) that can be employed in Flash memory devices to improve the integrity of information storage. The proposed decoding algorithm can be used as an efficient, high-speed decoder in this important application.

  1. Recent research on the elastic unstableness of shape memory alloy in martensite transformation by micro-high-speed photography

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Wu, Yuehua; Uyemura, Tsuneyoshi

    1993-01-01

    The paper reports the research results on the phenomenon of elastic unstableness in martensite transformation of Cu-Al-Ni shape memory alloy (SMA). We use the method of micro-high speed photography. The martensite of Cu-Al-Ni SMA presents thermoelastic strain in the heating and cooling process. While the sample is heated to As, the martensite begins to contract and the temperature reaches Af point, the martensite is gradually reducing. It is possible that the martensite suddenly disappears from certain visible size at the instant it is heated to Af temperature.

  2. Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; Zou, Hua; Zhang, Jianhao; Xue, Jianzhong; Sui, Yongxing; Wu, Weihua; Yuan, Li; Zhu, Xiaoqin; Song, Sannian; Song, Zhitang

    2015-12-01

    In order to improve the operation speed of phase change memory (PCM), superlattice-like Ge2Sb2Te5/Sb (SLL GST/Sb) thin films were prepared in a sputtering method to explore the suitability as an active material for PCM application. Compared with GST, SLL GST/Sb thin film has a lower crystallization temperature, crystallization activation energy, thermal conductivity, and smaller crystalline grain size. A faster SET/RESET switching speed (10 ns) and a lower operation power consumption (the energy for RESET operation 9.1 × 10-13 J) are obtained. In addition, GST/Sb shows a good endurance of 8.3 × 104 cycles.

  3. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  4. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    PubMed Central

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  5. Placing Inspection Time, Reaction Time, and Perceptual Speed in the Broader Context of Cognitive Ability: The VPR Model in the Lothian Birth Cohort 1936

    ERIC Educational Resources Information Center

    Johnson, Wendy; Deary, Ian J.

    2011-01-01

    The idea that information processing speed is related to cognitive ability has a long history. Much evidence has been amassed in its support, with respect to both individual differences in general intelligence and developmental trajectories. Two so-called elementary cognitive tasks, reaction time and inspection time, have been used to compile this…

  6. High speed memory scanning in retarded and non-retarded adolescents.

    PubMed

    Todman, J; Gibb, C M

    1985-02-01

    Four groups of 13-14-year-olds, classified on the basis of Raven's Progressive Matrices scores as intellectually above average, average, below average and retarded, were subjects in a Sternberg (1966) type memory scanning task in which memory sets of two, three and four letters were used. Slope values of the memory search function did not differ between groups, whereas intercept values decreased with higher intelligence up to the average intelligence level. There was an overall inverse relation between intercept values and intelligence (r = -0.77) and similar relations obtained within the three non-retarded groups (rs greater than or equal to -0.57), but not within the retarded group (r = -0.06). Possible connections between these results and findings from inspection time studies are discussed. PMID:3978355

  7. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  8. Animacy, perceptual load, and inattentional blindness.

    PubMed

    Calvillo, Dustin P; Jackson, Russell E

    2014-06-01

    Inattentional blindness is the failure to notice unexpected objects in a visual scene while engaging in an attention-demanding task. We examined the effects of animacy and perceptual load on inattentional blindness. Participants searched for a category exemplar under low or high perceptual load. On the last trial, the participants were exposed to an unexpected object that was either animate or inanimate. Unexpected objects were detected more frequently when they were animate rather than inanimate, and more frequently with low than with high perceptual loads. We also measured working memory capacity and found that it predicted the detection of unexpected objects, but only with high perceptual loads. The results are consistent with the animate-monitoring hypothesis, which suggests that animate objects capture attention because of the importance of the detection of animate objects in ancestral hunter-gatherer environments. PMID:24197657

  9. Selective attention and perceptual load in autism spectrum disorder.

    PubMed

    Remington, Anna; Swettenham, John; Campbell, Ruth; Coleman, Mike

    2009-11-01

    It has been suggested that the locus of selective attention (early vs. late in processing) is dependent on the perceptual load of the task. When perceptual load is low, irrelevant distractors are processed (late selection), whereas when perceptual load is high, distractor interference disappears (early selection). Attentional abnormalities have long been reported within autism spectrum disorder (ASD), and this study is the first to examine the effect of perceptual load on selective attention in this population. Fourteen adults with ASD and 23 adults without ASD performed a selective attention task with varying perceptual loads. Compared with the non-ASD group, the ASD group required higher levels of perceptual load to successfully ignore irrelevant distractors; moreover, the ASD group did not show any general reduction in performance speed or accuracy. These results suggest enhanced perceptual capacity in the ASD group and are consistent with previous observations regarding superior visual search abilities among individuals with ASD. PMID:19843262

  10. Relationships among Linguistic Processing Speed, Phonological Working Memory, and Attention in Children Who Stutter

    ERIC Educational Resources Information Center

    Anderson, Julie D.; Wagovich, Stacy A.

    2010-01-01

    Relatively recently, experimental studies of linguistic processing speed in children who stutter (CWS) have emerged, some of which suggest differences in performance among CWS compared to children who do not stutter (CWNS). What is not yet well understood is the extent to which underlying cognitive skills may impact performance on timed tasks of…

  11. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    ERIC Educational Resources Information Center

    Finkel, Deborah; Reynolds, Chandra A.; McArdle, John J.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2009-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories…

  12. How the speed of working memory updating influences the on-line thematic processing of simple sentences in Mandarin Chinese.

    PubMed

    Li, Xiao-Qing; Zheng, Yuan-Yuan; Zhao, Hai-Yan; Xia, Jin-Yan

    2014-12-01

    This ERP study used electrophysiological technique to examine how individual differences in the speed of working memory updating influence the use of syntactic and semantic information during on-line sentence argument interpretation, and the time course of that working memory updating effect. The basic structure of the experimental sentences was "Noun + Verb + adverb + 'le' + a two-character word", with the Noun being the sentence initial argument. This initial argument is animate or inanimate and the following verb disambiguates it as an agent or patient. The results at the initial argument revealed that, the quick-updating group elicited a larger positivity over the frontal cortex (within 500-800 ms post-noun onset) as compared with the slow-updating group. At the following disambiguating verb, the slow-updating group only showed a word order effect, indicating that the patient-first condition elicited a larger P600 (within 500-1,000 ms post-verb onset) than the agent-first one; for the quick-updating group, at the early stage of processing, the patient-first sentences elicited a larger N400 (within 300-500 ms post-verb onset) than the agent-first ones only when the initial argument was inanimate; however, at the late stage, the patient-first sentences elicited an enhanced P600 (within 800-1,000 ms post-verb onset) only when the initial argument was animate. These results suggested that the speed of working memory updating not only influences the maintenance of sentence argument when the contents of working memory change but also influences the efficiency of integrating that argument with the verb at a late time point. When integrating the argument with the disambiguating verb, individuals with quick-updating ability can combine multiple sources of information (both noun animacy and word order), and conduct rapid and fine-grained two-stage processing; individuals with slow-updating ability, however, only rely on one dominant source of information

  13. Resistance to Interference of Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  14. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  15. Novel High-Speed High Pressure Torsion Technology for Obtaining Fe-Mn-Si-Cr Shape Memory Alloy Active Elements

    NASA Astrophysics Data System (ADS)

    Gurău, Gheorghe; Gurău, Carmela; Potecaşu, Octavian; Alexandru, Petrică; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    This paper introduces an adapted high-speed high pressure torsion (HS-HPT) method of severe plastic deformation applied for obtaining shape memory alloy (SMA) active elements with revolution symmetry, able to develop axial displacement/force. Billets with circular crown forms were cut from Fe-28Mn-6Si-5Cr (mass%) SMA ingots and, by means of HS-HPT technology, were directly turned into modules, with truncated cone shell configurations. This process was performed, during time intervals of seconds, under the effect of high pressure (up to 1 GPa) cumulated with high rotation speed (hundreds of rotations per minute) applied on the active surfaces of sintered-carbide anvils, specially designed for this purpose. Due to pressure and friction, generated by rotation, the entire sample volume is heated and simultaneously deformed to final shape. During the process, microstructure fragmentation occurred enabling to obtain (ultra)fine grains and nanocrystalline areas, in spite of the heat developed by friction, which was removed by conduction at the contact surface between sample and anvils, before the occurrence of any recrystallization phenomena. When compressed between flat surfaces, the truncated cone modules developed a superelastic-like response, unique among Fe -Mn-Si base SMAs and, when heated in compressed state, they were able to develop either axial strokes or recovery forces by either free or constrained recovery shape memory effect (SME), respectively. By means of optical (OM) and scanning electron microscopy (SEM) marked structural changes caused by HT-HPT were revealed, along with fine and ultrafine crystalline grains. The presence of stress-induced ɛ-hexagonal close-packed ( hcp) martensite, together with nanocrystalline areas were confirmed by x-ray diffraction.

  16. Slowing of high-speed memory scanning in Parkinson's disease is related to the severity of parkinsonian motor symptoms.

    PubMed

    Ransmayr, G; Bitschnau, W; Schmidhuber-Eiler, B; Berger, W; Karamat, E; Poewe, W; Kemmler, G W

    1990-01-01

    High-speed memory scanning (Sternberg paradigm) was tested in a collective of 20 parkinsonian patients (10 newly diagnosed, untreated patients, duration of the disease 0.5-3.8, mean 1.5 years; 10 levodopa-treated patients, duration of the disease 4.2 to 11, mean 7.6 years). The levodopa-treated patients stopped taking levodopa before the test. There was a tendency towards retarded memory scanning in the patients' collective compared with 20 healthy controls with similar ages and verbal IQs (p = 0.076, Mann-Whitney U test). The mental slowing correlated significantly with bradykinesia and the sum-score of the Columbia University Parkinson Rating Scale (p = 0.021 and 0.019; Spearman rank correlation). Kruskal-Wallis ANOVA revealed a significant mental slowing in the subgroup of patients with Parkinson's disease for greater than 4 years compared with the newly diagnosed patients and the controls (H = 8.54; p = 0.019 and 0.006, Mann-Whitney U test). The findings suggest a mental slowing in Parkinson's disease, which is associated with the progression of parkinsonian motor symptoms and not with depression. PMID:1964055

  17. The Perceptual Abilities Project. Technical Report No. 1988-4.

    ERIC Educational Resources Information Center

    Bethscheider, Janine K.

    An experimental test battery designed to measure several perceptual abilities was administered to 1,368 (51.8% male) paying clients of the Johnson O'Connor Research Foundation (JOCRF) in an effort to identify and measure three perceptual abilities: (1) flexibility of closure; (2) speed of closure; and (3) spatial scanning. Subjects, who ranged in…

  18. Superlattice-like film for high data retention and high speed phase change random access memory

    NASA Astrophysics Data System (ADS)

    Li, Le; Song, Sannian; Zhang, Zhonghua; Chen, Liangliang; Song, Zhitang; Lv, Shilong; Liu, Bo; Guo, Tianqi

    2016-06-01

    Superlattice-like film (SLF) was formed alternately by Ti0.43Sb2Te3 (TST) and TiN, and TST is employed as phase change layers and TiN is employed as isolation layers of TST film. Comparing with single TST film with the same thickness, SLF owns higher data retention, higher phase change speed (5 ns) and endurance up to 1 × 105 cycles, and its power consumption of reset operation is significantly decreased by 65.2%. Two-dimensional thermal transient simulation of reset operation indicates that SLF-based device owns higher heating efficiency than 30-nm-thick TST-based device.

  19. Perceptual fluency, auditory generation, and metamemory: analyzing the perceptual fluency hypothesis in the auditory modality.

    PubMed

    Besken, Miri; Mulligan, Neil W

    2014-03-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences (the generate condition) or that were intact, a manipulation analogous to visual generation manipulations. The generate condition produced lower perceptual fluency as assessed by both accuracy and identification latency. Consistent with the perceptual fluency hypothesis, the less fluent, generate condition produced lower JOLs than the intact condition. However, actual memory performance was greater in the generation than intact condition in free recall (Experiment 1) and recognition (Experiment 3). The negative effect of generation on JOLs occurred for both aggregate and item-by-item JOLs, but in the latter case, the positive generation effect in actual memory performance was reduced or eliminated (as also occurs with visual generation tasks; Experiments 2 and 4). Furthermore, the decrease in perceptual fluency produced by the generation manipulation was correlated with the decrease in JOLs for this condition (Experiment 5). The negative effect of generation on JOLs persisted even when participants were warned that the generation condition produces equal or greater memory performance compared to the intact condition (Experiment 6). The results are in accord with the perceptual fluency hypothesis and show that this metamemory illusion is related to objective measures of perceptual difficulty. With regard to actual memory performance, this novel auditory generation manipulation produces results consistent with those produced in the visual modality. PMID:24016138

  20. Visual Working Memory and Perception Speed of 3- to 6-Year-Old Children Tested with a Matrix Film Battery Test

    ERIC Educational Resources Information Center

    Pittorf, Martin L.; Lehmann, Wolfgang; Huckauf, Anke

    2014-01-01

    In this study the visual working memory (VWM) and perception speed of 60 children between the ages of three and six years were tested with an age-based, easy-to-handle Matrix Film Battery Test (reliability R?=?0.71). It was thereby affirmed that the VWM is age dependent (correlation coefficient r?=?0.66***) as expected. Furthermore, a significant…

  1. ADHD Subtypes and Co-Occurring Anxiety, Depression, and Oppositional-Defiant Disorder: Differences in Gordon Diagnostic System and Wechsler Working Memory and Processing Speed Index Scores

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Chase, Gary A.; Mink, Danielle M.; Stagg, Ryan E.

    2009-01-01

    Objective: Wechsler Intelligence Scale for Children Freedom-from-Distractibility/Working Memory Index (FDI/WMI), Processing Speed Index (PSI), and Gordon Diagnostic System (GDS) scores in ADHD children were examined as a function of subtype and coexisting anxiety, depression, and oppositional-defiant disorder. Method: Participants were 587…

  2. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  3. Perceptual Modalities Guiding Bat Flight in a Native Habitat.

    PubMed

    Kong, Zhaodan; Fuller, Nathan; Wang, Shuai; Özcimder, Kayhan; Gillam, Erin; Theriault, Diane; Betke, Margrit; Baillieul, John

    2016-01-01

    Flying animals accomplish high-speed navigation through fields of obstacles using a suite of sensory modalities that blend spatial memory with input from vision, tactile sensing, and, in the case of most bats and some other animals, echolocation. Although a good deal of previous research has been focused on the role of individual modes of sensing in animal locomotion, our understanding of sensory integration and the interplay among modalities is still meager. To understand how bats integrate sensory input from echolocation, vision, and spatial memory, we conducted an experiment in which bats flying in their natural habitat were challenged over the course of several evening emergences with a novel obstacle placed in their flight path. Our analysis of reconstructed flight data suggests that vision, echolocation, and spatial memory together with the possible exercise of an ability in using predictive navigation are mutually reinforcing aspects of a composite perceptual system that guides flight. Together with the recent development in robotics, our paper points to the possible interpretation that while each stream of sensory information plays an important role in bat navigation, it is the emergent effects of combining modalities that enable bats to fly through complex spaces. PMID:27264498

  4. Perceptual Modalities Guiding Bat Flight in a Native Habitat

    PubMed Central

    Kong, Zhaodan; Fuller, Nathan; Wang, Shuai; Özcimder, Kayhan; Gillam, Erin; Theriault, Diane; Betke, Margrit; Baillieul, John

    2016-01-01

    Flying animals accomplish high-speed navigation through fields of obstacles using a suite of sensory modalities that blend spatial memory with input from vision, tactile sensing, and, in the case of most bats and some other animals, echolocation. Although a good deal of previous research has been focused on the role of individual modes of sensing in animal locomotion, our understanding of sensory integration and the interplay among modalities is still meager. To understand how bats integrate sensory input from echolocation, vision, and spatial memory, we conducted an experiment in which bats flying in their natural habitat were challenged over the course of several evening emergences with a novel obstacle placed in their flight path. Our analysis of reconstructed flight data suggests that vision, echolocation, and spatial memory together with the possible exercise of an ability in using predictive navigation are mutually reinforcing aspects of a composite perceptual system that guides flight. Together with the recent development in robotics, our paper points to the possible interpretation that while each stream of sensory information plays an important role in bat navigation, it is the emergent effects of combining modalities that enable bats to fly through complex spaces. PMID:27264498

  5. Neural Plasticity Underlying Visual Perceptual Learning in Aging

    PubMed Central

    Mishra, Jyoti; Rolle, Camarin; Gazzaley, Adam

    2014-01-01

    Healthy aging is associated with a decline in basic perceptual abilities, as well as higher-level cognitive functions such as working memory. In a recent perceptual training study using moving sweeps of Gabor stimuli, Berry et al. (2010) observed that older adults significantly improved discrimination abilities on the most challenging perceptual tasks that presented paired sweeps at rapid rates of 5 & 10 Hz. Berry et al. further showed that this perceptual training engendered transfer-of-benefit to an untrained working memory task. Here, we investigated the neural underpinnings of the improvements in these perceptual tasks, as assessed by event-related potential (ERP) recordings. Early visual ERP components time-locked to stimulus onset were compared pre- and post- training, as well as relative to a no-contact control group. The visual N1 and N2 components were significantly enhanced after training, and the N1 change correlated with improvements in perceptual discrimination on the task. Further, the change observed for the N1 and N2 was associated with the rapidity of the perceptual challenge; the visual N1 (120–150 ms) was enhanced post-training for 10 Hz sweep pairs, while the N2 (240–280 ms) was enhanced for the 5 Hz sweep pairs. We speculate that these observed post-training neural enhancements reflect improvements by older adults in the allocation of attention that is required to accurately dissociate perceptually overlapping stimuli when presented in rapid sequence. PMID:25218557

  6. Mental imagery of speech implicates two mechanisms of perceptual reactivation.

    PubMed

    Tian, Xing; Zarate, Jean Mary; Poeppel, David

    2016-04-01

    Sensory cortices can be activated without any external stimuli. Yet, it is still unclear how this perceptual reactivation occurs and which neural structures mediate this reconstruction process. In this study, we employed fMRI with mental imagery paradigms to investigate the neural networks involved in perceptual reactivation. Subjects performed two speech imagery tasks: articulation imagery (AI) and hearing imagery (HI). We found that AI induced greater activity in frontal-parietal sensorimotor systems, including sensorimotor cortex, subcentral (BA 43), middle frontal cortex (BA 46) and parietal operculum (PO), whereas HI showed stronger activation in regions that have been implicated in memory retrieval: middle frontal (BA 8), inferior parietal cortex and intraparietal sulcus. Moreover, posterior superior temporal sulcus (pSTS) and anterior superior temporal gyrus (aSTG) was activated more in AI compared with HI, suggesting that covert motor processes induced stronger perceptual reactivation in the auditory cortices. These results suggest that motor-to-perceptual transformation and memory retrieval act as two complementary mechanisms to internally reconstruct corresponding perceptual outcomes. These two mechanisms can serve as a neurocomputational foundation for predicting perceptual changes, either via a previously learned relationship between actions and their perceptual consequences or via stored perceptual experiences of stimulus and episodic or contextual regularity. PMID:26889603

  7. Phase Evolution in Fe-Mn-Si Shape Memory Alloys due to Forging Speed

    NASA Astrophysics Data System (ADS)

    Eskil, Murat; Kanca, Erdogan

    2013-09-01

    The objective of this investigation is to compare the crystallographic characteristics of two different compositions of Fe-Mn-Si alloys forged with the newly designed and constructed High Energy Rate Forming (HERF) hammer with conventional hydraulic and mechanical presses. The degree of martensite formation may depend on metal forming conditions. For both of the alloys, one of the specimens was investigated in as "prepared form", the other specimen was investigated after air cooling with homogenization treatment and three specimens were deformed in different velocities after homogenization treatments. The changes which occurred in the transformation parameters of two FeMnSi alloys with different compositions due to the effects of thermal and mechanical procedures have been studied by using X-ray diffraction. In the alloy specimens cooled to different conditions from the high-temperature γ phase region, γ→ɛ and γ→ɛ→α‧ martensitic transformations were observed. The lattice parameters (LP) of fcc γ and hcp ɛ structures were determined, and changes in forging speed on the LPs were found.

  8. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    ERIC Educational Resources Information Center

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  9. Two Thirds of the Age-Based Changes in Fluid and Crystallized Intelligence, Perceptual Speed, and Memory in Adulthood Are Shared

    ERIC Educational Resources Information Center

    Ghisletta, Paolo; Rabbitt, Patrick; Lunn, Mary; Lindenberger, Ulman

    2012-01-01

    Many aspects of cognition decline from middle to late adulthood, but the dimensionality and generality of this decline have rarely been examined. We analyzed 20-year longitudinal data of 6203 middle-aged to very old adults from Greater Manchester and Newcastle-upon-Tyne, UK. Participants were assessed up to eight times on 20 tasks of fluid…

  10. Generation and Context Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.

    2006-01-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…

  11. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    PubMed Central

    Neger, Thordis M.; Rietveld, Toni; Janse, Esther

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly. PMID:25225475

  12. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning

    PubMed Central

    Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.

    2014-01-01

    Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131

  13. Older adults encode--but do not always use--perceptual details: intentional versus unintentional effects of detail on memory judgments.

    PubMed

    Koutstaal, Wilma

    2003-03-01

    Investigations of memory deficits in older individuals have concentrated on their increased likelihood of forgetting events or details of events that were actually encountered (errors of omission). However, mounting evidence demonstrates that normal cognitive aging also is associated with an increased propensity for errors of commission--shown in false alarms or false recognition. The present study examined the origins of this age difference. Older and younger adults each performed three types of memory tasks in which details of encountered items might influence performance. Although older adults showed greater false recognition of related lures on a standard (identical) old/new episodic recognition task, older and younger adults showed parallel effects of detail on repetition priming and meaning-based episodic recognition (decreased priming and decreased meaning-based recognition for different relative to same exemplars). The results suggest that the older adults encoded details but used them less effectively than the younger adults in the recognition context requiring their deliberate, controlled use. PMID:12661684

  14. Perceptual representations in false recognition and priming of pictures.

    PubMed

    Weinstein, Yana; Shanks, David R

    2008-12-01

    Using a new procedure, we investigate whether imagination can induce false memory by creating a perceptual representation. Participants studied pictures and words with and without an imagery task and at test performed both a direct recognition test and an indirect perceptual identification test on pictorial stimuli. Corrected false recognition rates were 7% for pictures studied in word form (Experiment 1), 26% for pictures imagined once (Experiment 2), and 48% for pictures imagined multiple times (Experiment 3), although on the indirect test, no priming was found for these items. Furthermore, a perceptual/conceptual imagery manipulation did not affect the tendency to claim that imagined items had been studied as pictures (Experiment 4). These results suggest that the false memories reported on direct tests are not driven by perceptual representations. PMID:19015501

  15. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  16. Common mechanisms of human perceptual and motor learning

    PubMed Central

    Censor, Nitzan; Sagi, Dov; Cohen, Leonardo G.

    2016-01-01

    The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans. PMID:22903222

  17. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  18. Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements

    PubMed Central

    Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka

    2015-01-01

    Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates. PMID:26068663

  19. Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements.

    PubMed

    Kishimoto, Yasushi; Yamamoto, Shigeyuki; Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka

    2015-01-01

    Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates. PMID:26068663

  20. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain.

    PubMed

    Zaman, Jonas; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Wiech, Katja; Van Diest, Ilse

    2015-04-01

    Recent neuropsychological theories emphasize the influence of maladaptive learning and memory processes on pain perception. However, the precise relationship between these processes as well as the underlying mechanisms remain poorly understood; especially the role of perceptual discrimination and its modulation by associative fear learning has received little attention so far. Experimental work with exteroceptive stimuli consistently points to effects of fear learning on perceptual discrimination acuity. In addition, clinical observations have revealed that in individuals with chronic pain perceptual discrimination is impaired, and that tactile discrimination training reduces pain. Based on these findings, we present a theoretical model of which the central tenet is that associative fear learning contributes to the development of chronic pain through impaired interoceptive and proprioceptive discrimination acuity. PMID:25603316

  1. "The Mask Who Wasn't There": Visual Masking Effect with the Perceptual Absence of the Mask

    ERIC Educational Resources Information Center

    Rey, Amandine Eve; Riou, Benoit; Muller, Dominique; Dabic, Stéphanie; Versace, Rémy

    2015-01-01

    Does a visual mask need to be perceptually present to disrupt processing? In the present research, we proposed to explore the link between perceptual and memory mechanisms by demonstrating that a typical sensory phenomenon (visual masking) can be replicated at a memory level. Experiment 1 highlighted an interference effect of a visual mask on the…

  2. Neural plasticity underlying visual perceptual learning in aging.

    PubMed

    Mishra, Jyoti; Rolle, Camarin; Gazzaley, Adam

    2015-07-01

    Healthy aging is associated with a decline in basic perceptual abilities, as well as higher-level cognitive functions such as working memory. In a recent perceptual training study using moving sweeps of Gabor stimuli, Berry et al. (2010) observed that older adults significantly improved discrimination abilities on the most challenging perceptual tasks that presented paired sweeps at rapid rates of 5 and 10 Hz. Berry et al. further showed that this perceptual training engendered transfer-of-benefit to an untrained working memory task. Here, we investigated the neural underpinnings of the improvements in these perceptual tasks, as assessed by event-related potential (ERP) recordings. Early visual ERP components time-locked to stimulus onset were compared pre- and post-training, as well as relative to a no-contact control group. The visual N1 and N2 components were significantly enhanced after training, and the N1 change correlated with improvements in perceptual discrimination on the task. Further, the change observed for the N1 and N2 was associated with the rapidity of the perceptual challenge; the visual N1 (120-150 ms) was enhanced post-training for 10 Hz sweep pairs, while the N2 (240-280 ms) was enhanced for the 5 Hz sweep pairs. We speculate that these observed post-training neural enhancements reflect improvements by older adults in the allocation of attention that is required to accurately dissociate perceptually overlapping stimuli when presented in rapid sequence. This article is part of a Special Issue entitled SI: Memory Å. PMID:25218557

  3. Working Memory Capacity in a Go/No-Go Task: Age Differences in Interference, Processing Speed, and Attentional Control

    ERIC Educational Resources Information Center

    Rodríguez-Villagra, Odir Antonio; Göthe, Katrin; Oberauer, Klaus; Kliegl, Reinhold

    2013-01-01

    We tested the limits of working-memory capacity (WMC) of young adults, old adults, and children with a memory-updating task. The task consisted of mentally shifting spatial positions within a grid according to arrows, their color signaling either only go (control) or go/no-go conditions. The interference model (IM) of Oberauer and Kliegl (2006)…

  4. The contributions of memory and attention processes to cognitive abilities.

    PubMed

    Rockstroh, S; Schweizer, K

    2001-01-01

    In two experiments, the contributions of memory and attention processes to the cognitive abilities of reasoning and perceptual speed were investigated. Two measures of speed of information retrieval from long-term and short-term memory (Posner paradigm, Sternberg paradigm) and two attention measures (continuous attention test, attention switching test) were included in the first experiment (N = 220). The memory tests led to correlations with the measures of cognitive abilities, whereas the attention test did not. The same tests as well as one additional memory test and one attention test (working memory test, test of covert orientation) were administered in the second experiment (N = 116). Again, the memory tests led to the larger correlations with the measures of cognitive abilities. Two components were obtained in components analysis, of which the first was characterized by high loadings of the memory tests and the second by high loadings of the attention tests. Only the memory component contributed to the prediction of cognitive abilities. PMID:11277445

  5. Subjective Confidence in Perceptual Judgments: A Test of the Self-Consistency Model

    ERIC Educational Resources Information Center

    Koriat, Asher

    2011-01-01

    Two questions about subjective confidence in perceptual judgments are examined: the bases for these judgments and the reasons for their accuracy. Confidence in perceptual judgments has been claimed to rest on qualitatively different processes than confidence in memory tasks. However, predictions from a self-consistency model (SCM), which had been…

  6. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    ERIC Educational Resources Information Center

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  7. An Exceptional Memory

    ERIC Educational Resources Information Center

    Hunter, Ian M. L.

    1977-01-01

    An account is given of the exceptional memory of the late Professor A. C. Aitken who was also a distinguished mathematician and mental calculator. Compared with Shereshevskii, another man with exceptional memory, he shows the scholar's reliance on conceptual mapping rather than the mnemonist's reliance on perceptual chaining. (Editor)

  8. Normative perceptual estimates for 91 healthy subjects age 60–75: impact of age, education, employment, physical exercise, alcohol, and video gaming

    PubMed Central

    Wilms, Inge L.; Nielsen, Simon

    2014-01-01

    Visual perception serves as the basis for much of the higher level cognitive processing as well as human activity in general. Here we present normative estimates for the following components of visual perception: the visual perceptual threshold, the visual short-term memory (VSTM) capacity and the visual perceptual encoding/decoding speed (processing speed) of VSTM based on an assessment of 91 healthy subjects aged 60–75. The estimates were modeled from input from a whole-report assessment based on a theory of visual attention. In addition to the estimates themselves, we present correlational data, and multiple regression analyses between the estimates and self-reported demographic data and lifestyle variables. The regression statistics suggest that education level, video gaming activity, and employment status may significantly impact the encoding/decoding speed of VTSM but not the capacity of VSTM nor the visual perceptual threshold. The estimates will be useful for future studies into the effects of various types of intervention and training on cognition in general and visual attention in particular. PMID:25339932

  9. Normative perceptual estimates for 91 healthy subjects age 60-75: impact of age, education, employment, physical exercise, alcohol, and video gaming.

    PubMed

    Wilms, Inge L; Nielsen, Simon

    2014-01-01

    Visual perception serves as the basis for much of the higher level cognitive processing as well as human activity in general. Here we present normative estimates for the following components of visual perception: the visual perceptual threshold, the visual short-term memory (VSTM) capacity and the visual perceptual encoding/decoding speed (processing speed) of VSTM based on an assessment of 91 healthy subjects aged 60-75. The estimates were modeled from input from a whole-report assessment based on a theory of visual attention. In addition to the estimates themselves, we present correlational data, and multiple regression analyses between the estimates and self-reported demographic data and lifestyle variables. The regression statistics suggest that education level, video gaming activity, and employment status may significantly impact the encoding/decoding speed of VTSM but not the capacity of VSTM nor the visual perceptual threshold. The estimates will be useful for future studies into the effects of various types of intervention and training on cognition in general and visual attention in particular. PMID:25339932

  10. Perceptual presence without counterfactual richness.

    PubMed

    Madary, Michael

    2014-01-01

    In this commentary, I suggest that non-visual perceptual modalities provide counterexamples to Seth's claim that perceptual presence depends on counterfactual richness. Then I suggest a modification to Seth's view that is not vulnerable to these counterexamples. PMID:24739124

  11. Fusing fMRI and DTI Measures of Brain Function and Structure to Predict Working Memory and Processing Speed Performance among Inter-episode Bipolar Patients

    PubMed Central

    McKenna, Benjamin S.; Theilmann, Rebecca J.; Sutherland, Ashley N.; Eyler, Lisa T.

    2015-01-01

    Objective Evidence for abnormal brain function as measured with diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) and cognitive dysfunction have been observed in inter-episode bipolar disorder (BD) patients. We aimed to create a joint statistical model of white matter integrity and functional response measures in explaining differences in working memory and processing speed among BD patients. Method Medicated inter-episode BD (n=26, age=45.2±10.1yrs) and healthy comparison (HC; n=36, age=46.3±11.5yrs) participants completed 51-direction DTI and fMRI while performing a working memory task. Participants also completed a processing speed test. Tract-based spatial statistics identified common white matter tracts where fractional anisotropy was calculated from atlas-defined regions of interest. Brain responses within regions of interest activation clusters were also calculated. Least angle regression was used to fuse fMRI and DTI data to select the best joint neuroimaging predictors of cognitive performance for each group. Results While there was overlap between groups in which regions were most related to cognitive performance, some relationships differed between groups. For working memory accuracy, BD-specific predictors included bilateral dorsolateral prefrontal cortex from fMRI, splenium of the corpus callosum, left uncinate fasciculus, and bilateral superior longitudinal fasciculi from DTI. For processing speed, the genu and splenium of the corpus callosum and right superior longitudinal fasciculus from DTI were significant predictors of cognitive performance selectively for BD patients. Conclusions BD patients demonstrated unique brain-cognition relationships compared to HC. These findings are a first step in discovering how interactions of structural and functional brain abnormalities contribute to cognitive impairments in BD. PMID:26037664

  12. The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music.

    PubMed

    Bottiroli, Sara; Rosi, Alessia; Russo, Riccardo; Vecchi, Tomaso; Cavallini, Elena

    2014-01-01

    Background music refers to any music played while the listener is performing another activity. Most studies on this effect have been conducted on young adults, while little attention has been paid to the presence of this effect in older adults. Hence, this study aimed to address this imbalance by assessing the impact of different types of background music on cognitive tasks tapping declarative memory and processing speed in older adults. Overall, background music tended to improve performance over no music and white noise, but not always in the same manner. The theoretical and practical implications of the empirical findings are discussed. PMID:25360112

  13. The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music

    PubMed Central

    Bottiroli, Sara; Rosi, Alessia; Russo, Riccardo; Vecchi, Tomaso; Cavallini, Elena

    2014-01-01

    Background music refers to any music played while the listener is performing another activity. Most studies on this effect have been conducted on young adults, while little attention has been paid to the presence of this effect in older adults. Hence, this study aimed to address this imbalance by assessing the impact of different types of background music on cognitive tasks tapping declarative memory and processing speed in older adults. Overall, background music tended to improve performance over no music and white noise, but not always in the same manner. The theoretical and practical implications of the empirical findings are discussed. PMID:25360112

  14. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  15. Perceptual Tolerance Intersection

    NASA Astrophysics Data System (ADS)

    Wasilewski, Piotr; Peters, James F.; Ramanna, Sheela

    This paper elaborates on the introduction of perceptual tolerance intersection of sets as an example of a near set operation. Such operations are motivated by the need to consider similarities between digital images viewed as disjoint sets of points. The proposed approach is in keeping with work by E.C. Zeeman on tolerance spaces and visual perception and work by J.H. Poincaré on sets of similar sensations used to define representative spaces (aka tolerance spaces) such as visual, tactile and motile spaces. Perceptual tolerance intersection of sets is a direct consequence of recent work on near sets. The theory of perceptual set intersection has many practical applications such as a solution to the problem of how one goes about measuring the closeness of digital images. The main contribution of this article is a description-based approach to formulating perceptual set intersections between disjoint sets that resemble each other. A practical application of the proposed approach is the discovery of resemblances between sets of points in digital image regions that represent tolerance rough sets.

  16. Perceptual Learning in Speech

    ERIC Educational Resources Information Center

    Norris, Dennis; McQueen, James M.; Cutler, Anne

    2003-01-01

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g.,…

  17. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  18. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  19. Changes over time in memory, processing speed and clock drawing tests help to discriminate between vascular cognitive impairment, mild cognitive impairment and Alzheimer's disease.

    PubMed

    de Jager, Celeste A

    2004-07-01

    Measures of cognitive change over time may help to better discriminate between mild cognitive impairment, Alzheimer's disease and vascular cognitive impairment than single assessments. Our hypothesis was that performance in processing speed and executive function would decline with mild cognitive impairment and Alzheimer's disease. Subjects included 36 controls, 18 cases with mild cognitive impairment, eight with vascular cognitive impairment and 24 with Alzheimer's disease who were tested on a cognitive battery at two episodes with a 12-month interval. Changes in performance were determined for each group with paired means tests. Controls improved in pattern comparison speed and the CLOX, a clock-drawing task to detect dysexecutive function. Those with vascular cognitive impairment declined in letter comparison speed, but improved in paragraph recall. Alzheimer's disease patients declined in CLOX and the Hopkins Verbal Learning Test. The mild cognitive impairment group showed no significant changes. Alzheimer's disease patients on treatment declined in Hopkins Verbal Learning Test, while those without treatment declined in The Placing Test and CLOX. Processing speed decline may be a marker of cerebrovascular disease, while decline in memory and executive function was more evident with Alzheimer's disease. PMID:15362213

  20. Prediction Error Associated with the Perceptual Segmentation of Naturalistic Events

    ERIC Educational Resources Information Center

    Zacks, Jeffrey M.; Kurby, Christopher A.; Eisenberg, Michelle L.; Haroutunian, Nayiri

    2011-01-01

    Predicting the near future is important for survival and plays a central role in theories of perception, language processing, and learning. Prediction failures may be particularly important for initiating the updating of perceptual and memory systems and, thus, for the subjective experience of events. Here, we asked observers to make predictions…

  1. Attentional Modulation of Perceptual Comparison for Feature Binding

    ERIC Educational Resources Information Center

    Kuo, Bo-Cheng; Rotshtein, Pia; Yeh, Yei-Yu

    2011-01-01

    We investigated the neural correlates of attentional modulation in the perceptual comparison process for detecting feature-binding changes in an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a variant of a cued change detection task. They viewed a memory array, a spatial retro-cue, and later a probe…

  2. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    ERIC Educational Resources Information Center

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  3. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats.

    PubMed

    Shimada, Haruka; Hamakawa, Michiru; Ishida, Akimasa; Tamakoshi, Keigo; Nakashima, Hiroki; Ishida, Kazuto

    2013-04-15

    Physical exercise may enhance the recovery of impaired memory function in stroke rats. However the appropriate conditions of exercise and the mechanisms underlying these beneficial effects are not yet known. Therefore, the purpose of this study was to investigate the effect exercise intensity on memory function after cerebral infarction in rats. The animals were subjected to middle cerebral artery occlusion (MCAO) for 90 min to induce stroke and were randomly assigned to four groups; Low-Ex, High-Ex, Non-Ex and Sham. On the fourth day after surgery, rats in the Low-Ex and High-Ex groups were forced to exercise using a treadmill for 30 min every day for four weeks. Memory functions were examined during the last 5 days of the experiment (27-32 days after MCAO) by three types of tests: an object recognition test, an object location test and a passive avoidance test. After the final memory test, the infarct volume, number of neurons and microtubule-associated protein 2 (MAP2) immunoreactivity in the hippocampus were analyzed by histochemistry. Memory functions in the Low-Ex group were improved in all tests. In the High-Ex group, only the passive avoidance test improved, but not the object recognition or object location tests. Both the Low-Ex and High-Ex groups had reduced infarct volumes. Although the number of neurons in the hippocampal dentate gyrus of the Low-Ex and High-Ex groups was increased, the number for the Low-Ex group increased more than that for the High-Ex group. Moreover hippocampal MAP2 immunoreactivity in the High-Ex group was reduced compared to that in the Low-Ex group. These data suggest that the effects of exercise on memory impairment after cerebral infarction depend on exercise intensity. PMID:23266325

  4. Early Experience & Multisensory Perceptual Narrowing

    PubMed Central

    Lewkowicz, David J.

    2014-01-01

    Perceptual narrowing is a reflection of early experience and contributes in key ways to perceptual and cognitive development. In general, findings have shown that unisensory perceptual sensitivity in early infancy is broadly tuned such that young infants respond to, and discriminate, native as well as non-native sensory inputs, whereas older infants only respond to native inputs. Recently, my colleagues and I discovered that perceptual narrowing occurs at the multisensory processing level as well. The present article reviews this new evidence and puts it in the larger context of multisensory perceptual development and the role that perceptual experience plays in it. Together, the evidence on unisensory and multisensory narrowing shows that early experience shapes the emergence of perceptual specialization and expertise. PMID:24435505

  5. Perceptual learning and human expertise

    NASA Astrophysics Data System (ADS)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  6. Perceptual learning and human expertise.

    PubMed

    Kellman, Philip J; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  7. Exploring Possible Neural Mechanisms of Intelligence Differences Using Processing Speed and Working Memory Tasks: An fMRI Study

    ERIC Educational Resources Information Center

    Waiter, Gordon D.; Deary, Ian J.; Staff, Roger T.; Murray, Alison D.; Fox, Helen C.; Starr, John M.; Whalley, Lawrence J.

    2009-01-01

    To explore the possible neural foundations of individual differences in intelligence test scores, we examined the associations between Raven's Matrices scores and two tasks that were administered in a functional magnetic resonance imaging (fMRI) setting. The two tasks were an n-back working memory (N = 37) task and inspection time (N = 47). The…

  8. Effects of Model-Based and Memory-Based Processing on Speed and Accuracy of Grammar String Generation

    ERIC Educational Resources Information Center

    Domangue, Thomas J.; Mathews, Robert C.; Sun, Ron; Roussel, Lewis G.; Guidry, Claire E.

    2004-01-01

    Learners are able to use 2 different types of knowledge to perform a skill. One type is a conscious mental model, and the other is based on memories of instances. The authors conducted 3 experiments that manipulated training conditions designed to affect the availability of 1 or both types of knowledge about an artificial grammar. Participants…

  9. Working Memory, Processing Speed, and Set-Shifting in Children with Developmental Coordination Disorder and Attention-Deficit-Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Piek, Jan P.; Dyck, Murray J.; Francis, Mona; Conwell, Alistair

    2007-01-01

    It has been suggested that the high levels of comorbidity between attention-deficit-hyperactivity disorder (ADHD) and developmental coordination disorder (DCD) may be attributed to a common underlying neurocognitive mechanism. This study assessed whether children with DCD and ADHD share deficits on tasks measuring working memory, set-shifting, and…

  10. Computer-Based Cognitive Programs for Improvement of Memory, Processing Speed and Executive Function during Age-Related Cognitive Decline: A Meta-Analysis

    PubMed Central

    Shao, Yan-kun; Mang, Jing; Li, Pei-lan; Wang, Jie; Deng, Ting; Xu, Zhong-xin

    2015-01-01

    Background Several studies have assessed the effects of computer-based cognitive programs (CCP) in the management of age-related cognitive decline, but the role of CCP remains controversial. Therefore, this systematic review evaluated the evidence on the efficacy of CCP for age-related cognitive decline in healthy older adults. Methods Six electronic databases (through October 2014) were searched. The risk of bias was assessed using the Cochrane Collaboration tool. The standardized mean difference (SMD) and 95% confidence intervals (CI) of a random-effects model were calculated. The heterogeneity was assessed using the Cochran Q statistic and quantified with the I2 index. Results Twelve studies were included in the current review and were considered as moderate to high methodological quality. The aggregated results indicate that CCP improves memory performance (SMD, 0.31; 95% CI 0.16 to 0.45; p < 0.0001) and processing speed (SMD, 0.50; 95% CI 0.14 to 0.87; p = 0.007) but not executive function (SMD, -0.12; 95% CI -0.33 to 0.09; p = 0.27). Furthermore, there were long-term gains in memory performance (SMD, 0.59; 95% CI 0.13 to 1.05; p = 0.01). Conclusion CCP may be a valid complementary and alternative therapy for age-related cognitive decline, especially for memory performance and processing speed. However, more studies with longer follow-ups are warranted to confirm the current findings. PMID:26098943

  11. Balance in machine architecture: Bandwidth on board and offboard, integer/control speed and flops versus memory

    SciTech Connect

    Fischler, M.

    1992-04-01

    The issues to be addressed here are those of balance'' in machine architecture. By this, we mean how much emphasis must be placed on various aspects of the system to maximize its usefulness for physics. There are three components that contribute to the utility of a system: How the machine can be used, how big a problem can be attacked, and what the effective capabilities (power) of the hardware are like. The effective power issue is a matter of evaluating the impact of design decisions trading off architectural features such as memory bandwidth and interprocessor communication capabilities. What is studied is the effect these machine parameters have on how quickly the system can solve desired problems. There is a reasonable method for studying this: One selects a few representative algorithms and computes the impact of changing memory bandwidths, and so forth. The only room for controversy here is in the selection of representative problems. The issue of how big a problem can be attacked boils down to a balance of memory size versus power. Although this is a balance issue it is very different than the effective power situation, because no firm answer can be given at this time. The power to memory ratio is highly problem dependent, and optimizing it requires several pieces of physics input, including: how big a lattice is needed for interesting results; what sort of algorithms are best to use; and how many sweeps are needed to get valid results. We seem to be at the threshold of learning things about these issues, but for now, the memory size issue will necessarily be addressed in terms of best guesses, rules of thumb, and researchers' opinions.

  12. Balance in machine architecture: Bandwidth on board and offboard, integer/control speed and flops versus memory

    SciTech Connect

    Fischler, M.

    1992-04-01

    The issues to be addressed here are those of ``balance`` in machine architecture. By this, we mean how much emphasis must be placed on various aspects of the system to maximize its usefulness for physics. There are three components that contribute to the utility of a system: How the machine can be used, how big a problem can be attacked, and what the effective capabilities (power) of the hardware are like. The effective power issue is a matter of evaluating the impact of design decisions trading off architectural features such as memory bandwidth and interprocessor communication capabilities. What is studied is the effect these machine parameters have on how quickly the system can solve desired problems. There is a reasonable method for studying this: One selects a few representative algorithms and computes the impact of changing memory bandwidths, and so forth. The only room for controversy here is in the selection of representative problems. The issue of how big a problem can be attacked boils down to a balance of memory size versus power. Although this is a balance issue it is very different than the effective power situation, because no firm answer can be given at this time. The power to memory ratio is highly problem dependent, and optimizing it requires several pieces of physics input, including: how big a lattice is needed for interesting results; what sort of algorithms are best to use; and how many sweeps are needed to get valid results. We seem to be at the threshold of learning things about these issues, but for now, the memory size issue will necessarily be addressed in terms of best guesses, rules of thumb, and researchers` opinions.

  13. Effects of acute cortisol administration on perceptual priming of trauma-related material.

    PubMed

    Holz, Elena; Lass-Hennemann, Johanna; Streb, Markus; Pfaltz, Monique; Michael, Tanja

    2014-01-01

    Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a "traumatic" context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a "traumatic" context. Two groups of healthy volunteers (N = 160) watched either neutral or "traumatic" picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the "traumatic" stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a "traumatic" context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the "traumatic" stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a "traumatic" context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support the idea that administration

  14. Effects of Acute Cortisol Administration on Perceptual Priming of Trauma-Related Material

    PubMed Central

    Streb, Markus; Pfaltz, Monique; Michael, Tanja

    2014-01-01

    Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support

  15. Non-attended representations are perceptual rather than unconscious in nature.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Fahrenfort, Johannes J; Ambroziak, Klaudia B; Lamme, Victor A F

    2012-01-01

    Introspectively we experience a phenomenally rich world. In stark contrast, many studies show that we can only report on the few items that we happen to attend to. So what happens to the unattended objects? Are these consciously processed as our first person perspective would have us believe, or are they - in fact - entirely unconscious? Here, we attempt to resolve this question by investigating the perceptual characteristics of visual sensory memory. Sensory memory is a fleeting, high-capacity form of memory that precedes attentional selection and working memory. We found that memory capacity benefits from figural information induced by the Kanizsa illusion. Importantly, this benefit was larger for sensory memory than for working memory and depended critically on the illusion, not on the stimulus configuration. This shows that pre-attentive sensory memory contains representations that have a genuinely perceptual nature, suggesting that non-attended representations are phenomenally experienced rather than unconscious. PMID:23209639

  16. Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women.

    PubMed

    Rubin, Leah H; Pyra, Maria; Cook, Judith A; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A; Alden, Christine; Gustafson, Deborah R; Maki, Pauline M

    2016-04-01

    The prevalence of post-traumatic stress disorder (PTSD) is higher among HIV-infected (HIV+) women compared with HIV-uninfected (HIV-) women, and deficits in episodic memory are a common feature of both PTSD and HIV infection. We investigated the association between a probable PTSD diagnosis using the PTSD Checklist-Civilian (PCL-C) version and verbal learning and memory using the Hopkins Verbal Learning Test in 1004 HIV+ and 496 at-risk HIV- women. HIV infection was not associated with a probable PTSD diagnosis (17% HIV+, 16% HIV-; p = 0.49) but was associated with lower verbal learning (p < 0.01) and memory scores (p < 0.01). Irrespective of HIV status, a probable PTSD diagnosis was associated with poorer performance in verbal learning (p < 0.01) and memory (p < 0.01) and psychomotor speed (p < 0.001). The particular pattern of cognitive correlates of probable PTSD varied depending on exposure to sexual abuse and/or violence, with exposure to either being associated with a greater number of cognitive domains and a worse cognitive profile. A statistical interaction between HIV serostatus and PTSD was observed on the fine motor skills domain (p = 0.03). Among women with probable PTSD, HIV- women performed worse than HIV+ women on fine motor skills (p = 0.01), but among women without probable PTSD, there was no significant difference in performance between the groups (p = 0.59). These findings underscore the importance of considering mental health factors as correlates to cognitive deficits in women with HIV. PMID:26404435

  17. Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women

    PubMed Central

    Pyra, Maria; Cook, Judith A.; Weber, Kathleen M.; Cohen, Mardge H.; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A.; Alden, Christine; Gustafson, Deborah R.; Maki, Pauline M.

    2015-01-01

    The prevalence of post-traumatic stress disorder (PTSD) is higher among HIV-infected (HIV+) women compared with HIV-uninfected (HIV−) women, and deficits in episodic memory are a common feature of both PTSD and HIV infection. We investigated the association between a probable PTSD diagnosis using the PTSD Checklist-Civilian (PCL-C) version and verbal learning and memory using the Hopkins Verbal Learning Test in 1004 HIV+ and 496 at-risk HIV− women. HIV infection was not associated with a probable PTSD diagnosis (17 % HIV+, 16 % HIV−; p=0.49) but was associated with lower verbal learning (p<0.01) and memory scores (p<0.01). Irrespective of HIV status, a probable PTSD diagnosis was associated with poorer performance in verbal learning (p<0.01) and memory (p<0.01) and psychomotor speed (p<0.001). The particular pattern of cognitive correlates of probable PTSD varied depending on exposure to sexual abuse and/or violence, with exposure to either being associated with a greater number of cognitive domains and a worse cognitive profile. A statistical interaction between HIV serostatus and PTSD was observed on the fine motor skills domain (p= 0.03). Among women with probable PTSD, HIV− women performed worse than HIV+ women on fine motor skills (p=0.01), but among women without probable PTSD, there was no significant difference in performance between the groups (p= 0.59). These findings underscore the importance of considering mental health factors as correlates to cognitive deficits in women with HIV. PMID:26404435

  18. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  19. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    PubMed

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113

  20. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects

    PubMed Central

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113

  1. Perceptually specific and perceptually non-specific influences on rereading benefits for spatially transformed text: evidence from eye movements.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2012-12-01

    The present study used eye tracking methodology to examine rereading benefits for spatially transformed text. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either applying the same type of transformation to the word during the first and second presentations (i.e., the congruent condition), or employing two different types of transformations across the two presentations of the word (i.e., the incongruent condition). Perceptual specificity effects were demonstrated such that fixation times for the second presentation of the target word were shorter for the congruent condition compared to the incongruent condition. Moreover, we demonstrated an additional perceptually non-specific effect such that second reading fixation times were shorter for the incongruent condition relative to a baseline condition that employed a normal typography (i.e., non-transformed) during the first presentation and a transformation during the second presentation. Both of these effects (i.e., perceptually specific and perceptually non-specific) were similar in magnitude for high and low frequency words, and both effects persisted across a 1 week lag between the first and second readings. We discuss the present findings in the context of the distinction between conscious and unconscious memory, and the distinction between perceptually versus conceptually driven processing. PMID:23138157

  2. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment.

    PubMed

    Frtusova, Jana B; Phillips, Natalie A

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106

  3. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    PubMed Central

    Frtusova, Jana B.; Phillips, Natalie A.

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106

  4. Improved thermal stability of N-doped Sb materials for high-speed phase change memory application

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Zhang, Jianhao; Yuan, Li; Xue, Jianzhong; Sui, Yongxing; Wu, Weihua; Song, Sannian; Song, Zhitang

    2016-05-01

    Compared with pure Sb, N-doped Sb material was proved to be a promising candidate for the phase change memory (PCM) use because of its higher crystallization temperature (˜250 °C), larger crystallization activation energy (3.53 eV), and better data retention ability (166 °C for 10 years). N-doping also broadened the band gap and refined grain size. The reversible resistance transition could be achieved by an electric pulse as short as 8 ns for the PCM cell based on N-doped Sb material. A lower operation power consumption (the energy for RESET operation 2.2 × 10-12 J) was obtained. In addition, N-doped Sb material showed a good endurance of 1.8 × 105 cycles.

  5. Investigation of Cr0.06(Sb4Te)0.94 alloy for high-speed and high-data-retention phase change random access memory applications

    NASA Astrophysics Data System (ADS)

    Li, Le; Song, Sannian; Zhang, Zhonghua; Song, Zhitang; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2015-08-01

    The effects of Cr doping on the structural and electrical properties of Cr x (Sb4Te)1- x materials have been investigated in order to solve the contradiction between thermal stability and fast crystallization speed of Sb4Te alloys. Cr0.06(Sb4Te)0.94 alloy is considered to be a potential candidate for phase change random access memory (PCM), as evidenced by a higher crystallization temperature (204 °C), a better data retention ability (137.6 °C for 10 years), a lower melting point (558 °C), a lower energy consumption, and a faster switching speed in comparison with those of Ge2Sb2Te5. A reversible switching between set and reset states can be realized by an electric pulse as short as 5 ns for Cr0.06(Sb4Te)0.94-based PCM cell. In addition, Cr0.06(Sb4Te)0.94 shows good endurance up to 1.1 × 104 cycles with a resistance ratio of about two orders of magnitude.

  6. Perceptual Constraints in Phonotactic Learning

    ERIC Educational Resources Information Center

    Endress, Ansgar D.; Mehler, Jacques

    2010-01-01

    Structural regularities in language have often been attributed to symbolic or statistical general purpose computations, whereas perceptual factors influencing such generalizations have received less interest. Here, we use phonotactic-like constraints as a case study to ask whether the structural properties of specific perceptual and memory…

  7. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  8. Cognitive neuroscience of human memory.

    PubMed

    Gabrieli, J D

    1998-01-01

    Current knowledge is summarized about long-term memory systems of the human brain, with memory systems defined as specific neural networks that support specific mnemonic processes. The summary integrates convergent evidence from neuropsychological studies of patients with brain lesions and from functional neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance imaging (fMRI). Evidence is reviewed about the specific roles of hippocampal and parahippocampal regions, the amygdala, the basal ganglia, and various neocortical areas in declarative memory. Evidence is also reviewed about which brain regions mediate specific kinds of procedural memory, including sensorimotor, perceptual, and cognitive skill learning; perceptual and conceptual repetition priming; and several forms of conditioning. Findings are discussed in terms of the functional neural architecture of normal memory, age-related changes in memory performance, and neurological conditions that affect memory such as amnesia. Alzheimer's disease, Parkinson's disease, and Huntington's disease. PMID:9496622

  9. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    PubMed

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present. PMID:27033133

  10. Perceptual basis for reactive teleoperation.

    SciTech Connect

    Park, Y. S.; Ewing, T. F.; Boyle, J. M.; Yule, T. J.

    2001-08-28

    To enhance task performance in partially structured environment, enhancement of teleoperation was proposed by introducing autonomous behaviors. Such autonomy is implemented based on reactive robotic architecture, where reactive motor agents that directly couples sensory inputs and motor actions become the building blocks. To this end, presented in this paper is a perceptual basis for the motor agents. The perceptual basis consists of perceptual agents that extracts environmental information from a structured light vision system and provide action oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms--sensor fission, fusion, and fashion--becomes basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.