Science.gov

Sample records for memory polymer stents

  1. Thermomechanical Properties, Collapse Pressure, and Expansion of Shape Memory Polymer Neurovascular Stent Prototypes

    PubMed Central

    Baer, Géraldine M.; Wilson, Thomas S.; Small, Ward; Hartman, Jonathan; Benett, William J.; Matthews, Dennis L.; Maitland, Duncan J.

    2011-01-01

    Shape memory polymer stent prototypes were fabricated from thermoplastic polyurethane. Commercial stents are generally made of stainless steel or other alloys. These alloys are too stiff and prevent most stent designs from being able to navigate small and tortuous vessels to reach intracranial lesions. A solid tubular model and a high flexibility laser etched model are presented. The stents were tested for collapse in a pressure chamber. At 37°C, the full collapse pressure was comparable to that of commercially available stents, and higher than the estimated maximum pressure exerted by intracranial arteries. However, there is a potential for onset of collapse, which needs further study. The stents were crimped and expanded, the laser-etched stent showed full recovery with an expansion ratio of 2.7 and a 1% axial shortening. PMID:19107804

  2. Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent

    SciTech Connect

    Baer, G M; Small IV, W; Wilson, T S; Benett, W J; Matthews, D L; Hartman, J; Maitland, D J

    2007-04-25

    Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

  3. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    PubMed Central

    Baer, Géraldine M; Small, Ward; Wilson, Thomas S; Benett, William J; Matthews, Dennis L; Hartman, Jonathan; Maitland, Duncan J

    2007-01-01

    Background Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. Methods A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. Results At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W. Conclusion We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated. PMID:18042294

  4. Development of a polymer stent with shape memory effect as a drug delivery system.

    PubMed

    Wache, H M; Tartakowska, D J; Hentrich, A; Wagner, M H

    2003-02-01

    The article presents a new concept for vascular endoprothesis (stent). Almost all commercially available stents are made of metallic materials. A common after effect of stent implantation is restenosis. Several studies on metal stents coated with drug show, that the use of a drug delivery system may reduce restenosis. The purpose of this work is to develop a new stent for the drug delivery application. The shape memory properties of thermoplastic polyurethane allow to design a new fully polymeric self-expandable stent. The possibility to use the stent as a drug delivery system is described. PMID:15348481

  5. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  6. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  7. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  8. Vessel healings after stenting with different polymers in STEMI patients

    PubMed Central

    Jin, Qin-Hua; Chen, Yun-Dai; Tian, Feng; Guo, Jun; Jing, Jing; Sun, Zhi-Jun

    2016-01-01

    Background Different stents implantation in ST-segment elevation myocardial infarction (STEMI) patients may influence the long term prognosis by affecting vessel healings after stenting. The aim of this study was to evaluate the vessel healings after implantation of drug eluting stents (DES) with biodegradable or durable polymer or of bare-metal stents (BMS) in patients with acute STEMI. Methods This study included 50 patients, who underwent follow up angiogram and optical coherence tomography (OCT) assessment about one year after percutaneous coronary intervention (PCI) for STEMI. According to the initial stents types, these patients were classified to durable (n = 19) or biodegradable polymer sirolimus-eluting stents (n = 15), or BMS (n = 16) groups. The conditions of stent struts coverage and malapposition were analyzed with OCT technique. Results A total of 9003 struts were analyzed: 3299, 3202 and 2502 from durable or biodegradable polymer DES, or BMS, respectively. Strut coverage rate (89.0%, 94.9% and 99.3%, respectively), malapposition presence (1.7%, 0.03% and 0 of struts, respectively) and average intimal thickness over struts (76 ± 12 µm, 161 ± 30 µm and 292 ± 29 µm, respectively) were significantly different among different stent groups (all P < 0.001). Conclusions Vessel healing status in STEMI patients is superior after implantation of biodegradable polymer DES than durable polymer DES, while both are inferior to BMS. PMID:27403139

  9. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  10. Shape memory alloy/shape memory polymer tools

    DOEpatents

    Seward, Kirk P.; Krulevitch, Peter A.

    2005-03-29

    Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.

  11. Surface shape memory in polymers

    NASA Astrophysics Data System (ADS)

    Mather, Patrick

    2012-02-01

    Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and

  12. Intense Inflammatory Reaction to Heparin Polymer Coated Intravascular Palmaz Stents in Porcine Arteries Compared to Uncoated Palmaz Stents

    SciTech Connect

    Goodwin, Scott C.; Yoon, Hyo-Chun; Chen, Gary; Abdel-Sayed, Peter; Costantino, Mary M.; Bonilla, Sheila M.; Nishimura, Earl

    2003-04-15

    The objective of this study was to evaluate the efficacy of heparin-polymer-coated intravascular stents in the reduction of vessel stenosis. Three types of coatings for Palmaz stents were tested: 1) heparin covalently bound to a polyethylene oxide(Hp-PEO) tether; 2) heparin copolymerized with ethylene vinyl acetate(Hp-Elvax) and 3) Elvax alone. Polymer-coated stents and uncoated controls were deployed in the external iliac arteries following endothelial injury in 18 swine. The animals were maintained on anatherogenic diet and examined by angiography at 6 and 12 weeks. The stented segments were then harvested for histopathologic analysis. Both types of heparin-coated stents resulted in increased luminal narrowing as compared to the contralateral uncoated stents. At 6 weeks, average luminal stenosis was 48% for Hp-PEO stents vs 35% for uncoated stents (p < 0.05). At 12 weeks, average luminal stenosis was 36% for Hp-PEO stents vs 26% for uncoated stents(p = NS). For Hp-Elvax stents, the average stenosis was 58% vs 33% for uncoated controls (p <0.05) at 6 weeks and 47% vs 19% for uncoated controls(p < 0.05) at 12 weeks. There was no significant difference between Hp-Elvax stents and Elvax stents(p = NS). Increased luminal narrowing in coated stents was primarily secondary to a marked inflammatory response.Heparin-polyethylene oxide and heparin-ethylene vinyl acetate-coated stents resulted in increased luminal narrowing as compared with uncoated stents, due to a marked inflammatory response.

  13. Applications of memory alloy stent in vertebral fractures

    PubMed Central

    Yimin, Yang; Zhi, Zhang; ZhiWei, Ren; Wei, Ma; Jha, Rajiv Kumar

    2014-01-01

    Background The aim of this study was to evaluate the feasibility of treating vertebral compression fractures using an autonomously developed nitinol memory alloy vertebral stent. Material/Methods Thoracolumbar vertebral specimens from adult human cadavers were made into models of compression fractures. The models were divided into group A, which received percutaneous kyphoplasty (PKP), balloon dilation, and nitinol memory alloy vertebral stent implantation (PKP + nitinol stent group); group B, which received percutaneous vertebroplasty (PVP) and direct implantation of a nitinol memory alloy vertebral stent (PVP + nitinol stent group); and group C, which received PKP, balloon dilation, and bone cement vertebroplasty (PKP + polymethylmethacrylate (PMMA) group). Vertebral heights were measured before and after the surgery and the water bath incubation to compare the impact of the 3 different surgical approaches on reducing vertebral compression. Results The 3 surgical groups could all significantly restore the heights of compressed vertebral bodies. The vertebral heights of the PKP + nitinol stent group, PVP + nitinol stent group, and PKP + PMMA group were changed from the preoperative levels of (1.59±0.08) cm, (1.68±0.08) cm, and (1.66±0.11) cm to the postoperative levels of (2.00±0.09) cm, (1.87±0.04) cm, and (1.99±0.09) cm, respectively. After the water bath, the vertebral heights of each group were changed to (2.10±0.07) cm, (1.98±0.09) cm, and (2.00±0.10) cm, respectively. Pairwise comparison of the differences between the preoperative and postoperative vertebral heights showed that group A and group B differed significantly (P=0.000); group B and group C differed significantly (P=0.003); and group A and group C had no significant difference (P=0.172). Pairwise comparison of the differences in the vertebral heights before and after the water bath showed that group A and group C differed significantly (P=0.000); group B and group C differed significantly

  14. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    PubMed

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent. PMID:27127426

  15. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study

    PubMed Central

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza

    2016-01-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421–1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent. PMID:27127426

  16. A new polymer-free drug-eluting stent with nanocarriers eluting sirolimus from stent-plus-balloon compared with bare-metal stent and with biolimus A9 eluting stent in porcine coronary arteries

    PubMed Central

    Galon, Micheli Z.; Gutierrez, Paulo S.; Sojitra, Prakash; Vyas, Ashwin; Doshi, Manish; Lemos, Pedro A.

    2015-01-01

    Background Permanent polymers in first generation drug-eluting stent (DES) have been imputed to be a possible cause of persistent inflammation, remodeling, malapposition and late stent thrombosis. We aim to describe the in vivo experimental result of a new polymer-free DES eluting sirolimus from stent-plus-balloon (Focus np stent, Envision Scientific) compared with a bare-metal stent (BMS) (Amazonia CroCo, Minvasys) and with a biolimus A9 eluting stent (Biomatrix, Biosensors). Methods In 10 juvenile pigs, 23 coronary stents were implanted in the coronary arteries (8 Amazonia CroCo, 8 Focus np, and 7 Biomatrix). At 28-day follow-up, optical coherence tomography (OCT) and histology were used to evaluate neointimal hyperplasia and healing response. Results According to OCT analysis, Focus np stents had a greater lumen area and less neointimal hyperplasia response than BMS and Biomatrix had. Histomorphometry results showed less neointimal hyperplasia in Focus np than in BMS. Histology showed a higher fibrin deposition in Biomatrix stent compared to Focus np and BMS. Conclusions The new polymer-free DES with sirolimus eluted from stent-plus-balloon demonstrated safety and reduced neointimal proliferation compared with the BMS and Biomatrix stents at 28-day follow-up in this porcine coronary model. This new polymer-free DES is promising and warrants further clinical studies. PMID:25984451

  17. Temperature-memory polymer actuators

    PubMed Central

    Behl, Marc; Kratz, Karl; Noechel, Ulrich; Sauter, Tilman; Lendlein, Andreas

    2013-01-01

    Reading out the temperature-memory of polymers, which is their ability to remember the temperature where they were deformed recently, is thus far unavoidably linked to erasing this memory effect. Here temperature-memory polymer actuators (TMPAs) based on cross-linked copolymer networks exhibiting a broad melting temperature range (ΔTm) are presented, which are capable of a long-term temperature-memory enabling more than 250 cyclic thermally controlled actuations with almost constant performance. The characteristic actuation temperatures Tacts of TMPAs can be adjusted by a purely physical process, guiding a directed crystallization in a temperature range of up to 40 °C by variation of the parameter Tsep in a nearly linear correlation. The temperature Tsep divides ΔTm into an upper Tm range (T > Tsep) forming a reshapeable actuation geometry that determines the skeleton and a lower Tm range (T < Tsep) that enables the temperature-controlled bidirectional actuation by crystallization-induced elongation and melting-induced contraction. The macroscopic bidirectional shape changes in TMPAs could be correlated with changes in the nanostructure of the crystallizable domains as a result of in situ X-ray investigations. Potential applications of TMPAs include heat engines with adjustable rotation rate and active building facades with self-regulating sun protectors. PMID:23836673

  18. Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro.

    PubMed

    Cabanlit, Maricel; Maitland, Duncan; Wilson, Thomas; Simon, Scott; Wun, Theodore; Gershwin, M Eric; Van de Water, Judy

    2007-01-01

    Shape memory polymers (SMPs) are a class of polymeric materials used in various medical interventions such as vascular stents. In this work, two SMPs, thermoplastic (TP) and thermoset (TS), have been measured in vitro for the degree of cellular and protein adhesion, their ability to stimulate inflammatory cytokine production, as well as the effects of the SMPs on the haemostatic system. The stimulatory properties of SMPs on neutrophils have also been directly addressed. Based on the studies of SMP biocompatibility as defined by inflammation, thrombogenesis, and the activation of both platelets and neutrophils, the TS and TP SMP materials are unlikely to stimulate an inflammatory response in vivo. [figure: see text] PMID:17238230

  19. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  20. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  1. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  2. Advances with polymer-free amphilimus-eluting stents.

    PubMed

    CARRIé, Didier

    2016-06-01

    Despite the improved clinical outcomes following the availability of second generation drug eluting stents (DES), percutaneous coronary intervention (PCI) is associated with worse clinical and angiographic outcomes among the patients with diabetes mellitus (DM) than among non-diabetics. The Cre8 Amphilimus-eluting DES is polymer-free, resulting in a reduced inflammatory response and lower risk of stent thrombosis. In a clinical study, it showed equivalent efficacy and safety in diabetic and non-diabetic populations, a unique finding among DES studies. These findings were confirmed in a real-world study, Investig8, and another real-world study, Particip8, is ongoing. The RESERVOIR Clinical Trial recruited patients with DM and showed noninferiority of the Cre8 DES compared to an everolimus eluting DES (EES) in the overall group but showed a statistical superiority of Cre8 in diabetic patients with higher metabolic dysfunctions. The Cre8 DES is therefore a valuable option for this important patient population. PMID:26934663

  3. Application of memory metallic stents to urinary tract disorders in pediatric patients.

    PubMed

    Kamata, Shinkichi; Usui, Noriaki; Kamiyama, Masafumi; Yoneda, Akihiro; Tazuke, Yuko; Ooue, Takaharu

    2005-03-01

    The use of memory metallic stents for the urinary tract in pediatric patients has not been reported. The authors report on 2 patients with urinary tract disorders who were successfully treated with a memory metallic stent. A thermoexpandable, nickel-titanium alloy stent was placed at the urethroureteral junction of a 4-year-old boy with ureteral stenosis associated with cloacal exstrophy for 18 months and at the urethra of a 2-year-old girl with ischuria after a repair of cloacal anomaly for 6 months. Temporary insertion of a memory metallic stent is a safe and effective alternative for organic stricture or functional obstruction of the urinary tract in pediatric patients. PMID:15793713

  4. Prognostic Significance of Polymer Coatings in Zotarolimus-Eluting Stents.

    PubMed

    Iqbal, M Bilal; Nadra, Imad J; Din, Jehangir N; Hendry, Cara; Ding, Lillian; Fung, Anthony; Aymong, Eve; Chan, Albert W; Hodge, Steven; Robinson, Simon D; Della Siega, Anthony

    2016-03-01

    Polymer coatings on drug-eluting stents (DES) serve as a vehicle for delivery of antirestenotic drugs. Whether they influence outcomes for contemporary DES is unknown. The evolution of polymer coatings for zotarolimus-eluting stents (ZES) provides a natural experiment that facilitates such analysis. The Resolute ZES (R-ZES) uses the same antirestenotic drug as the Endeavor ZES (E-ZES) but has a more biocompatible polymer with enhanced drug release kinetics. However, there are limited data on the real-world comparative efficacy of R-ZES and the preceding E-ZES. Thus, we analyzed 17,643 patients who received either E-ZES or R-ZES from 2008 to 2014 from the British Columbia Cardiac Registry. A total of 9,869 patients (56%) received E-ZES and 7,774 patients (44%) received R-ZES. Compared with E-ZES, R-ZES was associated with lower 2-year mortality (4.1% vs 6.4%, p <0.001) and 2-year target vessel revascularization (TVR; 6.8% vs 10.7%, p <0.001). R-ZES use was an independent predictor of lower mortality rate and TVR. This was confirmed in propensity-matched analyses for 2-year mortality (hazard ratio [HR] 0.59, 95% CI 0.49 to 0.71, p <0.001) and 2-year TVR (HR 0.86, 95% CI 0.75 to 0.98, p = 0.032). Instrumental variable analyses demonstrated R-ZES to be associated with lower 2-year mortality (Δ = -2.2%, 95% CI -4.3% to -0.2%, p = 0.032) and 2-year TVR (Δ = -3.3% to 95% CI -6.1% to -0.7%, p = 0.015). Acknowledging the limitations of observational analyses, this study has shown that R-ZES was associated with lower long-term TVR and mortality. These data are reassuring for the newer R-ZES and demonstrate how polymer coatings may influence the clinical performance of DES with wider implications for future DES development and design. PMID:26796194

  5. Biomedical engineering in design and application of nitinol stents with shape memory effect

    NASA Astrophysics Data System (ADS)

    Ryklina, E. P.; Khmelevskaya, I. Y.; Morozova, Tamara V.; Prokoshkin, S. D.

    1996-04-01

    Our studies in the field of endosurgery in collaboration with the physicians of the National Research Center of Surgery of the Academy of Medical Sciences are carried out beginning in 1983. These studies laid the foundation for the new direction of X-ray surgery--X-ray Nitinol stenting of vessels and tubular structures. X-ray nitinol stents are unique self-fixing shells based on the shape memory effect and superelasticity of nickel-titanium alloys self- reconstructed under human body temperature. Applied for stenting of arteries in cases of stenosis etc., bile ducts in cases of benign and malignant stenoses, digestive tract in cases of oesophageal cancer and cervical canal uterus in cases of postsurgical atresiss and strictures of uterine. The purpose of stenting is restoration of the shape of artery or tubular structure by a cylinder frame formation. The especially elaborated original method of stenting allows to avoid the traditional surgical operation, i.e. the stenting is performed without blood, narcosis and surgical knife. The stent to be implanted is transported into the affected zone through the puncture under the X-ray control. Clinical applications of X-ray endovascular stenting has been started in March 1984. During this period nearly 400 operations on stenting have been performed on femoral, iliac, brachio-cephalic, subclavian arteries, bile ducts, tracheas, digestive tract and cervical canal uterus.

  6. In vivo assessment of stent recoil of biodegradable polymer-coated cobalt–chromium sirolimus-eluting coronary stent system☆

    PubMed Central

    Abhyankar, Atul D.; Thakkar, Ashok S.

    2012-01-01

    Introduction Immediate and acute stent recoil has been observed following balloon deflation in normal and diseased coronary arteries, and the degree varies by stent design. Methods A total of 19 patients, who underwent elective stent implantation for single de novo native coronary artery lesions, were enrolled: all patients treated with the biodegradable polymer-coated sirolimus-eluting cobalt–chromium coronary stent system (Supralimus-Core®). The immediate, acute and cumulative stent recoil was assessed by quantitative coronary angiography. The cumulative stent recoil was measured at 24 h of stent implantation. Results The absolute late loss due to recoil was found 0.08 ± 0.19 mm for Immediate Stent Recoil (ISR), 0.05 ± 0.21 mm for Acute Stent Recoil (ASR) and 0.11 ± 0.25 mm for Cumulative Stent Recoil (CSR) respectively. Conclusions In vivo acute stent recoil of the Supralimus-Core® has higher radial strength compared to other available standard drug-eluting stents. PMID:23253404

  7. Stent Thrombogenicity Early in High Risk Interventional Settings is Driven by Stent Design and Deployment, and Protected by Polymer-Drug Coatings

    PubMed Central

    Kolandaivelu, Kumaran; Swaminathan, Rajesh; Gibson, William J.; Kolachalama, Vijaya B.; Nguyen-Ehrenreich, Kim-Lien; Giddings, Virginia L.; Coleman, Leslie; Wong, Gee K.; Edelman, Elazer R.

    2011-01-01

    Background Stent thrombosis is a lethal complication of endovascular intervention. Concern has been raised for the inherent risk associated with specific stent designs and drug-eluting coatings, yet clinical and animal support are equivocal. Methods and Results We examined whether drug-eluting coatings are inherently thrombogenic and if the response to these materials was determined to a greater degree by stent design and deployment using custom-built stents. Drug/polymer coatings uniformly reduce rather than increase thrombogenicity relative to matched bare-metal counterparts (0.65-fold, p=0.011). Thick-strutted (162 μm) stents were 1.5-fold more thrombogenic than otherwise identical thin-strutted (81 μm) devices in ex vivo flow loops (p<0.001), commensurate with 1.6-fold greater thrombus coverage three days after implantation in porcine coronary arteries (p=0.004). When bare-metal stents were deployed in malapposed or overlapping configurations, thrombogenicity increased compared to apposed, length-matched controls (1.58-fold, p=0.001 and 2.32-fold, p<0.001). The thrombogenicity of polymer-coated stents with thin struts was lowest in all configurations and remained insensitive to incomplete deployment. Computational modeling-based predictions of stent-induced flow derangements correlated with spatial distribution of formed clots. Conclusions Contrary to popular conception drug/polymer coatings do not inherently increase acute stent clotting – they reduce thrombosis. However, strut dimensions and positioning relative to the vessel wall are critical factors in modulating stent thrombogenicity. Optimal stent geometries and surfaces, as demonstrated with thin stent struts, help reduce the potential for thrombosis despite complex stent configurations and variability in deployment. PMID:21422389

  8. Medical applications of shape memory polymers

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.

    2005-01-01

    Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.

  9. Preclinical Study of a Biodegradable Polymer-based Stent with Abluminal Sirolimus Release

    PubMed Central

    Takimura, Celso Kiyochi; Campos, Carlos Augusto Homem M.; Melo, Pedro Henrique Magualhães Craveiro; Campos, Julliana Carvalho; Gutierrez, Paulo Sampaio; Borges, Thiago Francisco Costa; Curado, Luciano; Morato, Spero Penha; Laurindo, Francisco Rafael Martins; Lemos, Pedro Alves

    2014-01-01

    Background Bioabsorbable polymer stents with drug elution only on the abluminal surface may be safer than durable polymer drug-eluting stents. Objective To report the experimental findings with the InspironTM stent - a bioabsorbable polymer-coated stent with sirolimus release from the abluminal surface only, recently approved for clinical use. Methods 45 stents were implanted in the coronary arteries of 15 pigs. On day 28 after implantation, angiographic, intracoronary ultrasonographic and histomorphological data were collected. Five groups were analyzed: Group I (nine bare-metal stents); Group II (nine coated with bioabsorbable polymer on the luminal and abluminal surfaces); Group III (eight stents coated with bioabsorbable polymer on the abluminal surface); Group IV (nine stents with bioabsorbable polymer and sirolimus on the luminal and abluminal surfaces); and Group V (ten stents with bioabsorbable polymer and sirolimus only on the abluminal surface). Results The following results were observed for Groups I, II, III, IV and V, respectively: percentage stenosis of 29 ± 20; 36 ± 14; 33 ± 19; 22 ± 13 and 26 ± 15 (p = 0.443); late lumen loss (in mm) of 1.02 ± 0.60; 1.24 ± 0.48; 1.11 ± 0.54; 0.72 ± 0.44 and 0.78 ± 0.39 (p = 0.253); neointimal area (in mm2) of 2.60 ± 1.99; 2.74 ± 1.51; 2.74 ± 1.30; 1.30 ± 1.14 and 0.97 ± 0.84 (p = 0.001; Groups IV and V versus Groups I, II and III); and percentage neointimal area of 35 ± 25; 38 ± 18; 39 ± 19; 19 ± 18 and 15 ± 12 (p = 0.001; Groups IV and V versus Groups I, II and III). Injury and inflammation scores were low and with no differences between the groups. Conclusion The InspironTM stent proved to be safe and was able to significantly inhibit the neointimal hyperplasia observed on day 28 after implantation in porcine coronary arteries. PMID:24759951

  10. Biodegradable polymer stents vs second generation drug eluting stents: A meta-analysis and systematic review of randomized controlled trials

    PubMed Central

    Pandya, Bhavi; Gaddam, Sainath; Raza, Muhammad; Asti, Deepak; Nalluri, Nikhil; Vazzana, Thomas; Kandov, Ruben; Lafferty, James

    2016-01-01

    AIM: To evaluate the premise, that biodegradable polymer drug eluting stents (BD-DES) could improve clinical outcomes compared to second generation permanent polymer drug eluting stents (PP-DES), we pooled the data from all the available randomized control trials (RCT) comparing the clinical performance of both these stents. METHODS: A systematic literature search of PubMed, Cochrane, Google scholar databases, EMBASE, MEDLINE and SCOPUS was performed during time period of January 2001 to April 2015 for RCT and comparing safety and efficacy of BD-DES vs second generation PP-DES. The primary outcomes of interest were definite stent thrombosis, target lesion revascularization, myocardial infarction, cardiac deaths and total deaths during the study period. RESULTS: A total of 11 RCT’s with a total of 12644 patients were included in the meta-analysis, with 6598 patients in BD-DES vs 6046 patients in second generation PP-DES. The mean follow up period was 16 mo. Pooled analysis showed non-inferiority of BD-DES, comparing events of stent thrombosis (OR = 1.42, 95%CI: 0.79-2.52, P = 0.24), target lesion revascularization (OR = 0.99, 95%CI: 0.84-1.17, P = 0.92), myocardial infarction (OR = 1.06, 95%CI: 0.86-1.29, P = 0.92), cardiac deaths (OR = 1.07, 95%CI 0.82-1.41, P = 0.94) and total deaths (OR = 0.96, 95%CI: 0.80-1.17, P = 0.71). CONCLUSION: BD-DES, when compared to second generation PP-DES, showed no significant advantage and the outcomes were comparable between both the groups. PMID:26981219

  11. Stent

    MedlinePlus

    ... kinds of stents. Most are made of a metal or plastic mesh-like material. However, stent grafts are made of fabric. They are used in larger arteries. An intraluminal coronary artery ... self-expanding, metal mesh tube. It is placed inside a coronary ...

  12. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  13. The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts.

    PubMed

    Steigerwald, Kristin; Merl, Sabine; Kastrati, Adnan; Wieczorek, Anna; Vorpahl, Marc; Mannhold, Raimund; Vogeser, Michael; Hausleiter, Jörg; Joner, Michael; Schömig, Albert; Wessely, Rainer

    2009-02-01

    All four currently FDA-approved drug-eluting stents (DESs) contain a durable polymeric coating which can negatively impact vascular healing processes and eventually lead to adverse cardiac events. Aim of this study was the pre-clinical assessment of two novel rapamycin-eluting stent (RES) coating technologies that abstain from use of a durable polymer. Two distinctive RES coating technologies were evaluated in vitro and in the porcine coronary artery stent model. The R-poly(S) stent platform elutes rapamycin from a biodegradable polymer that is top coated with the resin shellac to minimize the amount of polymer. The R-pro(S) stent platform allows dual drug release of rapamycin and probucol, blended by shellac. HPLC-based determination of pharmacokinetics indicated drug release for more than 28 days. At 30 days, neointimal formation was found to be significantly decreased for both DESs compared to bare-metal stents. Assessment of vascular healing revealed absence of increased inflammation in both DESs, which is commonly observed in DES with non-erodible polymeric coating. In conclusion, the pre-clinical assessment of RESs with resin-based or dual drug coating indicated an adequate efficacy profile as well as a beneficial effect for vascular healing processes. These results encourage the transfer of these technologies to clinical evaluation. PMID:18990438

  14. Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties

    PubMed Central

    Hearon, Keith; Nash, Landon D.; Volk, Brent L.; Ware, Taylor; Lewicki, James P.; Voit, Walter E.; Wilson, Thomas S.

    2014-01-01

    Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing. Neurovascular stent prototypes were fabricated by dip-coating and laser machining to demonstrate processability. PMID:25411531

  15. Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material.

    PubMed

    Boodagh, Parnaz; Guo, Dong-Jie; Nagiah, Naveen; Tan, Wei

    2016-08-01

    The field of percutaneous coronary intervention has seen a plethora of advances over the past few decades, which have allowed for its development into safe and effective treatments for patients suffering from cardiovascular diseases. However, stent thrombosis and in-stent restenosis remain clinically significant problems. Herein, we describe the synthesis and characterization of fibrous polymer coatings on stent material nitinol, in the hopes of developing a more suitable stent surface to enhance re-endothelialization. Electrospinning technique was used to fabricate polyethylene glycol dimethacrylate/poly l-lactide acid (PEGDMA/PLLA) blend fiber substrate with tunable elasticity and hydrophilicity for use as coatings. Attachment of platelets and arterial smooth muscle cells (SMC) onto the coatings as well as the secretory effect of mesenchymal stem cells cultured on the coatings on the proliferation and migration of arterial endothelial cells and SMCs were assessed. It was demonstrated that electrospun PEGDMA/PLLA coating with 1:1 ratio of the components on the nitinol stent-reduced platelet and SMC attachment and increased stem cell secretory factors that enhance endothelial proliferation. We therefore postulate that the fibrous coating surface would possess enhanced biological compatibility of nitinol stents and hold the potential in preventing stent failure through restenosis and thrombosis. PMID:27137629

  16. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    PubMed

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-01-01

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent. PMID:27271619

  17. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    PubMed Central

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J.; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-01-01

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent. PMID:27271619

  18. Fabrication and characterization of shape memory polymers at small-scales

    NASA Astrophysics Data System (ADS)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  19. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J.; Small, IV, Ward; Hartman, Jonathan

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  20. Temperature and electrical memory of polymer fibers

    SciTech Connect

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  1. The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence.

    PubMed

    Chisari, Alberto; Pistritto, Anna Maria; Piccolo, Raffaele; La Manna, Alessio; Danzi, Gian Battista

    2016-01-01

    The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The high elasticity of the biodegradable-polymer (PDLLA-PCL) and the abluminal gradient coating technology are additional novel features of this coronary device. The Ultimaster DES has undergone extensive clinical evaluation in two studies: The CENTURY I and II trials. Results from these two landmark studies suggested an excellent efficacy and safety profile of the Ultimaster DES across several lesion and patient subsets, with similar clinical outcomes to contemporary, new-generation DES. The aim of this review is to summarize the rationale behind this novel DES technology and to provide an update of available evidence about the clinical performance of the Ultimaster DES. PMID:27608017

  2. Thermomechanical properties of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Airoldi, Graziella; Corsi, Andrea

    1998-10-01

    Segmented polyurethanes containing soft segments with low molecular weight show shape-memorizing properties. In these materials the advantages of polyurethanes are combined with the features of smart material technology. Shape memory polymers can repeatedly transform their shape and hardness. The dependence of thermal and mechanical properties of shape memory polyurethanes on temperature were investigated experimentally by means of differential scanning calorimetry and static mechanical testing. The results show that as the thermal cycles progress, the residual strain increases and the recovery strain decreases even if these changes saturate after a suitable number of thermomechanical cycles. This kind of behavior suggest a possible training procedure in order to have a reproducible mechanical behavior when the shape memory polymer is introduced into an operating device. Some possible applications in the textile machinery are also shown.

  3. Memory operation mechanism of fullerene-containing polymer memory

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Fujii, Daiki

    2015-03-01

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  4. Memory operation mechanism of fullerene-containing polymer memory

    SciTech Connect

    Nakajima, Anri Fujii, Daiki

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  5. Preclinical evaluation of a novel abluminal surface coated sirolimus eluting stent with biodegradable polymer matrix

    PubMed Central

    Doshi, Manish; Galloni, Marco; Vignolini, Christina; Vyas, Ashwin; Chevli, Bhavesh; Sheiban, Imad

    2015-01-01

    Background Second generation of drug eluting stents (DES) has attempted to improve safety using abluminal sirolimus drug delivery with biodegradable polymers matrix. The present preclinical study was designed to investigate the safety and efficacy profile of Abluminus™ stents (SES). This is a new coronary stent with sirolimus and biodegradable polymer matrix coated on abluminal stent and balloon surface. Methods SES were compared with two controls: bare metal stent (BMS) and BMS + polymer coated stents (PC). All devices (40 stents) were implanted in porcine coronary arteries with primary endpoint of endothelialization at 7 days and subsequent histological and morphometric evaluations at 7, 30 and 90 days. Results Early endothelialization at seven days was complete in all stents. Histology at 30 days revealed minimum inflammation in all groups and increased at 90 days in PC group while it was absent at 180 days. Thirty day morphometry showed significantly reduction of neointimal area in Abluminus™ (SES 0.96±0.48 mm2; BMS 1.83±0.34 mm2; PC 1.76±0.55 mm2; P<0.05); after 90 days neointimal area was 1.10±0.54 mm2 for SES; 1.92±0.36 mm2 for BMS; and 1.94±0.48 mm2 for PC; P<0.05). Neointimal thickness at 30 and 90 days respectively was 0.15±0.07 and 0.18±0.10 mm for SES, 0.57±0.08 and 0.61±0.09 mm for BMS and 0.52±0.09 and 0.59±0.08 mm, P<0.001 for PC group. Conclusions The most significant experimental evidence appears to be earlier endothelialization at 7 days for SES which led to safety of the device. Efficacy of the device was also observed by a reduced neointimal thickness and minimized inflammatory score at all follow-ups. Termination of antiplatelet at 30 days has not shown any further complications. Polymer thickness was almost in negligible amount at 180 days with no inflammation. PMID:26331109

  6. A polymer-free Paclitaxel eluting coronary stent: effects of solvents, drug concentrations and coating methods.

    PubMed

    Lamichhane, Sujan; Gallo, Annemarie; Mani, Gopinath

    2014-06-01

    Some polymer coatings used in drug-eluting stents (DES) cause adverse reactions. Hence, the use of self-assembled monolayers (SAMs) as a polymer-free platform to deliver an anti-proliferative drug (paclitaxel-PAT) from 2D metal substrates was previously demonstrated. In this study, we optimized the PAT coating on SAMs coated 3D coronary stents. For the optimization process, we investigated the effects of solvents (ethanol, DMSO, and their mixtures), drug concentrations (2, 3, 4, 8, and 12 mg/mL) in the coating solution, and coating methods (dip and spray) on PAT deposition. A solvent mixture of 75:25 v/v Et-OH:DMSO was determined to be the best for obtaining smooth and homogenous PAT coating. PAT coated stents prepared using 8 mg/mL and 3 mg/mL concentrations of PAT by dip and spray coating methods, respectively, were optimal in terms of carrying adequate drug doses (0.35 µg/mm(2) for dipping and 0.76 µg/mm(2) for spraying) as well as negligible defects observed in the coating. PAT was successfully released from SAMs coated stents in a biphasic manner with an initial burst followed by a sustained release for up to 10 weeks. Thus, this study sheds light on the effects of solvents, drug concentrations, and coating methods on preparing a polymer-free DES. PMID:24705673

  7. Blood compatibility assessment of polymers used in drug eluting stent coatings.

    PubMed

    Szott, Luisa Mayorga; Irvin, Colleen A; Trollsas, Mikael; Hossainy, Syed; Ratner, Buddy D

    2016-06-01

    Differences in thrombosis rates have been observed clinically between different drug eluting stents. Such differences have been attributed to numerous factors, including stent design, injury created by the catheter delivery system, coating application technologies, and the degree of thrombogenicity of the polymer. The relative contributions of these factors are generally unknown. This work focuses on understanding the thrombogenicity of the polymer by examining mechanistic interactions with proteins, human platelets, and human monocytes of a number of polymers used in drug eluting stent coatings, in vitro. The importance for blood interactions of adsorbed albumin and the retention of albumin was suggested by the data. Microscopic imaging and immunostaining enhanced the interpretation of results from the lactate dehydrogenase cell counting assay and provided insight into platelet interactions, total quantification, and morphometry. In particular, highly spread platelets may be surface-passivating, possibly inhibiting ongoing thrombotic events. In many of the assays used here, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) showed a differentiated protein deposition pattern that may contribute to the explanation of the consistently thromboresistant blood-materials interaction for fluororpolymers cited in literature. These results are supportive of one of several possible factors contributing to the good thromboresistant clinical safety performance of PVDF-HFP coated drug eluting stents. PMID:27083991

  8. Development of multifunctional shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Naguib, Hani E.

    2015-05-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials which are able to respond to external stimulus such as temperature and deformation by changing their shape, and return to their original shape upon reversal or removal of the external stimulus. Although SMP materials have been studied extensively and have been used in a wide range of applications such as medicine, aerospace, and robotics, only few studies have looked at the potential of designing multifunctional SMP foams and blends. In this study, we investigate the feasibility of a design of SMP foam materials and blends. The actuator construct will contain a core SMP epoxy and blend of polylactic acid and polyurethane. The effects of the processing parameters of shape memory polymer (SMP) foams on the shape memory effect (SME) were investigated. The solid state foaming technique was employed to obtain the desired foamed cellular structure. One particular point of interest is to understand how the processing parameters affect the SMP and its glass transition temperature (Tg). By correctly tailoring these parameters it is possible to modify the SMP to have an improved shape memory effect SME.

  9. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    NASA Astrophysics Data System (ADS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-05-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures.

  10. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer.

    PubMed

    Bakhshi, Raheleh; Darbyshire, Arnold; Evans, James Eaton; You, Zhong; Lu, Jian; Seifalian, Alexander M

    2011-08-01

    Stent angioplasty is a successful treatment for arterial occlusion, particularly in coronary artery disease. The clinical communities were enthusiastic about the use of drug-eluting stents; however, these stents have a tendency to be a contributory factor towards late stage thrombosis, leading to mortality in a significant number of patients per year. This work presents an innovative approach in self-expanding coronary stents preparation. We developed a new nanocomposite polymer based on polyhedral oligomeric silsesquioxanes (POSS) and poly(carbonate-urea)urethane (PCU), which is an antithrombogenic and a non-biodegradable polymer with in situ endothelialization properties. The aim of this work is to coat a NiTi stent alloy with POSS-PCU. In prolonged applications in the human body, the corrosion of the NiTi alloy can result in the release of deleterious ions which leads to unwanted biological reactions. Coating the nitinol (NiTi) surface with POSS-PCU can enhance surface resistance and improve biocompatibility. Electrohydrodynamic spraying was used as the polymer deposition process and thus a few experiments were carried out to compare this process with casting. Prior to deposition the NiTi has been surface modified. The peel strength of the deposit was studied before and after degradation of the coating. It is shown that the surface modification enhances the peel strength by 300%. It is also indicated how the adhesion strength of the POSS-PCU coating changes post-exposure to physiological solutions comprised of hydrolytic, oxidative, peroxidative and biological media. This part of the study shows that the modified NiTi presents far greater resistance to decay in peel strength compared to the non-modified NiTi. PMID:21515031

  11. Some design considerations for polymer-free drug-eluting stents: a mathematical approach.

    PubMed

    McGinty, Sean; Vo, Tuoi T N; Meere, Martin; McKee, Sean; McCormick, Christopher

    2015-05-01

    In this paper we provide the first model of drug elution from polymer-free arterial drug-eluting stents. The generalised model is capable of predicting drug release from a number of polymer-free systems including those that exhibit nanoporous, nanotubular and smooth surfaces. We derive analytical solutions which allow us to easily determine the important parameters that control drug release. Drug release profiles are provided, and we offer design recommendations so that the release profile may be tailored to achieve the desired outcome. The models presented here are not specific to drug-eluting stents and may also be applied to other biomedical implants that use nanoporous surfaces to release a drug. PMID:25712386

  12. Micro devices using shape memory polymer patches for mated connections

    DOEpatents

    Lee, Abraham P.; Fitch, Joseph P.

    2000-01-01

    A method and micro device for repositioning or retrieving miniature devices located in inaccessible areas, such as medical devices (e.g., stents, embolic coils, etc.) located in a blood vessel. The micro repositioning or retrieving device and method uses shape memory polymer (SMP) patches formed into mating geometries (e.g., a hoop and a hook) for re-attachment of the deposited medical device to a catheter or guidewire. For example, SMP or other material hoops are formed on the medical device to be deposited in a blood vessel, and SMP hooks are formed on the micro device attached to a guidewire, whereby the hooks on the micro device attach to the hoops on the medical device, or vice versa, enabling deposition, movement, re-deposit, or retrieval of the medical device. By changing the temperature of the SMP hooks, the hooks can be attached to or released from the hoops located on the medical device. An exemplary method for forming the hooks and hoops involves depositing a sacrificial thin film on a substrate, patterning and processing the thin film to form openings therethrough, depositing or bonding SMP materials in the openings so as to be attached to the substrate, and removing the sacrificial thin film.

  13. Shape Memory Polymer Therapeutic Devices for Stroke

    SciTech Connect

    Wilson, T S; Small IV, W; Benett, W J; Bearinger, J P; Maitland, D J

    2005-10-11

    Shape memory polymers (SMPs) are attracting a great deal of interest in the scientific community for their use in applications ranging from light weight structures in space to micro-actuators in MEMS devices. These relatively new materials can be formed into a primary shape, reformed into a stable secondary shape, and then controllably actuated to recover their primary shape. The first part of this presentation will be a brief review of the types of polymeric structures which give rise to shape memory behavior in the context of new shape memory polymers with highly regular network structures recently developed at LLNL for biomedical devices. These new urethane SMPs have improved optical and physical properties relative to commercial SMPs, including improved clarity, high actuation force, and sharper actuation transition. In the second part of the presentation we discuss the development of SMP based devices for mechanically removing neurovascular occlusions which result in ischemic stroke. These devices are delivered to the site of the occlusion in compressed form, are pushed through the occlusion, actuated (usually optically) to take on an expanded conformation, and then used to dislodge and grip the thrombus while it is withdrawn through the catheter.

  14. Thermomechanical indentation of shape memory polymers.

    SciTech Connect

    Long, Kevin N.; Nguyen, Thao D.; Castro, Francisco; Qi, H. Jerry; Dunn, Martin L.; Shandas, Robin

    2007-04-01

    Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.

  15. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  16. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  17. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  18. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  19. Memristive learning and memory functions in polyvinyl alcohol polymer memristors

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Liu, Yi; Xia, Yidong; Gao, Xu; Xu, Bo; Wang, Suidong; Yin, Jiang; Liu, Zhiguo

    2014-07-01

    Polymer based memristive devices can offer simplicity in fabrication and at the same time promise functionalities for artificial neural applications. In this work, inherent learning and memory functions have been achieved in polymer memristive devices employing Polyvinyl Alcohol. The change in conduction in such polymer devices strongly depends on the pulse amplitude, duration and time interval. Through repetitive stimuli training, temporary short-term memory can transfer into consolidated long-term memory. These behaviors bear remarkable similarities to certain learning and memory functions of biological systems.

  20. Aging effects of epoxy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Dasharathi, Kannan; Shaw, John A.

    2013-04-01

    In this paper, experimental results are reported to study the influence of high-temperature aging on the thermo-mechanical behavior of a commercially-available, thermo-responsive shape memory polymer (SMP), Veri ex-E™ (glass transition temperature, Tg = 90-105 °C). To achieve a shape memory effect in high Tg SMPs such as this, high temperature cycles are required that can result in macromolecular scission and/or crosslinking, which we term thermo-mechanical aging (or chemo-rheological degradation). This process results in mechanical property changes and possible permanent set of the material that can limit the useful life of SMPs in practice. We compare experimental results of shape memory recovery with and without aging. Similar to the approach originated by Tobolsky in the 1950's, a combination of uniaxial constant stress and intermittent stretch experiments are also used in high temperature creep-recovery experiments to deduce the kinetics of scission of the original macromolecular network and the generation of newly formed networks having different reference configurations. The macroscopic effects of thermo-mechanical aging, in terms of the evolution of residual strains and change in elastic response, are quantified.

  1. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion.

    PubMed

    Zhu, Xiaoxiang; Braatz, Richard D

    2015-07-01

    Biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization [or molecular weight (MW)] is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer MW change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  2. Release mechanism utilizing shape memory polymer material

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    2000-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  3. Metal complex modified azo polymers for multilevel organic memories

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  4. Antirestenotic Effects of a Novel Polymer-Coated D-24851 Eluting Stent. Experimental Data in a Rabbit Iliac Artery Model

    SciTech Connect

    Lysitsas, Dimitrios N.; Katsouras, Christos S.; Papakostas, John C.; Toumpoulis, Ioannis K.; Angelidis, Charalampos; Bozidis, Petros; Thomas, Christopher G.; Seferiadis, Konstantin; Psychoyios, Nikolaos; Frillingos, Stathis; Pavlidis, Nikolaos; Marinos, Euaggelos; Khaldi, Lubna; Sideris, Dimitris A.; Michalis, Lampros K.

    2007-11-15

    Experimental and clinical data suggest that stents eluting antiproliferative agents can be used for the prevention of in-stent restenosis. Here we investigate in vitro the antiproliferative and apoptotic effect of D-24851 and evaluate the safety and efficacy of D-24851-eluting polymer-coated stents in a rabbit restenosis model (n = 53). Uncoated stents (n = 6), poly (dl-lactide-co-glycolide) (PLGA)-coated stents (n = 7), and PLGA-coated stents loaded with 0.08 {+-} 0.0025 {mu}M (31 {+-} 1 {mu}g; low dose; n = 7), 0.55 {+-} 0.02 {mu}M (216 {+-} 8 {mu}g; high dose; n = 6), and 4.55 {+-} 0.1 {mu}M (1774 {+-} 39 {mu}g; extreme dose; n = 5) of D-24851 were randomly implanted in New Zealand rabbit right iliac arteries and the animals were sacrificed after 28 days for histomorphometric analysis. For the assessment of endothelial regrowth in 90 days, 12 rabbits were subjected to PLGA-coated (n = 3), low-dose (n = 3), high-dose (n = 3), and extreme-dose (n = 3) stent implantation. In vitro studies revealed that D-24851 exerts its growth inhibitory effects via inhibition of proliferation and induction of apoptosis without increasing the expression of heat shock protein-70, a cytoprotective and antiapoptotic protein. Treatment with low-dose D-24851 stents was associated with a significant reduction in neointimal area and percentage stenosis only compared with bare metal stents (38% [P = 0.029] and 35% [P = 0.003] reduction, respectively). Suboptimal healing, however, was observed in all groups of D-24851-loaded stents in 90 days in comparison with PLGA-coated stents. We conclude that low-dose D-24851-eluting polymer-coated stents significantly inhibit neointimal hyperplasia at 28 days through inhibition of proliferation and enhancement of apoptosis. In view of the suboptimal re-endothelialization, longer-term studies are needed in order to establish whether the inhibition of intimal growth is maintained.

  5. Surface characterization of polymer-drug modified vascular stents and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Elachchabi, Amin

    Two of the most important medical devices in clinical use today are endoluminal stents and intraocular lenses (IOLs). In both devices, surface and interfacial properties are of basic importance in the development and clinical performance of these devices. Drug eluting stents have revolutionized the world of interventional cardiology. Research reported here was devoted to the design and development of new drug eluting stents wherein the metallic backbone is completely embedded in a polymeric matrix used also as a drug reservoir. This design, using silicone-drug compositions can lead to higher drug payloads, less tissue damage during angioplasty balloon/stent expansion, and the novel capability of delivering multiple drugs. The adhesion of the polymeric coating to the metallic stent is essential and has not been adequately reported previously. The adhesion of polydimethylsiloxane (PDMS) coatings to a stainless steel stent substrate was shown to be enhanced by the application of mixtures of tetra-n-propyl silicate, tetrabutyltitanate, tetra-2-methoxyethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate coupling agents. Additionally, the effect of drug loading on the stress/strain properties of the polymeric coating is of basic importance. The tensile strength and percent elongation of dexamethasone loaded PDMS films was shown to remain satisfactory for stent coatings at low concentrations (less than 1%) but decreased as the concentrations of dexamethasone in PDMS was increased to 5%. The release of multiple therapeutic agents from PDMS coatings to reduce in-stent restenosis has not been previously reported. The release profile of Paclitaxel, dexamethasone 21-acetate, and their combination from PDMS coatings was studied using high precision liquid chromatography (HPLC). Although dexamethasone release was reduced by paclitaxel, paclitaxel release was unaffected by combination with dexamethasone. Paclitaxel release from the polymeric matrices was shown to inhibit

  6. Shape memory polymer foams for endovascular therapies

    SciTech Connect

    Wilson, Thomas S.; Maitland, Duncan J.

    2015-05-26

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  7. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  8. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  9. Induction of nicotinamide-adenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents.

    PubMed

    Potnis, Pushya A; Tesfamariam, Belay; Wood, Steven C

    2011-06-01

    The drug-eluting stent platform has a limited surface area, and a polymer carrier matrix is coated to enable sufficient loading of drugs. The development of a suitable polymer has been challenging because it must exhibit biocompatibility with the intravascular milieu. The use of biodegradable polymers seems to be attractive because it enables drug release as it degrades and is eventually eliminated from the body leaving the permanent metallic stent polymer-free. The aim of this study was to investigate the biocompatibility of biodegradable polymers using the human monocyte cell line. Cultured monocytes differentiated into functional macrophages (THP-1) were incubated with various polymers including poly-L-lactide (PLA), polycaprolactone (PCL), or poly-D, L-lactide-co-glycolide (PLGA) for up to 5 days. Exposure of cells to the polymers resulted in macrophage-polymer adhesion and induced marked pro-oxidant species as measured by calcein AM uptake assay and flow cytometric analysis of 2',7'-dichlorofluorescin fluorescence, respectively. Real-time reverse-transcription polymerase chain reaction and Western blot analysis of expression of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases revealed enhanced expression of NADPH oxidase subunits in response to PLA and PLGA compared with that of PCL. Flow cytometric analysis of fluorescein isothiocyanate-Annexin V and propium iodide-stained PLA and PGLA polymer-exposed THP-1 cells showed early and late apoptotic changes. Similarly, exposure to the PLA and PGLA polymers, but not to the PCL polymer, resulted in enhanced staining for cleaved poly(ADP-ribose) polymerase-1, a protein fragment produced by caspase cleavage. These results indicate that biodegradable polymers are associated with cell adhesion, NADPH oxidase-induced generation of reactive oxygen species and excess apoptosis. PMID:21436724

  10. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  11. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms. PMID:27322505

  12. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-03-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{g}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  13. Shape memory polymers with high and low temperature resistant properties

    PubMed Central

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to −150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed. PMID:26382318

  14. Shape memory polymers with high and low temperature resistant properties

    NASA Astrophysics Data System (ADS)

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-09-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to -150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed.

  15. Modeling thermomechanical processes in shape memory polymers under finite deformations

    NASA Astrophysics Data System (ADS)

    Rogovoi, A. A.; Stolbova, O. S.

    2015-11-01

    A model taking into account finite deformations is constructed for the behavior of a shape memory polymer which undergoes a transition from the highly elastic to the vitreous state and back during deformation and temperature change. The obtained relations are tested on problems which have experimental support.

  16. Blocked Shape Memory Effect in Negative Poisson's Ratio Polymer Metamaterials.

    PubMed

    Boba, Katarzyna; Bianchi, Matteo; McCombe, Greg; Gatt, Ruben; Griffin, Anselm C; Richardson, Robert M; Scarpa, Fabrizio; Hamerton, Ian; Grima, Joseph N

    2016-08-10

    We describe a new class of negative Poisson's ratio (NPR) open cell PU-PE foams produced by blocking the shape memory effect in the polymer. Contrary to classical NPR open cell thermoset and thermoplastic foams that return to their auxetic phase after reheating (and therefore limit their use in technological applications), this new class of cellular solids has a permanent negative Poisson's ratio behavior, generated through multiple shape memory (mSM) treatments that lead to a fixity of the topology of the cell foam. The mSM-NPR foams have Poisson's ratio values similar to the auxetic foams prior their return to the conventional phase, but compressive stress-strain curves similar to the ones of conventional foams. The results show that by manipulating the shape memory effect in polymer microstructures it is possible to obtain new classes of materials with unusual deformation mechanisms. PMID:27377708

  17. Nanomaterial coatings applied on stent surfaces.

    PubMed

    Bagheri, Mahsa; Mohammadi, Marzieh; Steele, Terry Wj; Ramezani, Mohammad

    2016-05-01

    The advent of percutaneous coronary intervention and intravascular stents has revolutionized the field of interventional cardiology. Nonetheless, in-stent restenosis, inflammation and late-stent thrombosis are the major obstacles with currently available stents. In order to enhance the hemocompatibility of stents, advances in the field of nanotechnology allow novel designs of nanoparticles and biomaterials toward localized drug/gene carriers or stent scaffolds. The current review focuses on promising polymers used in the fabrication of newer generations of stents with a short synopsis on atherosclerosis and current commercialized stents, nanotechnology's impact on stent development and recent advancements in stent biomaterials is discussed in context. PMID:27111467

  18. Microscopic mechanisms of the shape memory effect in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2015-05-01

    In this work we perform coarse-grained molecular dynamics (MD) simulations to study the molecular origins of the thermal shape memory effect in crosslinked polymer materials. Thermal shape memory polymers (SMPs) are materials able to hold a deformed shape when cooled below the glass transition temperature, and subsequently recover the initial shape when heated. To use SMPs in various applications requires materials which reliably hold and recover their shapes; this has sparked recent synthesis work to create new SMP materials with optimized properties. Here we use coarse-grained MD simulations with different polymer chain models to determine which parameters affect relevant SMP behavior and to investigate the molecular mechanisms at the level of individual chains during temperature cycling. The simulations show how temperature-dependent chain mobility leads to shape memory polymer behavior. In particular, we demonstrate the importance of attractive monomer interactions in leading to ‘good’ SMP behavior. The results suggest promising routes for material development. Additionally, the mechanisms identified with the simple simulation model can be used to inform multi-scale models of SMP material behavior.

  19. Communication: Theory of melt-memory in polymer crystallization

    NASA Astrophysics Data System (ADS)

    Muthukumar, M.

    2016-07-01

    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm0-Tc), with Tm0 being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T10 for the inhomogeneous melt state and the transition temperature Tt0 for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm0. The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory.

  20. Communication: Theory of melt-memory in polymer crystallization.

    PubMed

    Muthukumar, M

    2016-07-21

    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm (0)-Tc), with Tm (0) being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T1 (0) for the inhomogeneous melt state and the transition temperature Tt (0) for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm (0). The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory. PMID:27448866

  1. Biomedical Applications of Thermally Activated Shape Memory Polymers

    SciTech Connect

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  2. Vascular response to bioresorbable polymer sirolimus-eluting stent vs. permanent polymer everolimus-eluting stent at 9-month follow-up: an optical coherence tomography sub-study from the CENTURY II trial

    PubMed Central

    Kuramitsu, Shoichi; Kazuno, Yoshio; Sonoda, Shinjo; Domei, Takenori; Jinnouchi, Hiroyuki; Yamaji, Kyohei; Soga, Yoshimitsu; Shirai, Shinichi; Ando, Kenji; Saito, Shigeru

    2016-01-01

    Aims The Ultimaster bioresorbable polymer sirolimus-eluting stent (BP-SES) is a newly developed drug-eluting stent (DES) that consists of a thin-strut, cobalt chromium with bioresorbable polymer coated only albuminally. We sought to compare tissue coverage in coronary lesions treated with BP-SES with the XIENCE permanent polymer everolimus-eluting stent (PP-EES) using optical coherence tomography (OCT). Methods and results A total of 36 patients participated in the CENTURY II trial in our institution and were randomly assigned to BP-SES (n = 15) and PP-EES (n = 21). Of these, 27 patients (13 BP-SES and 14 PP-EES) underwent OCT at 9-month follow-up. Tissue coverage and apposition were assessed on each strut, and the results in both groups were compared using multilevel logistic or linear regression models with random effects at three levels: patient, lesion, and struts. A total of 6450 struts (BP-SES, n = 2951; PP-EES, n = 3499) were analysed. Thirty and 79 uncovered struts (1.02 and 2.26%, P = 0.35), and 3 and 4 malapposed struts (0.10 and 0.11%, P = 0.94) were found in BP-SES and PP-EES groups, respectively. Mean neointimal thickness did not significantly differ between both groups (110 ± 10 vs. 93 ± 10 µm, P = 0.22). No significant differences in per cent neointimal volume obstruction (13.2 ± 4.6 vs. 10.5 ± 4.9%, P = 0.14) or other areas-volumetric parameters were detected between both groups. Conclusion BP-SES shows an excellent vascular healing response at 9-month follow-up, which is similar to PP-EES. PMID:26333375

  3. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends.

    PubMed

    Bae, Insung; Hwang, Sun Kak; Kim, Richard Hahnkee; Kang, Seok Ju; Park, Cheolmin

    2013-11-13

    Nonvolatile ferroelectric-gate field-effect transistors (Fe-FETs) memories with solution-processed ferroelectric polymers are of great interest because of their potential for use in low-cost flexible devices. In particular, the development of a process for patterning high-performance semiconducting channel layers with mechanical flexibility is essential not only for proper cell-to-cell isolation but also for arrays of flexible nonvolatile memories. We demonstrate a robust route for printing large-scale micropatterns of solution-processed semiconducting small molecules/insulating polymer blends for high performance arrays of nonvolatile ferroelectric polymer memory. The nonvolatile memory devices are based on top-gate/bottom-contact Fe-FET with ferroelectric polymer insulator and micropatterned semiconducting blend channels. Printed micropatterns of a thin blended semiconducting film were achieved by our selective contact evaporation printing, with which semiconducting small molecules in contact with a micropatterned elastomeric poly(dimethylsiloxane) (PDMS) mold were preferentially evaporated and absorbed into the PDMS mold while insulating polymer remained intact. Well-defined micrometer-scale patterns with various shapes and dimensions were readily developed over a very large area on a 4 in. wafer, allowing for fabrication of large-scale printed arrays of Fe-FETs with highly uniform device performance. We statistically analyzed the memory properties of Fe-FETs, including ON/OFF ratio, operation voltage, retention, and endurance, as a function of the micropattern dimensions of the semiconducting films. Furthermore, roll-up memory arrays were produced by successfully detaching large-area Fe-FETs printed on a flexible substrate with a transient adhesive layer from a hard substrate and subsequently transferring them to a nonplanar surface. PMID:24070419

  4. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  5. Can Platforms Affect the Safety and Efficacy of Drug-Eluting Stents in the Era of Biodegradable Polymers?: A Meta-Analysis of 34,850 Randomized Individuals

    PubMed Central

    Zhang, Ming-Duo; Li, Xin-He; Nie, Mao-Xiao; Feng, Ting-Ting; Zhao, Xin; Wang, Lu-Ya; Zhao, Quan-Ming

    2016-01-01

    Objective In the era of bare metal stents (BMSs), alloys have been considered to be better materials for stent design than stainless steel. In the era of biodegradable polymer drug-eluting stents (BP-DESs), the safety and efficacy of BP-DESs with different metal platforms (stainless steel or alloys) have not yet been reported, although their polymers are eventually absorbed, and only the metal platforms remain in the body. This study sought to determine the clinical safety and efficacy of BP-DESs with different platforms compared with other stents (other DESs and BMSs). Methods PubMed, Embase and Clinical Trials.gov were searched for randomized controlled trials (RCTs) that compared BP-DESs with other stents. After performing pooled analysis of BP-DESs and other stents, we performed a subgroup analysis using two classification methods: stent platform and follow-up time. The study characteristics, patient characteristics and clinical outcomes were abstracted. Results Forty RCTs (49 studies) comprising 34,850 patients were included. Biodegradable polymer stainless drug-eluting stents (BP-stainless DESs) were superior to the other stents [mainly stainless drug-eluting stents (DESs)] in terms of pooled definite/probable stent thrombosis (ST) (OR [95% CI] = 0.76[0.61–0.95], p = 0.02), long-term definite/probable ST (OR [95% CI] = 0.73[0.57–0.94], p = 0.01), very late definite/probable ST (OR [95% CI] = 0.56[0.33–0.93], p = 0.03) and long-term definite ST. BP-stainless DESs had lower rates of pooled, mid-term and long-term target vessel revascularization (TVR) and target lesion revascularization (TLR) than the other stainless DESs and BMSs. Furthermore, BP-stainless DESs were associated with lower rates of long-term death than other stainless DESs and lower rates of mid-term myocardial infarction than BMSs. However, only the mid-term and long-term TVR rates were superior in BP-alloy DESs compared with the other stents. Conclusion Our results indirectly suggest that

  6. Simulations of Self-Expanding Braided Stent Using Macroscopic Model of NiTi Shape Memory Alloys Covering R-Phase

    NASA Astrophysics Data System (ADS)

    Frost, M.; Sedlák, P.; Kruisová, A.; Landa, M.

    2014-07-01

    Self-expanding stents or stentgrafts made from Nitinol superelastic alloy are widely used for a less invasive treatment of disease-induced localized flow constriction in the cardiovascular system. The therapy is based on insertion of a stent into a blood vessel to maintain the inner diameter of the vessel; it provides highly effective results at minimal cost and with reduced hospital stays. However, since stent is an external mechanical healing tool implemented into human body for quite a long time, information on the mechanical performance of it is of fundamental importance with respect to patient's safety and comfort. Advantageously, computational structural analysis can provide valuable information on the response of the product in an environment where in vivo experimentation is extremely expensive or impossible. With this motivation, a numerical model of a particular braided self-expanding stent was developed. As a reasonable approximation substantially reducing computational demands, the stent was considered to be composed of a set of helical springs with specific constrains reflecting geometry of the structure. An advanced constitutive model for NiTi-based shape memory alloys including R-phase transition was employed in analysis. Comparison to measurements shows a very good match between the numerical solution and experimental results. Relation between diameter of the stent and uniform radial pressure on its surface is estimated. Information about internal phase and stress state of the material during compression loading provided by the model is used to estimate fatigue properties of the stent during cyclic loading.

  7. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  8. Shape memory polymer network with thermally distinct elasticity and plasticity

    PubMed Central

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077

  9. Drug-eluting stents to prevent stent thrombosis and restenosis.

    PubMed

    Im, Eui; Hong, Myeong-Ki

    2016-01-01

    Although first-generation drug-eluting stents (DES) have significantly reduced the risk of in-stent restenosis, they have also increased the long-term risk of stent thrombosis. This safety concern directly triggered the development of new generation DES, with innovations in stent platforms, polymers, and anti-proliferative drugs. Stent platform materials have evolved from stainless steel to cobalt or platinum-chromium alloys with an improved strut design. Drug-carrying polymers have become biocompatible or biodegradable and even polymer-free DES were introduced. New limus-family drugs (such as everolimus, zotarolimus or biolimus) were adopted to enhance stent performances. As a result, these new DES demonstrated superior vascular healing responses on intracoronary imaging studies and lower stent thrombotic events in actual patients. Recently, fully-bioresorbable stents (scaffolds) have been introduced, and expanding their applications. In this article, the important concepts and clinical results of new generation DES and bioresorbable scaffolds are described. PMID:26567863

  10. The shape memory effect in crosslinked polymers: effects of polymer chemistry and network architecture

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Li, Yali; Goulbourne, N. C.

    2013-04-01

    The thermal shape memory effect in polymeric materials refers to the ability of a sample to retain a deformed shape when cooled below Tg, and then recover its initial shape when subsequently heated. Although these properties are thought to be related to temperature-dependent changes in network structure and polymer chain mobility, a consistent picture of the molecular mechanisms which determine shape memory behavior does not exist. This, along with large differences in the shape memory cycling response for different materials, has made model development and specific property optimization difficult. In this work we use coarse-grained molecular dynamics (MD) simulations of the thermal shape memory effect to inform micro-macro relationships and systematically identify the salient features leading to desirable shape behavior. We consider a simulation test set including chains with increasing levels of the microscopic restrictions on chain motion (the freely-jointed, freely-rotating, and rotational isomeric state chain models), each simulated with both the NPT and NVT ensembles. It is found that the NPT ensemble with attractive interactions between monomers enabled is the most appropriate for simulating the temperature-dependent mechanical behavior of a polymer using coarse-grained MD. Of the different models, the freely-jointed chain system shows the most desirable shape memory characteristics; this behavior is attributed to the ability of the particles in this system to pack closely together in an energetically favorable configuration. A comparison with experimental data demonstrates that the coarse-grained simulations display all of the relevant trends in mechanical behavior during constant strain shape memory cycling. We conclude that atomistic detail is not needed to represent a shape memory polymer, and that multi-scale modeling techniques may build on the mechanisms embodied in the simple coarse-grained model.

  11. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    PubMed Central

    Carlyle, Wenda C.; McClain, James B.; Tzafriri, Abraham R.; Bailey, Lynn; Zani, Brett G.; Markham, Peter M.; Stanley, James R.L.; Edelman, Elazer R.

    2015-01-01

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (p<0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. PMID:22800575

  12. A randomized, prospective, intercontinental evaluation of a bioresorbable polymer sirolimus-eluting coronary stent system: the CENTURY II (Clinical Evaluation of New Terumo Drug-Eluting Coronary Stent System in the Treatment of Patients with Coronary Artery Disease) trial

    PubMed Central

    Saito, Shigeru; Valdes-Chavarri, Mariano; Richardt, Gert; Moreno, Raul; Iniguez Romo, Andrés; Barbato, Emanuele; Carrie, Didier; Ando, Kenji; Merkely, Bela; Kornowski, Ran; Eltchaninoff, Hélène; James, Stefan; Wijns, William

    2014-01-01

    Aim The aim of this study was to establish safety and efficacy of a new sirolimus-eluting stent with bioresorbable polymer, Ultimaster (BP-SES). Sirolimus-eluting stent with bioresorbable polymer was compared with everolimus-eluting, permanent polymer, Xience stent (PP-EES) in the frame of a CENTURY II clinical trial designed to make global clinical data compliant with regulatory requirements in Europe and Japan. Methods and results The CENTURY II is a prospective, multicentre, randomized (1 : 1), single blind, controlled, non-inferiority clinical trial conducted at 58 study sites in Japan, Europe, and Korea. A total of 1123 patients requiring a percutaneous coronary intervention (PCI) procedure, with implantation of drug-eluting stent (DES), were enrolled [total population (TP)]. Randomization of patients was stratified for the subset of patients matching requirements for DES in Japan (Cohort JR, n = 722). Baseline patient demographic and angiographic characteristics were similar in both study arms, with minimal differences between the TP and Cohort JR. The primary endpoint, freedom from target lesion failure (TLF) at 9 months—TLF [composite of cardiac death, target-vessel-related myocardial infarction (MI) and target lesion revascularization]—was 95.6% with BP-SES and 95.1% with PP-EES (Pnon-inferiority<0.0001). Composite of cardiac death and MI rate was 2.9 and 3.8% (P = 0.40) and target vessel revascularization was 4.5% with BP-SES and 4.2% with PP-EES (P = 0.77). The stent thrombosis rate was 0.9% in both arms. In Cohort JR, freedom from TLF was 95.9 and 94.6% (Pnon-inferiority < 0.0005) with BP-SES and PP-EES, respectively. Conclusion The new bioresorbable polymer sirolimus-eluting stent showed safety and efficacy profiles similar to durable polymer everolimus-eluting stent at 9-month follow-up. Study registration number UMIN000006940. PMID:24847155

  13. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  14. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    PubMed

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP. PMID:17019872

  15. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    SciTech Connect

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  16. Shape memory polymer sensors for tracking cumulative environmental exposure

    NASA Astrophysics Data System (ADS)

    Snyder, Ryan; Rauscher, Michael; Vining, Ben; Havens, Ernie; Havens, Teresa; McFerran, Jace

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed environmental exposure tracking (EET) sensors using shape memory polymers (SMP) to monitor the degradation of perishable items, such as munitions, foods and beverages, or medicines, by measuring the cumulative exposure to temperature and moisture. SMPs are polymers whose qualities have been altered to give them dynamic shape "memory" properties. Under thermal or moisture stimuli, the SMP exhibits a radical change from a rigid thermoset to a highly flexible, elastomeric state. The dynamic response of the SMP can be tailored to match the degradation profile of the perishable item. SMP-based EET sensors require no digital memory or internal power supply and provide the capability of inexpensive, long-term life cycle monitoring of thermal and moisture exposure over time. This technology was developed through Phase I and Phase II SBIR efforts with the Navy. The emphasis of current research centers on transitioning SMP materials from the lab bench to a production environment. Here, CRG presents the commercialization progress of thermally-activated EET sensors, focusing on fabrication scale-up, process refinements, and quality control. In addition, progress on the development of vapor pressure-responsive SMP (VPR-SMP) will be discussed.

  17. Vitamin-C delivery from CoCr alloy surfaces using polymer-free and polymer-based platforms for cardiovascular stent applications.

    PubMed

    Thiruppathi, Eagappanath; Mani, Gopinath

    2014-06-01

    Antiproliferative drugs such as paclitaxel and sirolimus are delivered from stents to inhibit the growth of smooth muscle cells (SMCs) for preventing neointimal hyperplasia. However, these drugs delay the growth of endothelial cells (ECs) as well and cause late stent thrombosis. We recently demonstrated the use of Vitamin-C (l-ascorbic acid, l-AA) over paclitaxel and sirolimus for inhibiting SMCs growth and promoting EC growth simultaneously. In this study, we have investigated the delivery of l-AA from CoCr alloy surfaces for potential use in stents. A polymer-free phosphoric acid (PA) platform and a polymer-based poly(lactic-co-glycolic acid) (PLGA) platform were used for coating l-AA onto CoCr surfaces. For the PA platform, FTIR confirmed that the PA was coated on CoCr, while the AFM showed that the PA coating on the CoCr surface was homogeneous. The successful deposition of l-AA on PA-coated CoCr was also confirmed by FTIR. The uniform distribution of l-AA crystals on PA-coated CoCr was shown by SEM, optical profilometer, and AFM. The drug release studies showed that l-AA (276 μg/cm(2)) was burst released from the PA platform by 1 h. For the PLGA platform, SEM showed that the l-AA incorporated polymer films were smoothly and uniformly coated on CoCr. FTIR showed that l-AA was incorporated into the bulk of the PLGA film. DSC showed that the l-AA was present in an amorphous form and formed an intermolecular bonding interaction with PLGA. The drug release studies showed that l-AA was sustained released from the PLGA coated CoCr for up to 24 h. The SEM, FTIR, and DSC characterizations of samples collected post drug release shed light on the mechanism of l-AA release from PLGA coated CoCr. Thus, this study demonstrated the delivery of l-AA from biomaterial surfaces for potential applications in stents and other implantable medical devices. PMID:24832897

  18. Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems

    NASA Astrophysics Data System (ADS)

    Nair, Devatha P.

    2011-12-01

    The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1

  19. Smart medical stocking using memory polymer for chronic venous disorders.

    PubMed

    Kumar, Bipin; Hu, Jinlian; Pan, Ning

    2016-01-01

    Proper level of pressure or compression generated by medical stocking or hosiery is the key element for successful treatment or management of chronic venous disorders such as oedema, leg ulcers, etc. However achieving the recommended compression level and, more importantly, sustaining it using stockings has been a major challenge to the health practitioners supervising the treatment. This work aims to investigate and design a smart compression stocking using shape-memory polymer that allows externally controlling the pressure level in the wrapped position on the leg. Based on thermodynamical rubber theories, we first derived several criteria that have to be satisfied simultaneously in order to achieve the controlled pressure adjustment using external heat stimuli. We then presented a case where such a stocking is developed using a blend yarn consists of selected shape-memory polyurethane and nylon filaments. Extensive experimental work has also been conducted to demonstrate the feasibility and explore the influencing factors involved. PMID:26513411

  20. Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Lan, Xin; Liu, Yanju; Du, Shanyi

    2009-07-01

    This paper concerns an electroactive thermoset styrene-based shape memory polymer (SMP) nanocomposite filled with nanosized (30 nm) carbon powders. With an increase of the incorporated nanocarbon powders of the SMP composite, its glass transition temperature (Tg) decreases and storage modulus increases. Due to the high micro-porosity and homogeneous distributions of nanocarbon powders in the SMP matrix, the SMP composite shows good electrical conductivity with a percolation of about 3.8%. This percolation threshold is slightly lower than that of many other carbon-based conductive polymer composites. Consequently, due to the relatively high electrical conductivity, a sample filled with 10 vol% nanocarbon powders shows a good electroactive shape recovery performance heating by a voltage of 30 V above a transition temperature of 56-69 °C.

  1. Thermoset shape-memory polymer nanocomposite filled with nanocarbon powders

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Yanju; Leng, Jinsong

    2009-07-01

    A system of a thermoset styrene-based shape-memory polymer (SMP) filled with nanocarbon powders is investigated in this paper. The thermomechanical properties are characterized by thermal gravity analysis, differential scanning calorimetery and dynamic mechanical analysis. In addition, the distribution of CB is investigated by scanning electron microscope. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3.8 % (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB (10 vol%) can be realized in about 100s.

  2. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers.

    PubMed

    Yu, Kai; Ge, Qi; Qi, H Jerry

    2014-01-01

    Shape memory polymers are at the forefront of recent materials research. Although the basic concept has been known for decades, recent advances in the research of shape memory polymers demand a unified approach to predict the shape memory performance under different thermo-temporal conditions. Here we report such an approach to predict the shape fixity and free recovery of thermo-rheologically simple shape memory polymers. The results show that the influence of programming conditions to free recovery can be unified by a reduced programming time that uniquely determines shape fixity, which consequently uniquely determines the shape recovery with a reduced recovery time. Furthermore, using the time-temperature superposition principle, shape recoveries under different thermo-temporal conditions can be extracted from the shape recovery under the reduced recovery time. Finally, a shape memory performance map is constructed based on a few simple standard polymer rheology tests to characterize the shape memory performance of the polymer. PMID:24423789

  3. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    NASA Astrophysics Data System (ADS)

    Budun, Sinem; İşgören, Erkan; Erdem, Ramazan; Yüksek, Metin

    2016-09-01

    Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape recovery measurement (130 ± 4%) was belonged to Y15K39. Mechanical properties of the electrospun webs were also investigated in both machine and transverse directions. Tensile and elongation values were also affected from fiber diameter distribution and morphological characteristics of the electrospun webs.

  4. Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.

    2007-01-01

    Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to

  5. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    PubMed Central

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  6. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  7. Variable stiffness property study on shape memory polymer composite tube

    NASA Astrophysics Data System (ADS)

    Chen, Yijin; Sun, Jian; Liu, Yanju; Leng, Jinsong

    2012-09-01

    As a typical smart material, shape memory polymers (SMPs) have the capability of variable stiffness in response to external stimuli, such as heat, electricity, magnetism and solvents. In this research, a shape memory polymer composite (SMPC) tube composed of multi-layered filament wound structures is investigated. The SMPC tube possesses considerable flexibility under high temperature and rigidity under low temperature. Significant changes in effective engineering modulus can be achieved through regulating the environment temperature. Based on the classical laminated-plate theory and Sun’s thick laminate analysis, a 3D theory method is used to study the effective engineering modulus and modulus ratio of the SMPC tube. The tensile test is conducted on the SMPC tube to verify the accuracy of the theoretical method. In addition, the effective engineering modulus and modulus ratio are discussed under different fiber-winding angles and fiber volume fractions of the SMPC tube. The presented analysis provides meaningful guidance to assist the design and manufacture of SMPC tubes in morphing skin applications.

  8. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-08-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  9. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  10. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    PubMed

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  11. Thermally driven microfluidic pumping via reversible shape memory polymers

    NASA Astrophysics Data System (ADS)

    Robertson, J. M.; Rodriguez, R. X.; Holmes, L. R., Jr.; Mather, P. T.; Wetzel, E. D.

    2016-08-01

    The need exists for autonomous microfluidic pumping systems that utilize environmental cues to transport fluid within a network of channels for such purposes as heat distribution, self-healing, or optical reconfiguration. Here, we report on reversible thermally driven microfluidic pumping enabled by two-way shape memory polymers. After developing a suitable shape memory polymer (SMP) through variation in the crosslink density, thin and flexible microfluidic devices were constructed by lamination of plastic films with channels defined by laser-cutting of double-sided adhesive film. SMP blisters integrated into the devices provide thermally driven pumping, while opposing elastic blisters are used to generate backpressure for reversible operation. Thermal cycling of the device was found to drive reversible fluid flow: upon heating to 60 °C, the SMP rapidly contracted to fill the surface channels with a transparent fluid, and upon cooling to 8 °C the flow reversed and the channel re-filled with black ink. Combined with a metallized backing layer, this device results in refection of incident light at high temperatures and absorption of light (at the portions covered with channels) at low temperatures. We discuss power-free, autonomous applications ranging from thermal regulation of structures to thermal indication via color change.

  12. Shape memory polymer hexachiral auxetic structures with tunable stiffness

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Scarpa, Fabrizio; Walters, Peter; Mukai, Toshiharu

    2014-04-01

    Planar auxetic structures have the potential to impact on a wide range of applications from deployable and morphing structures to space-filling composite and medical treatments. The ability to fabricate auxetics from smart materials greatly enhances this facility by building in controllable actuation and deployment. A smart auxetic device can be compressed and fixed into a storage state. When deployment is required the device can be appropriately stimulated and the stored elastic energy is released, resulting in a marked structural expansion. Instead of using a conventional external actuator to drive deployment the material is made to undergo phase transition where one stimulus (e.g. heat) initiates a mechanical response. Here we show how smart material auxetics can be realized using a thermally responsive shape memory polymer composites. We show how a shape memory polymer auxetic hexachiral structure can be tailored to provide a tunable stiffness response in its fully deployed state by varying the angle of inter-hub connections, and yet is still able to undergo thermally stimulated deployment.

  13. Shape memory-based tunable resistivity of polymer composites

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng; Zhou, Xingdong; Ma, Yuanyuan; Yi, Guobin; Cheng, Xiaoling; Zhu, Yong; Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang

    2016-02-01

    A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (Rs) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The Rs-strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent Rs was disclosed. The findings provided a new avenue to tailor the conductivity of the polymeric nano-composites by combining the composition method and a thermo-mechanical programming, which may greatly benefit the application of intelligent polymers in flexible electronics and sensors fields.

  14. Nine-Months Clinical Outcome of Biodegradable Polymer Coated Sirolimus-eluting Stent System: A Multi-Centre “Real-World” Experience

    PubMed Central

    Prajapati, Jayesh; Raheem, Asif; Thakkar, Kamlesh; Kothari, Shivani; Thakkar, Ashok

    2015-01-01

    Background The main culprit in first-generation drug eluting stents is ‘durable’ polymer, whose continuous presence may impair arterial healing and ultimately have a negative impact on late outcomes. The main enigma behind the biodegradable polymer usage is its degradation after elution of drug. This reduces adverse events in unselected patients with complex coronary artery lesions treated with biodegradable polymer coated sirolimus-eluting stents. Aim The aim of the INDOLIMUS-G Registry was to evaluate safety and efficacy of the Indolimus (Sahajanand Medical Technologies Pvt. Ltd., Surat, India) sirolimus-eluting stents in large cohorts of unselected patients with complex coronary artery lesions. Materials and Methods It is a multi-centre, non-randomized retrospective registry with a clear aim of evaluating safety and efficacy of the Indolimus sirolimus-eluting stents in consecutive patients enrolled between April 2012 and May 2014. The primary end-point of the study was major adverse cardiac events (MACE), which is a composite of cardiac death, myocardial infarction (MI), target lesion revascularization (TLR), target vessel revascularization (TVR) and stent thrombosis (ST) at the end of follow-up. Clinical follow-up were scheduled at the end of 30-days, 6-months, and 9-months period. Results The mean age of enrolled patients was 52.6 ± 11.0 years. A total of 1137 lesions were intervened successfully with 1242 stents (1.09 ± 0.30 stent per lesion). The average stent length and diameter was 27.42 ± 9.01 mm and 3.12 ± 0.36 mm respectively. There were 740 (73.40%) male patients, indicating their high prevalence. Diabetes, hypertension and totally occluded lesions were found in 372 (36.90%), 408 (40.47%) and 170 (16.86%) patients, respectively. This showed that study also included high risk complex lesions and not ideal recruited lesions. The incidence of MACE at 30-days, 6-months and 9-months were 3 (0.30%), 18 (1.80%) and 22 (2.20%) respectively. At 9-months

  15. Clinical Outcomes from Unselected “Real-World” Patients with Long Coronary Lesion Receiving 40 mm Biodegradable Polymer Coated Sirolimus-Eluting Stent

    PubMed Central

    Polavarapu, Anurag; Polavarapu, Raghava Sarma; Prajapati, Jayesh; Thakkar, Kamlesh; Raheem, Asif; Mayall, Tamanpreet; Thakkar, Ashok

    2015-01-01

    Background. Long lesions being implanted with drug-eluting stents (DES) are associated with relatively high restenosis rates and higher incidences of adverse events. Objectives. We aimed to examine the safety and efficacy of the long (40 mm) biodegradable polymer coated Indolimus sirolimus-eluting stent (SES) in real-world patients with long coronary lesions. Methods. This study was observational, nonrandomized, retrospective, and carried out in real-world patients. A total of 258 patients were enrolled for the treatment of long coronary lesions, with 40 mm Indolimus. The primary endpoints in the study were incidence of major adverse cardiac events (MACE), a miscellany of cardiac death, myocardial infarction (MI), target lesion revascularization (TLR) or target vessel revascularization (TVR), and stent thrombosis (ST) up to 6-month follow-up. Results. The study population included higher proportion of males (74.4%) and average age was 53.2 ± 11.0 years. A total of 278 lesions were intervened successfully with 280 stents. The observed MACE at 6-month follow-up was 2.0%, which included 0.8% cardiac death and 1.2% MI. There were no TLR or TVR and ST observed during 6-month follow-up. Conclusions. The long (40 mm) Indolimus stent demonstrated low MACE rate and was proven to be safe and effective treatment for long lesions in “real-world” patients. PMID:26579328

  16. Clinical Outcomes from Unselected "Real-World" Patients with Long Coronary Lesion Receiving 40 mm Biodegradable Polymer Coated Sirolimus-Eluting Stent.

    PubMed

    Polavarapu, Anurag; Polavarapu, Raghava Sarma; Prajapati, Jayesh; Thakkar, Kamlesh; Raheem, Asif; Mayall, Tamanpreet; Thakkar, Ashok

    2015-01-01

    Background. Long lesions being implanted with drug-eluting stents (DES) are associated with relatively high restenosis rates and higher incidences of adverse events. Objectives. We aimed to examine the safety and efficacy of the long (40 mm) biodegradable polymer coated Indolimus sirolimus-eluting stent (SES) in real-world patients with long coronary lesions. Methods. This study was observational, nonrandomized, retrospective, and carried out in real-world patients. A total of 258 patients were enrolled for the treatment of long coronary lesions, with 40 mm Indolimus. The primary endpoints in the study were incidence of major adverse cardiac events (MACE), a miscellany of cardiac death, myocardial infarction (MI), target lesion revascularization (TLR) or target vessel revascularization (TVR), and stent thrombosis (ST) up to 6-month follow-up. Results. The study population included higher proportion of males (74.4%) and average age was 53.2 ± 11.0 years. A total of 278 lesions were intervened successfully with 280 stents. The observed MACE at 6-month follow-up was 2.0%, which included 0.8% cardiac death and 1.2% MI. There were no TLR or TVR and ST observed during 6-month follow-up. Conclusions. The long (40 mm) Indolimus stent demonstrated low MACE rate and was proven to be safe and effective treatment for long lesions in "real-world" patients. PMID:26579328

  17. An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator

    NASA Astrophysics Data System (ADS)

    Ren, Kailiang; Bortolin, Robert S.; Zhang, Q. M.

    2016-02-01

    This paper investigates the thermal response of a hybrid actuator composed of an electroactive polymer (EAP) and a shape memory polymer (SMP). This study introduces the concept of using the large strain from a phase transition (ferroelectric to paraelectric phase) induced by temperature change in a poly(vinylidene fluoride-trifluoroethylene) film to tune the shape of an SMP film above its glass transition temperature (Tg). Based on the material characterization data, it is revealed that the thickness ratio of the EAP/SMP films plays a critical role in the displacement of the actuator. Further, it is also demonstrated that the displacement of the hybrid actuator can be tailored by varying the temperature, and finite element method simulation results fit well with the measurement data. This specially designed hybrid actuator shows great promise for future morphing aircraft applications.

  18. Thermo-mechanical behavior of epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Di Prima, M. A.; Lesniewski, M.; Gall, K.; McDowell, D. L.; Sanderson, T.; Campbell, D.

    2007-12-01

    Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 °C and compression and tensile tests were performed at temperatures ranging from 25 to 125 °C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature; these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 °C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

  19. Thermomechanical characterization of environmentally conditioned shape memory polymer using nanoindentation

    NASA Astrophysics Data System (ADS)

    Fulcher, J. T.; Lu, Y. C.; Tandon, G. P.; Foster, D. C.

    2010-04-01

    Shape memory polymers (SMPs) are an emerging class of active polymers that have dual-shape capability, and are therefore candidate materials for multifunctional reconfigurable structures (i.e., morphing structures). However, the SMPs have not been fully tested to work in relevant environments (variable activation temperature, fuel and water swell, UV radiation, etc.) required for Air Force missions. In this study, epoxy-based SMPs were conditioned separately in simulated service environments designed to be reflective of anticipated performance requirements, namely, (1) exposure to UV radiation for 125 cycles, (2) immersion in jet-oil at ambient temperature, (3) immersion in jet-oil at 49°C, and (4) immersion in water at 49°C. The novel high-temperature indentation method was used to evaluate the mechanical properties and shape recovery ability of the conditioned SMPs. Results show that environmentally conditioned SMPs exhibit higher moduli in comparison to an unconditioned one. During free recovery, the indentation impressions of all SMPs disappeared as temperature reached above Tg, indicating that the material's ability to regain shape remains relatively unchanged with conditioning.

  20. The future of drug eluting stents

    PubMed Central

    Anis, R R; Karsch, K R

    2006-01-01

    In‐stent restenosis (ISR) is the major drawback of percutaneous coronary interventions, occurring in 10–40% of patients. Drug eluting stents (DES) are successful in a large majority of patients in preventing restenosis for the first year after implantation. Recently, new stents have emerged that are loaded with anti‐inflammatory, antimigratory, antiproliferative, or pro‐healing drugs. These drugs are supposed to inhibit inflammation and neointimal growth and subsequently ISR. The future of DES lies in the development of better stents with new stent designs, better polymers including biological polymers and biological biodissolvable stent coatings, and new, better drugs. PMID:16216857

  1. A clinical evaluation of the ProNOVA XR polymer-free sirolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions (EURONOVA XR I study)☆

    PubMed Central

    Legutko, Jacek; Zasada, Wojciech; Kałuża, Grzegorz L.; Heba, Grzegorz; Rzeszutko, Lukasz; Jakala, Jacek; Dragan, Jacek; Klecha, Artur; Giszterowicz, Dawid; Dobrowolski, Wojciech; Partyka, Łukasz; Jayaraman, Swaminathan; Dudek, Dariusz

    2013-01-01

    Aims Evaluation of safety and efficacy of ProNOVA XR, a new generation of polymer-free sirolimus eluting stents (SES), utilizing a pharmaceutical excipient for timed release of sirolimus from the XR platform. Methods and results Safety and efficacy of ProNOVA XR coronary stent system was examined in EURONOVA prospective, single arm, multi-center registry of 50 patients with de novo native coronary lesions up to 28 mm in length in arteries between 2.25 and 4 mm. At 6-month, in-stent late lumen loss by QCA was 0.45 ± 0.41 mm and in-stent neointimal volume obstruction in the IVUS sub-study was 14 ± 11%. One-year clinical follow-up revealed a favorable safety profile, with 2% of in-hospital MACE and 6.4% of MACE from hospital discharge up to 12 months (including 1 cardiac death >30 days after stent implantation and 2 TLRs). According to the ARC definition, there was no definite or probable stent thrombosis and 1 possible stent thrombosis (2%) up to 12 months of clinical follow-up. Conclusions In this preliminary evaluation, ProNOVA XR polymer-free sirolimus eluting stent system appeared safe with an early promise of adequate effectiveness in the treatment of de novo coronary lesions in up to 12 months of clinical, angiographic and IVUS follow-up. PMID:23992999

  2. Technical overview on the MiStent coronary stent.

    PubMed

    McCLAIN, James B; Carlyle, Wenda C; Donohoe, Dennis J; Ormiston, John A

    2016-10-01

    Drug-eluting stents (DES) have dramatically improved the long-term efficacy of percutaneous coronary intervention (PCI). Over the last decade there have been numerous advances in DES platforms, however, all but one currently approved DES in the United States and many of the approved DES worldwide still have 3 common features: a metal stent platform, an anti-proliferative drug, and a permanent polymer. In this context, the polymer is critical to control drug release, but the polymer serves no purpose after the drug is eluted. While designed to be completely biocompatible, synthetic polymers have the potential to illicit an inflammatory response within the vessel including but not limited to delayed healing and hypersensitivity. Adverse vascular reactions to these polymers have been implicated as a cause of very late stent thrombosis, ongoing intimal hyperplasia and late "catch-up" in addition to neoatherosclerosis. To avoid the long-term risks associated with prolonged polymer exposure, DES with bioabsorbable polymers have been developed. The MiStent® Sirolimus-Eluting Absorbable Polymer Coronary Stent System (MiStent SES) (MiCell Technologies, Durham, NC, USA) combines crystalline sirolimus, a rapidly absorbing polylactide-co-glycolic acid (PLGA) coating and a thin-strut cobalt chromium alloy stent platform (Genius MAGIC® Stent System, EuroCor GmbH, Germany). MiCell's supercritical fluid technology allows a rigorously controlled, solvent-free drug and polymer coating to be applied to a bare-metal stent. This solvent-free application of drug uniquely allows a crystalline form of sirolimus to be used on the MiStent SES potentially providing improved clinical benefits. It avoids the uncontrolled burst of drug seen with other DES, provides uniform drug delivery around and between the stent struts, and allows the anti-inflammatory and anti-restenotic drug (sirolimus) to be present in the tissue through the entire polymer absorption period and for months after the

  3. Digital memory versatility of fully π-conjugated donor-acceptor hybrid polymers.

    PubMed

    Ko, Yong-Gi; Kim, Dong Min; Kim, Kyungtae; Jung, Sungmin; Wi, Dongwoo; Michinobu, Tsuyoshi; Ree, Moonhor

    2014-06-11

    The fully π-conjugated donor-acceptor hybrid polymers Fl-TPA, Fl-TPA-TCNE, and Fl-TPA-TCNQ, which are composed of fluorene (Fl), triphenylamine (TPA), dimethylphenylamine, alkyne, alkyne-tetracyanoethylene (TCNE) adduct, and alkyne-7,7,8,8-tetracyanoquinodimethane (TCNQ) adduct, were synthesized. These polymers are completely amorphous in the solid film state and thermally stable up to 291-409 °C. Their molecular orbital levels and band gaps vary with their compositions. The TCNE and TCNQ units, despite their electron-acceptor characteristics, were found to enhance the π-conjugation lengths of Fl-TPA-TCNE and Fl-TPA-TCNQ (i.e., to produce red shifts in their absorption spectra and significant reductions in their band gaps). These changes are reflected in the electrical digital memory behavior of the polymers. Moreover, the TCNE and TCNQ units were found to diversify the digital memory modes and to widen the active polymer layer thickness window. In devices with aluminum top and bottom electrodes, the Fl-TPA polymer exhibits stable unipolar permanent memory behavior with high reliability. The Fl-TPA-TCNE and Fl-TPA-TCNQ devices exhibit stable unipolar permanent memory behavior as well as dynamic random access memory behavior with excellent reliability. These polymer devices were found to operate by either hole injection or hole injection along with electron injection, depending on the polymer composition. Overall, this study demonstrated that the incorporation of π-conjugated cyano moieties, which control both the π-conjugation length and electron-accepting power, is a sound approach for the design and synthesis of high-performance digital memory polymers. The TCNE and TCNQ polymers synthesized in this study are highly suitable active materials for the low-cost mass production of high-performance, polarity-free, programmable, volatile, and permanent memory devices that can be operated with very low power consumption, high ON/OFF current ratios, and high

  4. Favorable Outcomes after Implantation of Biodegradable Polymer Coated Sirolimus-Eluting Stents in Diabetic Population: Results from INDOLIMUS-G Diabetic Registry

    PubMed Central

    Polavarapu, Anurag; Polavarapu, Raghava Sarma; Prajapati, Jayesh; Raheem, Asif; Thakkar, Kamlesh; Kothari, Shivani; Thakkar, Ashok

    2015-01-01

    Objective. The main aim is to evaluate safety, efficacy, and clinical performance of the Indolimus (Sahajanand Medical Technologies Pvt. Ltd., Surat, India) sirolimus-eluting stent in high-risk diabetic population with complex lesions. Methods. It was a multicentre, retrospective, non-randomized, single-arm study, which enrolled 372 diabetic patients treated with Indolimus. The primary endpoint of the study was major adverse cardiac events (MACE), which is a composite of cardiac death, target lesion revascularization (TLR), target vessel revascularization (TVR), myocardial infarction (MI), and stent thrombosis (ST). The clinical follow-ups were scheduled at 30 days, 6 months, and 9 months. Results. The mean age of the enrolled patients was 53.4 ± 10.2 years. A total of 437 lesions were intervened successfully with 483 stents (1.1 ± 0.3 per lesion). There were 256 (68.8%) male patients. Hypertension and totally occluded lesions were found in 202 (54.3%) and 45 (10.3%) patients, respectively. The incidence of MACE at 30 days, 6 months and 9 months was 0 (0%), 6 (1.6%), and 8 (2.2%), respectively. The event-free survival at 9-month follow-up by Kaplan Meier method was found to be 97.8%. Conclusion. The use of biodegradable polymer coated sirolimus-eluting stent is associated with favorable outcomes. The results demonstrated in our study depict its safety and efficacy in diabetic population. PMID:26421189

  5. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  6. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    NASA Astrophysics Data System (ADS)

    Ortega, J. M.; Hartman, J.; Rodriguez, J. N.; Maitland, D. J.

    2012-11-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present prior to treatment. A prediction of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The two modeling approaches capture similar qualitative trends for the initial locations of thrombus within the SMP foam.

  7. Method for loading shape memory polymer gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2002-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SMP material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  8. Component assembly with shape memory polymer fastener for microrobots

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm-2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components.

  9. A Processable Shape Memory Polymer System for Biomedical Applications.

    PubMed

    Hearon, Keith; Wierzbicki, Mark A; Nash, Landon D; Landsman, Todd L; Laramy, Christine; Lonnecker, Alexander T; Gibbons, Michael C; Ur, Sarah; Cardinal, Kristen O; Wilson, Thomas S; Wooley, Karen L; Maitland, Duncan J

    2015-06-24

    Polyurethane shape memory polymers (SMPs) with tunable thermomechanical properties and advanced processing capabilities are synthesized, characterized, and implemented in the design of a microactuator medical device prototype. The ability to manipulate glass transition temperature (Tg ) and crosslink density in low-molecular weight aliphatic thermoplastic polyurethane SMPs is demonstrated using a synthetic approach that employs UV catalyzed thiol-ene "click" reactions to achieve postpolymerization crosslinking. Polyurethanes containing varying C=C functionalization are synthesized, solution blended with polythiol crosslinking agents and photoinitiator and subjected to UV irradiation, and the effects of number of synthetic parameters on crosslink density are reported. Thermomechanical properties are highly tunable, including glass transitions tailorable between 30 and 105 °C and rubbery moduli tailorable between 0.4 and 20 MPa. This new SMP system exhibits high toughness for many formulations, especially in the case of low crosslink density materials, for which toughness exceeds 90 MJ m(-3) at select straining temperatures. To demonstrate the advanced processing capability and synthetic versatility of this new SMP system, a laser-actuated SMP microgripper device for minimally invasive delivery of endovascular devices is fabricated, shown to exhibit an average gripping force of 1.43 ± 0.37 N and successfully deployed in an in vitro experimental setup under simulated physiological conditions. PMID:25925212

  10. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    PubMed Central

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  11. Optical memory using localized photoinduced anisotropy in a synthetic dye-polymer

    NASA Astrophysics Data System (ADS)

    Kuo, Chai-Pei

    1991-07-01

    We present a read/write/erase all-optical memory that fully utilizes local photoinduced birefringence in a synthetic dye-polymer. Memory reading is based on an optical vector-matrix inner product. The intrinsic chromatic characteristics of the proposed memory storage medium is the key to a novel form of nonmechanical parallel memory storage. Green light at 514.5 nm writes a spatial pattern and read light at 632 nm reads it. The dynamic memory material is an improved polyvinyl-alcohol (PVA) polymer film doped with Azo dye. Unique to this material is low optical power, no significant memory degradation after the recording process, and local information erasure or rewrite at any time. The material operates at room temperature with no sealing requirements.

  12. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. PMID:26402320

  13. Anomalous polymer dynamics is non-Markovian: memory effects and the generalized Langevin equation formulation

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata

    2010-06-01

    Any first course on polymer physics teaches that the dynamics of a tagged monomer of a polymer is anomalously subdiffusive, i.e., the mean-square displacement of a tagged monomer increases as tα for some α < 1 until the terminal relaxation time τ of the polymer. Beyond time τ the motion of the tagged monomer becomes diffusive. Classical examples of anomalous dynamics in polymer physics are single polymeric systems, such as phantom Rouse, self-avoiding Rouse, self-avoiding Zimm, reptation, translocation through a narrow pore in a membrane, and many-polymeric systems such as polymer melts. In this pedagogical paper I report that all these instances of anomalous dynamics in polymeric systems are robustly characterized by power-law memory kernels within a unified generalized Langevin equation (GLE) scheme, and therefore are non-Markovian. The exponents of the power-law memory kernels are related to the relaxation response of the polymers to local strains, and are derived from the equilibrium statistical physics of polymers. The anomalous dynamics of a tagged monomer of a polymer in these systems is then reproduced from the power-law memory kernels of the GLE via the fluctuation-dissipation theorem (FDT). Using this GLE formulation I further show that the characteristics of the drifts caused by a (weak) applied field on these polymeric systems are also obtained from the corresponding memory kernels.

  14. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells

    PubMed Central

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-01-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  15. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells.

    PubMed

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-12-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  16. Collapse pressures of biodegradable stents.

    PubMed

    Venkatraman, Subbu; Poh, Tan Lay; Vinalia, Tjong; Mak, Koon Hou; Boey, Freddy

    2003-05-01

    Biodegradable stent prototypes were produced from poly L-lactic acid polymers with different molecular weights. The effects of molecular weight, drug incorporation and stent design on the collapse pressure of the stents were evaluated. While molecular weights did not show a significant effect on the collapse pressure of the stents, drug incorporation at high percentage decreased the collapse pressure of the stents substantially. Cryogenic fracture surfaces showed significant drug agglomeration as the concentration increased. The design of the stent was also found to a have significant effect on the collapse pressure. The stent produced from the same material has a higher collapse pressure when the load bearing surface area is increased. PMID:12628831

  17. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  18. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual 'cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields--the fast-growing photonic crystal and shape-memory polymer technologies--enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  19. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-06-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual `cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields--the fast-growing photonic crystal and shape-memory polymer technologies--enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale.

  20. Modified shape memory cyanate polymers with a wide range of high glass transition temperatures

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Huang, Longnan; Liu, Yanju; Leng, Jinsong

    2012-04-01

    Shape memory cyanate polymers (SMCPs) are a new kind of smart materials, which have huge development potential and a promising future. A series of shape memory cyanate polymers were prepared by cyanate ester and varying content of a linear modifier. The thermal properties of the SMCPs were investigated by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). The SMCPs we prepared have high glass transition temperature and show good heat resistance. The glass transition temperature Tg can be adjusted from 156.9°C to 259.6°C with the modifier. The initial temperature of thermal decomposition comes up to 300°C, which is enough high for the application in aerospace fields. The shape memory polymer we prepared shows a good shape memory effect, as the shape recovery time is less than 65s and the shape recovery rate reaches 95%.

  1. Self-assembly of Nanopatterns on Shape Memory Polymer Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi

    Periodic surface nanostructures provide unique acoustic, electronic, optical and mechanical properties, with potential applications to metamaterials, sensors, catalysis, medicine, etc. However, assembling nanometer scale constituents into engineering scale components or devices poses tremendous challenges such as cost reduction and scalability. In this work, we will introduce a novel directed self-assembly method that has the potential to address these challenges by forming unidirectional micro- and nano-wrinkles on engineering scale polymer substrates. The approach utilizes a smart material, shape memory polymer (SMP), as the substrate in a bi-layer thin-film/substrate system. With a specially-designed programming scheme, the SMP substrate can retract in one direction while expand in the perpendicular direction in a heating process. Consequently, the thin film corrugates and the wrinkling patterns are aligned. A parametric study that investigates how the system parameters influence the surface topology will be presented. Besides wrinkles, surface defects that occurred concurrently were also observed. We will present a progressive damage scheme and a microdomain-based model to understand and possibly help preventing the formation of defects. In addition, this work will also address our efforts in shrinking the wrinkle feature size from several microns to the tens of nanometer range. Two methods, through which the minimum wrinkle wavelength was reduced from one micron to 300 nm and further down to 35 nm will be elaborated. Such aligned wrinkles whose wavelength spanning two orders of magnitude from as small as 35 nm to as large as 5 mum will open up avenues for numerous exciting applications. The application of using the self-assembled wrinkled surface as the back-reflector in solar cells to improve the power conversion efficiency will be discussed as a case study. The long-term stability of the wrinkle topology, which is essential to efficiency boost will be

  2. Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition.

    PubMed

    Jang, Byung Chul; Seong, Hyejeong; Kim, Sung Kyu; Kim, Jong Yun; Koo, Beom Jun; Choi, Junhwan; Yang, Sang Yoon; Im, Sung Gap; Choi, Sung-Yool

    2016-05-25

    Resistive random access memory based on polymer thin films has been developed as a promising flexible nonvolatile memory for flexible electronic systems. Memory plays an important role in all modern electronic systems for data storage, processing, and communication; thus, the development of flexible memory is essential for the realization of flexible electronics. However, the existing solution-processed, polymer-based RRAMs have exhibited serious drawbacks in terms of the uniformity, electrical stability, and long-term stability of the polymer thin films. Here, we present poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3)-based RRAM arrays fabricated via the solvent-free technique called initiated chemical vapor deposition (iCVD) process for flexible memory application. Because of the outstanding chemical stability of pV3D3 films, the pV3D3-RRAM arrays can be fabricated by a conventional photolithography process. The pV3D3-RRAM on flexible substrates showed unipolar resistive switching memory with an on/off ratio of over 10(7), stable retention time for 10(5) s, excellent cycling endurance over 10(5) cycles, and robust immunity to mechanical stress. In addition, pV3D3-RRAMs showed good uniformity in terms of device-to-device distribution. The pV3D3-RRAM will pave the way for development of next-generation flexible nonvolatile memory devices. PMID:27142537

  3. Therapies targeting inflammation after stent implantation.

    PubMed

    Okura, Hiroyuki; Takagi, Tsutomu; Yoshida, Kiyoshi

    2013-07-01

    Since the introduction of coronary vessel scaffold by metallic stent, percutaneous coronary intervention has become widely performed all over the world. Although drug-eluting stent technology has further decrease the incidence of in-stent restenosis, there still remaining issues related to stent implantation. Vessel inflammation is one of the causes that may be related to stent restenosis as well as stent thrombosis. Therefore, systemic therapies targeting inflammation emerged as adjunctive pharmacological intervention to improve outcome. Statins, corticosteroids, antiplatelets, and immunosuppresive or anti-cancer drugs are reported to favorably impact outcome after bare-metal stent implantation. In type 2 diabetic patients, pioglitazone may be the most promising drug that can lower neointimal proliferation and, as a result, lower incidence of restenosis and target lesion revascularization. On the other hand, several new stent platforms that might decrease inflammatory response after drug-eluting stent implantation have been introduced. Because durable polymer used in the first generation drug-eluting stents are recognized to be responsible for unfavorable vessel response, biocompatible or bioabsorbable polymer has been introduce and already used clinically. Furthermore, polymer-free drug-eluting stent and bioresorbable scaffold are under investigation. Although vessel inflammation may be reduced by using these new drug-eluting stents or scaffold, long-term impact needs to be investigated further. PMID:23905635

  4. Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers

    NASA Astrophysics Data System (ADS)

    Cuevas, J. M.; Rubio, R.; Laza, J. M.; Vilas, J. L.; Rodriguez, M.; León, L. M.

    2012-03-01

    The mechanical response of a series of semicrystalline shape memory polymers was considerably enhanced by incorporating short glass fibres without modifying the thermo-responsive actuation based on balanced crystallinity and elasticity. The effect of different fractions of inorganic reinforcement on thermo-mechanical properties was evaluated using different instrument techniques such as differential scanning calorimetry (DSC), thermogravimetry (TGA), dynamic mechanical thermal analysis (DMTA) and three-point flexural tests. Moreover, we studied the inorganic reinforcement influence on the shape memory actuation capabilities by thermo-mechanical bending cycle experiments. As demonstrated, the manufactured polymer composites showed excellent shape memory capacities, similar to neat active polymer matrices, but with outstanding improvements in static and recovering mechanical performance.

  5. Programmable and self-demolding microstructured molds fabricated from shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Meier, Tobias; Bur, Julia; Reinhard, Maximilian; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2015-06-01

    We introduce shape memory polymers as materials to augment molds with programmable switching between different micro and nanostructures as functional features of the mold and self-demolding properties. These polymer molds can be used for hot embossing (or nanoimprinting) and casting. Furthermore, they enable the replication of nano- and microstructures on curved surfaces as well as embedded structures like on the inside walls of a microfluidic channel. The shape memory polymer molds can be replicated from master molds fabricated by conventional techniques. We tested their durability for microfabrication processes and demonstrated the advantages of shape memory molds for hot embossing and casting by replicating microstructures with high aspect ratios and optical grade surface quality.

  6. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A.

    2006-03-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, Tswitch. If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25°C resulted in temporary fixation of the mechanical deformation by 50-60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA·m-1). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. nanocomposite | shape-memory polymer | stimuli-sensitive polymer


  7. Fabrication and characterization of a foamed polylactic acid (PLA)/ thermoplastic polyurethane (TPU) shape memory polymer (SMP) blend for biomedical and clinical applications

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Kowalski, Jennifer; Naguib, Hani E.

    2014-03-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials that are able to respond to external stimulus such as heat by altering their shape. Bio-compatible SMPs have a number of advantages over static materials and are being studied extensively for biomedical and clinical applications (such as tissue stents and scaffolds). A previous study has demonstrated that the bio-compatible polymer blend of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) (50/50 and 70/30) exhibit good shape memory properties. In this study, the mechanical and thermo-mechanical (shape memory) properties of TPU/PLA SMP blends were characterized; the compositions studied were 80/20, 65/35, and 50/50 TPU/PLA. In addition, porous TPU/PLA SMP blends were fabricated with a gas-foaming technique; and the morphology of the porous structure of these SMPs foams were characterized with scanning electron microscopy (SEM). The TPU/PLA bio-compatible SMP blend was fabricated with melt-blending and compression molding. The glass transition temperature (Tg) of the SMP blends was determined with a differential scanning calorimeter (DSC). The mechanical properties studied were the stress-strain behavior, tensile strength, and elastic modulus; and the thermomechanical (or shape memory) properties studied were the shape fixity rate (Rf), shape recovery rate (Rr), response time, and the effect of recovery temperature on Rr. The porous 80/20 PLA/TPU SMP blend was found to have the highest tensile strength, toughness and percentage extension, as well as the lowest density and uniform pore structure in the micron and submicron scale. The porous 80/20 TPU/PLA SMP blend may be further developed for specific biomedical and clinical applications where a combination of tensile strength, toughness, and low density are required.

  8. "Grafting to" as a novel and simple approach for triple-shape memory polymers.

    PubMed

    Suchao-in, Kanitporn; Chirachanchai, Suwabun

    2013-08-14

    Maleated-polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (m-SEBS) is a block copolymer with two melting temperatures belonging to soft poly(ethylene-co-butylene) (EB) and hard polystyrene (PS) segments. As EB segments contain anhydride reactive groups, this allows grafting polybutylene succinate (PBS) as another soft segment to m-SEBS backbone to obtain triple-shape memory polymers based on two transition temperatures, i.e., Tm values of EB (at 55-65 °C) and PBS (at 105-115 °C). The present work shows a novel and simple approach of "grafting to" to develop triple-shape memory polymers. PMID:23895373

  9. Influence of strain rates on the mechanical behaviors of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Guo, Xiaogang; Liu, Liwu; Zhou, Bo; Liu, Yanju; Leng, Jinsong

    2015-09-01

    In the last few decades, shape memory polymers have demonstrated their major advantages of extremely high recovery strain, low density and low cost. Generally, the mechanical behavior of shape memory polymers is strongly dependent on the loading strain rates. Uniaxial tensile experiments were conducted on one kind of typical shape memory polymer (epoxy) at several different temperatures (348 K, 358 K, 368 K and 378 K) and true strain rates (0.25% s-1, 1.25% s-1 and 2.5% s-1). Thus, the influence of strain rate and temperature on the mechanical behavior of epoxy, in particular on the post yield stresses and the strain hardening behavior, were investigated through this experimental study. Based on our previous work Guo (2014 Smart Mater. Struct. 23 105019), a simplified model which can explain the shape memory effect of epoxy was proposed to predict the strain hardening behavior of the shape memory polymer. Based on the suggestion of Rault (1998 J. Non-Cryst. Solids 235-7 737-41), a linear compensation model was introduced to indicate the change in yield stresses with the increase of strain rate and temperature. Finally, the new model predictions for the true strain and stress behavior of epoxy were compared with the experimental results.

  10. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers.

    PubMed

    Mohr, R; Kratz, K; Weigel, T; Lucka-Gabor, M; Moneke, M; Lendlein, A

    2006-03-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, T(switch). If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(epsilon-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25 degrees C resulted in temporary fixation of the mechanical deformation by 50-60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA x m(-1)). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. PMID:16537442

  11. All organic memory devices utilizing fullerene molecules and insulating polymers

    NASA Astrophysics Data System (ADS)

    Kanwal, Alokik Paul

    The convergence of mobile technologies combined with stricter power requirements and increasing demands have strained the current memory technology. Newer technologies such as phase changing, ferroelectric, and magnetic random access memories are unsatisfactory in meeting the new requirements. We propose a new memory technology based on our initial discovery of charge storage in C60 molecules within poly (4-vinyl phenol) (PVP). To understand the memory potential, we created single-layer devices consisting of ˜30nm films of PVP+C60 sandwiched between aluminum (Al) electrodes. Current versus voltage (I-V) sweeps showed a significant hysteresis of 75nA, with distinguishable memory states. Room temperature charging of C60 was confirmed indirectly through capacitance versus voltage measurements and directly by monitoring the A1g characteristic peak of C60 during Raman measurements. We demonstrated memory operations by applying read-write-erase (RWE) pulses. The PVP+C60 devices exhibited memory retention for over 1 hour and response times of around 10ns. Characteristic hysteresis was demonstrated at the nanoscale. Conduction models were fitted at room temperature to the I-V curves. It was found that combination of direct and Fowler-Nordheim tunneling were the principle conduction mechanisms. For a more technologically viable memory device, we developed a multi-layer device structure, consisting of a polystyrene (PS) capping layer. The resulting asymmetrical I-V curve exhibited a hysteresis ratio of 103 . RWE cycles were measured with clearly distinguishable states. The memory retentions were measured over 2 hours and the response time around 10ns. The stability of the multi-layer devices was improved. I-V measurements at temperatures varying from 4.2 K to 298 K were performed to construct a theoretical model. The I-V curves were found to be temperature independent and exhibited similar tunneling behaviors as the single-layer devices. A simple model for conduction and

  12. Photo-enhanced polymer memory device based on polyimide containing spiropyran

    NASA Astrophysics Data System (ADS)

    Seok, Woong Chul; Son, Seok Ho; An, Tae Kyu; Kim, Se Hyun; Lee, Seung Woo

    2016-07-01

    This paper reports the synthesis of a new polyimide (PI) containing a spiropyran moiety in the side chain and its applications to the switchable polymer memory before and after UV exposure. UV exposure allows memory using spiropyran-based PI as an active layer with a higher current and lower switching-ON voltage compared to the unexposed device due to the structural changes in the spiropyran moiety after UV exposure. In addition, this study examined the effects of UV exposure on the performance of the memory containing spiropyran-based PI using the UV-Vis absorption spectra and space-charge limited conduction (SCLC) model. [Figure not available: see fulltext.

  13. A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Wang, ZhengDao; Guo, YaFang; Shi, XingHua

    2016-03-01

    Following deformation, thermally induced shape memory polymers (SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics (MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4'-Methylenedianiline.

  14. Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.

    PubMed

    Hardy, John G; Palma, Matteo; Wind, Shalom J; Biggs, Manus J

    2016-07-01

    Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications. PMID:27120512

  15. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    NASA Astrophysics Data System (ADS)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  16. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    NASA Astrophysics Data System (ADS)

    Arrieta, J. S.; Diani, J.; Gilormini, P.

    2014-09-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP.

  17. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    PubMed

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial. PMID:25647407

  18. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    NASA Astrophysics Data System (ADS)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool

    2015-12-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.

  19. Shape memory polymer nanofibers and their composites: electrospinning, structure, performance and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-10-01

    Shape memory polymers (SMPs) have been defined as a kind of smart materials under great investigation from academic research to industry applications. Research on SMPs and their composites, now incorporates a growing focus on nanofibers which offers new structures in microscopic level and the potential of enhanced performance of SMPs. This paper presents a comprehensive review of the development of shape memory polymer nanofibers and their composites, including the introduction of electrospinning technology, the morphology and structures of nanofibers (non-woven fibers, oriented fibers, core/shell fibers and functional particles added in the fibers), shape memory performance (thermal and mechanical properties, stimulus responsive behavior, multiple and two-way shape changing performance), as well as their potential applications in the fields of biomedical and tissue engineering.

  20. Controlled wettability based on reversible micro-cracking on a shape memory polymer surface.

    PubMed

    Han, Yu; Liu, Yuxuan; Wang, Wenxin; Leng, Jinsong; Jin, Peng

    2016-03-14

    Wettability modification on a polymer surface is of immense importance for flexible electronics and biomedical applications. Herein, controlled wettability of a styrene-based shape memory polymer has been realized by introducing micro-cracks on the polymer surface for the first time. The cracks were purposely prepared by thin metal film constrained deformation on the polymer. After the removal of the metallic film, wettability was dramatically enhanced by showing a remarkable reduction in the contact angle with water droplets from 85° to 25°. Subsequent systematic characterization techniques like XPS and SEM revealed that such observation could be attributed to the increased density of hydrophilic groups and the roughened surface. In addition, by controlling the temperature for annealing the treated polymer, the surface could be switched reversely to water-repellent. Therefore, this paper offers a smart tactic to manipulate the surface wettability of a shape memory polymer freely. The features of the controlled wettability surface such as high tenability, high stability and easy fabrication are promising for microfluidic switching and molecule/cell capture-release. PMID:26865175

  1. Clinical outcomes in 995 unselected real-world patients treated with an ultrathin biodegradable polymer-coated sirolimus-eluting stent: 12-month results from the FLEX Registry

    PubMed Central

    Lemos, Pedro A; Chandwani, Prakash; Saxena, Sudheer; Ramachandran, Padma Kumar; Abhyankar, Atul; Campos, Carlos M; Marchini, Julio Flavio; Galon, Micheli Zanotti; Verma, Puneet; Sandhu, Manjinder Singh; Parikh, Nikhil; Bhupali, Ashok; Jain, Sharad; Prajapati, Jayesh

    2016-01-01

    Objectives To evaluate, in the FLEX Registry, clinical outcomes of an ultrathin (60 µm) biodegradable polymer-coated Supraflex sirolimus-eluting stent (SES) for the treatment of coronary artery disease. Additionally, to determine the vascular response to the Supraflex SES through optical coherence tomography (OCT) analysis. Setting Multicentre, single-arm, all-comers, observational registry of patients who were treated with the Supraflex SES, between July 2013 and May 2014, at nine different centres in India. Participants 995 patients (1242 lesions) who were treated with the Supraflex SES, between July 2013 and May 2014, at nine different centres in India. A total of 47 participants underwent OCT analysis at 6 months’ follow-up. Interventions Percutaneous coronary intervention with Supraflex SES, Primary and secondary outcome measures The primary endpoint—the rate of major adverse cardiac events (defined as a composite of cardiac death, myocardial infarction (MI), target lesion revascularisation (TLR))—was analysed during 12 months. Results At 12 months, the primary endpoint occurred in 36 (3.7%) of 980 patients, consisting of 18 (1.8%) cardiac deaths, 16 (1.6%) MI, 7 (0.7%) TLR and 2 (0.2%) cases of non-target lesion target vessel revascularization. In a subset of 47 patients, 1227 cross-sections (9309 struts) were analysed at 6 months by OCT. Overall, a high percentage of struts was covered (98.1%), with a mean neointimal thickness of 0.13±0.06 µm. Conclusions The FLEX Registry evaluated clinical outcomes in real-world and more complex cohorts and thus provides evidence that the Supraflex SEX can be used safely and routinely in a broader percutaneous coronary intervention population. Also, the Supraflex SES showed high percentage of stent strut coverage and good stent apposition during OCT follow-up. PMID:26888727

  2. Dual Antiplatelet Therapy Over 6 Months Increases the Risk of Bleeding after Biodegradable Polymer-Coated Sirolimus Eluting Stents Implantation: Insights from the CREATE Study

    PubMed Central

    ZHANG, LEI; LI, YI; JING, QUAN-MIN; WANG, XIAO-ZENG; MA, YING-YAN; WANG, GENG; XU, BO; GAO, RUN-LIN; HAN, YA-LING

    2014-01-01

    Background The optimal duration of dual antiplatelet therapy (DAPT) after drug-eluting stent (DES) implantation remains controversial. The primary aim of our study was to evaluate the impact of optimal DAPT duration on bleeding events between 6 and 12 months after biodegradable polymer-coated DES implantation. The secondary aim is to determine the predictors and prognostic implications of bleeding. Methods This study is a post hoc analysis of the Multi-Center Registry of EXCEL Biodegradable Polymer Drug Eluting Stents (CREATE) study population. A total of 2,040 patients surviving at 6 months were studied, including 1,639 (80.3%) who had received 6-month DAPT and 401 (19.7%) who had received DAPT greater than 6 months. Bleeding events were defined according to the bleeding academic research consortium (BARC) definitions as described previously and were classified as major/minor (BARC 2–5) and minimal (BARC 1). A left censored method with a landmark at 6 months was used to determine the incidence, predictors, and impact of bleeding on clinical prognosis between 6 and 12 months. Results At 1-year follow-up, patients who received prolonged DAPT longer than 6 months had a significantly higher incidence of overall (3.0% vs. 5.5%, P = 0.021) and major/minor bleeding (1.1% vs. 2.5%, P = 0.050) compared to the patients who received 6-month DAPT. Multivariate analysis showed that being elderly (OR = 1.882, 95% CI: 1.109–3.193, P = 0.019), having diabetes (OR = 1.735, 95% CI: 1.020–2.952, P = 0.042), having a history of coronary artery disease (OR = 2.163, 95% CI: 1.097–4.266, P = 0.026), and duration of DAPT longer than 6 months (OR = 1.814, 95% CI: 1.064–3.091, P = 0.029) were independent predictors of bleeding. Patients with bleeding events had a significantly higher incidence of cardiac death, myocardial infarction, target lesion revascularization, and stent thrombosis. Conclusions Prolonged DAPT (greater than 6 months) after biodegradable polymer-coated DES

  3. Ferroelectric switching behavior in morphology controlled ferroelectric-semiconductor polymer blends for organic memory

    NASA Astrophysics Data System (ADS)

    Lim, Eunhee; Su, Gregory; Kramer, Edward; Chabinyc, Michael

    2015-03-01

    Memory is a fundamental component of all modern electronic systems. Organic ferroelectric memories are advantageous because they are thin and lightweight devices that can be made printable, foldable, and stretchable. Organic ferroelectric memories comprise a physical blend of an organic semiconducting polymer and an insulating ferroelectric polymer as the active layer in a thin film diode. Controlling the thin film morphology in these blends is important for electrical properties of the resulting device. We have found that when a semiconducting thiophene polymer with polar alkanoate side chains (P3EPT) is blended with well-studied ferroelectric polymer poly [(vinylidenefluoride-co-trifluoroethylene] P (VDF-TrFE), the resulting film has low surface roughness and more controllable domain sizes compared to the widely used poly (3-hexylthiophene). This difference allows more reliable study of the ferroelectric switching behavior in devices with domain size of about 100nm. The influence of the 3D composition measured by a combination of methods, including soft x-ray microscopy, on the electrical characteristics will be presented.

  4. Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.

    PubMed

    Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo

    2016-03-01

    Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements. PMID:26890532

  5. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Liu, Yanju; Leng, Jinsong

    2016-03-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (Tg), could be tunable by varying the constituents and Tg of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field.

  6. Drug-eluting stents: role of stent design, delivery vehicle, and drug selection.

    PubMed

    Rodgers, Campbell D K

    2002-01-01

    Increasing focus has recently been directed toward the different parameters of drug-eluting stents-stent design, delivery-vehicle materials, and drug properties-and the manner in which each of these elements may affect the function of the stents. Several specific characteristics of design may affect restenosis, although design optimization often presents a choice between acute procedural success and long-term biological stability. The influence of design parameters such as strut thickness and cell configuration is described. Polymer material has frequently been used to coat drug-eluting stents, although some agents, such as paclitaxel, can be attached directly to the stent's surface, obviating the need for a polymer layer. The properties of agents used in drug-eluting stents and how those properties affect delivery and long-term outcome are discussed, as is the influence of the disease state of the target vessel on stent safety and efficacy. PMID:12478230

  7. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  8. Gold nanoparticle charge trapping and relation to organic polymer memory devices.

    PubMed

    Prime, D; Paul, S; Josephs-Franks, P W

    2009-10-28

    Nanoparticle-based polymer memory devices (PMDs) are a promising technology that could replace conventional silicon-based electronic memory, offering fast operating speeds, simple device structures and low costs. Here we report on the current state of nanoparticle PMDs and review some of the problems that are still present in the field. We also present new data regarding the charging of gold nanoparticles in metal-insulator-semiconductor capacitors, showing that charging is possible under the application of an electric field with a trapped charge density due to the nanoparticles of 3.3 x 10(12) cm(-2). PMID:19770145

  9. Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites.

    PubMed

    Iijima, Motoyuki; Kobayakawa, Murino; Yamazaki, Miwa; Ohta, Yasuhiro; Kamiya, Hidehiro

    2009-11-18

    An anionic surfactant comprising a hydrophilic poly(ethylene glycol) (PEG) chain, hydrophobic alkyl chain, and polymerizable vinyl group was synthesized as a capping agent of nanoparticles. TiO(2) nanoparticles modified by this surfactant were completely dispersible in various organic solvents with a wide range of polarities, such as nitriles, alcohols, ketones, and acetates. Furthermore, these particles were found to be dispersible in various polymers with different properties, such as thermosetting epoxy resins and radical polymerized poly(methylmethacrylate) (PMMA). A polymer composite of surface-modified TiO(2) nanoparticles in epoxy resins prepared by using the developed surfactant also possessed temperature-induced shape memory properties. PMID:19852463

  10. Porous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications.

    PubMed

    Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek

    2013-07-01

    In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. PMID:23359528

  11. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    SciTech Connect

    Singhal, Pooja

    2013-12-01

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

  12. Shape Memory Polymers from Blends of Elastomers and Crystalline Small Molecules

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Brostowitz, Nicole; Hukill, Brent; Fairbairn, Heather

    2015-03-01

    This talk will present work on the fabrication of shape memory polymers (SMPs) by swelling natural with molten fatty acids. By this method a SMPs with excellent shape fixity and recovery can be obtained during free recovery after uniaxial deformation to 100% strain. Experiments to measure the shape memory properties under both stress and strain controlled conditions will be reported and compared. This fabrication method offers a number of advantages for preparing SMPs. First, it utilizes natural rubber as the base material for the SMP, which capitalizes on a high performance, commodity elastomer. Second, by blending a commercial polymer with a small molecule additive no additional chemistry is needed for the preparation of the SMP. Third, this route inverts the typically processing steps by crosslinking the permanent network prior to formation of the physically crosslinked reversible network. This offers a means to potentially generate a SMP from any preformed elastomeric article.

  13. Micro-vascular shape-memory polymer actuators with complex geometries obtained by laser stereolithography

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Chacón Tanarro, Enrique

    2016-06-01

    In our work we present the complete development process of geometrically complex micro-vascular shape-memory polymer actuators. The complex geometries and three-dimensional networks are designed by means of computer aided design resources. Manufacture is accomplished, in a single step, by means of laser stereolithography, directly from the computer-aided design files with the three dimensional geometries of the different actuators under development. To our knowledge, laser stereolithography is applied here for the first time to the development of shape memory polymer devices with complex geometries and inner micro-vasculatures for their activation using a thermal fluid. Final testing of the developed actuators helps to validate the approach and to put forward some present challenges.

  14. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  15. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  16. Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell

    NASA Astrophysics Data System (ADS)

    Shi, Guanghui; Yang, Qingsheng; Zhang, Qiang

    2012-04-01

    Shape memory polymer(SMP) is a class of smart materials used in intelligent biomedical devices and industrial application as sensors or actuators for their ability to change shape under a predetermined stimulus. Carbon nanotube (CNT)/shape memory polymer (SMP) composites demonstrate good mechanical properties and shape memory effect. In this work, a model of CNT/SMP composite shell with a vaulted cross-section was established. This composite shell structure could further elevate the recovery stress of CNT/SMP composites. The folding properties of CNT/SMP composite shell structure were analyzed by finite element method and the influence of structural parameters on the buckling behavior of the shell was studied using the energy conservation principle. The results indicate that vaulted cross-section shell had unique mechanical properties. The structural parameters, such as the vaulted radius and the total length have a great impact on buckling moment of the shell. This shell structure is expected to achieve effective control of buckling and deploying process, relying on the special shape memory property of SMP and high elastic modulus CNTs. Moreover, it could also largely avoid the vibration problem during the deploying process.

  17. Tunable Diffractive Optical Elements Based on Shape-Memory Polymers Fabricated via Hot Embossing.

    PubMed

    Schauer, Senta; Meier, Tobias; Reinhard, Maximilian; Röhrig, Michael; Schneider, Marc; Heilig, Markus; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2016-04-13

    We introduce actively tunable diffractive optical elements fabricated from shape-memory polymers (SMPs). By utilizing the shape-memory effect of the polymer, at least one crucial attribute of the diffractive optical element (DOE) is tunable and adjustable subsequent to the completed fabrication process. A thermoplastic, transparent, thermoresponsive polyurethane SMP was structured with diverse diffractive microstructures via hot embossing. The tunability was enabled by programming a second, temporary shape into the diffractive optical element by mechanical deformation, either by stretching or a second embossing cycle at low temperatures. Upon exposure to the stimulus heat, the structures change continuously and controllable in a predefined way. We establish the novel concept of shape-memory diffractive optical elements by illustrating their capabilities, with regard to tunability, by displaying the morphing diffractive pattern of a height tunable and a period tunable structure, respectively. A sample where an arbitrary structure is transformed to a second, disparate one is illustrated as well. To prove the applicability of our tunable shape-memory diffractive optical elements, we verified their long-term stability and demonstrated the precise adjustability with a detailed analysis of the recovery dynamics, in terms of temperature dependence and spatially resolved, time-dependent recovery. PMID:26998646

  18. Shape-Memory Polymers Based on Fatty Acid-Filled Elastomeric Ionomers

    NASA Astrophysics Data System (ADS)

    Izzo, Elise; Weiss, Robert

    2009-03-01

    Shape memory polymers (SMPs) have applications as medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures. All previous design of SMPs has involved synthesizing new polymers or modifying existing polymers. This paper describes a new type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or their salts (FAS). Shape memory elastomers were prepared from mixtures of a sulfonated EPDM ionomer and various amounts of a FAS (e.g., zinc stearate, zinc oleate, and various aliphalic acids). Nanophase separation of the metal sulfonate groups provided the ``permanent'' crosslinks, while sub-microscopic crystals of the low molecular weight FAS provided a physical crosslink needed for the temporary shape. The material was deformed above the melting point of the FAS and the new shape was fixed by cooling the material while under stress to below the melting point of the FAS. Polar interactions between the ionomer and the FAS stabilized the dispersion of the FAS in the polymer and provided the continuity between the phases that allowed the crystals of the FAS to provide a second network of physical crosslinks. The temporary shape was erased and the material returned to the primary shape by heating above the melting point of the FAS.

  19. [Absorbable coronary stents. New promising technology].

    PubMed

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  20. Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network

    PubMed Central

    Zhou, Guoxiang; Zhang, Heng; Xu, Shuping; Gui, Xuchun; Wei, Hongqiu; Leng, Jinsong; Koratkar, Nikhil; Zhong, Jing

    2016-01-01

    In this work, a 3-D porous carbon nanotube sponge (CNTS) was embedded within a shape memory polymer (SMPs) matrix. We demonstrate complete infiltration and filling of the SMPs into the CNTS by capillary force without any damage to the CNTS structure. With only ~0.2 wt% carbon nanotube loading, the glass transition temperature is increased by ~20 °C, indicating strong interaction between CNTS and the SMPs matrix. Further, we find that the uniform distribution of the carbon nanotubes in the nanocomposite results in high electrical conductivity, and thus highly effective electricity triggering capability. The carbon nanotube sponge shape memory polymer (CNTS/SMPs) nanocomposite could be triggered within ~10 seconds by the application of ~10 volts. Results from finite element simulations showed good agreement with the experimental results, and indicated that for our system the interface thermal energy loss does not have a significant effect on the heating rate of the polymer matrix. PMID:27052451

  1. Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network

    NASA Astrophysics Data System (ADS)

    Zhou, Guoxiang; Zhang, Heng; Xu, Shuping; Gui, Xuchun; Wei, Hongqiu; Leng, Jinsong; Koratkar, Nikhil; Zhong, Jing

    2016-04-01

    In this work, a 3-D porous carbon nanotube sponge (CNTS) was embedded within a shape memory polymer (SMPs) matrix. We demonstrate complete infiltration and filling of the SMPs into the CNTS by capillary force without any damage to the CNTS structure. With only ~0.2 wt% carbon nanotube loading, the glass transition temperature is increased by ~20 °C, indicating strong interaction between CNTS and the SMPs matrix. Further, we find that the uniform distribution of the carbon nanotubes in the nanocomposite results in high electrical conductivity, and thus highly effective electricity triggering capability. The carbon nanotube sponge shape memory polymer (CNTS/SMPs) nanocomposite could be triggered within ~10 seconds by the application of ~10 volts. Results from finite element simulations showed good agreement with the experimental results, and indicated that for our system the interface thermal energy loss does not have a significant effect on the heating rate of the polymer matrix.

  2. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615

  3. A Facile Strategy to Fabricate Multishape Memory Polymers with Controllable Mechanical Properties.

    PubMed

    Zhang, Qinglong; Hua, Wenqiang; Feng, Jiachun

    2016-08-01

    A facile blending strategy to fabricate multishape memory polymers (SMPs) with only one sort of phase transition material has been reported. In this work, olefin block copolymer (OBC) and styrene-b-(ethylene-co-butylene)-b-styrene (SEBS), which are both physically crosslinked, are blended with crystalline paraffin together. Due to the different interactions between polymer matrices and paraffin, the paraffin penetrated in OBC and SEBS exhibit separated melting transitions. It is quite interesting that merely paraffin distributed in OBC also shows two distinct melting transitions with enough OBC content in composites. Therefore, excellent quadruple shape memory effect can be achieved with a maximum of three melting transitions. Furthermore, through adjusting the polymer species and content, the mechanical and rheological properties can be conveniently tuned to a great extent. Compared with the reported strategies, this simple and controllable method sheds light on rapid design of multi-SMPs using inexpensive raw materials, which greatly paves the way for multi-SMPs from laboratory to factory. PMID:27254383

  4. Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network.

    PubMed

    Zhou, Guoxiang; Zhang, Heng; Xu, Shuping; Gui, Xuchun; Wei, Hongqiu; Leng, Jinsong; Koratkar, Nikhil; Zhong, Jing

    2016-01-01

    In this work, a 3-D porous carbon nanotube sponge (CNTS) was embedded within a shape memory polymer (SMPs) matrix. We demonstrate complete infiltration and filling of the SMPs into the CNTS by capillary force without any damage to the CNTS structure. With only ~0.2 wt% carbon nanotube loading, the glass transition temperature is increased by ~20 °C, indicating strong interaction between CNTS and the SMPs matrix. Further, we find that the uniform distribution of the carbon nanotubes in the nanocomposite results in high electrical conductivity, and thus highly effective electricity triggering capability. The carbon nanotube sponge shape memory polymer (CNTS/SMPs) nanocomposite could be triggered within ~10 seconds by the application of ~10 volts. Results from finite element simulations showed good agreement with the experimental results, and indicated that for our system the interface thermal energy loss does not have a significant effect on the heating rate of the polymer matrix. PMID:27052451

  5. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    SciTech Connect

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S.; Ortega, Jason M.; Small, Ward; Nash, Landon; Skoog, Hunter; Maitland, Duncan J.

    2014-08-11

    Recently, predominantly closed-cell low density shape memory polymer (SMP) foam was reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching. Lastly, reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede the shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model.

  6. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    DOE PAGESBeta

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S.; Ortega, Jason M.; Small, Ward; Nash, Landon; Skoog, Hunter; et al

    2014-08-11

    Recently, predominantly closed-cell low density shape memory polymer (SMP) foam was reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching.more » Lastly, reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede the shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model.« less

  7. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    PubMed Central

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S.; Ortega, Jason M.; Small, Ward; Nash, Landon; Skoog, Hunter; Maitland, Duncan J.

    2014-01-01

    Predominantly closed-cell low density shape memory polymer (SMP) foam was recently reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching. Reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model. PMID:25222869

  8. Stimuli-Responsive Reversible Two-Level Adhesion from a Structurally Dynamic Shape-Memory Polymer.

    PubMed

    Michal, Brian T; Spencer, Emily J; Rowan, Stuart J

    2016-05-01

    A shape-memory adhesive has been prepared that exhibits two levels of reversible adhesion. The adhesive is a semicrystalline cross-linked polymer that contains dynamic disulfide bonds. Melting of the crystalline regions via heat causes a drop in the modulus of the material facilitating wetting of the substrate as well as enhancing the surface contact area with the substrate, which result in the formation of an adhesive bond. Exposure to higher heat or UV light results in dynamic exchange of the disulfide bonds, which yields a further drop in the modulus/viscosity that improves surface wetting/contact and strengthens the adhesive bond. This improvement in adhesion is shown to apply over different substrates, contact forces, and deformation modes. Furthermore, the adhesive acts as a thermal shape-memory material and can be used to create joints that can reposition themselves upon application of heat. PMID:27096252

  9. Field-effect memory transistors based on arrays of nanowires of a ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Cai, Ronggang; Kassa, Hailu G.; Marrani, Alessio; van Breemen, Albert J. J. M.; Gelinck, Gerwin H.; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M.

    2015-09-01

    Ferroelectric poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE), is increasingly used in organic non-volatile memory devices, e.g., in ferroelectric field effect transistors (FeFETs). Here, we report on FeFETs integrating nanoimprinted arrays of P(VDF-TrFE) nanowires. Two previously-unreported architectures are tested, the first one consisting of stacked P(VDF-TrFE) nanowires placed over a continuous semiconducting polymer film; the second one consisting of a nanostriped blend layer wherein the semiconducting and ferroelectric components alternate regularly. The devices exhibit significant reversible memory effects, with operating voltages reduced compared to their continuous film equivalent, and with different possible geometries of the channels of free charge carriers accumulating in the semiconductor.

  10. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion.

    PubMed

    Rodriguez, Jennifer N; Miller, Matthew W; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S; Ortega, Jason M; Small, Ward; Nash, Landon; Skoog, Hunter; Maitland, Duncan J

    2014-12-01

    Predominantly closed-cell low density shape memory polymer (SMP) foam was recently reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching. Reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede the shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model. PMID:25222869

  11. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Zhong; Chen, Xin; Guo, Xu; Cui, Yu-Shuang; Shen, Qun-Dong; Ge, Hai-Xiong

    2014-10-01

    Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment.Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03866e

  12. Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices

    NASA Astrophysics Data System (ADS)

    Kallepalli, Lakshmi Narayana Deepak; Soma, Venugopal Rao; Desai, Narayana Rao

    2012-07-01

    We have investigated femtosecond-laser-induced microstructures (on the surface and within the bulk), gratings, and craters in four different polymers: polymethyl methacrylate, polydimethylsiloxane, polystyrene, and polyvinyl alcohol. The structures were achieved using a Ti:sapphire laser delivering 100-fs pulses at 800 nm with a repetition rate of 1 kHz and a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals were studied using ultraviolet-visible absorption and emission, confocal micro-Raman and electron spin resonance spectroscopic techniques. Potential applications of these structures in microfluidics, waveguides, and memory-based devices are demonstrated.

  13. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application

    NASA Astrophysics Data System (ADS)

    Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen

    2012-02-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.

  14. Recovery torque modeling of carbon fiber reinforced shape memory polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, He; Xu, Yunjun; Liang, Fei; Gou, Jihua; Mabbott, Bob

    2013-11-01

    Carbon fiber and carbon nanofiber paper (CF&CNFP) can be incorporated into shape memory polymers (SMPs) to increase electrical conductivity and allow high speed electrical actuation with a low power. This paper studies the interactions among the recovery torques of CF&CNFP and SMP and the gravity torque during the shape recovery process. The proposed recovery torque model in a SMP CF&CNFP based structure is validated by experimental data obtained using a recently developed low cost, non-contact measurement testbed.

  15. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces

    PubMed Central

    Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P.; Maitland, Duncan J.; Rennaker, Robert L.; Voit, Walter E.

    2014-01-01

    Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic–abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol–ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated. PMID:25530708

  16. A Thrombus Generation Model Applied to Aneurysms Treated with Shape Memory Polymer Foam and Metal Coils

    NASA Astrophysics Data System (ADS)

    Horn, John; Ortega, Jason; Hartman, Jonathan; Maitland, Duncan

    2015-11-01

    To prevent their rupture, intracranial aneurysms are often treated with endovascular metal coils which fill the aneurysm sac and isolate it from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational model has been developed to predict thrombus formation in blood in response to such cardiovascular implantable devices. The model couples biofluid and biochemical phenomena present as the blood interacts with a device and stimulates thrombus formation. This model is applied to simulations of both metal coil and shape memory polymer foam treatments within an idealized 2D aneurysm geometry. Using the predicted thrombus responses, the performance of these treatments is evaluated and compared. The results suggest that foam-treated aneurysms may fill more quickly and more completely with thrombus than coil-filled aneurysms, potentially leading to improved long-term aneurysm healing. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Highly compliant shape memory polymer gels for tunable damping and reversible adhesion

    NASA Astrophysics Data System (ADS)

    Mrozek, Randy A.; Berg, Michael C.; Gold, Christopher S.; Leighliter, Brad; Morton, Jeffrey T.; Lenhart, Joseph L.

    2016-02-01

    Materials that can dynamically change their properties to better adapt to the local environment have potential utility in robotics, aerospace, and coatings. For some of these applications, most notably robotics, it is advantageous for these responsive materials to be highly compliant in an effort to provide dynamic changes in adhesion and mechanical damping within a broad temperature operational environment. In this report, non-aqueous, highly compliant shape-memory polymer gels are developed by incorporating a low density of chemical cross-links into a physically cross-linked thermoplastic elastomer gel. Chemical cross-linkers were evaluated by varying there size and degree of functionality to determine the impact on the mechanical and adhesive properties. As a result of the chemical cross-linking, the gels exhibit modulus plateaus around room temperature and at elevated temperatures above 100 °C, where the thermoplastic elastomer gel typically melts. The materials were designed so that moduli in the plateaued regions were above and below the Dahlquist criteria of 4 × 104 Pa, respectively, where materials with a modulus below this value typically exhibit an increase in adhesion. The shape memory polymer gels were also integrated into fiber-reinforced composites to determine the temperature-dependent changes in mechanical damping. It is anticipated that this work will provide insight into materials design to provide dynamic changes in adhesion and damping to improve robotic appendage manipulation and platform mobility.

  18. Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids

    NASA Astrophysics Data System (ADS)

    Tadesse, Yonas

    2013-04-01

    There is a strong need to replicate natural muscles with artificial materials as the structure and function of natural muscle is optimum for articulation. Particularly, the cylindrical shape of natural muscle fiber and its interconnected structure promote the critical investigation of artificial muscles geometry and implementation in the design phase of certain platforms. Biomimetic robots and Humanoid Robot heads with Facial Expressions (HRwFE) are some of the typical platforms that can be used to study the geometrical effects of artificial muscles. It has been shown that electroactive polymer and shape memory alloy artificial muscles and their composites are some of the candidate materials that may replicate natural muscles and showed great promise for biomimetics and humanoid robots. The application of these materials to these systems reveals the challenges and associated technologies that need to be developed in parallel. This paper will focus on the computer aided design (CAD) models of conductive polymer and shape memory alloys in various biomimetic systems and Humanoid Robot with Facial Expressions (HRwFE). The design of these systems will be presented in a comparative manner primarily focusing on three critical parameters: the stress, the strain and the geometry of the artificial muscle.

  19. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  20. Comparing techniques for drug loading of shape-memory polymer networks--effect on their functionalities.

    PubMed

    Wischke, Christian; Neffe, Axel T; Steuer, Susi; Lendlein, Andreas

    2010-09-11

    A family of oligo[(epsilon-caprolactone)-co-glycolide]dimethacrylate (oCG-DMA) derived networks of different glycolide contents as well as precursor molecular weights has been synthesized by crosslinking oCG-DMA, providing matrices of different hydrophilicity, network density, and morphology at body temperature. Such networks were loaded with a hydrophilic model drug, ethacridine lactate, either before crosslinking or afterwards by swelling in drug solution. Disadvantageous alterations of the shape-memory functionality and degradation characteristics were observed only in few loaded materials. Loading by swelling generally resulted in low payloads, which slightly increased for more hydrophilic polymer networks, and a substantial burst and fast subsequent release for all investigated materials. Loading before crosslinking gave almost no burst and higher subsequent release rates over longer periods of time. Overall, depending on the needs of a specific application, a material from this polymer family with the desired mechanical properties, shape-memory functionality, and degradation pattern can be selected and combined with drugs when considering that (i) loading by swelling is best suited for applications that require high initial doses and (ii) loading before crosslinking allows easy variation of payloads and low burst release for therapeutics that are non-sensitive to chemical alterations during crosslinking. PMID:20542110

  1. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  2. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  3. Self-healing nanocomposite using shape memory polymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2013-04-01

    Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.

  4. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    NASA Astrophysics Data System (ADS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  5. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique.

    PubMed

    Ortega, Jason; Maitland, Duncan; Wilson, Tom; Tsai, William; Savaş, Omer; Saloner, David

    2007-11-01

    The vascular dynamics of a shape memory polymer foam aneurysm treatment technique are assessed through the simulated treatment of a generic basilar aneurysm using coupled fluid dynamics and heat transfer calculations. The shape memory polymer foam, which expands to fill the aneurysm when heated, is modeled at three discrete stages of the treatment procedure. To estimate an upper bound for the maximum amount of thermal damage due to foam heating, a steady velocity is specified through the basilar artery, corresponding to a minimum physiological flow velocity over a cardiac cycle. During expansion, the foam alters the flow patterns within the aneurysm by shielding the aneurysm dome from a confined jet that issues from the basilar artery. The time scales for thermal damage to the artery walls and surrounding blood flow are computed from the temperature field. The flow through the post-treatment bifurcation is comprised of two counter-rotating vortex tubes that are located beneath the aneurysm neck and extend downstream into the outlet arteries. Beneath the aneurysm neck, a marked increase in the wall shear stress is observed due to the close proximity of the counter-rotating vortex tubes to the artery wall. PMID:17676399

  6. Early Clinical Experience with a Polymer-Free Biolimus A9 Drug-Coated Stent in DES-Type Patients Who Are Poor Candidates for Prolonged Dual Anti-Platelet Therapy

    PubMed Central

    Kinnaird, Tim; Butt, Mehmood; Abdul, Fairoz; Yazji, Khaled; Hailan, Ahmed; Gallagher, Sean; Ossei-Gerning, Nicholas; Chase, Alexander; Choudhury, Anirban; Smith, David; Anderson, Richard

    2016-01-01

    Introduction Prolonged dual anti-platelet therapy (DAPT) may cause excess bleeding in certain patients. The biolimus-A9 drug-coated stent (BA9-DCS) has a rapid drug-elution profile allowing shortened DAPT. Data were gathered on the early experience implanting this stent in drug-eluting stent eligible patients deemed to be at high risk of bleeding. Background and Methods The demographics, procedural data and clinical outcomes were gathered prospectively for 249 patients treated with a BA9-DCS stent at 2 UK centres, and compared to a cohort of patients treated in the same period with drug-eluting stents (PCI-DES). Results Operator-defined BA9-DCS indications included warfarin therapy, age, and anaemia. Patients receiving a BA9-DCS were older (71.6±11.8 vs. 64.8±11.6yrs, p<0.001), more often female (38.2 vs. 26.8%, P<0.001), and more likely to have comorbidity including chronic kidney disease or poor LV function than PCI-DES patients. The baseline Mehran bleed risk score was also significantly higher in the BA9-DCS group (19.4±8.7 vs. 13.1±5.8, p<0.001). Of the BA9-DCS cohort, 95.5% of patients demonstrated disease fitting NICE criteria for DES placement. The number of lesions treated (1.81±1.1 vs. 1.58±0.92, p = 0.003), total lesion length (32.1±21.7 vs. 26.1±17.6mm, p<0.001), number of stents used (1.93±1.11 vs. 1.65±1.4, p = 0.007) and total stent length (37.5±20.8 vs. 32.4±20.3, p<0.01) were greater for BA9-DCS patients. DAPT was prescribed for 3.3±3.9 months for BA9-DCS patients and 11.3±2.4 months for PCI-DES patients (p<0.001). At follow up of 392±124 days despite the abbreviated DAPT course stent related event were infrequent with ischemia-driven restenosis PCI (2.8 vs. 3.4%, p = 0.838), and stent thrombosis (1.6 vs. 2.1%, p = 0.265) rates similar between the BA9-DCS ad PCI-DES groups. After propensity scoring all clinical end-points were similar between both cohorts. Conclusions This early experience using polymer-free BA9 drug-coated stents in

  7. Coronary Stent Thrombosis: Current Insights into New Drug-Eluting Stent Designs

    PubMed Central

    Kim, Hyun Kuk

    2012-01-01

    The advances of interventional cardiology have been achieved by new device development, finding appropriate drug regimes, and understanding of pathomechanism. Drug-eluting stents (DES) implantation with dual anti-platelet therapy reduced revascularization without increasing mortality or myocardial infarction compared with bare-metal stenting. However, late-term stent thrombosis (ST) and restenosis limited its value and raised the safety concern. Main mechanisms of this phenomenon are impaired endothelialization and hypersensitivity reaction with polymer. The second generation DES further improved safety and/or efficacy by using thinner stent strut and biocompatible polymer. Recently, new concept DES with biodegradable polymer, polymer-free and bioabsorbable scaffold are under investigation in the quest to minimize the risk of ST. PMID:23323218

  8. Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film.

    PubMed

    Lei, Ming; Xu, Ben; Pei, Yutao; Lu, Haibao; Fu, Yong Qing

    2016-01-01

    This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and μm-scales. Compared with CNFs, MWCNTs showed a better mechanical enhancement for PS nanocomposites due to their uniform distribution in the nanocomposites. In nanoindentation tests using the Berkovich tips, indentation size effects and pile-up effects appeared obviously for the nanocomposites, but not for pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs related to the secondary structures formed by nanofillers, including two aspects, i.e., filler-polymer interfacial connections and geometrical factors of nanofillers. The filler-polymer interfacial connections were strongly dependent on temperature, thus leading to the opposite changing trend of loss tangent with nanofiller concentrations, respectively, at low and high temperature. The geometrical factors of nanofillers were related to testing scales, further leading to the appearance of pile-up effects for nanocomposites in the nanoindentation tests, in which the size of indents was close to the size of the nanofiller skeleton. PMID:26448555

  9. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    NASA Astrophysics Data System (ADS)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  10. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain

  11. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    SciTech Connect

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring the fluid

  12. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  13. Developments in coronary artery stenting: primum non nocere.

    PubMed

    Simsek, C; Serruys, P W

    2011-03-01

    The occurrence of restenosis and acute vessel closure postballoon angioplasty was the driving force for the introduction of coronary artery stenting in the 1980s. Although the first generation of coronary artery stents were highly valuable and efficient in scaffolding (non-)threatened coronary vessels, they proved to be associated with iatrogenic side effects such as in-stent neointimal hyperplasia. The efforts to tackle these side-effects eventually lead to the most significant progress within the field of interventional cardiology in the past decennium, namely drug-eluting stents (DES). Analysts estimate that the total amount of DES implantations worldwide will be more than 5 million this year. Although this worldwide increase in percutaneous coronary interventions (PCI) is impressive, some pitfalls such as the incidence of neointimal hyperplasia, stent fracture and a local hypersensitivity reaction against the polymer coating are worrisome. According to critics, the possible causal relationship with higher rates of very-late stent thrombosis could be a ticking time bomb. These concerns paved the way for the development of novel stents, ranging from DES with biodegradable polymer coating to completely biodegradable stents. Like all progress in medical interventions, it is essential to not harm the patient throughout this complex evolvement process of coronary stents. The current review not only discusses the benefits and safety issues associated with currently utilized coronary stents but in particular highlights novel coronary stents that are being investigated in (pre-)clinical trials at this moment. PMID:21346701

  14. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    PubMed Central

    Caraveo-Frescas, J. A.; Khan, M. A.; Alshareef, H. N.

    2014-01-01

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm2V−1s−1, large memory window (∼16 V), low read voltages (∼−1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices. PMID:24912617

  15. Photothermal Properties of Shape Memory Polymer Micro-Actuators for Treating Stroke

    SciTech Connect

    Maitland, D J; Metzger, M F; Schumann, D; Lee, A; Wilson, T S

    2001-03-05

    Objective--In this paper the photothermal design aspects of novel shape memory polymer (SMP) microactuators for treating stroke are presented. Materials and Methods--A total of three devices will be presented: two interventional ischemic stroke devices (coil and umbrella) and one device for releasing embolic coils (microgripper). The optical properties of SMP, methods for coupling laser light into SMP, heating distributions in the SMP devices and the impact of operating the thermally activated material in a blood vessel are presented. Results--Actuating the devices requires device temperatures in the range of 65 C-85 C. Attaining these temperatures under flow conditions requires critical engineering of the SMP optical properties, optical coupling into the SMP, and device geometries. Conclusion--Laser-activated SMP devices are a unique combination of laser-tissue and biomaterial technologies. Successful deployment of the microactuator requires well-engineered coupling of the light from the diffusing fiber through the blood into the SMP.

  16. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  17. Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability.

    PubMed

    Zhao, Lingyu; Zhao, Jun; Liu, Yayun; Guo, Yufeng; Zhang, Liangpei; Chen, Zhuo; Zhang, Hui; Zhang, Zhong

    2016-06-01

    Designing smart surfaces with tunable wettability has drawn much attention in recent years for academic research and practical applications. Most of the previous methods to achieve such surfaces demand some particular materials that inherently have special features or complicated structures which are usually not easy to obtain. A novel strategy to achieve such smart surfaces is proposed by using the surface patterned shape memory polymers of chemically crosslinked polycyclooctene which shows a giant deformability of up to ≈730% strain. The smart surfaces possess the ability to continuously tune the wettability by controlling the recovery temperature and/or time. Coating the modified titanium dioxide nanoparticles onto such surfaces renders the surface superhydrophobicity and expands the tunable range of contact angles (CAs). Theoretical calculations of the CAs at different strains via modified Cassie model well explain the tunable wettability behaviors of such smart surfaces. PMID:27167599

  18. Fabrication and Characterization of Cylindrical Light Diffusers Comprised of Shape Memory Polymer

    SciTech Connect

    Small IV, W; Buckley, P R; Wilson, T S; Loge, J M; Maitland, K D; Maitland, D J

    2007-01-29

    We have developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. Devices were fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity were characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers were generally strongly forward-directed and consistently withstood over 8 W of incident infrared laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  19. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  20. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    NASA Astrophysics Data System (ADS)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  1. Inflammation and impaired wound healing after zotarolimus-eluting stent implantation.

    PubMed

    Yoneda, Shuichi; Abe, Shichiro; Taguchi, Isao; Masawa, Nobuhide; Inoue, Katsumi; Inoue, Teruo

    2012-01-01

    An 86-year-old man died suddenly 5 months after implantation of a zotarolimus-eluting stent. Two zotarolimus-eluting stents were placed to treat a highly calcified diffuse lesion in the proximal-to-mid right coronary artery. The lesion was fully covered by the two stents, and intravascular ultrasound showed complete stent apposition. However, an X-ray at autopsy showed that the proximal stent was fractured. Although we thought that thrombotic occlusion at the fracture site might have caused his sudden death, no thrombus was present. In addition, in the other sites where the stents were optimally dilated, there was stent malapposition and peri-strut inflammation including macrophage infiltration, giant cells, polymer phagocytosis, and neovascularization in the neointima. Even with a second-generation drug-eluting stent, such as the zotarolimus-eluting stent, wound healing may be impaired at the stent-injured vessel site. PMID:22356902

  2. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.

    PubMed

    Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W

    2013-11-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be

  3. Effects of sensitizer length on radiation crosslinked shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor; Voit, Walter; Gall, Ken

    2010-04-01

    Shape-memory polymers (SMPs) are smart materials that can be designed to retain a metastable state and upon activation, recover a preprogrammed shape. In this study, poly(methyl acrylate) (PMA) is blended with poly(ethylene glycol) diacrylate (PEGDA) of various molecular weights in various concentrations and subsequently exposed to ionizing radiation. PEGDA sensitizes the radiation crosslinking of PMA, lowering the minimum absorbed dose for gelation and increasing the rubbery modulus, after crosslinking. Minimum dose for gelation, as determined by the Charlesby-Pinner equation, decreases from 25.57 kGy for unblended PMA to 2.06 kGy for PMA blended with 10.00 mole% PEGDA. Moreover, increase in the blend concentration of PEGDA increases the crosslinking density of the resulting networks. Sensitizer length, namely Mn of PEGDA, also affects crosslinking and final mechanical properties. Increase in the length of the PEGDA molecule at a constant molar ratio increases the efficacy of the molecule as a radiation sensitizer as determined by the increase in gel fraction and rubbery modulus across doses. However, at a constant weight ratio of PEGDA to PMA, shorter PEGDA chains sensitize more crosslinking because they have more reactive ends per weight fraction. Sensitized samples of PMA with PEGDA were tested for shape-memory properties and showed shape fixity of greater than 99%. Samples had a glass transition temperature near 28 °C and recovered between 97% and 99% of the induced strain when strained to 50%.

  4. Thermo-mechanical and micro-structural characterization of shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    di Prima, Matthew Allen

    The need for a set of design criteria, models, and limits for the use of shape memory polymer foams was proposed. The effect of temperature and strain on the mechanical behavior; compression, tensile, cyclic compression, constrained recovery, and free strain recovery of the material was used to determine the operational limits of the material. Next, the damage mechanism and viscoelastic effects in compressive cycling were determined through further mechanical testing and with the incorporation of three dimensional structure mapping via micro-CT scanning. The influence of microstructure was determined by testing the basic thermomechanical, viscoelactic, and shape recovery behavior of foams with relative densities of 20, 30, and 40 percent. A similar suite of tests were then performed with the base epoxy material to generate the material properties for computational modeling. This data was then combined with three dimensional microstructures generated from micro-CT scans to develop material models for shape memory foams. These models were then validated by comparing model results to the experimental results under similar conditions.

  5. Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Xu, Wei

    2011-06-01

    Programming is a key process for thermally activated stress or strain recovery of shape memory polymers (SMPs). Typically, programming requires an initial heating above the glass transition temperature ( Tg), subsequent cooling below Tg and removal of the applied load, in order to fix a temporary shape. This work adopted a new approach to program thermoset SMPs directly at temperatures well below Tg, which effectively simplified the shape fixing process. 1-D compression programming below Tg and free shape recovery of a thermoset SMP were experimentally investigated. Functional stability of the shape fixity under various environmental attacks was also experimentally evaluated. A mechanism-based thermoviscoelastic-thermoviscoplastic constitutive model incorporating structural and stress relaxation was then developed to predict the nonlinear shape memory behavior of the SMP trained below Tg. Comparison between the prediction and the experiment showed good agreement. The structure dependence of the thermomechanical behavior of the SMP was further discussed through a parametric study per the validated constitutive model. This study validates that programming by cold-compression is a viable alternative for thermally responsive thermoset SMPs.

  6. Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations.

    PubMed

    Podgórski, M; Wang, C; Bowman, C N

    2015-09-14

    This investigation details the formation of polymer network trilayer laminates formed by thiol-X click chemistries, and their subsequent implementation and evaluation for quadruple shape memory behavior. Thiol-Michael addition and thiol-isocyanate-based crosslinking reactions were employed to fabricate each of the laminate's layers with independent control of the chemistry and properties of each layer and outstanding interlayer adhesion and stability. The characteristic features of step-growth thiol-X reactions, such as excellent network uniformity and narrow thermal transitions as well as their stoichiometric nature, enabled fabrication of trilayer laminates with three distinctly different glass transition temperatures grouped within a narrow range of 100 °C. Through variations in the layer thicknesses, a step-wise modulus drop as a function of temperature was achieved. This behavior allowed multi-step programming and the demonstration and quantification of quadruple shape memory performance. As is critical for this performance, the interface connecting the layers was evaluated in stoichiometric as well as off-stoichiometric systems. It was shown that the laminated structures exhibit strong interfacial binding and hardly suffer any delamination during cyclic material testing and deformation. PMID:26234205

  7. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  8. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  9. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  10. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.

    PubMed

    Nail, Lindsay N; Zhang, Dawei; Reinhard, Jessica L; Grunlan, Melissa A

    2015-01-01

    Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect "self-fitting." In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described. PMID:26556112

  11. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates

    NASA Astrophysics Data System (ADS)

    Pieczyska, E. A.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2016-08-01

    This paper presents experimental and modeling results of the effects of thermomechanical couplings occurring in a polyurethane shape memory polymer (SMP) subjected to tension at various strain rates within large strains. The SMP mechanical curves, recorded using a testing machine, and the related temperature changes, measured in a contactless manner using an IR camera, were used to investigate the polymer deformation process at various loading stages. The effects of thermomechanical couplings allowed the determination of the material yield point in the initial loading stage, the investigation of nucleation and development of the strain localization at larger strains and the estimation of the effects of thermoelastic behavior during the unloading process. The obtained stress–strain and thermal characteristics, the results of the dynamic mechanical analysis and estimated values of the shape fixity and shape recovery parameters confirmed that the shape memory polymer (T g = 45 °C) is characterized by good mechanical and shape memory properties, as well as high sensitivity to the strain rate. The mechanical response of the SMP subjected to tension was simulated using the finite element method and applying the large strain, two-phase model. Strain localization observed in the experiment was well reproduced in simulations and the temperature spots were correlated with the accumulated viscoplastic deformation of the SMP glassy phase.

  12. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths

    PubMed Central

    Zhang, Dawei; Giese, Melissa L.; Prukop, Stacy L.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, “AB networks” comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low Tg (−125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL40-block-PDMSm-block-PCL40 macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. PMID:22904597

  13. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  14. Stent thrombosis with drug-eluting stents: is the paradigm shifting?

    PubMed

    Palmerini, Tullio; Biondi-Zoccai, Giuseppe; Della Riva, Diego; Mariani, Andrea; Genereux, Philippe; Branzi, Angelo; Stone, Gregg W

    2013-11-19

    First-generation drug-eluting stents (DES), which impart the controlled release of sirolimus or paclitaxel from durable polymers to the vessel wall, have been consistently shown to reduce the risk of restenosis and target vessel revascularization compared with bare metal stents (BMS). However, stent thrombosis (ST) emerged as a major safety concern with first-generation DES early after their adoption in clinical practice, requiring prolonged dual antiplatelet therapy. Pathological studies have shown that first-generation DES are associated with delayed arterial healing and polymer hypersensitivity reactions resulting in chronic inflammation, predisposing to late and very late ST. Second-generation DES have been developed to overcome these issues with improved stent designs and construction and the use of biocompatible and bioabsorbable polymers. Meta-analyses have shown that the thin-strut, fluoropolymer-coated cobalt-chromium everolimus-eluting stent (CoCr-EES) may be associated with lower rates of definite ST than other DES and, unexpectedly, even lower than BMS. The thin-strut structure of the stent platform, the thromboresistant properties of the fluoropolymer, and the reduced polymer and drug load may contribute to the low rate of ST with CoCr-EES. The notion of DES being safer than BMS represents a paradigm shift in the evolution of percutaneous coronary intervention. The relative safety and efficacy of fluoropolymer-coated CoCr-EES, DES with bioabsorbable polymers, and fully bioresorbable scaffolds are the subject of numerous ongoing large-scale trials. PMID:24036025

  15. The Supralimus sirolimus-eluting stent.

    PubMed

    Lemos, Pedro A; Bienert, Igor

    2013-05-01

    The use of biodegradable polymeric coatings has emerged as a potential bioengineering target to improve the vascular compatibility of coronary drug-eluting stents (DESs). This review summarizes the main features and scientific facts about the Supralimus sirolimus-eluting stent (Sahajanand Medical Technologies Ltd, Surat, India), which is a biodegradable polymer-based, sirolimus-eluting metallic stent that was recently introduced for routine use in Europe. The novel stent is built on a stainless steel platform, coated with a blend of biodegradable polymers (poly-l-lactide, poly-dl-lactide-co-glycolide and polyvinyl pyrrolidone; coating thickness is 4-5 µm). The active agent is the antiproliferative sirolimus in a dose load of 1.4 µg/mm(2), which is released within 48 days. The Supralimus stent was initially evaluated in the single-arm SERIES-I study, which showed binary angiographic restenosis rates of 0% (in-stent) and 1.7% (in-segment) and an in-stent late lumen loss of 0.09 ± 0.28 mm. The multicenter randomized PAINT trial compared two DESs with identical metallic platforms and biodegradable polymer carriers, but different agents (Infinnium [Sahajanand Medical Technologies Pvt Ltd] paclitaxel-eluting stent or Supralimus sirolimus-eluting stent) against bare stents. After 3 years, the pooled DES population had similar rates of cardiac death or myocardial infarction (9 vs 7.1%; p = 0.6), but a lower risk of repeat interventions (10 vs 29.9%; p < 0.01) than controls with bare stents. The incidence of definite or probable stent thrombosis in the pooled DES group was 2.3% (1st year: 1.8%; 2nd year: 0.4% and 3rd year: 0%). These results demonstrate that the novel Supralimus stents are effective in reducing reintervention, while potentially improving the safety profile by decreasing the risk of late-term thrombosis, even though further studies would be necessary to confirm these findings. PMID:23597097

  16. Estimation of creep and recovery behavior of a shape memory polymer

    NASA Astrophysics Data System (ADS)

    Sakai, Takenobu; Tao, Takayuki; Somiya, Satoshi

    2015-11-01

    The shape recovery and shape fixity properties of shape memory polymers (SMPs), advanced functional materials, were investigated in this study. Although the shape recovery behavior of these polymers has been examined from a viscoelastic point of view, questions remain with regard to quantifying the recovery behavior of SMPs. SMPs can recover their shape after the molding process; this recovery occurs via creep recovery and/or shape recovery; an estimation of SMP recovery requires a good understanding of both processes. In this study, the time-temperature superposition principle was applied to the creep and shape recovery behavior of SMPs. The creep behavior was estimated using an experimentally obtained master curve and time-temperature shift factors. Our estimated results were in good agreement with the experimental data. However, the estimation of the creep recovery with changing temperature below or above the glass transition temperature was not successful due to the lack of consideration of the shape recovery behavior. The time and temperature dependency of the shape recovery were confirmed for creep behavior, using the master curve for the recovery ratio and the corresponding shift factors for shape recovery. The values of the shape recovery shift factors differed from those for the time-temperature shift factors obtained for creep behavior. Therefore, these shape recovery shift factors were used in the estimation of creep and shape recovery behavior using the master curve for the creep tests. The estimated results were closer to the results obtained experimentally. Moreover, our results indicated that the recovery behavior above Tg was dominated by shape recovery as a result of polymer viscoelasticity.

  17. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  18. Longitudinal stent deformation during coronary bifurcation stenting.

    PubMed

    Vijayvergiya, Rajesh; Sharma, Prafull; Gupta, Ankush; Goyal, Praveg; Panda, Prashant

    2016-03-01

    A distortion of implanted coronary stent along its longitudinal axis during coronary intervention is known as longitudinal stent deformation (LSD). LSD is frequently seen with newer drug eluting stents (DES), specifically with PROMUS Element stent. It is usually caused by impact of guide catheter tip, or following passage of catheters like balloon catheter, IVUS catheter, guideliner, etc. We hereby report a case of LSD during coronary bifurcation lesion intervention, using two-stents technique. Patient had acute stent thrombosis as a complication of LSD, which was successfully managed. PMID:26811144

  19. Inorganic-organic shape memory polymers and foams for bone defect repairs

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei

    The ultimate goal of this research was to develop a "self-fitting" shape memory polymer (SMP) scaffold for the repair of craniomaxillofacial (CMF) bone defects. CMF defects may be caused by trauma, tumor removal or congenital abnormalities and represent a major class of bone defects. Their repair with autografts is limited by availability, donor site morbidity and complex surgical procedures. In addition, shaping and positioning of these rigid grafts into irregular defects is difficult. Herein, we have developed SMP scaffolds which soften at T > ˜56 °C, allowing them to conformally fit into a bone defect. Upon cooling to body temperature, the scaffold becomes rigid and mechanically locks in place. This research was comprised of four major studies. In the first study, photocrosslinkable acrylated (AcO) SMP macromers containing a poly(epsilon-caprolactone) (PCL) segment and polydimethylsiloxane (PDMS) segments were synthesized with the general formula: AcO-PCL40-block-PDMS m-block-PCL40-OAc. By varying the PDMS segment length (m), solid SMPs with highly tunable mechanical properties and excellent shape memory abilities were prepared. In the second study, porous SMP scaffolds were fabricated based on AcO-PCL 40-block-PDMS37-block-PCL 40-OAc via a revised solvent casting particulate leaching (SCPL) method. By tailoring scaffold parameters including salt fusion, macromer concentration and salt size, scaffold properties (e.g. pore features, compressive modulus and shape memory behavior) were tuned. In the third study, porous SMP scaffolds were produced from macromers with variable PDMS segment lengths (m = 0 -- 130) via an optimized SCPL method. The impact on pore features, thermal, mechanical, and shape memory properties as well as degradation rates were investigated. In the final study, a bioactive polydopamine coating was applied onto pore surfaces of the SMP scaffold prepared from PCL diacrylate. The thin coating did not affect intrinsic bulk properties of the

  20. Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun

    2011-10-01

    A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.

  1. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  2. The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent.

    PubMed

    Grabow, N; Martin, H; Schmitz, K P

    2002-01-01

    Biodegradable polymer stents as an alternative to metallic vascular stents have long been under discussion. However, for various reasons no such stent concept has been made available for commercial use until today. One reason may be, that still little is known about the mechanical properties of polymer stents and their dependency on the material characteristics. In this study, finite element analysis is used to investigate the mechanical properties of a balloon expandable PLLA stent under various load conditions. It is shown, how material parameters, such as elastic modulus, yield level and material hardening, influence stent recoil and collapse behavior. PMID:12451906

  3. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction—TROFI II trial

    PubMed Central

    Sabaté, Manel; Windecker, Stephan; Iñiguez, Andres; Okkels-Jensen, Lisette; Cequier, Angel; Brugaletta, Salvatore; Hofma, Sjoerd H.; Räber, Lorenz; Christiansen, Evald Høi; Suttorp, Maarten; Pilgrim, Thomas; Anne van Es, Gerrit; Sotomi, Yohei; García-García, Hector M.; Onuma, Yoshinobu; Serruys, Patrick W.

    2016-01-01

    Aims Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES) in patients with STEMI. Methods and results ABSORB-STEMI TROFI II was a multicentre, single-blind, non-inferiority, randomized controlled trial. Patients with STEMI who underwent primary percutaneous coronary intervention were randomly allocated 1:1 to treatment with the Absorb or EES. The primary endpoint was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition. Between 06 January 2014 and 21 September 2014, 191 patients (Absorb [n = 95] or EES [n = 96]; mean age 58.6 years old; 17.8% females) were enrolled at eight centres. At 6 months, HS was lower in the Absorb arm when compared with EES arm [1.74 (2.39) vs. 2.80 (4.44); difference (90% CI) −1.06 (−1.96, −0.16); Pnon-inferiority <0.001]. Device-oriented composite endpoint was also comparably low between groups (1.1% Absorb vs. 0% EES). One case of definite subacute stent thrombosis occurred in the Absorb arm (1.1% vs. 0% EES; P = ns). Conclusion Stenting of culprit lesions with Absorb in the setting of STEMI resulted in a nearly complete arterial healing which was comparable with that of metallic EES at 6 months. These findings provide the basis for further exploration in

  4. Memory effect in the chain-collapse process in a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Maki, Yasuyuki; Sasaki, Naoki; Nakata, Mitsuo

    2004-12-01

    The effect of temperature perturbation on a single-chain-collapse process was studied for poly(methyl methacrylate) with the molecular weight Mw=1.05×107 in the mixed solvent of tert-butyl alcohol+water (2.5 vol %). In the chain-collapse process after a quench from the θ temperature to a temperature T1, the temperature was changed from T1 to T2 at the time t1 after the quench and returned to T1 at the time t1+t2. In the three stages at T1, T2, and T1, measurements of the mean-square radius of gyration of polymer chains were carried out by static light scattering and the chain-collapse process was represented by the expansion factor as a function of time. An effect of chain aggregation on the measurements was negligibly small because of the very slow phase separation. For the negative temperature perturbation (T1>T2), the chain-collapse processes observed in the first and third stages were connected smoothly and agreed with the collapse process due to a single-stage quench to T1. A memory of the chain collapse in the first stage at T1 was found to persist into the third stage at the same temperature T1 without being affected by the temperature perturbation of T2 during t2. The memory effect was observed irrespective of the time period of t2. The positive temperature perturbation (T1

  5. Second generation drug-eluting stents: a review of the everolimus-eluting platform.

    PubMed

    Whitbeck, Matthew G; Applegate, Robert J

    2013-01-01

    Everolimus-eluting stents (EES) represent the next generation of drug-eluting stents (DES). Important design modifications include thin strut stent backbones, less inflammatory and more biocompatible polymers, and lower drug dosing. The cobalt chromium EES fluoropolymer XIENCE V stent has been the most extensively studied of such stents. In animal models, this stent demonstrated minimal vessel inflammation, a biologically active endothelium with strut coverage similar to a bare metal stent, and inhibition of intimal hyperplasia comparable to that seen with sirolimus-eluting stents. The SPIRIT family of clinical trials demonstrated low rates of late loss, and clinical restenosis, as well as low rates of very late stent thrombosis. These excellent clinical outcomes addressed limitations of the 1st generation DES, and substantiated widespread clinical use of the EES platform. PMID:23926441

  6. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.

    PubMed

    Xie, Meihua; Wang, Ling; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-04-01

    Preparation of functional shape memory polymer (SMP) for tissue engineering remains a challenge. Here the synthesis of strong electroactive shape memory polymer (ESMP) networks based on star-shaped polylactide (PLA) and aniline trimer (AT) is reported. Six-armed PLAs with various chain lengths were chemically cross-linked to synthesize SMP. After addition of an electroactive AT segment into the SMP, ESMP was obtained. The polymers were characterized by (1)H NMR, GPC, FT-IR, CV, DSC, DMA, tensile test, and degradation test. The SMP and ESMP exhibited strong mechanical properties (modulus higher than GPa) and excellent shape memory performance: short recovery time (several seconds), high recovery ratio (over 94%), and high fixity ratio (almost 100%). Moreover, cyclic voltammetry test confirmed the electroactivity of the ESMP. The ESMP significantly enhanced the proliferation of C2C12 cells compared to SMP and linear PLA (control). In addition, the ESMP greatly improved the osteogenic differentiation of C2C12 myoblast cells compared to PH10 and PLA in terms of ALP enzyme activity, immunofluorescence staining, and relative gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). These intelligent SMPs and electroactive SMP with strong mechanical properties, tunable degradability, good electroactivity, biocompatibility, and enhanced osteogenic differentiation of C2C12 cells show great potential for bone regeneration. PMID:25742188

  7. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory.

    PubMed

    Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin

    2016-01-13

    Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer. PMID:26618802

  8. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-02-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

  9. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    PubMed Central

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-01-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices. PMID:26831222

  10. A simplified constitutive model for predicting shape memory polymers deformation behavior

    NASA Astrophysics Data System (ADS)

    Li, Yunxin; Guo, Siu-Siu; He, Yuhao; Liu, Zishun

    2015-12-01

    Shape memory polymers (SMPs) can keep a temporary shape after pre-deformation at a higher temperature and subsequent cooling. When they are reheated, their original shapes can be recovered. Such special characteristics of SMPs make them widely used in aerospace structures, biomedical devices, functional textiles and other devices. Increasing usefulness of SMPs motivates us to further understand their thermomechanical properties and deformation behavior, of which the development of appropriate constitutive models for SMPs is imperative. There is much work in literatures that address constitutive models of the thermo-mechanical coupling in SMPs. However, due to their complex forms, it is difficult to apply these constitutive models in the real world. In this paper, a three-element model with simple form is proposed to investigate the thermo-mechanical small strain (within 10%) behavior of polyurethane under uniaxial tension. Two different cases of heated recovery are considered: (1) unconstrained free strain recovery and (2) stress recovery under full constraint at a strain level fixed during low temperature unloading. To validate the model, simulated and predicted results are compared with Tobushi's experimental results and good agreement can be observed.

  11. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    PubMed Central

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272

  12. Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms

    PubMed Central

    Rodriguez, Jennifer N.; Yu, Ya-Jen; Miller, Matthew W.; Wilson, Thomas S.; Hartman, Jonathan; Clubb, Fred J.; Gentry, Brandon; Maitland, Duncan J.

    2012-01-01

    Shape memory polymer (SMP) foam possesses structural and mechanical characteristics that make them very promising as an alternative treatment for intracranial aneurysms. Our SMP foams have low densities, with porosities as high as 98.8%; favorable for catheter delivery and aneurysm filling, but unfavorable for attenuating X-rays. This lack of contrast impedes the progression of this material becoming a viable medical device. This paper reports on increasing radioopacity by incorporating a high-Z element, tungsten particulate filler to attenuate X-rays, while conserving similar physical properties of the original non-opacified SMP foams. The minimal amount of tungsten for visibility was determined and subsequently incorporated into SMP foams, which were then fabricated into samples of increasing thicknesses. These samples were imaged through a pig’s skull to demonstrate radio-opacity in situ. Quantification of the increase in image contrast was performed via image processing methods and standard curves were made for varying concentrations of tungsten doped solid and foam SMP. 4% by volume loading of tungsten incorporated into our SMP foams has proven to be an effective method for improving radio-opacity of this material while maintaining the mechanical, physical and chemical properties of the original formulation. PMID:22101759

  13. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  14. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    PubMed Central

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469

  15. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (Tg) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  16. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  17. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    NASA Astrophysics Data System (ADS)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  18. Shape memory polymers and their composites in aerospace applications: a review

    NASA Astrophysics Data System (ADS)

    Liu, Yanju; Du, Haiyang; Liu, Liwu; Leng, Jinsong

    2014-02-01

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace.

  19. Thermomechanical properties of polyurethane shape memory polymer-experiment and modelling

    NASA Astrophysics Data System (ADS)

    Pieczyska, E. A.; Maj, M.; Kowalczyk-Gajewska, K.; Staszczak, M.; Gradys, A.; Majewski, M.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2015-04-01

    In this paper extensive research on the polyurethane shape memory polymer (PU-SMP) is reported, including its structure analysis, our experimental investigation of its thermomechanical properties and its modelling. The influence of the effects of thermomechanical couplings on the SMP behaviour during tension at room temperature is studied using a fast and sensitive infrared camera. It is shown that the thermomechanical behaviour of the SMP significantly depends on the strain rate: at a higher strain rate higher stress and temperature values are obtained. This indicates that an increase of the strain rate leads to activation of different deformation mechanisms at the micro-scale, along with reorientation and alignment of the molecular chains. Furthermore, influence of temperature on the SMP’s mechanical behaviour is studied. It is observed during the loading in a thermal chamber that at the temperature 20 °C below the glass transition temperature (Tg) the PU-SMP strengthens about six times compared to the material above Tg but does not exhibit the shape recovery. A finite-strain constitutive model is formulated, where the SMP is described as a two-phase material composed of a hyperelastic rubbery phase and elastic-viscoplastic glassy phase. The volume content of phases is governed by the current temperature. Finally, model predictions are compared with the experimental results.

  20. A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease

    PubMed Central

    Bennett, Johan; Dubois, Christophe

    2013-01-01

    The development of coronary stents represents a major step forward in the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. The initial enthusiasm for bare metal stents was, however, tempered by a significant incidence of in-stent restenosis, the manifestation of excessive neointima hyperplasia within the stented vessel segment, ultimately leading to target vessel revascularization. Later, drug-eluting stents, with controlled local release of antiproliferative agents, consistently reduced this need for repeat revascularization. In turn, the long-term safety of first-generation drug-eluting stents was brought into question with the observation of an increased incidence of late stent thrombosis, often presenting as myocardial infarction or sudden death. Since then, new drugs, polymers, and platforms for drug elution have been developed to improve stent safety and preserve efficacy. Development of a novel platinum chromium alloy with high radial strength and high radiopacity has enabled the design of a new, thin-strut, flexible, and highly trackable stent platform, while simultaneously improving stent visibility. Significant advances in polymer coating, serving as a drug carrier on the stent surface, and in antiproliferative agent technology have further improved the safety and clinical performance of newer-generation drug-eluting stents. This review will provide an overview of the novel platinum chromium everolimus-eluting stents that are currently available. The clinical data from major clinical trials with these devices will be summarized and put into perspective. PMID:23818756

  1. [Endovascular stent implantation as a treatment for iliac artery disease].

    PubMed

    Tetteroo, E; van Engelen, A D; van der Graaf, Y; Mali, W P

    2000-01-22

    A stent is an endovascular prosthesis that may be used in the treatment of intermittent claudication caused by lesions of the A. iliaca communis and the A. iliaca externa in which earlier balloon dilatation has proved insufficiently effective. The expansion is caused by inflation of an angioplasty balloon (plastic remodelling: Palmaz stent) or by self-expansion due to elastic transformation as in the Wail stent or to thermic memory metal, as in the Memotherm stent. Evaluation of the literature shows that stent placement is a safe method of treatment. The proportion of initial technical success appears to be higher than that of balloon angioplasty, especially in the treatment of total occlusions. The haemodynamic situation immediately after treatment also appears to be better in case of stent placement. Long-term comparison of the clinical efficacy is not well possible because the published studies differ with regard to patient population, definition of indication and criteria of success. PMID:10668541

  2. Coronary Stent Materials and Coatings: A Technology and Performance Update.

    PubMed

    O'Brien, Barry; Zafar, Haroon; Ibrahim, Ahmad; Zafar, Junaid; Sharif, Faisal

    2016-02-01

    This paper reviews the current state of the art for coronary stent materials and surface coatings, with an emphasis on new technologies that followed on from first-generation bare metal and drug-eluting stents. These developments have been driven mainly by the need to improve long term outcomes, including late stent thrombosis. Biodegradable drug-eluting coatings aim to address the long term effects of residual durable polymer after drug elution; the SYNERGY, BioMatrix, and Nobori stents are all promising devices in this category, with minimal polymer through the use of abluminal coatings. Textured stent surfaces have been used to attached drug directly, without polymer; the Yukon Choice and BioFreedom stents have some promising data in this category, while a hydroxyapatite textured surface has had less success. The use of drug-filled reservoirs looked promising initially but the NEVO device has experienced both technical and commercial set-backs. However this approach may eventually make it to market if trials with the Drug-Filled Stent prove to be successful. Non-pharmacological coatings such as silicon carbide, carbon, and titanium-nitride-oxide are also proving to have potential to provide better performance than BMS, without some of the longer term issues associated with DES. In terms of biological coatings, the Genous stent which promotes attachment of endothelial progenitor cells has made good progress while gene-eluting stents still have some practical challenges to overcome. Perhaps the most advancement has been in the field of biodegradable stents. The BVS PLLA device is now seeing increasing clinical use in many complex indications while magnesium stents continue to make steady advancements. PMID:26139297

  3. A semi-analytical study on helical springs made of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Baghani, M.; Naghdabadi, R.; Arghavani, J.

    2012-04-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load-deflection response. Some case studies are presented to show the validity of the presented analytical method.

  4. Porous media properties of reticulated shape memory polymer foams and mock embolic coils for aneurysm treatment

    PubMed Central

    2013-01-01

    Background Shape memory polymer (SMP) foams are being investigated as an alternative aneurysm treatment method to embolic coils. The goal of both techniques is the reduction of blood flow into the aneurysm and the subsequent formation of a stable thrombus, which prevents future aneurysm rupture. The purpose of this study is to experimentally determine the parameters, permeability and form factor, which are related to the flow resistance imposed by both media when subjected to a pressure gradient. Methods The porous media properties—permeability and form factor—of SMP foams and mock embolic coils (MECs) were measured with a pressure gradient method by means of an in vitro closed flow loop. We implemented the Forchheimer-Hazen-Dupuit-Darcy equation to calculate these properties. Mechanically-reticulated SMP foams were fabricated with average cell sizes of 0.7E-3 and 1.1E-3 m, while the MECs were arranged with volumetric packing densities of 11-28%. Results The permeability of the SMP foams was an order of magnitude lower than that of the MECs. The form factor differed by up to two orders of magnitude and was higher for the SMP foams in all cases. The maximum flow rate of all samples tested was within the inertial laminar flow regime, with Reynolds numbers ranging between 1 and 35. Conclusions The SMP foams impose a greater resistance to fluid flow compared to MECs, which is a result of increased viscous and inertial losses. These results suggest that aneurysms treated with SMP foam will have flow conditions more favorable for blood stasis than those treated with embolic coils having packing densities ≤ 28%. PMID:24120254

  5. Multistability, ionic doping, and charge dynamics in electrosynthesized polypyrrole, polymer-nanoparticle blend nonvolatile memory, and fixed p-i-n junction polymer light-emitting electrochemical cells

    NASA Astrophysics Data System (ADS)

    Simon, Daniel Theodore

    A variety of factors make semiconducting polymers a fascinating alternative for both device development and new areas of fundamental research. Among these are solution processability, low cost, flexibility, and the strong dependence of conduction on the presence of charge compensating ions. With the lack of a complete fundamental understanding of the materials, and the growing demand for novel solutions to semiconductor device design, research in the field can take many, often multifaceted, routes. Due to ion-mediated conduction and versatility of fabrication, conducting polymers can provide a route to the study of neural signaling. In the first of three research topics presented, junctions of polypyrrole electropolymenzed on microelectrode arrays are demonstrated. Indi vidual junctions, when synthesized in a three-electrode configuration, exhibit current switching behavior analogous to neural weighting. Junctions copolymerized with thiophene exhibit current rectification and the nonlinear current-voltage behavior requisite for complex neural systems. Applications to larger networks, and eventual use in analysis of signaling, are discussed. In the second research topic, nonvolatile resistive memory consisting of gold nanoparticles embedded in a polymer film is examined using admittance spectroscopy. The frequency dependence of the devices indicates space-charge-limited transport in the high-conductivity "on" state, and similar transport in the lower-conductivity "off' state. Furthermore, a larger do capacitance of the on state indicates that a greater amount of filling of midgap trap levels introduced by the nanoparticles increases conductivity, leading to the memory effect. Implications on the question as to whether or not the on state is the result of percolation pathways is discussed. The third and final research topic is a presentation of enhanced efficiency of polymer light-emitting electrochemical cells (LECs) by means of forming a doping self

  6. Preliminary Evaluation of Clinical and Angiographic Outcomes with Biodegradable Polymer Coated Sirolimus-Eluting Stent in De Novo Coronary Artery Disease: Results of the MANIPAL-FLEX Study.

    PubMed

    Shetty, Ranjan; Prajapati, Jayesh; Pai, Umesh; Shetty, Kiran

    2016-01-01

    Objective. The objective of the MANIPAL-FLEX study was to evaluate the feasibility, preliminary safety, and efficacy of the Supraflex sirolimus-eluting stent (SES) implantation, in de novo coronary artery disease, using clinical and quantitative coronary angiography (QCA) follow-ups. Methods. This was a prospective, nonrandomized, multicenter, single-arm study that enrolled 189 patients with de novo coronary artery disease who were treated with the Supraflex SES. Of 189 patients enrolled, the first 61 consecutive patients who consented to a 9-month follow-up evaluation by QCA, irrespective of presence of symptoms, were to be followed up with angiography at 9 months. The primary endpoint of the study was target lesion failure (TLF), including cardiac death, myocardial infarction, and target lesion revascularization during 12-month follow-up after the index procedure. Results. The mean age of the study population was 58 ± 11 years, with 51.3% (97/189) of hypertensive patients. Total of 66 lesions, analyzed by offline QCA, showed good scaffolding of the target vessel with in-stent late lumen loss at 9 months of 0.18 ± 0.23 mm. The observed TLF at 30-day, 6-month, and 12-month follow-up were 2 (1.1%), 6 (3.2%), and 10 (5.3%), respectively. Conclusion. This study provides preliminary evidence for the feasibility, safety, and efficacy of the Supraflex sirolimus-eluting stent. PMID:27597929

  7. Preliminary Evaluation of Clinical and Angiographic Outcomes with Biodegradable Polymer Coated Sirolimus-Eluting Stent in De Novo Coronary Artery Disease: Results of the MANIPAL-FLEX Study

    PubMed Central

    Prajapati, Jayesh; Pai, Umesh; Shetty, Kiran

    2016-01-01

    Objective. The objective of the MANIPAL-FLEX study was to evaluate the feasibility, preliminary safety, and efficacy of the Supraflex sirolimus-eluting stent (SES) implantation, in de novo coronary artery disease, using clinical and quantitative coronary angiography (QCA) follow-ups. Methods. This was a prospective, nonrandomized, multicenter, single-arm study that enrolled 189 patients with de novo coronary artery disease who were treated with the Supraflex SES. Of 189 patients enrolled, the first 61 consecutive patients who consented to a 9-month follow-up evaluation by QCA, irrespective of presence of symptoms, were to be followed up with angiography at 9 months. The primary endpoint of the study was target lesion failure (TLF), including cardiac death, myocardial infarction, and target lesion revascularization during 12-month follow-up after the index procedure. Results. The mean age of the study population was 58 ± 11 years, with 51.3% (97/189) of hypertensive patients. Total of 66 lesions, analyzed by offline QCA, showed good scaffolding of the target vessel with in-stent late lumen loss at 9 months of 0.18 ± 0.23 mm. The observed TLF at 30-day, 6-month, and 12-month follow-up were 2 (1.1%), 6 (3.2%), and 10 (5.3%), respectively. Conclusion. This study provides preliminary evidence for the feasibility, safety, and efficacy of the Supraflex sirolimus-eluting stent. PMID:27597929

  8. Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone

    NASA Astrophysics Data System (ADS)

    Huang, Jinying; Ma, Dongge

    2014-09-01

    Resistive memory devices with resistive switching characteristics were fabricated based on poly (3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) doping with polyvinyl alcohol. It has been demonstrated that the resistive switching characteristics in the memory device was strongly dependent on the treatment of the polymer blend film by ultraviolet ozone (UV-ozone). The UV-ozone treated device exhibited improved performance with the ON/OFF current ratio of more than 102, and its ON and OFF states can be maintained over 96 h without deterioration. The resistive switching behavior in the UV-ozone treated device was attributed to the formation and rupture of the PEDOT:PSS filaments as well as the narrow conducting paths through the native oxide of aluminum.

  9. Dislodgement of coronary stent due to rupture of stent balloon.

    PubMed

    Ayça, Burak; Okuyan, Ertuğrul; Şahin, İrfan; Dinçkal, Mustafa Hakan

    2015-01-01

    Rare stent complications, including dislodgement of stent, unexpanded stent, stent fracture and stent loss etc. can occur during percutaneous coronary interventions (PCI). We present a semi-expanded and dislodged stent due to rupture of stent balloon during primary PCI in this case report. An interventional cardiologist should be aware of the possibility of rare complications, such as in this case, and have enough experience and knowledge to handle them. PMID:25655859

  10. Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators

    NASA Astrophysics Data System (ADS)

    de Araújo, C. J.; Rodrigues, L. F. A.; Coutinho Neto, J. F.; Reis, R. P. B.

    2008-12-01

    In this work, unidirectional carbon-fiber-reinforced polymers (CFRP) with embedded NiTi shape memory alloy (SMA) wire actuators were manufactured using a universal testing machine equipped with a thermally controlled chamber. Beam specimens containing cold-worked, annealed and trained NiTi SMA wires distributed along their neutral plane were fabricated. Several tests in a three-point bending mode at different constant temperatures were performed. To verify thermal buckling effects, electrical activation of the specimens was realized in a cantilevered beam mode and the influence of the SMA wire actuators on the tip deflection of the composite is demonstrated.

  11. Effect on Intimal Hyperplasia of Dexamethasone Released from Coated Metal Stents Compared with Non-Coated Stents in Canine Femoral Arteries

    SciTech Connect

    Strecker, Ernst-Peter; Gabelmann, Andreas; Boos, Irene; Lucas, Christopher; Xu, Zhongying; Haberstroh, Joerg; Freudenberg, Nicolaus; Stricker, Helmut; Langer, Mathias; Betz, Eberhard

    1998-11-15

    Purpose: Polymer-coated, dexamethasone (DXM)-releasing stents were tested in order to assess the efficacy of DXM released locally for the prevention of stent restenosis due to intimal hyperplasia. Methods: Strecker stents coated with a biodegradable membrane containing DXM were implanted percutaneously into the femoral artery in 14 dogs. The contralateral artery received a conventional non-coated stent serving as control. The drugs are eluted by degradation of the carrier membrane. Follow-up intraarterial digital subtraction angiography (DSA) was obtained at 3, 6, 9, 12, and 24 weeks with subsequent autopsy. Specimens for gross and microscopic pathology were obtained and histomorphometry was performed. Results: Four of 14 DXM-coated stents showed thrombotic occlusion within the first 3 weeks; ten DXM-coated stents remained patent. At follow-up DSA, DXM-coated stents showed a significantly wider lumen than the non-coated stents. At morphometry there was less intimal hyperplasia over DXM-coated stents than over non-coated stents (p < 0.05). Conclusion: DXM-coated stents reduce neointimal hyperplasia in dogs when compared with non-coated stents.

  12. Bioresorbable Stents in PCI.

    PubMed

    Lindholm, Daniel; James, Stefan

    2016-08-01

    The evolution of percutaneous coronary intervention has been considerable. Coronary stents were introduced to avoid vessel recoil and reduce acute and late vessel complications. Later, drug-eluting stents were developed to decrease the neointimal hyperplasia associated with bare metal stents in order to reduce restenosis. However, very late stent thrombosis remains problematic, and the permanent presence of a metal stent could be associated with local inflammation and impaired vascular physiology. Thus, bioresorbable stents have been developed, to prevent recoil initially when this risk is the highest, with subsequent degradation over time, to avoid long-term complications of the presence of stents in the coronary vasculature. Here, we review the current status of bioresorbable stents in percutaneous coronary intervention (PCI), with focus on the platforms that have been studied the most: ABSORB, DESolve, and DREAMS. In terms of clinical outcomes, bioresorbable stents have not yet shown superiority compared with current generation drug-eluting stents, but rather a signal of increased stent thrombosis. Further development and longer-term studies are needed before the routine implementation of bioresorbable stents in clinical practice. PMID:27312934

  13. A resorbable bicomponent braided ureteral stent with improved mechanical performance.

    PubMed

    Zou, Ting; Wang, Lu; Li, Wenchao; Wang, Wenzu; Chen, Fang; King, Martin W

    2014-10-01

    Bioresorbable ureteral stents have the advantage of eliminating the need for a second removal surgery and hence avoiding certain complications. However the inadequate mechanical performance and lack of control over the rate of resorption limit the use of current prototype designs. This paper focuses on a series of resorbable millimeter-sized stents which were fabricated by a unique combination of braiding and thermal treatment processes. Their mechanical properties where optimized by varying the braided structure and different resorbable components. Five different bicomponent structures were fabricated for the stent with different areas and distributions of poly (glycolic acid) (PGA) and poly (lactic-co-glycolic acid) (PLGA) resorbable yarns. Subsequent thermal treatment then converted the PLGA yarns into areas of continuous PLGA polymer film. The morphology, applied compression resistance and recovery and tensile strength tests were conducted on these prototype stents so as to investigate the relationship between their structures and mechanical properties. By selecting the appropriate resorbable biomaterials and altering the design of the braided structure it was possible to generate different sized areas and distributions of 100% braided yarn and 100% polymer film within the same bicomponent tubular structure. The relative total area of braided yarn to polymer film coverage was different for the five different prototype stents as well as between the external and internal surfaces of the bicomponent stents. This relative coverage of the braided yarn to polymer film played an important role in determining the mechanical performance of the stents, including the compression and recovery behavior as well as the tensile properties and failure morphology. The design of Stent C appeared to have the optimal structure for a resorbable ureteral stent with superior applied compression and tensile properties. PMID:24997428

  14. Reduction of Late In-Stent Stenosis in a Porcine Coronary Artery Model by Cobalt Chromium Stents with a Nanocoat of Polyphosphazene (Polyzene-F)

    SciTech Connect

    Stampfl, Ulrike; Sommer, Christof-Matthias; Thierjung, Heidi; Stampfl, Sibylle; Lopez-Benitez, Ruben; Radeleff, Boris; Berger, Irina; Richter, Goetz M.

    2008-11-15

    The purpose of this study was to investigate the potential of nanoscale coating with the highly biocompatible polymer Polyzene-F (PZF), in combination with cobalt chromium and stainless steel stents, to reduce in-stent stenosis, thrombogenicity, and vessel wall injury and inflammation. One bare cobalt chromium, PZF-nanocoated stainless steel or PZF-nanocoated cobalt chromium stent was implanted in right coronary artery of 30 mini-pigs (4- or 12-week follow-up). Primary study end points were in-stent stenosis and thrombogenicity. Secondary study end points were vessel wall injury and inflammation as evaluated by microscopy and a new immunoreactivity score applying C-reactive protein (CRP), tumor-necrosis factor alpha (TNF{alpha}), and TGF{beta}. At 12 weeks, angiography showed a significantly lower average loss in lumen diameter (2.1% {+-} 3.05%) in PZF-nanocoated cobalt chromium stents compared with stents in the other groups (9.73% {+-} 4.93% for bare cobalt chromium stents and 9.71% {+-} 7% for PZF-nanocoated stainless steel stents; p = 0.04), which was confirmed at microscopy (neointima 40.7 {+-} 16 {mu}m in PZF-nanocoated cobalt chromium stents, 74.7 {+-} 57.6 {mu}m in bare cobalt chromium stents, and 141.5 {+-} 109 {mu}m in PZF-nanocoated stainless steel stents; p = 0.04). Injury and inflammation scores were low in all stents and were without significant differences. PZF-nanocoated cobalt chromium stents provided the highest efficacy in reducing in-stent stenosis at long-term follow-up. The PZF nanocoat proved to be biocompatible with respect to thromboresistance and inflammation. Our data suggest that its combination with cobalt chromium stents might provide an interesting passive stent platform.

  15. Nonvolatile organic thin film transistor memory devices based on hybrid nanocomposites of semiconducting polymers: gold nanoparticles.

    PubMed

    Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2013-12-26

    We report the facile fabrication and characteristics of organic thin film transistor (OTFT)-based nonvolatile memory devices using the hybrid nanocomposites of semiconducting poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and ligand-capped Au nanoparticles (NPs), thereby serving as a charge storage medium. Electrical bias sweep/excitation effectively modulates the current response of hybrid memory devices through the charge transfer between F8T2 channel and functionalized Au NPs trapping sites. The electrical performance of the hybrid memory devices can be effectively controlled though the loading concentrations (0-9 %) of Au NPs and organic thiolate ligands on Au NP surfaces with different carbon chain lengths (Au-L6, Au-L10, and Au-L18). The memory window induced by voltage sweep is considerably increased by the high content of Au NPs or short carbon chain on the ligand. The hybrid nanocomposite of F8T2:9% Au-L6 provides the OTFT memories with a memory window of ~41 V operated at ± 30 V and memory ratio of ~1 × 10(3) maintained for 1 × 10(4) s. The experimental results suggest that the hybrid materials of the functionalized Au NPs in F8T2 matrix have the potential applications for low voltage-driven high performance nonvolatile memory devices. PMID:24224739

  16. Aortic stenting.

    PubMed

    Droc, Ionel; Calinescu, Francisca Blanca; Droc, Gabriela; Blaj, Catalin; Dammrau, Rolf

    2015-01-01

    The approach to aortic pathology is nowadays more and more endovascular at both thoracic and abdominal levels. Thoracic stenting has gained worldwide acceptance as first intention to treat pathologies of the descending thoracic aorta. Indications have been extended to aortic arch aneurysms and also to diseases of the ascending aorta. The current devices in use for thoracic endovascular repair (TEVAR) are Medtronic Valiant, Gore TAG, Cook Tx2 and Jotec. The choice of the endograft depends on the thoracic aortic pathology and the anatomical suitability. The technological evolution of the abdominal aortic endografts was very rapid, arriving now at the fourth generation. We report the results of 55 elective cases of endovascular abdominal aortic repair (EVAR) performed in two vascular surgical centers in Romania and Germany. The prostheses used were 16 E-vita Abdominal XT, 12 Excluder, eight Talent, seven PowerLink, three Endurant and nine custom-made, fenestrated or branched from Jotec. The mean follow-up was 18 months with CT-scan, duplex ultrasound and contrast-enhanced ultrasound. The mortality was 2%. EVAR tends to become the gold standard for abdominal aortic aneurysm repair. Technological development of the devices with lowest profile introduction systems will permit to extend the anatomical indications to new frontiers. PMID:26200430

  17. Polyelectrolyte Multilayers Promote Stent-Mediated Delivery of DNA to Vascular Tissue

    PubMed Central

    Saurer, Eric M.; Jewell, Christopher M.; Roenneburg, Drew A.; Bechler, Shane L.; Torrealba, Jose R.

    2013-01-01

    We report an approach to deliver DNA to vascular tissue in vivo using intravascular stents coated with degradable, DNA-containing polyelectrolyte multilayers (PEMs). Ionically-crosslinked multilayers ~120 nm thick were fabricated layer-by-layer on the surfaces of balloon-mounted stainless steel stents using plasmid DNA and a hydrolytically degradable poly(β-amino ester) (polymer 1). Characterization of stents coated using a fluorescently end-labeled analog of polymer 1 revealed film erosion to be uniform across the surfaces of the stents; differential stresses experienced upon balloon expansion did not lead to faster film erosion or dose dumping of DNA in areas near stent joints when stents were incubated in physiologically relevant media. The ability of film-coated stents to transfer DNA and transfect arterial tissue in vivo was then investigated in pigs and rabbits. Stents coated with films fabricated using fluorescently labeled DNA resulted in uniform transfer of DNA to sub-endothelial tissue in the arteries of pigs in patterns corresponding to the locations and geometries of stent struts. Stents coated with films fabricated using polymer 1 and plasmid DNA encoding EGFP resulted in expression of EGFP in the medial layers of stented tissue in both pigs and rabbits two days after implantation. The results of this study, combined with the modular and versatile nature of layer-by-layer assembly, provide a polymer-based platform that is well suited for fundamental studies of stent-mediated gene transfer. With further development, this approach could also prove useful for the design of non-viral, gene-based approaches to preventing complications that arise from the implantation of stents and other implantable interventional devices. PMID:23597075

  18. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue.

    PubMed

    Saurer, Eric M; Jewell, Christopher M; Roenneburg, Drew A; Bechler, Shane L; Torrealba, Jose R; Hacker, Timothy A; Lynn, David M

    2013-05-13

    We report an approach to deliver DNA to vascular tissue in vivo using intravascular stents coated with degradable, DNA-containing polyelectrolyte multilayers (PEMs). Ionically cross-linked multilayers ∼120 nm thick were fabricated layer-by-layer on the surfaces of balloon-mounted stainless steel stents using plasmid DNA and a hydrolytically degradable poly(β-amino ester) (polymer 1). Characterization of stents coated using a fluorescently end-labeled analog of polymer 1 revealed film erosion to be uniform across the surfaces of the stents; differential stresses experienced upon balloon expansion did not lead to faster film erosion or dose dumping of DNA in areas near stent joints when stents were incubated in physiologically relevant media. The ability of film-coated stents to transfer DNA and transfect arterial tissue in vivo was then investigated in pigs and rabbits. Stents coated with films fabricated using fluorescently labeled DNA resulted in uniform transfer of DNA to sub-endothelial tissue in the arteries of pigs in patterns corresponding to the locations and geometries of stent struts. Stents coated with films fabricated using polymer 1 and plasmid DNA encoding EGFP resulted in expression of EGFP in the medial layers of stented tissue in both pigs and rabbits two days after implantation. The results of this study, combined with the modular and versatile nature of layer-by-layer assembly, provide a polymer-based platform that is well suited for fundamental studies of stent-mediated gene transfer. With further development, this approach could also prove useful for the design of nonviral, gene-based approaches for prevention of complications that arise from the implantation of stents and other implantable interventional devices. PMID:23597075

  19. Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A

    NASA Astrophysics Data System (ADS)

    Fan, Mengjin; Yu, Heng; Li, Xiangyuan; Cheng, Jue; Zhang, Junying

    2013-05-01

    A series of epoxy-based shape-memory polymers (SMPs) was prepared by using diglycidyl ether of ethoxylated bisphenol-A containing two oxyethylene units and the curing agents iso-phorone diamine and Jeffamine D230. The thermal properties, dynamic mechanical properties, mechanical properties and shape-memory properties of the epoxy-based SMPs were systematically studied by DSC, DMTA, universal tester and fold-deploy experiments, respectively. The results showed that as the content of D230 increased, the glass transition temperature of the SMPs decreased from 77.5 ± 1.1 to 40 ± 0.7 °C according to DSC, the rubber modulus decreased gradually according to DMTA, and the tensile strength at room temperature (RT) decreased from 58.5 ± 0.3 to 27.0 ± 3.3 MPa according to tensile tests. Tensile tests above RT showed that the tensile stress and elongation at break depended heavily on the experimental temperature, and fold-deploy experiments showed that these SMPs had shape retention ratios higher than 95% and shape recovery ratios close to 100%.

  20. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Wei Li; Low, Hong Yee

    2016-03-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets.

  1. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    PubMed Central

    Lee, Wei Li; Low, Hong Yee

    2016-01-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290

  2. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device

    NASA Astrophysics Data System (ADS)

    Tseng, Ricky J.; Ouyang, Jianyong; Chu, Chih-Wei; Huang, Jinsong; Yang, Yang

    2006-03-01

    Recently, electrical bistability was demonstrated in polymer thin films incorporated with metal nanoparticles [J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nat. Mater. 3, 918 (2004)]. In this letter, we show the evidence that electrons are the dominant charge carriers in these bistable devices. Direct integration of bistable polymer layer with a light-emitting polymer layer shows a unique light-emitting property modulated by the electrical bistability. A unique negative differential resistance induced by the charged gold nanoparticles is observed due to the charge trapping effect from the nanoparticles when interfaced with the light-emitting layer.

  3. Popliteal Artery Stenting Using Flexible Tantalum Stents

    SciTech Connect

    Strecker, Ernst-Peter K.; Boos, Irene B.L.; Goettmann, Dieter; Vetter, Sylvia; Haase, Wulf

    2001-05-15

    Purpose: To evaluate the safety and efficacy of stent therapy for the treatment of residual stenoses after percutaneous transluminal angioplasty (PTA) of popliteal stenoses and occlusions.Methods: In a prospective single-center study, flexible tantalum stents were implanted in 32 popliteal arteries for the treatment of residual stenosis greater than 50% after PTA of stenoses (n = 17) or occlusions (n = 15) in the P1 (n = 16), the P2 (n = 13), or both P1 and P2 segment (n = 3). Follow-up patency was assessed by clinical examination, ankle-brachial index, and color Doppler sonography or angiography.Results: Early stent thrombosis (10 days): 1 of 32 arteries (3%). 1-year and 2-year primary patency rate (PPR): 81% {+-} 7.1% and 74% {+-} 9.1%, respectively. 1-year PPRs for subgroups: stented stenoses versus stented occlusions: 88% {+-} 7.8% vs 73% {+-} 12.0%, p = 0.12; good lower limb runoff versus poor: 84.0% {+-} 8.7% vs 76.0% {+-} 12.4; p = 0.09; P1 versus P2: 77.3% {+-} 9.8% vs 85.7% {+-} 9.4%, p = 0.38. Recurrent PTA lesions treated with stents showed higher restenosis rate than de novo lesions.Conclusion: The results of stent therapy of residual popliteal stenosis after PTA are encouraging and warrant further investigation.

  4. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  5. Modelling of shape memory polymer sheets that self-fold in response to localized heating.

    PubMed

    Mailen, Russell W; Liu, Ying; Dickey, Michael D; Zikry, Mohammed; Genzer, Jan

    2015-10-21

    We report a nonlinear finite element analysis (FEA) of the thermo-mechanical shrinking and self-folding behavior of pre-strained polystyrene polymer sheets. Self-folding is useful for actuation, packaging, and remote deployment of flat surfaces that convert to 3D objects in response to a stimulus such as heat. The proposed FEA model accounts for the viscoelastic recovery of pre-strained polystyrene sheets in response to localized heating on the surface of the polymer. Herein, the heat results from the localized absorption of light by ink patterned on the surface of the sheet. This localized delivery of heat results in a temperature gradient through the thickness of the sheet, and thus a gradient of strain recovery, or shrinkage, develops causing the polymer sheet to fold. This process transforms a 2D pattern into a 3D shape through an origami-like behavior. The FEA predictions indicate that shrinking and folding are sensitive to the thermo-mechanical history of the polymer during pre-straining. The model also shows that shrinkage does not vary linearly through the thickness of the polymer during folding due to the accumulation of mass in the hinged region. Counterintuitively, the maximum shrinkage does not occur at the patterned surface. Rather, it occurs considerably below the top surface of the polymer. This investigation provides a fundamental understanding of shrinking, self-folding dynamics, and bending angles, and provides design guidelines for origami shapes and structures. PMID:26324954

  6. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  7. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  8. Angioplasty and stent placement - heart

    MedlinePlus

    ... prevent the artery from closing up again. A drug-eluting stent has medicine embedded in it that helps prevent ... may be coated with a drug (called a drug-eluting stent). This type of stent may lower the chance ...

  9. An Update to Hepatobiliary Stents

    PubMed Central

    Moy, Brian T.; Birk, John W.

    2015-01-01

    Endoscopic stent placement is a common primary management therapy for benign and malignant biliary strictures. However, continuous use of stents is limited by occlusion and migration. Stent technology has evolved significantly over the past two decades to reduce these problems. The purpose of this article is to review current guidelines in managing malignant and benign biliary obstructions, current endoscopic techniques for stent placement, and emerging stent technology. What began as a simple plastic stent technology has evolved significantly to include uncovered, partially covered, and fully covered self-expanding metal stents (SEMS) as well as magnetic, bioabsorbable, drug-eluting, and antireflux stents.1 PMID:26357636

  10. Next generation covered stents made from nanocomposite materials: A complete assessment of uniformity, integrity and biomechanical properties.

    PubMed

    Farhatnia, Yasmin; Pang, Jun Hon; Darbyshire, Arnold; Dee, Ryan; Tan, Aaron; Seifalian, Alexander M

    2016-01-01

    Covered stents are stents wrapped with a thin polymeric membrane, and are typically used to treat vessel aneurysms and seal perforated arteries. Current covered stents suffer from restenosis due to limitations in material and fabrication methods which leaves metallic struts directly exposed to blood. We have developed a biocompatible and haemocompatible nanocomposite polymer, polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU). We devised a novel combination of ultrasonic spray atomisation system and dip-coating process to produce small calibre covered stents with metal struts fully embedded within the membrane, which also yields greater coating uniformity. Stent-polymer bonding was enhanced via silanisation and coating of reactive pre-polymer. Platelet studies supported the non-thrombogenicity of POSS-PCU. Biomechanical performances including diametrical compliance, bending strength, radial strength and recoil were evaluated and optimised. This proof-of-principle manufacturing technique could lead to the development of next-generation small calibre adult and paediatric covered stents. These stents are currently undergoing preclinical trial. From the Clinical Editor: The use of stents to treat vascular diseases is now the standard of care in the clinical setting. Nonetheless, a major problem of the current stents is the risk of restenosis and thrombosis. The authors developed a nanocomposite material using polyhedral oligomeric silsesquioxane and poly(carbonate-urea) urethane (POSS-PCU) and incorporated into metallic stents. Preliminary data have already shown promising results. It is envisaged that this would further lead to better stent technology in the future. PMID:26238080

  11. Transparent photostable ZnO nonvolatile memory transistor with ferroelectric polymer and sputter-deposited oxide gate

    SciTech Connect

    Park, C. H.; Im, Seongil; Yun, Jungheum; Lee, Gun Hwan; Lee, Byoung H.; Sung, Myung M.

    2009-11-30

    We report on the fabrication of transparent top-gate ZnO nonvolatile memory thin-film transistors (NVM-TFTs) with 200 nm thick poly(vinylidene fluoride/trifluoroethylene) ferroelectric layer; semitransparent 10 nm thin AgO{sub x} and transparent 130 nm thick indium-zinc oxide (IZO) were deposited on the ferroelectric polymer as gate electrode by rf sputtering. Our semitransparent NVM-TFT with AgO{sub x} gate operates under low voltage write-erase (WR-ER) pulse of {+-}20 V, but shows some degradation in retention property. In contrast, our transparent IZO-gated device displays very good retention properties but requires anomalously higher pulse of {+-}70 V for WR and ER states. Both devices stably operated under visible illuminations.

  12. Use of the shape memory polymer polystyrene in the creation of thin film stretchable sensors for wearable applications

    NASA Astrophysics Data System (ADS)

    Van Volkinburg, Kyle R.; Nguyen, Thao; Pegan, Jonathan D.; Khine, Michelle; Washington, Gregory N.

    2016-04-01

    The shape memory polymer polystyrene (PS) has been used to create complex hierarchical wrinkling in the fabrication of stretchable thin film bimetallic sensors ideal for wearable based gesture monitoring applications. The film has been bonded to the elastomer polydimethylsiloxane (PDMS) and operates as a strain gauge under the general notion of geometric piezoresistivity. The film was subject to tensile, cyclic, and step loading conditions in order to characterize its dynamic behavior. To measure the joint angle of the metacarpophalangeal (MCP) joint on the right index finger, the sensor was adhered to a fitted golf glove above said joint and a motion study was conducted. At maximum joint angle the sensor experienced roughly 23.5% strain. From the study it was found that two simple curves, one while the finger was in flexion and the other while the finger was in extension, were able to predict the joint angle from measured voltage with an average error of 2.99 degrees.

  13. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  14. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2016-03-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.

  15. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  16. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites.

    PubMed

    Wang, Zhenwen; Zhao, Jun; Chen, Min; Yang, Minhao; Tang, Luyang; Dang, Zhi-Min; Chen, Fenghua; Huang, Miaoming; Dong, Xia

    2014-11-26

    In this work, electrically and thermally actuated triple shape memory polymers (SMPs) of chemically cross-linked polycyclooctene (PCO)-multiwalled carbon nanotube (MWCNT)/polyethylene (PE) nanocomposites with co-continuous structure and selective distribution of fillers in PCO phase are prepared. We systematically studied not only the microstructure including morphology and fillers' selective distribution in one phase of the PCO/PE blends, but also the macroscopic properties including thermal, mechanical, and electrical properties. The co-continuous window of the immiscible PCO/PE blends is found to be the volume fraction of PCO (vPCO) of ca. 40-70 vol %. The selective distribution of fillers in one phase of co-continuous blends is obtained by a masterbatch technique. The prepared triple SMP materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-adjusting orthodontic wires, and ophthalmic devices. PMID:25347728

  17. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  18. Bioabsorbable Stent Quo Vadis: A Case for Nano-Theranostics

    PubMed Central

    Gundogan, Buket; Tan, Aaron; Farhatnia, Yasmin; Alavijeh, Mohammad S.; Cui, Zhanfeng; Seifalian, Alexander M.

    2014-01-01

    Percutaneous coronary intervention (PCI) is one of the most commonly performed invasive medical procedures in medicine today. Since the first coronary balloon angioplasty in 1977, interventional cardiology has seen a wide array of developments in PCI. Bare metal stents (BMS) were soon superseded by the revolutionary drug-eluting stents (DES), which aimed to address the issue of restenosis found with BMS. However, evidence began to mount against DES, with late-stent thrombosis (ST) rates being higher than that of BMS. The bioabsorbable stent may be a promising alternative, providing vessel patency and support for the necessary time required and thereafter degrade into safe non-toxic compounds which are reabsorbed by the body. This temporary presence provides no triggers for ST, which is brought about by non-endothelialized stent struts and drug polymers remaining in vivo for extended periods of time. Likewise, nano-theranostics incorporated into a bioabsorbable stent of the future may provide an incredibly valuable single platform offering both therapeutic and diagnostic capabilities. Such a stent may allow delivery of therapeutic particles to specific sites thus keeping potential toxicity to a minimum, improved ease of tracking delivery in vivo by embedding imaging agents, controlled rate of therapy release and protection of the implanted therapy. Indeed, nanocarriers may allow an increased therapeutic index as well as offer novel post-stent implantation imaging and diagnostic methods for atherosclerosis, restenosis and thrombosis. It is envisioned that a nano-theranostic stent may well form the cornerstone of future stent designs in clinical practice. PMID:24672583

  19. In vivo Evaluation of Cenderitide-Eluting Stent (CES) II.

    PubMed

    Huang, Yingying; Ng, Xu Wen; Lim, Soon Ghim; Chen, Horng Haur; Burnett, John C; Boey, Yin Chiang Freddy; Venkatraman, Subbu S

    2016-02-01

    The use of drug-eluting coronary stents has led to significant reduction in in-stent restenosis (ISR), but led to delayed endothelialization, necessitating the prolonged use of expensive anti-thrombotic drugs with their side-effects. Cenderitide (CD-NP) is a novel anti-proliferative chimeric peptide of semi-endothelial origin. Our previous work in vitro has demonstrated; that the smooth muscle cells were inhibited significantly more than endothelial cells which is the desirable feature of an anti-restenosis drug. This work reports the effects of implantation of a centeritide-eluting stent (CES) on ISR and endothelialization in an in vivo model. CESs were produced by coating bare metallic stents with CD-NP entrapped in biodegradable poly(ε-caprolactone) using an ultrasonic spray coater. A total of 32 stents were successfully implanted into 16 pigs, and all animal survived for 28 days. The plasma levels of CD-NP were significantly higher in the CES group than in the control group (bare metal stents and polymer-coated stent) at post-stenting, indicating the successful release of CD-NP from the stent in vivo. Furthermore, SEM analysis results showed the greater endothelial coverage of the stent struts, as well as between the struts in CES group. Moreover, histological results showed mild inflammation, and low fibrin score at 28 days. However, plasma cGMP (second messenger, cyclic 3',5' guanosine monophosphate) does not show a significant difference, and the CES is also unable to show significant difference in terms on neointimal area and stenosis, in comparison to BMS at 28 days. PMID:26178873

  20. Spider-silk-like shape memory polymer fiber for vibration damping

    NASA Astrophysics Data System (ADS)

    Yang, Qianxi; Li, Guoqiang

    2014-10-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2-0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276-289 MJ m-3 versus 160 MJ m-3), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10-0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures.

  1. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Trunov, V. A.; Pavlyuchenko, V. N.; Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya.

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  2. Coronary artery stent (image)

    MedlinePlus

    ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open. ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open.

  3. Gastrointestinal Stent Update

    PubMed Central

    2010-01-01

    The use of self-expanding metallic stents in the upper gastrointestinal tract, placed under radiologic imaging or endoscopic guidance, is the current treatment of choice for the palliation of malignant gastrointestinal outlet obstructions. Advances in metallic stent design and delivery systems have progressed to the stage where this treatment is now considered a minimally invasive therapy. Metallic stent placement will broaden further into the field of nonsurgical therapy for the gastrointestinal tract. To date, metallic stents placed in the esophagus, gastric outlet, colorectum, and bile ducts are not intended to be curative, but rather to provide a palliative treatment for obstructions. The evolution of metallic stent technology will render such procedures not only palliative but also therapeutic, by enabling local drug delivery, and the use of biodegradable materials will reduce procedure-related complications. PMID:21103290

  4. Shrinking the Supply Chain for Implantable Coronary Stent Devices.

    PubMed

    Moore, Sean S; O'Sullivan, Kevin J; Verdecchia, Francesco

    2016-02-01

    Stenting treatments for the management of disease in the heart, arterial and venous systems, biliary ducts, urethras, ureters, oesophageal tract and prostate have made enormous technical advances since their introduction into clinical use. The progression from metallic to polymer based bio-absorbable stents, coupled with the advances in additive manufacturing techniques, present a unique opportunity to completely re-envision the design, manufacture, and supply chain of stents. This paper looks at current stenting trends and proposes a future where the stent supply chain is condensed from ~150 days to ~20 min. The Cardiologist therefore has the opportunity to become a designer, manufacturer and user with patients receiving custom stents specific to their unique pathology that will be generated, delivered and deployed in the Cath-lab. The paper will outline this potentially revolutionary development and consider the technical challenges that will need to be overcome in order to achieve these ambitious goals. A high level overview of the generating eluting stents in situ program-GENESIS-is outlined including some early experimental work. PMID:26438449

  5. Direct Adsorption of Anti-CD34 Antibodies on the Nano-Porous Stent Surface to Enhance Endothelialization

    PubMed Central

    Fu, Guowei; Yu, Zhanjiang; Chen, Yongqiang; Chen, Yundai; Tian, Feng; Yang, Xiaoda

    2016-01-01

    Background In-stent restenosis following the insertion of conventional drug-eluting stent has become an extremely serious problem due to coating techniques, with polymer matrices used to bind biological ingredients to the stent surface. However, several studies have indicated that new pro-healing technique could prevent stent thrombosis that can be caused by conventional drug-eluting stents. Methods A novel method of attaching anti-CD34 antibodies directly on the porous surface of a 316L stainless steel bare metal stent was developed in this study, which achieved both high stability of attached anti-CD34 antibodies on the metal stent surface and high antibody activity for stem cell capture. Results The in vitro and in vivo experimental results indicated that the new stent with directly coupled anti-CD34 antibodies can efficiently enhance stent endothelialization. Conclusions This study indicates that we have developed a unique method of attaching anti-CD34 antibodies directly on the porous surface of a 316L stainless steel bare metal stent, which provides a novel polymer-free approach for developing pro-healing stents. PMID:27274167

  6. Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.

    2011-12-01

    We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.

  7. Comparison between sirolimus- and paclitaxel-eluting stent in T-cell subsets redistribution.

    PubMed

    Sardella, Gennaro; De Luca, Leonardo; Di Roma, Angelo; De Persio, Giovanni; Conti, Giulia; Paroli, Marino; Fedele, Francesco

    2006-02-15

    We sought to investigate the effects of 2 different coronary drug-eluting stents on the distribution of central or effector memory T cells circulating in the coronary sinus of patients with coronary artery disease who underwent percutaneous coronary revascularization. We randomly assigned 43 patients (mean age 65.4 +/- 4.3 years; 34 men) presenting with stable coronary disease and angiographically proved stenosis of the left anterior descending artery to treatment with sirolimus- or paclitaxel-eluting stents. Heparinized blood samples were obtained from the coronary sinus before and 20 minutes after stent implantation. Analysis of surface phenotype was performed by 4-color flow cytometry, and data are expressed as the percentage of positive cells. The percentages of CD8+ and CD4+ effector memory T cells, as defined by the CD3+CD45RO+CD27- phenotype, were significantly reduced in patients who received a sirolimus-eluting stent compared with the basal values. Conversely, the percentages of CD8+, but not CD4+, central memory T cells (CD3+CD45RO+CD27+) were increased in the same treatment group after the revascularization procedure. No changes in the percentages of memory T-cell populations in the paclitaxel-eluting stent group were observed. These findings show that sirolimus-eluting stents rapidly induced a redistribution of memory T lymphocytes, with a significant decrease of proinflammatory effector memory T cells circulating within the coronary sinus. PMID:16461044

  8. The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memories

    NASA Astrophysics Data System (ADS)

    Rocha, Paulo R. F.; Kiazadeh, Asal; De Leeuw, Dago M.; Meskers, Stefan C. J.; Verbakel, Frank; Taylor, David M.; Gomes, Henrique L.

    2013-04-01

    The dynamic response of a non-volatile, bistable resistive memory fabricated in the form of Al2O3/polymer diodes has been probed in both the off- and on-state using triangular and step voltage profiles. The results provide insight into the wide spread in switching times reported in the literature and explain an apparently anomalous behaviour of the on-state, namely the disappearance of the negative differential resistance region at high voltage scan rates which is commonly attributed to a "dead time" phenomenon. The off-state response follows closely the predictions based on a classical, two-layer capacitor description of the device. As voltage scan rates increase, the model predicts that the fraction of the applied voltage, Vox, appearing across the oxide decreases. Device responses to step voltages in both the off- and on-state show that switching events are characterized by a delay time. Coupling such delays to the lower values of Vox attained during fast scan rates, the anomalous observation in the on-state that, device currents decrease with increasing voltage scan rate, is readily explained. Assuming that a critical current is required to turn off a conducting channel in the oxide, a tentative model is suggested to explain the shift in the onset of negative differential resistance to lower voltages as the voltage scan rate increases. The findings also suggest that the fundamental limitations on the speed of operation of a bilayer resistive memory are the time- and voltage-dependences of the switch-on mechanism and not the switch-off process.

  9. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal

  10. Memory effect in a junction-like CdS nanocomposite/conducting polymer poly[2-methoxy-5-(2-ethylhexyloxy)1,4-phenylene-vinylene] heterostructure

    NASA Astrophysics Data System (ADS)

    Mondal, S. P.; Reddy, V. S.; Das, S.; Dhar, A.; Ray, S. K.

    2008-05-01

    The operation of a nonvolatile memory device is demonstrated using junction-like CdS nanocomposites embedded in a polymer matrix. The capacitance-voltage characteristics of Al/conducting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]/CdS nanocomposites in a polyvinyl alcohol matrix/indium tin oxide device exhibit hysteresis, which is attributed to the trapping, storage, and emission of holes in the quantized valence band energy levels of isolated CdS nanoneedles. The characteristics at different operating frequencies show that the hysteresis is due to trapping of charge carriers in CdS nanocomposites rather than in the interfacial states. The memory behavior in the inorganic/organic heterostructure is explained on the basis of a simple energy band diagram.

  11. From drug eluting stents to bioresorbable scaffolds; to new horizons in PCI.

    PubMed

    Tenekecioglu, Erhan; Bourantas, Christos; Abdelghani, Mohammad; Zeng, Yaping; Silva, Rafael Cavalcante; Tateishi, Hiroki; Sotomi, Yohei; Onuma, Yoshinobu; Yılmaz, Mustafa; Serruys, Patrick W

    2016-03-01

    Drug eluting stents and particularly the fully bioresorbable drug-eluting scaffolds herald a new era in percutaneous treatment of coronary artery disease. There has been tremendous progress in drug eluting stents with fully biodegradable coating polymers and polymer-free devices with reservoir technology planting the anti-proliferative drug. Despite significant decreases in in-stent restenosis rates with drug eluting stents, limitations still remain before we are able to develop fully bioresorbable scaffolds. Enhanced mechanical flexibility that provides superior conformability to the vessel wall, resumption of the vasoreactivity in the follow-up period and improving visualization on non-invasive imaging modalities are some of the supremacies of the fully bioresorbable scaffolds. In this review, we aim to give a general view on the latest developments in metallic drug eluting stents and fully bioresorbable scaffolds. PMID:26782080

  12. Tracheomalatia, to stent or not to stent

    PubMed Central

    Perić, Irena; Paladin, Ivan; Vukovac, Emilija Lozo; Vela Ljubić, Jadranka; Gudelj, Ivan; Lozo, Mislav

    2015-01-01

    Benign thyroid disorders such as goiter, especially retrosternal, can cause tracheostenosis by extrinsic tracheal compression, which is due to the lack of specific symptoms often misdiagnosed. Tracheomalatia develops as a result to long term tracheal compression and refers to weakness of the trachea characterized by softness of the tracheal cartilage arches and by loss of regular tracheal structure. Tracheomalatia is characterized by reduction of the endotracheal lumen and may affect the entire trachea or may be localized to one portion of it. We present the case of a 72-year old patient with distinct tracheostenosis and tracheomalatia, caused by long term pressure by the retrosternal goiter. We have been monitoring the patient for last 20 years after the second endotracheal stent had been placed. The first one was placed 34 years ago, in 1981. On both occasions granulation tissue and colonization of bacteria occurred. In the end the placed stents were rejected and migrated to the main carina. Despite the tracheal diameter narrower than 5 mm the patient has been living normally without the stent for 17 years, with the exception of no hard physical labor. He had a few short term antibiotic therapies and bronchial toilets during symptomatic deteriorations. Diagnosing retrosternal goiter and surgical treatment on time is of crucial importance in cases such as this one. Considering the complications caused by the stent, our opinion is that the majority of patients may require conservative treatment with closely monitoring during respiratory infections. PMID:26744681

  13. Laser-Activated Shape Memory Polymer Microactuator for Thrombus Removal Following Ischemic Stroke: Preliminary In Vitro Analysis

    SciTech Connect

    Small, W; Metzger, M F; Wilson, T S; Maitland, D J

    2004-09-23

    Due to the narrow (3-hour) treatment window for effective use of the thrombolytic drug recombinant tissue-type plasminogen activator (rt-PA), there is a need to develop alternative treatments for ischemic stroke. We are developing an intravascular device for mechanical thrombus removal using shape memory polymer (SMP). We propose to deliver the SMP microactuator in its secondary straight rod form (length = 4 cm, diameter = 350 {micro}m) through a catheter distal to the vascular occlusion. The microactuator, which is mounted on the end of an optical fiber, is then transformed into its primary corkscrew shape by laser heating (diode laser, {lambda} = 800 nm) above its soft phase glass transition temperature (T{sub gs} = 55 C). Once deployed, the microactuator is retracted and the captured thrombus is removed to restore blood flow. The SMP is doped with indocyanine green (ICG) dye to increase absorption of the laser light. Successful deployment of the microactuator depends on the optical properties of the ICG-doped SMP and the optical coupling efficiency of the interface between the optical fiber and the SMP. Spectrophotometry, thermal imaging, and computer simulation aided the initial design effort and continue to be useful tools for optimization of the dye concentration and laser power. Thermomechanical testing was performed to characterize the elastic modulus of the SMP. We have demonstrated laser-activation of the SMP microactuator in air at room temperature, suggesting this concept is a promising therapeutic alternative to rt-PA.

  14. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.

    PubMed

    Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

    2014-11-01

    While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(ε-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. PMID:25063999

  15. Spectral Imaging for Intracranial Stents and Stent Lumen

    PubMed Central

    Chen, David Yen-Ting; Chen, Chi-Jen; Hsu, Hui-Ling

    2016-01-01

    Introduction Application of computed tomography for monitoring intracranial stents is limited because of stent-related artifacts. Our purpose was to evaluate the effect of gemstone spectral imaging on the intracranial stent and stent lumen. Materials and Methods In vitro, we scanned Enterprise stent phantom and a stent–cheese complex using the gemstone spectral imaging protocol. Follow-up gemstone spectral images of 15 consecutive patients with placement of Enterprise from January 2013 to September 2014 were also retrospectively reviewed. We used 70-keV, 140-keV, iodine (water), iodine (calcium), and iodine (hydroxyapatite) images to evaluate their effect on the intracranial stent and stent lumen. Two regions of interest were individually placed in stent lumen and adjacent brain tissue. Contrast-to-noise ratio was measured to determine image quality. The maximal diameter of stent markers was also measured to evaluate stent-related artifact. Two radiologists independently graded the visibility of the lumen at the maker location by using a 4-point scale. The mean of grading score, contrast/noise ratio and maximal diameter of stent markers were compared among all modes. All results were analyzed by SPSS version 20. Results In vitro, iodine (water) images decreased metallic artifact of stent makers to the greatest degree. The most areas of cheese were observed on iodine (water) images. In vivo, iodine (water) images had the smallest average diameter of stent markers (0.33 ± 0.17mm; P < .05) and showed the highest mean grading score (2.94 ± 0.94; P < .05) and contrast/noise ratio of in-stent lumen (160.03 ±37.79; P < .05) among all the modes. Conclusion Iodine (water) images can help reduce stent-related artifacts of Enterprise and enhance contrast of in-stent lumen. Spectral imaging may be considered a noninvasive modality for following-up patients with in-stent stenosis. PMID:26731534

  16. Coronary artery stents.

    PubMed Central

    Stewart, A. J.; Coltart, D. J.

    1996-01-01

    The use of coronary stents to treat the acute complications of percutaneous transluminal coronary angioplasty and to reduce the restenosis rate following this procedure is reviewed. Images Figure 1 Figure 2 Figure 3 PMID:8761499

  17. Recurrent coronary stent thrombosis.

    PubMed

    Goethals, P; Evrard, S; Dubois, C

    2000-12-01

    A 63-year-old woman with an acute anterior myocardial infarction was treated with primary stent implantation. The absence of coronary artery stenosis and an haematocrit of 58 were indicative of a myeloproliferative disorder and the diagnosis of polycythaemia vera (Vaquez' disease) was confirmed by bone marrow aspiration. The patient had a re-infarction 8 days later. A rescue percutaneous angioplasty was performed for stent thrombosis after unsuccessful thrombolysis. A few hours after sheath removal, a femoral artery thrombosis at the puncture side needed urgent thrombectomy. Finally, a second re-infarction occurred, followed by an irreversible cardiac arrest. Stent thrombosis is a difficult-to-treat complication in patients with polycythaemia vera. If this haematologic disorder is known, primary stent implantation for acute myocardial infarction may not be the first choice in these patients. PMID:11227838

  18. Process for making electroformed stents

    DOEpatents

    Hines, Richard A.

    2000-02-01

    This invention is directed to an expandable stent useful for implantation into an artery or the like. The stents are made using electroforming techniques in which an electrically-conductive mandrel is coated with a suitable resist material, after which the resist is exposed to an appropriate light pattern and frequency so as to form a stent pattern in the resist. The mandrel is then electroplated with a suitable stent material. The mandrel is etched away once a sufficient layer of stent material is deposited, leaving a completed stent.

  19. Automatic segmentation of the wire frame of stent grafts from CT data.

    PubMed

    Klein, Almar; van der Vliet, J Adam; Oostveen, Luuk J; Hoogeveen, Yvonne; Kool, Leo J Schultze; Renema, W Klaas Jan; Slump, Cornelis H

    2012-01-01

    Endovascular aortic replacement (EVAR) is an established technique, which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, analysis of stent graft movement in individual patients in vivo can be valuable for predicting stent graft failure in these patients. To be able to gather information on stent graft motion in a quick and robust fashion, we propose an automatic method to segment stent grafts from CT data, consisting of three steps: the detection of seed points, finding the connections between these points to produce a graph, and graph processing to obtain the final geometric model in the form of an undirected graph. Using annotated reference data, the method was optimized and its accuracy was evaluated. The experiments were performed using data containing the AneuRx and Zenith stent grafts. The algorithm is robust for noise and small variations in the used parameter values, does not require much memory according to modern standards, and is fast enough to be used in a clinical setting (65 and 30s for the two stent types, respectively). Further, it is shown that the resulting graphs have a 95% (AneuRx) and 92% (Zenith) correspondence with the annotated data. The geometric model produced by the algorithm allows incorporation of high level information and material properties. This enables us to study the in vivo motions and forces that act on the frame of the stent. We believe that such studies will provide new insights into the behavior of the stent graft in vivo, enables the detection and prediction of stent failure in individual patients, and can help in designing better stent grafts in the future. PMID:21719343

  20. Larynx: implants and stents

    PubMed Central

    Sittel, Christian

    2011-01-01

    In the human larynx, implants a primarily used for the correction of glottis insufficiency. In a broader sense laryngeal stents may be considered as implants as well. Laryngeal implants can be differentiated into injectable and solid. The most important representatives of both groups are discussed in detail along with the respective technique of application. Laryngeal stents are primarily used perioperatively. Different types and their use are presented. PMID:22073097

  1. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine

    NASA Astrophysics Data System (ADS)

    Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun

    2016-04-01

    In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.

  2. Tracheobronchial stents in children.

    PubMed

    Antón-Pacheco, Juan L

    2016-06-01

    Tracheobronchial obstruction is infrequent in children and still remains a challenging matter of concern. Management alternatives vary from conservative treatment to complex surgical techniques or endoscopic interventional procedures. Airway stenting in children is relatively recent and follows the trail of the experience in adult patients. Nevertheless, there are basic differences between both age groups like the benign nature of most obstructions and the small size of the pediatric airway. These specific features raise the issues of the precise role of tracheobronchial stenting in children and the selection of the most adequate device. Stents fall into four main categories according to the material they are made of: metallic, plastic, hybrid, and biodegradable. Each type has its own advantages and drawbacks so the ideal stent is not yet available. Despite increasing experience with stenting, definite clinical criteria for their use in children are yet to be established. Even so, there seems to be a basic general agreement that stents may play a role in particular clinical settings in which there are no other therapeutic options. PMID:27301605

  3. Stent fracture and restenosis of a paclitaxel-eluting stent.

    PubMed

    Hamilos, Michalis I; Papafaklis, Michail I; Ligthart, Jurgen M; Serruys, Patrick W; Sianos, Georgios

    2005-01-01

    We describe the case of a patient with restenosis six months after stent implantation, at two points where stent fracture had occurred. Fracture is an unusual and probably underestimated cause of restenosis, which acquires special significance in this era of drug-eluting stents. PMID:16422133

  4. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  5. Future developments in biliary stenting

    PubMed Central

    Hair, Clark D; Sejpal, Divyesh V

    2013-01-01

    Biliary stenting has evolved dramatically over the past 30 years. Advancements in stent design have led to prolonged patency and improved efficacy. However, biliary stenting is still affected by occlusion, migration, anatomical difficulties, and the need for repeat procedures. Multiple novel plastic biliary stent designs have recently been introduced with the primary goals of reduced migration and improved ease of placement. Self-expandable bioabsorbable stents are currently being investigated in animal models. Although not US Food and Drug Administration approved for benign disease, fully covered self-expandable metal stents are increasingly being used in a variety of benign biliary conditions. In malignant disease, developments are being made to improve ease of placement and stent patency for both hilar and distal biliary strictures. The purpose of this review is to describe recent developments and future directions of biliary stenting. PMID:23837001

  6. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting.

    PubMed

    Flege, Christian; Vogt, Felix; Höges, Simon; Jauer, Lucas; Borinski, Mauricio; Schulte, Vera A; Hoffmann, Rainer; Poprawe, Reinhart; Meiners, Wilhelm; Jobmann, Monika; Wissenbach, Konrad; Blindt, Rüdiger

    2013-01-01

    In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-L-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications. PMID:23053808

  7. Stents Eluting 6-Mercaptopurine Reduce Neointima Formation and Inflammation while Enhancing Strut Coverage in Rabbits

    PubMed Central

    Ruiter, Matthijs S.; van Tiel, Claudia M.; Doornbos, Albert; Marinković, Goran; Strang, Aart C.; Attevelt, Nico J. M.; de Waard, Vivian; de Winter, Robbert J.; Steendam, Rob; de Vries, Carlie J. M.

    2015-01-01

    Background The introduction of drug-eluting stents (DES) has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP) has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC), endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface. Methods Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 μg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions. Results Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation. Conclusion We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6-MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient. PMID:26389595

  8. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.

    PubMed

    Bobel, A C; Petisco, S; Sarasua, J R; Wang, W; McHugh, P E

    2015-12-01

    Over the last decade, there has been a significant volume of research focussed on the utilization of biodegradable polymers such as poly-L-lactide-acid (PLLA) for applications associated with cardiovascular disease. More specifically, there has been an emphasis on upgrading current clinical shortfalls experienced with conventional bare metal stents and drug eluting stents. One such approach, the adaption of fully formed polymeric stents has led to a small number of products being commercialized. Unfortunately, these products are still in their market infancy, meaning there is a clear non-occurrence of long term data which can support their mechanical performance in vivo. Moreover, the load carry capacity and other mechanical properties essential to a fully optimized polymeric stent are difficult, timely and costly to establish. With the aim of compiling rapid and representative performance data for specific stent geometries, materials and designs, in addition to reducing experimental timeframes, Computational bench testing via finite element analysis (FEA) offers itself as a very powerful tool. On this basis, the research presented in this paper is concentrated on the finite element simulation of the mechanical performance of PLLA, which is a fully biodegradable polymer, in the stent application, using a non-linear viscous material model. Three physical stent geometries, typically used for fully polymeric stents, are selected, and a comparative study is performed in relation to their short-term mechanical performance, with the aid of experimental data. From the simulated output results, an informed understanding can be established in relation to radial strength, flexibility and longitudinal resistance, that can be compared with conventional permanent metal stent functionality, and the results show that it is indeed possible to generate a PLLA stent with comparable and sufficient mechanical performance. The paper also demonstrates the attractiveness of FEA as a tool

  9. Non-polymeric coatings to control drug release from metallic coronary stents

    NASA Astrophysics Data System (ADS)

    Gupta, Celia Edith Macias

    Percutaneous transluminal coronary angiography (PTCA) is a procedure used to re-open narrowed coronary arteries. During PTCA, a coronary stent is expanded inside a diseased vessel and serves as a scaffold to keep the artery open. The major drawback of stenting is restenosis---a re-narrowing of the vessel resulting from the hyperproliferation of smooth muscle cells. Drug eluting stents (DES) reduce the rate of restenosis compared to bare metal stents. Paclitaxel (PAT) is commonly used in DES for its ability to prevent restenosis. However, DES have been associated with thrombosis due to the polymer carrier that controls drug delivery. Therefore, there is a need to change the drug delivery mechanisms to eliminate the need of polymers. The goal of this dissertation is to develop a novel polymer-free drug eluting stent that controls drug release using nanoscale metal coatings. The coating was designed to release PAT as the metal slowly degrades in biological conditions. Once all the Paclitaxel has eluted from the surface, the coating will continue to degrade until the final result is a bare metal stent. The results of this study include a novel non-polymeric drug delivery system using nanoscale coatings that release Paclitaxel at a rate similar to commercial stents, as well as the biocompatibility and efficacy of these coatings. The non-polymeric drug delivery system described here achieved a Paclitaxel release profile equivalent to clinically available Paclitaxel-eluting stents and effectively inhibits smooth muscle cell proliferation, thereby completely eliminating the need for polymers to control drug release from coronary stents.

  10. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.

    PubMed

    Kowalski, Wolfgang; Dammer, Markus; Bakczewitz, Frank; Schmitz, Klaus-Peter; Grabow, Niels; Kessler, Olaf

    2015-09-01

    Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316 L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available. In this work, the X-ray diffraction (XRD) sin(2)ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA. XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion. PMID:25974098

  11. Esophageal stents: when and how.

    PubMed

    Kachaamy, Toufic; Pannala, Rahul

    2016-06-01

    Esophageal stents are devices used to alleviate dysphagia and treat leaks and perforations. Successful esophageal stenting requires definition of the abnormal anatomy such as stricture length or location of the leak, proper stent selection and deployment. This requires detailed knowledge of characteristics of the currently available stents. Self-expanding metal stents whether fully or partially covered have become the mainstay of treatment of esophageal cancer-related dysphagia as they provide quick relief of symptoms and have a favorable safety and efficacy profile, compared to other modalities such as radiation, laser, and argon plasma coagulation. They are also the initial treatment of choice for both malignant and benign fistulae. Stents are also used in benign refractory strictures but long-term stricture resolution rates are low in this setting. Fully covered metal stents are relatively easier to remove compared to partially covered stents; optimal time interval for removal depends on the indication for stenting and the clinical status of the patient. Stent related adverse events include chest pain, reflux, migration, and recurrent obstruction. Serious adverse events occur in less than 5% with procedure-related mortality of less than 2%. Techniques such as placement of hemostatic clips, Over The Scope clips, and endoscopic suturing are being used to decrease the migration risk but the optimal approach has not been defined. Antireflux measures are needed when a stent is placed across the gastroesophageal junction. Stents with antireflux designs do not appear to offer additional benefit compared to the conventional stent designs. Newer stent designs including biodegradable, drug eluting and radioactive stents are currently being investigated. PMID:26824424

  12. Cerebral foreign body reaction after carotid aneurysm stenting.

    PubMed

    Lorentzen, Anastasia Orlova; Nome, Terje; Bakke, Søren Jacob; Scheie, David; Stenset, Vidar; Aamodt, Anne Hege

    2016-02-01

    Flow diverter stents are new important tools in the treatment of large, giant, or wide-necked aneurysms. Their delivery and positioning may be difficult due to vessel tortuosity. Common adverse events include intracranial hemorrhage and ischemic stroke, which usually occurs within the same day, or the next few days after the procedure. We present a case where we encountered an unusual intracerebral complication several months after endovascular treatment of a large left internal carotid artery aneurysm, and where brain biopsy revealed foreign body reaction to hydrophilic polymer fragments distally to the stent site. Although previously described, embolization of polymer material from intravascular equipment is rare. We could not identify any other biopsy verified case in the literature, with this particular presentation of intracerebral polymer embolization--a multifocal inflammation spread out through the white matter of one hemisphere without hemorrhage or ischemic changes. PMID:26510943

  13. Nonvolatile electrical bistability and operating mechanism of memory devices based on CdSe/ZnS nanoparticle/polymer hybrid composites

    NASA Astrophysics Data System (ADS)

    Li, Fushan; Son, Dong Ick; Kim, Bong Jun; Kim, Tae Whan

    2008-07-01

    Current-voltage (I-V) measurements on Al/(core/shell-type CdSe /ZnS nanoparticles embedded in polymer/indium tin oxide)/glass devices showed a nonvolatile electrical bistability behavior. Capacitance-voltage (C-V) measurements on the devices showed a counterclockwise hysteresis with a flatband voltage shift due to the existence of the CdSe /ZnS nanoparticles. The on/off ratio of the electrical bistability for memory devices with a hybrid [poly-N-vinylcarbazole (PVK) and polystyrene (PS)] matrix layer was larger than those for memory devices with a PVK or a PS layer. Possible operating mechanisms for the devices are described on the basis of the I-V and the C-V results.

  14. Advantages of novel BioMimeTM Sirolimus Eluting Coronary Stent system. Moving towards biomimicry.

    PubMed

    Upendra, K; Sanjeev, B

    2012-02-01

    Since the first reported use of percutaneous transluminal coronary angioplasty (PTCA), advancements in interventional cardiology arena have been fast paced. Within the last ten years, these developments have been exponential. Developers & clinicians are fast adapting from the learning curve awarded by the time course of DES evolution. In that light BioMimeTM Sirolimus Eluting Coronary Stent comes as a fresh thought in taking stents towards a biomimicry concept. The stent is built on an ultra-low strut thickness (65 µm) cobalt chromium stent platform, using an intelligent hybrid of close and open cells allowing for morphology mediated expansion, employs a well known anti-proliferative - Sirolimus that elutes from a biodegradable co-polymer formulation in 30 days and ensures high coating integrity and low coating thickness of 2 µm. The resultant stent demonstrates almost 100% endothelialization at 30 days in preclinical model and zero percent MACE >18 months in the primary efficacy and safety clinical study. PMID:22322571

  15. Fully biodegradable airway stents using amino alcohol-based poly(ester amide) elastomers.

    PubMed

    Wang, Jane; Boutin, Kyle G; Abdulhadi, Omar; Personnat, Lyndia D; Shazly, Tarek; Langer, Robert; Channick, Colleen L; Borenstein, Jeffrey T

    2013-10-01

    Airway stents are often used to maintain patency of the tracheal and bronchial passages in patients suffering from central airway obstruction caused by malignant tumors, scarring, and injury. Like most conventional medical implants, they are designed to perform their functions for a limited period of time, after which surgical removal is often required. Two primary types of airway stents are in general use, metal mesh devices and elastomeric tubes; both are constructed using permanent materials, and must be removed when no longer needed, leading to potential complications. This paper describes the development of process technologies for bioresorbable prototype elastomeric airway stents that would dissolve completely after a predetermined period of time or by an enzymatic triggering mechanism. These airway stents are constructed from biodegradable elastomers with high mechanical strength, flexibility and optical transparency. This work combines microfabrication technology with bioresorbable polymers, with the ultimate goal of a fully biodegradable airway stent ultimately capable of improving patient safety and treatment outcomes. PMID:23526787

  16. Controversies in the use & implementation of drug-eluting stent technology

    PubMed Central

    Itagaki, Brandon K.; Brar, Somjot S.

    2012-01-01

    The introduction of drug eluting stents has resulted in dramatic reductions in the rates of restenosis and the need for repeat revascularization. In the last several years, concern has been raised regarding the long-term safety of this technology, particularly in the area of late restenosis and stent thrombosis. The development of newer anti-restenotic drug coatings, biodegradable polymers and even completely bioabsorbable stents offer the potential to address these limitations. Additional questions that have recently come to the forefront include the optimal duration of dual antiplatelet therapy, the use of platelet reactivity assays and genetic testing and drug eluting stent use in the treatment of acute myocardial infarction. This article will attempt to address these and other areas of controversy in the use and implementation of drug eluting stents. PMID:23391788

  17. On the origin of the Vogel-Fulcher-Tammann law in the thermo-responsive shape memory effect of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min

    2013-10-01

    All amorphous shape memory polymers (SMPs) are featured by their relaxation behavior above and below the switching transition temperature (TSW). Above TSW, the glass transition and secondary transition merge together, resulting in the cooperative (α) movement in polymer macromolecules. Below TSW, movement is non-cooperative (β). In this study, three thermodynamic constitutive frameworks for the shape recovery behavior in amorphous SMPs are proposed based on the Arrhenius, Vogel-Fulcher-Tammann (VFT) and Bässler laws, respectively, and incorporated with parameters (stress, strain and relaxation time) as functions of temperature. The relaxation times of α and β movements satisfy the VFT and Arrhenius laws, respectively. The simulation is compared with the available experimental results reported in the literature for verification. The VFT law is found to be better than the other models, and is able to provide an accurate prediction for the temperature dependent relaxation behavior, from the Arrhenius behavior below, to the Williams-Landel-Ferry behavior above TSW.

  18. Morphology characterization and biocompatibility study of PLLA (Poly-L-Llactid-Acid) coating chitosan as stent for coronary heart disease

    NASA Astrophysics Data System (ADS)

    Widiyanti, Prihartini; Paramadini, Adanti W.; Jabbar, Hajria; Fatimah, Inas; Nisak, Fadila N. K.; Puspitasari, Rahma A.

    2016-03-01

    Cardiovascular disease is a global disease with high urgency. In the severe case of coronary heart disease while a blockage in the coronary arteries reach 75% or more, the patient required stent implantation. Stents are made of metal which has many limitations that can lead to blood clots and stent incompatibility toward the size of the blood vessels. There is a metal stent replacement solution that made from polymer material which is biocompatible. PLLA also has biocompatibility and good mechanical strength. PLLA stent will be coated with chitosan as a candidate for drug-coated stents which is able to work as a drug carrier. The aim of this study is to know the morphology information and biocompability status of PLLA coating chitosan as candidate of heart stent. Morphological results using SEM showed a smooth surface structure which reinforced clinical standard of stent material. Results of cytotoxicity test by MTT Assay method showed that the result of four samples in this experiment living cells is reached 90% which is non toxic and safe to use in the human body. %). The conclusion of this study is PLLA is polymer has potency to be used as stent material.

  19. Overlap stenting for in-stent restenosis after carotid artery stenting

    PubMed Central

    Nishihori, Masahiro; Ohshima, Tomotaka; Yamamoto, Taiki; Goto, Shunsaku; Nishizawa, Toshihisa; Shimato, Shinji; Izumi, Takashi; Kato, Kyozo

    2016-01-01

    ABSTRACT Our aim was to assess the clinical safety and efficacy of overlap stenting for in-stent restenosis after carotid artery stenting. The study was conducted between July 2008 and February 2015. A database of consecutive carotid artery stenting procedures was retrospectively assessed to identify the cases of in-stent restenosis that were treated with overlap stenting under proximal or distal protection. The clinical and radiological records of the patients were then reviewed. Of the 155 CAS procedures in 149 patients from the database, 6 patients met the inclusion criteria. All the 6 patients were initially treated with moderate dilatation because of the presence of an unstable plaque. The technical success rate of the overlap stenting was 100%, with no 30-day mortality or morbidity. In addition, there was no further in-stent restenosis during a follow-up period of over 12 months. These results indicated that overlap stenting for in-stent restenosis after carotid artery stenting was both safe and effective in our cohort. PMID:27303101

  20. Everolimus-eluting stent platforms in percutaneous coronary intervention: comparative effectiveness and outcomes.

    PubMed

    Panoulas, Vasileios F; Mastoris, Ioannis; Konstantinou, Klio; Tespili, Maurizio; Ielasi, Alfonso

    2015-01-01

    Despite the remarkable benefits obtained following the introduction of the first-generation drug-eluting stent (DES), concerns were raised over its long-term safety, particularly with regard to very late (beyond 1 year) stent thrombosis. Newer-generation DESs have been developed to overcome this limitation using novel stent platforms, new drugs, more biocompatible durable polymers, and bioabsorbable polymers or backbones. To date, new-generation DESs have virtually replaced the use of first-generation DESs worldwide. In this review article, we discuss in detail the design, pharmacology, and mechanism of action of the newer-generation permanent and bioresorbable everolimus-eluting platforms. Furthermore, we present and evaluate the current evidence on the performance and safety of these devices compared to those of other available stent platforms. PMID:26244031

  1. Everolimus-eluting stent platforms in percutaneous coronary intervention: comparative effectiveness and outcomes

    PubMed Central

    Panoulas, Vasileios F; Mastoris, Ioannis; Konstantinou, Klio; Tespili, Maurizio; Ielasi, Alfonso

    2015-01-01

    Despite the remarkable benefits obtained following the introduction of the first-generation drug-eluting stent (DES), concerns were raised over its long-term safety, particularly with regard to very late (beyond 1 year) stent thrombosis. Newer-generation DESs have been developed to overcome this limitation using novel stent platforms, new drugs, more biocompatible durable polymers, and bioabsorbable polymers or backbones. To date, new-generation DESs have virtually replaced the use of first-generation DESs worldwide. In this review article, we discuss in detail the design, pharmacology, and mechanism of action of the newer-generation permanent and bioresorbable everolimus-eluting platforms. Furthermore, we present and evaluate the current evidence on the performance and safety of these devices compared to those of other available stent platforms. PMID:26244031

  2. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and

  3. Carotid endarterectomy or stenting?

    PubMed Central

    Ng, P Y

    2009-01-01

    The relative role of surgical or endovascular treatment in carotid stenosis remains controversial. Results of recent studies add even more confusion to the debate. Major clinical trials so far have shown a wide range of complication rates for carotid endarterectomy and carotid stenting. Only surgeons or interventionists who can maintain a complication rate of 3% or below should consider treating patients with asymptomatic disease.

  4. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Mangual, Jan O.; Li, Shigeng; Ploehn, Harry J.; Ebner, Armin D.; Ritter, James A.

    2010-10-01

    This study shows, for the first time, the fabrication of a biodegradable polymer nanocomposite magnetic stent and the feasibility of its use in implant-assisted-magnetic drug targeting (IA-MDT). The nanocomposite magnetic stent was made from PLGA, a biodegradable copolymer, and iron oxide nanopowder via melt mixing and extrusion into fibers. Degradation and dynamic mechanical thermal analyses showed that the addition of the iron oxide nanopowder increased the polymer's glass transition temperature ( Tg) and its modulus but had no notable effect on its degradation rate in PBS buffer solution. IA-MDT in vitro experiments were carried out with the nanocomposite magnetic fiber molded into a stent coil. These stent prototypes were used in the presence of a homogeneous magnetic field of 0.3 T to capture 100 nm magnetic drug carrier particles (MDCPs) from an aqueous solution. Increasing the amount of magnetite in the stent nanocomposite (0, 10 and 40 w/w%) resulted in an increase in the MDCP capture efficiency (CE). Reducing the MDCP concentrations (0.75 and 1.5 mg/mL) in the flowing fluid and increasing the fluid velocities (20 and 40 mL/min) both resulted in decrease in the MDCP CE. These results show that the particle capture performance of PLGA-based, magnetic nanocomposite stents are similar to those exhibited by a variety of different non-polymeric magnetic stent materials studied previously.

  5. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations.

    PubMed

    Richard, Robert; Schwarz, Marlene; Chan, Ken; Teigen, Nikolai; Boden, Mark

    2009-08-01

    The controlled release of paclitaxel (PTx) from stent coatings comprising an elastomeric polymer blended with a styrene maleic anhydride (SMA) copolymer is described. The coated stents were characterized for morphology by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and for drug release using high-performance liquid chromatography (HPLC). Differential scanning calorimetry (DSC) was used to measure the extent of interaction between the PTx and polymers in the formulation. Coronary stents were coated with blends of poly(b-styrene-b-isobutylene-b-styrene) (SIBS) and SMA containing 7% or 14% maleic anhydride (MA) by weight. SEM examination of the stents showed that the coating did not crack or delaminate either before or after stent expansion. Examination of the coating surface via AFM after elution of the drug indicated that PTx resides primarily in the SMA phase and provided information about the mechanism of PTx release. The addition of SMA altered the release profile of PTx from the base elastomer coatings. In addition, the presence of the SMA enabled tunable release of PTx from the elastomeric stent coatings, while preserving mechanical properties. Thermal analysis reveled no shift in the glass transition temperatures for any of the polymers at all drug loadings studied, indicating that the PTx is not miscible with any component of the polymer blend. An in vivo evaluation indicated that biocompatibility and vascular response results for SMA/SIBS-coated stents (without PTx) are similar to results for SIBS-only-coated and bare stainless steel control stents when implanted in the non-injured coronary arteries of common swine for 30 and 90 days. PMID:18563805

  6. Stent-Induced Esophageal Perforation: Treatment by Means of Placing a Second Stent After Removal of the Original Stent

    SciTech Connect

    Jung, Gyoo-Sik Park, Sung-Dal; Cho, Young Duk

    2008-05-15

    A case of esophageal perforation caused by a retrievable covered stent is presented. The distal end of the stent was protruding into the mediastinum, which made it impossible to negotiate a guidewire through the stent into the distal esophagus. The stent was successfully removed with use of a stent retrieval set, and esophageal perforation was treated with a second, covered stent with a good result. Fatality associated with this complication might be prevented by virtue of the retrievability of the stent we used. This result points to the effectiveness of a retrievable stent for the palliative treatment of malignant esophageal stricture.

  7. Mechanical Characteristics of Composite Knitted Stents

    SciTech Connect

    Tokuda, Takanori Shomura, Yuzo; Tanigawa, Noboru; Kariya, Shuji; Komemushi, Atsushi; Kojima, Hiroyuki; Sawada, Satoshi

    2009-09-15

    We used metal wires and fibers to fabricate a composite knitted stent and then compare the mechanical characteristics of this stent with those of a pure metallic stent of the same construction in order to develop a stent that offers a comparable degree of expandability as metallic stents but can be used for highly curved lesions that cannot be treated using metallic stents. We fabricated two types of composite knitted stent (N-Z stents), using nitinol wire with a diameter of 0.12 mm and polypara-phenylene-benzobisoxazole (PBO) multifilament fiber (Zyron AS; Toyobo, Osaka, Japan). Stents were knitted into a cylindrical shape using the same textile pattern as a Strecker stent. Two loop lengths (L) of nitinol wire were used in the N-Z stents: L = 1.84 mm (N-Z stent L = 1.84) and L = 2.08 mm (N-Z stent L = 2.08). For the sake of comparison, we fabricated a metallic stent of nitinol using the same textile pattern (N-N stent L = 1.92). We applied a radial compression force diametrically to each stent and applied a bending force diametrically at the free end of a stent with one end fixed in order to evaluate the relationship between stent elasticity and load values. In addition, we macroscopically evaluated the generation of kinks when the stent was bent 180{sup o}. The radial compressive force when the stent diameter was reduced by 53% was 6.44 N in the case of N-Z stent L = 1.84, 6.14 N in the case of N-Z stent L = 2.08, and 4.96 N in the case of N-N stent L = 1.92 mm. The composite stent had a radial compressive force higher than that of a metallic stent. The restoring force to longitudinal direction at a 90{sup o} bending angle was 0.005 N for N-Z stent L = 1.84, 0.003 N for N-Z stent L = 2.08, and 0.034 N for N-N stent L = 1.92. The restoring force of the composite stent was significantly lower. Finally, the composite stent generated no definitive kinks at a bending angle of 180{sup o}, regardless of loop length. However, the N-N stent clearly produced kinks, causing

  8. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  9. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  10. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  11. On the origin of Gaussian network theory in the thermo/chemo-responsive shape memory effect of amorphous polymers undergoing photo-elastic transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min; Leng, Jinsong

    2016-06-01

    Amorphous polymers are normally isotropic in their physical properties, however, upon stress their structural randomness is disturbed and they become anisotropic. There is a close connection between the optical anisotropy and the elastic (or mechanical) anisotropy, since both are related to the type of symmetry exhibited by the molecular structure. On the origin of Gaussian network theory, a phenomenological constitutive framework was proposed to study the photo-elastic transition and working mechanism of the thermo-/chemo-responsive shape-memory effect (SME) in amorphous shape memory polymers (SMPs). Optically refractive index was initially employed to couple the stress, strain and the anisotropy of the random link in macromolecule chain. Based on the Arrhenius law, a constitutive framework was then applied for the temperature dependence of optical (or elastic or mechanical) anisotropy according to the fictive temperature parameter. Finally, the phenomenological photo-elastic model was proposed to quantitatively identify the influential factors behind the thermo-/chemo-responsive SME in SMPs, of which the shape recovery behavior is predicted and verified by the available experimental data reported in the literature.

  12. Papain immobilized polyurethane as an ureteral stent material.

    PubMed

    Maria Manohar, Cynthya; Doble, Mukesh

    2016-05-01

    Long term use of polyurethane-based ureteral stent is hampered by the development of infection due to the formation of bacterial biofilm and salt deposition. Here papain, is covalently immobilized to polyurethane using glutarldehyde and is investigated as a possible anti-infective ureteral stent material. Fourier transform infrared spectrum confirmed its immobilization. Immobilized enzyme retained 85% of the activity of the free enzyme and about 12% loss of enzyme was observed from the polymer surface in one month. The modified polyurethane showed 8 log reduction in Staphylococcus aureus and 7 log reduction in Escherichia coli live colonies and 3-4 times decrease in the protein and carbohydrate in the biofilms than bare polymer. The amount of calcium and magnesium salts deposited on the polymer surface reduced by 40% after enzyme immobilization. 80% of L6 myoblast cells were viable on this material which indicated that it was noncytotoxic. A linear regression equation with hydrophilicity of the polymer surface and the cell surface hydrophobicity as the two independent variables was able to predict the number of live cells attached on the modified PU. This study indicated the possibility of using such an approach to overcome the problems of ureteral stent associated biofilm and salt encrustation. PMID:26853541

  13. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection. PMID:27440026

  14. Successive breaks in biliary stents.

    PubMed

    Espinel, Jesús; Pinedo, Eugenia; Ojeda, Vanesa; Guerra, María

    2016-04-01

    A 64 year-old male, was diagnosed with obstructive jaundice due to a well-differentiated pancreatic neuroendocrine tumor with liver metastases. The patient underwent endoscopic placement of covered self-expanding biliary stent (10x60 mm, Hanaro) by ERCP. He was admitted with cholangitis one year later. The following ERCP revealed a fractured stent with loss of the distal end (duodenal) and partial migration of the remaining stent to the common bile duct. The fragmented stent was removed from the common bile duct and a new, similar one was inserted. Four months later the patient was admitted with cholangitis. A new ERCP was done and biliary stent was also fragmented. It was removed and an uncovered stent (Wallflex) was inserted. PMID:27065248

  15. [Metallic biomaterials for coronary stents].

    PubMed

    Fischer, A; Wieneke, H; Brauer, H; Erbel, R

    2001-04-01

    The introduction of coronary stents is a milestone in interventional cardiology. Two landmark studies have shown that stainless steel stents significantly decrease the restenosis rate as compared to balloon angioplasty. This fact led to a marked increase of stent implantation since the first stent implantation by Jacques Puel in 1986. Although the concept of coronary stenting significantly improved the interventional therapy of coronary artery disease, restenosis remains a major unsolved drawback of this technique. In addition to procedure and disease related factors like implantation pressure and plaque burden, data suggest that the stent as a medical implant plays a crucial role in the process of neointima formation. Since its introduction in cardiology, more than 50 different stents of different configuration and material have been developed. Although recent publications report of promising results using biodegradable materials, almost all coronary stents commercially available at the moment are made of metallic alloys. Whereas first generation stents were made exclusively from stainless steel and only minor interest was focussed on the stent material in the manufacture of coronary stents, recent studies strongly suggest that the metallic alloy used has a direct impact on the extent of neointima formation. Thus, metallic alloys differ not only with respect to mechanical features, but also by their biocompatible properties. These two factors are of major importance in the induction of vessel wall injury, inflammatory processes and cell proliferation. In the first part, the present paper reviews the metallurgic characteristics of metallic materials, which are currently used or under investigation in the production of coronary stents. In the second part, clinical and experimental results are summarized with respect to their biocompatibility and impact on the process of restenosis formation. PMID:11381573

  16. Laser-induced nondestructive patterning of a thin ferroelectric polymer film with controlled crystals using Ge8Sb2Te11 alloy layer for nonvolatile memory.

    PubMed

    Bae, Insung; Kim, Richard Hahnkee; Hwang, Sun Kak; Kang, Seok Ju; Park, Cheolmin

    2014-09-10

    We present a simple but robust nondestructive process for fabricating micropatterns of thin ferroelectric polymer films with controlled crystals. Our method is based on utilization of localized heat arising from thin Ge(8)Sb(2)Te(11) (GST) alloy layer upon exposure of 650 nm laser. The heat was generated on GST layer within a few hundred of nanosecond exposure and subsequently transferred to a thin poly(vinylidene fluoride-co-trifluoroethylene) film deposited on GST layer. By controlling exposure time and power of the scanned laser, ferroelectric patterns of one or two microns in size are fabricated with various shape. In the micropatterned regions, ferroelectric polymer crystals were efficiently controlled in both degree of the crystallinity and the molecular orientations. Nonvolatile memory devices with laser scanned ferroelectric polymer layers exhibited excellent device performance of large remnant polarization, ON/OFF current ratio and data retention. The results are comparable with devices containing ferroelectric films thermally annealed at least for 2 h, making our process extremely efficient for saving time. Furthermore, our approach can be conveniently combined with a number of other functional organic materials for the future electronic applications. PMID:25127181

  17. Reducing In-Stent Restenosis

    PubMed Central

    McDonald, Robert A.; Halliday, Crawford A.; Miller, Ashley M.; Diver, Louise A.; Dakin, Rachel S.; Montgomery, Jennifer; McBride, Martin W.; Kennedy, Simon; McClure, John D.; Robertson, Keith E.; Douglas, Gillian; Channon, Keith M.; Oldroyd, Keith G.; Baker, Andrew H.

    2015-01-01

    Background Drug-eluting stents reduce the incidence of in-stent restenosis, but they result in delayed arterial healing and are associated with a chronic inflammatory response and hypersensitivity reactions. Identifying novel interventions to enhance wound healing and reduce the inflammatory response may improve long-term clinical outcomes. Micro–ribonucleic acids (miRNAs) are noncoding small ribonucleic acids that play a prominent role in the initiation and resolution of inflammation after vascular injury. Objectives This study sought to identify miRNA regulation and function after implantation of bare-metal and drug-eluting stents. Methods Pig, mouse, and in vitro models were used to investigate the role of miRNA in in-stent restenosis. Results We documented a subset of inflammatory miRNAs activated after stenting in pigs, including the miR-21 stem loop miRNAs. Genetic ablation of the miR-21 stem loop attenuated neointimal formation in mice post-stenting. This occurred via enhanced levels of anti-inflammatory M2 macrophages coupled with an impaired sensitivity of smooth muscle cells to respond to vascular activation. Conclusions MiR-21 plays a prominent role in promoting vascular inflammation and remodeling after stent injury. MiRNA-mediated modulation of the inflammatory response post-stenting may have therapeutic potential to accelerate wound healing and enhance the clinical efficacy of stenting. PMID:26022821

  18. Accidental Stenting Out of Stent: A Lesson from No-Reflow after New Stent Deployment Outside the Prior Stent

    PubMed Central

    Lai, Chih-Hung; Sung, Shih-Hsien; Lee, Wen-Lieng; Juan, Yu-Hsiang; Chang, Szu-Ling; Lu, Tse-Min

    2016-01-01

    An operator can be unaware that the guide wire has accidentally advanced into space outside the previous stent, which can result in deformation of the previous stent when a new stent is deployed outside the prior stent. We herein have reported a case of accidental guide wire advancement into a previously dissected lumen of right coronary artery (RCA), resulting in a new stent deploying outside the prior stent, resulting in deformity of the prior stent. Thrombus and friable atheromatous plaques dislodged and migrated to occlude distal RCA when attempting to restore the proximal luminal diameter by balloon inflation, resulting in profound shock with asystole. IVUS was successful in identifying the cause, and the thrombus was removed successfully by manual aspiration. Due to the poor endothelization of a recent stenting, clinicians should be particularly careful of possible wire advancing outside the stent structure, which can result in prominent thrombus or atheromatous debris occluding the distal vessel, and IVUS may be useful in confirming the cause of no-reflow. PMID:27274180

  19. Nasal packing and stenting

    PubMed Central

    Weber, Rainer K.

    2011-01-01

    Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue. PMID:22073095

  20. Zotarolimus-eluting stent fracture at initial implantation diagnosed with StentBoost.

    PubMed

    Arat Ozkan, Alev; Sinan, Umit Yasar; Gurmen, Aziz T

    2016-01-01

    Stent fracture is a rare complication of drug-eluting stent implantation with a reported rate of 0.84%-3.2% in various clinical studies with first-generation drug-eluting stents and 29% in autopsy studies. Sirolimus-eluting stents with their closed cell design were reported to be more prone to fracture compared to paclitaxel-eluting stents. Other risk factors for stent fracture are multiple stenting, longer stent length, chronic renal failure, right coronary artery intervention, and a higher maximal inflation pressure. The role of angiography in diagnosing stent fracture is limited, a fact also questioning the reliability of angiographic data. Image enhancement techniques like StentBoost are widely available in new-generation angiography systems and are used to assess stent expansion, overlap size, or to localize the postdilation balloon. Here, we report a case of zotarolimus-eluting stent fracture at initial implantation diagnosed with StentBoost. PMID:27489714

  1. Zotarolimus-eluting stent fracture at initial implantation diagnosed with StentBoost

    PubMed Central

    Arat Ozkan, Alev; Sinan, Umit Yasar; Gurmen, Aziz T

    2016-01-01

    Stent fracture is a rare complication of drug-eluting stent implantation with a reported rate of 0.84%–3.2% in various clinical studies with first-generation drug-eluting stents and 29% in autopsy studies. Sirolimus-eluting stents with their closed cell design were reported to be more prone to fracture compared to paclitaxel-eluting stents. Other risk factors for stent fracture are multiple stenting, longer stent length, chronic renal failure, right coronary artery intervention, and a higher maximal inflation pressure. The role of angiography in diagnosing stent fracture is limited, a fact also questioning the reliability of angiographic data. Image enhancement techniques like StentBoost are widely available in new-generation angiography systems and are used to assess stent expansion, overlap size, or to localize the postdilation balloon. Here, we report a case of zotarolimus-eluting stent fracture at initial implantation diagnosed with StentBoost. PMID:27489714

  2. Multiple Stent Fractures After Everolimus-Eluting Stent Implantation Causing Acute Myocardial Infarction

    PubMed Central

    Ji, Eun Young; Park, Gyung-Min; Kim, Dae Won; Kim, Tae-Seok; Kim, Chan Joon; Cho, Jung Sun; Park, Mahn-Won; Her, Sung Ho

    2016-01-01

    Abstract Stent fracture is an uncommon complication of drug-eluting stent implantation, but it has a clinical significance because of its potential association with adverse cardiac events such as in-stent restenosis, target lesion revascularization, and stent thrombosis. Multiple stent fractures account for a small proportion, but they may lead to more serious complications. Newer generation drug-eluting stents are designed for improved safety and efficacy compared with early generation drug-eluting stents. Multiple stent fractures after newer generation drug-eluting stent implantation are a rare case. We report a case of 25-year-old male who presented with acute myocardial infarction caused by multiple stent fractures after everolimus-eluting stents implantation and was treated by balloon angioplasty. Physicians should be aware of the possibility of multiple stent fractures even after newer generation drug-eluting stent implantation. PMID:26871806

  3. TIDES-ACS Trial: comparison of titanium-nitride-oxide coated bio-active-stent to the drug (everolimus)-eluting stent in acute coronary syndrome. Study design and objectives.

    PubMed

    Colkesen, E B; Eefting, F D; Rensing, B J; Suttorp, M J; Ten Berg, J M; Karjalainen, P P; Van Der Heyden, J A

    2015-02-01

    Drug-eluting stents (DES), delivering antiproliferative drugs from a durable polymer, have shown to reduce in-stent restenosis after percutaneous coronary intervention (PCI) compared to bare-metal stents (BMS). However, they have been associated with a hypersensitivity reaction, delayed healing, and incomplete endothelialization, which may contribute to an increased risk of late stent thrombosis. Consequently, a prolonged duration of dual antiplatelet therapy (DAPT) is needed, with an increased risk of bleeding complication. A number of stent technologies are being developed in an attempt to modify late thrombotic events and DAPT duration. The Optimax™ stent is such a novel, next generation bioactive stent (BAS), in which a thicker layer of titanium-nitride-oxide coating is inserted over the stent struts. The rationale of this is to obtain more efficient and rapid vascular healing at the site of the stent implantation. The aim of TIDES-ACS Trial is to compare clinical outcome in patients presenting with ACS, treated with PCI using Optimax-BAS versus Synergy™-EES. Second objective is to explore whether the Optimax™-BAS use is superior compared with Synergy™-EES use with respect of hard end points (cardiac death, myocardial infarction [MI] and major bleeding). A prospective, randomized, multicenter trial (ClinicalTrials.gov Identifier: NCT02049229), will be conducted in interventional centres in Finland (six centres), France (five centres) and Holland (two centres), including a total of 1800 patients. PMID:25670057

  4. iStent® Trabecular Microbypass Stent: An Update

    PubMed Central

    Resende, Arthur Fernandes; Patel, Neal Sanjay; Waisbourd, Michael; Katz, L. Jay

    2016-01-01

    Due to the high rates of complications and failure experienced with current glaucoma procedures, there is a continuous search for a safer and more effective glaucoma surgery. A new class of procedures termed minimally invasive glaucoma surgeries (MIGS) aim to fill this void by offering an alternative method of IOP reduction associated with markedly reduced complication rates and shorter recovery times. The iStent, a trabecular microbypass stent, is a MIGS device that has quickly gained popularity. The device allows aqueous humor to directly drain from the anterior chamber into Schlemm's canal by bypassing an obstructed trabecular meshwork. This review examines publications about the iStent, focusing on the device's efficacy, safety, and cost when a single iStent or multiple iStents are implanted in combination with cataract surgery or as a solo procedure. Current data suggest that the iStent is a safe and effective tool in the management of mild-to-moderate glaucoma, notable for its limited complications and absence of serious adverse events following implantation. As valuable experience is gained performing ab interno MIGS, increasing familiarity with angle anatomy and iStent placement, and as newer stent designs are developed, there is promise of continual improvement in the surgical management of glaucoma. PMID:27413541

  5. Early definite stent thrombosis with everolimus-eluting stents

    PubMed Central

    Naito, Ryo; Miyauchi, Katsumi; Konishi, Hirokazu; Tsuboi, Shuta; Okazaki, Shinya; Daida, Hiroyuki

    2015-01-01

    Key Clinical Message Stent thrombosis (ST) is a serious complication of percutaneous coronary intervention. Several factors are associated with ST, and combination of these factors increase the risk, even in everolimus-eluting stents, which have low risk of ST. We experienced a case of ST caused by limited coronary flow and resistance to antiplatelet agent. PMID:26509023

  6. Carotid stenting and endarterectomy.

    PubMed

    Yip, Hon-Kan; Sung, Pei-Hsun; Wu, Chiung-Jen; Yu, Cheuk-Man

    2016-07-01

    Stroke, either ischemic or hemorrhagic, remains the second commonest cause of death worldwide in the last decade. Etiologies for ischemic stroke (IS) vary widely. Atherothrombotic occlusion is an essential cause to which carotid artery stenosis (CAS) is a major contributor. Administration of anti-platelet agent to patients with CAS has been shown to reduce incidence of long-term IS. In additional, in patients with symptomatic CAS, clinical trials have demonstrated that carotid endarterectomy (CEA) is superior to medical therapy for prevention of future CAS-related IS. However, CEA is not suitable for CAS post-radiotherapy or those located at higher level of the internal carotid artery; and major complications of this procedure including cranial nerve injuries have stimulated the interest of using percutaneous transfemoral carotid stenting as an alternative approach. Although transfemoral arterial approach of carotid stenting is not inferior to CEA in improving clinical outcomes, it has been reported to be associated with vascular complication and has its limitations in patients with athero-occlusive disease of abdominal aorta or bilateral iliac arteries, level II or III aortic arch, or bovine type carotid arterial anatomy. Therefore, transradial/transbrachial arterial approach has emerged as a novel method for carotid stenting. This article provides a critical review on interventional approaches for the treatment of CAS. PMID:27061654

  7. In vitro evaluation of stent patency and in-stent stenoses in 10 metallic stents using MR angiography.

    PubMed

    Hamer, O W; Borisch, I; Paetzel, C; Nitz, W R; Seitz, J; Feuerbach, S; Zorger, N

    2006-08-01

    In vitro study to investigate the suitability of contrast enhanced magnetic resonance angiography (CEMRA) for determination of stent patency and grading of in-stent stenoses in 10 metallic stents. The Acculink carotid, DynaLink, Easy Wallstent, JostentSelfX XF, Luminexx, Omnilink, sinus-SuperFlex, SMART, Symphony and ZA stent were separately placed in a vascular phantom. Dedicated stenoses inside the stents generated a concentric lumen narrowing of 50%. CEMRA was performed for each stent. Signal loss inside the stents and artificial lumen narrowing were assessed objectively using the evaluation software of the MR imager. Moreover, three blinded observers determined visibility of stent patency and in-stent stenoses subjectively on a 3-point scale and graded in-stent stenoses. Loss of signal intensity within the stent lumen ranged between 90% (Wallstent) and 5% (ZA), artificial lumen narrowing between 56% (Symphony) and 22% (ZA). For the Symphony and Wallstent, visibility of patency and in-stent stenoses was impaired and the observers' grading exaggerated the degree of stenoses (by 23% and 33%, respectively). For the remainder of stents, patency and stenoses were visible and stenoses were graded accurately (less than 10% discrepancy from reference standard). In this in vitro study, eight of 10 stents presented with MRI characteristics which enabled determination of stent patency and accurate grading of clinically relevant in-stent stenoses. PMID:16641417

  8. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts.

    PubMed

    Perrin, David; Badel, Pierre; Orgeas, Laurent; Geindreau, Christian; du Roscoat, Sabine Rolland; Albertini, Jean-Noël; Avril, Stéphane

    2016-10-01

    The rate of post-operative complications is the main drawback of endovascular repair, a technique used to treat abdominal aortic aneurysms. Complex anatomies, featuring short aortic necks and high vessel tortuosity for instance, have been proved likely prone to these complications. In this context, practitioners could benefit, at the preoperative planning stage, from a tool able to predict the post-operative position of the stent-graft, to validate their stent-graft sizing and anticipate potential complications. In consequence, the aim of this work is to prove the ability of a numerical simulation methodology to reproduce accurately the shapes of stent-grafts, with a challenging design, deployed inside tortuous aortic aneurysms. Stent-graft module samples were scanned by X-ray microtomography and subjected to mechanical tests to generate finite-element models. Two EVAR clinical cases were numerically reproduced by simulating stent-graft models deployment inside the tortuous arterial model generated from patient pre-operative scan. In the same manner, an in vitro stent-graft deployment in a rigid polymer phantom, generated by extracting the arterial geometry from the preoperative scan of a patient, was simulated to assess the influence of biomechanical environment unknowns in the in vivo case. Results were validated by comparing stent positions on simulations and post-operative scans. In all cases, simulation predicted stents deployed locations and shapes with an accuracy of a few millimetres. The good results obtained in the in vitro case validated the ability of the methodology to simulate stent-graft deployment in very tortuous arteries and led to think proper modelling of biomechanical environment could reduce the few local discrepancies found in the in vivo case. In conclusion, this study proved that our methodology can achieve accurate simulation of stent-graft deployed shape even in tortuous patient specific aortic aneurysms and may be potentially helpful to

  9. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.

    PubMed

    Welch, Tré R; Eberhart, Robert C; Banerjee, Subhash; Chuong, Cheng-Jen

    2016-03-01

    Wall injury is observed during stent expansion within atherosclerotic arteries, related in part to stimulation of the inflammatory process. Wall stress and strain induced by stent expansion can be closely examined by finite element analysis (FEA), thus shedding light on procedure-induced sources of inflammation. The purpose of this work was to use FEA to examine the interaction of a coiled polymer stent with a plaque-containing arterial wall during stent expansion. An asymmetric fibrotic plaque-containing arterial wall model was created from intravascular ultrasound (IVUS) images of a diseased artery. A 3D model for a coil stent at unexpanded state was generated in SolidWorks. They were imported into ANSYS for FEA of combined stent expansion and fibrotic plaque-distortion. We simulated the stent expansion in the plaqued lumen by increasing balloon pressure from 0 to 12 atm in 1 atm step. At increasing pressure, we examined how the expanding stent exerts forces on the fibrotic plaque and vascular wall components, and how the latter collectively resist and balance the expansive forces from the stent. Results show the expanding coiled stent creates high stresses within the plaque and the surrounding fibrotic capsule. Lower stresses were observed in adjacent medial and adventitial layers. High principal strains were observed in plaque and fibrotic capsule. The results suggest fibrotic capsule rupture might occur at localized regions. The FEA/IVUS method can be adapted for routine examination of the effects of the expansion of selected furled stents against IVUS-reconstructed diseased vessels, to improve stent deployment practices. PMID:26621671

  10. Developments in metallic biodegradable stents.

    PubMed

    Hermawan, H; Dubé, D; Mantovani, D

    2010-05-01

    Interest in metallic degradable biomaterials research has been growing in the last decade. Both scientific journals and patent databases record a high increase in publications in this area. Biomedical implants with temporary function, such as coronary stents, are the targeted applications for this novel class of biomaterials. It is expected that stents made of degradable biomaterials, named biodegradable stents, will provide a temporary opening into a narrowed arterial vessel until the vessel remodels and will progressively disappear thereafter. Biodegradable stents made of metal have recently been progressed into preclinical tests in humans after their first introduction in early 2000s. By referring to patents and journal publications, this paper reviews the developments in biodegradable stents, with emphasis on those made of metals, starting from the first design ideas to validation testing. PMID:19815097

  11. Effect of glycerol on retention time and electrical properties of polymer bistable memory devices based on glycerol-modified PEDOT:PSS.

    PubMed

    Park, Boongik; Lee, Junhwan; Kim, Ohyun

    2012-01-01

    The addition of glycerol to Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) films affected the bipolar switching characteristics of nonvolatile polymer memory devices (PMDs). Increasing the glycerol/PEDOT:PSS ratio caused increase in the OFF-current of the PMDs, but did not affect the ON-current levels. This result demonstrates that highly-conductive current paths occur in the ON-state. The write-read-erase-read cycle test was operated > 10(5) times. And, the ON-retention time is largely dependent on the glycerol to PEDOT:PSS ratio and annealing temperature. In addition, AFM analysis on the G-PEDOT:PSS films to see how the surface morphology of G-PEDOT:PSS layer influences the retention time properties was carried out. PMID:22524004

  12. The glass transition temperature of polyurethane shape memory polymer reinforced with treated/non-treated attapulgite (playgorskite) clay in dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Pan, G. H.; Huang, W. M.; Ng, Z. C.; Liu, N.; Phee, S. J.

    2008-08-01

    Attapulgite (playgorskite), a kind of nanosized fibrous clay mineral, may provide a simple and cheap alternative to improve the stiffness and actuation stress of shape memory polymers (SMPs). As a first step, in this paper, we investigate the glass transition temperature of a polyurethane SMP reinforced with treated/non-treated attapulgite in wet and dry conditions. In addition to confirming the strong influence of moisture, the results reveal that non-treated clay significantly reduces the glass transition temperature (Tg) of the composites, while the influence of treated clay on Tg is limited. However, for composites mixed with non-treated clay, after drying, the well pre-wetted samples have a much higher Tg than that of the dry ones. A partial detachment mechanism is proposed to explain this interesting phenomenon.

  13. Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers.

    PubMed

    Heuwers, Benjamin; Quitmann, Dominik; Katzenberg, Frank; Tiller, Joerg C

    2012-09-26

    Lightly cross-linked natural rubber (NR, cis-1,4-polyisoprene) was found to be an exceptional cold programmable shape memory polymer (SMP) with strain storage of up to 1000%. These networks are stabilized by strain-induced crystals. Here, we explore the influence of mechanical stress applied perpendicular to the elongation direction of the network on the stability of these crystals. We found that the material recovers its original shape at a critical transverse stress. It could be shown that this is due to a disruption of the strain-stabilizing crystals, which represents a completely new trigger for SMPs. The variation of transverse stress allows tuning of the trigger temperature T(trig) (σ) in a range of 45 to 0 °C, which is the first example of manipulating the transition of a crystal-stabilized SMP after programming. PMID:22760997

  14. Stent fracture in the left brachiocephalic vein.

    PubMed

    Wada, Masamichi; Yamamoto, Masaya; Shiba, Masanori; Tsuji, Takahiro; Iijima, Raisuke; Nakajima, Rintaro; Yoshitama, Takashi; Hara, Hidehiko; Hara, Hisao; Tsunoda, Taro; Nakamura, Masato

    2007-01-01

    A 68-year-old male hemodialysis patient presented with severe congestion in his left arm. Left arm venography showed a completely occluded left brachiocephalic vein. We chose a self-expandable stent for treating this vein. However, restenosis occurred once at 8 months and again after six additional months. The cause of the restenosis was considered to be a stent fracture. On the first restenosis, we performed redilation with a balloon; on the second restenosis, we chose stent-in-stent with a balloon-expandable stent. At least 9 months after the stent-in-stent procedure, there has been no edema in his left arm. Therefore, stent-in-stent is one of the useful strategies for stent fracture in central venous obstruction. PMID:17574169

  15. Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent

    PubMed Central

    Alexy, Ryan D.; Levi, Daniel S.

    2013-01-01

    Transcatheter treatment of children with congenital heart disease such as coarctation of the aorta and pulmonary artery stenosis currently involves the use of metal stents. While these provide good short term results, there are long term complications with their use. Children outgrow metal stents, obligating them to future transcatheter dilations and eventual surgical removal. A bioabsorbable stent, or a stent that goes away with time, would solve this problem. Bioabsorbable stents are being developed for use in coronary arteries, however these are too small for use in pediatric congenital heart disease. A bioabsorbable stent for use in pediatric congenital heart disease needs to be low profile, expandable to a diameter 8 mm, provide sufficient radial strength, and absorb quickly enough to allow vessel growth. Development of absorbable coronary stents has led to a great understanding of the available production techniques and materials such as bioabsorbable polymers and biocorrodable metals. Children with congenital heart disease will hopefully soon benefit from the current generation of bioabsorbable and biocorrodable materials and devices. PMID:24089660

  16. Bare-metal stent thrombosis two decades after stenting.

    PubMed

    Acibuca, Aynur; Gerede, Demet Menekse; Vurgun, Veysel Kutay

    2015-01-01

    Very late bare-metal stent (BMS) thrombosis is unusual in clinical practice. To the best of our knowledge, the latest that the thrombosis of a BMS has been reported is 14 years after implantation. Here, we describe a case of BMS thrombosis that occurred two decades after stenting. A 68-year-old male patient was admitted with acute anterior myocardial infarction. This patient had a history of BMS implantation in the left anterior descending coronary artery (LAD) 20 years previously. Immediate coronary angiography demonstrated acute thrombotic occlusion of the stent in the LAD. With this case, we are recording the latest reported incidence of BMS thrombosis after implantation. PMID:26407330

  17. Engineering Stent Based Delivery System for Esophageal Cancer Using Docetaxel.

    PubMed

    Shaikh, Mohsin; Choudhury, Namita Roy; Knott, Robert; Garg, Sanjay

    2015-07-01

    Esophageal cancer patients are often diagnosed as "advanced" cases. These patients are subjected to palliative stenting using self-expanding metallic stents (SEMS) to maintain oral alimentation. Unfortunately, SEMS get reoccluded due to tumor growth, in and over the stent struts. To investigate potential solutions to this problem, docetaxel (DTX) delivery films were prepared using PurSil AL 20 (PUS), which can be used as a covering material for the SEMS. Drug-polymer miscibility and interactions were studied. Bilayer films were prepared by adhering the blank film to the DTX loaded film in order to maintain the unidirectional delivery to the esophagus. In vitro release and the local DTX delivery were studied using in vitro permeation experiments. It was found that DTX and PUS were physically and chemically compatible. The bilayer films exhibited sustained release (>30 days) and minimal DTX permeation through esophageal tissues in vitro. The rate-determining step for the DTX delivery was calculated. It was found that >0.9 fraction of rate control lies with the esophageal tissues, suggesting that DTX delivery can be sustained for longer periods compared to the in vitro release observed. Thus, the bilayer films can be developed as a localized sustained delivery system in combination with the stent. PMID:25936529

  18. Stenting for malignant ureteral obstruction: Tandem, metal or metal-mesh stents.

    PubMed

    Elsamra, Sammy E; Leavitt, David A; Motato, Hector A; Friedlander, Justin I; Siev, Michael; Keheila, Mohamed; Hoenig, David M; Smith, Arthur D; Okeke, Zeph

    2015-07-01

    Extrinsic malignant compression of the ureter is not uncommon, often refractory to decompression with conventional polymeric ureteral stents, and frequently associated with limited survival. Alternative options for decompression include tandem ureteral stents, metallic stents and metal-mesh stents, though the preferred method remains controversial. We reviewed and updated our outcomes with tandem ureteral stents for malignant ureteral obstruction, and carried out a PubMed search using the terms "malignant ureteral obstruction," "tandem ureteral stents," "ipsilateral ureteral stents," "metal ureteral stent," "resonance stent," "silhouette stent" and "metal mesh stent." A comprehensive review of the literature and summary of outcomes is provided. The majority of studies encountered were retrospective with small sample sizes. The evidence is most robust for metal stents, whereas only limited data exists for tandem or metal-mesh stents. Metal and metal-mesh stents are considerably more expensive than tandem stenting, but the potential for less frequent stent exchanges makes them possibly cost-effective over time. Urinary tract infections have been associated with all stent types. A wide range of failure rates has been published for all types of stents, limiting direct comparison. Metal and metal-mesh stents show a high incidence of stent colic, migration and encrustation, whereas tandem stents appear to produce symptoms equivalent to single stents. Comparison is difficult given the limited evidence and heterogeneity of patients with malignant ureteral obstruction. It is clear that prospective, randomized studies are necessary to effectively scrutinize conventional, tandem, metallic ureteral and metal-mesh stents for their use in malignant ureteral obstruction. PMID:25950837

  19. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube.

    PubMed

    Son, Jong Yeog; Ryu, Sangwoo; Park, Yoon-Cheol; Lim, Yun-Tak; Shin, Yun-Sok; Shin, Young-Han; Jang, Hyun Myung

    2010-12-28

    We demonstrate a field-effect nonvolatile memory device made of a ferroelectric copolymer gate nanodot and a single-walled carbon nanotube (SW-CNT). A position-controlled dip-pen nanolithography was performed to deposit a poly(vinylidene fluoride-ran-trifluoroethylene) (PVDF-TrFE) nanodot onto the SW-CNT channel with both a source and drain for field-effect transistor (FET) function. PVDF-TrFE was chosen as a gate dielectric nanodot in order to efficiently exploit its bipolar chemical nature. A piezoelectric force microscopy study confirmed the canonical ferroelectric responses of the PVDF-TrFE nanodot fabricated at the center of the SW-CNT channel. The two distinct ferroelectric polarization states with the stable current retention and fatigue-resistant characteristics make the present PVDF-TrFE-based FET suitable for nonvolatile memory applications. PMID:21050014

  20. Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents.

    PubMed

    Holton, Andrea; Walsh, Edward; Anayiotos, Andreas; Pohost, Gerald; Venugopalan, Ramakrishna

    2002-01-01

    The initial success of coronary stenting is leading to a proliferation in peripheral stenting. A significant portion of the stents used in a clinical setting are made of 316 low carbon stainless steel (SS). Other alloys that have been used for stent manufacture include tantalum, MP35N, and nickel-titanium (NiTi). The ferromagnetic properties of SS cause the production of artifacts in magnetic resonance imaging (MRI). The NiTi alloys, in addition to being known for their shape memory or superelastic properties, have been shown to exhibit reduced interference in MRI. Thus, the objective of this study was to determine the comparative MRI compatibility of SS and NiTi stents. Both gradient echo and spin-echo images were obtained at 1.5 and 4.1 T field strengths. The imaging of stents of identical geometry but differing compositions permitted the quantification of artifacts produced due to device composition by normalizing the radio frequency shielding effects. These images were analyzed for magnitude and spatial extent of signal loss within the lumen and outside the stent. B1 mapping was used to quantify the attenuation throughout the image. The SS stent caused significant signal loss and did not allow for visibility of the lumen. However, the NiTi stent caused only minor artifacting and even allowed for visualization of the signal from within the lumen. In addition, adjustments to the flip angle of standard imaging protocols were shown to improve the quality of signal from within the lumen. PMID:12549230

  1. Biodegradable stents in gastrointestinal endoscopy

    PubMed Central

    Lorenzo-Zúñiga, Vicente; Moreno-de-Vega, Vicente; Marín, Ingrid; Boix, Jaume

    2014-01-01

    Biodegradable stents (BDSs) are an attractive option to avoid ongoing dilation or surgery in patients with benign stenoses of the small and large intestines. The experience with the currently the only BDS for endoscopic placement, made of Poly-dioxanone, have shown promising results. However some aspects should be improved as are the fact that BDSs lose their radial force over time due to the degradable material, and that can cause stent-induced mucosal or parenchymal injury. This complication rate and modest clinical efficacy has to be carefully considered in individual patients prior to placement of BDSs. Otherwise, the price of these stents therefore it is nowadays an important limitation. PMID:24605020

  2. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    PubMed

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law. PMID:27136090

  3. A New Concept for Carotid Artery Stenting: Coating the Atherosclerotic Plaque by Covered Stent before Bare Stent Implantation

    PubMed Central

    Akgul, Erol

    2016-01-01

    In carotid artery stenting (CAS) procedures, distal embolism, periprocedural stent thrombosis, and 30-day stroke due to the plaque fragmentation and protrusion caused by stent implantation and balloon dilation are frequent complications. In this technical case report, a case is presented of extracranial carotid artery stenosis treated with a covered stent and subsequent implantation of a bare stent. In addition, the possibility is discussed that this new technique prevents the distal microembolic complications, periprocedural stent thrombosis, and 30-day stroke of extracranial CAS. PMID:26949556

  4. Endovascular Stents and Stent-Grafts: Is Heparin Coating Desirable?

    SciTech Connect

    Nelson, Stephen R.; Souza, Nandita M. de; Allison, David J.

    2000-07-15

    Heparins are glycosaminoglycans that, in addition to their anticoagulant activity, have interactions with growth factors and other glycoproteins. These interactions may stimulate neointimal hyperplasia when heparin is delivered locally on stents and stent-grafts. Modifying the structure of heparin to retain anticoagulant activity while minimizing these stimulatory effects on the vascular endothelium is desirable and may be achieved by understanding the relationships between the structure and function of the various parts of the heparin molecule.

  5. Advances in Ureteral Stent Design

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.

    2007-04-01

    Ureteral stents are commonly used in urolithiasis patients for relief of obstruction or in association with stone treatments such as ureteroscopy and extracorporeal shock wave lithotripsy. There are currently many different bulk materials and coatings available for the manufacture of ureteral stents, however the ideal material has yet to be discovered. All potential biomaterials must undergo rigorous physical and biocompatibility testing before commercialization and use in humans. Despite significant advances in basic science research involving biocompatibility issues and biofilm formation, infection and encrustation remain associated with the use of biomaterials in the urinary tract. There have been many significant advances in the design of ureteral stents in recent years and these will be highlighted along with a discussion of future aspects of biomaterials and use of stents in association with urolithiasis.

  6. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.

    PubMed

    Bao, Min; Lou, Xiangxin; Zhou, Qihui; Dong, Wen; Yuan, Huihua; Zhang, Yanzhong

    2014-02-26

    Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration). PMID:24476093

  7. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  8. Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo.

    PubMed

    Alviar, Carlos L; Tellez, Armando; Wang, Michael; Potts, Pamela; Smith, Doug; Tsui, Manus; Budzynski, Wladyslaw; Raizner, Albert E; Kleiman, Neal S; Lev, Eli I; Granada, Juan F; Kaluza, Greg L

    2012-07-01

    We previously found paclitaxel-eluting polymer-coated stents causing more human platelet-monocyte complex formation than bare metal stents in vitro. Presently, we examined patterns of platelet activation and adhesion after exposure to 6 nanofilm HAp-coated (HAp-nano) stents, 6 HAp-microporous-coated (HAp-micro) stents, 5 HAp sirolimus-eluting microporous-coated (HAp-SES) stents and 5 cobalt-chromium stents (BMS) deployed in an in vitro flow system. Blood obtained from healthy volunteers was circulated and sampled at 0, 10, 30 and 60 min. By flow cytometry, there were no significant differences in P-Selectin expression between the 4 stent types (HAp-nano = 32.5%; HAp-micro = 42.5%, HAp-SES = 10.23%, BMS = 7% change from baseline at 60 min, p = NS); PAC-1 antibody binding (HAp-nano = 11.8%; HAp-micro = 2.9%, HAp-SES = 18%, BMS = 6.4% change from baseline at 60 min, p = NS) or PMC formation (HAp-nano = 21.6%; HAp-micro = 4%, HAp-SES = 6.6%, BMS = 17.4% change from baseline at 60 min, p = NS). The 4 stent types did not differ in the average number of platelet clusters >10 μm in diameter by SEM (HAp-nano = 2.39 ± 5.75; HAp-micro = 2.26 ± 3.43; HAp-SES = 1.93 ± 3.24; BMS = 1.94 ± 2.41, p = NS). The majority of the struts in each stent group were only mildly covered by platelets, (HAp-nano = 80%, HAp-micro = 61%, HAp-SES = 78% and BMS = 52.1%, p = NS). The HAp-microporous-coated stents (ECD) attracted slightly more proteinaceous material than bare metal stents (HAp-micro = 35% struts with complete protein coverage, P < 0.0001 vs. other 3 stent types). In conclusion, biomimetic stent coating with nanofilm or microporous hydroxyapatite, even when eluting low-dose sirolimus, does not increase the platelet activation in circulating human blood, or platelet adhesion to stent surface when compared to bare metal stents in vitro. PMID:22350685

  9. Percutaneous cholangioscopy in obstructed biliary metal stents

    SciTech Connect

    Hausegger, Klaus A.; Mischinger, Hans J.; Karaic, Radenko; Klein, Guenther E.; Kugler, Cristian; Kern, Robert; Uggowitzer, Martin; Szolar, Dieter

    1997-05-15

    Purpose. To reevaluate the reasons for the occlusion of self-expanding biliary metal stents, on the basis of cholangioscopic findings. Methods. Percutaneous transhepatic cholangioscopy (PTCS) was performed in 15 patients with obstructed biliary Wallstents. The reason for stent insertion was a malignant obstruction in 14 patients; 1 had a benign biliary stricture. Conventional noncovered stents had been inserted in 12 patients; in 3 cases a polyurethane-covered prototype Wallstent had been used. Stent occlusions occurred after 1-55 months. PTCS was performed with a 2.3-mm endoscope through an 11 Fr sheath. Biopsies were taken via the working channel of the endoscope. Results. In all patients with noncovered stents the inner surface of the stent was highly irregular with seaweed-like protrusions (biopsy-proven granulation tissue). Stent incorporation varied from absent (n=1) to subtotal (n=8), but was always incomplete, no matter how long the stent had been in place. Tumor ingrowth was histologically proven in 2 patients. One patient had a large occluding concrement at the proximal end of the stent. In patients with covered stents, the inner surface appeared more regular; however, viable granulation tissue was found inside two stents and tumor ingrowth in one of them. Conclusion. PTCS showed that incorporation of the stent is virtually always incomplete. The factors contributing most to stent occlusion are the buildup of granulation tissue, bile sludge, and tumor overgrowth. Stone formation and tumor ingrowth can also be important, although less common causes of occlusion. A polyurethane stent covering could not prevent tumor ingrowth in one patient and the buildup of viable granulation tissue inside the stent in two further patients; mean stent patency in the three patients with such a stent was 3 months.

  10. Inductively coupled stent antennas in MRI.

    PubMed

    Quick, Harald H; Kuehl, Hilmar; Kaiser, Gernot; Bosk, Silke; Debatin, Jörg F; Ladd, Mark E

    2002-11-01

    The development of intimal hyperplasia following stent deployment can lead to narrowing or even occlusion of the stent lumen. The underlying mechanisms leading to neointimal proliferation within stents remain largely unknown. Long-term evaluation of stent patency requires a noninvasive means for assessing the stent lumen. MR angiography (MRA) has shown potential to provide noninvasive assessment of the vascular system. However, a detailed assessment of the stent lumen with MRI is often hampered by material-dependent susceptibility artifacts, as well as by radiofrequency (RF) eddy currents generated inside the electrically conducting stent mesh. In this study, stent prototypes were designed to act as active resonant structures at the Larmor frequency of the MR system. Employing the principle of inductive coupling, the B(1) fields of the stents were coupled to that of an outside surface coil. The stents thus acted as local RF signal amplifiers. Various stent designs were investigated regarding their coupling to an external coil, signal homogeneity, and suitability for mechanical expansion for implantation purposes. The dependency of flip angle amplification on the quality factor Q of the stents was systematically investigated. Phantom experiments revealed signal amplification in all stent prototypes. Signal enhancement inside and close to the surface of the stents enabled their localization with high contrast in MR images. In vivo imaging experiments in the iliac, renal, and splenic arteries of two pigs confirmed the in vitro findings. Wireless active visualization of stents allows for detailed analysis of the stent lumen with high contrast and spatial resolution. The proposed method could thus provide a powerful diagnostic means for the noninvasive long-term follow-up of stent patency, thereby enhancing our understanding of the mechanisms of restenosis. PMID:12417992

  11. Mechanisms of Biliary Plastic Stent Occlusion and Efforts at Prevention

    PubMed Central

    Kwon, Chang-Il; Lehman, Glen A.

    2016-01-01

    Biliary stenting via endoscopic retrograde cholangiopancreatography has greatly improved the quality of patient care over the last 30 years. Plastic stent occlusion limits the life span of such stents. Attempts to improve plastic stent patency duration have mostly failed. Metal stents (self-expandable metal stents [SEMSs]) have therefore replaced plastic stents, especially for malignant biliary strictures. SEMS are at least 10 times more expensive than plastic stents. In this focused review, we will discuss basic mechanisms of plastic stent occlusion, along with a systematic summary of previous efforts and related studies to improve stent patency and potential new techniques to overcome existing limitations. PMID:27000422

  12. Mechanisms of Biliary Plastic Stent Occlusion and Efforts at Prevention.

    PubMed

    Kwon, Chang-Il; Lehman, Glen A

    2016-03-01

    Biliary stenting via endoscopic retrograde cholangiopancreatography has greatly improved the quality of patient care over the last 30 years. Plastic stent occlusion limits the life span of such stents. Attempts to improve plastic stent patency duration have mostly failed. Metal stents (self-expandable metal stents [SEMSs]) have therefore replaced plastic stents, especially for malignant biliary strictures. SEMS are at least 10 times more expensive than plastic stents. In this focused review, we will discuss basic mechanisms of plastic stent occlusion, along with a systematic summary of previous efforts and related studies to improve stent patency and potential new techniques to overcome existing limitations. PMID:27000422

  13. Two Cases of Immediate Stent Fracture after Zotarolimus-Eluting Stent Implantation

    PubMed Central

    Lee, Pil Hyung; Lee, Seung-Whan; Lee, Jong-Young; Kim, Young-Hak; Lee, Cheol Whan; Park, Duk-Woo; Park, Seong-Wook

    2015-01-01

    Drug-eluting stent (DES) implantation is currently the standard treatment for various types of coronary artery disease. However, previous reports indicate that stent fractures, which usually occur after a period of time from the initial DES implantation, have increased during the DES era; stent fractures can contribute to unfavorable events such as in-stent restenosis and stent thrombosis. In our present report, we describe two cases of zotarolimus-eluting stent fracture: one that was detected six hours after implementation, and the other case that was detected immediately after deployment. Both anatomical and technical risk factors contributed to these unusual cases of immediate stent fracture. PMID:25653706

  14. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    PubMed

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. PMID:26759973

  15. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  16. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.

    PubMed

    Zhong, Qi; Yan, Jin; Qian, Xu; Zhang, Tao; Zhang, Zhuo; Li, Aidong

    2014-09-01

    In-stent restenosis (ISR) and re-endothelialization delay are two major issues of intravascular stent in terms of clinical safety and effects. Construction of mimetic cell membrane surface on stents using phosphorylcholine have been regarded as one of the most powerful strategies to resolve these two issues and improve the performance of stents. In this study, atomic layer deposition (ALD) technology, which is widely used in semiconductor industry, was utilized to fabricate ultra-thin layer (10nm) of alumina (Al2O3) on 316L stainless steel (SS), then the alumina covered surface was modified with 3-aminopropyltriethoxysilane (APS) and 2-methacryloyloxyethyl phosphorylcholine (MPC) sequentially in order to produce phosphorylcholine mimetic cell membrane surface. The pristine and modified surfaces were characterized using X-ray photoelectron spectroscopy, atomic force microscope and water contact angle measurement. Furthermore, the abilities of protein adsorption, platelet adhesion and cell proliferation on the surfaces were investigated. It was found that alumina layer can significantly enhance the surface grafting of APS and MPC on SS; and in turn efficiently inhibit protein adsorption and platelet adhesion, and promote the attachment and proliferation of human umbilical vein endothelial cells (HUVEC) on the surfaces. In association with the fact that the deposition of alumina layer is also beneficial to the improvement of adhesion and integrity of drug-carrying polymer coating on drug eluting stents, we expect that ALD technology can largely assist in the modifications on inert metallic surfaces and benefit implantable medical devices, especially intravascular stents. PMID:25016426

  17. Development and Biological Evaluation of Inkjet Printed Drug Coatings on Intravascular Stent.

    PubMed

    Scoutaris, Nicolaos; Chai, Feng; Maurel, Blandine; Sobocinski, Jonathan; Zhao, Min; Moffat, Jonathan G; Craig, Duncan Q; Martel, Bernard; Blanchemain, Nicolas; Douroumis, Dennis

    2016-01-01

    Inkjet-printing technology was used to apply biodegradable and biocompatible polymeric coatings of poly(d,l-lactide) with the antiproliferative drugs simvastatin (SMV) and paclitaxel (PCX) on coronary metal stents. A piezoelectric dispenser applied coating patterns of very fine droplets (300 pL) and inkjet printing was optimized to develop uniform, accurate and reproducible coatings of high yields on the stent strut. The drug loaded polymeric coatings were assed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and transition thermal microscopy (TTM) where a phase separation was observed for SMV/PLA layers while PCX showed a uniform distribution within the polymer layers. Cytocompatibility studies of PLA coatings showed excellent cell adhesion with no decrease of cell viability and proliferation. In vivo stent implantation studies showed significant intrastent restenosis (ISR) for PCX/PLA and PLA plain coatings similar to marketed Presillion (bare metal) and Cypher (drug eluting) stents. The investigation of several cytokine levels after 7 days of stent deployment showed no inflammatory response and hence no in vivo cytotoxicity related to PLA coatings. Inkjet printing can be employed as a robust coating technology for the development of drug eluting stents compared to the current conventional approaches. PMID:26592866

  18. 21 CFR 884.3900 - Vaginal stent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... stent. (a) Identification. A vaginal stent is a device used to enlarge the vagina by stretching, or to support the vagina and to hold a skin graft after reconstructive surgery. (b) Classification. Class...

  19. Ureteral Stents. New Materials and Designs

    NASA Astrophysics Data System (ADS)

    Monga, Manoj

    2008-09-01

    Issues of stent migration and challenges of stent placement can be addressed adequately with current stent designs and materials, and an emphasis on precision in technique. Future changes in ureteral stents will need to maintain the current standard that has been set with existing devices in these regards. In contrast, new advances are sorely needed in encrustation and infection associated with ureteral stents. The main target for future development in ureteral stent materials lies in a biodegradable stent that degrades either on demand or degrades reliably within one-month with predictable degradation patterns that do not predispose to urinary obstruction, discomfort or need for secondary procedures. The main target for future development in ureteral stent design is improved patient comfort.

  20. The Development of Carotid Stent Material

    PubMed Central

    He, Dongsheng; Liu, Wenhua; Zhang, Tao

    2015-01-01

    Endovascular angioplasty with stenting is a promising option for treating carotid artery stenosis. There exist a rapidly increasing number of different stent types with different materials. The bare-metal stent is the most commonly used stent with acceptable results, but it leaves us with the problems of thrombosis and restenosis. The drug-eluting stent is a breakthrough as it has the ability to reduce the restenosis rate, but the problem of late thrombosis still has to be addressed. The biodegradable stent disappears after having served its function. However, restenosis and degradation rates remain to be studied. In this article, we review every stent material with its characteristics, clinical results and complications and point out the standards of an ideal carotid stent. PMID:26019710

  1. Angioplasty and stent placement - carotid artery

    MedlinePlus

    Carotid angioplasty and stenting; CAS; Angioplasty - carotid artery; Carotid artery stenosis - angioplasty; ... Carotid angioplasty and stenting (CAS) is done using a small surgical cut. Your surgeon will make a surgical cut in your groin after using some ...

  2. FDA Approves First Fully Dissolvable Stent

    MedlinePlus

    ... fullstory_159721.html FDA Approves First Fully Dissolvable Stent Device is absorbed by the body after about ... July 5, 2016 (HealthDay News) -- The first coronary stent to be gradually absorbed by the body has ...

  3. Long-term stability of a coronary stent coating post-implantation.

    PubMed

    Lewis, A L; Furze, J D; Small, S; Robertson, J D; Higgins, B J; Taylor, S; Ricci, D R

    2002-01-01

    A coronary stent possessing a phosphorylcholine-based polymer coating was removed from a human patient 6 months after implantation and analyzed for the presence of the coating. An atomic force microscopy (AFM) technique has been employed to scrape away several 10- micro m(2) areas on the struts of the explanted stent. Scanning-electron microscopy (SEM) and tapping-mode AFM confirmed a surface coating had been removed in each case. Cross-sectional analysis and force-of-removal measurements showed that both coating depth and hardness were characteristic of that for the phosphorylcholine- (PC-) based coating prior to implantation. AFM amplitude-phase and distance curves from the explanted stent were comparable to those obtained when an unused stent was analyzed. Furthermore, laser ablation high-resolution inductively coupled-plasma mass spectometery (LA-HR-ICP-MS) was used to detect the low level of silicon present in the PC coating after explantation. The results from these techniques confirm that the stent coating is the original PC polymer and is not of biological origin, and support the long-term stability of the coating in vivo. PMID:12418013

  4. Acute stent recoil in the left main coronary artery treated with additional stenting.

    PubMed

    Battikh, Kais; Rihani, Riadh; Lemahieu, Jean Michel

    2003-01-01

    We report a case of acute stent recoil occurring after the stenting of an ostial left main coronary artery lesion. The marked recoil after high-pressure balloon inflation confirmed that the radial force of the first stent was unable to ensure vessel patency. The addition of a second stent provided the necessary support to achieve a good final result. This case illustrates a possible complication of aorto-ostial angioplasty that could be treated with double stenting. PMID:12499528

  5. Impact of Stent Design on In-Stent Stenosis in a Rabbit Iliac Artery Model

    SciTech Connect

    Sommer, C. M. Grenacher, L.; Stampfl, U.; Arnegger, F. U.; Rehnitz, C.; Thierjung, H.; Stampfl, S.; Berger, I.; Richter, G. M.; Kauczor, H. U.; Radeleff, B. A.

    2010-06-15

    The purpose of this study was to evaluate the impact of stent design on in-stent stenosis in rabbit iliac arteries. Four different types of stent were implanted in rabbit iliac arteries, being different in stent design (crown or wave) and strut thickness (50 or 100 {mu}m). Ten stents of each type were implanted. Each animal received one crown and one wave stent with the same strut thickness. Follow-up was either 12 weeks (n = 10 rabbits) or 24 weeks (n = 10 rabbits). Primary study end points were angiographic and microscopic in-stent stenosis. Secondary study end points were vessel injury, vascular inflammation, and stent endothelialization. Average stent diameter, relative stent overdilation, average and minimal luminal diameter, and relative average and maximum luminal loss were not significantly different. However, a trend to higher relative stent overdilation was recognized in crown stents compared to wave stents. A trend toward higher average and minimal luminal diameter and lower relative average and maximum luminal loss was recognized in crown stents compared to wave stents with a strut thickness of 100 {mu}m. Neointimal height, relative luminal area stenosis, injury score, inflammation score, and endothelialization score were not significantly different. However, a trend toward higher neointimal height was recognized in crown stents compared to wave stents with a strut thickness of 50 {mu}m and a follow-up of 24 weeks. In conclusion, in this study, crown stents seem to trigger neointima. However, the optimized radial force might equalize the theoretically higher tendency for restenosis in crown stents. In this context, also more favorable positive remodeling in crown stents could be important.

  6. Stent thrombosis with an aneurysm 7 years after a drug eluting stent implantation

    PubMed Central

    Patil, Pritam; Sethi, Arvind; Kaul, Upendra

    2014-01-01

    We report a case of very late stent thrombosis 7 years post sirolimus eluting stent implantation presenting as ST elevation MI while on dual antiplatelet therapy. Angiography revealed an aneurysm at the proximal end of the stent. The patient was managed successfully by primary percutaneous coronary intervention (PCI) with adjunct thrombus aspiration and intracoronary abciximab administration followed by deploying a mesh-covered stent MGuard. This very late complication is a rare presentation after a drug illuting stent (DES). PMID:24814120

  7. Fluid mechanics in stented arterial model

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A.; Bosioc, A.; Crainic, N.; Hudrea, C.; Bernad, E. S.

    2015-12-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. Strut shape, strut thickness and the distance between consecutive struts have been associated clinically with the with post-intervention clinical outcomes. Hemodynamically favorable designs according to computational modeling can reduced in-stent restenosis after coronary stenting intervention.

  8. Nonsurgical retrieval of embolized coronary stents.

    PubMed

    Eggebrecht, H; Haude, M; von Birgelen, C; Oldenburg, O; Baumgart, D; Herrmann, J; Welge, D; Bartel, T; Dagres, N; Erbel, R

    2000-12-01

    Embolization of coronary stents before deployment is a rare but challenging complication of coronary stenting. Different methods for nonsurgical stent retrieval have been suggested. There were 20 cases (0.90%) of intracoronary stent embolization among 2,211 patients who underwent implantation of 4,066 stents. Twelve of 1,147 manually crimped stents (1.04%) and eight of 2,919 premounted stents were lost (0.27%, P < 0.01) during retraction of the delivery system, because the target lesion could not be either reached or crossed. Percutaneous retrieval was successfully carried out in 10 of 14 patients (71%) in whom retrieval was attempted. In 10 patients, stent retrieval was tried with 1.5-mm low-profile angioplasty balloon catheters (success in 7/10) and in seven cases with myocardial biopsy forceps or a gooseneck snare (success in 3/7). Three patients (15%) underwent urgent coronary artery bypass surgery after failed percutaneous retrieval, but their outcomes were fatal. In two patients, stents were compressed against the vessel wall by another stent, without compromising coronary blood flow. In two patients, a stent was lost to the periphery without clinical side effects; treatment was conservative in these cases. Embolization of stents before deployment is a rare but serious complication of coronary stenting, with hazardous potential for the patient. Manual mounting of stents is associated with a significantly higher risk of stent embolization. Stent retrieval from the coronary circulation with low-profile angioplasty balloon catheters is a readily available and technically familiar approach that has a relatively high success rate. PMID:11108675

  9. Repositioning of Covered Stents: The Grip Technique

    SciTech Connect

    Kirby, John Martin; Guo Xiaofeng; Midia, Mehran

    2011-06-15

    Introduction: Retrieval and repositioning of a stent deployed beyond its intended target region may be a difficult technical challenge. Materials and Methods: A balloon-mounted snare technique, a variant of the coaxial loop snare technique, is described. Results: The technique is described for the repositioning of a covered transjugular intrahepatic portosystemic shunt stent and a covered biliary stent. Conclusion: The balloon-mounted snare technique is a useful technique for retrieval of migrated stents.

  10. Carotid Artery Stenting versus Endarterectomy

    PubMed Central

    Gahremanpour, Amir; Perin, Emerson C.; Silva, Guilherme

    2012-01-01

    For about 2 decades, investigators have been comparing carotid endarterectomy with carotid artery stenting in regard to their effectiveness and safety in treating carotid artery stenosis. We conducted a systematic review to summarize and appraise the available evidence provided by randomized trials, meta-analyses, and registries comparing the clinical outcomes of the 2 procedures. We searched the MEDLINE, SciVerse Scopus, and Cochrane databases and the bibliographies of pertinent textbooks and articles to identify these studies. The results of clinical trials and, consequently, the meta-analyses of those trials produced conflicting results regarding the comparative effectiveness and safety of carotid endarterectomy and carotid stenting. These conflicting results arose because of differences in patient population, trial design, outcome measures, and variability among centers in the endovascular devices used and in operator skills. Careful appraisal of the trials and meta-analyses, particularly the most recent and largest National Institutes of Healthsponsored trial (the Carotid Revascularization Endarterectomy vs Stenting Trial [CREST]), showed that carotid stenting and endarterectomy were associated with similar rates of death and disabling stroke. Within the 30-day periprocedural period, carotid stenting was associated with higher risks of stroke, especially for patients aged >70 years, whereas carotid endarterectomy was associated with a higher risk of myocardial infarction. The slightly higher cost of stenting compared with endarterectomy was within an acceptable range by cost-effectiveness standards. We conclude that carotid artery stenting is an equivalent alternative to carotid endarterectomy when patient age and anatomy, surgical risk, and operator experience are considered in the choice of treatment approach. PMID:22949763

  11. Rotational Atherectomy of Three Overlapping Stent Layers.

    PubMed

    Frisoli, Tiberio M; Friedman, Harold; O'Neill, William W

    2016-09-01

    A patient was referred to us for Canadian Cardiovascular Society class III refractory angina. He was found to have in-stent restenosis within three layers of underexpanded stents implanted in 2004, 2011, and 2014. Rotational atherectomy safely yielded stent strut ablation (reduced to one layer), lesion expansion, and very good angiographic and physiologic results. PMID:27591692

  12. Hemodynamics in coronary arteries with overlapping stents.

    PubMed

    Rikhtegar, Farhad; Wyss, Christophe; Stok, Kathryn S; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2014-01-22

    Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden. PMID:24275438

  13. Unrecognized stent embolization causing recurrent chest pain.

    PubMed

    Levisay, Justin P; Vaitkus, Paul

    2006-01-01

    Numerous methods have been described for retrieving or addressing stents that have embolized in the coronary arteries. Almost all of these prior reports address the "freshly" embolized stent with retrieval or deployment occurring during the same index procedure during which the embolization occurred. We describe a case of a thrombosed, chronically embolized coronary stent. PMID:16404788

  14. 21 CFR 884.3900 - Vaginal stent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vaginal stent. 884.3900 Section 884.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... stent. (a) Identification. A vaginal stent is a device used to enlarge the vagina by stretching, or...

  15. 21 CFR 884.3900 - Vaginal stent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vaginal stent. 884.3900 Section 884.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... stent. (a) Identification. A vaginal stent is a device used to enlarge the vagina by stretching, or...

  16. 21 CFR 884.3900 - Vaginal stent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vaginal stent. 884.3900 Section 884.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... stent. (a) Identification. A vaginal stent is a device used to enlarge the vagina by stretching, or...

  17. 21 CFR 884.3900 - Vaginal stent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vaginal stent. 884.3900 Section 884.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... stent. (a) Identification. A vaginal stent is a device used to enlarge the vagina by stretching, or...

  18. Knotted stents: Case report and outcome analysis

    PubMed Central

    Lee, Ha Na; Hwang, Hokyeong

    2015-01-01

    A knotted ureteral stent is an extremely rare condition, with fewer than 20 cases reported in the literature; however, it is difficult to treat. We report a case in which a folded Terumo guidewire was successfully used to remove a knotted stent percutaneously without anesthesia. We also review the current literature on predisposing factors and management strategies for knotted ureteral stents. PMID:25964843

  19. Percutaneous coronary angioscopy and stents

    NASA Astrophysics Data System (ADS)

    Heuser, Richard R.

    1994-05-01

    With the expanding array of therapies available for coronary intervention, the invasive cardiologist has many choices for treating a specific lesion in an individual patient. Certain types of lesions might respond more effectively with stents, particularly the rigid Palmax- Schatz device. Thrombus and dissection immediately following stent placement are associated with early occlusion, and the interventionist must be able to assess their presence pre- and post-stenting. Angiography is deficient in quantifying minimal disease and in defining lesion architecture and composition, as well as the plaque rupture and thrombosis associated with unstable angina. It is also imprecise in detecting dissection and thrombus. Intravascular ultrasound (IVUS) provides high-resolution images that delineate irregularities and other structures inside the lumen and within the vessel wall and surrounding tissues. Like angiography, IVUS has limited specificity for thrombus differentiation. Angioscopy is superior to angiography and IVUS in detecting thrombus and dissection. Angioscopy allows the clinician to assess the appearance of stent struts after deployment and at follow-up. This may aid in reducing acute complications as well as restenosis. Follow-up angioscopy of stents to detect thrombus or exposed struts may guide therapy in a patient who has clinical symptoms of restenosis.

  20. Geometrical deployment for braided stent.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes

    2016-05-01

    The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065

  1. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    NASA Astrophysics Data System (ADS)

    Gallo, Annemarie; Mani, Gopinath

    2013-08-01

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel - PAT) and an endothelial cell promoting agent (nitric oxide - NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  2. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  3. Update on Pancreatobiliary Stents: Stent Placement in Advanced Hilar Tumors

    PubMed Central

    Jang, Sung Ill

    2015-01-01

    Palliative drainage is the main treatment option for inoperable hilar cholangiocarcinoma to improve symptoms, which include cholangitis, pruritus, high-grade jaundice, and abdominal pain. Although there is no consensus on the optimal method for biliary drainage due to the paucity of large-scale randomized control studies, several important aspects of any optimal method have been studied. In this review article, we discuss the liver volume to be drained, stent type, techniques to insert self-expanding metal stents, and approaches for proper and effective biliary drainage based on previous studies and personal experience. PMID:26064819

  4. The long-term results of temporary urethral stent placement for the treatment of recurrent bulbar urethral stricture disease

    PubMed Central

    Temeltas, Gokhan; Ucer, Oktay; Yuksel, Mehmet Bilgehan; Gumus, Bilal; Tatli, Volkan; Muezzinoglu, Talha

    2016-01-01

    ABSTRACT Aim: To evaluate the long term outcomes of temporary urethral stent placement for the treatment of recurrent bulbar urethral stricture. Materials and Methods: Twenty-eight patients who underwent temporary polymer coated urethral stent placement due to recurrent bulbar urethral stricture between 2010 and 2014 were enrolled in the study. The long term outcomes of the patients were analyzed. Results: The mean age of the patients was 62.3±6.4 (44–81). The overall clinical success was achieved in 18 (64.2%) of the 28 patients at a median (range) follow-up of 29 (7–46) months. No patient reported discomfort at the stent site. Stone formation was observed at the urethral stent implantation area only in one patient. Stenosis occurred in the distal end of the stents in two patients and took place in bulbar urethra in seven patients after removed the stents. The mean maximum urine flow rates were 6.24±2.81mL/sec and 19.12±4.31mL/sec before and at 3 months after the procedure, respectively. Conclusion: In this study, the success rate of temporary urethral stent placement has remained at 64.2% at a median follow-up of 29 months. Therefore, our outcomes have not achieved desired success rate for the standard treatment of recurrent bulbar urethral stricture. PMID:27256191

  5. [Decreasing incidence of stent thrombosis].

    PubMed

    Lemesle, G; Delhaye, C

    2011-12-01

    Stent thrombosis (ST) remains a major pitfall of stent implantation in contemporary percutaneous coronary intervention (PCI) leading to high rates of death and non-fatal myocardial infarction. Many predictors of ST have been reported worldwide but the strongest have to be highlighted regarding the catastrophic prognosis of such an event. Because platelet aggregation has a pivotal role in ST pathogenesis, the new antiplatelet regimens combining aspirin and P2Y12 receptor inhibitors have led to a remarkable decrease in the ST incidence, especially in the setting of acute coronary syndrome (ACS). In this article, our purpose is to review the evolution of ST incidence since first stent use in PCI. We will also overview the main predictors of ST focusing on ACS and clopidogrel low response. PMID:22054519

  6. Inductive antenna stent: design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Rashidi Mohammadi, Abdolreza; Ali, Mohamed Sultan Mohamed; Lappin, Derry; Schlosser, Colin; Takahata, Kenichi

    2013-02-01

    This paper describes the design, fabrication, and electromechanical characteristics of inductive stents developed for intelligent stent applications. The stents, fabricated out of 316L stainless-steel tubes using laser machining, are patterned to have zigzag loops without bridge struts, and when expanded, become a helix-like structure. Highly conductive metals such as copper and gold are coated on the stents to improve their inductive/antenna function. The Q-factor of the stent is shown to increase by a factor of 7 at 150 MHz with copper coating. The expansion of the stent from 2 to 4 mm diameter results in a 3.2× increase in the inductance, obtaining ˜1 µH at a similar frequency. The stent passivated by Parylene-C film is used to characterize its resonance in different media including saline. The copper-coated inductive stent exhibits a 2.4× radial stiffness for 1 mm strain as well as a 16× bending compliance compared with a commercial stent, each of which is potentially beneficial in preventing/mitigating stent failures such as recoil as well as enabling easier navigation through intricate blood vessels. The mechanical stiffness may be tailored by adjusting stent-wire thickness while maintaining necessary coating thickness to achieve particular mechanical requirements and high inductive performance simultaneously.

  7. Risks of noncardiac surgery after coronary stenting.

    PubMed

    Reddy, Proddutur R; Vaitkus, Paul T

    2005-03-15

    An increased risk of major complications for noncardiac surgery after coronary stenting has been suggested. We retrospectively reviewed all cases of coronary stents from 1999 to 2003 with subsequent surgery to assess major adverse cardiovascular events (MACEs), including myocardial infarction, stent thrombosis, major bleeding, and death. Among the 56 patients identified, 8 developed MACEs; 38% underwent surgery < or =14 days after stenting, and 62% underwent surgery 15 to 42 days after stenting. No patient developed MACEs if surgery occurred >42 days after stenting. Among patients who developed MACEs, 77% of surgeries were elective, 19% were urgent, and only 4% were emergency. Noncardiac surgery 6 weeks after coronary stenting is associated with a high risk of MACEs. PMID:15757604

  8. Current Status of Biliary Metal Stents.

    PubMed

    Nam, Hyeong Seok; Kang, Dae Hwan

    2016-03-01

    Many advances have been achieved in biliary stenting over the past 30 years. Endoscopic stent placement has become the primary management therapy to relieve obstruction in patients with benign or malignant biliary tract diseases. Compared with plastic stents, a self-expandable metallic stent (SEMS) has been used for management in patients with malignant strictures because of a larger lumen and longer stent patency. Recently, SEMS has been used for various benign biliary strictures and leaks. In this article, we briefly review the characteristics of SEMS as well as complications of stent placement. We review the current guidelines for managing malignant and benign biliary obstructions. Recent developments in biliary stenting are also discussed. PMID:26911896

  9. Current Status of Biliary Metal Stents

    PubMed Central

    Nam, Hyeong Seok; Kang, Dae Hwan

    2016-01-01

    Many advances have been achieved in biliary stenting over the past 30 years. Endoscopic stent placement has become the primary management therapy to relieve obstruction in patients with benign or malignant biliary tract diseases. Compared with plastic stents, a self-expandable metallic stent (SEMS) has been used for management in patients with malignant strictures because of a larger lumen and longer stent patency. Recently, SEMS has been used for various benign biliary strictures and leaks. In this article, we briefly review the characteristics of SEMS as well as complications of stent placement. We review the current guidelines for managing malignant and benign biliary obstructions. Recent developments in biliary stenting are also discussed. PMID:26911896

  10. Recent advances of biliary stent management.

    PubMed

    Kida, Mitsuhiro; Miyazawa, Shiro; Iwai, Tomohisa; Ikeda, Hiroko; Takezawa, Miyoko; Kikuchi, Hidehiko; Watanabe, Maya; Imaizumi, Hiroshi; Koizumi, Wasaburo

    2012-01-01

    Recent progress in chemotherapy has prolonged the survival of patients with malignant biliary strictures, leading to increased rates of stent occlusion. Even we employed metallic stents which contributed to higher rates and longer durations of patency, and occlusion of covered metallic stents now occurs in about half of all patients during their survival. We investigated the complication and patency rate for the removal of covered metallic stents, and found that the durations were similar for initial stent placement and re-intervention. In order to preserve patient quality of life, we currently recommend the use of covered metallic stents for patients with malignant biliary obstruction because of their removability and longest patency duration, even though uncovered metallic stents have similar patency durations. PMID:22563289

  11. Ureteral Stent Coatings: What's Here and What's Coming

    NASA Astrophysics Data System (ADS)

    Razvi, Hassan

    2008-09-01

    Ureteral stents have become an indispensable tool to the urologist in the management of various disorders afflicting the urinary tract. While the ideal stent remains elusive, novel technical advances in stent coating technology offer the potential of enhancing stent biocompatibility and clinical application. Currently available stent coatings as well as new and emerging devices will be reviewed.

  12. Stenting in Malignant Biliary Obstruction.

    PubMed

    Almadi, Majid A; Barkun, Jeffrey S; Barkun, Alan N

    2015-10-01

    Decompression of the biliary system in patients with malignant biliary obstruction has been widely accepted and implemented as part of the care. Despite a wealth of literature, there remains a significant amount of uncertainty as to which approach would be most appropriate in different clinical settings. This review covers stenting of the biliary system in cases of resectable or palliative malignant biliary obstruction, potential candidates for biliary drainage, technical aspects of the procedure, as well as management of biliary stent dysfunction. Furthermore, periprocedural considerations including proper mapping of the location of obstruction and the use of antibiotics are addressed. PMID:26431598

  13. Drug eluting biliary stents to decrease stent failure rates: A review of the literature

    PubMed Central

    Shatzel, Joseph; Kim, Jisoo; Sampath, Kartik; Syed, Sharjeel; Saad, Jennifer; Hussain, Zilla H; Mody, Kabir; Pipas, J Marc; Gordon, Stuart; Gardner, Timothy; Rothstein, Richard I

    2016-01-01

    Biliary stenting is clinically effective in relieving both malignant and non-malignant obstructions. However, there are high failure rates associated with tumor ingrowth and epithelial overgrowth as well as internally from biofilm development and subsequent clogging. Within the last decade, the use of prophylactic drug eluting stents as a means to reduce stent failure has been investigated. In this review we provide an overview of the current research on drug eluting biliary stents. While there is limited human trial data regarding the clinical benefit of drug eluting biliary stents in preventing stent obstruction, recent research suggests promise regarding their safety and potential efficacy. PMID:26839648

  14. Stent strut fracture-induced restenosis in a bifurcation lesion treated with the crush stenting technique.

    PubMed

    Surmely, Jean-Francois; Kinoshita, Yoshihisa; Dash, Debabrata; Matsubara, Tetsuo; Terashima, Mitsuyasu; Ehara, Mariko; Ito, Tatsuya; Nasu, Kenya; Takeda, Yoshihiro; Tanaka, Nobuyoshi; Suzuki, Takahiko; Katoh, Osamu

    2006-07-01

    Percutaneous treatment of a bifurcation lesion still shows a significant complication rate, mainly because of restenosis at the ostial site of the side branch vessel. Different techniques, such as V-stenting, culottes-stenting or crush stenting, allow full ostial coverage and may therefore achieve uniform drug distribution within the lesion. The crush technique results in a strong mechanical constraint on the side branch stent. A case of stent strut fracture-induced restenosis in a bifurcation lesion treated with the crush stenting technique is described. PMID:16799252

  15. Drug eluting biliary stents to decrease stent failure rates: A review of the literature.

    PubMed

    Shatzel, Joseph; Kim, Jisoo; Sampath, Kartik; Syed, Sharjeel; Saad, Jennifer; Hussain, Zilla H; Mody, Kabir; Pipas, J Marc; Gordon, Stuart; Gardner, Timothy; Rothstein, Richard I

    2016-01-25

    Biliary stenting is clinically effective in relieving both malignant and non-malignant obstructions. However, there are high failure rates associated with tumor ingrowth and epithelial overgrowth as well as internally from biofilm development and subsequent clogging. Within the last decade, the use of prophylactic drug eluting stents as a means to reduce stent failure has been investigated. In this review we provide an overview of the current research on drug eluting biliary stents. While there is limited human trial data regarding the clinical benefit of drug eluting biliary stents in preventing stent obstruction, recent research suggests promise regarding their safety and potential efficacy. PMID:26839648

  16. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    NASA Astrophysics Data System (ADS)

    Fu, C. H.; Liu, J. F.; Guo, Andrew

    2015-10-01

    Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  17. Propensity-matched patient-level comparison of the TAXUS Liberté and TAXUS element (ION) paclitaxel-eluting stents.

    PubMed

    Kereiakes, Dean J; Cannon, Louis A; Ormiston, John A; Turco, Mark A; Mann, Tift; Mishkel, Gregory J; McGarry, Thomas; Wang, Hong; Underwood, Paul; Dawkins, Keith D

    2011-09-15

    Stent design, metal alloy composition, and strut thickness may influence late lumen loss and clinical outcomes after bare metal stent deployment; however, their impact on outcomes after drug-eluting stent deployment is unknown. Although the TAXUS Liberté and ION paclitaxel-eluting stents use similar polymer and drug, the ION stent incorporates a novel thin-strut platinum chromium metal alloy and cell design. We therefore compared patient-level data from 2,298 subjects enrolled into the TAXUS ATLAS (TAXUS Liberté) and PERSEUS (ION) clinical trials. Propensity-score (1:1) matching was performed to adjust for covariate imbalance between stent types. Twelve-month major adverse cardiac events were less frequent after use of the ION compared to the TAXUS Liberté (12.7% vs 8.3%, p <0.001, unadjusted; 12.0% vs 7.5%, p = 0.007, propensity matched) largely because of decreased non-Q-wave myocardial infarction (MI; 2.9% vs 1.4%, p = 0.01, unadjusted; 3.2% vs 0.9%, p = 0.004, propensity matched). The MI difference was predominantly periprocedural and in patients treated with a single stent. In conclusion, this exploratory post hoc analysis demonstrated that the ION was associated with fewer adverse clinical events than the TAXUS Liberté because of decreased non-Q-wave MI. Stent platform-related variables may influence clinical outcomes after drug-eluting stent use despite similar polymer and drug elution. Differences in adjunctive pharmacotherapy and/or stenting technique may also be contributory. PMID:21803319

  18. Comparison of a New Polytetrafluoroethylene-Covered Metallic Stent to a Noncovered Stent in Canine Ureters

    SciTech Connect

    Chung, Hwan-Hoon Lee, Seung Hwa; Cho, Sung Bum; Park, Hong Suk; Kim, Young Sik; Kang, Byung Chul; Frisoli, Joan K.; Razavi, Mahmood K.

    2008-05-15

    The aim of this study was to determine the feasibility of using a newly designed polytetrafluoroethylene (PTFE)-covered metallic stent in the ureter by comparing its effectiveness with that of the noncovered stent in a canine model. We placed 14 stents in the ureters of seven mongrel dogs that weighed 30-40 kg each. The covered and noncovered stents were deployed in the right and left ureters, respectively, of six dogs. In the seventh dog, a covered stent and a double-J catheter were inserted in the right ureter, and a covered stent only was inserted in the left ureter. The first six dogs were sacrificed at 5, 10, and 15 weeks after deployment of the stents (two for each follow-up period), and the seventh dog was sacrificed at 30 weeks. There was no migration or poor expansion of any of the stents observed on plain radiography. On intravenous pyelogram and retrograde pyelogram, all of the covered stents at each follow-up period had patent lumens at the stented segments without hydronephrosis, and the passage of contrast material through it was well preserved. The noncovered stents in the dogs sacrificed at 5 and 10 weeks and one of the two dogs sacrificed at 15 weeks showed near-complete occlusion of the stent lumen due to ingrowth of the soft tissue, and severe hydronephrosis was also noted. The noncovered stent in the other dog sacrificed at 15 weeks showed the passage of contrast material without hydronephrosis, but the lumen of the stent was still nearly occluded by the soft tissue. There was no evidence of hydronephrosis or passage disturbance of the contrast material in both ureters of the dog sacrificed at 30 weeks. We conclude that the newly designed PTFE-covered stent effectively prevented the luminal occlusion caused by urothelial hyperplasia compared to the near-total occlusion of the noncovered stents, and no migration of the covered stents was noted.

  19. MR Angiography of Peripheral Arterial Stents: In Vitro Evaluation of 22 Different Stent Types

    PubMed Central

    Burg, Matthias C.; Bunck, Alexander C.; Seifarth, Harald; Buerke, Boris; Kugel, Harald; Hesselmann, Volker; Köhler, Michael; Heindel, Walter; Maintz, David

    2011-01-01

    Purpose. To evaluate stent lumen visibility of a large sample of different peripheral arterial (iliac, renal, carotid) stents using magnetic resonance angiography in vitro. Materials and Methods. 21 different stents and one stentgraft (10 nitinol, 7 316L, 2 tantalum, 1 cobalt superalloy, 1 PET + cobalt superalloy, and 1 platinum alloy) were examined in a vessel phantom (vessel diameters ranging from 5 to 13 mm) filled with a solution of Gd-DTPA. Stents were imaged at 1.5 Tesla using a T1-weighted 3D spoiled gradient-echo sequence. Image analysis was performed measuring three categories: Signal intensity in the stent lumen, lumen visibility of the stented lumen, and homogeneity of the stented lumen. The results were classified using a 3-point scale (good, intermediate, and poor results). Results. 7 stents showed good MR lumen visibility (4x nitinol, 2x tantalum, and 1x cobalt superalloy). 9 stents showed intermediate results (5x nitinol, 2x 316L, 1x PET + cobalt superalloy, and 1x platinum alloy) and 6 stents showed poor results (1x nitinol, and 5x 316L). Conclusion. Stent lumen visibility varies depending on the stent material and type. Some products show good lumen visibility which may allow the detection of stenoses inside the lumen, while other products cause artifacts which prevent reliable evaluation of the stent lumen with this technique. PMID:22091380

  20. Indications for stenting during thrombolysis.

    PubMed

    Bækgaard, N; Broholm, R; Just, S

    2013-03-01

    The most important vein segment to thrombolyse after deep venous thrombosis (DVT) is the outflow tract meaning the iliofemoral vein. Iliofemoral DVT is defined as DVT in the iliac vein and the common femoral vein. Spontaneous recanalization is less than 50%, particularly on the left side. The compression from adjacent structures, predominantly on the left side is known as the iliac vein compression syndrome. Therefore, it is essential that supplementary endovenous procedures have to be performed in case of persistent obstructive lesions following catheter-directed thrombolysis. Insertion of a stent in this position is the treatment of choice facilitating the venous flow into an unobstructed outflow tract either from the femoral vein or the deep femoral vein or both. The stent, made of stainless steel or nitinol, has to be self-expandable and flexible with radial force to overcome the challenges in this low-pressure system. The characteristics of the anatomy with external compression and often a curved vein segment with diameter difference make stent placement necessary. Ballooning alone has no place in this area. The proportion of inserted stents varies in the published materials with catheter-directed thrombolysis of iliofemoral deep venous thrombosis. PMID:23482545

  1. Percutaneous endovascular stents: an experimental evaluation.

    PubMed

    Wright, K C; Wallace, S; Charnsangavej, C; Carrasco, C H; Gianturco, C

    1985-07-01

    Percutaneous, expanding, endovascular stents were constructed of stainless steel wire formed in a zig-zag pattern. Stents were placed for varying periods of time in the jugular vein, vena cava, and abdominal aorta in each of five adult dogs. The dilating force of the stents could be controlled by different wire size, number and angle of wire bends, and stent length. In addition, multiple stents could be placed one inside the other or one after the other, depending on the circumstance. The stents distended the vessels and increased their diameter. No flow defects, luminal narrowing, or occlusion were noted in any of the stented vessels, even after 6 months. Side branches bridged by the stents remained patent and showed no indication of narrowing. Stent wires became encased by a proliferation of the tunica intima where they contacted the vessel wall. Encasement was slower and less extensive in the abdominal aorta. No vascular erosion or clot formation was found to be associated with any of the stents. PMID:4001423

  2. Endoscopic stenting for malignant biliary obstruction.

    PubMed

    Lai, E C; Lo, C M; Liu, C L

    2001-10-01

    Use of endoscopic stents to manage patients with malignant obstructive jaundice is a well accepted measure. Interpretation of the results of endoscopic stenting must be made with reference to the level of the bile duct obstruction. Results were generally unsatisfactory for hilar lesions, especially when the intrahepatic ducts were segregated into multiple isolated systems. After deployment, stent dysfunction due to clogging by biliary sludge is apparently an inevitable process for the conventional plastic stent. Considerable efforts had been made to prolong the stent patency by changing its physical configuration, coating the inner lumen, and the choice of material but with little success. The development of a self-expandable metal stent is a major advance, but the benefits derived from a larger stent lumen are compromised by the initial expense and the tumor ingrowth through the wires for all models available commercially. Current data failed to substantiate the value of routine preoperative biliary decompression, as there is no reduction in the morbidity and mortality rates after surgery. Although biased patient selection may have resulted in the negative observations made, repeated clinical trials should probably focus on patients with distal bile duct tumors who are preparing for a major pancreatic resection. As a definitive palliative measure, endoscopic stenting is a more cost-effective option than surgery for patients with limited life expectancy based on data regarding plastic stents. The recommendations are evolving however, as there is progressive refinement of laparoscopic surgery techniques and designs of endoscopic stents. PMID:11596892

  3. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application.

    PubMed

    Ma, Xiaofei; Xiao, Yan; Xu, Heng; Lei, Kun; Lang, Meidong

    2016-09-01

    Drug-eluting stents with biodegradable polymers as reservoirs have shown great potential in the application of interventional therapy due to their capability of local drug delivery. Herein, poly(l-lactide-co-ε-caprolactone) (PLCL) with three different compositions as carriers for ciprofloxacin lactate (CIP) was coated on ureteral stents by the dipping method. To simulate a body environment, degradation behavior of PLCL as both the bulk film and the stent coating was evaluated in artificial urine (AU, pH6.20) respectively at 37°C for 120days by tracing their weight/Mn loss, water absorption and surface morphologies. Furthermore, the release profile of the eluting drug CIP on each stent exhibited a three-stage pattern, which was greatly affected by the degradation behavior of PLCL except for the burst stage. Interestingly, the degradation results on both macroscopic and molecular level indicated that the release mechanism at stage I was mainly controlled by chain scission instead of the weight loss or morphological changes of the coatings. While for stage II, the release profile was dominated by erosion resulting from the hydrolysis reaction autocatalyzed by acidic degradation residues. In addition, ciprofloxacin-loaded coatings displayed a significant bacterial resistance against E. coli and S. aureus without obvious cytotoxicity to Human foreskin fibroblasts (HFFs). Our results suggested that PLCL copolymers with tunable degradation rate as carriers for ciprofloxacin lactate could be used as a promising long-term antibacterial coating for ureteral stents. PMID:27207042

  4. Influence of strut cross-section of stents on local hemodynamics in stented arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2016-05-01

    Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.

  5. Influence of strut cross-section of stents on local hemodynamics in stented arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2016-04-01

    Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.

  6. New Stenting Technique to Achieve Favorable Jailing Configuration on Side Branch Ostium: Bent Stent Technique

    PubMed Central

    Nakao, Fumiaki

    2016-01-01

    According to data from stent-enhanced three-dimensional optical coherence tomography, incomplete stent apposition after side branch dilation in coronary bifurcation stenting can be reduced by the free carina type (no links bridged from a carina) and by distal cell rewiring. This is the first report to describe a bent stent technique that was devised to achieve the free carina type (no links bridged from a carina), as a favorable jailing configuration. PMID:27088016

  7. [A case of recurrent stent thrombosis in a drug-eluting stent following antiplateled therapy discontinuation].

    PubMed

    Wożakowska Kapłon, Beata; Jaskulska Niedziela, Elżbieta; Niedziela, Justyna; Gutkowski, Wojciech

    2011-01-01

    Stent thrombosis is one of the major complications that occur in percutaneous coronary interventions with stents. Various factors have been attributed to the development of stent thrombosis and several strategies have been recommended for its management. We report a case of 45 year-old patient with recurrent subacute and late stent thrombosis following antiplateled therapy discontinuation on the 6th day and 11th month after he discharging from hospital. PMID:21678309

  8. [Drug-eluting stents: long-term safety].

    PubMed

    Karpov, Iu A; Samko, A N; Buza, V V

    2009-01-01

    The review concerns the problem of late thromboses of drug-eluting stents and their influence on late prognosis of the patients; presents long-term results of the trial of sirolimus-eluting stents implanted to patients with coronary heart disease; analyses mechanisms of development of late stent thrombosis, data from different meta-analyses and registers comparing long-term outcomes in patients with implanted sirolimus-eluting stents and metallic stents; suggests risk factors of late thromboses of drug-eluting stents; presents original evidence on 3.5-year follow-up of patients with implanted sirolimus-eluting stents and metallic stents. PMID:19537584

  9. Rapid virtual stenting for intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Chen, Danyang; Chen, Zihe; Wang, Xiangyu; Paliwal, Nikhil; Xiang, Jianping; Meng, Hui; Corso, Jason J.; Xu, Jinhui

    2016-03-01

    The rupture of Intracranial Aneurysms is the most severe form of stroke with high rates of mortality and disability. One of its primary treatments is to use stent or Flow Diverter to divert the blood flow away from the IA in a minimal invasive manner. To optimize such treatments, it is desirable to provide an automatic tool for virtual stenting before its actual implantation. In this paper, we propose a novel method, called ball-sweeping, for rapid virtual stenting. Our method sweeps a maximum inscribed sphere through the aneurysmal region of the vessel and directly generates a stent surface touching the vessel wall without needing to iteratively grow a deformable stent surface. Our resulting stent mesh has guaranteed smoothness and variable pore density to achieve an enhanced occlusion performance. Comparing to existing methods, our technique is computationally much more efficient.

  10. Rapid Virtual Stenting for Intracranial Aneurysms

    PubMed Central

    Zhao, Liang; Chen, Danyang; Chen, Zihe; Wang, Xiangyu; Paliwal, Nikhil; Xiang, Jianping; Meng, Hui; Corso, Jason J.; Xu, Jinhui

    2016-01-01

    The rupture of Intracranial Aneurysms is the most severe form of stroke with high rates of mortality and disability. One of its primary treatments is to use stent or Flow Diverter to divert the blood flow away from the IA in a minimal invasive manner. To optimize such treatments, it is desirable to provide an automatic tool for virtual stenting before its actual implantation. In this paper, we propose a novel method, called ball-sweeping, for rapid virtual stenting. Our method sweeps a maximum inscribed sphere through the aneurysmal region of the vessel and directly generates a stent surface touching the vessel wall without needing to iteratively grow a deformable stent surface. Our resulting stent mesh has guaranteed smoothness and variable pore density to achieve an enhanced occlusion performance. Comparing to existing methods, our technique is computationally much more efficient. PMID:27346910

  11. Bare metal stenting of the iliac arteries.

    PubMed

    Kim, Tanner I; Schneider, Peter A

    2016-06-01

    A significant subset of patients with peripheral artery disease (PAD) has iliac artery involvement that requires treatment. The development of bare metal stents has improved the short- and long-term outcomes of endovascular repair and has become first line therapy. Open surgical bypass has been reserved for extremely complex anatomic morphologies or endovascular failures. It is unclear whether primary stenting is superior to angioplasty with provisional stenting but if angioplasty is used alone, it is likely only appropriate for the most focal lesions. Self-expanding and balloon-expandable stents have unique characteristics that are suitable to different lesion morphologies. Both stent-types have demonstrated similar outcomes. Herein, we review the practice and results of bare metal stents in the iliac arteries. PMID:27035892

  12. Prevention of stent thrombosis: challenges and solutions

    PubMed Central

    Reejhsinghani, Risheen; Lotfi, Amir S

    2015-01-01

    Stent thrombosis is an uncommon but serious complication which carries with it significant mortality and morbidity. This review analyzes the entity of stent thrombosis from a historical and clinical perspective, and chronicles the evolution of this condition through the various generations of stent development, from bare metal to first-generation, second-generation, and third-generation drug-eluting stents. It also delineates the specific risk factors associated with stent thrombosis and comprehensively examines the literature related to each of these risks. Finally, it highlights the preventative strategies that can be garnered from the existing data, and concludes that a multifactorial approach is necessary to combat the occurrence of stent thrombosis, with higher risk groups, such as patients with ST segment elevation myocardial infarction, meriting further research. PMID:25657588

  13. Mechanical behavior of peripheral stents and stent-vessel interaction: A computational study

    NASA Astrophysics Data System (ADS)

    Dottori, Serena; Flamini, Vittoria; Vairo, Giuseppe

    2016-05-01

    In this paper stents employed to treat peripheral artery disease are analyzed through a three-dimensional finite-element approach, based on a large-strain and large-displacement formulation. Aiming to evaluate the influence of some stent design parameters on stent mechanics and on the biomechanical interaction between stent and arterial wall, quasi-static and dynamic numerical analyses are carried out by referring to computational models of commercially and noncommercially available versions of both braided self-expandable stents and balloon-expandable stents. Addressing isolated device models, opening mechanisms and flexibility of both opened and closed stent configurations are numerically experienced. Moreover, stent deployment into a stenotic peripheral artery and possible postdilatation angioplasty (the latter for the self-expandable device only) are simulated by considering different idealized vessel geometries and accounting for the presence of a stenotic plaque. Proposed results highlight important differences in the mechanical response of the two types of stents, as well as a significant influence of the vessel shape on the stress distributions arising upon the artery-plaque system. Finally, computational results are used to assess both the stent mechanical performance and the effectiveness of the stenting treatment, allowing also to identify possible critical conditions affecting the risk of stent fracture, tissue damage, and/or pathological tissue response.

  14. An Anti-CD34 Antibody-Functionalized Clinical-Grade POSS-PCU Nanocomposite Polymer for Cardiovascular Stent Coating Applications: A Preliminary Assessment of Endothelial Progenitor Cell Capture and Hemocompatibility

    PubMed Central

    Farhatnia, Yasmin; G, Natasha; Lim, Jing; Teoh, Swee-Hin; Rajadas, Jayakumar; Alavijeh, Mohammad S.; Seifalian, Alexander M.

    2013-01-01

    In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs) from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs) were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05). However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05), as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05) and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization. PMID:24116210

  15. Nanoparticle Drug- and Gene-eluting Stents for the Prevention and Treatment of Coronary Restenosis

    PubMed Central

    Yin, Rui-Xing; Yang, De-Zhai; Wu, Jin-Zhen

    2014-01-01

    Percutaneous coronary intervention (PCI) has become the most common revascularization procedure for coronary artery disease. The use of stents has reduced the rate of restenosis by preventing elastic recoil and negative remodeling. However, in-stent restenosis remains one of the major drawbacks of this procedure. Drug-eluting stents (DESs) have proven to be effective in reducing the risk of late restenosis, but the use of currently marketed DESs presents safety concerns, including the non-specificity of therapeutics, incomplete endothelialization leading to late thrombosis, the need for long-term anti-platelet agents, and local hypersensitivity to polymer delivery matrices. In addition, the current DESs lack the capacity for adjustment of the drug dose and release kinetics appropriate to the disease status of the treated vessel. The development of efficacious therapeutic strategies to prevent and inhibit restenosis after PCI is critical for the treatment of coronary artery disease. The administration of drugs using biodegradable polymer nanoparticles as carriers has generated immense interest due to their excellent biocompatibility and ability to facilitate prolonged drug release. Despite the potential benefits of nanoparticles as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of nanoparticle materials, as well as to their size and shape. This review describes the molecular mechanism of coronary restenosis, the use of DESs, and progress in nanoparticle drug- or gene-eluting stents for the prevention and treatment of coronary restenosis. PMID:24465275

  16. Stent implantation influence wall shear stress evolution

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  17. Very Late Bare Metal Stent Thrombosis

    PubMed Central

    Soto Herrera, Mariana; Restrepo, José A.; Felipe Buitrago, Andrés; Gómez Mejía, Mabel; Díaz, Jesús H.

    2013-01-01

    Very late stent thrombosis is a rare and not-well-understood complication after bare metal stent implantation. It usually presents as an ST elevation acute coronary syndrome and it is associated with high rates of morbidity and mortality. Pathophysiologic mechanisms are not well defined; nevertheless, recent studies have proposed a neoatherosclerotic process as the triggering mechanism. We present the case of a patient with bare metal very late stent thrombosis 12 years after implantation. PMID:24829831

  18. Peripheral Stent Placement in Hemodialysis Grafts

    SciTech Connect

    Kariya, Shuji Tanigawa, Noboru; Kojima, Hiroyuki; Komemushi, Atsushi; Shomura, Yuzo; Shiraishi, Tomokuni; Kawanaka, Toshiaki; Sawada, Satoshi

    2009-09-15

    The purpose of the present study was to evaluate the clinical outcome of peripheral stent placement after failed balloon angioplasty in patients with grafts who are on hemodialysis. We examined 30 Wallstents that were placed in 26 patients because balloon angioplasty failed or early restenosis (<3 months) occurred within 3 months. We retrospectively reviewed 267 consecutive balloon angioplasties performed in 71 patients with graft access between August 2000 and March 2007. Stent placements accounted for 30 (11.2%) of the 267 balloon angioplasties. The clinical success rate of stent placement was 93.3% (28 of 30 stent placements). The 3-, 6-, and 12-month primary patency rates were 73.3%, 39.3%, and 17.7%, respectively. The 1-, 2-, and 3-year secondary patency rates were 90.2%, 83.8%, and 83.8%, respectively. Primary patency was significantly prolonged by stent placement after early restenosis compared with previous balloon angioplasty alone (P = 0.0059). Primary patency after stent placement was significantly lower than after successful balloon angioplasty without indications for stent placement (P = 0.0279). Secondary patency rates did not significantly differ between stent placement and balloon angioplasty alone. The mean number of reinterventions required to maintain secondary patency after stent placement was significantly larger than that after balloon angioplasty alone (Mann-Whitney U test, P = 0.0419). We concluded that peripheral stent placement for graft access is effective for salvaging vascular access after failed balloon angioplasty and for prolonging patency in early restenosis after balloon angioplasty. However, reinterventions are required to maintain secondary patency after stent placement. Furthermore, peripheral stent placement for graft access cannot achieve the same primary patency as balloon angioplasty alone.

  19. Photodynamic therapy for occluded biliary metal stents

    NASA Astrophysics Data System (ADS)

    Roche, Joseph V. E.; Krasner, Neville; Sturgess, R.

    1999-02-01

    In this abstract we describe the use of photodynamic therapy (PDT) to recanalize occluded biliary metal stents. In patients with jaundice secondary to obstructed metal stents PDT was carried out 72 hours after the administration of m THPC. Red laser light at 652 nm was delivered endoscopically at an energy intensity of 50 J/cm. A week later endoscopic retrograde cholangiogram showed complete recanalization of the metal stent.

  20. In stent restenosis: bane of the stent era.

    PubMed

    Mitra, A K; Agrawal, D K

    2006-03-01

    The long term outcome of stent implantation is affected by a process called in stent restenosis (ISR). Multiple contributory factors have been identified, but clear understanding of the overall underlying mechanism remains an enigma. ISR progresses through several different phases and involves numerous cellular and molecular constituents. Platelets and macrophages play a central role via vascular smooth muscle cell migration and proliferation in the intima to produce neointimal hyperplasia, which is pathognomic of ISR. Increased extracellular matrix formation appears to form the bulk of the neointimal hyperplasia tissue. Emerging evidence of the role of inflammatory cytokines and suppressors of cytokine signalling make this an exciting and novel field of antirestenosis research. Activation of Akt pathway triggered by mechanical stretch may also be a contributory factor to ISR formation. Prevention of ISR appears to be a multipronged attack as no therapeutic "magic bullet" exists to block all the processes in one go. PMID:16505271

  1. The importance of annealing 316 LVM stents.

    PubMed

    Meyer-Kobbe, C; Hinrichs, B H

    2003-01-01

    The annealing process is an important key step in the manufacture of high quality and reliable 316 LVM stents. [figure: see text] The methods commonly applied for verifying the outcome of the annealing process such as microhardness testing are inappropriate and should not be used. The tension testing of tubes, processed together with stents, provides reliable results of the final material properties of stents. During the course of the investigation the grain size was reduced significantly and the break elongation improved. The surface of the strain-tested material shows substantial improvements. All results are particularly important for thin-wall stents with filigree struts. PMID:12974121

  2. Auxetic oesophageal stents: structure and mechanical properties.

    PubMed

    Ali, Murtaza Najabat; Busfield, James J C; Rehman, Ihtesham U

    2014-02-01

    Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor, ranking as the sixth most frequent cause of death in the world. This research work aims to adopt an Auxetic (rotating-squares) geometry device, that had previously been examined theoretically and analysed by Grima and Evans (J Mater Sci Lett 19(17):1563-1565, 2000), to produce a novel Auxetic oesophageal stent and stent-grafts relevant to the palliative treatment of oesophageal cancer and also for the prevention of dysphagia. This paper discusses the manufacture of a small diameter Auxetic oesophageal stent and stent-graft. The oral deployment of such an Auxetic stent would be simplest if a commercial balloon dilatational catheter was used as this obviates the need for an expensive dedicated delivery system. A novel manufacturing route was employed in this research to develop both Auxetic films and Auxetic oesophageal stents, which ranged from conventional subtractive techniques to a new additive manufacturing method. Polyurethane was selected as a material for the fabrication of Auxetic films and Auxetic oesophageal stents because of its good biocompatibility and non-toxicological properties. The Auxetic films were later used for the fabrication of seamed Auxetic oesophageal stents. The flexible polyurethane tubular grafts were also attached to the inner luminal side of the seamless Auxetic oesophageal stents, in order to prevent tumour in-growth. Scanning electron microscopy was used to conduct surface morphology study by using different Auxetic specimens developed from different conventional and new additive manufacturing techniques. Tensile testing of the Auxetic films was performed to characterise their mechanical properties. The stent expansion tests of the Auxetic stents were done to analyse the longitudinal extension and radial expansion of the Auxetic stent at a range of radial pressures applied by the balloon catheter, and to also identify the pressure

  3. Predictive Factors of In-Stent Restenosis in Renal Artery Stenting: A Retrospective Analysis

    SciTech Connect

    Vignali, Claudio Bargellini, Irene; Lazzereschi, Michele; Cioni, Roberto; Petruzzi, Pasquale; Caramella, Davide; Pinto, Stefania; Napoli, Vinicio; Zampa, Virna; Bartolozzi, Carlo

    2005-04-15

    Purpose. To retrospectively evaluate the role of clinical and procedural factors in predicting in-stent restenosis in patients with renovascular disease treated by renal artery stenting. Methods. From 1995 to 2002, 147 patients underwent renal artery stenting for the treatment of significant ostial atherosclerotic stenosis. Patients underwent strict clinical and color-coded duplex ultrasound follow-up. Ninety-nine patients (111 stents), with over 6 months of continuous follow-up (mean 22{+-}12 months, range 6-60 months), were selected and classified according to the presence (group A, 30 patients, 32 lesions) or absence (group B, 69 patients, 79 lesions) of significant in-stent restenosis. A statistical analysis was performed to identify possible preprocedural and procedural predictors of restenosis considering the following data: sex, age, smoking habit, diabetes mellitus, hypertension, serum creatinine, cholesterol and triglyceride levels, renal artery stenosis grade, and stent type, length and diameter. Results. Comparing group A and B patients ({chi}{sup 2} test), a statistically significant relation was demonstrated between stent diameter and length and restenosis: the risk of in-stent restenosis decreased when the stent was {>=}6 mm in diameter and between 15 and 20 mm in length. This finding was confirmed by multiple logistic regression analysis. Stent diameter and length were proved to be significantly related to in-stent restenosis also when evaluating only patients treated by Palmaz stent (71 stents). Conclusion. Although it is based on a retrospective analysis, the present study confirms the importance of correct stent selection in increasing long-term patency, using stents of at least 6 mm in diameter and with a length of approximately 15-20 mm.

  4. Neointimal Hyperplasia in Low-Profile Nitinol Stents, Palmaz Stents, and Wallstents: A Comparative Experimental Study

    SciTech Connect

    Schuermann, Karl; Vorwerk, Dierk; Kulisch, Arthur; Stroehmer-Kulisch, Eva; Biesterfeld, Stefan; Stopinski, Tadeusz; Guenther, Rolf W.

    1996-04-15

    Purpose: To compare neointima formation following insertion of low-profile Nitinol stents, Palmaz stents, and Wallstents. Methods: Nitinol stents, Palmaz stents, and Wallstents similar in size were transfemorally inserted into the iliac arteries of 12 sheep. Four stents per sheep were deployed; the position of the stents was varied so that each type of stent was placed in each position (right or left, proximal or distal) with equal frequency. Stent patency was followed by angiography. Six sheep were euthanized after 1 month, and the remaining six after 6 months. Iliac arteries were removed en bloc and prepared for histological examination. Neointimal and medial thickness were measured by light microscopy, and measurements were analyzed statistically. Results: Mean neointimal thickness both over (NO) and between (NB) the stent struts was greater in Wallstents (NO = 0.341 mm, NB = 0.368 mm) than in the Nitinol (NO = 0.260 mm, NB = 0.220 mm) and Palmaz stents (NO = 0.199 mm, NB = 0.204 mm), but differences were not significant (p> 0.05). Medial atrophy in the area between the stent struts was greater in Wallstents compared with Nitinol and Palmaz stents (p < 0.007 and p < 0.02, respectively); in the area under the stent struts there was a significant difference only between Palmaz stents and Wallstents (p < 0.02). Conclusion: Under defined experimental conditions, none of the three types of stent appears to be preferable to the others regarding neointima formation in the short- to mid-term follow-up period.

  5. Unsuccessful treatment of a collapsed thoracic stent graft by Palmaz stent.

    PubMed

    Pirotte, Manuel; Lacroix, Valerie; Astarci, Parla; Nardella, Jane; Funken, Jean-Christophe; El Khoury, Gebrine; Noirhomme, Philippe; Verhelst, Robert

    2010-11-01

    A Gore TAG Excluder stent graft was deployed in a 35-year-old woman for an isthmic saccular aneurysm. At 12-hour follow-up, we diagnosed a proximal collapse. A Palmaz stent was used to reopen the proximal segment. Two months later, she presented with a transient ischemic attack (embolic process) related to a suboptimal apposition of the Palmaz stent in the distal aortic arch. This led to open surgical replacement of the ascending aorta and aortic arch with reimplantation of the supraaortic branches. Reopening of a stent graft collapse with a Palmaz stent might be a short-term solution; however, its presence can lead to embolic complications. PMID:21035713

  6. Dual stent migration to the heart and pulmonary artery.

    PubMed

    Balasubramaniyam, Nivas; Garg, Jalaj; Rawat, Naveen; Chugh, Savneek; Mittal, Varun; Baby, Banessaa; Aronow, Wilbert S; Lehrman, Stuart G

    2014-01-01

    The practice of intravascular stenting largely grew out of the concept of stenting the coronaries in acute myocardial infarction. According to the recent United States Renal Data System data registry, there has been a significant increase in endovascular intervention (1.8-fold increase-from 52,380 to 98,148) with a 2.2-fold increase in stent deployment in hemodialysis access (3792-8514). With the increasing use of endovascular stents in the management of dialysis access stenosis, the incidence of stent-related complications has increased significantly. Stent-related complications include stent restenosis, thrombosis (narrowing of the vessel lumen and being a nidus for thombus formation), stent shortening, stent fracture, stent infection, and stent migration. Physiologic variation in the diameter of veins due to respiration, which along with the geometry of the stent, can lead to a shortening lengthening of the stent-resulting in poor wall contact or high-speed impact of shock; in the case of trauma, mechanical bucking can result in tortuous blood vessels thereby resulting in stent migration (however proving this association was not the aim of this article). We report a case of a 44-year-old female with end-stage renal disease on hemodialysis, with stent placement to treat a compromised arteriovenous graft. There have been many cases of stent migration in the past; however, this is the first case of dual stent migration to the heart and pulmonary artery from an unusual (lower extremity) arteriovenous graft location. PMID:23567791

  7. Evaluation of the compressive mechanical properties of endoluminal metal stents.

    PubMed

    Schrader, S C; Beyar, R

    1998-06-01

    The mechanical properties of metal stents are important parameters in the consideration of stent design, matched to resist arterial recoil and vascular spasm. The purpose of this study was to develop a system for a standardized quantitative evaluation of the mechanical characteristics of various coronary stents. Several types of stents were compressed by external hydrostatic pressure. The stent diameter was assessed by placing a pair of small ultrasonic sono-crystals on the stent. From pressure-strain diagrams the ultimate strength and radial stiffness for each stent were determined. For all stents, except the MICRO-II and the Wiktor stent, the diameter decreased homogeneously until an ultimate compressive strength was exceeded, causing an abrupt collapse. Expanded to 3 mm, the mechanical behavior of the beStent, the Crown and the Palmaz-Schatz stent (PS153-series) were comparable. The spiral articulated Palmaz-Schatz stent showed twice the strength (1.26 atm) of the PS-153 (0.65 atm). The NIR stent yielded a maximum strength of 1.05 atm. The MICRO-II and the Wiktor stent did not collapse abruptly but rather showed a continuous decline of diameter with increasing external pressure. The Cardiocoil stent behaved in a fully elastic manner and showed the largest radial stiffness. Difference in mechanical properties between stents were documented using a new device specifically developed for that purpose. These mechanical stent parameters may have important clinical implications. PMID:9637441

  8. A prospective, multicenter, post marketing surveillance study to evaluate the safety and effectiveness of the Superia-Sirolimus Eluting Coronary Stent System (SSECSS) implanted during routine clinical practice in India

    PubMed Central

    Chandra, Praveen; Kumar, Tarun

    2014-01-01

    Aim A prospective, multicenter, post marketing surveillance study to evaluate the safety and effectiveness of the Superia-Sirolimus Eluting Coronary Stent System (SSECSS) implanted during routine clinical practice in India. Objectives Primary objective: 1. To study the MACE and in stent and In-segment Loss at Six Months (in a pre selected group of 50 patients). Secondary objective: 1. Clinical and procedural success. Materials and methods This is a prospective, open label, single-arm, multicenter (16 sites), post marketing observational study enrolling patients implanted with Superia-Sirolimus Eluting Coronary Stent (SSECS) in routine clinical practice in India. A total of 200 Patients of coronary Artery Disease (CAD) implanted with Superia-Sirolimus Eluting Coronary Stent (SSECS) were enrolled. Clinical assessments were done at 30 days, 180 days and at 1, 2 years either telephonically or office visit. A cohort of 50 pre-selected patients were followed up for angiographic evaluation at 180 days. Results MACE at 12 month of follow up was 1.71%.Late lumen loss, in segment was 0.14 and in stent was 0.10 mm at 6 month of follow-up. TLR was required only in 2 patients. Conclusion Superia stent is as safe as other biodegradable polymer stent in the market and time has come for biodegradable polymer stent with thin struts. PMID:25634405

  9. Electrochemical etching of micro-pores in medical grade cobalt-chromium alloy as reservoirs for drug eluting stents.

    PubMed

    Fuchsberger, Kai; Binder, Karoline; Burkhardt, Claus; Freudigmann, Christian; Herrmann, Markus; Stelzle, Martin

    2016-03-01

    Drug eluting stents (DES) have shown efficacy in reducing restenosis after angioplasty followed by application of a coronary stent. However, polymer matrices typically used for immobilizing drugs on the stent surface may cause irritation and have limited drug loading capacity. In contrast, drug loading into micro- or nanopores created within the stent material could avoid these problems. We present a technology based on electrochemically induced pitting corrosion to form pores in medical grade steel, followed by loading with rapamycin. This process is applied to pore formation and drug loading in coronary stents consisting of L605 medical steel. Sustained release of the drug over 28 days at rates comparable to established DES was demonstrated. This technology is capable of creating pores with well-defined pore size and filling of these pores by a drug employing a crystallization process thus completely avoiding polymer matrices to immobilize drugs. Electrochemically induced pitting corrosion provides a generic means to introduce micro-pores suitable as drug reservoirs into medical grade steel without the need for any further matrix material. Further research will expand these findings to other materials and types of implants that could benefit from the additional function of drug release and/or improved implant/tissue integration. PMID:26758894

  10. Carotid artery stenting: current and emerging options

    PubMed Central

    Morr, Simon; Lin, Ning; Siddiqui, Adnan H

    2014-01-01

    Carotid artery stenting technologies are rapidly evolving. Options for endovascular surgeons and interventionists who treat occlusive carotid disease continue to expand. We here present an update and overview of carotid stenting devices. Evidence supporting carotid stenting includes randomized controlled trials that compare endovascular stenting to open surgical endarterectomy. Carotid technologies addressed include the carotid stents themselves as well as adjunct neuroprotective devices. Aspects of stent technology include bare-metal versus covered stents, stent tapering, and free-cell area. Drug-eluting and cutting balloon indications are described. Embolization protection options and new direct carotid access strategies are reviewed. Adjunct technologies, such as intravascular ultrasound imaging and risk stratification algorithms, are discussed. Bare-metal and covered stents provide unique advantages and disadvantages. Stent tapering may allow for a more fitted contour to the caliber decrement between the common carotid and internal carotid arteries but also introduces new technical challenges. Studies regarding free-cell area are conflicting with respect to benefits and associated risk; clinical relevance of associated adverse effects associated with either type is unclear. Embolization protection strategies include distal filter protection and flow reversal. Though flow reversal was initially met with some skepticism, it has gained wider acceptance and may provide the advantage of not crossing the carotid lesion before protection is established. New direct carotid access techniques address difficult anatomy and incorporate sophisticated flow-reversal embolization protection techniques. Carotid stenting is a new and exciting field with rapidly advancing technologies. Embolization protection, low-risk deployment, and lesion assessment and stratification are active areas of research. Ample room remains for further innovations and developments. PMID:25349483

  11. Iliocaval Confluence Stenting for Chronic Venous Obstructions

    SciTech Connect

    Graaf, Rick de; Wolf, Mark de; Sailer, Anna M.; Laanen, Jorinde van Wittens, Cees; Jalaie, Houman

    2015-10-15

    PurposeDifferent techniques have been described for stenting of venous obstructions. We report our experience with two different confluence stenting techniques to treat chronic bi-iliocaval obstructions.Materials and MethodsBetween 11/2009 and 08/2014 we treated 40 patients for chronic total bi-iliocaval obstructions. Pre-operative magnetic resonance venography showed bilateral extensive post-thrombotic scarring in common and external iliac veins as well as obstruction of the inferior vena cava (IVC). Stenting of the IVC was performed with large self-expandable stents down to the level of the iliocaval confluence. To bridge the confluence, either self-expandable stents were placed inside the IVC stent (24 patients, SECS group) or high radial force balloon-expandable stents were placed at the same level (16 patients, BECS group). In both cases, bilateral iliac extensions were performed using nitinol stents.ResultsRecanalization was achieved for all patients. In 15 (38 %) patients, a hybrid procedure with endophlebectomy and arteriovenous fistula creation needed to be performed because of significant involvement of inflow vessels below the inguinal ligament. Mean follow-up was 443 ± 438 days (range 7–1683 days). For all patients, primary, assisted-primary, and secondary patency rate at 36 months were 70, 73, and 78 %, respectively. Twelve-month patency rates in the SECS group were 85, 85, and 95 % for primary, assisted-primary, and secondary patency. In the BECS group, primary patency was 100 % during a mean follow-up period of 134 ± 118 (range 29–337) days.ConclusionStenting of chronic bi-iliocaval obstruction shows relatively high patency rates at medium follow-up. Short-term patency seems to favor confluence stenting with balloon-expandable stents.

  12. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer.

    PubMed

    Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil

    2015-10-27

    Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%. PMID:26370537

  13. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Adamo, Richard F.; Chorny, Michael; Levy, Robert J.; Alferiev, Ivan S.

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  14. Initial Experience with the Resonance Metallic Stent for Antegrade Ureteric Stenting

    SciTech Connect

    Wah, Tze M. Irving, Henry C.; Cartledge, Jon

    2007-07-15

    Background and purpose. We describe our initial experience with a new metallic ureteric stent which has been designed to provide long-term urinary drainage in patients with malignant ureteric strictures. The aim is to achieve longer primary patency rates than conventional polyurethane ureteric stents, where encrustation and compression by malignant masses limit primary patency. The Resonance metallic double-pigtail ureteric stent (Cook, Ireland) is constructed from coiled wire spirals of a corrosion-resistant alloy designed to minimize tissue in-growth and resist encrustation, and the manufacturer recommends interval stent change at 12 months. Methods. Seventeen Resonance stents were inserted via an antegrade approach into 15 patients between December 2004 and March 2006. The causes of ureteric obstruction were malignancies of the bladder (n = 4), colon (n = 3), gynecologic (n = 5), and others (n = 3). Results. One patient had the stent changed after 12 months, and 3 patients had their stents changed at 6 months. These stents were draining adequately with minimal encrustation. Four patients are still alive with functioning stents in situ for 2-10 months. Seven patients died with functioning stents in place (follow-up periods of 1 week to 8 months). Three stents failed from the outset due to bulky pelvic malignancy resulting in high intravesical pressure, as occurs with conventional plastic stents. Conclusion. Our initial experience with the Resonance metallic ureteric stent indicates that it may provide adequate long-term urinary drainage (up to 12 months) in patients with malignant ureteric obstruction but without significantly bulky pelvic disease. This obviates the need for regular stent changes and would offer significant benefit for these patients with limited life expectancy.

  15. Rescue coronary stenting in acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrico; Meneghetti, Paolo; Molinari, Gionata; Zardini, Piero

    1996-01-01

    Failed rescue coronary angioplasty is a high risk situation because of high mortality. Coronary stent has given us the chance of improving and maintaining the patency of the artery. We report our preliminary experience of rescue stenting after unsuccessful coronary angioplasty.

  16. Primary Stenting of Intracranial Atherosclerotic Stenoses

    SciTech Connect

    Straube, T. Stingele, Robert; Jansen, Olav

    2005-04-15

    Purpose: To determine the feasibility and safety of stenting intracranial atherosclerotic stenoses.Methods: In 12 patients the results of primary intracranial stenting were evaluated retrospectively. Patient ages ranged from 49 to 79 years (mean 64 years). Six patients presented with stenoses in the anterior circulation, and six had stenosis in the posterior circulation. One patient presented with extra- and intracranial tandem stenosis of the left internal carotid artery. Three patients presented with acute basilar thrombosis, caused by high-grade basilar stenoses.Results: Intracranial stenoses were successfully stented in 11 of 12 patients. In one patient the stent could not be advanced over the carotid siphon to reach the stenosis of the ophthalmic internal carotid artery. Follow-up digital subtraction angiographic studies were obtained in two patients who had presented with new neurologic signs or symptoms. In both cases the angiogram did not show any relevant stenotic endothelial hyperplasia. In one patient, after local thrombolysis the stenosis turned out to be so narrow that balloon angioplasty had to be performed before stent deployment. All three patients treated for stenosis-related basilar thrombosis died due to brainstem infarction that had ensued before the intervention.Conclusions: Prophylactic primary stenting of intracranial stenoses of the anterior or posterior cerebral circulation can be performed with a low complication rate; technical problems such as stent flexibility must still be solved. Local thrombolysis followed by stenting in stenosis-related thrombotic occlusion is technically possible.

  17. Microfabrication and Nanotechnology in Stent Design

    PubMed Central

    Martinez, Adam W.; Chaikof, Elliot L.

    2012-01-01

    Intravascular stents were first introduced in the 1980s as an adjunct to primary angioplasty for management of early complications, including arterial dissection, or treatment of an inadequate technical outcome due to early elastic recoil of the atherosclerotic lesion. Despite the beneficial effects of stenting, persistent high rates of restenosis motivated the design of drug eluting stents for delivery of agents to limit the proliferative and other inflammatory responses within the vascular wall that contribute to the development of a restenotic lesion. These strategies have yielded a significant reduction in the incidence of restenosis, but challenges remain, including incomplete repair of the endothelium at the site of vascular wall injury that may be associated with a late risk of thrombosis. A failure of vessel wall healing has been attributed to primarily to the use of polymeric stent coatings, but the effects of the eluted drug and other material properties or design features of the stent cannot be excluded. Improvements in stent microfabrication, as well as the introduction of alternative materials may help to address those limitations that inhibit stent performance. This review describes the application of novel microfabrication processes and the evolution of new nanotechnologies that hold significant promise in eliminating existing shortcomings of current stent platforms. PMID:21462356

  18. Popliteal pseudoaneurysm caused by stent fracture.

    PubMed

    Tsuji, Yoshihiko; Kitano, Ikuro; Iida, Osamu; Kajita, Satoru; Sawada, Katsuhiro; Nanto, Shinsuke

    2011-08-01

    Stent fracture with pseudoaneurysm formation in the femoropopliteal artery has uncommonly been reported. We present the case of a 72-year-old man with a fracture of self-expanding nitinol stent and a pseudoaneurysm formation in the suprageniculate popliteal artery. The popliteal artery was successfully reconstructed with a small saphenous vein graft interposition. PMID:21620667

  19. Improved image guidance of coronary stent deployment

    NASA Astrophysics Data System (ADS)

    Close, Robert A.; Abbey, Craig K.; Whiting, James S.

    2000-04-01

    Accurate placement and expansion of coronary stents is hindered by the fact that most stents are only slightly radiopaque, and hence difficult to see in a typical coronary x-rays. We propose a new technique for improved image guidance of multiple coronary stents deployment using layer decomposition of cine x-ray images of stented coronary arteries. Layer decomposition models the cone-beam x-ray projections through the chest as a set of superposed layers moving with translation, rotation, and scaling. Radiopaque markers affixed to the guidewire or delivery balloon provide a trackable feature so that the correct vessel motion can be measured for layer decomposition. In addition to the time- averaged layer image, we also derive a background-subtracted image sequence which removes moving background structures. Layer decomposition of contrast-free vessels can be used to guide placement of multiple stents and to assess uniformity of stent expansion. Layer decomposition of contrast-filled vessels can be used to measure residual stenosis to determine the adequacy of stent expansion. We demonstrate that layer decomposition of a clinical cine x-ray image sequence greatly improves the visibility of a previously deployed stent. We show that layer decomposition of contrast-filled vessels removes background structures and reduces noise.

  20. "Skirt" technique for coronary artery bifurcation stenting.

    PubMed

    Alberti, A; Missiroli, B; Nannini, C

    2000-12-01

    Stent implantation in the treatment of coronary artery bifurcation lesions frequently impairs blood flow and gives the coronary tree a new, metallic configuration. The new technique we describe uses a single short stent in a "skirt" shape which produces no "jailing" effects and can be used in the treatment of true coronary Y-shaped bifurcation lesions. PMID:11103033

  1. 21 CFR 876.4620 - Ureteral stent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ureteral stent. 876.4620 Section 876.4620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4620 Ureteral stent. (a) Identification. A ureteral...

  2. 21 CFR 876.4620 - Ureteral stent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ureteral stent. 876.4620 Section 876.4620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4620 Ureteral stent. (a) Identification. A ureteral...

  3. 21 CFR 876.4620 - Ureteral stent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ureteral stent. 876.4620 Section 876.4620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4620 Ureteral stent. (a) Identification. A ureteral...

  4. 21 CFR 876.4620 - Ureteral stent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ureteral stent. 876.4620 Section 876.4620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4620 Ureteral stent. (a) Identification. A ureteral...

  5. 21 CFR 876.4620 - Ureteral stent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ureteral stent. 876.4620 Section 876.4620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4620 Ureteral stent. (a) Identification. A ureteral...

  6. Sealing of tracheoesophageal fistula using a Y stent through fiberoptic bronchoscope during general anesthesia under laryngeal mask airway

    PubMed Central

    Ye, Ling; Yang, Pingliang; Zuo, Yunxia

    2014-01-01

    A 64-yr-old man was admitted because of repeated pneumonia. Both fiberoptic bronchoscopy and esophagoscopy revealed a large tracheoesophageal fistula (15 mm) in the right posterior trachea 1 cm beyond the carina. Coated nickel-titanium shape memory alloy Y shaped stent was planned to seal this fistula under general anesthesia. We took advantage of laryngeal mask airway to insert the fiberoptic bronchoscope to guide the stent placement. Our method of sealing a large tracheoesophageal fistula with LMA under total intravenous anesthesia was successful. PMID:25664132

  7. Basic Knowledge about Metal Stent Development

    PubMed Central

    Jeong, Seok

    2016-01-01

    Biliary self-expandable metal stents (SEMS), a group of non-vascular stents, have been used in the palliative management of biliary obstruction around the world. However, there are still unmet needs in the clinical application of biliary SEMS. Comprehensive understanding of the SEMS is required to resolve the drawbacks and difficulties of metal stent development. The basic structure of SEMS, including the materials and knitting methods of metal wires, covering materials, and radiopaque markers, are discussed in this review. What we know about the physical and mechanical properties of the SEMS is very important. With an understanding of the basic knowledge of metal stents, hurdles such as stent occlusion, migration, and kinking can be overcome to develop more ideal SEMS. PMID:27000423

  8. Basic Knowledge about Metal Stent Development.

    PubMed

    Jeong, Seok

    2016-03-01

    Biliary self-expandable metal stents (SEMS), a group of non-vascular stents, have been used in the palliative management of biliary obstruction around the world. However, there are still unmet needs in the clinical application of biliary SEMS. Comprehensive understanding of the SEMS is required to resolve the drawbacks and difficulties of metal stent development. The basic structure of SEMS, including the materials and knitting methods of metal wires, covering materials, and radiopaque markers, are discussed in this review. What we know about the physical and mechanical properties of the SEMS is very important. With an understanding of the basic knowledge of metal stents, hurdles such as stent occlusion, migration, and kinking can be overcome to develop more ideal SEMS. PMID:27000423

  9. Call for standards in technical documentation of intracoronary stents.

    PubMed

    Lanzer, Peter; Gijsen, Frank J H; Topoleski, L D Timmie; Holzapfel, Gerhard A

    2010-01-01

    At present, the product information of intracoronary stents provided by the industry contains only limited technical data restricting judgments on the in vivo performance of individual products. Available experimental and clinical evidence suggests that interventional target sites display highly heterogeneous biomechanical behavior needed to be matched by specific stent and stent delivery system characteristics. To allow individualized stent-lesion matching, both, understanding of biomechanical properties of the atherosclerotic coronary artery lesions and expert knowledge of the intracoronary stent systems, are required. Here, the authors review some of the initial data on mechanical properties of coronary artery lesions potentially relevant to stenting and suggest standards for technical documentation of intracoronary stents. PMID:20140786

  10. Longitudinal plaque redistribution during stent expansion.

    PubMed

    Maehara, A; Takagi, A; Okura, H; Hassan, A H; Bonneau, H N; Honda, Y; Yock, P G; Fitzgerald, P J

    2000-11-15

    The purpose of this study was to clarify the 3-dimensional behavior of plaque during coronary stent expansion. Serial intravascular ultrasound (IVUS) studies, preintervention, and poststenting were evaluated in 32 patients treated with a single-balloon expandable tubular stent. External elastic membrane (EEM), lumen, stent, and plaque + media cross-sectional area were measured at 1-mm intervals through the entire stent as well as proximal and distal reference segments 5 mm from the stent edge. Volumetric calculations were based on Simpson's rule. Overall, the plaque + media volume through the entire lesion did not change during stent expansion (218 +/- 51 vs 217 +/- 47 mm3, p = 0.69). However, EEM and lumen volume increased significantly (EEM volume, 391 +/- 84 vs 448 +/- 87 mm3 [p < 0.0001]; lumen volume, 173 +/- 52 vs 231 +/- 54 mm3 [p < 0.0001]). The change in lumen volume correlated strongly with the change in EEM volume (r = 0.85, p < 0.0001), but poorly with the change in plaque + media volume (r = 0.37, p = 0.03). Plaque + media volume decreased in the midstent zone (59 +/- 14 vs 53 +/- 11 mm3, p = 0.0005), and increased in the distal stent zone (40 +/- 11 vs 44 +/- 9 mm3, p = 0.003), but did not change in either the proximal stent zone or reference segments. The mechanism of stent expansion is a combination of vessel stretch and plaque redistribution, translating disease accumulation from the midstent zone to the distal stent zone. PMID:11074201

  11. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    PubMed

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization. PMID:26438390

  12. Late Stent Expansion and Neointimal Proliferation of Oversized Nitinol Stents in Peripheral Arteries

    SciTech Connect

    Zhao, Hugh Q. Nikanorov, Alexander; Virmani, Renu; Jones, Russell; Pacheco, Erica; Schwartz, Lewis B.

    2009-07-15

    For peripheral endovascular intervention, self-expanding (SE) stents are commonly oversized in relation to target arteries to assure optimal wall apposition and prevent migration. However, the consequences of oversizing have not been well studied. The purpose of this study was to examine the effects of SE stent oversizing (OS) with respect to the kinetics of late stent expansion and the long-term histological effects of OS. Pairs of overlapped 8 x 28-mm Nitinol SE stents were implanted into the iliofemoral arteries of 14 Yucatan swine. Due to variations in target artery size, the stent-to-artery ratio ranged from 1.2:1 to 1.9:1. Lumen and stent diameters were assessed by quantitative angiography at the time of implantation. Following angiographic assessment at 6 months, stented arteries were perfusion-fixed, sectioned, and stained for histological analysis. Immediately following implantation, the stents were found to be expanded to a range of 4.7-7.1 mm, largely conforming to the diameter of the recipient target artery. The stents continued to expand over time, however, and all stents had enlarged to nearly their 8-mm nominal diameter by 6 months. The histological effects of OS were profound, with marked increases in injury and luminal area stenosis, including a statistically significant linear correlation between stent-to-artery ratio and area stenosis. In this experimental model of peripheral endovascular intervention, oversized Nitinol SE stents are constrained by their target artery diameter upon implantation but expand to their nominal diameter within 6 months. Severe OS (stent-to-artery ratio >1.4:1) results in a profound long-term histological response including exuberant neointimal proliferation and luminal stenosis.

  13. Stents for colorectal obstruction: Past, present, and future

    PubMed Central

    Kim, Eui Joo; Kim, Yoon Jae

    2016-01-01

    Since the development of uncovered self-expanding metal stents (SEMS) in the 1990s, endoscopic stents have evolved dramatically. Application of new materials and new designs has expanded the indications for enteral SEMS. At present, enteral stents are considered the first-line modality for palliative care, and numerous types of enteral stents are under development for extended clinical usage, beyond a merely palliative purpose. Herein, we will discuss the current status and the future development of lower enteral stents. PMID:26811630

  14. Longitudinal stent fracture and migration of a stent fragment complicating treatment of hepatic vein stenosis after orthotopic liver transplantation.

    PubMed

    Goelitz, Brian W; Darcy, Michael

    2007-09-01

    We report a case of inferior vena cava (IVC) stent placement complicated by longitudinal stent fracture and migration of a stent fragment to the right pulmonary artery 2 years after initial placement. During attempted stenting of a hepatic venous anastomotic stenosis following orthotopic liver transplantation, a Palmaz P308 stent (Cordis International, Miami, FL) migrated and was redeployed into the IVC. Two years later, the patient had recurrent ascites and liver failure. Chest radiograph showed the Palmaz P308 stent had fractured longitudinally with a fragment in the right interlobular pulmonary artery. Half of the stent remained in the IVC. Mild stenosis was noted in the IVC where the stent was deployed. Overdilation of stents may be associated with stent fracture and should be performed with caution. PMID:21326480

  15. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  16. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  17. Feasibility study for the investigation of Nitinol self-expanding stents by neutron techniques

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Pasquini, U.; Rosta, L.; Lebedev, V.

    2011-02-01

    In this paper, neutron techniques - in particular, small angle neutron scattering (SANS) and neutron diffraction (ND) - are considered for the non-destructive characterization of Nitinol artery stents. This roughly equiatomic (50Ni-50Ti at%) shape memory alloy (SMA) exhibits significant properties of superelasticity and biocompatibility that make it suitable to be typically used as smart material for medical implants and devices. Nitinol self-expanding artery stents, as permanent vascular support structures, supply an ideal option to bypass surgery, but they are submitted for the whole of patient's life to the dynamical stress of the artery pulsation and the aggression from the biological environment. These stents, consequently, can suffer from wear and fracture occurrence likely due to a variety of cyclic fatigue, overload conditions and residual stresses. Neutrons have recently become a progressively more important probe for various materials and components and they allow achieving information complementary to those obtained from the traditional microstructural analyses. The outputs from the preliminary works already carried out in this field consent to consider neutron techniques capable to contribute to the development of these crucial medical implants. The achievable results can yield trends adoptable in monitoring of the stent features.

  18. Stent Placement on Fresh Venous Thrombosis

    SciTech Connect

    Vorwerk, Dierk; Guenther, Rolf W.; Schuermann, Karl

    1997-09-15

    Purpose: To report on the efficacy of fixing fresh venous thrombus to the venous wall by stent placement. Methods: Seven patients underwent stenting to treat acute venous thrombosis. In two patients, the hemodialysis fistula was thrombosed with the thrombus extending into the brachial veins. In three patients, the hemodialysis fistula was patent but massive swelling of the ipsilateral arm was caused by proximal venous thrombosis. Two patients presented with iliac venous thrombosis within stented pelvic veins. Stent placement was preceded by other mechanical thrombectomy methods in all cases. Results: Attachment of thrombus to the venous wall was successful in all cases treated. Acute rethrombosis did not occur. Follow-up patency in dialysis patients was 7.2 {+-} 2.1 months. One patient had rethrombosis of the dialysis graft 3 months after primary treatment. Three patients developed restenosis within a mean period of 7.7 months. One shunt remained patent for 10 months with no event of reobstruction during follow-up. In both patients with iliac stent placement, the vein remained patent over a follow-up period of 8 and 12 months respectively. Conclusion: Stenting fresh venous thrombus can achieve immediate venous patency. It may be used as an alternative approach when all other percutaneous methods fail. Frequent restenosis within stented veins limits its use to very selected cases.

  19. Degradation Model of Bioabsorbable Cardiovascular Stents

    PubMed Central

    Luo, Qiyi; Liu, Xiangkun; Li, Zhonghua; Huang, Chubo; Zhang, Wen; Meng, Juan; Chang, Zhaohua; Hua, Zezhao

    2014-01-01

    This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month's implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent. PMID:25365310

  20. A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents.

    PubMed

    Boland, Enda L; Shine, Rosa; Kelly, Nicola; Sweeney, Caoimhe A; McHugh, Peter E

    2016-02-01

    The field of percutaneous coronary intervention has witnessed many progressions over the last few decades, more recently with the advancement of fully degradable bioabsorbable stents. Bioabsorbable materials, such as metallic alloys and aliphatic polyesters, have the potential to yield stents which provide temporary support to the blood vessel and allow native healing of the tissue to occur. Many chemical and physical reactions are reported to play a part in the degradation of such bioabsorbable materials, including, but not limited to, corrosion mechanisms for metals and the hydrolysis and crystallization of the backbone chains in polymers. In the design and analysis of bioabsorbable stents it is important to consider the effect of each aspect of the degradation on the material's in vivo performance. The development of robust computational modelling techniques which fully capture the degradation behaviour of these bioabsorbable materials is a key factor in the design of bioabsorable stents. A critical review of the current computational modelling techniques used in the design and analysis of these next generation devices is presented here, with the main accomplishments and limitations of each technique highlighted. PMID:26271520