Sample records for memory polymer therapeutic

  1. Shape memory polymer therapeutic devices for stroke

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas S.; Small, Ward, IV; Benett, William J.; Bearinger, Jane P.; Maitland, Duncan J.

    2005-11-01

    Shape memory polymers (SMPs) are attracting a great deal of interest in the scientific community for their use in applications ranging from light weight structures in space to micro-actuators in MEMS devices. These relatively new materials can be formed into a primary shape, reformed into a stable secondary shape, and then controllably actuated to recover their primary shape. The first part of this presentation will be a brief review of the types of polymeric structures which give rise to shape memory behavior in the context of new shape memory polymers with highly regular network structures recently developed at LLNL for biomedical devices. These new urethane SMPs have improved optical and physical properties relative to commercial SMPs, including improved clarity, high actuation force, and sharper actuation transition. In the second part of the presentation we discuss the development of SMP based devices for mechanically removing neurovascular occlusions which result in ischemic stroke. These devices are delivered to the site of the occlusion in compressed form, are pushed through the occlusion, actuated (usually optically) to take on an expanded conformation, and then used to dislodge and grip the thrombus while it is withdrawn through the catheter.

  2. Shape Memory Polymer Therapeutic Devices for Stroke

    SciTech Connect

    Wilson, T S; Small IV, W; Benett, W J; Bearinger, J P; Maitland, D J

    2005-10-11

    Shape memory polymers (SMPs) are attracting a great deal of interest in the scientific community for their use in applications ranging from light weight structures in space to micro-actuators in MEMS devices. These relatively new materials can be formed into a primary shape, reformed into a stable secondary shape, and then controllably actuated to recover their primary shape. The first part of this presentation will be a brief review of the types of polymeric structures which give rise to shape memory behavior in the context of new shape memory polymers with highly regular network structures recently developed at LLNL for biomedical devices. These new urethane SMPs have improved optical and physical properties relative to commercial SMPs, including improved clarity, high actuation force, and sharper actuation transition. In the second part of the presentation we discuss the development of SMP based devices for mechanically removing neurovascular occlusions which result in ischemic stroke. These devices are delivered to the site of the occlusion in compressed form, are pushed through the occlusion, actuated (usually optically) to take on an expanded conformation, and then used to dislodge and grip the thrombus while it is withdrawn through the catheter.

  3. Polymer-Based Therapeutics

    PubMed Central

    Liu, Shuang; Maheshwari, Ronak; Kiick, Kristi L.

    2009-01-01

    Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer–drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for the targeted and controlled delivery of drugs, and polymeric sequestrants take advantage of their lack of solubility for the sequestration of target molecules in vivo. In more recent studies reviewed in greater detail here, the properties of polymers that distinguish them from small-molecule drugs, such as their high molecular weight and their ability to display multiple pendant moieties, have been specifically exploited for activating cellular targets or inhibiting the binding of pathogens. The elucidation of relevant structure–function relationships in investigations of this kind has relied on the combination of living polymerization methods with chemical conjugation methods, and protein engineering methods have shown increasing potential in the manipulation of architectural features of such polymer therapeutics. Garnering a detailed understanding of the various mechanisms by which multivalent polymers engage biological targets is certain to expand the role of polymers as therapeutics, by enabling highly specific activities of designed polymers in the biological environment. PMID:21494423

  4. Shape Memory Polymer Research

    Microsoft Academic Search

    Patrick T. Mather; Xiaofan Luo; Ingrid A. Rousseau

    2009-01-01

    The past several years have witnessed significant advances in the field of shape memory polymers (SMPs) with the elucidation of new compositions for property tuning, the discovery of new mechanisms for shape fixing and recovery, and the initiation of phenomenological modeling. We critically review research findings on new shape memory polymers along these lines, emphasizing exciting progress in the areas

  5. Shape memory polymer nanocomposites

    Microsoft Academic Search

    Ken Gall; Martin L. Dunn; Yiping Liu; Dudley Finch; Mark Lake; Naseem A. Munshi

    2002-01-01

    The paper describes the fabrication and characterization of composites with a shape memory polymer matrix and SiC nanoparticulate reinforcements. Composites based on a SMP matrix are active materials capable of recovering relatively large mechanical strains due to the application of heat. The composites were synthesized from a commercial shape memory polymer resin system and particulate SiC with an average diameter

  6. Shape-Memory Polymers

    Microsoft Academic Search

    Andreas Lendlein; Steffen Kelch

    2002-01-01

    Material scientists predict a prominent role in the future for self-repairing and intelligent materials. Throughout the last few years, this concept has found growing interest as a result of the rise of a new class of polymers. These so- called shape-memory polymers by far surpass well-known metallic shape- memory alloys in their shape-memory properties. As a consequence of the relatively

  7. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan (Pleasant Hill, CA); Benett, William J. (Livermore, CA); Bearinger, Jane P. (Livermore, CA); Wilson, Thomas S. (San Leandro, CA); Small, IV, Ward (Livermore, CA); Schumann, Daniel L. (Concord, CA); Jensen, Wayne A. (Livermore, CA); Ortega, Jason M. (Pacifica, CA); Marion, III, John E. (Livermore, CA); Loge, Jeffrey M. (Stockton, CA)

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  8. Shape-Memory Polymer Composites

    Microsoft Academic Search

    Samy A. Madbouly; Andreas Lendlein

    2010-01-01

    \\u000a The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions\\u000a such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical\\u000a properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily\\u000a for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting

  9. Shape-memory polymers for microelectromechanical systems

    Microsoft Academic Search

    Ken Gall; Paul Kreiner; David Turner; Michael Hulse

    2004-01-01

    This paper investigates the use of shape-memory polymer thin films in microelectromechanical systems (MEMS). shape-memory polymers possess the capacity to recover large-strain deformations by the application of heat and are candidates for small-scale transduction. The key advantages of shape-memory polymers are their low material\\/fabrication cost coupled with their simplicity of integration\\/operation. In the present study, shape-memory polymers are spin coated

  10. Memory as a new therapeutic target

    PubMed Central

    Nader, Karim; Hardt, Oliver; Lanius, Ruth

    2013-01-01

    This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented. PMID:24459414

  11. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  12. Shape-Memory Polymer Composites

    NASA Astrophysics Data System (ADS)

    Madbouly, Samy A.; Lendlein, Andreas

    The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting from adding functional fillers to SMP-matrices will be introduced and discussed: magnetic SMPCs with different types of magnetic nanoparticles, conductive SMPCs based on carbon nanotubes (CNTs), carbon black (CB), short carbon fiber (SCF), and biofunctional SMPCs containing hydroxyapatite (HA). Indirect induction of the shape-memory effect (SME) was realized for magnetic and conductive SMPCs either by exposure to an alternating magnetic field or by application of electrical current. Major challenges in design and fundamental understanding of polymer composites are the complexity of the composite structure, and the relationship between structural parameters and properties/functions, which is essential for tailoring SMPCs for specific applications. Therefore the novel functions and enhanced properties of SMPCs will be described considering the micro-/nanostructural parameters, such as dimension, shape, distribution, volume fraction, and alignment of fillers as well as interfacial interaction between the polymer matrix and dispersed fillers. Finally, an outlook is given describing the future challenges of this exciting research field as well as potential applications including automotive, aerospace, sensors, and biomedical applications.

  13. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers. PMID:20574951

  14. Investigation of Shape Memory Polymers and Their Hybrid Composites

    Microsoft Academic Search

    C. Liang; C. A. Rogers; E. Malafeew

    1997-01-01

    In this paper, a newly developed polymer, shape memory polyurethane (SMP), will be introduced. The shape memory polymer possesses the same basic shape memory effect and elasticity memory effect as shape memory alloys. Shape memory polymers can change their elastic modulus up to 500 times around their glass transition temperatures. Both the shape memory effect and the elasticity memory effect

  15. Temperature-memory polymer actuators

    PubMed Central

    Behl, Marc; Kratz, Karl; Noechel, Ulrich; Sauter, Tilman; Lendlein, Andreas

    2013-01-01

    Reading out the temperature-memory of polymers, which is their ability to remember the temperature where they were deformed recently, is thus far unavoidably linked to erasing this memory effect. Here temperature-memory polymer actuators (TMPAs) based on cross-linked copolymer networks exhibiting a broad melting temperature range (?Tm) are presented, which are capable of a long-term temperature-memory enabling more than 250 cyclic thermally controlled actuations with almost constant performance. The characteristic actuation temperatures Tacts of TMPAs can be adjusted by a purely physical process, guiding a directed crystallization in a temperature range of up to 40 °C by variation of the parameter Tsep in a nearly linear correlation. The temperature Tsep divides ?Tm into an upper Tm range (T > Tsep) forming a reshapeable actuation geometry that determines the skeleton and a lower Tm range (T < Tsep) that enables the temperature-controlled bidirectional actuation by crystallization-induced elongation and melting-induced contraction. The macroscopic bidirectional shape changes in TMPAs could be correlated with changes in the nanostructure of the crystallizable domains as a result of in situ X-ray investigations. Potential applications of TMPAs include heat engines with adjustable rotation rate and active building facades with self-regulating sun protectors. PMID:23836673

  16. Thermomechanics of shape memory polymer nanocomposites

    Microsoft Academic Search

    Yiping Liu; Ken Gall; Martin L Dunn; Patrick McCluskey

    2004-01-01

    Shape memory polymers (SMPs) have the capacity to recover large strains when pre-deformed at an elevated temperature, cooled to a lower temperature, and reheated. The thermomechanical behavior of SMPs can be tailored by modifying the molecular structure of the polymer, or by using the polymer as a matrix for multiphase composites. Here we study the thermomechanics of a SMP polymer

  17. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  18. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release

    Microsoft Academic Search

    Christian Wischke; Axel T. Neffe; Susi Steuer; Andreas Lendlein

    2009-01-01

    Degradable shape-memory polymers are multifunctional materials with broad applicability for medical devices. They are designed to acquire their therapeutically relevant shape and mechanical properties after implantation. In this study, the potential of a completely amorphous shape-memory polymer matrix for controlled drug release was comprehensively characterized according to a four step general strategy which provides concepts for validating multifunctional materials for

  19. Tunable polymer multi-shape memory effect

    Microsoft Academic Search

    Tao Xie

    2010-01-01

    Shape memory polymers are materials that can memorize temporary shapes and revert to their permanent shape upon exposure to an external stimulus such as heat, light, moisture or magnetic field. Such properties have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. The ultimate potential for a shape memory polymer,

  20. Thermomechanical constitutive model of shape memory polymer

    Microsoft Academic Search

    Hisaaki Tobushi; Kayo Okumura; Shunichi Hayashi; Norimitsu Ito

    2001-01-01

    A nonlinear thermomechanical constitutive model of shape memory polymer (SMP) is developed by modifying a linear model. The coefficients in the model are expressed by the single exponential functions of temperature in order to describe the variation in mechanical properties of the material due to the glass transition. The proposed theory expresses well the thermomechanical properties of polyurethane-shape memory polymer,

  1. Characterization Methods for Shape-Memory Polymers

    Microsoft Academic Search

    Wolfgang Wagermaier; Karl Kratz; Matthias Heuchel; Andreas Lendlein

    2010-01-01

    \\u000a Shape-memory polymers (SMPs) are able to fix a temporary deformed shape and recover their original permanent shape upon application\\u000a of an external stimulus such as heat or light. A shape-memory functionalization can be realized for polymer based materials\\u000a with an appropriate morphology by application of a specific shape-memory creation procedure (SMCP). Specific characterization\\u000a methods have been tailored to explore the

  2. Advances in shape memory polymer actuation

    Microsoft Academic Search

    G. J Monkman

    2000-01-01

    Shape memory materials fulfill an important role in both actuation and mechanical coupling between actuators and associated dynamic systems. The simplest techniques are thermally based and in addition to the more common shape memory alloys there are also shape memory polymers. These have similar characteristics to those of their metallic cousins, but there the relationship stops. The basic physical principles

  3. Smart polymer fibers with shape memory effect

    Microsoft Academic Search

    Feng Long Ji; Yong Zhu; Jin Lian Hu; Yan Liu; Lap-Yan Yeung; Guang Dou Ye

    2006-01-01

    In this study, a series of smart polymer fibers with a shape memory effect were developed. Firstly, a set of shape memory polyurethanes with varying hard-segment content were synthesized. Then, the solutions of the shape memory polyurethanes were spun into fibers through wet spinning. The thin films of the polyurethanes were considered to represent the nature of the polyurethanes. Differential

  4. Thermomechanical modeling of a shape memory polymer 

    E-print Network

    Ghosh, Pritha B.

    2009-05-15

    The aim of this work is to demonstrate a Helmholtz potential based approach for the development of the constitutive equations for a shape memory polymer undergoing a thermomechanical cycle. The approach is motivated by the use of a simple spring...

  5. Thermomechanical Characterization of Shape Memory Polymers

    Microsoft Academic Search

    Bilim Atli; Farhan Gandhi; Greg Karst

    2009-01-01

    Data from comprehensive thermomechanical tests of shape memory polymers are reported, with specimens tested up to 75% strain and between 30—120°C temperatures. The data is analyzed and key observations are drawn. The stress\\/strain behavior during loading at temperatures above glass transition for the Veriflex TM shape memory polymer tested was linear and did not show much variation with the actual

  6. Constitutive modeling of glassy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Khanolkar, Mahesh

    The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.

  7. Nanoindentation of shape memory polymer networks

    Microsoft Academic Search

    Edem Wornyo; Ken Gall; Fuzheng Yang; William King

    2007-01-01

    This work examines the small-scale deformation and thermally induced recovery behavior of shape memory polymer networks as a function of crosslinking structure. Copolymer shape memory materials based on diethylene glycol dimethacrylate and polyethylene glycol dimethacrylate with a molecular weight of 550 crosslinkers and a tert-butyl acrylate linear chain monomer were synthesized with varying weight percentages of crosslinker from 0 to

  8. Thermomechanical properties of polyurethane shape memory polymers

    Microsoft Academic Search

    Graziella Airoldi; Andrea Corsi

    1998-01-01

    Segmented polyurethanes containing soft segments with low molecular weight show shape-memorizing properties. In these materials the advantages of polyurethanes are combined with the features of smart material technology. Shape memory polymers can repeatedly transform their shape and hardness. The dependence of thermal and mechanical properties of shape memory polyurethanes on temperature were investigated experimentally by means of differential scanning calorimetry

  9. Light-induced shape-memory polymers

    Microsoft Academic Search

    Andreas Lendlein; Hongyan Jiang; Oliver Jünger; Robert Langer

    2005-01-01

    Materials are said to show a shape-memory effect if they can be deformed and fixed into a temporary shape, and recover their original, permanent shape only on exposure to an external stimulus. Shape-memory polymers have received increasing attention because of their scientific and technological significance. In principle, a thermally induced shape-memory effect can be activated by an increase in temperature

  10. Bending behavior of shape memory polymer based laminates

    Microsoft Academic Search

    Chun-Sheng Zhang; Qing-Qing Ni

    2007-01-01

    Shape memory polymers (SMP) are smart materials was characterized by the recoverability of shape memory effect, but its mechanical property such as the strength is low. In this study, for industrial applications, a carbon fiber fabric reinforced shape memory polymer was developed. Four kinds of specimens with different laminations of carbon fiber fabric and shape memory polymer sheet were prepared.

  11. Characterization Methods for Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Wagermaier, Wolfgang; Kratz, Karl; Heuchel, Matthias; Lendlein, Andreas

    Shape-memory polymers (SMPs) are able to fix a temporary deformed shape and recover their original permanent shape upon application of an external stimulus such as heat or light. A shape-memory functionalization can be realized for polymer based materials with an appropriate morphology by application of a specific shape-memory creation procedure (SMCP). Specific characterization methods have been tailored to explore the structure-function relations of SMPs in respective applications. This paper reviews characterization methods on different length scales from the molecular to the macroscopic level.

  12. Shape-Memory Polymers and Shape-Changing Polymers

    NASA Astrophysics Data System (ADS)

    Behl, Marc; Zotzmann, Jörg; Lendlein, Andreas

    The ability of polymers to respond to external stimuli is of high scientific and technological significance. In the last few years, research activities have been intensified substantially, exploring whether stimuli-sensitive polymers can be designed that move actively. In this review actively-moving materials were classified according to the underlying mechanisms enabling the shape changes: shape-memory polymers and shape-changing polymers/shape-changing gels were identified. The application spectra of these materials as well as the current developments were elucidated and general molecular design principles presented. When applicable, a further distinction according to the applied stimulus was made.

  13. Shape-Memory Polymers and Shape-Changing Polymers

    Microsoft Academic Search

    Marc Behl; Jörg Zotzmann; Andreas Lendlein

    2010-01-01

    \\u000a The ability of polymers to respond to external stimuli is of high scientific and technological significance. In the last few\\u000a years, research activities have been intensified substantially, exploring whether stimuli-sensitive polymers can be designed\\u000a that move actively. In this review actively-moving materials were classified according to the underlying mechanisms enabling\\u000a the shape changes: shape-memory polymers and shape-changing polymers\\/shape-changing gels were

  14. How polymers lose memory with age.

    PubMed

    Grillard, Fabienne; Zakri, Cécile; Gaillard, Patrice; Korzhenko, Alexander; Néri, Wilfrid; Poulin, Philippe

    2014-11-28

    Uniquely in the world of materials, polymers deformed at high temperature and subsequently quenched at low temperature, memorize the temperature at which they have been processed. Polymers can even memorize multiple temperatures. This temperature memory is reflected by a maximum of residual stress restored at the temperature of initial processing. It has been speculated that this capability could arise from the presence of dynamical heterogeneities in glassy domains of polymers. Processing the material at a given temperature would result in the selection of certain heterogeneities that participate in the storage of mechanical stress. Because dynamical heterogeneities are associated with particular relaxation times, the temperature memory of polymers should depend on the time, for example, the glass transition temperature depends on the frequency. The first experimental study of temporal effects on the temperature memory of polymers is presently reported. It is found that aging at high temperature shifts the maximum of residual stress towards greater temperatures. The corresponding loss of memory is explained by the relaxation of dynamical heterogeneities with short characteristic times. The present results clarify the origin of the temperature memory and provide insights into their efficient exploitation in applications. PMID:25294363

  15. Carbon Fiber Reinforced Shape Memory Polymer Composites

    Microsoft Academic Search

    Ken Gall; Martin Mikulas; Naseem A. Munshi; Fred Beavers; Michael Tupper

    2000-01-01

    In this paper we present results on the deformation of carbon fiber reinforced shape memory polymer matrix composites for deployable space structure applications. The composites were processed using resin transfer molding or a pre-impregnated (pre-preg) laminate press, with both satin and plain weave fiber architectures. The polymer matrix glass transition temperature, Tg, was approximately 95°C. Composite specimens were bent to

  16. Radiation crosslinked shape-memory polymers

    Microsoft Academic Search

    Walter Voit; Taylor Ware; Ken Gall

    2010-01-01

    Shape-memory polymers (SMPs) are active smart materials with tunable stiffness changes at specific, tailored temperatures. The use of thermoset SMPs has been limited in commodity applications because a variety of common low-cost plastics processing techniques are not possible with network polymers. In this study of thermoset SMPs, beyond adjusting the glass transition temperature (Tg) between 25 and 75 °C and tuning

  17. Review of progress in shape-memory polymers

    Microsoft Academic Search

    C. Liu; H. Qin; P. T. Mather

    2007-01-01

    Shape-memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers due to their useful and fascinating functionality. This review thoroughly examines progress in shape-memory polymers, including the very recent past, achieved by numerous groups around the world and our own research group. Considering all of the shape- memory polymers reviewed, we identify a classification scheme wherein nearly

  18. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  19. Laser-activated shape memory polymer intravascular thrombectomy device

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Wilson, Thomas S.; Benett, William J.; Loge, Jeffrey M.; Maitland, Duncan J.

    2005-10-01

    A blood clot (thrombus) that becomes lodged in the arterial network supplying the brain can cause an ischemic stroke, depriving the brain of oxygen and often resulting in permanent disability. As an alternative to conventional clot-dissolving drug treatment, we are developing an intravascular laser-activated therapeutic device using shape memory polymer (SMP) to mechanically retrieve the thrombus and restore blood flow to the brain. Thermal imaging and computer simulation were used to characterize the optical and photothermal behavior of the SMP microactuator. Deployment of the SMP device in an in vitro thrombotic vascular occlusion model demonstrated the clinical treatment concept.

  20. Two-way shape memory effect in polymer laminates

    Microsoft Academic Search

    Shaojun Chen; Jinlian Hu; Haitao Zhuo; Yong Zhu

    2008-01-01

    Novel polymer laminate exhibiting two-way shape memory effect has been prepared by layer technique with the shape memory polymer and elastic polymer. In this paper, we demonstrate the two-way shape memory behavior, i.e., bending on heating and reverse bending on cooling; describe the preparation procedure; and investigate its two-way shape memory mechanism. Finally, it suggests that the mechanism can be

  1. Development of multifunctional shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Naguib, Hani E.

    2015-05-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials which are able to respond to external stimulus such as temperature and deformation by changing their shape, and return to their original shape upon reversal or removal of the external stimulus. Although SMP materials have been studied extensively and have been used in a wide range of applications such as medicine, aerospace, and robotics, only few studies have looked at the potential of designing multifunctional SMP foams and blends. In this study, we investigate the feasibility of a design of SMP foam materials and blends. The actuator construct will contain a core SMP epoxy and blend of polylactic acid and polyurethane. The effects of the processing parameters of shape memory polymer (SMP) foams on the shape memory effect (SME) were investigated. The solid state foaming technique was employed to obtain the desired foamed cellular structure. One particular point of interest is to understand how the processing parameters affect the SMP and its glass transition temperature (Tg). By correctly tailoring these parameters it is possible to modify the SMP to have an improved shape memory effect SME.

  2. Thermomechanical Characterization and Modeling of Shape Memory Polymers 

    E-print Network

    Volk, Brent L.

    2010-01-16

    This work focuses on the thermomechanical characterization and constitutive model calibration of shape memory polymers (SMPs). These polymers have the ability to recover seemingly permanent large deformations under the ...

  3. Poly(2-oxazoline)s as Polymer Therapeutics

    PubMed Central

    Luxenhofer, Robert; Han, Yingchao; Schulz, Anita; Tong, Jing; He, Zhijian; Kabanov, Alexander V.; Jordan, Rainer

    2013-01-01

    Poly(2-oxazoline)s (POx) are currently discussed as an upcoming platform for biomaterials design and especially for polymer therapeutics. POx meets several requirements needed for the development of next-generation polymer therapeutics such as biocompatibility, high modulation of solubility, variation of size, architecture as well as chemical functionality. Although in the early 1990s first and promising POx-based systems were presented but the field lay dormant for almost two decades. Only very recently, POx based polymer therapeutics came back into the focus of very intensive research. In this review, we give an overview on the chemistry and physicochemical properties of POx and summarize the research of POx-protein conjugates, POx-drug conjugates, POx-based polyplexes and POx micelles for drug delivery. PMID:22865555

  4. Smart polymer fibers with shape memory effect

    NASA Astrophysics Data System (ADS)

    Ji, Feng Long; Zhu, Yong; Lian Hu, Jin; Liu, Yan; Yeung, Lap-Yan; Dou Ye, Guang

    2006-12-01

    In this study, a series of smart polymer fibers with a shape memory effect were developed. Firstly, a set of shape memory polyurethanes with varying hard-segment content were synthesized. Then, the solutions of the shape memory polyurethanes were spun into fibers through wet spinning. The thin films of the polyurethanes were considered to represent the nature of the polyurethanes. Differential scanning calorimetry tests were performed on both the thin films and the fibers to compare their thermal properties. Wide angle x-ray diffraction and small angle x-ray scattering techniques were applied to investigate the structure of the thin films and the fibers, and the structure change taking place in the spinning process was therefore revealed. The spinning process resulted in the polyurethane molecules being partially oriented in the direction of the fiber axis. The molecular orientation prompted the aggregation of the hard segments and the formation of hard-segment microdomains. The mechanical properties of the fibers were examined through tensile tests. The shape memory effect of the thin films and the fibers was investigated through a series of thermomechanical cyclic tensile tests. It was found that the fibers showed less shape fixity but more shape recovery compared with the thin films. Further investigations revealed that the recovery stress of the fibers was higher than that of the thin films. The smart fibers may exert the recovery force of shape memory polymers to an extreme extent in the direction of the fiber axis and therefore provide a possibility for producing high-performance actuators.

  5. Thermomechanical indentation of shape memory polymers.

    SciTech Connect

    Long, Kevin N. (University of Colorado, Boulder, CO); Nguyen, Thao D.; Castro, Francisco (University of Colorado, Boulder, CO); Qi, H. Jerry (University of Colorado, Boulder, CO); Dunn, Martin L. (University of Colorado, Boulder, CO); Shandas, Robin (University of Colorado, Boulder, CO)

    2007-04-01

    Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.

  6. Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics

    Microsoft Academic Search

    Ehud Segal; Huaizhong Pan; Paula Ofek; Taturo Udagawa; Pavla Kopecková; Jindrich Kopecek; Ronit Satchi-Fainaro; Joseph Alan Bauer

    2009-01-01

    BackgroundThere is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced “living polymerization” technique, the reversible addition-fragmentation chain transfer (RAFT), we conjugated the aminobisphosphonate alendronate (ALN), and the

  7. A constitutive theory for shape memory polymers. Part I

    Microsoft Academic Search

    Yi-Chao Chen; Dimitris C. Lagoudas

    2008-01-01

    A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279–313], that the coexisting active and

  8. A constitutive theory for shape memory polymers. Part II

    Microsoft Academic Search

    Yi-Chao Chen; Dimitris C. Lagoudas

    2008-01-01

    A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int. J. Plasticity 22, 279–313], that the coexisting active and

  9. Variable stiffness property study on shape memory polymer composite tube

    Microsoft Academic Search

    Yijin Chen; Jian Sun; Yanju Liu; Jinsong Leng

    2012-01-01

    As a typical smart material, shape memory polymers (SMPs) have the capability of variable stiffness in response to external stimuli, such as heat, electricity, magnetism and solvents. In this research, a shape memory polymer composite (SMPC) tube composed of multi-layered filament wound structures is investigated. The SMPC tube possesses considerable flexibility under high temperature and rigidity under low temperature. Significant

  10. Memristive learning and memory functions in polyvinyl alcohol polymer memristors

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Liu, Yi; Xia, Yidong; Gao, Xu; Xu, Bo; Wang, Suidong; Yin, Jiang; Liu, Zhiguo

    2014-07-01

    Polymer based memristive devices can offer simplicity in fabrication and at the same time promise functionalities for artificial neural applications. In this work, inherent learning and memory functions have been achieved in polymer memristive devices employing Polyvinyl Alcohol. The change in conduction in such polymer devices strongly depends on the pulse amplitude, duration and time interval. Through repetitive stimuli training, temporary short-term memory can transfer into consolidated long-term memory. These behaviors bear remarkable similarities to certain learning and memory functions of biological systems.

  11. Disruptions in autobiographical memory processing in depression and the emergence of memory therapeutics.

    PubMed

    Dalgleish, Tim; Werner-Seidler, Aliza

    2014-11-01

    Depression is characterized by distinct profiles of disturbance in ways autobiographical memories are represented, recalled, and maintained. We review four core domains of difficulty: systematic biases in favor of negative material; impoverished access and responses to positive memories; reduced access to the specific details of the personal past; and dysfunctional processes of rumination and avoidance around personal autobiographical material. These difficulties drive the onset and maintenance of depression; consequently, interventions targeted at these maladaptive processes have clinical potential. Memory therapeutics is the development of novel clinical techniques, translated from basic research, that target memory difficulties in those with emotional disorders. We discuss prototypical examples from this clinical domain including MEmory Specificity Training, positive memory elaboration, memory rescripting, and the method-of-loci (MoL). PMID:25060510

  12. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4?m. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  13. Porous inorganic—organic shape memory polymers

    PubMed Central

    Zhang, Dawei; Burkes, William L.; Schoener, Cody A.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic–organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(?-caprolactone) (PCL) segments, diacrylated PCL40-block-PDMS37-block-PCL40. To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained. PMID:22956854

  14. Temperature memory effect in amorphous shape memory polymers.

    PubMed

    Yu, Kai; Qi, H Jerry

    2014-12-21

    Temperature memory effect (TME) refers to the ability of shape memory polymers (SMPs) to memorize the temperature at which pre-deformation was conducted. In the past few years, this TME was experimentally demonstrated by comparing the applied programming temperature (Td) with a characteristic recovery temperature (Tc), which corresponds to either the maximum recovery stress or free recovery speed. In these well-designed experiments, Tc was observed to be close to Td, which is consistent with the intuitive understanding of 'memorization'. However, since the polymer recovery behavior has been proved to be strongly dependent on various programming and recovery conditions, a new question that whether Tc is always equal to Td in any thermo-temporal conditions remains to be addressed. In this paper, we answered this question by examining the free recovery profile of an acrylate based amorphous SMP. The recovery Tc, which is the temperature with the maximum recovery speed, versus the recovery temperature is shown to be strongly dependent on both programming and recovery conditions. Their detailed influence could be explained by using the reduced time. During a thermomechanical working cycle of SMPs, in addition to the Td, any other thermo-temporal conditions, such as the holding time (th), cooling rate, recovery heating rate (q), etc., can affect the observed Tc by changing the reduced programming or recovery time. In this manner, the relationship between Tc and Td is not uniquely determined. Besides, the TME in SMPs can only be achieved within a given temperature range. Both onset and offset of this temperature range are shown to be influenced by the programming history, but are independent of the recovery conditions. PMID:25354272

  15. Thermomechanical Deformation Analysis of Shape Memory Polymers Using Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hong, Seok Jin; Yu, Woong-Ryeol; Youk, Ji Ho

    2007-04-01

    Some segmented polyurethane polymers are known to have shape memory function, i.e., when a certain temperature is given to them, they deform into a memorized shape from any temporary ones. In this study, shape memory polymers were characterized using DMTA to investigate their viscoelastic behavior, in particular focusing on the thermomechanical deformation. Then, the linear viscoelastic theory was applied to model their thermomechanical behavior in the small deformation regime and its validity was discussed focusing on the fixity and recovery property of the shape memory polymer.

  16. Polymer Therapeutics for Cancer: Current Status and Future Challenges

    Microsoft Academic Search

    Ronit Satchi-Fainaro; Ruth Duncan; Carmen Barnes

    Drug delivery systems for cancer therapeutics have revolutionized medicine. Delivery systems\\u000a have improved the efficacy and reduced the toxicity of current therapies and resulted in the development\\u000a of new ones. Today, millions of cancer patients have directly benefited from drug delivery systems,\\u000a and polymers have been at the frontline of these technological advances. Targeted delivery systems\\u000a of chemotherapeutics to the

  17. A novel type of shape memory polymer blend and the shape memory mechanism

    Microsoft Academic Search

    Heng Zhang; Haitao Wang; Wei Zhong; Qiangguo Du

    2009-01-01

    A novel styrene–butadiene–styrene tri-block copolymer (SBS) and poly(?-caprolactone) (PCL) blend were introduced for its shape memory properties. Compared to the reported shape memory polymers (SMPs), this novel elastomer and switch polymer blend not only simplified the fabrication process but also offer a controllable approach for the study of mechanisms and the optimization of shape memory performances. Microstructures of this blend

  18. Mechanical and shape memory behavior of composites with shape memory polymer

    Microsoft Academic Search

    Takeru Ohki; Qing-Qing Ni; Norihito Ohsako; Masaharu Iwamoto

    2004-01-01

    Shape memory polymers (SMPs) are playing a prominent role for biomedical, self-repairing and smart materials. Among various SMPs, shape memory polyurethanes (PUs) are receiving much attention for their easy control of glass transition temperature (Tg) around the room temperature and excellent shape memory effect even at the room temperature. In this paper, the glass fiber reinforced PUs were developed for

  19. Multidimensional Characterization of Thermally Actuated Shape Memory Polymer Stents 

    E-print Network

    Nash, Landon 1990-

    2012-04-23

    In this work, shape memory polymer neurovascular stent prototypes based on a previously proposed design were thermo-mechanically characterized to expand on the clinical efficacy of the device. The stents were made by dip-coating pins in a...

  20. Thermomechanical characterization of shape memory polymers using high temperature nanoindentation

    Microsoft Academic Search

    J. T. Fulcher; Y. C. Lu; G. P. Tandon; D. C. Foster

    2010-01-01

    This paper investigates the thermomechanical behavior of a thermosetting shape memory polymer (SMP) by using a high temperature nanoindentation technique. The nanoindenter is equipped with a microheater and a sophisticated temperature control and monitoring system. This allows the SMP to be activated at elevated temperatures enabling proper implementation of the thermomechanical cycle typically used to quantify the shape memory behavior.

  1. A Shape Memory Polymer with Improved Shape Recovery

    Microsoft Academic Search

    Changdeng Liu; Patrick T. Mather

    2005-01-01

    Thermally actuated shape memory polymers (SMPs) interest, both academically and industrially, due to their ability to memorize a permanent shape that is set during processing and a temporary shape that is later programmed by manipulation above a critical temperature, either Tg or Tm. However, the thermal triggering process for SMPs is usually retarded compared to that of shape memory alloys,

  2. A review of shape memory polymer composites and blends

    Microsoft Academic Search

    Qinghao Meng; Jinlian Hu

    2009-01-01

    Shape memory polymers (SMPs) are a kind of very important smart polymers. In order to improve the properties or obtain new functions of SMPs, SMP composites and blends are prepared. We thoroughly examine the research in SMP composites and blends achieved by numerous research groups around the world. The preparation of SMPs composites and blends is mainly for five aims:

  3. Light-activated shape memory polymers and associated applications

    Microsoft Academic Search

    Ernie Havens; Emily A. Snyder; Tat H. Tong

    2005-01-01

    Continuous product development and technology integration efforts using shape memory polymers (SMPs) have uncovered a need for faster response times. As with most smart materials, SMP responds to a specific stimulus. Traditionally SMP is triggered by thermal stimulus; increasing the temperature of the SMP above a Tg will transition the polymer from a glassy state to a rubbery state. The

  4. Review of electro-active shape-memory polymer composite

    Microsoft Academic Search

    Yanju Liu; Haibao Lv; Xin Lan; Jinsong Leng; Shanyi Du

    2009-01-01

    Shape-memory polymers (SMPs) have been one of the most popular subjects under intensive investigation in recent years, due to their many novel properties and great potential. These so-called SMPs by far surpass shape-memory alloys and shape-memory ceramics in many properties, e.g., easy manufacture, programming, high shape recovery ratio and low cost, and so on. However, they have not fully reached

  5. Shape memory polymers based on uniform aliphatic urethane networks

    Microsoft Academic Search

    T. S. Wilson; J. P. Bearinger; J. L. Herberg; J. E. Marion; W. J. Wright; C. L. Evans; D. J. Maitland

    2007-01-01

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,Nâ²,Nâ²-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction,

  6. Shape memory polymers for active cell culture.

    PubMed

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-01-01

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date have generally been passive and could not be programmed to change significantly during culture. This physical stasis has limited the potential of topographic substrates to control cells in culture. Here, active cell culture (ACC) SMP substrates are introduced that employ surface shape memory to provide programmed control of substrate topography and deformation. These substrates demonstrate the ability to transition from a temporary grooved topography to a second, nearly flat memorized topography. This change in topography can be used to control cell behavior under standard cell culture conditions. PMID:21750496

  7. Controlled Drug Release from Biodegradable Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Wischke, Christian; Neffe, Axel T.; Lendlein, Andreas

    Biodegradable shape-memory polymers (SMPs) have attracted significant interest for biomedical applications. Modern concepts for biofunctional implants often comprise the controlled release of bioactive compounds to gain specific biofunctionalities. Therefore, a general strategy has been suggested for polymer systems combining degradability and shape-memory capability with controlled release of drugs. This chapter provides a detailed description of the molecular basis for such multifunctional SMPs including the selection of building blocks, the polymer morphology, and the three dimensional architecture. Moreover, drug loading and release, drug effects on thermomechanical properties of SMPs, and drug release patterns in a physiological environment are described and potential applications in minimally-invasive surgery are discussed.

  8. Surface engineering of shape memory alloy\\/polymer-composites: Improvement of the adhesion between polymers and pseudoelastic shape memory alloys

    Microsoft Academic Search

    K. Neuking; A. Abu-Zarifa; G. Eggeler

    2008-01-01

    In recent years, pseudoelastic applications of NiTi shape memory alloys have received considerable attention in the medical field due to the development of medical devices and implants. For such applications it can be beneficial to consider hybrid systems like polymer-coated shape memory metals. The objective of the present work is to show that surface treatments can strongly improve adhesion between

  9. Shape memory effect and mechanical properties of carbon nanotube\\/shape memory polymer nanocomposites

    Microsoft Academic Search

    Qing-Qing Ni; Chun-sheng Zhang; Yaqin Fu; Guangze Dai; Teruo Kimura

    2007-01-01

    Carbon nanotubes (CNT) have remarkable mechanical properties with very high elastic modulus and electrical conductivity. Shape memory polymer (SMP) as one of smart materials is characterized with its remarkable recoverability and shape memory effect, but its mechanical properties such as strength and elastic modulus is not high enough. In this study, CNT\\/SMP nanocomposites were developed with the typical CNTs of

  10. Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics

    PubMed Central

    Segal, Ehud; Pan, Huaizhong; Ofek, Paula; Udagawa, Taturo; Kope?ková, Pavla; Kope?ek, Jind?ich; Satchi-Fainaro, Ronit

    2009-01-01

    Background There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced “living polymerization” technique, the reversible addition-fragmentation chain transfer (RAFT), we conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. Methods and Finding The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID) male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. Conclusions This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and endothelial compartments of bone metastases and calcified neoplasms at a single administration. This new approach of co-delivery of two synergistic drugs may have clinical utility as a potential therapy for angiogenesis-dependent cancers such as osteosarcoma and bone metastases. PMID:19381291

  11. Polymers with multishape memory controlled by local glass transition temperature.

    PubMed

    Zeng, Chao; Seino, Hidetake; Ren, Jie; Yoshie, Naoko

    2014-02-26

    A multishape memory polymer with flexible design capabilities is fabricated by a very simple method. Local glass transition temperatures of a loosely cross-linked polymer film are changed by immersing sections of the film in a cross-linker solution with a different concentration. Each section memorizes a temporary shape, which recovers its permanent shape at a different recovery temperature depending on the local glass transition temperature. As a base polymer, we chose a network polymer prepared by a Diels-Alder reaction between poly(2,5-furandimethylene succinate) (PFS) and 1,8-bis-maleimidotriethyleneglycol (M2). Quintuple shape memory behavior was demonstrated by a PFS/M film with four sections with distinct glass transition temperatures. The number of temporary shapes was determined by the number of different M2 solutions. Furthermore, owing to the reversibility of the Diels-Alder reaction, the permanent shape was rewritable. PMID:24471436

  12. Recent advances in shape memory polymers and composites: a review

    Microsoft Academic Search

    Debdatta Ratna; J. Karger-Kocsis

    2008-01-01

    Shape memory polymers (SMPs) belong to a class of smart polymers, which have drawn considerable research interest in last\\u000a few years because of their applications in microelectromechanical systems, actuators, for self healing and health monitoring\\u000a purposes, and in biomedical devices. Like in other fields of applications, SMP materials have been proved to be suitable substitutes\\u000a to metallic ones because of

  13. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers

    Microsoft Academic Search

    Tao Xie; Ingrid A. Rousseau

    2009-01-01

    A critical parameter for a shape memory polymer (SMP) lies in its shape memory transition temperature. For an amorphous SMP polymer, it is highly desirable to develop methods to tailor its Tg, which corresponds to its shape memory transition temperature. Starting with an amine cured aromatic epoxy system, epoxy polymers were synthesized by either reducing the crosslink density or introducing

  14. Actuation of MAV control surface using conducting shape memory polymer actuator

    Microsoft Academic Search

    Nam S. Goo; Il H. Paik; Kwang J. Yoon; Yong C. Jung; Jae W. Cho

    2004-01-01

    The current MAVs used servomotors as actuators for the control surfaces, such as elevators and rudders. In this paper, the application possibility of conducting shape memory polymer to smart actuator has been assessed. Our final goal will be to replace the servomotor with a newly developed conducting shape memory polymer actuator. As the first step, a conducting shape memory polymer

  15. Glass transition behaviors of epoxy-based shape memory polymer containing linear monomer

    Microsoft Academic Search

    Bo Zhou; Xuelian Wu; Yanju Liu; Jinsong Leng

    2010-01-01

    As a novel smart material, shape memory polymer possesses the special thermo-mechanical property of shape memory effect. Its shape memory effect is closely related to the glass transitions between the glass state and rubber state induced by temperature changing. It is of engineering and theoretical meaning to investigate and describe the glass transition behaviors of shape memory polymer. In this

  16. Macroscopic Behaviour of Magnetic Shape-Memory Polycrystals and Polymer Composites Sergio Conti1

    E-print Network

    Sminchisescu, Cristian

    Macroscopic Behaviour of Magnetic Shape-Memory Polycrystals and Polymer Composites Sergio Conti1-proposed alternative for shape memory devices is to embed small single-crystal shape-memory particles in a soft polymer ¨außere Magnetfelder 1 INTRODUCTION Ferromagnetic shape-memory materials exhibit comparably large strains

  17. Model Development for Shape Memory Polymers Ryan D. Siskinda and Ralph C. Smithb

    E-print Network

    larger than in shape memory alloys (SMAs). At high temperatures, SMPs share attributes with compliant: 919-515-8947 #12;s e T Ttr 1 2 3 4 (a) Shape Memory Alloy[5] s e T g 1 23 4 T (b) Shape Memory PolymerModel Development for Shape Memory Polymers Ryan D. Siskinda and Ralph C. Smithb Department

  18. Thermomechanical Behavior of a Polyurethane Shape Memory Polymer Foam

    Microsoft Academic Search

    W. M. Huang; C. W. Lee; H. P. Teo

    2006-01-01

    Shape memory polymers (SMPs) have attracted great interest in recent years. The SMP foams are outstanding, owing to their high shape recovery ratio in compression. They can be used for, for instance, micro foldable vehicles, shape determination, and microtags. This article presents a study on the thermomechanical behavior of a polyurethane SMP foam, associated with these three applications. This includes

  19. Mechanical properties of shape memory polymers for morphing aircraft applications

    Microsoft Academic Search

    Michelle M. Keihl; Robert S. Bortolin; Brian Sanders; Shiv Joshi; Zeb Tidwell

    2005-01-01

    This investigation addresses basic characterization of a shape memory polymer (SMP) as a suitable structural material for morphing aircraft applications. Tests were performed for monotonic loading in high shear at constant temperature, well below, or just above the glass transition temperature. The SMP properties were time-and temperature-dependent. Recovery by the SMP to its original shape needed to be unfettered. Based

  20. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling

    Microsoft Academic Search

    Yiping Liu; Ken Gall; Martin L. Dunn; Alan R. Greenberg; Julie Diani

    2006-01-01

    Shape memory polymers (SMPs) can retain a temporary shape after pre-deformation at an elevated temperature and subsequent cooling to a lower temperature. When reheated, the original shape can be recovered. Relatively little work in the literature has addressed the constitutive modeling of the unique thermomechanical coupling in SMPs. Constitutive models are critical for predicting the deformation and recovery of SMPs

  1. Strain induced anisotropic properties of shape memory polymer

    Microsoft Academic Search

    Richard Beblo; Lisa Mauck Weiland

    2008-01-01

    Heat activated shape memory polymers (SMPs) are increasingly being utilized in ambitious, large deformation designs. These designs may display unexpected or even undesirable performance if the evolution of the SMP's mechanical properties as a function of deformation is neglected. Yet, despite the broadening use of SMPs in complex load bearing structures, there has been little research completed to characterize how

  2. Preliminary investigations of active disassembly using shape memory polymers

    Microsoft Academic Search

    J. D. Chiodo; E. H. Billett; D. J. Harrison

    1999-01-01

    This paper reports initial results in the application of shape memory polymer (SMP) technology to the active disassembly of electronic products. The smart material SMP of polyurethane (PU) composition was employed. Created for these experiments were novel SMP releasable fasteners, with which it is possible to effectively disassemble products at specific triggering temperatures at the end of their life (EoL).

  3. Reversible bidirectional shape-memory polymers.

    PubMed

    Behl, Marc; Kratz, Karl; Zotzmann, Jörg; Nöchel, Ulrich; Lendlein, Andreas

    2013-08-27

    Free-standing copolymer network samples with two types of crystallizable domains are capable of a fully reversible bidirectional shape-memory effect. One set of crystallizable domains determines the shape-shifting geometry while the other provides the thermally controlled actuation capability. PMID:23765645

  4. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends.

    PubMed

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V A L

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  5. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  6. Biomedical applications of thermally activated shape memory polymers

    PubMed Central

    Small, Ward; Singhal, Pooja; Wilson, Thomas S.

    2011-01-01

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605

  7. Available online at www.sciencedirect.com Design strategies for shape memory polymers

    E-print Network

    Mather, Patrick T.

    , ranging from smart textiles, actuators, to medical devices have been developed and new shape memoryAvailable online at www.sciencedirect.com Design strategies for shape memory polymers Xiaofan Luo* and Patrick T Mather Shape memory polymers (SMPs) are polymeric materials capable of recovering from a `fixed

  8. Shape-Memory Polymers Based on Fatty Acid-Filled Elastomeric Ionomers

    Microsoft Academic Search

    Elise Izzo; Robert Weiss

    2009-01-01

    Shape memory polymers (SMPs) have applications as medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures. All previous design of SMPs has involved synthesizing new polymers or modifying existing polymers. This paper describes a new type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or their salts (FAS). Shape memory

  9. Experimental research on viscoelastic characteristics of shape memory polymers

    NASA Astrophysics Data System (ADS)

    Li, Z. F.; Wang, Z. D.

    2010-03-01

    As a class of semi-crystallized polymers, shape memory polymers (SMPs) exhibit significant viscoelastic characteristics in the vicinity of the glass transition temperature Tg, which should affect their shape storage and recovery functionality. However, until now isothermal and elastic assumptions are commonly considered when studying the thermomechanical properties of this class of functionalized materials. This papers aims to present some experimental results about the viscoelastic characteristics of SMPs. Systematic thermomechanical experiments were performed on shape-memory polyurethane under uniaxial tensile loading, which includes the frozen/recovery tests under different constraint conditions, stress-strain cycles and stress relaxation at different temperatures. Based on the testing results, the viscoelastic characteristics effect on the shape frozen and recovery responses of SMPs are discussed, which is of importance in proposing suitable thermo-viscoelastic constitutions about this type of functional materials.

  10. Experimental research on viscoelastic characteristics of shape memory polymers

    NASA Astrophysics Data System (ADS)

    Li, Z. F.; Wang, Z. D.

    2009-12-01

    As a class of semi-crystallized polymers, shape memory polymers (SMPs) exhibit significant viscoelastic characteristics in the vicinity of the glass transition temperature Tg, which should affect their shape storage and recovery functionality. However, until now isothermal and elastic assumptions are commonly considered when studying the thermomechanical properties of this class of functionalized materials. This papers aims to present some experimental results about the viscoelastic characteristics of SMPs. Systematic thermomechanical experiments were performed on shape-memory polyurethane under uniaxial tensile loading, which includes the frozen/recovery tests under different constraint conditions, stress-strain cycles and stress relaxation at different temperatures. Based on the testing results, the viscoelastic characteristics effect on the shape frozen and recovery responses of SMPs are discussed, which is of importance in proposing suitable thermo-viscoelastic constitutions about this type of functional materials.

  11. Thermomechanical Characterization and Modeling of Shape Memory Polymers

    E-print Network

    Volk, Brent L.

    2010-01-16

    2009 Major Subject: Aerospace Engineering THERMOMECHANICAL CHARACTERIZATION AND MODELING OF SHAPE MEMORY POLYMERS A Thesis by BRENT LOUIS VOLK Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements... for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Dimitris C. Lagoudas Committee Members, Zoubeida Ounaies Duncan Maitland Yi-Chao Chen Head of Department, Dimitris C. Lagoudas May 2009 Major Subject: Aerospace Engineering iii ABSTRACT...

  12. Internal stress storage in shape memory polymer nanocomposites

    Microsoft Academic Search

    Ken Gall; Martin L. Dunn; Yiping Liu; Goran Stefanic; Davor Balzar

    2004-01-01

    We examine the storage and release of internal stresses in shape memory polymers reinforced with a dispersion of nanometer-scale SiC particles. A quantitative Rietveld analysis of diffraction peaks was used to measure changes in the lattice parameter of the SiC particles after permanent deformation at 25 °C, and subsequent shape recovery induced by heating to 120 °C. Under 50% compression

  13. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers

    Microsoft Academic Search

    Muhammad Yasar Razzaq; Mathias Anhalt; Lars Frormann; Bernd Weidenfeller

    2007-01-01

    Magnetite-polyurethane (PU) shape memory polymer (SMP) composites containing 10–40vol.% magnetite have been prepared and their mechanical properties in a temperature range from 255K to 355K at vibrating frequencies of 0.1Hz, 1.0Hz and 10Hz were investigated. The damping peak at glass transition around 318K is decreased by the addition of magnetite while it becomes simultaneously broader. Also activation energies for the

  14. Thermomechanical recovery couplings of shape memory polymers in flexure

    Microsoft Academic Search

    Yiping Liu; Ken Gall; Martin L. Dunn; Patrick McCluskey

    2003-01-01

    Shape memory polymers (SMPs) have the capacity to recover large strains when pre-deformed at an elevated temperature, cooled to a lower temperature and reheated. The thermomechanical recovery behavior of an SMP is examined in three-point flexure for various pre-deformation and recovery conditions. Results indicate that when pre-deformed well above the glass transition temperature, Tg, the stress-strain response at the pre-deformation

  15. Thermomechanical Properties of Polyurethane-Shape Memory Polymer Foam

    Microsoft Academic Search

    H. Tobushi; K. Okumura; M. Endo; S. Hayashi

    2001-01-01

    The thermomechanical properties of polyurethane-shape memory polymer foam were investigated by the compressive tests. The results are summarized as follows. (1) The material contracts uniformly in the axial direction with the ratio of lateral strain to axial strain 0.4 in the early stage, but about 0.15 thereafter. (2) The deformation resistance is large at low temperature and at high strain

  16. Shape-memory polymer composite filled with carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wu, Xuelian; Zheng, Hui; Liu, Yanju; Leng, Jinsong

    2010-04-01

    In addition to the preparation of carbon nanotube (CNT)/epoxy shape memory composites, the thermo-mechanical properties of the composites are focused on. Furthermore, the factors which would influence thermo-mechanical properties of the composites are studied too. Four types of test were carried out, namely, differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA) test, quasi-static tension test and shape memory behavior. The results of DSC show that CNT decreases the glass transition temperature of the composites. From DMA test, a sharp drop can be found in each composite, which indicates that the composites are typical shape memory polymer materials. And elastic ratio of the composites decreases with increasing CNT content. Tensile test indicates that tensile strength increases and then decreases with the increasing CNT content ranging from 1 wt% to 3 wt%. Study on shape recovery behaviors of the composites showed that each composite can reach a shape recovery ratio near 99%.

  17. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  18. Thermomechanical Properties of Shape-Memory Alloy and Polymer and Their Composites

    Microsoft Academic Search

    Hisaaki Tobushi; Elzbieta Pieczyska; Yoshihiro Ejiri; Toshimi Sakuragi

    2009-01-01

    The shape memory effect and superelasticity appear in shape memory alloy (SMA). The large amount of strain by more than several hundreds percent can be recovered in shape memory polymer (SMP). The shape recovery and shape fixity can be used in SMP elements. These characteristics of shape memory materials (SMMs) can be applied to intelligent elements in various fields. In

  19. Advanced functional polymers for regenerative and therapeutic dentistry.

    PubMed

    Lai, W-F; Oka, K; Jung, H-S

    2015-07-01

    Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials. PMID:25098817

  20. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers.

    PubMed

    Yu, Kai; Ge, Qi; Qi, H Jerry

    2014-01-01

    Shape memory polymers are at the forefront of recent materials research. Although the basic concept has been known for decades, recent advances in the research of shape memory polymers demand a unified approach to predict the shape memory performance under different thermo-temporal conditions. Here we report such an approach to predict the shape fixity and free recovery of thermo-rheologically simple shape memory polymers. The results show that the influence of programming conditions to free recovery can be unified by a reduced programming time that uniquely determines shape fixity, which consequently uniquely determines the shape recovery with a reduced recovery time. Furthermore, using the time-temperature superposition principle, shape recoveries under different thermo-temporal conditions can be extracted from the shape recovery under the reduced recovery time. Finally, a shape memory performance map is constructed based on a few simple standard polymer rheology tests to characterize the shape memory performance of the polymer. PMID:24423789

  1. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Ge, Qi; Qi, H. Jerry

    2014-01-01

    Shape memory polymers are at the forefront of recent materials research. Although the basic concept has been known for decades, recent advances in the research of shape memory polymers demand a unified approach to predict the shape memory performance under different thermo-temporal conditions. Here we report such an approach to predict the shape fixity and free recovery of thermo-rheologically simple shape memory polymers. The results show that the influence of programming conditions to free recovery can be unified by a reduced programming time that uniquely determines shape fixity, which consequently uniquely determines the shape recovery with a reduced recovery time. Furthermore, using the time-temperature superposition principle, shape recoveries under different thermo-temporal conditions can be extracted from the shape recovery under the reduced recovery time. Finally, a shape memory performance map is constructed based on a few simple standard polymer rheology tests to characterize the shape memory performance of the polymer.

  2. Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems

    NASA Astrophysics Data System (ADS)

    Nair, Devatha P.

    2011-12-01

    The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1 polymer with excess acrylic functional groups within the network. At a later point in time, the photoinitiated, free radical polymerization of the excess acrylic functional groups results in a highly crosslinked, robust material system. By varying the monomers within the system as well as the stoichiometery of thiol to acrylate functional groups, the ability of the two-stage reactive systems to encompass a wide range of properties at the end of both the stage 1 and stage 2 polymerizations was demonstrated. The thiol-acrylate networks exhibited intermediate Stage 1 rubbery moduli and glass transition temperatures that range from 0.5 MPa and -10 ºC to 22 MPa and 22 ºC respectively. The same polymer networks can then attain glass transition temperatures that range from 5 ºC to 195 ºC and rubbery moduli of up to 200 MPa after the subsequent photocure stage. Two-stage reactive polymer composite systems were also formulated and characterized for thermomechanical and mechanical properties. Thermomechanical analysis showed that the fillers resulted in a significant increase in the modulus at both stage 1 and stage 2 polymerizations without a significant change in the glass transition temperatures (Tg). The two-stage reactive matrix composite formed with a hexafunctional acrylate matrix and 20 volume % silica particles showed a 125% increase in stage 1 modulus and 101% increase in stage 2 modulus, when compared with the modulus of the neat matrix. Finally, the two-stage reactive polymeric devices were formulated and designed as orthopedic suture anchors for arthroscopic surgeries and mechanically characterized. The Stage 1 device was designed to exhibit properties ideal for arthroscopic delivery and device placement with glass transition temperatures 25 -- 30 °C and rubbery moduli ˜ 95 MPa. The subsequent photopolymerization generated Stage 2 polymers designed to match the local bone environment with moduli ranging up to 2 GPa. Additionally, pull-out strengths of 140 N were demonstrated and are equivalent to the pull-strengths achieved by other commercially availab

  3. Shape memory polymer filled honeycomb model and experimental validation

    NASA Astrophysics Data System (ADS)

    Beblo, R. V.; Puttmann, J. P.; Joo, J. J.; Reich, G. W.

    2015-02-01

    An analytical model predicting the in-plane Young’s and shear moduli of a shape memory polymer filled honeycomb composite is presented. By modeling the composite as a series of rigidly attached beams, the mechanical advantage of the load distributed on each beam by the infill is accounted for. The model is compared to currently available analytical models as well as experimental data. The model correlates extremely well with experimental data for empty honeycomb and when the polymer is above its glass transition temperature. Below the glass transition temperature, rule of mixtures is shown to be more accurate as bending is no longer the dominant mode of deformation. The model is also derived for directions other than the typical x and y allowing interpolation of the stiffness of the composite in any direction.

  4. Thermoset shape-memory polymer nanocomposite filled with nanocarbon powders

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Yanju; Leng, Jinsong

    2009-07-01

    A system of a thermoset styrene-based shape-memory polymer (SMP) filled with nanocarbon powders is investigated in this paper. The thermomechanical properties are characterized by thermal gravity analysis, differential scanning calorimetery and dynamic mechanical analysis. In addition, the distribution of CB is investigated by scanning electron microscope. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3.8 % (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB (10 vol%) can be realized in about 100s.

  5. Internal stress storage in shape memory polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gall, Ken; Dunn, Martin L.; Liu, Yiping; Stefanic, Goran; Balzar, Davor

    2004-07-01

    We examine the storage and release of internal stresses in shape memory polymers reinforced with a dispersion of nanometer-scale SiC particles. A quantitative Rietveld analysis of diffraction peaks was used to measure changes in the lattice parameter of the SiC particles after permanent deformation at 25°C, and subsequent shape recovery induced by heating to 120°C. Under 50% compression of the composite material, the nanoparticles store a finite compressive stress, which is almost completely released during heated strain recovery. The values of the stored internal stresses in the particles are compared to values based on micromechanic calculations.

  6. Microstructured shape memory polymer surfaces with reversible dry adhesion.

    PubMed

    Eisenhaure, Jeffrey D; Xie, Tao; Varghese, Stephen; Kim, Seok

    2013-08-28

    We present a shape memory polymer (SMP) surface with repeatable, very strong (>18 atm), and extremely reversible (strong to weak adhesion ratio of >1 × 10(4)) dry adhesion to a glass substrate. This was achieved by exploiting bulk material properties of SMP and surface microstructuring. Its exceptional dry adhesive performance is attributed to the SMP's rigidity change in response to temperature and its capabilities of temporary shape locking and permanent shape recovery, which when combined with a microtip surface design enables time-independent control of contact area. PMID:23945078

  7. Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.

    2007-01-01

    Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to the material while it was above its glass transition temperature. After deforming the material to a specified applied strain, the material was then cooled to below the glass transition temperature (Tg) while retaining the deformed shape. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. Results show that strain recovery occurs at a nonlinear rate with respect to time. Results also indicate that the ratio of recoverable strain/applied strain increases as the applied strain increases.

  8. Phase transition of shape-memory effect in glassy shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Lu, Haibao

    2013-04-01

    Shape-memory materials (SMMs) are fascinating materials, with the potential for application as "smart materials" and also as actively moving materials, which can change their shape in a predefined way between/among shapes in presence of an appropriate stimulus. The intention of this article is to present a systematic and up-to-date account of chemoresponsive amorphous shape-memory polymers (SMPs) from basic principles in phase transition to experiments. Based on the previous work, phase transition of the chemo-responsive SMPs. of which the transition temperature is originated from the glass transition, is presented. Studies have been explored for chemo-responsive SMPs in various design principles in water/solvent induced shape-memory effect. Some examples, including are also presented.

  9. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    Microsoft Academic Search

    Hisaaki Tobushi; Syunichi Hayashi; Kazumasa Hoshio; Yoshihiro Ejiri

    2008-01-01

    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to

  10. DESIGN OF A VARIABLE STIFFNESS LEG USING SHAPE MEMORY POLYMER COMPOSITES

    E-print Network

    Collins, Emmanuel

    a shape memory polymer composite has shown that using continuous fiber reinforcement can significantly571 DESIGN OF A VARIABLE STIFFNESS LEG USING SHAPE MEMORY POLYMER COMPOSITES DUNCAN W. HALDANE is to develop an electrically activated variable stiffness leg for Edubot using a class of polymeric smart

  11. Investigation of mechanical and conductive properties of shape memory polymer composite (SMPC)

    Microsoft Academic Search

    Jinsong Leng; Xin Lan; Haibao Lv; Dawei Zhang; Yanju Liu; Shanyi Du

    2007-01-01

    This paper is concerned about an investigation of mechanical and electrical conductive properties of carbon fiber fabric reinforced shape memory polymer composite (SMPC). The shape memory polymer (SMP) is a thermoset styrene-based resin. SMP is a promising smart material, which is under intensive investigation at present. Its primary advantages over other smart materials are the high strain capacity (200% reversible

  12. Preprint submitted to International Journal of Solids and Structures 1 PREDICTING THERMAL SHAPE MEMORY OF CROSSLINKED POLYMER NETWORKS FROM LINEAR

    E-print Network

    Paris-Sud XI, Université de

    . ABSTRACT: The viscoelastic behavior of an amorphous shape-memory polymer network and its dependence on time- temperature dependence. Keywords: Shape-memory, Polymers, Modelling, Thermomechanical, Viscoelastic, Finite element 1. Introduction The shape memory property of polymers has drawn a substantial amount of interest

  13. Variable stiffness property study on shape memory polymer composite tube

    NASA Astrophysics Data System (ADS)

    Chen, Yijin; Sun, Jian; Liu, Yanju; Leng, Jinsong

    2012-09-01

    As a typical smart material, shape memory polymers (SMPs) have the capability of variable stiffness in response to external stimuli, such as heat, electricity, magnetism and solvents. In this research, a shape memory polymer composite (SMPC) tube composed of multi-layered filament wound structures is investigated. The SMPC tube possesses considerable flexibility under high temperature and rigidity under low temperature. Significant changes in effective engineering modulus can be achieved through regulating the environment temperature. Based on the classical laminated-plate theory and Sun’s thick laminate analysis, a 3D theory method is used to study the effective engineering modulus and modulus ratio of the SMPC tube. The tensile test is conducted on the SMPC tube to verify the accuracy of the theoretical method. In addition, the effective engineering modulus and modulus ratio are discussed under different fiber-winding angles and fiber volume fractions of the SMPC tube. The presented analysis provides meaningful guidance to assist the design and manufacture of SMPC tubes in morphing skin applications.

  14. Biomedical applications of electroactive polymers and shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Ki; Lee, Sang-Jo; An, Ho-Jeong; Cha, Seung-Eun; Chang, Jun Keun; Kim, Byungkyu; Pak, James Jungho

    2002-07-01

    Among many kinds of polymer materials, electronic conductive material, that is polypyrrole, shows potential possibility for bio-relate actuator materials. However, it may be an impediment for practical use in polypyrrole actuator that polypyrrole usually requires electrolyte solution for actuation. Our first research theme is focused on this problem solving. We have investigated many kinds of solid polymer electrolyes for the substitution of electrolyte solution. Our goals are to find the stable solid electrolyte in the air, to establish the reliable fabrication process of it and to apply it for micropump application. Besides actuators, the reduction and oxidation property of polypyrrole can be exploited for active drug delivery systems by the control of structural deformation of it. We have investigated this kind of new and bio-related possibility of polypyrrole. Shape memory alloy has another possibility in the biomedical field. Due to its inherent excellent advantages as actuator materials, it can be used for micro active intravascular catheter. We have developed thin tube type bending actuator using shape memory alloy and characterized its performance by in-vivo test.

  15. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications

    Microsoft Academic Search

    Christopher Michael Yakacki; Robin Shandas; Craig Lanning; Bryan Rech; Alex Eckstein; Ken Gall

    2007-01-01

    Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were

  16. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers

    Microsoft Academic Search

    H. Jerry Qi; Thao D. Nguyen; Francisco Castro; Christopher M. Yakacki; Robin Shandas

    2008-01-01

    Shape memory polymers (SMPs) are polymers that can demonstrate programmable shape memory effects. Typically, an SMP is pre-deformed from an initial shape to a deformed shape by applying a mechanical load at the temperature TH>Tg. It will maintain this deformed shape after subsequently lowering the temperature to TLmemory effect is activated

  17. Shape memory polymers from benzoxazine-modified epoxy

    NASA Astrophysics Data System (ADS)

    Rimdusit, Sarawut; Lohwerathama, Montha; Hemvichian, Kasinee; Kasemsiri, Pornnapa; Dueramae, Isala

    2013-07-01

    Novel shape memory polymers (SMPs) were prepared from benzoxazine-modified epoxy resin. Specimens consisting of aromatic epoxy (E), aliphatic epoxy (N), Jeffamine D230 (D) and BA-a benzoxazine monomer (B) were evaluated. The mole ratio of D/B was used as a mixed curing agent for an epoxy system with a fixed E/N. The effects of BA-a content on the thermal, mechanical and shape memory properties of epoxy-based shape memory polymers (SMPs) were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), flexural test and shape recovery test. The results revealed that the obtained SMPs exhibited a higher flexural strength and flexural modulus than those of the unmodified epoxy-based SMP at room temperature and at 20?° C above glass transition temperature (Tg). The presence of 1 mol BA-a as a curing agent provided the specimen with the highest Tg, i.e. about 72?° C higher than that of epoxy-based SMP cured by Jeffamine D230. All SMP samples needed only a few minutes to fully recover to their original shape. The samples exhibited high shape fixity (98-99%) and shape recovery ratio (90-100%). In addition, the recovery stress values increased with increasing BA-a mole ratio from 20 to 38 kPa, when BA-a up to 1 mol ratio was added. All of the SMP samples exhibited only minimum change in their flexural strength at the end of a 100 recovery cycles test.

  18. Various shape memory effects of stimuli-responsive shape memory polymers

    NASA Astrophysics Data System (ADS)

    Meng, Harper; Mohamadian, Habib; Stubblefield, Michael; Jerro, Dwayne; Ibekwe, Samuel; Pang, Su-Seng; Li, Guoqiang

    2013-09-01

    One-step dual-shape memory polymers (SMPs) recover their original (permanent) shape upon small variation of environmental conditions such as temperature, electric field, light, magnetic field, and solvent/chemicals. For advanced applications such as aerospace and medical devices, complicated, multiple-step, spatially controllable, and two-way shape memory effects (SMEs) are required. In the past decade, researchers have devoted great effort to improve the versatility of the SME of SMPs to meet the needs of advanced applications. This paper is intended to review the up-to-date research endeavors on advanced SMEs. The problems facing the various SMPs are discussed. The challenges and opportunities for future research are discussed.

  19. Nanoscale indent formation in shape memory polymers using a heated probe tip

    Microsoft Academic Search

    F. Yang; E. Wornyo; K. Gall; W. P. King

    2007-01-01

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a

  20. Shape memory polymers: three-dimensional isotropic modeling

    NASA Astrophysics Data System (ADS)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  1. Thermo-mechanical behavior of epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Di Prima, M. A.; Lesniewski, M.; Gall, K.; McDowell, D. L.; Sanderson, T.; Campbell, D.

    2007-12-01

    Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 °C and compression and tensile tests were performed at temperatures ranging from 25 to 125 °C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature; these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 °C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

  2. Anisotropic wrinkle formation on shape memory polymer substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi; Young Kim, Yun; Krishnaswamy, Sridhar

    2012-12-01

    In this paper, we demonstrate an assisted self-assembly fabrication method for unidirectional patterns using pre-programmed shape memory polymer (SMP) as the substrate in an organic/inorganic bi-layer structure. By heating the hybrid structure above the SMP's shape recovery temperature, the substrate expands because of positive coefficients of thermal expansion in one direction, while in the perpendicular direction it shrinks due to shape memory effect overpowering thermal expansion. Consequently, the metal thin film coated on the substrate is subjected to an orthogonal compression-tension stress field and forms unidirectional wavy patterns. The experimentally obtained wrinkles are well-aligned with uniform wavelength ranging from about 930 nm to 5 ?m corresponding to various programming strains and film thicknesses. A parametric study was carried out to study the influence of programming strain and film thickness on wrinkle wavelength and amplitude. The results were compared with a finite deformation model and showed good agreement with theoretical predictions. A simple analytical model incorporating a progressive damage scheme and visco-elasticity is proposed to explain defect formation and post-buckling pattern evolution, respectively. The present study is expected to offer a convenient and simple path of fabricating large-scale unidirectional wavy patterns. A potential application to organic photovoltaics is discussed.

  3. On a novel self-regulating shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Son, Seyul; Park, Kyungmook; Biggs, David; Andrews, Courtney; Mockensturm, Eric M.; Goulbourne, Nakhiah C.

    2011-04-01

    Polyurethane shape memory polymers (PU-SMPs) are active materials that can be transformed into complex shapes with the ability to recover their original shape even after undergoing large deformations. Because of their light weight, large recoverability, low cost, and high compliance, SMPs can be potentially employed as actuators, MEMS devices, temperature sensors, and damping elements to name a few. One of the key challenges in implementing SMPs is the response time which is limited by the method of heating and cooling and the material. Unlike shape memory alloys, SMPs can be activated by multiple stimuli including lasers, resistive heating, electric fields, and magnetic fields. While these methods may provide an efficient way of heating the SMP, they rely on the slow process of passive conduction for cooling. In this paper, a self regulating SMP (SR-SMP) composite is introduced, whereby a novel heating and cooling system consisting of embedded silica capillary tubes in the SMP (DiAPLEX® MP4510: SMP Technologies, Inc.) has been developed. The tubes are used to pump hot/cold fluid through the SMP membrane and hence provide a local temperature source. In order to show the effectiveness and efficiency of the mechanism, the thermomechanical response of the SR-SMP is compared experimentally to a SMP with "conventional" i.e. global heating and cooling mechanisms. It is shown that the SR-SMP has a faster thermomechanical response. It has been demonstrated previously that soft SMPs can be controlled by an electric field while in the rubbery phase, thus taking advantage of the Maxwell stress or electrostatic stress effect. Thermomechanical characterization of PU-SMPs is described for different weight percentages of resin (Diphenylmethane-4, 4'-diisocyanate) and hardener (1,4-Butanediol). Varying the percent hardener reduced the effective cross-link density of the polymer and hence the thermomechanical properties. The electromechanical response of pure SMP and SR-SMP is predicted numerically. The numerical computation indicates that the softer SMPs (resin:hardener = 5:4, 8:7, and 9:8) could be used as electroactive polymers.

  4. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    PubMed Central

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-01-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  5. Three-Dimensional Modeling of Shape Memory Polymers Considering Finite Deformations and Heat Transfer

    E-print Network

    Volk, Brent Louis 1985-

    2012-10-16

    Shape memory polymers (SMPs) are a relatively new class of active materials that can store a temporary shape and return to the original configuration upon application of a stimulus such as temperature. This shape changing ability has led...

  6. Inorganic-Organic Shape Memory Polymers and Foams for Bone Defect Repairs 

    E-print Network

    Zhang, Dawei

    2013-04-16

    The ultimate goal of this research was to develop a “self-fitting” shape memory polymer (SMP) scaffold for the repair of craniomaxillofacial (CMF) bone defects. CMF defects may be caused by trauma, tumor removal or congenital ...

  7. Inorganic-Organic Shape Memory Polymers and Foams for Bone Defect Repairs

    E-print Network

    Zhang, Dawei

    2013-04-16

    The ultimate goal of this research was to develop a “self-fitting” shape memory polymer (SMP) scaffold for the repair of craniomaxillofacial (CMF) bone defects. CMF defects may be caused by trauma, tumor removal or congenital abnormalities...

  8. The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams 

    E-print Network

    Yu, Ya-Jen

    2012-07-16

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams...

  9. Assessment and preliminary model development of shape memory polymers mechanical counter pressure space suits

    E-print Network

    Wee, Brian (Brian J.)

    2013-01-01

    This thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination ...

  10. Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations

    Microsoft Academic Search

    Vikas Srivastava; Shawn A. Chester; Lallit Anand

    2010-01-01

    With the aim of developing a thermo-mechanically coupled large-deformation constitutive theory and a numerical-simulation capability for modeling the response of thermally actuated shape-memory polymers, we have (i) conducted large strain compression experiments on a representative shape-memory polymer to strains of approximately unity at strain rates of 10?3 and 10?1s?1, and at temperatures ranging from room temperature to approximately 30°C above

  11. Vascular Dynamics of a Shape Memory Polymer Foam Aneurysm Treatment Technique

    Microsoft Academic Search

    Jason Ortega; Duncan Maitland; Tom Wilson; William Tsai; Ömer Sava?; David Saloner

    2007-01-01

    The vascular dynamics of a shape memory polymer foam aneurysm treatment technique are assessed through the simulated treatment\\u000a of a generic basilar aneurysm using coupled fluid dynamics and heat transfer calculations. The shape memory polymer foam,\\u000a which expands to fill the aneurysm when heated, is modeled at three discrete stages of the treatment procedure. To estimate\\u000a an upper bound for

  12. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers

    Microsoft Academic Search

    Muhammad Yasar Razzaq; Mathias Anhalt; Lars Frormann; Bernd Weidenfeller

    2007-01-01

    Thermal, electrical and magnetic properties of polyurethane shape memory polymer (SMP) samples filled with 0–40vol% magnetite particles prepared by mixing and injection molding were investigated. Shape recovery in the shape memory polymer was initiated by a magnetizing field of H=4.4kA\\/m at a frequency f=50Hz. Electric resistivity was decreased by magnetite particles from ?el?1010?m to ?el?106?m. The percolation threshold is achieved

  13. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge

    Microsoft Academic Search

    Xin Lan; Yanju Liu; Haibao Lv; Xiaohua Wang; Jinsong Leng; Shanyi Du

    2009-01-01

    This paper investigates the shape recovery behavior of thermoset styrene-based shape-memory polymer composite (SMPC) reinforced by carbon fiber fabrics, and demonstrates the feasibility of using an SMPC hinge as a deployable structure. The major advantages of shape-memory polymers (SMPs) are their extremely high recovery strain, low density and low cost. However, relatively low modulus and low strength are their intrinsic

  14. Nanostructural Patterning Improves the Performance of Non-volatile Polymer Memory Devices

    NASA Astrophysics Data System (ADS)

    Sung, Seung Hyun; Boudouris, Bryan W.

    2015-03-01

    Organic nonvolatile memory devices based on polymer ferroelectric materials are a promising approach toward the development of low-cost memory due to the ease of processing and flexibility associated with the device. Here, we focus on a memory device with a two-component active layer and a diode structure. This ferroelectric diode (FeD) has a nanostructured active layer, composed of ferroelectric and semiconducting polymers, and it can provide easy access to high-performance polymer-based memory devices. In order to create these nanostructured active layers, we have utilized electron beam (e-beam) lithography for the simple fabrication of a desired pattern on the ferroelectric polymer layer. Then, a semiconducting polymer was deposited into the nanoporous ferroelectric layer to complete the ordered heterojunction. By optimizing the nanostructure, the memory retention and ON/OFF current density ratio performance of FeD is greatly enhanced (e . g . , the ON/OFF ratio is a factor of 3 greater) over a traditional blended diode. This ability to control the ferroelectric polymer morphology will open new fields of evaluating in the relationships between structure and performance in organic memory devices.

  15. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.

    PubMed

    Zhang, Hongji; Zhao, Yue

    2013-12-26

    Shape-memory and stimuli-healable polymers (SMP and SHP) are two types of emerging smart materials. Among the many stimuli that can be used to control SMP and SHP, light is unique because of its unparalleled remote activation and spatial control. Generally, light-triggered shape memory and optically healable polymers are different polymers and it is challenging to endow the same polymer with the two light-triggered functions because of their structural incompatibility. In this paper, we describe a general polymer design that allows a single material to exhibit both light-controlled shape memory and optical healing capabilities. We show that by chemically cross-linking a crystalline polymer and loading it with a small amount of gold nanoparticles (AuNPs), the polymer displays optically controllable shape memory and fast optical healing based on the same localized heating effect arising from the surface plasmon resonance of AuNPs. The photothermal effect controls, on the one hand, the shape memory process by tuning the temperature with respect to Tm of the crystalline phase and, on the other hand, activates the damage healing through crystal melting and recrystallization. Moreover, we show that these two features can be triggered separately in a sequential manner. PMID:24308556

  16. Durability Assessment of Styrene and Epoxy-based Shape-memory Polymer Resins

    Microsoft Academic Search

    G. P. Tandon; K. Goecke; K. Cable; J. Baur

    2009-01-01

    The present study is a baseline assessment of the durability of styrene- and epoxy-based shape memory polymer resin materials being considered for morphing applications when exposed to service environment. The approach for the experimental evaluation is a measurement of the shape memory properties and elastomeric response before and after separate environmental exposure to (i) water at 49°C for 4 days,

  17. A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation

    Microsoft Academic Search

    Thao. D. Nguyen; H. Jerry Qi; Francisco Castro; Kevin N. Long

    2008-01-01

    A thermoviscoelastic constitutive model is developed for amorphous shape memory polymers (SMP) based on the hypothesis that structural and stress relaxation are the primary molecular mechanisms of the shape memory effect and its time-dependence. This work represents a new and fundamentally different approach to modeling amorphous SMPs. A principal feature of the constitutive model is the incorporation of the nonlinear

  18. Chromogenic Photonic Crystals Enabled by Novel Vapor-Responsive Shape-Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Choi, Baeck; Leo, Sin-Yen; Gao, Jian; Ge, Beverly; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-06-01

    A new type of shape-memory polymer (SMP) is developed by integrating scientific principles drawn from two disparate fields: the fast-growing photonic crystal and SMP technologies. This new SMP enables room-temperature operation for the entire shape-memory cycle and instantaneous shape recovery triggered by exposure to a variety of organic vapors. PMID:25981680

  19. Autonomous, hands-free shape memory in glassy, liquid crystalline polymer networks.

    PubMed

    Lee, Kyung Min; Bunning, Timothy J; White, Timothy J

    2012-06-01

    Repeatedly forming temporary shapes can be a limitation to the employment of shape memory polymers. This work utilizes glassy, liquid crystal polymer networks to spontaneously form 3D shapes that are independent of a user. These shapes are autonomously fixed with rapid temperature cycling. PMID:22535595

  20. Mechanical and Curing Properties of a Styrene-based Shape Memory Polymer

    Microsoft Academic Search

    Richard Beblo; Korey Gross; Lisa Mauck Weiland

    2010-01-01

    Presented is an experimental investigation into the characteristics of a particular styrene-based shape memory polymer, Veriflex®. Tensile, 3 point bend, and creep tests are conducted yielding the Young’s modulus, yield strength, flexural modulus, flexure strength, and creep modulus of the polymer both above and below the glass transition temperature. The results of the characterization may be used to populate a

  1. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  2. Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase

    PubMed Central

    Simone, Eric A.; Dziubla, Thomas D.; Discher, Dennis E.; Muzykantov, Vladimir R.

    2009-01-01

    Therapeutic proteins are prone to inactivation by aggregation, proteases and natural inhibitors, motivating development of protective delivery systems. Here we focus on protective encapsulation of the potent antioxidant enzyme, catalase, by filamentous polymer nanocarriers (f-PNC), with the specific goal of addressing whether polymer molecular weight (MW) controls formation and structural properties such as size and stiffness. While maintaining the same MW ratio of polyethylene glycol (PEG) to polylactic acid (PLA), a series of PEG-b-PLA diblock copolymers were synthesized, with total MW ranging from about 10 kg/mol to 100 kg/mol. All diblocks formed f-PNC upon processing, which encapsulated active enzyme that proved resistant to protease degradation. Further, f-PNC stiffness, length, and thickness increased with increasing MW. Interestingly, heating above a polymer's glass transition temperature (<30°C) increased f-PNC flexibility. Thus we report here for the first time f-PNC that encapsulate an active enzyme with polymer MW-tunable flexibility, offering several potential therapeutic applications. PMID:19385657

  3. Micro devices using shape memory polymer patches for mated connections

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Fitch, Joseph P. (Livermore, CA)

    2000-01-01

    A method and micro device for repositioning or retrieving miniature devices located in inaccessible areas, such as medical devices (e.g., stents, embolic coils, etc.) located in a blood vessel. The micro repositioning or retrieving device and method uses shape memory polymer (SMP) patches formed into mating geometries (e.g., a hoop and a hook) for re-attachment of the deposited medical device to a catheter or guidewire. For example, SMP or other material hoops are formed on the medical device to be deposited in a blood vessel, and SMP hooks are formed on the micro device attached to a guidewire, whereby the hooks on the micro device attach to the hoops on the medical device, or vice versa, enabling deposition, movement, re-deposit, or retrieval of the medical device. By changing the temperature of the SMP hooks, the hooks can be attached to or released from the hoops located on the medical device. An exemplary method for forming the hooks and hoops involves depositing a sacrificial thin film on a substrate, patterning and processing the thin film to form openings therethrough, depositing or bonding SMP materials in the openings so as to be attached to the substrate, and removing the sacrificial thin film.

  4. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  5. A Processable Shape Memory Polymer System for Biomedical Applications.

    PubMed

    Hearon, Keith; Wierzbicki, Mark A; Nash, Landon D; Landsman, Todd L; Laramy, Christine; Lonnecker, Alexander T; Gibbons, Michael C; Ur, Sarah; Cardinal, Kristen O; Wilson, Thomas S; Wooley, Karen L; Maitland, Duncan J

    2015-06-01

    Polyurethane shape memory polymers (SMPs) with tunable thermomechanical properties and advanced processing capabilities are synthesized, characterized, and implemented in the design of a microactuator medical device prototype. The ability to manipulate glass transition temperature (Tg ) and crosslink density in low-molecular weight aliphatic thermoplastic polyurethane SMPs is demonstrated using a synthetic approach that employs UV catalyzed thiol-ene "click" reactions to achieve postpolymerization crosslinking. Polyurethanes containing varying C=C functionalization are synthesized, solution blended with polythiol crosslinking agents and photoinitiator and subjected to UV irradiation, and the effects of number of synthetic parameters on crosslink density are reported. Thermomechanical properties are highly tunable, including glass transitions tailorable between 30 and 105 °C and rubbery moduli tailorable between 0.4 and 20 MPa. This new SMP system exhibits high toughness for many formulations, especially in the case of low crosslink density materials, for which toughness exceeds 90 MJ m(-3) at select straining temperatures. To demonstrate the advanced processing capability and synthetic versatility of this new SMP system, a laser-actuated SMP microgripper device for minimally invasive delivery of endovascular devices is fabricated, shown to exhibit an average gripping force of 1.43 ± 0.37 N and successfully deployed in an in vitro experimental setup under simulated physiological conditions. PMID:25925212

  6. Multifunctional smart material system (MSMS) using shape memory alloys and shape memory polymers

    NASA Astrophysics Data System (ADS)

    Ghosh, Pritha; Rao, Ashwin; Srinivasa, A. R.

    2012-04-01

    A Multifunctional smart material system consists of two or more different smart material phases in the form of a hybrid system, in which every phase performs a different but necessary function. In this work, we show how thermally responsive Shape memory alloys (SMA) and Shape Memory Polymers (SMP) can be combined to form a Multifunctional Smart Material system (MSMS). The transformation temperatures Mf, Ms, As and Af of SMA and the glass transition Tg for the SMP play a critical role in designing such a MSMS. We illustrate how varying the Tg of SMP between the transformation temperatures Mf and Af of SMA results in a multi-state smart bias system with varying stiffnesses. In addition, we establish guidelines for the volume fractions of the individual constituents of such MSMSs to form "smart-bias" tools/devices. We further propose various ideas for smart devices that can operate through three temperature ranges, with one material constituent being passive and the other active at a given temperature.

  7. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  8. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual 'cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields-the fast-growing photonic crystal and shape-memory polymer technologies-enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  9. Modified shape memory cyanate polymers with a wide range of high glass transition temperatures

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Huang, Longnan; Liu, Yanju; Leng, Jinsong

    2012-04-01

    Shape memory cyanate polymers (SMCPs) are a new kind of smart materials, which have huge development potential and a promising future. A series of shape memory cyanate polymers were prepared by cyanate ester and varying content of a linear modifier. The thermal properties of the SMCPs were investigated by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). The SMCPs we prepared have high glass transition temperature and show good heat resistance. The glass transition temperature Tg can be adjusted from 156.9°C to 259.6°C with the modifier. The initial temperature of thermal decomposition comes up to 300°C, which is enough high for the application in aerospace fields. The shape memory polymer we prepared shows a good shape memory effect, as the shape recovery time is less than 65s and the shape recovery rate reaches 95%.

  10. A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone.

    PubMed

    Bai, Yongkang; Jiang, Cheng; Wang, Qihua; Wang, Tingmei

    2013-07-25

    A novel biological friendly shape memory polymer (SMP) based on ethyl cellulose (EC) and polycaprolactone (PCL) was prepared. The network structure of the polymer was formed by linear EC backbones which were linked by grafted PCL chains, and the results showed outstanding mechanical strength and shape memory property of this polymer. The tensile modulus varied from 104.9 to 373.4 MPa while the tensile strength ranged from 155.4 to 323.6 MPa. And the elongations at break were all above 621%. The shape memory switching temperature could be modulated to 37.2°C by decreasing the chain length of graft PCL. As EC and PCL are both biodegradable and biocompatible materials, this new polymer has potential application in biomedical field, like biomedical suture, which would be further studied in the future. PMID:23768596

  11. Genetic Regulation of Fate Decisions in Therapeutic T Cells to Enhance Tumor Protection and Memory Formation.

    PubMed

    Veliça, Pedro; Zech, Mathias; Henson, Sian; Holler, Angelika; Manzo, Teresa; Pike, Rebecca; Santos E Sousa, Pedro; Zhang, Lei; Schiedlmeier, Bernhard; Pule, Martin; Stauss, Hans; Chakraverty, Ronjon

    2015-07-01

    A key challenge in the field of T-cell immunotherapy for cancer is creating a suitable platform for promoting differentiation of effector cells while at the same time enabling self-renewal needed for long-term memory. Although transfer of less differentiated memory T cells increases efficacy through greater expansion and persistence in vivo, the capacity of such cells to sustain effector functions within immunosuppressive tumor microenvironments may still be limiting. We have therefore directly compared the impact of effector versus memory differentiation of therapeutic T cells in tumor-bearing mice by introducing molecular switches that regulate cell fate decisions via mTOR. Ectopic expression of RAS homolog enriched in brain (RHEB) increased mTORC1 signaling, promoted a switch to aerobic glycolysis, and increased expansion of effector T cells. By rapidly infiltrating tumors, RHEB-transduced T cells significantly reduced the emergence of immunoedited escape variants. In contrast, expression of proline-rich Akt substrate of 40 kDa (PRAS40) inhibited mTORC1, promoted quiescence, and blocked tumor infiltration. Fate mapping studies following transient expression of PRAS40 demonstrated that mTORC1(low) T cells made no contribution to initial tumor control but instead survived to become memory cells proficient in generating recall immunity. Our data support the design of translational strategies for generating heterogeneous T-cell immunity against cancer, with the appropriate balance between promoting effector differentiation and self-renewal. Unlike pharmacologic inhibitors, the genetic approach described here allows for upregulation as well as inhibition of the mTORC1 pathway and is highly selective for the therapeutic T cells without affecting systemic mTORC1 functions. Cancer Res; 75(13); 2641-52. ©2015 AACR. PMID:25904681

  12. Programmable and self-demolding microstructured molds fabricated from shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Meier, Tobias; Bur, Julia; Reinhard, Maximilian; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2015-06-01

    We introduce shape memory polymers as materials to augment molds with programmable switching between different micro and nanostructures as functional features of the mold and self-demolding properties. These polymer molds can be used for hot embossing (or nanoimprinting) and casting. Furthermore, they enable the replication of nano- and microstructures on curved surfaces as well as embedded structures like on the inside walls of a microfluidic channel. The shape memory polymer molds can be replicated from master molds fabricated by conventional techniques. We tested their durability for microfabrication processes and demonstrated the advantages of shape memory molds for hot embossing and casting by replicating microstructures with high aspect ratios and optical grade surface quality.

  13. 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity.

    PubMed

    Lee, Sang-Heon; Jung, Jung-Hwan; Oh, Il-Kwon

    2014-10-15

    A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications. PMID:24912455

  14. Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liu, Yanju; Gou, Jihua; Leng, Jinsong; Du, Shanyi

    2010-07-01

    The present paper studies the electrical and shape-memory behavior of self-assembled carbon nanofiber (CNF) nanopaper incorporated with shape-memory polymer (SMP). The morphology and structure of the self-assembled nanopapers were characterized with scanning electron microscopy (SEM). A continuous and compact network was observed from the SEM images, which indicates that the CNF nanopaper could have highly conductive properties. The electrical conductivity of the CNF nanopaper was measured by the four-point probe method and its temperature coefficient effect was studied. Finally, the actuation of SMP was demonstrated by the electrical resistive heating of the CNF nanopaper.

  15. "Grafting to" as a novel and simple approach for triple-shape memory polymers.

    PubMed

    Suchao-in, Kanitporn; Chirachanchai, Suwabun

    2013-08-14

    Maleated-polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (m-SEBS) is a block copolymer with two melting temperatures belonging to soft poly(ethylene-co-butylene) (EB) and hard polystyrene (PS) segments. As EB segments contain anhydride reactive groups, this allows grafting polybutylene succinate (PBS) as another soft segment to m-SEBS backbone to obtain triple-shape memory polymers based on two transition temperatures, i.e., Tm values of EB (at 55-65 °C) and PBS (at 105-115 °C). The present work shows a novel and simple approach of "grafting to" to develop triple-shape memory polymers. PMID:23895373

  16. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers

    PubMed Central

    Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A.

    2006-01-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, Tswitch. If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(?-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25°C resulted in temporary fixation of the mechanical deformation by 50–60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA·m?1). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. PMID:16537442

  17. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers.

    PubMed

    Mohr, R; Kratz, K; Weigel, T; Lucka-Gabor, M; Moneke, M; Lendlein, A

    2006-03-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, T(switch). If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(epsilon-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25 degrees C resulted in temporary fixation of the mechanical deformation by 50-60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA x m(-1)). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. PMID:16537442

  18. Constitutive modeling of the mechanics associated with crystallizable shape memory polymers

    Microsoft Academic Search

    G. Barot; I. J. Rao

    2006-01-01

    .  Shape memory polymers are novel materials that can be easily formed into complex shapes, retaining memory of their original\\u000a shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered\\u000a by a suitable mechanism such as heating. In this paper, we develop constitutive equations to model the mechanical behavior\\u000a of crystallizable shape

  19. Constitutive modeling of shape memory polymer based self-healing syntactic foam

    Microsoft Academic Search

    We Xu; Guoqiang Li

    2010-01-01

    In a previous study, it was found that the shape memory functionality of a shape memory polymer based syntactic foam can be utilized to self-seal impact damage repeatedly, efficiently, and almost autonomously [Li G., John M., 2008. A self-healing smart syntactic foam under multiple impacts. Comp. Sci. Technol. 68(15–16), 3337–3343]. The purpose of this study is to develop a thermodynamics

  20. Mechanical cycling stability of organic thin film transistors on shape memory polymers.

    PubMed

    Avendano-Bolivar, Adrian; Ware, Taylor; Arreaga-Salas, David; Simon, Dustin; Voit, Walter

    2013-06-11

    Organic thin film transistors on shape memory polymers are fabricated by full photolithography. Devices show high mobility (0.2 cm(2) V(-1) s(-1)) and close to zero threshold voltage (-4.5 V) when characterized as fabricated. After 1, 10, and 100 deformation cycles and in a deformed, metastable shape memory transition state, changes in mobility and V(th) are measured and indicate sustained device functionality. PMID:23703745

  1. Two-way actuation behavior of shape memory polymer\\/elastomer core\\/shell composites

    Microsoft Academic Search

    Tae-Hyung Kang; Jeong-Min Lee; Woong-Ryeol Yu; Ji Ho Youk; Hee Wook Ryu

    2012-01-01

    Semi-crystalline shape memory polymers (SMPs) show net two-way shape memory (2W-SM) behavior under constant stresses by the recoverable creep strain upon heating and stress-induced crystallization under the application of creep stress upon cooling. The applied constant stress is the key factor in this 2W-SM behavior. A core\\/shell structure is manufactured for the purpose of imparting a constant stress upon SMPs.

  2. A preliminary study on anti-irradiation performance of epoxy shape memory polymer

    Microsoft Academic Search

    Xuelian Wu; Yanju Liu; Jinsong Leng

    2009-01-01

    As a new class of smart material, shape memory polymer (SMP) receives more and more attention. In this paper, in addition to the fabrication of a new type of epoxy SMP, the thermo-mechanical properties of the polymer with\\/without gamma irradiation were investigated and compared systematically. The radiation source is Co-60 and the total dosage of radiation is 1×104Gy. Changes of

  3. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism

    NASA Astrophysics Data System (ADS)

    Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S.

    2005-03-01

    We demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable). Hydrogen bonding is identified as the reason behind these features. In addition, the absorbed water is quantitatively separated into two parts, namely, the free water and bound water. Their individual contribution on the glass transition temperature is identified.

  4. Shape Memory Polymer Stent With Expandable Foam: A New Concept for Endovascular Embolization of Fusiform Aneurysms

    Microsoft Academic Search

    Ward Small; Patrick R. Buckley; Thomas S. Wilson; William J. Benett; Jonathan Hartman; David Saloner; Duncan J. Maitland

    2007-01-01

    We demonstrate a new concept for endovascular embolization of nonnecked fusiform aneurysms. A device prototype consisting of a stent augmented with expandable foam, both made from shape memory polymer, was fabricated and deployed in an in vitro model. Visual observation indicated that the foam achieved embolization of the aneurysm while the stent maintained an open lumen in the parent artery.

  5. Modeling and Optimization of the Deposition of Shape Memory Polymers for Information Storage Applications

    Microsoft Academic Search

    Edem Wornyo; Gary S. May; Ken Gall

    2009-01-01

    Shape memory polymers are of interest as high-capacity information storage media. This paper seeks to understand the effects of processing conditions on diethylene glycol dimethacrylate (DEGDMA) and bisphenol A ethoxylate dimethacrylate. Full factorial experiments are performed to characterize the impact of the following parameters: spin speed, spin time, and nitrogen flow rate. A total of ten experiments are conducted. The

  6. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress Within Arteriovenous Grafts

    Microsoft Academic Search

    Jason M. Ortega; Ward Small; Thomas S. Wilson; William J. Benett; Jeffrey M. Loge; Duncan J. Maitland

    2007-01-01

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by dialysis needle flow impingement within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. Preliminary in vitro flow visualization measurements are made within a graft model

  7. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer

    Microsoft Academic Search

    B. Yang; W. M. Huang; C. Li; L. Li

    2006-01-01

    The glass transition temperature of an ether-based polyurethane shape memory polymer (SMP) has been found to decrease significantly after immersion in water. In order to get a better understanding of the mechanism behind this phenomenon, a systematic study on the effects of moisture on the glass transition temperature and thermomechanical properties of this SMP was carried out. The results reveal

  8. Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers

    Microsoft Academic Search

    Jinsong Leng; Haibao Lv; Yanju Liu; Shanyi Du

    2007-01-01

    In addition to the fabrication of shape-memory thermoset polymer nanocomposites filled with conductive nanoparticles and fiber fillers, this paper is focused on factors which would influence the electrical property of this type of material. It is shown that the particulate additives are dispersed homogeneously within the matrix and served as interconnections between the fibers, while the fibrous additives act as

  9. A thermodynamic framework for the modeling of crystallizable shape memory polymers

    Microsoft Academic Search

    G. Barot; I. J. Rao; K. R. Rajagopal

    2008-01-01

    Shape memory polymers are a relatively new class of materials that have the ability to retain a temporary shape, which can be reset to the original shape with the use of a suitable trigger, typically an increase in temperature. The temporary shapes can be very complex and the deformations involved large. These materials are finding use in a large variety

  10. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism

    Microsoft Academic Search

    W. M. Huang; B. Yang; L. An; C. Li; Y. S. Chan

    2005-01-01

    We demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable). Hydrogen bonding is identified as the reason behind these features. In addition, the absorbed water is quantitatively separated into two parts, namely, the free water and bound water. Their individual contribution on the glass transition temperature is identified.

  11. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains

    Microsoft Academic Search

    J. S. Leng; X. Lan; Y. J. Liu; S. Y. Du; W. M. Huang; N. Liu; S. J. Phee; Q. Yuan

    2008-01-01

    The electrical resistivity of a thermoresponsive polyurethane shape-memory polymer (SMP) filled with micron sized Ni powders is investigated in this letter. We show that, by forming conductive Ni chains under a weak static magnetic field (0.03 T), the electrical conductivity of the SMP composite in the chain direction can be improved significantly, which makes it more suitable for Joule heat

  12. On the effects of moisture in a polyurethane shape memory polymer

    Microsoft Academic Search

    B. Yang; W. M. Huang; C. Li; C. M. Lee; L. Li

    2004-01-01

    It was observed that the polyurethane shape memory polymer (SMP) loses its shape fixing capability after being exposed in the air at room temperature for several days. A significant indication for this change is the continuous decrease of the glass transition temperature (Tg) of polyurethane. Accompanying the decrease of Tg, the uniaxial tensile behaviour also changes. Differential scanning calorimetry (DSC)

  13. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    Microsoft Academic Search

    Patrick R. Buckley; Gareth H. McKinley; Thomas S. Wilson; Ward Small; William J. Benett; Jane P. Bearinger; Michael W. McElfresh; Duncan J. Maitland

    2006-01-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical

  14. Dynamic cell behavior on shape memory polymer substrates Kevin A. Davis a,b

    E-print Network

    Mather, Patrick T.

    in cell alignment as evidenced by an increase in angular dispersion with corresponding remodeling topography have been shown to direct cell alignment, cell adhesion, and cell traction forces [5e12], whileDynamic cell behavior on shape memory polymer substrates Kevin A. Davis a,b , Kelly A. Burke b

  15. a Glass Transition Model for Shape Memory Polymer and its Composite

    Microsoft Academic Search

    Bo Zhou; Yan-Ju Liu; Xin Lan; Jin-Song Leng; Sung-Ho Yoon

    2009-01-01

    As novel smart materials, shape memory polymer (SMP) and its composite (SMPC) have the ability to regain its original shape after undergoing significant deformation upon heating or other external stimuli such as light, chemic condition and so on. Their special behaviors much depends on the glass transitions due to the increasing of material temperature. Dynamic Mechanical Analysis (DMA) tests are

  16. Model Development and Simulation of the Response of Shape Memory Polymers 

    E-print Network

    Ghosh, Pritha 1983-

    2012-08-15

    The aim of this work is to develop and validate a continuum model for the simulation of the thermomechanical response of a shape memory polymer (SMP). Rather than integral type viscoelastic model, the approach here is based on the idea of two inter...

  17. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Microsoft Academic Search

    Géraldine M Baer; Ward Small IV; Thomas S Wilson; William J Benett; Dennis L Matthews; Jonathan Hartman; Duncan J Maitland

    2007-01-01

    BACKGROUND: Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe

  18. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    NASA Astrophysics Data System (ADS)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  19. [Diagnostic, forensic and therapeutic-ethical aspects of false memory of sexual abuse induced by psychotherapy].

    PubMed

    Simmich, T

    1999-11-01

    This article examines the risk of false memories induced by psychotherapy with special regard to sexual abuse. Current psychological constructs based on depth psychology are reviewed critically. The multitude of psychological disorders connected with sexual abuse in recent time and a subjectivistic misunderstanding of empathy frequently lead sometimes to uncritical acceptance of anamnestic reports about sexual abuse. Thus, the question of what really happened often is risen not before forensic appraisals. It can be shown that the descriptive psychiatric view and depth psychological oriented constructs tend to compete with each other with the consequence of different results in therapeutic practise and forensic appraisal if inappropriately applied. The author shows how to distinct between induced delusional symptoms and dissociative phenomena. Furthermore he draws attention on the ethically doubtful long-term results of a not correctly indicated use of psychological constructs based on depth psychology about extreme traumatization in the psychotherapy of strongly suggestible patients. PMID:10603595

  20. Helper Function of Memory CD8+ T Cells: Heterologous CD8+ T Cells Support the Induction of Therapeutic Cancer Immunity

    Microsoft Academic Search

    Yutaro Nakamura; Julie Urban; Brian Sheridan; Adam Giermasz; Fumihiko Nishimura; Kotaro Sasaki; Rachel Cumberland; Ravikumar Muthuswamy; Robbie B. Mailliard; Adriana T. Larregina; Louis D. Falo; William Gooding; Walter J. Storkus; Hideho Okada; Robert L. Hendricks; Pawel Kalinski

    In contrast to the well-established efficacy of preventive vaccines, the effectiveness of therapeutic vaccines remains limited. To develop effective vaccination regimens against cancer, we have analyzed the effect of effector and memory CD8+ T cells on the ability of dendritic cells to mediate the immunologic and antitumor effects of vaccination. We show that in contrast to effector CD8+ T cells

  1. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device. PMID:20540553

  2. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds

    Microsoft Academic Search

    Nicolas N. Madigan; Siobhan McMahon; Timothy O’Brien; Michael J. Yaszemski; Anthony J. Windebank

    2009-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the

  3. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds?

    PubMed Central

    Madigan, Nicolas N.; McMahon, Siobhan; O’Brien, Timothy; Yaszemski, Michael J.; Windebank, Anthony J.

    2010-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the spinal cord conveying innervation for breathing represent an important and achievable therapeutic target. The aim is to derive new neuronal tissue from the surrounding, healthy cord that will be guided by the polymer implant through the injured area to make functional reconnections. A variety of naturally derived and synthetic biomaterial polymers have been developed for placement in the injured spinal cord. Axonal growth is supported by inherent properties of the selected polymer, the architecture of the scaffold, permissive microstructures such as pores, grooves or polymer fibres, and surface modifications to provide improved adherence and growth directionality. Structural support of axonal regeneration is combined with integrated polymeric and cellular delivery systems for therapeutic drugs and for neurotrophic molecules to regionalize growth of specific nerve populations. PMID:19737633

  4. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.

    PubMed

    Hwang, Sun Kak; Min, Sung-Yong; Bae, Insung; Cho, Suk Man; Kim, Kang Lib; Lee, Tae-Woo; Park, Cheolmin

    2014-05-28

    One-dimensional nanowires (NWs) have been extensively examined for numerous potential nano-electronic device applications such as transistors, sensors, memories, and photodetectors. The ferroelectric-gate field effect transistors (Fe-FETs) with semiconducting NWs in particular in combination with ferroelectric polymers as gate insulating layers have attracted great attention because of their potential in high density memory integration. However, most of the devices still suffer from low yield of devices mainly due to the ill-control of the location of NWs on a substrate. NWs randomly deposited on a substrate from solution-dispersed droplet made it extremely difficult to fabricate arrays of NW Fe-FETs. Moreover, rigid inorganic NWs were rarely applicable for flexible non-volatile memories. Here, we present the NW Fe-FETs with position-addressable polymer semiconducting NWs. Polymer NWs precisely controlled in both location and number between source and drain electrode were achieved by direct electrohydrodynamic NW printing. The polymer NW Fe-FETs with a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) exhibited non-volatile ON/OFF current margin at zero gate voltage of approximately 10(2) with time-dependent data retention and read/write endurance of more than 10(4) seconds and 10(2) cycles, respectively. Furthermore, our device showed characteristic bistable current hysteresis curves when being deformed with various bending radii and multiple bending cycles over 1000 times. PMID:24644019

  5. Thermomechanical properties of multiwalled carbon nanotube reinforced shape-memory polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhong, Jing; Xian, Guijun; Li, Lui

    2010-04-01

    In the present study, multiwalled carbon nanotubes (MWCNTs) reinforced shape memory polymer (SMP) nanocomposites were prepared with a high shear mixing process. The shape memory effect and thermomechanical behaviors were characterized. A well dispersion of MWCNTs in SMP were reached with the current mixing process and brought in enhanced mechanical properties. The glass transition temperature of the nanocomposites does not vary with the MWCNT content. In the glass transition range, the addition of MWCNTs enhances the modulus of the SMP significantly, indicating the increased recovery force. The constrained recovery stress increased with the addition of carbon nanotubes.

  6. Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties

    PubMed Central

    Hearon, Keith; Nash, Landon D.; Volk, Brent L.; Ware, Taylor; Lewicki, James P.; Voit, Walter E.; Wilson, Thomas S.

    2014-01-01

    Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing. Neurovascular stent prototypes were fabricated by dip-coating and laser machining to demonstrate processability. PMID:25411531

  7. Polymer hydrogels with the memory effect for immobilization of drugs

    Microsoft Academic Search

    V. N. Pavlyuchenko; S. S. Ivanchev; O. N. Primachenko; S. Ya. Khaikin; V. F. Danilichev; V. S. Proshina; V. A. Trunov; V. T. Lebedev; Yu. V. Kul’velis

    2011-01-01

    Hydrogels with the memory effect are synthesized from crosslinked copolymers of 2-hydroxyethyl methacrylate and functional\\u000a monomers (acrylic acid or dimethylaminoethyl methacrylate) via the method of template synthesis with the use of the drug cephazoline\\u000a as a matrix. It is shown that the hydrogels show an increased sorption activity against the target drug and a slow rate of\\u000a drug release from

  8. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    NASA Astrophysics Data System (ADS)

    Caraveo-Frescas, J. A.; Khan, M. A.; Alshareef, H. N.

    2014-06-01

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm2V-1s-1, large memory window (~16 V), low read voltages (~-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

  9. Viscosity-Based Constitutive Model for the Nonlinear Deformations of Shape Memory Network Polymers

    NASA Astrophysics Data System (ADS)

    Westbrook, Kristofer; Castro, Francisco; Qi, H. Jerry

    2010-03-01

    Shape memory polymers (SMP) are materials that can recover a large pre-deformed shape in response to environmental stimuli. This capability makes SMPs suitable materials for applications such as smart fabrics, biomedical devices and deployable structures. For a thermally induced amorphous SMP, the pre-deformation and recovery of the shape require the SMP to traverse its glass transition temperature (Tg) to complete the shape memory (SM) cycle. The dramatic change in viscosity (molecular chain mobility) as the temperature traverses the Tg is the underlying mechanism of the SM effect. As the temperature decreases from above to below the Tg, the material exhibits a transition from a low to high viscosity and the material relaxation increases substantially. Here, the mechanical response of an acrylate-based polymer network is characterized under various thermomechanical histories. A constitutive model is developed to capture the material behavior and implemented to predict responses of the material in specific biomedical applications.

  10. Deformation analysis of shape memory polymer for morphing wing skin under airflow

    Microsoft Academic Search

    Weilong Yin; Jingcang Liu; Jinsong Leng

    2009-01-01

    The method for analyzing the out-of-plane deformation of a flexible skin under airflow is developed in this paper. The aerodynamic\\u000a analysis is performed using the CFD software, and the structural analysis is performed using finite element method. The chief\\u000a aim of the present study is to investigate the out-of-plane deformation of the shape memory polymer (SMP) skin at different\\u000a temperatures.

  11. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    Microsoft Academic Search

    Shuo-Gui Xu; Peng Zhang; Guang-Ming Zhu; Ying-Ming Jiang

    2011-01-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors.\\u000a 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier\\u000a and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured\\u000a and evaluated for both the BSMP and

  12. Characterization of shear deformation and strain recovery behavior in shape memory polymers

    Microsoft Academic Search

    Fazeel Khan; Jeong-Hoi Koo; David Monk; Eric Eisbrenner

    2008-01-01

    The large strain deformation behavior of a styrene-based shape memory polymer (SMP) has been investigated in tensile- and shear-loading conditions with the aim of characterizing the mechanical properties. Of particular interest is the recovery behavior, which is critical for the development of new SMP-based applications, and the effect of filler-loading. Magnetite and iron spherical nano-particles have been used as fillers.

  13. Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays.

    PubMed

    Chen, Chi-Mon; Yang, Shu

    2014-02-26

    A reconfigurable, droplet-directing surface is developed based on high-aspect-ratio shape-memory polymer (SMP) pillars. The water droplet on the original or recovered SMP pillars can slide off the surface at a finite angle of inclination while being fully pinned on the deformed pillar array. This wettability contrast allows directed water shredding from the straight pillars to the deformed ones. PMID:24293288

  14. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization

    Microsoft Academic Search

    Guoqiang Li; Naveen Uppu

    2010-01-01

    In this study, the thermomechanical behavior of a shape memory polymer (SMP) based syntactic foam under three-dimensional (3-D) confinement was investigated through strain-controlled programming and fully confined shape recovery tests. The 3-D confinement was created by encasing the foam in circular confining tubes and subjecting the foam cylinder to uniaxial compression. The parameters investigated included two programming temperatures, three types

  15. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization

    Microsoft Academic Search

    C. M. Yakacki; M. B. Lyons; B. Rech; K. Gall; R. Shandas

    2008-01-01

    Shape-memory polymers (SMPs) are being increasingly proposed for use in biomedical devices. This paper investigates the cytotoxicity, surface characteristics and thermomechanics of two acrylate-based SMP networks as a function of sterilization using a minimal essential media elution test, FTIR-ATR and dynamic mechanical analysis (DMA). Networks sterilized by low-temperature plasma elicited a cytotoxic response and are shown to completely destroy the

  16. A biomimic shape memory polymer based self-healing particulate composite

    Microsoft Academic Search

    Jones Nji; Guoqiang Li

    2010-01-01

    In a previous study, a biomimic two-step self-healing scheme (close-then-heal (CTH)) by mimicking human skin has been proposed for self-healing structural-length scale damage [Li and Uppu. Composites Science and Technology 2010; 70: 1419–1427]. The purpose of this study is to validate this idea by fabricating a composite with thermoplastic particles (Copolyster) dispersed in a shape memory polymer matrix (Veriflex Polystyrene).

  17. Shape-memory polymers and their composites: Stimulus methods and applications

    Microsoft Academic Search

    Jinsong Leng; Xin Lan; Yanju Liu; Shanyi Du

    2011-01-01

    Shape-memory polymers (SMPs) undergo significant macroscopic deformation upon the application of an external stimulus (e.g., heat, electricity, light, magnetism, moisture and even a change in pH value). They have been widely researched since the 1980s and are an example of a promising smart material. This paper aims to provide a comprehensive review of SMPs, encompassing a fundamental understanding of the

  18. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    Microsoft Academic Search

    Jones Nji; Guoqiang Li

    2010-01-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and

  19. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    Microsoft Academic Search

    Manu John; Guoqiang Li

    2010-01-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined

  20. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

    PubMed Central

    Eldar-Boock, Anat; Miller, Keren; Sanchis, Joaquin; Lupu, Ruth; Vicent, María J.; Satchi-Fainaro, Ronit

    2011-01-01

    Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)2] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the ?v?3 integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)2] inhibited the growth of proliferating ?v?3-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)2] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced antitumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice. PMID:21376390

  1. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding.

    PubMed

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L; Maitland, Duncan J; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (T(g)) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of T(g) from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  2. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding

    PubMed Central

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  3. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder

    Microsoft Academic Search

    Bin Yang; Wei Min Huang; Chuan Li; Jun Hoe Chor

    2005-01-01

    One simple approach to produce electrically conductive polymers is to fill them with conductive powders. This paper investigates the effects of moisture on the glass transition temperature of a polyurethane shape memory polymer (SMP) filled with nano-carbon powders. It is found that the SMP composites before immersion in water have a slightly lower glass transition temperature, and in the mean

  4. Nanoscale indent formation in shape memory polymers using a heated probe tip

    NASA Astrophysics Data System (ADS)

    Yang, F.; Wornyo, E.; Gall, K.; King, W. P.

    2007-07-01

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a heated atomic force microscope (AFM) cantilever at various temperatures near or above the glass transition (between 84 and 215 °C) and a range of heating durations from 100 µs to 8 ms. The images of the indents were obtained with the same probe tip at room temperature. The contact pressure, a measure of transient hardness, was derived from the indentation height data as a function of time and temperature for different polymers. With increasing crosslinker molecular weight and decreasing crosslinker concentration, the contact pressures decreased at a fixed maximum load due to increased crosslink spacing in the polymer system. The results provide insight into the nanoscale response of these novel materials.

  5. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber/matrix structure, allowing them to function in a synergistic fashion yet remain physically separated. This latter aspect is critical since it enables the control of overall composite properties and functions by separately tuning each component. Utilizing the intrinsic versatility of this approach, composites with novel properties and functions (in addition to "regular" shape memory) have been developed, including (1) shape memory elastomeric composites (SMECs; Chapter 4), (2) triple-shape polymeric composites (TSPCs; Chapter 5), and (3) electrically conductive nanocomposites (Chapter 6). Then in Chapter 7, by combining the success in both thermoplastic based self-healing and shape memory polymer composites, we demonstrate a thermally triggered self-healing coating. This coating features a unique "shape memory assisted self-healing" mechanism in which crack closure (via shape memory) and crack re-bonding (via melting and diffusion of the thermoplastic healing agent) are achieved simultaneously upon a single heating step, leading to both structural and functional (corrosion resistance) recovery. Finally, Chapter 8 presents for the first time the preparation of functionally graded shape memory polymers (SMPs) that, unlike conventional SMPs, have a range of glass transition temperatures that are spatially graded. This was achieved using a temperature gradient curing method that imposes different vitrification limits at different positions along the gradient. The resulting material is capable of responding to a wide range of thermal triggers and a good candidate for low-cost, material based temperature sensors. All the aforementioned materials and methods show great potential for practical applications due to their high performance, low cost and broad applicability. Some recommendations for future research and development are given in Chapter 9.

  6. Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell

    NASA Astrophysics Data System (ADS)

    Shi, Guanghui; Yang, Qingsheng; Zhang, Qiang

    2011-11-01

    Shape memory polymer(SMP) is a class of smart materials used in intelligent biomedical devices and industrial application as sensors or actuators for their ability to change shape under a predetermined stimulus. Carbon nanotube (CNT)/shape memory polymer (SMP) composites demonstrate good mechanical properties and shape memory effect. In this work, a model of CNT/SMP composite shell with a vaulted cross-section was established. This composite shell structure could further elevate the recovery stress of CNT/SMP composites. The folding properties of CNT/SMP composite shell structure were analyzed by finite element method and the influence of structural parameters on the buckling behavior of the shell was studied using the energy conservation principle. The results indicate that vaulted cross-section shell had unique mechanical properties. The structural parameters, such as the vaulted radius and the total length have a great impact on buckling moment of the shell. This shell structure is expected to achieve effective control of buckling and deploying process, relying on the special shape memory property of SMP and high elastic modulus CNTs. Moreover, it could also largely avoid the vibration problem during the deploying process.

  7. Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell

    NASA Astrophysics Data System (ADS)

    Shi, Guanghui; Yang, Qingsheng; Zhang, Qiang

    2012-04-01

    Shape memory polymer(SMP) is a class of smart materials used in intelligent biomedical devices and industrial application as sensors or actuators for their ability to change shape under a predetermined stimulus. Carbon nanotube (CNT)/shape memory polymer (SMP) composites demonstrate good mechanical properties and shape memory effect. In this work, a model of CNT/SMP composite shell with a vaulted cross-section was established. This composite shell structure could further elevate the recovery stress of CNT/SMP composites. The folding properties of CNT/SMP composite shell structure were analyzed by finite element method and the influence of structural parameters on the buckling behavior of the shell was studied using the energy conservation principle. The results indicate that vaulted cross-section shell had unique mechanical properties. The structural parameters, such as the vaulted radius and the total length have a great impact on buckling moment of the shell. This shell structure is expected to achieve effective control of buckling and deploying process, relying on the special shape memory property of SMP and high elastic modulus CNTs. Moreover, it could also largely avoid the vibration problem during the deploying process.

  8. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers

    NASA Astrophysics Data System (ADS)

    Qi, H. Jerry; Nguyen, Thao D.; Castro, Francisco; Yakacki, Christopher M.; Shandas, Robin

    Shape memory polymers (SMPs) are polymers that can demonstrate programmable shape memory effects. Typically, an SMP is pre-deformed from an initial shape to a deformed shape by applying a mechanical load at the temperature TH> Tg. It will maintain this deformed shape after subsequently lowering the temperature to TL< Tg and removing the externally mechanical load. The shape memory effect is activated by increasing the temperature to TD> Tg, where the initial shape is recovered. In this paper, the finite deformation thermo-mechanical behaviors of amorphous SMPs are experimentally investigated. Based on the experimental observations and an understanding of the underlying physical mechanism of the shape memory behavior, a three-dimensional (3D) constitutive model is developed to describe the finite deformation thermo-mechanical response of SMPs. The model in this paper has been implemented into an ABAQUS user material subroutine (UMAT) for finite element analysis, and numerical simulations of the thermo-mechanical experiments verify the efficiency of the model. This model will serve as a modeling tool for the design of more complicated SMP-based structures and devices.

  9. Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations

    NASA Astrophysics Data System (ADS)

    Srivastava, Vikas; Chester, Shawn A.; Anand, Lallit

    2010-08-01

    With the aim of developing a thermo-mechanically coupled large-deformation constitutive theory and a numerical-simulation capability for modeling the response of thermally actuated shape-memory polymers, we have (i) conducted large strain compression experiments on a representative shape-memory polymer to strains of approximately unity at strain rates of 10 -3 and 10 -1 s -1, and at temperatures ranging from room temperature to approximately 30 °C above the glass transition temperature of the polymer; (ii) formulated a thermo-mechanically coupled large-deformation constitutive theory; (iii) calibrated the material parameters appearing in the theory using the stress-strain data from the compression experiments; (iv) numerically implemented the theory by writing a user-material subroutine for a widely used finite element program; and (v) conducted representative experiments to validate the predictive capability of our theory and its numerical implementation in complex three-dimensional geometries. By comparing the numerically predicted response in these validation simulations against measurements from corresponding experiments, we show that our theory is capable of reasonably accurately reproducing the experimental results. As a demonstration of the robustness of the three-dimensional numerical capability, we also show results from a simulation of the shape-recovery response of a stent made from the polymer when it is inserted in an artery modeled as a compliant elastomeric tube.

  10. Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Wu, Xuelian; Liu, Yanju

    2009-09-01

    The effect of a linear monomer on thermomechanical properties and shape recovery behavior of an epoxy shape-memory polymer is studied. These shape-memory polymers are prepared from epoxy base resin, hardener and linear epoxy monomer. As the content of the linear monomer increases, the glass transition temperature (Tg) determined using differential scanning calorimetry ranges from 37 to 96 °C. A decrease in rubber modulus is seen from dynamic mechanical analysis for the polymers, which reveals decreasing crosslink density with increasing linear monomer content. Tensile test results show that the elongation at break and strength depends on the content of linear monomer at Tg or Tg-20 °C, while the linear monomer content has minor influence on elongation at break and strength at Tg+20 °C. Finally, investigation on shape recovery behavior reveals that full recovery can be observed for each polymer when the temperature is equal to or above Tg. Also, increasing the linear monomer content results in a decrease in both shape recovery ratio (below Tg) and shape recovery speed (at Tg). These results are interpreted in terms of various crosslink densities attributed to the increasing linear monomer content.

  11. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.

    PubMed

    Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun

    2014-05-01

    Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. PMID:24446274

  12. Shape-Memory Polymers Based on Fatty Acid-Filled Elastomeric Ionomers

    NASA Astrophysics Data System (ADS)

    Izzo, Elise; Weiss, Robert

    2009-03-01

    Shape memory polymers (SMPs) have applications as medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures. All previous design of SMPs has involved synthesizing new polymers or modifying existing polymers. This paper describes a new type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or their salts (FAS). Shape memory elastomers were prepared from mixtures of a sulfonated EPDM ionomer and various amounts of a FAS (e.g., zinc stearate, zinc oleate, and various aliphalic acids). Nanophase separation of the metal sulfonate groups provided the ``permanent'' crosslinks, while sub-microscopic crystals of the low molecular weight FAS provided a physical crosslink needed for the temporary shape. The material was deformed above the melting point of the FAS and the new shape was fixed by cooling the material while under stress to below the melting point of the FAS. Polar interactions between the ionomer and the FAS stabilized the dispersion of the FAS in the polymer and provided the continuity between the phases that allowed the crystals of the FAS to provide a second network of physical crosslinks. The temporary shape was erased and the material returned to the primary shape by heating above the melting point of the FAS.

  13. Towards Therapeutic Applications of Arthropod Venom K+-Channel Blockers in CNS Neurologic Diseases Involving Memory Acquisition and Storage

    PubMed Central

    Gati, Christiano D. C.; Mortari, Márcia R.; Schwartz, Elisabeth F.

    2012-01-01

    Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms. PMID:22701481

  14. Investigation of mechanical and conductive properties of shape memory polymer composite (SMPC)

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Lan, Xin; Lv, Haibao; Zhang, Dawei; Liu, Yanju; Du, Shanyi

    2007-04-01

    This paper is concerned about an investigation of mechanical and electrical conductive properties of carbon fiber fabric reinforced shape memory polymer composite (SMPC). The shape memory polymer (SMP) is a thermoset styrene-based resin. SMP is a promising smart material, which is under intensive investigation at present. Its primary advantages over other smart materials are the high strain capacity (200% reversible strain), low density and low cost etc.. But its major drawbacks are low strength, low modulus and low recovery stress. So the fiber reinforced SMPC was naturally considered to be investigated in this paper, which may overcome the disadvantages mentioned above. The investigation was conducted with experimental methods: Dynamic Mechanical Analyzer (DMA), static and mechanical cycle loading tests, microscope observation of microstructural deformation mechanism, conductivity and shape recovery tests. Results indicated that SMPC showed higher glass transition temperature (T g) than neat SMP and improved the storage modulus, bending modulus, strength and resistance against relaxation and creep. Both fiber microbuckling and fracture of SMPC were observed after the static 3-ponit bending test at the constant room temperature. SMPC showed favorable recovery performances during thermomechanical cycles of the bending recovery test and the fiber microbuckling was obvious. Moreover, the conductive SMPC of this study experienced low electrical resistivity and performed a good shape memory effect during numerous thermomechanical cycles.

  15. Metal-free, single-polymer device exhibits resistive memory effect.

    PubMed

    Bhansali, Unnat S; Khan, Mohd A; Cha, Dongkyu; AlMadhoun, Mahmoud N; Li, Ruipeng; Chen, Long; Amassian, Aram; Odeh, Ihab N; Alshareef, Husam N

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10(3)), good retention characteristics (>10,000 s), and stability in ambient storage (>3 months). PMID:24206048

  16. Laser-Activated Shape Memory Polymer Microactuator for Thrombus Removal Following Ischemic Stroke: Preliminary In Vitro Analysis

    SciTech Connect

    Small, W; Metzger, M F; Wilson, T S; Maitland, D J

    2004-09-23

    Due to the narrow (3-hour) treatment window for effective use of the thrombolytic drug recombinant tissue-type plasminogen activator (rt-PA), there is a need to develop alternative treatments for ischemic stroke. We are developing an intravascular device for mechanical thrombus removal using shape memory polymer (SMP). We propose to deliver the SMP microactuator in its secondary straight rod form (length = 4 cm, diameter = 350 {micro}m) through a catheter distal to the vascular occlusion. The microactuator, which is mounted on the end of an optical fiber, is then transformed into its primary corkscrew shape by laser heating (diode laser, {lambda} = 800 nm) above its soft phase glass transition temperature (T{sub gs} = 55 C). Once deployed, the microactuator is retracted and the captured thrombus is removed to restore blood flow. The SMP is doped with indocyanine green (ICG) dye to increase absorption of the laser light. Successful deployment of the microactuator depends on the optical properties of the ICG-doped SMP and the optical coupling efficiency of the interface between the optical fiber and the SMP. Spectrophotometry, thermal imaging, and computer simulation aided the initial design effort and continue to be useful tools for optimization of the dye concentration and laser power. Thermomechanical testing was performed to characterize the elastic modulus of the SMP. We have demonstrated laser-activation of the SMP microactuator in air at room temperature, suggesting this concept is a promising therapeutic alternative to rt-PA.

  17. New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction.

    PubMed

    Lin, Tengfei; Ma, Siwei; Lu, Yang; Guo, Baochun

    2014-04-23

    Shape memory polymers (SMPs) based on natural rubber were fabricated by crosslinking epoxidized natural rubber with zinc diacrylate (ZDA) using the oxa-Michael reaction. These SMPs possessed excellent shape fixity and recovery. The glass transition largely accounted for the fixing of the SMPs temporary shape. Increasing the ZDA content allowed the trigger temperature (20-46 °C) and recovery time (14-33 s) of the SMPs to be continuously tuned. Nanosized silica (nanosilica) was incorporated into the neat polymers to further increase the flexibility and tune the recovery stress. The nanosilica-SMPs exhibited exceptionally high strength in a rubbery state (>20 MPa). The nanosilica-SMPs exhibited high transparency, making them suitable in visible heat-shrinkable tubes. PMID:24673791

  18. Fabrication and properties of shape-memory polymer coated with conductive nanofiber paper

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liu, Yanju; Gou, Jan; Leng, Jinsong

    2009-07-01

    A unique concept of shape-memory polymer (SMP) nanocomposites making up of carbon nanofiber paper was explored. The essential element of this method was to design and fabricate nanopaper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under ultrasonicated processing and vapor press method, while the dispersion of nanofiber was treated by BYK-191 dispersant. The morphologies of carbon nanofibers within the paper were characterized with scanning electron microscopy (SEM). In addition, the thermomechanical properties of SMP coated with carbon nanofiber paper were measured by the dynamic mechanical thermal analysis (DMTA). It was found that the glass transition temperature and thermomechanical properties of nanocomposites were strongly determined by the dispersion of polymer in conductive paper. Subsequently, the electrical conductivity of conductive paper and nanocomposites were measured, respectively. And experimental results revealed that the conductive properties of nanocoposites were significantly improved by carbon nanopaper, resulting in actuation driven by electrical resistive heating.

  19. Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liu, Yanju; Gou, Jihua; Leng, Jinsong; Du, Shanyi

    2010-02-01

    The present work studies the synergistic effect of carbon nanofiber (CNF) and carbon nanopaper on the shape recovery of shape memory polymer (SMP) composite. The combination of CNF and carbon nanopaper was used to improve the thermal and electrical conductivities of the SMP composite. The carbon nanopaper was coated on the surface of the SMP composite in order to achieve the actuation by electrical resistive heating. CNFs were blended with the SMP resin to improve the thermal conductivity to facilitate the heat transfer from the nanopaper to the underlying SMP composite to accelerate the electroactive responses.

  20. Recovery torque modeling of carbon fiber reinforced shape memory polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, He; Xu, Yunjun; Liang, Fei; Gou, Jihua; Mabbott, Bob

    2013-11-01

    Carbon fiber and carbon nanofiber paper (CF&CNFP) can be incorporated into shape memory polymers (SMPs) to increase electrical conductivity and allow high speed electrical actuation with a low power. This paper studies the interactions among the recovery torques of CF&CNFP and SMP and the gravity torque during the shape recovery process. The proposed recovery torque model in a SMP CF&CNFP based structure is validated by experimental data obtained using a recently developed low cost, non-contact measurement testbed.

  1. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces

    PubMed Central

    Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P.; Maitland, Duncan J.; Rennaker, Robert L.; Voit, Walter E.

    2014-01-01

    Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic–abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol–ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated. PMID:25530708

  2. Swelling effect actuation of shape-memory polymer: mechanism and demonstration

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Leng, Jinsong; Liu, Yanju; Du, Shanyi

    2009-03-01

    Recently, there is increasing interest in triggering shape recovery of shape-memory polymers (SMPs) by novel inductive effect. In this paper, many hard works have been carried out to make SMP induced while along with swelling effect. Based on the Free-volume theory, Rubber Elasticity Theory and Mooney-Rivlin Equation, it is theoretically and experimentally demonstrated the feasibility of SMP activated by swelling effect. The mechanism behind it is solvent acting as plasticizer, to reduce the glass transition temperature (Tg) and melting temperature (Tm) of polymers, make them softer and more flexible, facilitating the diffusion of the molecules to polymer chains, and then separating them. In addition to this physical action, the intermolecular interactions among the chains are weakened, because interactions are hindered at the points where the plasticizer is located. Finally, the Dynamic mechanical analysis (DMA), FTIR study and glass transition temperature measurement tests were used to exemplify the feasibility of SMP driven by swelling effect. And it is qualitatively identified the role of swelling effect playing in influencing the transition temperature. Swelling effect occurs due to the interaction between macromolecules and solvent molecules, leading to free volume of polymeric chains increasing (namely the flexibility of polymer chains increasing), resulting in the Tg decreasing. All above mentioned investigation can be used to confirm that the shape recovery is induced by swelling effect. This actuation almost is applicable for all the SMP and SMP composite, as the swelling theory is almost applicable for all the polymeric materials.

  3. A stress-induced phase transition model for semi-crystallize shape memory polymer

    NASA Astrophysics Data System (ADS)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  4. Qualitative separation of the effect of the solubility parameter on the recovery behavior of shape-memory polymer

    Microsoft Academic Search

    Haibao Lu; Yanju Liu; Jinsong Leng; Shanyi Du

    2009-01-01

    For the thermal response of shape-memory polymer (SMP) it has been experimentally demonstrated that the actuation can be achieved using interactive solvent. In this paper, the effect of the solubility parameter of the interactive solvent on the shape recovery behavior and glass transition temperature of polystyrene SMP was investigated experimentally. The effect of the solubility parameter on the activation energy

  5. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Zhang, Dawei; Liu, Yanju; Yu, Kai; Lan, Xin

    2010-03-01

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  6. Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests

    Microsoft Academic Search

    C. Poilane; P. Delobelle; C. Lexcellent; S. Hayashi; H. Tobushi

    2000-01-01

    The mechanical properties of a thin film of polyurethane shape memory polymer were investigated experimentally. Non-conventional mechanical tests such as nanoindentation, bulging and point membrane deflection are used. The quantitative results obtained by these three experimental investigations are consistent. These tests, performed at room temperature (approx. 35 K below the glass transition temperature Tg), yield a Young's modulus equal to

  7. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect

    Leng Jinsong; Yu Kai; Lan Xin [Center for Composite Materials and Structures, Harbin Institute of Technology, HeiLongJiang 150001 (China); Zhang Dawei [Center for Composite Materials and Structures, Harbin Institute of Technology, HeiLongJiang 150001 (China); Material Science and Engineering College, Northeast Forestry University, HeiLongJiang 150040 (China); Liu Yanju [Department of Astronautical Science and Mechanics, Harbin Institute of Technology, HeiLongJiang 150001 (China)

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  8. Mechanistic analysis of macrophage response to IRAK-1 gene knockdown by a smart polymer-antisense oligonucleotide therapeutic.

    PubMed

    Johns, Rachel E; El-Sayed, Mohamed E H; Bulmus, Volga; Cuschieri, Joseph; Maier, Ronald; Hoffman, Allan S; Stayton, Patrick S

    2008-01-01

    An excessive inflammatory response is a clinical problem following major infections and severe injury that may lead to Sepsis Syndrome and Multiple Organ Failure (MOF), including the Acute Respiratory Distress Syndrome (ARDS). Management of excessive inflammation may be possible through control of key inflammatory pathways such as those mediated by the important interleukin-1 receptor associated kinase-1 (IRAK-1). In the current study, we report the impact on gene expression induced by lipopolysaccharide (LPS) stimulation of THP-1 cells treated with an antisense oligonucleotide (ASODN) against the IRAK-1 gene using cDNA microarrays and quantitative RT-PCR. The therapeutic ASODN was delivered using a pH-sensitive, membrane-interactive polymer that destabilizes the endosomal membrane to enhance access cytoplasmic delivery in targeted cells. Following LPS stimulation, the anti-inflammatory activity of ASODN against the IRAK-1 gene expression is evidenced by the lower expression of inflammatory chemokines, cytokines and acute-phase proteins compared to control cells. These results provide a larger mechanistic picture of IRAK-1 knockdown by this polymer therapeutic in macrophage-like cells. PMID:18854126

  9. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain recovery at low to intermediate temperatures, a widening of the transition region, and an eventual crossover at high temperatures. Our results corroborate experimental findings on shape-memory behavior and provide new insight into factors governing deformation recovery that can be leveraged in biomaterials design. The established computational methodology can be extended in straightforward ways to investigate the effects of monomer chemistry, low-molecular-weight solvents, physical and chemical crosslinking, different phase-separation morphologies, and more complicated mechanical deformation toward predictive modeling capabilities for stimuli-responsive polymers.

  10. a Glass Transition Model for Shape Memory Polymer and its Composite

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Liu, Yan-Ju; Lan, Xin; Leng, Jin-Song; Yoon, Sung-Ho

    As novel smart materials, shape memory polymer (SMP) and its composite (SMPC) have the ability to regain its original shape after undergoing significant deformation upon heating or other external stimuli such as light, chemic condition and so on. Their special behaviors much depends on the glass transitions due to the increasing of material temperature. Dynamic Mechanical Analysis (DMA) tests are performed on the styrene-based SMP and its carbon fiber fabric reinforced SMPC to investigate their glass transition behaviors. Three glass transition critical temperatures of SMP or SMPC are defined and a method to determine their values from DMA tests is supposed. A glass transition model is developed to describe the glass transition behaviors of SMP or SMPC based on the results of DMA tests. Numerical calculations illustrate the method determining the glass transition critical temperature is reasonable and the model can well predict the glass transition behaviors of SMP or SMPC.

  11. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    NASA Astrophysics Data System (ADS)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  12. Light polarization-controlled shape-memory polymer/gold nanorod composite.

    PubMed

    Zhang, Hongji; Zhang, Jianming; Tong, Xia; Ma, Dongling; Zhao, Yue

    2013-10-01

    It is demonstrated that light polarization can be used to control photothermal effect-based shape-memory polymers (SMPs). Gold nanorods (AuNRs) are embedded in poly(vinyl alcohol) (PVA) and aligned by stretching the composite film. By changing the polarization direction of the incident laser at 785 nm with respect to the film stretching direction, the magnitude of the longitudinal surface plasmon resonance of AuNRs can be varied continuously, which determines the amount of heat generated upon laser exposure and thus the local temperature rise in the composite relative to the glass transition of the PVA matrix. Consequently, the temporary-to-permanent shape recovery process of the composite can be made to occur to different extents by tuning the polarization of laser while keeping all other conditions unchanged. This finding enhances the toolbox for controlling light-triggered SMPs. PMID:24092559

  13. A constitutive theory for shape memory polymers: coupling of small and large deformation

    NASA Astrophysics Data System (ADS)

    Tan, Qiao; Liu, Liwu; Liu, Yanju; Leng, Jinsong; Yan, Xiangqiao; Wang, Haifang

    2013-04-01

    At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP's thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke's laws.

  14. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.

    PubMed

    Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W

    2013-11-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be implanted through a small slit and to some extent deploy self-sufficiently within the disc cavity. PMID:23932501

  15. Effects of sensitizer length on radiation crosslinked shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor; Voit, Walter; Gall, Ken

    2010-04-01

    Shape-memory polymers (SMPs) are smart materials that can be designed to retain a metastable state and upon activation, recover a preprogrammed shape. In this study, poly(methyl acrylate) (PMA) is blended with poly(ethylene glycol) diacrylate (PEGDA) of various molecular weights in various concentrations and subsequently exposed to ionizing radiation. PEGDA sensitizes the radiation crosslinking of PMA, lowering the minimum absorbed dose for gelation and increasing the rubbery modulus, after crosslinking. Minimum dose for gelation, as determined by the Charlesby-Pinner equation, decreases from 25.57 kGy for unblended PMA to 2.06 kGy for PMA blended with 10.00 mole% PEGDA. Moreover, increase in the blend concentration of PEGDA increases the crosslinking density of the resulting networks. Sensitizer length, namely Mn of PEGDA, also affects crosslinking and final mechanical properties. Increase in the length of the PEGDA molecule at a constant molar ratio increases the efficacy of the molecule as a radiation sensitizer as determined by the increase in gel fraction and rubbery modulus across doses. However, at a constant weight ratio of PEGDA to PMA, shorter PEGDA chains sensitize more crosslinking because they have more reactive ends per weight fraction. Sensitized samples of PMA with PEGDA were tested for shape-memory properties and showed shape fixity of greater than 99%. Samples had a glass transition temperature near 28 °C and recovered between 97% and 99% of the induced strain when strained to 50%.

  16. Thermo-mechanical and micro-structural characterization of shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    di Prima, Matthew Allen

    The need for a set of design criteria, models, and limits for the use of shape memory polymer foams was proposed. The effect of temperature and strain on the mechanical behavior; compression, tensile, cyclic compression, constrained recovery, and free strain recovery of the material was used to determine the operational limits of the material. Next, the damage mechanism and viscoelastic effects in compressive cycling were determined through further mechanical testing and with the incorporation of three dimensional structure mapping via micro-CT scanning. The influence of microstructure was determined by testing the basic thermomechanical, viscoelactic, and shape recovery behavior of foams with relative densities of 20, 30, and 40 percent. A similar suite of tests were then performed with the base epoxy material to generate the material properties for computational modeling. This data was then combined with three dimensional microstructures generated from micro-CT scans to develop material models for shape memory foams. These models were then validated by comparing model results to the experimental results under similar conditions.

  17. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  18. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    Microsoft Academic Search

    Sung Hye Kim

    2009-01-01

    Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to

  19. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (?65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus. PMID:25985115

  20. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    PubMed

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. PMID:23872180

  1. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

    Microsoft Academic Search

    Anat Eldar-Boock; Keren Miller; Joaquin Sanchis; Ruth Lupu; María J. Vicent; Ronit Satchi-Fainaro

    2011-01-01

    Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a

  2. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    NASA Astrophysics Data System (ADS)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)

  3. Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers

    Microsoft Academic Search

    Ulrich Lächelt; Ernst Wagner

    2011-01-01

    Polymer-based conjugates are an interesting option and challenge for the design of nano-sized drug-delivery systems, as they\\u000a require advanced conjugation chemistry and precise engineering. In the case of nucleic acid therapy, non-viral carriers face\\u000a several biological barriers during the delivery process, namely 1) protection of the cargo from extracellular degradation,\\u000a 2) avoidance of non-specific interactions with non-targeted tissues, 3) efficient

  4. The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams

    Microsoft Academic Search

    H. Tobushi; R. Matsui; S. Hayashi; D. Shimada

    2004-01-01

    The thermomechanical properties of polyurethane-shape memory polymer (SMP) foams and the influence of shape-holding conditions on shape recovery were investigated experimentally. The results obtained can be summarized as follows. (1) By cooling the foam down to below the glass transition temperature Tg after compressive deformation above Tg, stress decreases and the deformed shape is fixed. By heating the shape-fixed foam

  5. Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer

    Microsoft Academic Search

    H. Tobushi; S. Hayashi; K. Hoshio; N. Miwa

    2006-01-01

    It was found in previous work on the thermomechanical properties of the polyurethane-shape memory polymer foam that the shape fixity and shape recovery become imperfect and that secondary-shape forming appears, depending on the strain-holding conditions. The main factors of the strain-holding conditions which affect the secondary-shape forming are the holding temperature, holding time and holding strain. In the present study,

  6. Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis

    Microsoft Academic Search

    Melodie F. Metzger; Thomas S. Wilson; Duncan J. Maitland

    2005-01-01

    Due to the narrow (3-h) treatment window for effective use of the thrombolytic drug recombinant tissue-type plasminogen activator (rt-PA), there is a need to develop alternative treatments for ischemic stroke. We are developing an intravascular device for mechanical thrombus removal using shape memory polymer (SMP). We propose to deliver the SMP microactuator in its secondary straight rod form (length=4 cm,

  7. Improved adhesion between nickel–titanium shape memory alloy and a polymer matrix via silane coupling agents

    Microsoft Academic Search

    N. A. Smith; G. G. Antoun; A. B. Ellis; W. C. Crone

    2004-01-01

    NiTi wires were functionalized with silane coupling agents to improve interfacial adhesion between the inorganic constituent and a host matrix for composite applications. Surface derivatization was characterized by X-ray Photoelectron Spectroscopy, and mechanical pullout tests were performed to quantify the increase in adhesion between the NiTi shape memory alloy wires and polymer matrix. Improvements of roughly 100% in the adhesion

  8. Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators

    Microsoft Academic Search

    C J de Araújo; L F A Rodrigues; J F Coutinho Neto; R P B Reis

    2008-01-01

    In this work, unidirectional carbon-fiber-reinforced polymers (CFRP) with embedded NiTi shape memory alloy (SMA) wire actuators were manufactured using a universal testing machine equipped with a thermally controlled chamber. Beam specimens containing cold-worked, annealed and trained NiTi SMA wires distributed along their neutral plane were fabricated. Several tests in a three-point bending mode at different constant temperatures were performed. To

  9. Variation of free volume size and content of shape memory polymer — Polyurethane — Upon temperature studied by positron annihilation lifetime techniques and infrared spectroscopy

    Microsoft Academic Search

    K. Ito; K. Abe; H. L. Li; Y. Ujihira; N. Ishikawa; S. Hayashi

    1996-01-01

    Positron annihilation lifetime measurement and Fourier transform infrared spectrometry were applied to the study of temperature dependencies of free volume parameters and hydrogen bonds in segmented polyurethane, specially fabricated as a shape memory polymer. The variation of free volumes in amorphous region were correlated to that of hydrogen bonding and the shape memory mechanism of polyurethane is elucidated from a

  10. Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer

    Microsoft Academic Search

    B. Yang; W. M. Huang; C. Li; L. Li; J. H. Chor

    2005-01-01

    Based on a series of cyclic differential scanning calorimetry analyses together with thermogravimetric analyses, the effects of carbon nano-powder and moisture on the glass transition temperature of a polyurethane shape memory polymer were separated and qualitatively identified. This approach should be applicable to other polyurethane polymers and their composites.

  11. Using a single electrospun polymer nanofiber to enhance carrier mobility in organic field-effect transistors toward nonvolatile memory.

    PubMed

    Jian, Pei-Zhen; Chiu, Yu-Cheng; Sun, Han-Sheng; Chen, Tzu-Ying; Chen, Wen-Chang; Tung, Shih-Huang

    2014-04-23

    In this work, a single electrospun polymer nanofiber was employed as an additional dielectric in organic field-effect transistors where the active channel was a layer of pentacene. A high field-effect mobility (>1.50 cm(2)/(V·s)) and a high ON/OFF current ratio (>10(6)) could be achieved by the use of such a nanofiber. Probing by electron microscopy, atomic force microscopy, and scattering techniques, we found that the geometry of the fiber is key to induce a pentacene morphology with large and oriented grains that facilitates the charge transport in pentacene layer along the fiber. The feasibility of nonvolatile memory based on this new type of transistor has been explored and the devices showed a fairly high memory window and reliable memory characteristics. In addition to pure polymers, the effects of composite nanofibers with dispersed [6,6]-phenyl-C61-butyric acid methyl ester were also investigated, and the electrical properties and memory characteristics of the transistors were found to be further improved. This study highlights the importance of dielectric geometry to pentacene morphology that is decisive for the performances of organic field-effect transistors. PMID:24673527

  12. Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles

    Microsoft Academic Search

    Hideki Hosoda; Shinsuke Takeuchi; Tomonari Inamura; Kenji Wakashima

    2004-01-01

    Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa are expected to be new practical actuator materials with high driving frequency by magnetic field and large strain due to the shape memory effect (SME). However, the brittleness and poor workability of FSMAs, especially at a polycrystalline state, are serious problems and should be improved for a practical use. From this viewpoint

  13. Investigation on adaptive wing structure based on shape memory polymer composite hinge

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong

    2007-07-01

    This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.

  14. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    PubMed Central

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272

  15. Shape memory polymers and their composites in aerospace applications: a review

    NASA Astrophysics Data System (ADS)

    Liu, Yanju; Du, Haiyang; Liu, Liwu; Leng, Jinsong

    2014-02-01

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace.

  16. A multi-branch finite deformation constitutive model for a shape memory polymer based syntactic foam

    NASA Astrophysics Data System (ADS)

    Gu, Jianping; Sun, Huiyu; Fang, Changqing

    2015-02-01

    A multi-branch thermoviscoelastic-themoviscoplastic finite deformation constitutive model incorporated with structural and stress relaxation is developed for a thermally activated shape memory polymer (SMP) based syntactic foam. In this paper, the total mechanical deformation of the foam is divided into the components of the SMP and the elastic glass microballoons by using the mixture rule. The nonlinear Adam-Gibbs model is used to describe the structural relaxation of the SMP as the temperature crosses the glass transition temperature (Tg). Further, a multi-branch model combined with the modified Eying model of viscous flow is used to capture the multitude of relaxation processes of the SMP. The deformation of the glass microballoons could be split into elastic and inelastic components. In addition, the phenomenological evolution rule is implemented in order to further characterize the macroscopic post-yield strain softening behaviors of the syntactic foam. A comparison between the numerical simulation and the thermomechanical experiment shows an acceptable agreement. Moreover, a parametric study is conducted to examine the predictability of the model and to provide guidance for reasonable design of the syntactic foam.

  17. Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation.

    PubMed

    Carrell, John; Zhang, Hong-Chao; Wang, Shiren; Tate, Derrick

    2013-11-19

    Active disassembly (AD) uses innovative materials that can perform a designed disassembly action by the application of an external field. AD provides improvements over current disassembly processes by limiting machine or manual labor and enabling batch processing for end-of-life products. With improved disassembly operations, more reuse of components and purer recycling streams may be seen. One problem with AD, however, has been with the single-field actuation because of the probability of accidental disassembly. This presentation will discuss the application of shape memory polymer (SMP) nanocomposites in a new AD process. This novel AD process requires multiple-field actuation of the SMP nanocomposite fastener. In the analysis of this AD process, thermal and magnetic field tests were performed on the SMP nanocomposite. From these tests, finite-element analysis was performed to model and simulate the multiple-field AD process. The results of the simulations provide performance variables for the AD process and show a better performance time for the SMP nanocomposite fastener than for a comparable SMP fastener. PMID:24117335

  18. Shape recovery performances of a deployable hinge fabricated by fiber-reinforced shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Wang, Xiaohua; Lu, Haibao; Liu, Yanju; Leng, Jinsong

    2009-03-01

    A new type of fiber reinforced thermoset styrene-based shape-memory polymer composite (SMPC) is developed and analyzed. The main objective is to systematically characterize the shape recovery properties of SMPC, which is a foundation for SMPC used in deployable structures. Firstly, the deployment dynamics of cured SMPC shell is presented. Then, the shape recovery performance is investigated by finite element analysis (FEA). The deployment process of curved SMPC shell (from 0-180 degree) is simulated by the geometrically nonlinear analysis. The deployment moment increases with the increase of the thickness of curved shell, and the strain show somewhat uniform in the central part of the curved shell. Furthermore, a hinge made of SMPC is fabricated, which consists of two curved SMPC shells in opposite directs. The deployment of hinge can be achieved in about100s by applying a 20V voltage. The deployment ratio approaches approximate 100 %. Finally the deployment of a prototype of solar array actuated by the hinge is demonstrated.

  19. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    PubMed

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. PMID:24878964

  20. Shape recovery mechanics of fiber-reinforced shape-memory polymer composite

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Yanju; Leng, Jinsong

    2010-04-01

    A fiber reinforced thermosetting styrene-based shape-memory polymer composite (SMPC) is developed, and the main objective is to investigate the deployment performances for SMPC. Firstly, the fundamental material properties, such as mechanical properties and shape recovery properties, are evaluated. It indicates that the SMPC shows nonlinear viscoelasticity at a temperature range between Tg -20°C and Tg +20°C. At/above Tg, the shape recovery ratio of SMPC upon bending is above 90%. The shape recovery properties of SMPC become relatively stable after some packaging/deployment cycles. Then, the micro-deformation mechanism is characterized by optical microscopy and SEM. The fiber microbuckling is the primary deformation mechanism in bending of SMPC, and it ensures that the SMPC can achieve high packaging strain and avoid fiber failure. With the microbuckling, SMPC materials are suitable to be used in deployable structure components because of their high strain-to-failure capability. For the analytical research, the relationship between deployment moment and angle is derived by using dynamic theory. It shows that the SMPC shell shows a linear bending stiffness when recovering, and meanwhile performs a self-locking function at the final state because of sharply increase in moment. It implies that SMPC is a good candidate material for deployable structures.

  1. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    SciTech Connect

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  2. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (Tg) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  3. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    PubMed Central

    Baer, Géraldine M; Small, Ward; Wilson, Thomas S; Benett, William J; Matthews, Dennis L; Hartman, Jonathan; Maitland, Duncan J

    2007-01-01

    Background Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. Methods A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. Results At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W. Conclusion We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated. PMID:18042294

  4. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    NASA Astrophysics Data System (ADS)

    Nji, Jones; Li, Guoqiang

    2010-03-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency.

  5. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams.

    PubMed

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S; Maitland, Duncan J

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (T(g)) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T(g) of the foam, with a maximum water uptake shifting the T(g) from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469

  6. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    NASA Astrophysics Data System (ADS)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  7. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve therapeutic effect in living animals.

  8. Therapeutic use of H2O2-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy.

    PubMed

    Park, Seunggyu; Yoon, Jooheung; Bae, Soochan; Park, Minhyung; Kang, Changsun; Ke, Qingen; Lee, Dongwon; Kang, Peter M

    2014-07-01

    Doxorubicin (DOX) is a commonly used anti-neoplastic agent but its clinical use is limited due to serious hepatic and cardiac side effects. DOX-induced toxicity is mainly associated with overproduction of reactive species oxygen (ROS) such as hydrogen peroxide (H2O2). We have recently developed H2O2-responsive anti-oxidant polymer, polyoxalate containing vanillyl alcohol (PVAX), which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with anti-oxidant, anti-inflammatory and anti-apoptotic properties. In this study, we report that PVAX nanoparticles are novel therapeutic agents for treating DOX-induced cardiac and hepatic toxicity. Intraperitoneal injection of PVAX nanoparticles (4 mg/kg/day) resulted in significant inhibition in apoptosis in liver and heart of DOX-treated mice by suppressing the activation of poly (ADP ribose) polymerase 1 (PARP-1) and caspase-3. PVAX treatment also prevented DOX-induced cardiac dysfunction. Furthermore, survival rate (vehicle = 35% vs. PVAX = 75%; p < 0.05) was significantly improved in a PVAX nanoparticles-treated group compared with vehicle treated groups. Taken together, we anticipate that PVAX nanoparticles could be a highly specific and potent treatment modality in DOX-induced cardiac and hepatic toxicity. PMID:24767791

  9. Analysis of the shape-recovery performance of thermally-activated shape-memory polymer composite with microstructural heterogeneities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaaki; Hojo, Masaki

    2012-04-01

    Functional polymer composite is expected to be applied to the potential material for space deployable structures. Especially, thermally-activated shape-memory polymer (SMP) composites are increasingly investigated due to their excellent shape fixity and shape recovery; the thermomechanical properties of these materials greatly change around their glass transition temperature Tg. To enhance the ability of space deployable structures, the microstructural design at the fiber-matrix level in the material is required to pursuit the better performance of SMP composite. The present study focused on a micromechanics consideration of shape-memory polymer (SMP) composite with slits in the fiber mat, and attempted to discuss the effect of microstructural heterogeneities (slit positions) on the shape-fixity and shape-recovery performance. Analysis of the shape-recovery performance of SMP composites was conducted using the micromechanical model based on a viscoelastic thermomechanical constitutive model. According to the numerical results, only when the slits gather at the same location, the best shape-fixity property and shape-recovery performance is achieved, while sacrificing its bending stiffness. This is because the slits act as a hinge in the material under a bending loading.

  10. Porous media properties of reticulated shape memory polymer foams and mock embolic coils for aneurysm treatment

    PubMed Central

    2013-01-01

    Background Shape memory polymer (SMP) foams are being investigated as an alternative aneurysm treatment method to embolic coils. The goal of both techniques is the reduction of blood flow into the aneurysm and the subsequent formation of a stable thrombus, which prevents future aneurysm rupture. The purpose of this study is to experimentally determine the parameters, permeability and form factor, which are related to the flow resistance imposed by both media when subjected to a pressure gradient. Methods The porous media properties—permeability and form factor—of SMP foams and mock embolic coils (MECs) were measured with a pressure gradient method by means of an in vitro closed flow loop. We implemented the Forchheimer-Hazen-Dupuit-Darcy equation to calculate these properties. Mechanically-reticulated SMP foams were fabricated with average cell sizes of 0.7E-3 and 1.1E-3 m, while the MECs were arranged with volumetric packing densities of 11-28%. Results The permeability of the SMP foams was an order of magnitude lower than that of the MECs. The form factor differed by up to two orders of magnitude and was higher for the SMP foams in all cases. The maximum flow rate of all samples tested was within the inertial laminar flow regime, with Reynolds numbers ranging between 1 and 35. Conclusions The SMP foams impose a greater resistance to fluid flow compared to MECs, which is a result of increased viscous and inertial losses. These results suggest that aneurysms treated with SMP foam will have flow conditions more favorable for blood stasis than those treated with embolic coils having packing densities???28%. PMID:24120254

  11. Shape Memory Mechanics of an Elastic Memory Composite Resin

    Microsoft Academic Search

    Erik R. Abrahamson; Mark S. Lake; Naseem A. Munshi; Ken Gall

    2003-01-01

    Substantially more attention has been given in the past to shape memory alloys and shape memory ceramics than to shape memory polymers because unreinforced shape memory polymers have much lower stiffness and recovery force potential than shape memory alloys and shape memory ceramics. However, when incorporated into a fiber-reinforced composite, both the stiffness and the recovery force of a shape

  12. Self-assembled regular arrays of carbon nanotube and the route toward actuation of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Wu, Chunxia; Liu, Yanju; Gou, Jan; Leng, Jinsong

    2010-04-01

    The synthesis of massive arrays of monodispersed carbon nanotubes that are self-assembled on hydrophilic polycarbonate membrane is reported. This approach involves individual carbon nanotube manufacturing by non-ionic surfactant to aid in dispersion and nanotubes self-assembled for three-dimensional orientation by high press filtration. The inherent capability of carbon nanotube and microstructure of well-packed arrays predominate excellent conductive properties of massive arrays. These potential applications of nanometer-sized sensor, probe and energy resistor have been characterized in this study. Furthermore, the route toward application of self-assembled regular arrays, as heat transmission intermedium, has been carried out by activating shape-memory polymer. The electrical conductivity of insulating polymer is significantly improved by assembled carbon nanotubes, resulting in shape recovery behavior of nanocomposite being driven by electrical resistive heating.

  13. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hye

    Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to endothelial cells overexpressing a relevant receptor VEGFR-2. Addition of dimeric VEGF to 4-arm star-shaped poly(ethylene glycol) (PEG) immobilized with low-molecular weight heparin (LMWH) afforded a non-covalently assembled hydrogel via interaction between heparin and VEGF, with storage modulus 10 Pa. The release of VEGF and hydrogel erosion reached maximum 100 % at day 4 in the presence of VEGFR-2 overexpressing pocine aortic endothelial cell (PAE/KDR), while those of 80% were achieved via passive release at day 5 in the presence of PAE cell lacking VEGFR-2 or in the absence of cell, indicating that the release of VEGF was in targeted manner toward cell receptor. The proliferation of PAE/KDR in the presence of [PEG-LMWH/VEGF] hydrogel was greater by ca. 30% at day 4 compared to that of PAE, confirming that the release of VEGF was in response to the cellular demand. The phosphorylation fraction of VEGFR-2 on PAE/KDR was greater in the presence of [PEG-LMWH/VEGF] hydrogel, increasing from 0.568 at day 1 to 0.790 at day 4, whereas it was maintained at 0.230 at day 4 in the presence of [PEG-LMWH] hydrogel. This study has proven that this hydrogel, assembled via bio-inspired non-covalent interaction, liberating VEGFon celluar demand to target cell, eroding upon VEGF release, and triggering endothelial cell proliferation, could be used in multiple applications including targeted delivery and angiogenesis. Heparin has been widely exploited in growth factor delivery systems owing to its ability to bind many growth factors through the flexible patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to 1940 Pa. by varing the cross-linking density, suggesting its flexible applications depending

  14. Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers

    NASA Astrophysics Data System (ADS)

    Azra, Charly; Plummer, Christopher J. G.; Månson, Jan-Anders E.

    2013-07-01

    Thermally activated shape memory polymers (SMPs) recover from a secondary shape induced by mechanical deformation to a primary equilibrium shape when they are heated to their actuation temperature. In certain applications, for example in the biomedical field, it may be necessary to control the rate of shape recovery under isothermal conditions, which requires knowledge of the time-dependent response of the SMP. In the present work, the time dependence of isothermal shape recovery has been investigated for polyurethane-based SMPs with two different molecular architectures. The results are discussed in terms of a linear thermo-viscoelastic model for the time and temperature dependence of the shape memory response at small strains, using data from single constant frequency dynamic mechanical analysis (DMA) temperature sweeps. This approach is based on the establishment of an approximate relationship between the storage modulus, the loss modulus and the shift factor, aT(t), usually derived from time-temperature superposition of isothermal data obtained at different temperatures. The DMA data are thus shown to provide an approximate measure of the relaxation and retardation time spectra, which may in turn be used to predict the shape memory response to a simple programming-isothermal shape recovery sequence. This procedure is argued to permit rapid quantitative comparison of the shape memory performance of different materials, with minimal experimental characterization, and is hence potentially a useful tool for designing materials for specific applications.

  15. Qualitative separation of the effect of the solubility parameter on the recovery behavior of shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liu, Yanju; Leng, Jinsong; Du, Shanyi

    2009-08-01

    For the thermal response of shape-memory polymer (SMP) it has been experimentally demonstrated that the actuation can be achieved using interactive solvent. In this paper, the effect of the solubility parameter of the interactive solvent on the shape recovery behavior and glass transition temperature of polystyrene SMP was investigated experimentally. The effect of the solubility parameter on the activation energy was separated and qualitatively identified, as expected from the relaxation theory and Eyring equation. This approach should be applicable to other SMPs and their composites and many extension applications and achievements could be based on this outcome.

  16. Photo-Mediated Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) "Click" Reactions for Forming Polymer Networks as Shape Memory Materials.

    PubMed

    McBride, Matthew K; Gong, Tao; Nair, Devatha P; Bowman, Christopher N

    2014-11-01

    The formation of polymer networks polymerized with the Copper (I) - catalyzed azide - alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials. PMID:25378717

  17. A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min

    2013-11-01

    We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams-Landel-Ferry (WLF) equation is employed to couple the viscosity (?), time-temperature shift factor (??) and glass transition temperature (Tg) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition.

  18. Recovered memories.

    PubMed

    Loftus, Elizabeth F; Davis, Deborah

    2006-01-01

    The issues surrounding repressed, recovered, or false memories have sparked one of the greatest controversies in the mental health profession in the twentieth century. We review evidence concerning the existence of the repression and recovery of autobiographical memories of traumatic events and research on the development of false autobiographical memories, how specific therapeutic procedures can lead to false memories, and individual vulnerability to resisting false memories. These findings have implications for therapeutic practice, for forensic practice, for research and training in psychology, and for public policy. PMID:17716079

  19. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  20. Quantification of insulin release from implantable polymer-based delivery systems and augmentation of therapeutic effect with simultaneous release of somatostatin.

    PubMed

    Edelman, E R; Brown, L; Langer, R

    1996-12-01

    Insulin injections control diabetes mellitus but do not reproduce physiologic regulation. Polymer-based controlled-release technology has enabled us to demonstrate: that the controlled release of insulin from polymer matrices can indeed be used to control diabetes mellitus but does so at the expense of hyperinsulinemia and hypoglycemia; and that somatostatin can be delivered in similar fashion, so as to provide glucose homeostasis in a more physiologic range, at lower insulin levels and at somatostatin doses below those used in intermittent infusion studies; and, that microgram quantities of a drug can be delivered successfully in vivo with intact biological function and in a manner that can be monitored continuously. In the present study the simultaneous polymer-matrix-controlled release of insulin with somatostatin extended glycemic control in diabetic rats. Eleven rats received subcutaneous polymer matrix implants containing insulin alone and 11 rats received implants containing insulin and somatostatin. Plasma and urinary glucose control were improved in both groups. Glucose concentrations in the insulin alone group remained depressed for 5 days until insulin release from the matrices declined below 11.6 units/kg/day. When somatostatin was delivered at 0.75-1.1 micrograms/kg/day together with insulin, plasma glucose control persisted for 12 days until insulin release decreased below 3.6 units/kg/day. It is our hope that further experiments regarding the potential role of both controlled-release devices and somatostatin will be performed to provide continuing therapeutic alternatives to the insulin-dependent diabetic. This is also the first in vivo demonstration of the simultaneous release of two biologically active peptide hormones from polymer matrices. The use of the polymer matrix systems may not only have profound effects on the ambulatory care of diabetes but might also permit the investigation of the synergistic effects of other families of compounds. PMID:8961137

  1. The glass transition temperature of polyurethane shape memory polymer reinforced with treated\\/non-treated attapulgite (playgorskite) clay in dry and wet conditions

    Microsoft Academic Search

    G H Pan; W M Huang; Z C Ng; N Liu; S J Phee

    2008-01-01

    Attapulgite (playgorskite), a kind of nanosized fibrous clay mineral, may provide a simple and cheap alternative to improve the stiffness and actuation stress of shape memory polymers (SMPs). As a first step, in this paper, we investigate the glass transition temperature of a polyurethane SMP reinforced with treated\\/non-treated attapulgite in wet and dry conditions. In addition to confirming the strong

  2. Electroactive Shape Memory Effect of Polyurethane Composites Filled with Carbon Nanotubes and Conducting Polymer

    Microsoft Academic Search

    Nanda Gopal Sahoo; Yong Chae Jung; Jae Whan Cho

    2007-01-01

    We report the electroactive shape memory composites obtained by shape memory polyurethane block copolymer (PU) and multi-walled carbon nanotubes (MWNTs), and polypyrrole (PPy). An addition of combined MWNTs and PPy contributed to an enhancement in conductivity of PU-MWNTs composites. PU containing 2.5% MWNTs showed better mechanical and thermal properties than other composites, but conductivity was not sufficient for showing the

  3. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  4. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. PMID:25689515

  5. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  6. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites.

    PubMed

    Wang, Zhenwen; Zhao, Jun; Chen, Min; Yang, Minhao; Tang, Luyang; Dang, Zhi-Min; Chen, Fenghua; Huang, Miaoming; Dong, Xia

    2014-11-26

    In this work, electrically and thermally actuated triple shape memory polymers (SMPs) of chemically cross-linked polycyclooctene (PCO)-multiwalled carbon nanotube (MWCNT)/polyethylene (PE) nanocomposites with co-continuous structure and selective distribution of fillers in PCO phase are prepared. We systematically studied not only the microstructure including morphology and fillers' selective distribution in one phase of the PCO/PE blends, but also the macroscopic properties including thermal, mechanical, and electrical properties. The co-continuous window of the immiscible PCO/PE blends is found to be the volume fraction of PCO (vPCO) of ca. 40-70 vol %. The selective distribution of fillers in one phase of co-continuous blends is obtained by a masterbatch technique. The prepared triple SMP materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-adjusting orthodontic wires, and ophthalmic devices. PMID:25347728

  7. Degree of Vertical Integration Between the Undergraduate Program and Clinical Internship With Respect to Cervical and Cranial Diagnostic and Therapeutic Procedures Taught at the Canadian Memorial Chiropractic College

    PubMed Central

    Leppington, Charmody; Gleberzon, Brian; Fortunato, Lisa; Doucet, Nicolea; Vandervalk, Kyle

    2012-01-01

    Objective: The purpose of this study was to determine if diagnostic and therapeutic procedures for the cervical and cranial spine taught to students during the undergraduate program at Canadian Memorial Chiropractic College are required to be used during their internship by their supervising clinicians and, if so, to what extent these procedures are used. Methods: Course manuals and course syllabi from the Applied Chiropractic and Clinical Diagnosis faculty of the undergraduate chiropractic program for the academic year 2009–2010 were consulted and a list of all diagnostic and therapeutic procedures for the cranial and cervical spine was compiled. This survey asked clinicians to indicate if they themselves used or if they required the students they were supervising to use each procedure listed and, if so, to what extent each procedure was used. Demographic information of each clinician was also obtained. Results: In general, most diagnostic procedures of the head and neck were seldom used, with the exception of postural observation and palpation. By contrast, most cervical orthopaedic tests were often used, with the exception of tests for vertigo. Most therapeutic procedures were used frequently with the exception of prone cervical and “muscle” adjustments. Conclusion: There was a low degree of vertical integration for cranial procedures as compared to a much higher degree of vertical integration for cervical procedures between the undergraduate and clinical internship programs taught. Vertical integration is an important element of curricular planning and these results may be helpful to aid educators to more appropriately allocate classroom instruction PMID:22778531

  8. Comparison of different contrast agents when imaging shape memory polymer foams

    E-print Network

    Eagleston, Scott 1990-

    2012-04-20

    recognized that shape memory foam might have great value in the medical industry. One application for SMP foam that is being developed is an embolic device for the treatment of cerebral aneurysms. One critical component in the development of these foams...

  9. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V., E-mail: kulvelis@pnpi.spb.ru; Lebedev, V. T.; Trunov, V. A. [Russian Academy of Sciences, Orlova roshcha, Konstantinov Nuclear Physics Institute (Russian Federation); Pavlyuchenko, V. N. [Kirov Military Medical Academy (Russian Federation); Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya. [Boreskov Institute of Catalysis, St. Petersburg Branch (Russian Federation)

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  10. Deformation Behavior of NiTi\\/Polymer Shape Memory Alloy Composites – Experimental Verifications

    Microsoft Academic Search

    Go Murasawa; Keiichiro Tohgo; Hitoshi Ishii

    2004-01-01

    Composites containing NiTi shape memory alloy (SMA) long-fiber, short-fibers or Ti long-fiber in a Polycarbonate (PC) matrix have been fabricated by the injection molding technique. Also, prestrained SMA long-fiber\\/Epoxy matrix composites have been fabricated. The fracture behavior and thermo-mechanical deformation behavior are examined; (1) Fracture behavior – uniaxial tensile tests up to fracture for SMA long-fiber and short-fiber composite (SMAC).

  11. Critical Material Parameters for Modeling Devices Made from an Epoxy-Based Shape Memory Polymer 

    E-print Network

    Erel, Veysel

    2014-06-17

    would open and close during the flights. [31]......... 6 6 SMP composite reflector in the hybrid inflatable antenna. [35] ................ 7 7 Degradable shape-memory suture for wound closure. These photos come from an animal experiment. [17... weather permeability increases and the fabric releases body heat. [34] 7 Figure 6. SMP composite reflector in the hybrid inflatable antenna. [35] Many researchers are looking into SMP medical applications. Two essential characteristics...

  12. Memory effect in the current–voltage characteristic of a low-band gap conjugated polymer

    Microsoft Academic Search

    D. M. Taylor; C. A. Mills

    2001-01-01

    Diodes formed by electrodeposition of the low-band gap polymer poly(4-dicyano methylene-4H-cyclopenta[2,1-b:3,4-b?]dithiophene), onto glass slides coated with indium tin oxide (ITO) and furnished with evaporated aluminum counterelectrodes exhibit a reversible bistability in their current–voltage (I–V) characteristics. Applying +5 V to the ITO electrode induces a “high” conductance state while applying ?5 V induces a “low” conductance state. The effect is identical

  13. Memory effect in the current-voltage characteristic of a low-band gap conjugated polymer

    Microsoft Academic Search

    D. M. Taylor; C. A. Mills

    2001-01-01

    Diodes formed by electrodeposition of the low-band gap polymer poly(4-dicyano methylene-4H-cyclopenta[2,1-b:3,4-b']dithiophene), onto glass slides coated with indium tin oxide (ITO) and furnished with evaporated aluminum counterelectrodes exhibit a reversible bistability in their current-voltage (I-V) characteristics. Applying +5 V to the ITO electrode induces a ``high'' conductance state while applying -5 V induces a ``low'' conductance state. The effect is identical

  14. A remote-activated shape memory polymer network employing vinyl-capped Fe3O4 nanoparticles as netpoints for durable performance

    NASA Astrophysics Data System (ADS)

    Xia, Shuang; Li, Xingjian; Wang, Yaru; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin; Peng, Yuxing

    2014-08-01

    A new type of shape memory polymer (SMP) employing vinyl-capped Fe3O4 nanoparticles as netpoints that determine the permanent shape for remote activation has been presented. The new design effectively prevents the nanoparticles from moving and re-aggregating in a polymer matrix and guarantees the stability of the SMP networks when a high temperature and external stress are applied. Therefore, durable shape memory performance is obtained during the programmed deformation-recovery processes. Meanwhile, a homogeneous distribution of vinyl-capped Fe3O4 nanoparticles achieves uniform heat generation and heat transfer in the alternating magnetic field. Consequently, the novel remote-activated SMP also exhibits a fast magnetic responsiveness compared to the SMPs physically dispersed with Fe3O4 nanoparticles.

  15. Enhancement of Cell-Based Therapeutic Angiogenesis Using a Novel Type of Injectable Scaffolds of Hydroxyapatite-Polymer Nanocomposite Microspheres

    PubMed Central

    Koyama, Hidenori; Okada, Masahiro; Tanaka, Shinji; Shoji, Tetsuo; Emoto, Masanori; Furuzono, Tsutomu; Nishizawa, Yoshiki; Inaba, Masaaki

    2012-01-01

    Background Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp) coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid) (PLLA) microspheres, named nano-scaffold (NS), were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. Methods and Results Bone marrow mononuclear cells (BMNC) and NS or control PLLA microspheres (LA) were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP)-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC). NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. Conclusion A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders. PMID:22529991

  16. Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection

    PubMed Central

    2012-01-01

    Background Mutations in either A? Precursor protein (APP) or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD) and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD), data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis. Results Here, we tested whether a similar mechanism applies to the Danish BRI2/ITM2B mutation. We have generated a genetically congruous mouse model of FDD, called FDDKI, which presents memory and synaptic plasticity deficits. We found that caspase-9 is activated in hippocampal synaptic fractions of FDDKI mice and inhibition of caspase-9 activity rescues both synaptic plasticity and memory deficits. Conclusion These data directly implicate caspase-9 in the pathogenesis of Danish dementia and suggest that reducing caspase-9 activity is a valid therapeutic approach to treating human dementias. PMID:23217200

  17. Degree of Vertical Integration Between the Undergraduate Program and Clinical Internship with Respect to Lumbopelvic Diagnostic and Therapeutic Procedures Taught at the Canadian Memorial Chiropractic College

    PubMed Central

    Vermet, Shannon; McGinnis, Karen; Boodham, Melissa; Gleberzon, Brian J.

    2010-01-01

    Purpose: The objective of this study was to determine to what extent the diagnostic and therapeutic procedures taught in the undergraduate program used for patients with lumbopelvic conditions are expected to be utilized by students during their clinical internship program at Canadian Memorial Chiropractic College or are being used by the clinical faculty. Methods: A confidential survey was distributed to clinical faculty at the college. It consisted of a list of diagnostic and therapeutic procedures used for lumbopelvic conditions taught at that college. Clinicians were asked to indicate the frequency with which they performed or they required students to perform each item. Results: Seventeen of 23 clinicians responded. The following procedures were most likely required to be performed by clinicians: posture; ranges of motion; lower limb sensory, motor, and reflex testing; and core orthopedic tests. The following were less likely to be required to be performed: Waddell testing, Schober's test, Gillet tests, and abdominal palpation. Students were expected to perform (or clinicians performed) most of the mobilization (in particular, iliocostal, iliotransverse, and iliofemoral) and spinal manipulative therapies (in particular, the procedures referred to as the lumbar roll, lumbar pull/hook, and upper sacroiliac) taught at the college. Conclusion: This study suggests that there was considerable, but not complete, vertical integration between the undergraduate and clinical education program at this college. PMID:20480014

  18. Vapor-phase testing of the memory-effects in benzene- and toluene-imprinted polymers conditioned at elevated temperature.

    PubMed

    Azenha, Manuel; Schillinger, Eric; Sanmartin, Esther; Regueiras, M Teresa; Silva, Fernando; Sellergren, Börje

    2013-11-13

    The preparation of polymers imprinted with common aromatic solvents such as benzene and toluene is an under-exploited subject of research. The present study was aimed at the understanding of whether true solvent memory effects can be achieved by molecular imprinting, as well as if they are stable at elevated temperature. A set of copolymers, comprising low and high cross-linking levels, was prepared from four different combinations of functional monomer and cross-linker, namely methacrylic acid (MAA)/ethylene glycol dimethacrylate (EGDMA), methyl methacrylate (MMA)/EGDMA, MAA/divinyl benzene (DVB) and MMA/DVB. Each possible combination was prepared separately in benzene, toluene and acetonitrile. The obtained materials were applied as coatings onto nickel-titanium (Ni-Ti) alloy wires which were incorporated into solid-phase microextraction devices and finally tested for their ability to competitively adsorb vapors from the headspace of an aqueous solution containing a few volatile organic compounds. Porosity analysis showed that, regardless of the solvent used, only a high cross-linking level permitted the preparation of mesoporous copolymers (BJH radius typically in the range 13-15 nm), a requirement for providing accessibility to the targeted nanoscale-imprinted cavities. A noticeable exception was, however, observed for the MMA/DVB copolymers which exhibited much diminished BJH radius. The porosity data correlated well with the extraction profiles found, which suggested the presence of benzene-imprinted sites in all the highly cross-linked copolymers prepared in benzene, except for the MMA/DVB copolymers. Concerning the effect of an elevated conditioning temperature on the memory-effects created by the imprinting process, the results were clearly indicative that the tested copolymers, including the more robust highly cross-linked ones, are not suitable for high temperature applications such as solid-phase microextraction coupled to gas chromatography. PMID:24176503

  19. The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memories

    NASA Astrophysics Data System (ADS)

    Rocha, Paulo R. F.; Kiazadeh, Asal; De Leeuw, Dago M.; Meskers, Stefan C. J.; Verbakel, Frank; Taylor, David M.; Gomes, Henrique L.

    2013-04-01

    The dynamic response of a non-volatile, bistable resistive memory fabricated in the form of Al2O3/polymer diodes has been probed in both the off- and on-state using triangular and step voltage profiles. The results provide insight into the wide spread in switching times reported in the literature and explain an apparently anomalous behaviour of the on-state, namely the disappearance of the negative differential resistance region at high voltage scan rates which is commonly attributed to a "dead time" phenomenon. The off-state response follows closely the predictions based on a classical, two-layer capacitor description of the device. As voltage scan rates increase, the model predicts that the fraction of the applied voltage, Vox, appearing across the oxide decreases. Device responses to step voltages in both the off- and on-state show that switching events are characterized by a delay time. Coupling such delays to the lower values of Vox attained during fast scan rates, the anomalous observation in the on-state that, device currents decrease with increasing voltage scan rate, is readily explained. Assuming that a critical current is required to turn off a conducting channel in the oxide, a tentative model is suggested to explain the shift in the onset of negative differential resistance to lower voltages as the voltage scan rate increases. The findings also suggest that the fundamental limitations on the speed of operation of a bilayer resistive memory are the time- and voltage-dependences of the switch-on mechanism and not the switch-off process.

  20. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  1. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs. PMID:23226930

  2. Memory effect in the current-voltage characteristic of a low-band gap conjugated polymer

    NASA Astrophysics Data System (ADS)

    Taylor, D. M.; Mills, C. A.

    2001-07-01

    Diodes formed by electrodeposition of the low-band gap polymer poly(4-dicyano methylene-4H-cyclopenta[2,1-b:3,4-b']dithiophene), onto glass slides coated with indium tin oxide (ITO) and furnished with evaporated aluminum counterelectrodes exhibit a reversible bistability in their current-voltage (I-V) characteristics. Applying +5 V to the ITO electrode induces a "high" conductance state while applying -5 V induces a "low" conductance state. The effect is identical in most respects to recent observations in diodes formed from thin films of chromium-doped SrZrO3 sandwiched between SrRuO3 and gold electrodes. A number of mechanisms are discussed but the evidence points to the controlling influence of an interfacial depletion layer at the ITO-polymer interface. It is also shown that the high capacitances associated with such layers can lead to higher than expected displacement currents being generated during the automated collection of I-V data. The presence of such currents distorts the I-V characteristics in the low-bias low-current regime.

  3. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.

    PubMed

    Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

    2014-11-01

    While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(?-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. PMID:25063999

  4. Implementation of poly(?-caprolactone) sheet-based shape-memory polymer microvalves into plastic-based microfluidic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Chenyang; Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao; Ichiki, Takanori

    2015-06-01

    Implementation of shape-memory polymer (SMP) sheet-based microvalves into plastic-based microfluidic devices has been studied toward the use in disposable and mass producible micro total analysis devices. Poly(?-caprolactone) (PCL) and poly(methyl methacrylate-co-styrene) (MS) were used as SMP and main substrate materials, respectively. Bonding between PCL sheets and MS plates was the critical issue in the practical implementation. We found the pristine PCL sheet has relatively rough surface with Ra of 85.14 nm, which is the cause of poor bonding. Hence, by introducing the post-anneal treatment with sandwiched between two flat glass plates, the PCL surface could be smoothed to Ra of 12.50 nm, and tight bonding could be obtained. Consequently, microfluidic devices consisting of plastic/PCL/plastic layers were successfully fabricated and therein the actuation of SMP valves without any leakage was demonstrated. The present technology is expected to be applicable to disposable microfluidic devices as required for point-of-care testing.

  5. Lipid-polymer nanoparticles encapsulating doxorubicin and 2'-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics.

    PubMed

    Su, Xianwei; Wang, Zhaohui; Li, Lili; Zheng, Mingbin; Zheng, Cuifang; Gong, Ping; Zhao, Pengfei; Ma, Yifan; Tao, Qian; Cai, Lintao

    2013-05-01

    Nanomedcine holds great potential in cancer therapy due to its flexibility on drug delivery, protection, releasing, and targeting. Epigenetic drugs, such as 2'-deoxy-5-azacytidine (DAC), are able to cause reactive expression of tumor suppressor genes (TSG) in human cancers and, therefore, might be able to enhance the sensitivity of cancer cells to chemotherapy. In this report, we fabricated a lipid-polymer nanoparticle for codelivery of epigenetic drug DAC and traditional chemotherapeutic drug (DOX) to cancer cells and monitored the growth inhibition of the hybrid nanoparticles (NPs) on cancer cells. Our results showed that NPs encapsulating DAC, DOX, or both, could be effectively internalized by cancer cells. More importantly, incorporating DAC into NPs significantly enhanced the sensitivity of cancer cells to DOX by inhibiting cell growth rate and inducing cell apoptosis. Further evidence indicated that DAC encapsulated by NPs was able to rescue the expression of silenced TSG in cancer cells. Overall our work clearly suggested that the resulting lipid-polymer nanoparticle is a potential tool for combining epigenetic therapy and chemotherapy. PMID:23570548

  6. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems.

    PubMed

    Hearon, Keith; Besset, Celine J; Lonnecker, Alexander T; Ware, Taylor; Voit, Walter E; Wilson, Thomas S; Wooley, Karen L; Maitland, Duncan J

    2013-11-26

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (M w as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  7. Polymeric anti-HIV therapeutics.

    PubMed

    Danial, Maarten; Klok, Harm-Anton

    2015-01-01

    The scope of this review is to highlight the application of polymer therapeutics in an effort to curb the transmission and infection of the human immunodeficiency virus (HIV). Following a description of the HIV life cycle, the use of approved antiretroviral drugs that inhibit critical steps in the HIV infection process is highlighted. After that, a comprehensive overview of the structure and inhibitory properties of polymeric anti-HIV therapeutic agents is presented. This overview will include inhibitors based on polysaccharides, synthetic polymers, dendritic polymers, polymer conjugates as well as polymeric DC-SIGN antagonists. The review will conclude with a section that discusses the applications of polymers and polymer conjugates as systemic and topical anti-HIV therapeutics. PMID:25185484

  8. Physical ageing of a PU-based shape memory polymer: Influence on their applicability to the development of medical devices

    Microsoft Academic Search

    V. Lorenzo; A. Díaz-Lantada; P. Lafont; H. Lorenzo-Yustos; C. Fonseca; J. Acosta

    2009-01-01

    The variation in the properties of polymeric materials through ageing has considerable implications, since it affects the performance of any associated devices. Specially in the case of implantable devices with shape memory, any change in the switching temperature can give rise to problems in the thermal activation of the geometrical changes necessary to treat certain pathologies.This paper presents a study

  9. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    Microsoft Academic Search

    Hui Li; Zhi-qiang Liu; Jin-ping Ou

    2007-01-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when

  10. Building a better hormone therapy?: How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline

    PubMed Central

    Frick, Karyn M.

    2012-01-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17?-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women. PMID:22289043

  11. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.

    PubMed

    Bao, Min; Lou, Xiangxin; Zhou, Qihui; Dong, Wen; Yuan, Huihua; Zhang, Yanzhong

    2014-02-26

    Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (?10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration). PMID:24476093

  12. Chemical reversability of the electrical dedoping of conducting polymers: An organic chemically erasable programmable read-only memory

    NASA Astrophysics Data System (ADS)

    Chia, Perq-Jon; Yeo, Yee-Chia; Burroughes, Jeremy H.; Friend, Richard H.; Ho, Peter K.-H.

    2008-07-01

    The loss of electronic conductivity of p-doped poly(3,4-ethylenedioxythiophene) at high electrical bias is shown to be chemically reversible upon redoping with iodine vapor. This provides further confirmation that the initial loss of conductivity arises from the injection-induced dedoping mechanism. Repeat "write-erase" cycles are possible, which gives a rudimentary organic chemically erasable programmable read-only memory. Transient measurements show that the write time (i.e., time for loss of conductivity) decreases from thousands of seconds just above the critical electric field of 50kVcm-1 to millisecond well above this value but below the onset of electrochemical destruction.

  13. Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices.

    PubMed

    Mamo, Messai A; Sustaita, Alan O; Tetana, Zikhona N; Coville, Neil J; Hümmelgen, Ivo A

    2013-03-29

    We report the preparation of write-once-read-many times memory devices using composites of carbon nanotubes and poly(vinyl phenol) sandwiched between Al electrodes. Three types of nanotubes (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and boron-doped multiwalled carbon nanotubes) are investigated for this application. The OFF to ON state switching threshold is only slightly dependent on nanotube type, but the ON/OFF current ratio depends on both nanotube type and concentration and varies up to 10(6), decreasing for nanotube concentrations larger than 0.50 wt% in the composite. PMID:23466515

  14. "Only Connect"--A Sexually Abused Girl's Rediscovery of Memory and Meaning as She Works towards the Transition from a Therapeutic Community to a Foster-Family

    ERIC Educational Resources Information Center

    Cant, Diana

    2005-01-01

    This paper looks at the role of individual psychotherapy with a severely sexually abused girl in a therapeutic community, and the place of this work as she makes the transition into foster-care. It emphasizes the importance, not only of the individual work, but also of the drawing together of the work around the child, particularly at such a…

  15. Fatty Acid Based Biodegradable Polymer

    Microsoft Academic Search

    Jay Prakash Jain; Marina Sokolsky; Neeraj Kumar; A. J. Domb

    2008-01-01

    Synthetic polymers have become an indispensable part of the daily?life of human beings and the biodegradable class of polymers hold immense value in therapeutics. Fatty acid incorporation in biodegradable polymers renders flexibility, low melting point, hydrophobicity, and pliability properties. At the same time, degradation into naturally occurring compounds makes them environmentally friendly besides their utility in various applications like drug

  16. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  17. Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials

    Microsoft Academic Search

    Z. G. Wei; R. Sandstroröm; S. Miyazaki

    1998-01-01

    A review is presented of the current research and development of shape-memory materials, including shape-memory alloys, shape-memory ceramics and shape-memory polymers. The shape-memory materials exhibit some novel performances, such as sensoring (thermal, stress or field), large-stroke actuation, high damping, adaptive responses, shape memory and superelasticity capability, which can be utilized in various engineering approaches to smart systems. Based on an

  18. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study.

    PubMed

    Zimkowski, Michael M; Rentschler, Mark E; Schoen, Jonathan; Rech, Bryan A; Mandava, Nageswara; Shandas, Robin

    2013-09-01

    About 600,000 hernia repair surgeries are performed each year; recently, the use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this study, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature. This suggests a reduction in surgical operating time and improved mesh placement characteristics is possible with SMP-integrated surgical meshes. PMID:23412974

  19. Scope of nanotechnology in ovarian cancer therapeutics

    Microsoft Academic Search

    Murali M Yallapu; Meena Jaggi; Subhash C Chauhan

    2010-01-01

    This review describes the use of polymer micelle nanotechnology based chemotherapies for ovarian cancer. While various chemotherapeutic agents can be utilized to improve the survival rate of patients with ovarian cancer, their distribution throughout the entire body results in high normal organ toxicity. Polymer micelle nanotechnology aims to improve the therapeutic efficacy of anti-cancer drugs while minimizing the side effects.

  20. Polymer conjugates as anticancer nanomedicines

    Microsoft Academic Search

    Ruth Duncan

    2006-01-01

    The transfer of polymer–protein conjugates into routine clinical use, and the clinical development of polymer–anticancer-drug conjugates, both as single agents and as components of combination therapy, is establishing polymer therapeutics as one of the first classes of anticancer nanomedicines. There is growing optimism that ever more sophisticated polymer-based vectors will be a signficant addition to the armoury currently used for

  1. Novel topical therapeutics.

    PubMed

    Bleier, Benjamin S

    2010-06-01

    Intranasal drug delivery is a rapidly growing field that offers the potential for enhanced treatment of local and systemic disease. Novel preclinical screening tools such as in vitro assays and 3-dimensional imaging are currently being used to improve drug design and delivery. In addition, new evidence has emerged underlining the importance of surgical marsupialization of the sinuses to allow for improved topical delivery. Although multiple barriers to administration and absorption exist, implantable therapeutics using new classes of drug-eluting polymers allow for prolonged, site-specific drug delivery and hold great promise in overcoming these obstacles. PMID:20525509

  2. Therapeutic Nanodevices

    NASA Astrophysics Data System (ADS)

    Lee, Stephen C.; Ruegsegger, Mark; Barnes, Philip D.; Smith, Bryan R.; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'etre of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multi-step work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  3. Therapeutic Nanodevices

    NASA Astrophysics Data System (ADS)

    Lee, Stephen; Ruegsegger, Mark; Barnes, Philip; Smith, Bryan; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'être of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multistep work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self-assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  4. [Therapeutic strategy].

    PubMed

    Fournier, M

    1992-12-01

    The clinical manifestations of bronchial asthma fall into two categories: acute asthma which consists of asthmatic attacks and their variants, and chronic asthma. The treatment of acute asthma is now well established, while that of chronic asthma, more difficult to organize, is part of a true therapeutic strategy which has two aspects: 1. A more global approach to the treatment must be developed. This means full management of asthmatic patients who must be instructed and considered as active partners in the prevention of acute attacks, the evaluation of the severity of their disease and the application of the treatment prescribed. 2. An asthma severity scale must be devised and a specific therapeutic programme must be offered for each stage of the disease. The general principle, beside treatment of acute asthma, is to pay much attention to the intercritical situation and, in particular, to treat effectively the bronchial inflammation. PMID:1296323

  5. [Therapeutic plasmas].

    PubMed

    Schneider, T

    2012-11-01

    Three different therapeutic plasmas preparations are currently available in France and are issued by EFS to the hospitals: quarantine fresh frozen plasma, amotosalen-inactivated plasma and solvent/detergent-treated plasma. All these products insure a microbiological safety, an immunologic compatibility and a hemostatic potential for the patients. These plasmas are in accordance with the Guidelines established by the French Authorities (ANSM). PMID:22999855

  6. A large-deformation thermo-mechanically coupled elastic-viscoplastic theory for amorphous polymers : modeling of micro-scale forming and the shape memory phenomenon

    E-print Network

    Srivastava, Vikas

    2010-01-01

    Amorphous polymers are important engineering materials; however, their nonlinear, strongly temperature- and rate-dependent elastic-viscoplastic behavior is still not very well understood, and is modeled by existing ...

  7. Polymer films

    DOEpatents

    Granick, Steve (Champaign, IL); Sukhishvili, Svetlana A. (Maplewood, NJ)

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Cache Memories

    Microsoft Academic Search

    Alan Jay Smith

    1982-01-01

    Cache memories are used in modern, medium and high-speed CPUs to hold temporarily those portions of the contents of main memory which are {believed to be) currently in use. Since instructions and data in cache memories can usually be referenced in 10 to 25 percent of the time required to access main memory, cache memories permit the executmn rate of

  9. Memory Matters

    MedlinePLUS

    ... different parts. Some of them are important for memory. The hippocampus (say: hih-puh-KAM-pus) is one of the more important parts of the brain that processes memories. Old information and new information, or memories, are ...

  10. Therapeutic Drug Monitoring

    MedlinePLUS

    ... this website will be limited. Search Help? Therapeutic Drug Monitoring Share this page: Was this page helpful? ... Drugs | Common Questions | Related Pages What is therapeutic drug monitoring? Therapeutic drug monitoring is the measurement of ...

  11. Synthesis and thermomechanical research of shape memory epoxy systems

    Microsoft Academic Search

    W. B. Song; L. Y. Wang; Z. D. Wang

    2011-01-01

    Shape memory polymers (SMPs) and their composites are a class of novel smart materials. In order to achieve adjustable thermomechanical and shape memory properties, a series of shape memory epoxy systems were synthesized by varying the types of curing agents and their contents. Thermal frozen\\/recovery tests, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were performed to investigate shape

  12. Application of shape memory materials in fluid sealing technology

    Microsoft Academic Search

    W?odzimierz Ocho?ski

    2010-01-01

    Purpose – The purpose of this paper is to present short characteristics of shape memory alloys (SMA) and shape memory polymers (SMP) and some examples of application of these materials in industrial sealing technology. Design\\/methodology\\/approach – In this paper, short characteristic of shape memory materials and design examples of applying them in industrial sealing technology such as: tube coupling in

  13. Memory Palaces

    ERIC Educational Resources Information Center

    Wood, Marianne

    2007-01-01

    This article presents a lesson called Memory Palaces. A memory palace is a memory tool used to remember information, usually as visual images, in a sequence that is logical to the person remembering it. In his book, "In the Palaces of Memory", George Johnson calls them "...structure(s) for arranging knowledge. Lots of connections to language arts,…

  14. Polyurethane smart fiber with shape memory function: Experimental characterization and constitutive modelling

    Microsoft Academic Search

    Seok Jin Hong; Woong-Ryeol Yu; Ji Ho Youk; Yang Rae Cho

    2007-01-01

    Segmented polyurethane (PU) polymers are known to have shape memory function, i.e., when they reach certain temperatures,\\u000a they deform into the memorized shape from any temporary one. In the present study, PU polymers were spun into fibers using\\u000a the conventional extrusion process to investigate the feasibility of producing smart fibers with shape memory function. The\\u000a shape memory polymers (SMPs) and

  15. Self-assembling materials for therapeutic delivery?

    PubMed Central

    Branco, Monica C.; Schneider, Joel P.

    2009-01-01

    A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the “bottom up” approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials. PMID:19010748

  16. Constitutive modeling of SMA SMP multifunctional high performance smart adaptive shape memory composite

    Microsoft Academic Search

    Chetan S. Jarali; S. Raja; A. R. Upadhya

    2010-01-01

    Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented.

  17. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  18. Polymers Presentation

    NSDL National Science Digital Library

    This 15 page PowerPoint contains the presentation for the polymers module from Nano-Link. This lesson requires a background in eight grade science. Various details of polymers are discussed including molecular structures, cross-linked polymers, and ringed polymers. Lastly, an activity to explore cross-linked polymers is included. Visitors must complete a quick and free registration to access the materials.

  19. Variable-Resistivity Material For Memory Circuits

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Moacanin, Jovan

    1989-01-01

    Nonvolatile memory elements packed densely. Electrically-erasable, programmable, read-only memory matrices made with newly-synthesized organic material of variable electrical resistivity. Material, polypyrrole doped with tetracyanoquinhydrone (TCNQ), changes reversibly between insulating or higher-resistivity state and conducting or low-resistivity state. Thin film of conductive polymer separates layer of row conductors from layer of column conductors. Resistivity of film at each intersection and, therefore, resistance of memory element defined by row and column, increased or decreased by application of suitable switching voltage. Matrix circuits made with this material useful for experiments in associative electronic memories based on models of neural networks.

  20. Memory systems

    Microsoft Academic Search

    Larry R. Squire; Donald Chai

    1998-01-01

    Two recent findings are summarized here that bear on the organization of memory and brain systems. First, the capacity for simple recognition of familiarity (a form of declarative memory) depends on the hippocampal region in both humans and nonhuman primates. Second, probabilistic classification learning (a form of nondeclarative memory akin to habit learning) depends on the caudate nucleus and putamen.

  1. American Therapeutic Recreation Association

    MedlinePLUS

    American Therapeutic Recreation Association Promoting Health & Wellness Services Access to Inpt Rehab Therapy Act - ACT NOW 2015 Annual Conference will ... Policy Matters to Every RT Join thousands of Therapeutic Recreation specialists today Join Now Renew your membership today ...

  2. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  3. Characterization of Therapeutic Coatings on Medical Devices

    NASA Astrophysics Data System (ADS)

    Wormuth, Klaus

    Therapeutic coatings on medical devices such as catheters, guide wires, and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of frictionreducing hydrogel coatings on catheters and by determining the distribution of drug within a polymer-based drug-eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

  4. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  5. Polymer brushes

    Microsoft Academic Search

    S. T. MILNER

    1991-01-01

    Polymers attached by one end to an interface at relatively high coverage stretch away from the interface to avoid overlapping, forming a polymer brush. This simple picture may serve as the basis for models in diverse interfacial systems in polymer science, such as polymeric surfactants, stabilized suspensions of colloidal particles, and structures formed by block copolymers. The structure and dynamics

  6. Microfluidic Memory and Control Devices

    NASA Astrophysics Data System (ADS)

    Groisman, Alex; Enzelberger, Markus; Quake, Stephen R.

    2003-05-01

    We demonstrate microscopic fluidic control and memory elements through the use of an aqueous viscoelastic polymer solution as a working fluid. By exploiting the fluid's non-Newtonian rheological properties, we were able to demonstrate both a flux stabilizer and a bistable flip-flop memory. These circuit elements are analogous to their solid-state electronic counterparts and could be used as components of control systems for integrated microfluidic devices. Such miniaturized fluidic circuits are insensitive to electromagnetic interference and may also find medical applications for implanted drug-delivery devices.

  7. Polymer brushes

    SciTech Connect

    Milner, S.T. (Exxon Research and Engineering Co., Annandale, NJ (United States))

    1991-02-22

    Polymers attached by one end to an interface at relatively high coverage stretch away from the interface to avoid overlapping, forming a polymer brush. This simple picture may serve as the basis for models in diverse interfacial systems in polymer science, such as polymeric surfactants, stabilized suspensions of colloidal particles, and structures formed by block copolymers. The structure and dynamics of polymer brushes have been the subject of considerable theoretical and experimental activity in recent years. An account is given of recent advances in theoretical understanding of stretched polymers at interfaces, and the diverse experimental probes of systems modeled by brushes are briefly reviewed.

  8. Simulations of Polymer Translocation

    NASA Astrophysics Data System (ADS)

    Vocks, H.

    2008-07-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze -- i.e., translocate -- themselves through the pores. DNA, RNA and proteins are such naturally occuring long molecules in a variety of biological processes. Understandably, the process of translocation has been an active topic of current research: not only because it is a cornerstone of many biological processes, but also due to its relevance for practical applications. Translocation is a complicated process in living organisms -- the presence of chaperone molecules, pH, chemical potential gradients, and assisting molecular motors strongly influence its dynamics. Consequently, the translocation process has been empirically studied in great variety in biological literature. Study of translocation as a biophysical process is more recent. Herein, the polymer is simplified to a sequentially connected string of N monomers as it passes through a narrow pore on a membrane. The quantities of interest are the typical time scale for the polymer to leave a confining cell (the ``escape of a polymer from a vesicle'' time scale), and the typical time scale the polymer spends in the pore (the ``dwell'' time scale) as a function of N and other parameters like membrane thickness, membrane adsorption, electrochemical potential gradient, etc. Our research is focused on computer simulations of translocation. Since our main interest is in the scaling properties, we use a highly simplified description of the translocation process. The polymer is described as a self-avoiding walk on a lattice, and its dynamics consists of single-monomer jumps from one lattice site to another neighboring one. Since we have a very efficient program to simulate such polymer dynamics, which we decribe in Chapter 2, we can perform long simulations in which long polymers creep through tiny pores. In Chapter 3 we study pore blockage times for a translocating polymer of length N, driven by a field E across te pore. In three dimensions we find that the typical time the pore remains blocked during a translocation event scales as N^{1.37}/E We show that the scaling behavior stems from the polymer dynamics at the immediate vicinity of the pore -- in particular, the memory effects in the polymer chain tension imbalance across the pore. Chapter 4 studies the unbiased translocation of a polymer with length N, surrounded by equally long polymers, through a narrow pore in a membrane. We show that in dense polymeric systems a relaxation time exists that scales as N^{2.65}, much longer than the Rouse time N^2. If the polymers are well entangled, we find that the mean dwell times scales as N^{3.3}, while for shorter, less entangled polymers, we measure dwell times scaling as N^{2.7}. In Chapter 5 we study the translocation of an RNA molecule, pulled through a nanopore by an optical tweezer, as a method to determine its secondary structure. The resolution with which the elements of the secondary structure can be determined is limited by thermal fluctuations, ruling out single-nucleotide resolution under normal experimental conditions.

  9. Are recovered memories accurate? 

    E-print Network

    Gerkens, David

    2005-08-29

    Research in our laboratory has demonstrated blocked and recovered memories within the context of a controlled experiment. The comparative memory paradigm allows for comparisons of recovered memories, continuous memories, and false memories...

  10. Consolidating memories.

    PubMed

    McGaugh, James L

    2015-01-01

    Our own experiences, as well as the findings of many studies, suggest that emotionally arousing experiences can create lasting memories. This autobiographical article provides a brief summary of the author's research investigating neurobiological systems responsible for the influence of emotional arousal on the consolidation of lasting memories. The research began with the finding that stimulant drugs enhanced memory in rats when administered shortly after training. Those findings suggested the possibility that endogenous systems activated by arousal might influence neural processes underlying memory consolidation. Subsequent findings that adrenal stress hormones activated by learning experiences enhance memory consolidation provided strong evidence supporting this hypothesis. Other findings suggest that the enhancement is induced by stress hormone activation of the amygdala. The findings also suggest that the basolateral amygdala modulates memory consolidation via its projections to brain regions involved in processing different aspects and forms of memory. This emotional-arousal-activated neurobiological system thus seems to play an important adaptive role in insuring that the strength of our memories will reflect their emotional significance. PMID:25559113

  11. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  12. Practical memory checking with Dr. Memory

    Microsoft Academic Search

    Derek Bruening; Qin Zhao

    2011-01-01

    Memory corruption, reading uninitialized memory, using freed memory, and other memory-related errors are among the most difficult programming bugs to identify and fix due to the delay and non-determinism linking the error to an observable symptom. Dedicated memory checking tools are invaluable for finding these errors. However, such tools are difficult to build, and because they must monitor all memory

  13. Elastic memory composites (EMC) for deployable industrial and commercial applications

    Microsoft Academic Search

    Steven C. Arzberger; Michael L. Tupper; Mark S. Lake; Rory Barrett; Kaushik Mallick; Craig Hazelton; William Francis; Phillip N. Keller; Douglas Campbell; Sara Feucht; Dana Codell; Joe Wintergerst; Larry Adams; Joe Mallioux; Rob Denis; Karen White; Mark Long; Naseem A. Munshi; Ken Gall

    2005-01-01

    The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures.

  14. New shape memory effects in semicrystalline polymeric networks

    Microsoft Academic Search

    Taekwoong Chung

    2009-01-01

    Shape memory polymers (SMPs) have attracted much research interest as a type of smart material that possesses the capacity to undergo rapid changes of their shape and size under a specific or tailored environment. Herein, we prepared semicrystalline polymers-based networks such as poly (cyclooctene) (PCO), poly (e-caprolactone) (PCL) and poly (ethylene glycol) (PEG) networks in order to explore their shape

  15. Affect and the therapeutic action of psychoanalysis.

    PubMed

    Andrade, Victor Manoel

    2005-06-01

    In connection with controversial IJP articles by Stern et al. and Fonagy on the interpretation of the repressed and the recovery of past memories, the author maintains that the affect that is inherent in positive transference is at the heart of therapeutic action. Points of view put forward in the controversy (based on neurobiological knowledge) are related to Freudian metapsychology, as well as to their precursors whose scope was necessarily limited by a lack of access to more recent scientific discoveries. The author demonstrates metapsychological elements of therapeutic action inherent in the intersubjective relationship, especially identification, manifested in introjection and empathy. He describes cognitive development as spontaneously blossoming from the affective nucleus, and he explains the neuroscientific bases of this step forward. The classic (interpretative) psychoanalytic method makes up the cognitive superstructure necessary for the organisation of the mind that has sprung from the affective substructure. As a primary factor in psychic change, interpretation is limited in effectiveness to pathologies arising from the verbal phase, related to explicit memories, with no effect in the pre-verbal phase where implicit memories are to be found. Interpretation--the method used to the exclusion of all others for a century--is only partial; when used in isolation it does not meet the demands of modern broad-spectrum psychoanalysis, as the clinical material presented illustrates. PMID:16096070

  16. Surveying the Therapeutic Landscape

    Microsoft Academic Search

    Jean Stephans Kavanagh; Thomas A. Musiak

    1994-01-01

    This paper is an initial report on the nationwide survey of outdoor facilities of horticultural therapy programs conducted from Texas Tech University. This report is intended to encourage discussions which explore areas of future research into the optimum physical design of outdoor plant-oriented therapeutic landscapes. The premise for these discussions is found in the perception of therapeutic landscapes therapy as

  17. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  18. Reversible Shape Memory Optical Gratings

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Tippets, Cary; Fu, Yulan; Donev, Eugene; Turner, Sara; Ashby, Valerie; Lopez, Rene; Sheiko, Sergei

    2015-03-01

    Recent advancements in the understanding of the mechanisms that control shape memory in semi-crystalline polymers, has led to the development of protocols that allow for reversibility in complex shape transformations. The shifting between two programmable shapes is reversible without applying any external force. This is made possible by thermodynamically driven relaxation of extended polymer chains on heating is then inverted by kinetically preferred pathways of polymer crystallization on cooling. Reversible shapeshifting was applied to modulation of photonic gratings to create hands-free reversibly tunable optical elements. We have fabricated a sub-micron ratio optical square grating that presents reversible magnitude changes of its diffraction intensity (up to about 38% modulation) when subject to changes in temperature. This result is attributed to programmable changes in the grating height due to reversible shape memory and is repeatable over multiple cycles. Besides, roughness-induced variations in scattering signal observed upon heating-cooling cycles may offer another way to monitor kinetics of polymer melting and crystallization. Grants: NSF DMR-1407645,

  19. Memorial Sloan-Kettering Cancer Center

    Cancer.gov

    Research at Memorial Sloan-Kettering Cancer Center is focused on cancer diagnosis and enhancing responses of tumor to treatment with a goal of curing cancer. Animal studies of novel cancer therapeutics, while imperfect as a treatment model, have utility, both in studying therapeutic efficacy and toxicity. Because tumors are heterogenous, both between individuals and within a single tumor, non-invasive imaging studies are necessary to provide information about variation in response.

  20. Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and

    E-print Network

    Mather, Patrick T.

    the fabrication of porous foams with shape memory triggering at body temperature. Employing a modified porogen program- mability is the use of shape memory polymers (SMPs). SMPs are a class of smart materials capableShape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering

  1. Polymers and Biological Physics For more information contact

    E-print Network

    Steiner, Ullrich

    for flagellum growth: Nature, 2013, 504, 287. [4] Melting and the glass transition in amorphous solids: Phys in Biology Captions Polymer Networks Smart shape-memory materials · Nanocomposites based on graphene muscle. Model robot lifts its arm by pulling its LCE muscle Triple shape memory effect: the smart

  2. Fullerene Embedded Shape Memory Nanolens Array

    NASA Astrophysics Data System (ADS)

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-Ho; Brenner, Howard; Song, Young Seok

    2013-11-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability.

  3. Thermomechanical modeling of a shape memory polymer

    E-print Network

    Ghosh, Pritha B.

    2009-05-15

    applications. SMPs can be made both compatible with the body and biodegrad- able upon interaction with physiological environment as studied by Lendlien and Langer [14] and their team to produce sca olds for engineering new organs and coronary stents. Many SMPs..., when deformed at low temperature,tend to re- tain their deformed shape and recover upon heating above the glass transition. 4 Such stents could be compressed and fed through a tiny hole in the body into the blocked artery. Then, the warmth of the body...

  4. Drug Delivery Systems Based On Mucoadhesive Polymers

    Microsoft Academic Search

    Maya Davidovich-Pinhas; Havazelet Bianco-Peled

    \\u000a Transmucosal delivery of therapeutic agents is a non-invasive approach that utilizes human entry paths such as the nasal,\\u000a buccal, rectal and vaginal routs. Mucoadhesive polymers have the ability to adhere to the mucus layer covering those surfaces\\u000a and by that promote drug release, targeting and absorption. Mucoadhesive polymers commonly interact with mucus through non-covalent\\u000a bonds such as hydrogen bonds, ionic

  5. Memory Technologies Vivek Asthana

    E-print Network

    Kumar, M. Jagadesh

    Memory Technologies Vivek Asthana 13th Mar 2013 #12;13-Mar-13 2 Memory Usage (2025) #12;13-Mar-13 3 Outline What is a Memory Current Memory technologies · SRAM · DRAM · Flash Upcoming Memory technologies · MRAM · PCRAM · FeRAM · ... #12;13-Mar-13 4 What is a Memory Memory cell: Binary data storage element

  6. Electroluminescent polymers

    Microsoft Academic Search

    Leni Akcelrud

    2003-01-01

    Electroluminescent polymers are reviewed in terms of synthesis and relationships between structure and light emission properties.The main concepts, problems and ideas related to the subject as a whole and to each class of electroluminescence (EL) polymer, have been systematically addressed. The elements of device architecture were considered, such as electrode characteristics and transport layers. The main mechanisms for light emission

  7. Polymers Guide

    NSDL National Science Digital Library

    This 21 page document contains an instructor guide for the polymers module from Nano-Link. The activity requires a background in eight grade science. The document includes background information on polymers, a hands-on learning activity, questions to check understanding, links to multimedia resources, and further readings. Visitors must complete a quick and free registration to access the materials.

  8. Memory loss

    MedlinePLUS

    ... be for a short time and then resolve (transient). Or it may not go away, and, depending ... Major surgery or severe illness, including brain surgery Transient global amnesia (sudden, temporary loss of memory) of ...

  9. POW Memory

    NSDL National Science Digital Library

    Science Update

    2004-07-12

    Most people think eyewitness testimony is the best possible evidence against an alleged criminal -- especially when that testimony comes from the victim. But people who survive terrifying situations may actually have surprisingly unreliable memories of who or what caused them.

  10. Memory Solitaire

    NSDL National Science Digital Library

    2013-01-30

    In this online game, learners practice memory recall. They are shown a collage of pictures for two minutes, then have to write down everything they remember and check how they did. After, they learn a memory-improving method of "tell yourself a story" to help train their brain, and try again. Although this activity is designed to be done online and individually, it can easily be adapted to be done using a printout and in a group setting.

  11. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials.

    PubMed

    Kim, Jaesung; Kim, Pyung-Hwan; Kim, Sung Wan; Yun, Chae-Ok

    2012-02-01

    With the reason that systemically administered adenovirus (Ad) is rapidly extinguished by innate/adaptive immune responses and accumulation in liver, in vivo application of the Ad vector is strictly restricted. For achieving to develop successful Ad vector systems for cancer therapy, the chemical or physical modification of Ad vectors with polymers has been generally used as a promising strategy to overcome the obstacles. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of therapeutic Ad vectors and well accomplished to extend circulation time in blood and reduce liver toxicity. However, although polymer-coated Ads can successfully evacuate from a series of guarding systems in vivo and locate within tumors by enhanced permeability and retention (EPR) effect, the possibility to entering into the target cell is few and far between. To endow targeting moiety to polymer-coated Ad vectors, a diversity of ligands such as tumor-homing peptides, growth factors or antibodies, have been introduced with avoiding unwanted transduction and enhancing therapeutic efficacy. Here, we will describe and classify the characteristics of the published polymers with respect to Ad vectors. Furthermore, we will also compare the properties of variable targeting ligands, which are being utilized for addressing polymer-coated Ad vectors actively. PMID:22142769

  12. Therapeutics for Bowel Disorders

    Cancer.gov

    The National Cancer Institute''s Laboratory of Metabolism is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize therapeutics that ameliorate bowel disorders.

  13. Polymer Particles

    NASA Astrophysics Data System (ADS)

    Okubo, Masayoshi

    In this special volume on polymer particles, recent trends and developments in the synthesis of nano- to micron-sized polymer particles by radical polymerization (Emulsion, Miniemulsion, Microemulsion, and Dispersion Polymerizations) of vinyl monomers in environmentally friendly heterogeneous aqueous and supercritical carbon dioxide fluid media are reviewed by prominent worldwide researchers. In addition to the important challenges and possibilities with regards to design and preparation of functionalized polymer particles of controlled size, the topics described are of great current interest due to the increased awareness of environmental issues.

  14. [ME]morial

    E-print Network

    Lee, Beomki

    2015-01-01

    Challenging an archetypal relationship between collective memory and a multitude of traditional memorials, "[ME]morial" presents a new concept in memorial architecture based on the reinterpretation of Freud's and Bergson's ...

  15. An overview of vibration and seismic applications of NiTi shape memory alloy

    Microsoft Academic Search

    S. Saadat; J. Salichs; M. Noori; Z. Hou; H. Davoodi; I. Bar-on; Y. Suzuki; A. Masuda

    2002-01-01

    Shape memory alloys (SMAs) exhibit peculiar thermomechanical, thermoelectrical and thermochemical behaviors under mechanical, thermal, electrical and chemical conditions. Examples of these materials are Cu-based SMAs, NiTi SMAs, ferrous SMAs, shape memory ceramics and shape memory polymers. NiTi SMAs in particular, have unique thermomechanical behaviors such as shape memory effect and pseudoelasticity, which have made them attractive candidates for structural vibration

  16. Engineered therapeutic-releasing nanoporous anodic alumina-aluminum wires with extended release of therapeutics.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Kumeria, Tushar; Losic, Dusan

    2015-02-18

    In this study, we present a nanoengineered therapeutic-releasing system based on aluminum wires featuring nanoporous anodic alumina layers and chitosan coatings. Nanoporous anodic alumina layers are produced on the surface of aluminum wires by electrochemical anodization. These nanoporous layers with precisely engineered nanopore geometry are used as nanocontainers for bovine serum albumin molecules labeled with fluorescein isothiocyanate (BSA-FITC), which is selected as a model drug. The surface of these therapeutic-releasing implants is coated with a biocompatible and biodegradable polymer, chitosan, in order to achieve a sustained release of protein over extended periods of time. The performance of this therapeutic-releasing device is systematically assessed through a series of experiments under static and dynamic flow conditions. In these experiments, the effect of such parameters as the number of layers of chitosan coating and the temperature and pH of the eluting medium is established. The obtained results reveal that the proposed therapeutic-releasing system based on nanoporous aluminum wires can be engineered with sustained release performance for up to 6.5 weeks, which is a critical factor for medical treatments using sensitive therapeutics such as proteins and genes when a localized delivery is desired. PMID:25625878

  17. Worthington Memory

    NSDL National Science Digital Library

    This Online Scrapbook of Worthington History is a collaborative project between the Worthington (Ohio) Libraries and the Worthington Historical Society to present local history materials. Visitors can search or browse the digitized collection, currently over 117 photographs and documents. Those unfamiliar with Worthington can use the browse feature to retrieve collection items organized into broad categories such as Arts, Architecture, Agriculture, Business and Commerce, or by decade from 1800 to 2002. Documentation, such as selection criteria, and a 36-page manual "Worthington Memory Digital Imaging Workflow" is provided, making Worthington Memory a handy resource for other public libraries wishing to begin a local history digitization project.

  18. Memory clinics

    PubMed Central

    Jolley, D; Benbow, S M; Grizzell, M

    2006-01-01

    Memory clinics were first described in the 1980s. They have become accepted worldwide as useful vehicles for improving practice in the identification, investigation, and treatment of memory disorders, including dementia. They are provided in various settings, the setting determining clientele and practice. All aim to facilitate referral from GPs, other specialists, or by self referral, in the early stages of impairment, and to avoid the stigma associated with psychiatric services. They bring together professionals with a range of skills for the benefit of patients, carers, and colleagues, and contribute to health promotion, health education, audit, and research, as well as service to patients. PMID:16517802

  19. The past, the future and the biology of memory storage.

    PubMed Central

    Kandel, E R; Pittenger, C

    1999-01-01

    We here briefly review a century of accomplishments in studying memory storage and delineate the two major questions that have dominated thinking in this area: the systems question of memory, which concerns where in the brain storage occurs; and the molecular question of memory, which concerns the mechanisms whereby memories are stored and maintained. We go on to consider the themes that memory research may be able to address in the 21st century. Finally, we reflect on the clinical and societal import of our increasing understanding of the mechanisms of memory, discussing possible therapeutic approaches to diseases that manifest with disruptions of learning and possible ethical implication of the ability, which is on the horizon, to ameliorate or even enhance human memory. PMID:10670023

  20. Reactivating personal memory 1 RUNNING HEAD: Reactivating personal memory

    E-print Network

    Schacter, Daniel

    Reactivating personal memory 1 RUNNING HEAD: Reactivating personal memory Modifying memory: Selectively enhancing and updating personal memories for a museum; Reactivating personal memory 2 Abstract Memory can be modified when reactivated

  1. Therapeutic immunization for HIV

    Microsoft Academic Search

    Lindvi Gudmundsdotter; Anna Sjödin; Ann-Charlotte Boström; Bo Hejdeman; Rebecca Theve-Palm; Annette Alaeus; Knut Lidman; Britta Wahren

    2006-01-01

    Vaccines have entered into human clinical trials against infectious diseases and as therapies against cancer. The HIV virus establishes a latent infection at a very early stage and the T cell memory of the infected patient is rapidly destroyed. However, results of immunotherapy after DNA and protein immunization show that vaccine-induced immune responses might be present for a long period

  2. Materials for Diabetes Therapeutics

    PubMed Central

    Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.; Langer, Robert

    2013-01-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). PMID:23184741

  3. Super Memory

    NSDL National Science Digital Library

    2012-06-08

    In this activity (pages 26-29 of the PDF), learners investigate how they can develop super memories by using mnemonic devices. In the first part of the activity, learners use mnemonic devices to memorize a group of random objects. In the second part, learners use mnemonic devices to memorize a phone number.

  4. Memory Loss

    ERIC Educational Resources Information Center

    Cassebaum, Anne

    2011-01-01

    In four decades of teaching college English, the author has watched many good teaching jobs morph into second-class ones. Worse, she has seen the memory and then the expectation of teaching jobs with decent status, security, and salary depart along with principles and collegiality. To help reverse this downward spiral, she contends that what is…

  5. Retracing Memories

    ERIC Educational Resources Information Center

    Harrison, David L.

    2005-01-01

    There are plenty of paths to poetry but few are as accessible as retracing ones own memories. When students are asked to write about something they remember, they are given them the gift of choosing from events that are important enough to recall. They remember because what happened was funny or scary or embarrassing or heartbreaking or silly.…

  6. Antimicrobial peptides: therapeutic potential.

    PubMed

    Zhang, Lijuan; Falla, Timothy J

    2006-04-01

    A significant component of the innate immune system of a wide variety of animals and plants is arbitrated by cationic host defence peptides. In man, these peptides, in addition to exhibiting a direct antimicrobial activity, seems to provide a range of non-antimicrobial bioactivities related to defence, inflammation and wound healing. Despite the fact that such peptides have so far failed to reach the market, there are continued initiatives to advance such potential therapeutics to, and through, the clinic. The reasons behind such initiatives include: reduced manufacturing costs for peptides; allowing entry into therapeutic areas previously inaccessible due to cost; the continued identification of previously unknown bioactivities of such peptides; and the resurgence of interest in peptide therapeutics. As a result, clinical programmes based on cationic host defence peptides exist in the areas of infection, dermatology, cancer and inflammation. The probability of clinical success for host defence peptide-based therapeutics is on the rise as options for a wider range of clinical indications emerge. PMID:16556083

  7. Aptamers as therapeutics

    Microsoft Academic Search

    Anthony D. Keefe; Supriya Pai; Andrew Ellington

    2010-01-01

    Nucleic acid aptamers can be selected from pools of random-sequence oligonucleotides to bind a wide range of biomedically relevant proteins with affinities and specificities that are comparable to antibodies. Aptamers exhibit significant advantages relative to protein therapeutics in terms of size, synthetic accessibility and modification by medicinal chemistry. Despite these properties, aptamers have been slow to reach the marketplace, with

  8. Psychopathy and therapeutic pessimism

    Microsoft Academic Search

    Randall T Salekin

    2002-01-01

    It is a widely held belief that psychopathic individuals are extremely difficult to treat, if not immune to treatment. This therapeutic pessimism is pervasive and undermines motivation to search for effective modes of intervention for psychopathic individuals. A review of 42 treatment studies on psychopathy revealed that there is little scientific basis for the belief that psychopathy is an untreatable

  9. Therapeutic laparoscopy in trauma

    Microsoft Academic Search

    R. Stephen Smith; William R. Fry; Diane J. Morabito; Richard H. Koehler; Claude H. Organ

    1995-01-01

    Purpose: To assess the therapeutic potential of emergent laparoscopy in the trauma setting, a retrospective review was performed in a busy urban trauma center.Patients and methods: Between December 1991 and October 1993, 133 hemodynamically stable patients with suspected abdominal injury were evaluated laparoscopically. All laparoscopic procedures were performed in the operating room under general anesthesia. Mechanism of injury was stab

  10. Developing Therapeutic Listening

    ERIC Educational Resources Information Center

    Lee, Billy; Prior, Seamus

    2013-01-01

    We present an experience-near account of the development of therapeutic listening in first year counselling students. A phenomenological approach was employed to articulate the trainees' lived experiences of their learning. Six students who had just completed a one-year postgraduate certificate in counselling skills were interviewed and the…

  11. Therapeutic Human Papillomavirus Vaccination

    Microsoft Academic Search

    Andreas E. Albers; Andreas M. Kaufmann

    2009-01-01

    Despite impressive progress in prevention and therapy of premalignant and malignant dysplasia the worldwide burden of cancer is relatively unchanged. Supplementation of the therapeutic arsenal by immunotherapeutic methods would have the potential to make a significant impact. Dysplastic lesions and cancer of the cervix show strong association with human papillomaviruses (HPV), as do tumours of other mucosal epithelia like squamous

  12. Spatial memory, recognition memory, and the hippocampus

    E-print Network

    Squire, Larry R.

    Spatial memory, recognition memory, and the hippocampus Nicola J. Broadbent*, Larry R. Squire. Squire, August 27, 2004 There is wide agreement that spatial memory is dependent on the integrity recognition memory is not as clear. We examined the relationship between hippocampal lesion size and both

  13. Antimicrobial Polymer

    DOEpatents

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  14. Antimocrobial Polymer

    DOEpatents

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  15. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  16. Design strategies for therapeutic ultrasound phased arrays

    NASA Astrophysics Data System (ADS)

    Kluiwstra, Jan-Ulco A.; McGough, Robert J.; Hamilton, James D.; O'Donnell, Matthew; Cain, Charles A.

    1997-04-01

    High-intensity focused ultrasound is used in many therapeutic applications such as drug activation/drug delivery, hyperthermia, cancer therapy, ultrasound surgery and myocardial ablation. Various ultrasonic systems have been proposed for these therapeutic applications. While many applicators produce adequate power levels, multiple element ultrasound phased arrays adjust for phase aberrations, focus around obstructions such as bone and/or air spaces (lungs), and follow, in real time, a moving target. Since large aperture arrays with several hundred elements are required, design compromises keep the element count and fabrication cost at a reasonable level. These trade-offs, which optimize the array aperture with respect to element count, often result in a non-ideal aspect ratio (element width to thickness), leading to lateral mode vibrations which reduce the electrical to acoustical efficiency to about 10 - 20%. These vibrations are easily observed with a laser interferometer system. Piezo composite technology, which eliminates the non-ideal aspect ratio by dividing the individual array elements into long, thin rods, provides a solution to this problem. The spaces between the rods are filled with a polymer to provide structural support and allow deposition of electrode layers to interconnect individual rods and to outline array elements. Several piezo composite transducers have been tested, and initial results show a greatly improved beam pattern and increased efficiency. Power handling capability of composites has recently improved allowing outputs in excess of 10 watts/cm2 with efficiencies greater than 60%. This is sufficient for many therapeutic applications.

  17. Glue Polymer

    NSDL National Science Digital Library

    Mid-continent Research for Education and Learning (McREL)

    2004-01-01

    What is a polymer, and what are some of its properties? This material is part of a series of hands-on science activities designed to arouse student interest. In this discovery activity students use white glue, water, and borax to make a vinyl polymer and study its properties. The activity includes a description, a list of science process skills and complex reasoning strategies being used, and a compilation of applicable K-12 national science education standards. Also provided are content topics, a list of necessary supplies, instructions, and presentation techniques. The content of the activity is explained, and assessment suggestions are provided.

  18. Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields

    PubMed Central

    Makino, Akira; Kimura, Shunsaku

    2014-01-01

    Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS) has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed. PMID:25379530

  19. Conducting polymer based biomolecular electronic devices

    NASA Astrophysics Data System (ADS)

    Malhotra, B. D.; Singhal, Rahul

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal- insulator-semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  20. Memorial Session

    Microsoft Academic Search

    D. Allan Bromley; Robert K. Adair; Sam M. Austin; Jay C. Davis; Ruth H. Howes; Harry Lustig; Robert G. Sachs

    1997-01-01

    Memorial session to honor Heinz H. Barschall's contributions to physics, to the physics community, and to The American Physical Society. 11:00 D. Allan Bromley, Yale University and president-elect, The American Physical Society 11:15 Robert K. Adair, Yale University 11:30 Sam M. Austin, Michigan State University 11:45 Jay C. Davis, Associate Director, LLNL 12:00 Ruth H. Howes, Ball State University 12:15

  1. Memory Systems Doug Burger

    E-print Network

    Burger, Doug

    Memory Systems Doug Burger University of Wisconsin-Madison A computer's memory system and produces. A perfect memory system is one that can supply immediately any datum that the CPU requests. This ideal memory is not practically implementable, however, as the three factors of memory capacity, speed

  2. Therapeutic antibodies against cancer

    PubMed Central

    Adler, Mark J.; Dimitrov, Dimiter S.

    2012-01-01

    Antibody-based therapeutics against cancer are highly successful in clinic and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States (one, mylotarg, was withdrawn from market in 2010). Three of the mAbs (bevacizumab, rituximab, trastuzumab) are in the top six selling protein therapeutics with sales in 2010 of more than $5 bln each. Hundreds of mAbs including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs and mAbs with optimized pharmacokinetics are in clinical trials. However, challenges remain and it appears that deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems and individual variations. PMID:22520975

  3. Strategies for therapeutic hypometabothermia

    PubMed Central

    Liu, Shimin; Chen, Jiang-Fan

    2013-01-01

    Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal therapy that may cause more systemic as well as regional problems other than providing protection. These problems are commonly seen in hypothermia and barbiturate coma. The main innovative concept of this review is to propose thermogenically optimal and synergistic reduction of core temperature and metabolic rate in therapeutic hypometabothermia using novel and clinically practical approaches. When metabolism and body temperature are reduced in a systematically synergistic manner, the outcome will be maximal protection and safe recovery, which happen in natural process, such as in hibernation, daily torpor and estivation. PMID:24179563

  4. Therapeutic Hypothermia for Neuroprotection

    PubMed Central

    Karnatovskaia, Lioudmila V.; Wartenberg, Katja E.

    2014-01-01

    The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known. PMID:24982721

  5. Polymer solutions

    DOEpatents

    Krawczyk, Gerhard Erich (Bremen, DE); Miller, Kevin Michael (West Dundee, IL)

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  6. Mitochondrial Diseases: Therapeutic Approaches

    Microsoft Academic Search

    Salvatore DiMauro; Michelangelo Mancuso

    2007-01-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is\\u000a woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review,\\u000a we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice\\u000a and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of

  7. Therapeutic Recreation Directory

    NSDL National Science Digital Library

    Dixon, Charles C.

    The Therapeutic Recreation Directory has an abundance of information for the therapeutic recreation specialist, or those who study and teach in the field. There is an extensive collection of activity ideas, ranging from sports and cookery, for educators to experiment with in the classroom or for professionals to use on the job. This site also hosts inTeRlink, a long-running and constantly updated newsletter about developments in recreational therapy, found by clicking on the �News� link on the left hand side of the home page. All articles from the last ten years are available in the archive. A bulletin board, chat room, and forum keep professionals and students informed about current TR issues, and surveys help to gather and disseminate information and ideas about new developments in TR services. Visitors will also find the �Forms� link very helpful in nearly every aspect of providing recreational therapy to clients, including forms to help assess and treat patients, and guidelines on planning and implementing new therapeutic programs.

  8. Therapeutic targets for neuroblastomas

    PubMed Central

    Brodeur, Garrett M; lIyer, Radhika; Croucher, Jamie L; Zhuang, Tiangang; Higashi, Mayumi; Kolla, Venkatadri

    2014-01-01

    Introduction Neuroblastoma (NB) is the most common and deadly solid tumor in children. Despite recent improvements, the long-term outlook for high-risk NB is still < 50%. Further, there is considerable short- and long-term toxicity. More effective, less toxic therapy is needed, and the development of targeted therapies offers great promise. Areas covered Relevant literature was reviewed to identify current and future therapeutic targets that are critical to malignant transformation and progression of NB. The potential or actual NB therapeutic targets are classified into four categories: i) genes activated by amplification, mutation, translocation or autocrine overexpression; ii) genes inactivated by deletion, mutation or epigenetic silencing; iii) membrane-associated genes expressed on most NBs but few other tissues; or iv) common target genes relevant to NB as well as other tumors. Expert opinion Therapeutic approaches have been developed to some of these targets, but many remain untargeted at the present time. It is unlikely that single targeted agents will be sufficient for long-term cure, at least for high-risk NBs. The challenge will be how to integrate targeted agents with each other and with conventional therapy to enhance their efficacy, while simultaneously reducing systemic toxicity. PMID:24387342

  9. Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    E-print Network

    Podgornik, Rudolf

    Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore R. Podgornik, 1000 Ljubljana, Slovenia Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States ABSTRACT: We investigate polymer partitioning from polymer

  10. Project: Natural Setting Therapeutic Management

    E-print Network

    Garfunkel, Eric

    Project: Natural Setting Therapeutic Management Graduate School of Applied and Professional Psychology Doctoral Internship Project: Natural Setting Therapeutic Management (NSTM) is a behavioral to parents of individuals with developmental disabilities for over 30 years. In the schools, NSTM consultants

  11. Memory Coalescing Techniques 1 Accessing Global and Shared Memory

    E-print Network

    Verschelde, Jan

    Memory Coalescing Techniques 1 Accessing Global and Shared Memory memory coalescing to global memory avoiding bank conflicts in shared memory 2 Memory Coalescing Techniques accessing global memory for a matrix using shared memory for coalescing 3 Avoiding Bank Conflicts computing consecutive powers MCS 572

  12. In VivoGene Therapy with a Cationic Polymer Markedly Enhances the Antitumor Activity of Antiangiogenic Genes

    Microsoft Academic Search

    M. Xu; Q. R. Chen; D. Kumar; S. A. Stass; A. J. Mixson

    1998-01-01

    A cationic polymer, Superfect, when complexed to the therapeutic genes, p53 and a TSP fragment, displays a much greater antitumor activity compared to cationic liposomes. At the dosages used, this polymer did not demonstrate any nonspecific antitumor effects in contrast to the liposome carriers. Thesein vivofindings should further stimulate the development of carrier polymers as well as expedite the evaluation

  13. Therapeutic monoclonal antibodies in ophthalmology

    Microsoft Academic Search

    Eduardo B. Rodrigues; Michel E. Farah; Maurício Maia; Fernando M. Penha; Caio Regatieri; Gustavo B. Melo; Marcelo M. Pinheiro; Carlos R. Zanetti

    2009-01-01

    Monoclonal antibodies (mAbs) can be used therapeutically by binding to molecular targets with high specificity. Therefore, they have excellent therapeutic applications in ophthalmology. This manuscript presents four aspects of the therapeutic use of mAbs in ophthalmology: the scientific rationale, the unique characteristics of selected mAbs, the current state-of-the-art application, and relevant therapeutic mAbs for future applications in ophthalmology. We identified

  14. Novel biomimetic polymersomes as polymer therapeutics for drug delivery

    Microsoft Academic Search

    Jian-Ping Xu; Jian Ji; Wei-Dong Chen; Jia-Cong Shen

    2005-01-01

    Novel amphiphilic diblock copolymers, cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine) (CMPC), which have poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) as hydrophilic segment and cholesterol as hydrophobic segment, was specially designed as drug delivery systems. Fluorescence probe technique and transmission electron microscope (TEM) characterizations indicated that this novel amphiphilic copolymer formed micelles structure in water and the critical micelle concentration (CMC) was determined to be 1.57×10?7 mol\\/l.

  15. Infrared actuation in aligned polymer-nanotube composites S. V. Ahir, A. M. Squires, A. R. Tajbakhsh, and E. M. Terentjev

    E-print Network

    Terentjev, Eugene

    stimulus. Shape-memory alloys2 or polymers3 are good examples of such smart actuating systems. However, in most cases a shape-memory system works only in one direction, requiring a reset after the actuationInfrared actuation in aligned polymer-nanotube composites S. V. Ahir, A. M. Squires, A. R

  16. Cell microencapsulation with synthetic polymers

    PubMed Central

    Olabisi, Ronke M

    2015-01-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675

  17. Mnemosyne: lightweight persistent memory

    Microsoft Academic Search

    Haris Volos; Andres Jaan Tack; Michael M. Swift

    2012-01-01

    New storage-class memory (SCM) technologies, such as phase-change memory, STT-RAM, and memristors, promise user-level access to non-volatile storage through regular memory instructions. These memory devices enable fast user-mode access to persistence, allowing regular in-memory data structures to survive system crashes. In this paper, we present Mnemosyne, a simple interface for programming with persistent memory. Mnemosyne addresses two challenges: how to

  18. Mnemosyne: lightweight persistent memory

    Microsoft Academic Search

    Haris Volos; Andres Jaan Tack; Michael M. Swift

    2011-01-01

    New storage-class memory (SCM) technologies, such as phase-change memory, STT-RAM, and memristors, promise user-level access to non-volatile storage through regular memory instructions. These memory devices enable fast user-mode access to persistence, allowing regular in-memory data structures to survive system crashes. In this paper, we present Mnemosyne, a simple interface for programming with persistent memory. Mnemosyne addresses two challenges: how to

  19. Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin

    NASA Astrophysics Data System (ADS)

    McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.

    2013-02-01

    Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.

  20. Superhydrophilic zwitterionic polymers stabilize liposomes.

    PubMed

    Cao, Zhiqiang; Zhang, Lei; Jiang, Shaoyi

    2012-08-01

    Nonionic polyethylene glycol (PEG) as a stealth polymer destabilizes liposomes due to its amphiphilic property. As a result, PEGylated liposomes have to be further stabilized, such as by using a large amount cholesterol. This is a long existing dilemma faced by PEG. In this work, we show that zwitterionic poly(carboxybetaine) (PCB) stabilizes liposomes because of its superhydrophilic nature, thus solving this dilemma. Specifically, PCB-modified liposomes without cholesterol exhibited good retention of hydrophilic drug and long blood circulating characteristics in vivo. To further validate this new PCB chemistry, PCB liposomal doxorubicin without cholesterol was compared with DOXIL for their antitumor therapeutic efficacies. PMID:22783927

  1. Revitalizing Psychiatric Therapeutics

    PubMed Central

    Hyman, Steven E

    2014-01-01

    Despite high prevalence and enormous unmet medical need, the pharmaceutical industry has recently de-emphasized neuropsychiatric disorders as ‘too difficult' a challenge to warrant major investment. Here I describe major obstacles to drug discovery and development including a lack of new molecular targets, shortcomings of current animal models, and the lack of biomarkers for clinical trials. My major focus, however, is on new technologies and scientific approaches to neuropsychiatric disorders that give promise for revitalizing therapeutics and may thus answer industry's concerns. PMID:24317307

  2. [Therapeutic plasmas available worldwide].

    PubMed

    Martinaud, C; Cauet, A; Sailliol, A

    2013-05-01

    Therapeutic plasma is a current product; French guidelines were reviewed in 2012. Connections between more or less closed countries are frequent, during relief disasters as well as in war settings. This is associated with the increasing use of plasma in the management of casualties. Additionally, The real possibility of lack of plasma supply in some countries provides a fundamental interest of the knowledge of foreign blood supply organizations. We present here the main divergences and mutual point between plasmas available worldwide. We present the main characteristics of each product. PMID:23522688

  3. Polymer additives

    SciTech Connect

    Carraher, C. [Florida Atlantic Univ., Boca Raton, FL (United States); Swift, G. [Rohm and Haas Co., Spring House, PA (United States)

    1993-12-31

    Polymers, because of the unique properties offered by them, are being employed to larger extents as additives. Polymeric additives may offer incentives such as cost, performance and unique properties. Polymeric additives have been used for years as viscosity modifiers in motor oils, plastisols, antifoaming agents and fillers. New uses are quickly emerging as permanent coloring agent, antibacterial agents and as delivery aids for metals and metal oxides.

  4. Silk constructs for delivery of musculoskeletal therapeutics.

    PubMed

    Meinel, Lorenz; Kaplan, David L

    2012-09-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which renders SF so exciting for biomedical applications. This pattern along with the versatility of this biopolymer has been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  5. Conductive Polymers

    SciTech Connect

    Bohnert, G.W.

    2002-11-22

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  6. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    Microsoft Academic Search

    Eunsoo Choi; Hong-Taek Kim

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150

  7. Nitrones as Therapeutics

    PubMed Central

    Floyd, Robert A.; Kopke, Richard D.; Choi, Chul-Hee; Foster, Steven B.; Doblas, Sabrina; Towner, Rheal A.

    2008-01-01

    Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones including PBN (?-phenyl-tert-butylnitrone) have been shown to have potent biological activity in many experimental animal models. Many diseases of aging including stroke, cancer development, Parkinson’s disease and Alzheimer’s disease are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development in stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic noise induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes can not readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our observations and others where the use of selected nitrones as novel therapeutics have been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases. PMID:18793715

  8. Person-centered Therapeutics

    PubMed Central

    Cloninger, C. Robert; Cloninger, Kevin M.

    2015-01-01

    A clinician’s effectiveness in treatment depends substantially on his or her attitude toward -- and understanding of -- the patient as a person endowed with self-awareness and the will to direct his or her own future. The assessment of personality in the therapeutic encounter is a crucial foundation for forming an effective working alliance with shared goals. Helping a person to reflect on their personality provides a mirror image of their strengths and weaknesses in adapting to life’s many challenges. The Temperament and Character Inventory (TCI) provides an effective way to describe personality thoroughly and to predict both the positive and negative aspects of health. Strengths and weaknesses in TCI personality traits allow strong predictions of individual differences of all aspects of well-being. Diverse therapeutic techniques, such as diet, exercise, mood self-regulation, meditation, or acts of kindness, influence health and personality development in ways that are largely indistinguishable from one another or from effective allopathic treatments. Hence the development of well-being appears to be the result of activating a synergistic set of mechanisms of well-being, which are expressed as fuller functioning, plasticity, and virtue in adapting to life’s challenges PMID:26052429

  9. Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices

    E-print Network

    Kim, YongTae

    Lipid–polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process but are restricted by a low ...

  10. Determination of the transition temperature of shape memory polyurethanes using constrained recovery test

    Microsoft Academic Search

    Seok Jin Hong; Ji Ho Youk; Woong-Ryeol Yu

    2010-01-01

    Shape memory polymers (SMPs) are smart materials whose original (permanent) shape can be restored from a temporarily fixed\\u000a one by applying an external stimulus such as heat, acidity, light, etc. In particular, thermo-responsive shape memory polyurethanes\\u000a (SMPUs) show shape memory behavior when heated. Here, it is important to characterize the transition temperature at which\\u000a the materials memorize their permanent shape

  11. Multilayered Polymer Coated Carbon Nanotubes to Deliver Dasatinib

    PubMed Central

    Moore, Thomas L.; Grimes, Stuart W.; Lewis, Robert L.; Alexis, Frank

    2014-01-01

    Multilayered, multifunctional polymer coatings were grafted onto carbon nanotubes (CNT) using a one-pot, ring-opening polymerization in order to control the release kinetic and therapeutic efficacy of dasatinib. Biocompatible, biodegradable multilayered coatings composed of poly(glycolide) (PGA), and poly(lactide) (PLA) were polymerized directly onto hydroxyl-functionalized CNT surfaces. Sequential addition of monomers into the reaction vessel enabled multilayered coatings of PLA-PGA, or PGA-PLA. Poly(ethylene glycol) capped the polymer chain ends, resulting in a multifunctional amphiphilic coating. Multilayer polymer coatings on CNTs enabled control of anticancer dasatinib’s release kinetics and enhanced the in vitro therapeutic efficacy against U-87 glioblastoma compared to monolayer polymer coatings. PMID:24294824

  12. Multilayered polymer-coated carbon nanotubes to deliver dasatinib.

    PubMed

    Moore, Thomas L; Grimes, Stuart W; Lewis, Robert L; Alexis, Frank

    2014-01-01

    Multilayered, multifunctional polymer coatings were grafted onto carbon nanotubes (CNTs) using a one-pot, ring-opening polymerization in order to control the release kinetic and therapeutic efficacy of dasatinib. Biocompatible, biodegradable multilayered coatings composed of poly(glycolide) (PGA) and poly(lactide) (PLA) were polymerized directly onto hydroxyl-functionalized CNT surfaces. Sequential addition of monomers into the reaction vessel enabled multilayered coatings of PLA-PGA or PGA-PLA. Poly(ethylene glycol) capped the polymer chain ends, resulting in a multifunctional amphiphilic coating. Multilayer polymer coatings on CNTs enabled control of the anticancer drug dasatinib's release kinetics and enhanced the in vitro therapeutic efficacy against U-87 glioblastoma compared to monolayer polymer coatings. PMID:24294824

  13. L19 Virtual Memory 1Comp 411 Virtual Memory

    E-print Network

    Bishop, Gary

    table #12;L19 ­ Virtual Memory 16Comp 411 Which block is replaced on miss? Direct mapped cache haveL19 ­ Virtual Memory 1Comp 411 Virtual Memory Carolina Course Evaluation Open Today: Virtual Memory #12;L19 ­ Virtual Memory 2Comp 411 Virtual Memory ·Main memory is a CACHE for disk ·Advantages

  14. Emerging memory devices

    Microsoft Academic Search

    Kosmas Galatsis; Kang Wang; Youssry Botros; Yang Yang; Ya-Hong Xie; J. F. Stoddart; R. B. Kaner; Cengiz Ozhan; Jianlin Liu; Mihri Ozkan; Chongwu Zhou; Ki Wook Kim

    2006-01-01

    Each memory device presented has its unique range of advantages and challenges. DRAM and FLASH have radically different characteristics; hence, they are used for different applications. Accordingly, the search for memory devices beyond CMOS comes with an important caveat: different memory for different applications. FENA's research path will continue to focus on improving our presented memory devices, and integrating with

  15. Errors in autobiographical memory

    Microsoft Academic Search

    Ira E. Hyman; Elizabeth F. Loftus

    1998-01-01

    Memory is always constructive. People create the past based on the information that remains in memory, their general knowledge, and the social demands of the retrieval situation. Thus, memories will often contain some small errors and occasionally some large errors. In this article, we describe several different types of memory errors and consider how these errors may influence therapy.

  16. Memory Hard Drive Peripherals

    E-print Network

    Stojmenovic, Ivan

    1! CSI3131 Topics CPU Memory Hard Drive Peripherals Computing Systems OS Overview StructureDeadlocks M em ory M anagem ent Basic Memory Managermtn Virtual Memory Storage and I/O File Systems Hard Drive Management Swap I/O Management 2 Module 7: Memory Management Reading: Chapter 8 § To provide a detailed

  17. Emotional memory.

    PubMed

    Nader, Karim

    2015-01-01

    Research on the reconsolidation effect was greatly revitalized by the highly analytic demonstration of memory reconsolidation (Nader et al. Nature 406:722-726, 2000) in a well-defined behavioral protocol (auditory fear conditioning in the rat). Since this study, reconsolidation has been demonstrated in hundreds of studies over a range of species, tasks, and amnesic agents. Evidence for reconsolidation does not come solely from the behavioral level of analysis. Cellular and molecular correlates of reconsolidation have also been found. In this chapter, I will first define the evidence on which reconsolidation is concluded to exist. I will then discuss some of the conceptual issues facing the field in determining when reconsolidation does and does not occur. Lastly I will explain the clinical implications of this effect. PMID:25977086

  18. Therapeutic gene targeting.

    PubMed

    Yáñez, R J; Porter, A C

    1998-02-01

    Gene targeting is the use of homologous recombination to make defined alterations to the genome. One of the possible outcomes of gene targeting is the accurate correction of genetic defects, and this would make it the ideal method of gene therapy for single gene disorder. While gene targeting has been achieved both in human cell lines and in nontransformed, primary human cells, its low efficiency has been a major limitation to its therapeutic potential. Gene therapy in vivo gene targeting is there for impractical without dramatic improvements in targeting efficiency. Ex vivo approaches might more realistically be considered, but would benefit from progress in the isolation and growth of somatic stem cells and improvements in targeting efficiency. We provide here a brief review of the challenges of gene therapy by gene targeting. This is followed by a critical overview of recent developments in gene targeting techniques, and in our understanding of the underlying processes of homologous and nonhomologous recombination. PMID:9578833

  19. Antibody Engineering and Therapeutics

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  20. Mitochondrial Energetics and Therapeutics

    PubMed Central

    Wallace, Douglas C.; Fan, Weiwei; Procaccio, Vincent

    2011-01-01

    Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics. PMID:20078222

  1. Therapeutic antibody expression technology.

    PubMed

    Chadd, H E; Chamow, S M

    2001-04-01

    With the technological advances made during the past decade, antibodies now represent an important and growing class of biotherapeutics. With the potential new targets resulting from genomics and with methods now in place to make fully human antibodies, the potential of antibodies as valuable therapeutics in oncology, inflammation and cardiovascular disease can be fully realised. Systems to produce these antibodies as full-length molecules and as fragments include expression in both mammalian and bacterial cells grown in bioreactors and in transgenic organisms. Factors including molecular fidelity and the cost of goods are critical in evaluating expression systems. Mammalian cell culture and transgenic organisms show the greatest promise for the expression of full-length, recombinant human antibodies, and bacterial fermentation seems most favorable for the expression of antibody fragments. PMID:11287236

  2. GTI-2040. Lorus Therapeutics.

    PubMed

    Orr, R M

    2001-10-01

    Loris Therapeutics (formerly GeneSense Therapeutics) is developing the antisense oligonucleotide GTI-2040, directed against the R2 component of ribonucleotide reductase, for the potential treatment of cancer [348194]. It is in phase I/II trials [353796] and Lorus had anticipated phase II trials would be initiated in July 2001. By August 2001, GTI-2040 was undergoing a phase II trial as a monotherapy for the potential treatment of renal cell carcinoma, and was about to enter a phase II combination study for this indication with capecitabine (Hoffmann-La Roche). At this time, the company was also planning a phase II trial to study the drug's potential in the treatment of colorectal cancer [418739]. GTI-2040 has been tested in nine different tumor models, including tumors derived from colon, liver, lung, breast, kidney and ovary. Depending on the tumor model, significant inhibition of tumor growth, disease stabilization and dramatic tumor regressions was observed [347683]. Lorus filed an IND to commence phase I/II trials with GTI-2040 in the US in November 1999 [347683], and received approval for the trials in December 1999 [349623]. As of January 2000, these trials had commenced at the University of Chicago Cancer Research Center; it was reported in February 2000 that dosing to date had been well tolerated with no apparent safety concerns [357449]. Lorus has entered into a strategic supply alliance with Proligo to provide the higher volumes of drug product required for the planned multiple phase II trials [385976]. In February 1998, Genesense (now Lorus) received patent WO-09805769. Loris also received a patent (subsequently identified as WO-00047733) from the USPTO in January 2000, entitled 'Antitumor antisense sequences directed against components of ribonucleotide reductase' covering the design and use of unique antisense anticancer drugs, including GTI-2040 and GTI-2501 [353538]. PMID:11890366

  3. Antioxidant therapeutics: Pandora's box.

    PubMed

    Day, Brian J

    2014-01-01

    Evolution has favored the utilization of dioxygen (O2) in the development of complex multicellular organisms. O2 is actually a toxic mutagenic gas that is highly oxidizing and combustible. It is thought that plants are largely to blame for polluting the earth's atmosphere with O2 owing to the development of photosynthesis by blue-green algae over 2 billion years ago. The rise of the plants and atmospheric O2 levels placed evolutionary stress on organisms to adapt or become extinct. This implies that all the surviving creatures on our planet are mutants that have adapted to the "abnormal biology" of O2. Much of the adaptation to the presence of O2 in biological systems comes from well-coordinated antioxidant and repair systems that focus on converting O2 to its most reduced form, water (H2O), and the repair and replacement of damaged cellular macromolecules. Biological systems have also harnessed O2's reactive properties for energy production, xenobiotic metabolism, and host defense and as a signaling messenger and redox modulator of a number of cell signaling pathways. Many of these systems involve electron transport systems and offer many different mechanisms by which antioxidant therapeutics can alternatively produce an antioxidant effect without directly scavenging oxygen-derived reactive species. It is likely that each agent will have a different set of mechanisms that may change depending on the model of oxidative stress, organ system, or disease state. An important point is that all biological processes of aerobes have coevolved with O2 and this creates a Pandora's box for trying to understand the mechanism(s) of action of antioxidants being developed as therapeutic agents. PMID:23856377

  4. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Pou?ková, Pavla; Ku?ka, Jan; Skodová, Michaela; Vetrík, Miroslav; St?pánek, Petr; Urbánek, Petr; Pet?ík, Miloš; Nový, Zbyn?k; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease. PMID:24815561

  5. Programming supramolecular biohybrids as precision therapeutics.

    PubMed

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side chains available for grafting with molecules of interest. Additionally, we are equipped with analytical tools to map the fingerprint of the protein chain, directly elucidating the structure at the molecular level. Contrary to conventional polymers, these biopolymers facilitate a more systematic avenue to investigate engineered macromolecules, with greater detail and accuracy. In this regard, we focus on denaturing serum albumin, an abundant blood protein, and exploit its peptidic array of functionalities to program supramolecular architectures for bioimaging, drug and gene delivery. Ultimately, we seek to assimilate the evolutionary advantage of these protein based biopolymers with the limitless versatility of synthetic chemistry to merge the best of both worlds. PMID:25357135

  6. Polymers in Small-Interfering RNA Delivery

    PubMed Central

    Singha, Kaushik; Namgung, Ran

    2011-01-01

    This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell. PMID:21749290

  7. Therapeutic cloning: The ethical limits

    SciTech Connect

    Whittaker, Peter A. [ESRC Centre for Economic and Social Aspects of Genomics, Lancaster University, Furness College, Lancaster LA1 4YG (United Kingdom)]. E-mail: p.whittaker@lancaster.ac.uk

    2005-09-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated.

  8. Unique Properties of Reversibly Associating Polymer Networks

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell

    2008-03-01

    Reversibly associating functional groups offer the polymer physicist with a new tool to develop stimuli-responsive polymers. Our focus has been to attach reversibly associating groups onto rubbery network polymers. Free radical copolymerization was used to synthesize a series of crosslinked poly(n-butylacrylate)s containing quadruple H-bonding ureidopyrimidinone (UPy) side-groups. Resulting elastomeric networks contain both covalent and dynamic non-covalent crosslinks, and this unique architecture is shown to affect viscoelastic behavior and mass-transport properties. Shape-memory effects are studied quantitatively using thermomechanical techniques. Experiments show how reversible interactions, such as hydrogen bonding, are capable of stabilizing mechanically strained states. Unlike conventional shape-memory polymers, these dynamic networks lack a well-defined shape recovery temperature. Instead, their shape recovery rate depends on temperature. To further study the dynamics and temperature dependence of mechanical relaxation, isothermal creep experiments and dynamic mechanical analysis were performed. Creep data, acquired at several different temperatures, are fit to a simple viscoelastic model. Fit viscosities exhibit Arrhenius-like temperature dependence with activation energies of ˜90 kJ/mol, which is in rough agreement with H-bond dissociation barriers. Molecular transport through dynamic networks is studied using gravimetric sorption and dye-diffusion techniques. Diffusion depends on temperature, network architecture, solute size, and the interaction between the solute and the network. Membranes with high temperature-sensitive diffusion properties may be useful in applications such as transdermal drug delivery, microfluidics, or liquid chemical separation processes.

  9. Temporary shape development in shape memory nanocomposites using magnetic force

    Microsoft Academic Search

    Atefeh Golbang; Mehrdad Kokabi

    2011-01-01

    Direct mechanical force is used to create a temporary shape in shape memory polymers. This can become difficult in situations where the sample is not directly accessible such as interior in the body. In these cases it is not possible to use a direct mechanical force to deform the sample into temporary shape; therefore other alternative routes should be proposed.

  10. Shape memory rubber bands & supramolecular ionic copolymers

    NASA Astrophysics Data System (ADS)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional subject covered in this dissertation is supra-molecular ionic copolymers. Supramolecular interactions are non-covalent; e.g. hydrogen bonding, ionic interactions, van der Waals forces. Supramolecular interactions in polymers can be used to tailor the thermo-mechanical properties by controlling bond association and dissociation. Recent research has focused on hydrogen bonded systems due to established synthesis mechanisms. Reversibility of the supramolecular interactions can be triggered by environmental changes. Ionic interactions would provide greater bond strength and more control over operating conditions. Research has been limited on ionic copolymers due to complicated synthesis methods needed to include functionalization. Low molecular weight polymers were synthesized by atom transfer radical polymerization with post polymerization conversion to phosphonium end-groups. Both polystyrene and poly(methyl acrylate) were investigated with similar reaction conditions. Chromatography measured the molecular weight and indicated a low polydispersity consistent with controlled reactions. Copolymers were formed by interfacial mixing of the cationic polymers with multifunctional, anionic oligomers. Oligomers containing sulfonate groups were used to create linear or three-dimensional polymer networks. NMR and rheology was used to characterize the presence and effect of ionic groups when compared to the neat polymer.

  11. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA

    Microsoft Academic Search

    H. de Martimprey; C. Vauthier; C. Malvy; P. Couvreur

    2009-01-01

    The success of the application of new therapeutic methods based on RNA interfering strategies requires the in vivo delivery of active ODN or siRNA down to the intracellular compartment of the target cells. This article aims to review the studies related to the formulation of RNA interfering agents in polymer nanocarriers. It will present the different types of polymer nanocarriers

  12. From Commodity Polymers to Functional Polymers

    PubMed Central

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  13. Architecture of nanostructured polymers

    Microsoft Academic Search

    Koji Ishizu; Keiichiro Tsubaki; Akihide Mori; Satoshi Uchida

    2003-01-01

    This paper reviews the synthesis and properties of nanostructural polymers with different macromolecular architecture. Special emphasis is placed on hyperbranched polymers, rod-like macromolecules and polymer brushes. Hyperbranched polymers were prepared by various types of living radical mechanisms of functionalized vinyl monomers and showed hard sphere-like behavior in dilute solution with increasing degree of branching. This reflected on the compact nature

  14. Virginia Memory

    NSDL National Science Digital Library

    The Virginia Memory initiative is part of the online presence of the Library of Virginia and it represents a magnificent effort to bring together thousands of documents that tell the story of this very unique place. The sections of the site include Digital Collections, Reading Rooms, Exhibitions, and the Online Classroom. First-time visitors may wish to start with the This Day in Virginia History section. Here they can learn about key moments in the state's history via primary documents tied to each calendar date, such as May 6, 1776, when the House of Burgesses met for the last time. The Exhibitions area contains interactive exhibits like You Have No Right: Law & Justice in Virginia. There are over two dozen past exhibits to look over on the site as well. The Digital Collections area is quite a remarkable one, featuring over 50 exhibits, including the 1939 World's Fair Photograph Collection, Revolutionary War Virginia State Pensions, and the tremendous Richmond Esthetic Survey/Historic Building Survey. To complement these materials, the Online Classrooms area contains an educator's guide, a document-based activity titled "Shaping the Constitution," and other resources. [KMG

  15. [Hypercholesterolemia: a therapeutic approach].

    PubMed

    Moráis López, A; Lama More, R A; Dalmau Serra, J

    2009-05-01

    High blood cholesterol levels represent an important cardiovascular risk factor. Hypercholesterolemia is defined as levels of total cholesterol and low-density lipoprotein cholesterol above 95th percentile for age and gender. For the paediatric population, selective screening is recommended in children older than 2 years who are overweight, with a family history of early cardiovascular disease or whose parents have high cholesterol levels. Initial therapeutic approach includes diet therapy, appropriate physical activity and healthy lifestyle changes. Drug treatment should be considered in children from the age of 10 who, after having followed appropriate diet recommendations, still have very high LDL-cholesterol levels or moderately high levels with concomitant risk factors. In case of extremely high LDL-cholesterol levels, drug treatment should be taken into consideration at earlier ages (8 years old). Modest response is usually observed with bile acid-binding resins. Statins can be considered first-choice drugs, once evidence on their efficacy and safety has been shown. PMID:19427823

  16. Renaissance of cancer therapeutic antibodies

    Microsoft Academic Search

    Martin J. Glennie

    2003-01-01

    In the past five years therapeutic monoclonal antibodies have established themselves as perhaps the most important and rapidly expanding class of therapeutic drugs. More than 25% of pharmacological agents that are currently under development are based on antibodies and the total income generated from them in 2002 exceeded $3 billion, and is predicted to rise to $10–20 billion by 2010.

  17. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  18. Shared Memory Parallel Programming with Entry Consistency for Distributed Memory

    E-print Network

    Midway: Shared Memory Parallel Programming with Entry Consistency for Distributed Memory memory multiprocessing offers a cost­effective and scalable solution for a large class of scientific and numeric applications. Unfortunately, the performance of current distributed memory programming

  19. Reflective Color Display Using Polymer-Dispersed Cholesteric Liquid Crystal

    Microsoft Academic Search

    Kinya Kato; Keiji Tanaka; Shinji Tsuru; Shigenobu Sakai

    1994-01-01

    A reflective color display with a passive matrix has been successfully obtained using polymer-dispersed cholesteric (chiral nematic) liquid crystal (PDCLC). The PDCLC has two memory states: a selectively reflective state and a transparent one. These states are maintained for a long period without any holding techniques. These states can be changed electrically: a high-frequency electric field induces the reflective state

  20. Photomechanics of light-activated polymers

    NASA Astrophysics Data System (ADS)

    Long, Kevin N.; Scott, Timothy F.; Jerry Qi, H.; Bowman, Christopher N.; Dunn, Martin L.

    2009-07-01

    Light-activated polymers are an exciting class of modern materials that respond mechanically when irradiated by light at particular wavelengths. While details of the mechanisms that connect the optical excitation to mechanical behavior are complex and differ from material to material, there is sufficient commonality among them to permit the development of a generalized modeling framework to describe the photomechanics. The features shared by light-activated polymers involve light interacting with the material, which triggers photochemical reactions that alter the structure of the crosslinked polymer network. Many such structural alterations result in an evolution of the polymer network, and subsequent macroscopic deformation. When this process is appropriately executed it can enable a photomechanical shape-memory effect. In this paper, we develop a three-dimensional finite-deformation modeling framework to describe the photomechanical response of light-activated polymer systems. This framework integrates four coupled phenomena that contribute to macroscopic photomechanical behavior: photophysics, photochemistry, chemomechanical coupling, and mechanical deformation. The chemomechanical coupling consists of chemically induced structural alterations of the crosslinked network that result in subsequent deformation. We describe this behavior through a decomposition of the crosslinked network into two components consisting of an original network and a photochemically altered network; both evolve during photomechanical deformation. The modeling framework presented in this paper is sufficiently general that it is applicable to light-activated polymer systems that operate with various mechanisms in each of the four areas. Using this modeling approach, we develop constitutive models for two recently developed light-activated polymer systems [Lendlein, A., Hongyan, J., Junger, O., Langer, R., 2005. Light-induced shape-memory polymers. Nature 434 (7035) 879; Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005. Photoinduced plasticity in crosslinked polymers. Science 308 (5728) 1615]. For the material developed by Scott and his co-workers we validate our model by measuring and numerically simulating photo-induced stress relaxation and bending deformation and obtain good agreement between measurements and predictions. Finally, we use the model to study the effects of photomechanical parameters (applied strain magnitude, irradiation time and intensity, and photoabsorber concentration) and the behavior of the network evolution rule on the material response.

  1. The Therapeutic Implications of Plasticity of the Cancer Stem Cell Phenotype

    E-print Network

    The Therapeutic Implications of Plasticity of the Cancer Stem Cell Phenotype Kevin Leder1 , Eric C. Holland2 , Franziska Michor1 * 1 Department of Biostatistics and Computational Biology, Dana-Farber Cancer States of America, 2 Cancer Biology and Genetics Program, Department of Neurosurgery, Memorial Sloan

  2. New shape memory effects in semicrystalline polymeric networks

    NASA Astrophysics Data System (ADS)

    Chung, Taekwoong

    Shape memory polymers (SMPs) have attracted much research interest as a type of smart material that possesses the capacity to undergo rapid changes of their shape and size under a specific or tailored environment. Herein, we prepared semicrystalline polymers-based networks such as poly (cyclooctene) (PCO), poly (e-caprolactone) (PCL) and poly (ethylene glycol) (PEG) networks in order to explore their shape memory effects and thermomechanical properties as well as the possibilities for their applications. Interestingly, besides so-called one-shape memory effect that can be manipulated and fixed to a temporary shape under specific conditions of temperature and stress, and subsequently relax to the original shape on heating, the semicrystalline polymer networks exhibit a reversible two-way shape memory effect, revealing crystallization-induced elongation on cooling and melting-induced contraction on heating. These thermally induced reversible two-way shape memory effects were systematically explored with respect to the crosslinking density of networks and the applied stress. In order to develop a shape memory network with temperature sensing capability, we incorporated appropriately tailored chromogenic cyano-OPVs into cross-linked PCO via guest-diffusion to create phase-separated blends in which the dye's emission properties are dominated by excimer fluorescence. Heatng to the temperature above melting temperature and cooling below the crystallization temperature of PCO led to reversible optical changes through dissolution or agregation of the dye molecules. These optical changes happened in conjuction with shape changes of PCO networks. For an application of shape memory network in bone tissue engineering, we fabricated novel shape memory nanocomposite scaffolds base on PCL and nano-hydroxyapatite (nano-HAP) using thiol-ene photopolymerization and salt leaching technique. The shape memory property, morphologies and biomineralization of the scaffolds were characterized. In addition, the effect of biomineralization on shape recovery of the deformed PCL-HAP scaffolds was studied. These results suggest the possibility that these shape memory scaffolds can be tailored to fit bone defects and can maintain the tailored shape as well as achieve bioactive properties by apatite growth on the surface. We anticipate that the shape memory network systems studied for this dissertation will have the potential for many technological applications in various fields where shape memory effects are needed.

  3. Autotransfecting short interfering RNA through facile covalent polymer escorts.

    PubMed

    Averick, Saadyah E; Paredes, Eduardo; Dey, Sourav K; Snyder, Kristin M; Tapinos, Nikos; Matyjaszewski, Krzysztof; Das, Subha R

    2013-08-28

    Short interfering ribonucleic acids (siRNAs) are important agents for RNA interference (RNAi) that have proven useful in gene function studies and therapeutic applications. However, the efficacy of exogenous siRNAs for gene knockdown remains hampered by their susceptibility to cellular nucleases and impermeability to cell membranes. We report here new covalent polymer-escort siRNA constructs that address both of these constraints simultaneously. By simple postsynthetic click conjugation of polymers to the passenger strand of an siRNA duplex followed by annealing with the complementary guide strand, we obtained siRNA in which one strand includes terminal polymer escorts. The polymer escorts both confer protection against nucleases and facilitate cellular internalization of the siRNA. These autotransfecting polymer-escort siRNAs are viable in RNAi and effective in knocking down reporter and endogenous genes. PMID:23937112

  4. Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer

    Microsoft Academic Search

    Jolanta F. Kukowska-Latallo; Kimberly A. Candido; Zhengyi Cao; Shraddha S. Nigavekar; Istvan J. Majoros; Thommey P. Thomas; Lajos P. Balogh; Mohamed K. Khan; James R. Baker

    2005-01-01

    Prior studies suggested that nanoparticle drug delivery might improve the therapeutic response to anticancer drugs and allow the simultaneous monitoring of drug uptake by tumors. We employed modified PAMAM dendritic polymers <5 nm in diameter as carriers. Acetylated dendrimers were conjugated to folic acid as a targeting agent and then coupled to either methotrexate or tritium and either fluorescein or

  5. Therapeutic Devices for Epilepsy

    PubMed Central

    Fisher, Robert S.

    2011-01-01

    Therapeutic devices provide new options for treating drug-resistant epilepsy. These devices act by a variety of mechanisms to modulate neuronal activity. Only vagus nerve stimulation, which continues to develop new technology, is approved for use in the United States. Deep brain stimulation (DBS) of anterior thalamus for partial epilepsy recently was approved in Europe and several other countries. Responsive neurostimulation, which delivers stimuli to one or two seizure foci in response to a detected seizure, recently completed a successful multicenter trial. Several other trials of brain stimulation are in planning or underway. Transcutaneous magnetic stimulation (TMS) may provide a noninvasive method to stimulate cortex. Controlled studies of TMS split on efficacy, and may depend on whether a seizure focus is near a possible region for stimulation. Seizure detection devices in the form of “shake” detectors via portable accelerometers can provide notification of an ongoing tonic-clonic seizure, or peace of mind in the absence of notification. Prediction of seizures from various aspects of EEG is in early stages. Prediction appears to be possible in a subpopulation of people with refractory seizures and a clinical trial of an implantable prediction device is underway. Cooling of neocortex or hippocampus reversibly can attenuate epileptiform EEG activity and seizures, but engineering problems remain in its implementation. Optogenetics is a new technique that can control excitability of specific populations of neurons with light. Inhibition of epileptiform activity has been demonstrated in hippocampal slices, but use in humans will require more work. In general, devices provide useful palliation for otherwise uncontrollable seizures, but with a different risk profile than with most drugs. Optimizing the place of devices in therapy for epilepsy will require further development and clinical experience. PMID:22367987

  6. Practical Memory Checking with Dr. Memory Derek Bruening

    E-print Network

    Tomkins, Andrew

    Practical Memory Checking with Dr. Memory Derek Bruening Google bruening@google.com Qin Zhao Massachusetts Institute of Technology qin zhao@csail.mit.edu Abstract--Memory corruption, reading uninitialized memory, using freed memory, and other memory-related errors are among the most difficult programming bugs

  7. Memory-mapped transactions

    E-print Network

    Sukha, Jim

    2005-01-01

    Memory-mapped transactions combine the advantages of both memory mapping and transactions to provide a programming interface for concurrently accessing data on disk without explicit I/O or locking operations. This interface ...

  8. Nanocrystal nonvolatile memory devices

    Microsoft Academic Search

    Jan De Blauwe

    2002-01-01

    In this paper we present an overview of nanocrystal memories - a nascent nonvolatile memory technology that promises to extend the scaling of more conventional charge storage devices to nanometer-scale dimensions

  9. The malleability of memory 

    E-print Network

    Fischer, Caroline

    2011-06-29

    in acquisition and individual differences. Using a repeated measures design, it was found that memory for faces was better than memory for events. In accordance with the hypothesis, face recognition was worse when actors changed clothes between the crime scene...

  10. Recoverable distributed shared memory 

    E-print Network

    Kanthadai, Sundarrajan S

    1996-01-01

    Distributed Shared Memory (DSM) is a model for interprocess communication, implemented on top of message passing systems. In this model, processes running on separate hosts can access a shared, coherent memory address space, provided...

  11. Serotonergic Mechanisms in Addiction-Related Memories

    PubMed Central

    Nic Dhonnchadha, Bríd Á; Cunningham, Kathryn A.

    2008-01-01

    Drug-associated memories are a hallmark of addiction and a contributing factor in the continued use and relapse to drugs of abuse. Repeated association of drugs of abuse with conditioned stimuli leads to long-lasting behavioral responses that reflect reward-controlled learning and participate in the establishment of addiction. A greater understanding of the mechanisms underlying the formation and retrieval of drug-associated memories may shed light on potential therapeutic approaches to effectively intervene with drug use-associated memory. There is evidence to support the involvement of serotonin (5-HT) neurotransmission in learning and memory formation through the families of the 5-HT1 receptor (5-HT1R) and 5-HT2R which have also been shown to play a modulatory role in the behavioral effects induced by many psychostimulants. While there is a paucity of studies examining the effects of selective 5-HT1AR ligands, the available dataset suggests that 5-HT1BR agonists may inhibit retrieval of cocaine-associated memories. The 5-HT2AR and 5-HT2CR appear to be integral in the strong conditioned associations made between cocaine and environmental cues with 5-HT2AR antagonists and 5-HT2CR agonists possessing potency in blocking retrieval of cocaine-associated memories following cocaine self-administration procedures. The complex anatomical connectivity between 5-HT neurons and other neuronal phenotypes in limbic-corticostriatal brain structures, the heterogeneity of 5-HT receptors (5-HTXR) and the conflicting results of behavioral experiments which employ non-specific 5-HTXR ligands contribute to the complexity of interpreting the involvement of 5-HT systems in addictive-related memory processes. This review briefly traces the history of 5-HT involvement in retrieval of drug-cue associations and future targets of serotonergic manipulation that may reduce the impact that drug cues have on addictive behavior and relapse. PMID:18639587

  12. Cognitive Neuroscience Learning and Memory

    E-print Network

    Parasuraman, Raja

    1 Slide 1 Cognitive Neuroscience PSYC 685 Learning and Memory Raja Parasuraman WorkingWorking MemoryMemory SelectiveSelective AttentionAttention Slide 2 Overview Short term, working, and long-term memory The medial temporal lobe/prefrontal cortex memory system Amnesia Implicit memory Slide 3

  13. Exercise and Memory

    NSDL National Science Digital Library

    Twin Cities Public Television, Inc.

    2005-01-01

    This activity (on page 2 of the PDF) is a full inquiry investigation into the effects of exercise on short term memory. Groups of learners will set a baseline score with an initial memory test. Then they split into two teams, one participating in physical exercise while the other remains sedentary. After ten minutes, both teams take another memory test to tabulate and graph score changes. Relates to linked video, DragonflyTV: Exercise and Memory.

  14. Memory and Data Memory is precious

    E-print Network

    Stephenson, Ben

    earmarked by the system ­ The programmer might have a say in this. For example, on PS3 SPUs, we can tweak. · Imagine a (gaming?) device with a display like this: · Imagine it can only display integers. · Imagine · The executable is loaded into main memory by the loader ­ On game consoles, which have limited memory compared

  15. Emotional Memory Persists Longer than Event Memory

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-01-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…

  16. Fluorescent Multiblock ?-Conjugated Polymer Nanoparticles for In Vivo Tumor Targeting

    PubMed Central

    Ahmed, Eilaf; Morton, Stephen W.

    2014-01-01

    Highly fluorescent multiblock conjugated polymer nanoparticles with folic acid surface ligands are highly effective for bioimaging and in vivo tumor targeting. The targeted nanoparticles were preferentially localized in tumor cells in vivo, thereby illustrating their potential for diagnostic and therapeutic applications. PMID:23794490

  17. Synthesis and Characterisation of Silica-Polymer Hybrid Hollow Spheres

    Microsoft Academic Search

    Thomas Schumacher; Hong Yang; Xia Lou

    Nano and microcapsules for encapsulation of cells, enzymes, DNA, therapeutic drugs and other guest molecules have attracted increasing att ention from researchers of various disciplinary fields including medicine, biology, ch emistry, materials science and bioprocessing engineering. The present study is foc used on the synthesis and characterisation of silica supported polymer nano spheres for possib le biomedical applications. A sol-gel

  18. Numerical Memory Explanation

    NSDL National Science Digital Library

    This Numerical Memory experiment employs a similar format to Digit Span tasks found in assessment instruments, comparing an individual's short-term memory for digits presented in an auditory vs. visual format. This page provides information about the memory task and how it can be used in the classroom.

  19. Numerical Memory Experiment

    NSDL National Science Digital Library

    This is the entry page for the Numerical Memory Experiment. This Numerical Memory experiment employs a similar format to Digit Span tasks found in assessment instruments, comparing the individual's short-term memory for digits presented in an auditory vs. visual format.

  20. Memory and the Self

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2005-01-01

    The Self-Memory System (SMS) is a conceptual framework that emphasizes the interconnectedness of self and memory. Within this framework memory is viewed as the data base of the self. The self is conceived as a complex set of active goals and associated self-images, collectively referred to as the "working self." The relationship between the…

  1. Considering an organization's memory

    Microsoft Academic Search

    Mark S. Ackerman; Christine Halverson

    1998-01-01

    The term organizational memory is due for an overhaul. Memory appears to be everywhere in organizations; yet, the term has been limited to a few uses. In this paper we examine what memory in an organization really is. Based on an ethnographic study of a telephone hotline group, this paper presents a micro-level analysis of a hotline call, the work

  2. Emotional memory in schizophrenia

    Microsoft Academic Search

    Jeremy Hall; Jonathan M. Harris; James W. McKirdy; Eve C. Johnstone; Stephen M. Lawrie

    2007-01-01

    Emotionally arousing scenes are better remembered than neutral ones. The biological basis of this emotional memory effect has been studied in lesion and neuro-imaging studies and depends upon an interaction between the amygdala and medial temporal lobe memory systems including the hippocampus. This study sought to investigate whether patients with schizophrenia had performance deficits on emotional memory tasks consistent with

  3. Targeted nanotherapy for induction of therapeutic immune responses.

    PubMed

    Metcalfe, Su M; Fahmy, Tarek M

    2012-02-01

    Nanotechnology permits the design of therapeutic devices with defined structure and molecular composition. Modular designs employing surface-bound ligands provide specific homing devices for loaded cargo, and biocompatible and biodegradable constructs provide surrogate temporary microenvironments. We first present a case for developing 'smart' modular constructs as immunogenic vaccines to prime immune memory against specific pathogens where current vaccines fail. Second, we argue that nanotherapeutic intervention can harness pivotal molecular pathways recently discovered to regulate lineage development between pathogenic TH17 cells associated with autoimmune disease, versus tolerogenic regulatory T cells (Treg). Underpinned by molecular mechanisms that enable exquisitely specific responses in adaptive immunity, targeted nanodevices designed to stimulate either immune aggression or immune tolerance signify the birth of a new era in therapeutics. PMID:22172276

  4. The sodium ion-assisted memory behaviour of a silicon nanowire partial composite field-effect transistor.

    PubMed

    Moon, Kyeong-Ju; Lee, Tae Il; Lee, Sang-Hoon; Myoung, Jae-Min

    2014-04-21

    A partial composite consisting of rough silicon nanowires and a polymer dielectric layer with sufficient Na(+) ions was used to create a field-effect transistor based memory device. Addition of Na(+) ions helped compensate for water molecule trapped charges leading to narrow hysteresis characteristics and stable memory retention stability of the resulting device. PMID:24622941

  5. Two-Way Reversible Shape Memory in a Semicrystalline Network Taekwoong Chung, Angel Romo-Uribe, and Patrick T. Mather*,

    E-print Network

    Mather, Patrick T.

    with costly shape memory alloys and liquid crystalline elastomers. Introduction Shape memory polymers (SMPs) are an exciting class of smart materials that offer the capacity to undergo large and rapid shape changes under that control crystal- linity, the melting temperature (Tm), and/or the glass transition temperature (Tg

  6. DOI: 10.1002/adfm.200500692 Self-Assembled Shape-Memory Fibers of Triblock Liquid-Crystal

    E-print Network

    Terentjev, Eugene

    ] are not only evident in the textile industry, where the smart fabrics and clothing are the obvious outcomeDOI: 10.1002/adfm.200500692 Self-Assembled Shape-Memory Fibers of Triblock Liquid-Crystal Polymers of elastic media with microstructure, to physical effects of shape memory, soft elasticity, and pattern

  7. Nanomedicine as an innovative therapeutic strategy for pediatric cancer.

    PubMed

    Aleassa, Essa Mohd; Xing, Malcolm; Keijzer, Richard

    2015-07-01

    Childhood cancer is the leading cause of mortality in children between 1 and 14 years of age. Malignancy accounts for 18 % of overall childhood mortality. Therapeutic advances in the field of pediatric oncology have helped to increase survival. Nanotechnology is the modification of materials at a nanoscale and can be used to deliver therapeutic agents. Examples of nanotechnology applications are organic self-assembled amphiphilic polymers, non-organic nanocarriers such as nanotubes and quantum dots. Each of these has their own utility in different settings. Application of nanotechnology in medicine has been extensively studied. Examples of pediatric tumors that received special attention are: neuroblastoma, retinoblastoma, central nervous system tumors and musculoskeletal tumors. This review will summarize the application of nanomedicine as an innovative management strategy in pediatric oncology. PMID:25690563

  8. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  9. Broad-Spectrum Antiviral Therapeutics

    E-print Network

    Rider, Todd H.

    Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded ...

  10. Neuropeptides in learning and memory.

    PubMed

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations. PMID:24210137

  11. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  12. Exubera. Inhale therapeutic systems.

    PubMed

    Bindra, Sanjit; Cefalu, William T

    2002-05-01

    Inhale, in colaboration with Pfizer and Aventis Pharma (formerly Hoechst Marion Roussel; HMR), is developing an insulin formulation utilizing its pulmonary delivery technology for macromolecules for the potential treatment of type I and II diabetes. By July 2001, the phase III program had been completed and the companies had begun to assemble data for MAA and NDA filings; however, it was already clear at this time that additional data might be required for filing. By December 2001, it had been decided that the NDA should include an increased level of controlled, long-term pulmonary safety data in diabetic patients and a major study was planned to be completed in 2002, with the NDA filed thereafter (during 2002). US-05997848 was issued to Inhale Therapeutic Systems in December 1999, and corresponds to WO-09524183, filed in February 1995. Equivalent applications have appeared to date in Australia, Brazil, Canada, China, Czech Republic, Europe, Finland, Hungary, Japan, Norway, New Zealand, Poland and South Africa. This family of applications is specific to pulmonary delivery of insulin. In February 1999, Lehman Brothers gave this inhaled insulin a 60% probability of reaching market, with a possible launch date of 2001. The analysts estimated peak sales at $3 billion in 2011. In May 2000, Aventis predicted that estimated peak sales would be in excess of $1 billion. In February 2000, Merrill Lynch expected product launch in 2002 and predicted that it would be a multibillion-dollar product. Analysts Merril Lynch predicted, in September and November 2000, that the product would be launched by 2002, with sales in that year of e75 million, rising to euro 500 million in 2004. In April 2001, Merrill Lynch predicted that filing for this drug would occur in 2001. Following the report of the potential delay in regulatory filing, issued in July 2001, Deutsche Banc Alex Brown predicted a filing would take place in the fourth quarter of 2002 and launch would take place in the first quarter of 2003. In August 2001, Lehman Brothers predicted that launch would take place in the first half of 2002 and that the product would make sales of $475 million in 2003, rising to $875 million in 2004. In the same month, Deutsche Bank predicted that there would be worldwide sales of $50 million in 2003, rising to $400 million in 2005. At this time, analysts at Credit Suisse predicted a launch of the product in 2003, with sales of $70 million in that year, rising to $550 million in 2005. By October 2001, Deutsche Bank predicted sales of $50 million in 2004 and $250 million in 2005. In September 2001, Morgan Stanley predicted sales of $500 million in 2002, rising to $1250 million in 2006. PMID:12090549

  13. Smart polymers for implantable electronics

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff electrodes. Neuronal viability and device performance suggest these materials may be suitable for the design of chronically-viable neural interfaces.

  14. Mass Transport through Dynamic Polymer Networks Containing Reversibly Associating Side-Groups

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Hilmer, Andrew; Anthamatten, Mitchell; Chung, Hung; McGrath, James

    2008-03-01

    Dynamic polymer networks containing both covalent crosslinks and reversibly associating side-groups were synthesized. Those polymers exhibit novel shape-memory properties due to strong temperature dependence of side-group association. Diffusion of different molecules through polymer networks were studied using three techniques: gravimetric sorption, dye permeation, and fluorescence recovery after photo-bleaching. The dependence of diffusion on temperature, network architecture, solute size, and the interaction between the solute and the network will be discussed. Results show polymer networks with reversibly associating side-groups exhibit unusually strong temperature dependence. This study highlights the potential of these and other dynamic networks to serve as precision drug or reagent release devices.

  15. 21 CFR 890.5975 - Therapeutic vibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5975 Therapeutic vibrator. (a) Identification. A...

  16. 21 CFR 890.5660 - Therapeutic massager.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5660 Therapeutic massager. (a) Identification. A...

  17. 21 CFR 890.5660 - Therapeutic massager.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5660 Therapeutic massager. (a) Identification. A...

  18. 21 CFR 890.5975 - Therapeutic vibrator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5975 Therapeutic vibrator. (a) Identification. A...

  19. 21 CFR 890.5975 - Therapeutic vibrator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5975 Therapeutic vibrator. (a) Identification. A...

  20. 21 CFR 890.5660 - Therapeutic massager.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5660 Therapeutic massager. (a) Identification. A...