Science.gov

Sample records for meningoencefalitis por neisseria

  1. Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.

    PubMed

    Kattner, Christof; Toussi, Deana N; Zaucha, Jan; Wetzler, Lee M; Rüppel, Nadine; Zachariae, Ulrich; Massari, Paola; Tanabe, Mikio

    2014-03-01

    Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal Neisseriae lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signaling. PMID:24361688

  2. VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways.

    PubMed

    Müller, Anne; Rassow, Joachim; Grimm, Jan; Machuy, Nikolaus; Meyer, Thomas F; Rudel, Thomas

    2002-04-15

    The human pathogen Neisseria gonorrhoeae induces host cell apoptosis during infection by delivering the outer membrane protein PorB to the host cell's mitochondria. PorB is a pore-forming beta-barrel protein sharing several features with the mitochondrial voltage-dependent anion channel (VDAC), which is involved in the regulation of apoptosis. Here we show that PorB of pathogenic Neisseria species produced by host cells is efficiently targeted to mitochondria. Imported PorB resides in the mitochondrial outer membrane and forms multimers with similar sizes as in the outer bacterial membrane. The mitochondria completely lose their membrane potential, a characteristic previously observed in cells infected with gonococci or treated with purified PorB. Closely related bacterial porins of non-pathogenic Neisseria mucosa or Escherichia coli remain in the cytosol. Import of PorB into mitochondria in vivo is independent of a linear signal sequence. Insertion of PorB into the mitochondrial outer membrane in vitro depends on the activity of Tom5, Tom20 and Tom40, but is independent of Tom70. Our data show that human VDAC and bacterial PorB are imported into mitochondria by a similar mechanism. PMID:11953311

  3. Typing and surface charges of the variable loop regions of PorB from Neisseria meningitidis.

    PubMed

    Stefanelli, Paola; Neri, Arianna; Tanabe, Mikio; Fazio, Cecilia; Massari, Paola

    2016-06-01

    PorB is a pan-Neisserial major outer membrane protein with a trimeric β-barrel structure. Each monomer presents eight periplasmic turns and eight surface exposed loop regions with sequence variability. PorB induces activation of host cell responses via a TLR2-dependent mechanism likely mediated by electrostatic interactions between TLR2 and PorB surface exposed loops. Variability in the loop amino acid sequence is known to influence cell responses to PorB in vitro, particularly for the residues in L5 and L7. In this work, the sequence of the porB gene and the electrostatic surface charges of PorB from 35 invasive meningococcal isolates belonging to the main clonal complexes identified in Italy and from five carriage genomes available on the website http://pubmlst.org/neisseria/ were examined. Analysis of the porB encoding regions from the invasive meningococci has identified four new alleles and a potential association between porB alleles, serogroup, and clonal complexes. Through computer-based modeling and analysis of the electrostatic surface charges of PorB from these strains, loop charge segregation between PorB from invasive serogroups B and C was observed. Specifically, loops 1, 4, and 7 were negatively charged and L2 and L8 were mostly neutral in serogroup B isolates, while an overall homogeneous positive surface charge was present in PorB from invasive serogroup C strains. A higher PorB sequence variability was observed among carriage genomes, and a general prevalence of negative loop surface charges. The surface charge differences in PorB from serogroups B and C invasive and carriage strains may, in part, influence the outcomes of Neisseriae interactions with host cells. © 2016 IUBMB Life, 68(6):488-495, 2016. PMID:27156582

  4. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

    PubMed Central

    Tanabe, Mikio; Nimigean, Crina M.; Iverson, T. M.

    2010-01-01

    PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 Å resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP–PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction. PMID:20351243

  5. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

    SciTech Connect

    Tanabe, Mikio; Nimigean, Crina M.; Iverson, T.M.

    2010-06-25

    PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 {angstrom} resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.

  6. Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB

    SciTech Connect

    Tanabe, Mikio; Iverson, Tina M.

    2010-01-28

    The Neisseria meningitidis outer membrane protein PorB was expressed in Escherichia coli and purified from inclusion bodies by denaturation in urea followed by refolding in buffered LDAO on a size-exclusion column. PorB has been crystallized in three different crystal forms: C222, R32 and P6{sub 3}. The C222 crystal form may contain either one or two PorB monomers in the asymmetric unit, while both the R32 and P6{sub 3} crystal forms contained one PorB monomer in the asymmetric unit. Of the three, the P6{sub 3} crystal form had the best diffraction quality, yielding data extending to 2.3 {angstrom} resolution.

  7. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils.

    PubMed

    Peak, Ian R; Chen, Adrienne; Jen, Freda E-C; Jennings, Courtney; Schulz, Benjamin L; Saunders, Nigel J; Khan, Arshad; Seifert, H Steven; Jennings, Michael P

    2016-08-01

    The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells. PMID:26562068

  8. Characterization of invasive Neisseria meningitidis from Atlantic Canada, 2009 to 2013: With special reference to the nonpolysaccharide vaccine targets (PorA, factor H binding protein, Neisseria heparin-binding antigen and Neisseria adhesin A)

    PubMed Central

    Tsang, Raymond SW; Law, Dennis KS; Gad, Rita R; Mailman, Tim; German, Gregory; Needle, Robert

    2015-01-01

    BACKGROUND: Serogroup B Neisseria meningitidis (MenB) has always been a major cause of invasive meningococcal disease (IMD) in Canada. With the successful implementation of a meningitis C conjugate vaccine, the majority of IMD in Canada is now caused by MenB. OBJECTIVE: To investigate IMD case isolates in Atlantic Canada from 2009 to 2013. Data were analyzed to determine the potential coverage of the newly licensed MenB vaccine. METHODS: Serogroup, serotype and serosubtype antigens were determined from IMD case isolates. Clonal analysis was performed using multilocus sequence typing. The protein-based vaccine antigen genes were sequenced and the predicted peptides were investigated. RESULTS: The majority of the IMD isolates were MenB (82.5%, 33 of 40) and, in particular, sequence type (ST)-154 B:4:P1.4 was responsible for 47.5% (19 of 40) of all IMD case isolates in Atlantic Canada. Isolates of this clone expressed the PorA antigen P1.4 and possessed the nhba genes encoding for Neisseria heparin-binding antigen peptide 2, which together matched exactly with two of the four components of the new four-component meningococcal B vaccine. Nineteen MenB isolates had two antigenic matches, another five MenB and one meningitis Y isolate had one antigenic match. This provided 75.8% (25 of 33) potential coverage for MenB, or a 62.5% (25 of 40) overall potential coverage for IMD. CONCLUSION: From 2009 to 2013, IMD in Atlantic Canada was mainly caused by MenB and, in particular, the B:4:P1.4 ST-154 clone, which accounted for 47.5% of all IMD case isolates. The new four-component meningococcal B vaccine appeared to offer adequate coverage against MenB in Atlantic Canada. PMID:26744586

  9. Correlation between Serological and Sequencing Analyses of the PorB Outer Membrane Protein in the Neisseria meningitidis Serotyping System

    PubMed Central

    Sacchi, Claudio T.; Lemos, Ana P. S.; Whitney, Anne M.; Solari, Claude A.; Brandt, Mary E.; Melles, Carmo E. A.; Frasch, Carl E.; Mayer, Leonard W.

    1998-01-01

    The current serological typing scheme for Neisseria meningitidis is not comprehensive; a proportion of isolates are not serotypeable. DNA sequence analysis and predicted amino acid sequences were used to characterize the structures of variable-region (VR) epitopes on N. meningitidis PorB proteins (PorB VR typing). Twenty-six porB gene sequences were obtained from GenBank and aligned with 41 new sequences. Primary amino acid structures predicted from those genes were grouped into 30 VR families of related variants that displayed at least 60% similarity. We correlated VR families with monoclonal antibody (MAb) reactivities, establishing a relationship between VR families and epitope locations for 15 serotype-defining MAbs. The current panel of serotype-defining MAbs underestimates by at least 50% the PorB VR variability because reagents for several major VR families are lacking or because a number of VR variants within some families are not recognized by serotype-defining MAbs. These difficulties, also reported for serosubtyping based on the PorA protein, are shown as inconsistent results between serological and sequence analyses, leading to inaccurate strain identification and incomplete epidemiological data. The information from this study enabled the expansion of the panel of MAbs currently available for serotyping, by including MAbs of previously undetermined specificities. Use of the expanded serotype panel enabled us to improve the sensitivity of serotyping by resolving a number of formerly nonserotypeable strains. In most cases, this information can be used to predict the VR family placement of unknown PorB proteins without sequencing the entire porB gene. PorB VR typing complements serotyping, and a combination of both techniques may be used for full characterization of meningococcal strains. The present work represents the most complete and integrated data set of PorB VR sequences and MAb reactivities of serogroup B and C meningococci produced to date. PMID

  10. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface.

    PubMed Central

    Jiang, J; Abu-Shilbayeh, L; Rao, V B

    1997-01-01

    The exterior of bacteriophage T4 capsid is coated with two outer capsid proteins, Hoc (highly antigenic outer capsid protein; molecular mass, 40 kDa) and Soc (small outer capsid protein; molecular mass, 9 kDa), at symmetrical positions on the icosahedron (160 copies of Hoc and 960 copies of Soc per capsid particle). Both these proteins are nonessential for phage infectivity and viability and assemble onto the capsid surface after completion of capsid assembly. We developed a phage display system which allowed in-frame fusions of foreign DNA at a unique cloning site in the 5' end of hoc or soc. A DNA fragment corresponding to the 36-amino-acid PorA peptide from Neisseria meningitidis was cloned into the display vectors to generate fusions at the N terminus of Hoc or Soc. The PorA-Hoc and PorA-Soc fusion proteins retained the ability to bind to the capsid surface, and the bound peptide was displayed in an accessible form as shown by its reactivity with specific monoclonal antibodies in an enzyme-linked immunosorbent assay. By employing T4 genetic strategies, we show that more than one subtype-specific PorA peptide can be displayed on the capsid surface and that the peptide can also be displayed on a DNA-free empty capsid. Both the PorA-Hoc and PorA-Soc recombinant phages are highly immunogenic in mice and elicit strong antipeptide antibody titers even with a weak adjuvant such as Alhydrogel or no adjuvant at all. The data suggest that the phage T4 hoc-soc system is an attractive system for display of peptides on an icosahedral capsid surface and may emerge as a powerful system for construction of the next generation multicomponent vaccines. PMID:9353063

  11. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant.

    PubMed

    Vasquez, Abel E; Manzo, Ricardo A; Soto, Daniel A; Barrientos, Magaly J; Maldonado, Aurora E; Mosqueira, Macarena; Avila, Anastasia; Touma, Jorge; Bruce, Elsa; Harris, Paul R; Venegas, Alejandro

    2015-01-01

    The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant. PMID:25750999

  12. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant

    PubMed Central

    Vasquez, Abel E; Manzo, Ricardo A; Soto, Daniel A; Barrientos, Magaly J; Maldonado, Aurora E; Mosqueira, Macarena; Avila, Anastasia; Touma, Jorge; Bruce, Elsa; Harris, Paul R; Venegas, Alejandro

    2015-01-01

    The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant. PMID:25750999

  13. Binding of Complement Factor H to PorB3 and NspA Enhances Resistance of Neisseria meningitidis to Anti-Factor H Binding Protein Bactericidal Activity

    PubMed Central

    Giuntini, Serena; Pajon, Rolando; Ram, Sanjay

    2015-01-01

    Among 25 serogroup B Neisseria meningitidis clinical isolates, we identified four (16%) with high factor H binding protein (FHbp) expression that were resistant to complement-mediated bactericidal activity of sera from mice immunized with recombinant FHbp vaccines. Two of the four isolates had evidence of human FH-dependent complement downregulation independent of FHbp. Since alternative complement pathway recruitment is critical for anti-FHbp bactericidal activity, we hypothesized that in these two isolates binding of FH to ligands other than FHbp contributes to anti-FHbp bactericidal resistance. Knocking out NspA, a known meningococcal FH ligand, converted both resistant isolates to anti-FHbp susceptible isolates. The addition of a nonbactericidal anti-NspA monoclonal antibody to the bactericidal reaction also increased anti-FHbp bactericidal activity. To identify a role for FH ligands other than NspA or FHbp in resistance, we created double NspA/FHbp knockout mutants. Mutants from both resistant isolates bound 10-fold more recombinant human FH domains 6 and 7 fused to Fc than double knockout mutants prepared from two sensitive meningococcal isolates. In light of recent studies showing functional FH-PorB2 interactions, we hypothesized that PorB3 from the resistant isolates recruited FH. Allelic exchange of porB3 from a resistant isolate to a sensitive isolate increased resistance of the sensitive isolate to anti-FHbp bactericidal activity (and vice versa). Thus, some PorB3 variants functionally bind human FH, which in the presence of NspA enhances anti-FHbp resistance. Combining anti-NspA antibodies with anti-FHbp antibodies can overcome resistance. Meningococcal vaccines that target both NspA and FHbp are likely to confer greater protection than either antigen alone. PMID:25644002

  14. Adjuvant Effects Elicited by Novel Oligosaccharide Variants of Detoxified Meningococcal Lipopolysaccharides on Neisseria meningitidis Recombinant PorA Protein: A Comparison in Mice

    PubMed Central

    Mehta, Ojas H.; Norheim, Gunnstein; Hoe, J . Claire; Rollier, Christine S.; Nagaputra, Jerry C.; Makepeace, Katherine; Saleem, Muhammad; Chan, Hannah; Ferguson, David J. P.; Jones, Claire; Sadarangani, Manish; Hood, Derek W.; Feavers, Ian; Derrick, Jeremy P.; Pollard, Andrew J.; Moxon, E . Richard

    2014-01-01

    Neisseria meningitidis lipopolysaccharide (LPS) has adjuvant properties that can be exploited to assist vaccine immunogenicity. The modified penta-acylated LPS retains the adjuvant properties of hexa-acylated LPS but has a reduced toxicity profile. In this study we investigated whether two modified glycoform structures (LgtE and IcsB) of detoxified penta-acylated LPS exhibited differential adjuvant properties when formulated as native outer membrane vesicles (nOMVs) as compared to the previously described LgtB variant. Detoxified penta-acylated LPS was obtained by disruption of the lpxL1 gene (LpxL1 LPS), and three different glycoforms were obtained by disruption of the lgtB, lgtE or icsB genes respectively. Mice (mus musculus) were immunized with a recombinant PorA P1.7-2,4 (rPorA) protein co-administered with different nOMVs (containing a different PorA serosubtype P1.7,16), each of which expressed one of the three penta-acylated LPS glycoforms. All nOMVs induced IgG responses against the rPorA, but the nOMVs containing the penta-acylated LgtB-LpxL1 LPS glycoform induced significantly greater bactericidal activity compared to the other nOMVs or when the adjuvant was Alhydrogel. Compared to LgtE or IcsB LPS glycoforms, these data support the use of nOMVs containing detoxified, modified LgtB-LpxL1 LPS as a potential adjuvant for future meningococcal protein vaccines. PMID:25545241

  15. Binding of complement factor H to PorB3 and NspA enhances resistance of Neisseria meningitidis to anti-factor H binding protein bactericidal activity.

    PubMed

    Giuntini, Serena; Pajon, Rolando; Ram, Sanjay; Granoff, Dan M

    2015-04-01

    Among 25 serogroup B Neisseria meningitidis clinical isolates, we identified four (16%) with high factor H binding protein (FHbp) expression that were resistant to complement-mediated bactericidal activity of sera from mice immunized with recombinant FHbp vaccines. Two of the four isolates had evidence of human FH-dependent complement downregulation independent of FHbp. Since alternative complement pathway recruitment is critical for anti-FHbp bactericidal activity, we hypothesized that in these two isolates binding of FH to ligands other than FHbp contributes to anti-FHbp bactericidal resistance. Knocking out NspA, a known meningococcal FH ligand, converted both resistant isolates to anti-FHbp susceptible isolates. The addition of a nonbactericidal anti-NspA monoclonal antibody to the bactericidal reaction also increased anti-FHbp bactericidal activity. To identify a role for FH ligands other than NspA or FHbp in resistance, we created double NspA/FHbp knockout mutants. Mutants from both resistant isolates bound 10-fold more recombinant human FH domains 6 and 7 fused to Fc than double knockout mutants prepared from two sensitive meningococcal isolates. In light of recent studies showing functional FH-PorB2 interactions, we hypothesized that PorB3 from the resistant isolates recruited FH. Allelic exchange of porB3 from a resistant isolate to a sensitive isolate increased resistance of the sensitive isolate to anti-FHbp bactericidal activity (and vice versa). Thus, some PorB3 variants functionally bind human FH, which in the presence of NspA enhances anti-FHbp resistance. Combining anti-NspA antibodies with anti-FHbp antibodies can overcome resistance. Meningococcal vaccines that target both NspA and FHbp are likely to confer greater protection than either antigen alone. PMID:25644002

  16. The Biology of Neisseria Adhesins

    PubMed Central

    Hung, Miao-Chiu; Christodoulides, Myron

    2013-01-01

    Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology. PMID:24833056

  17. Neisseria gonorrhoeae antimicrobial susceptibility in Barcelona: penA, ponA, mtrR, and porB mutations and NG-MAST sequence types associated with decreased susceptibility to cephalosporins.

    PubMed

    Serra-Pladevall, J; Barberá, M J; Rodriguez, S; Bartolomé-Comas, R; Roig, G; Juvé, R; Andreu, A

    2016-09-01

    The aims of this study were to determine the antimicrobial susceptibility of Neisseria gonorrhoeae (NG) in our area, to analyze the molecular mechanisms involved in cephalosporins resistance, and to undertake molecular typing of our NG strains. Antimicrobial susceptibility was determined using the Etest. The genes penA, mtrR, penB, and ponA were studied. Molecular typing was performed by N. gonorrhoeae multiantigen sequence typing. Of 329 strains analyzed in 2013, none showed high-level cephalosporin resistance, but 8.2 % had resistance to cefixime [minimum inhibitory concentration (MIC) > 0.125 μg/mL] and 0.6 % to ceftriaxone (MIC > 0.125 μg/mL). Azithromycin resistance was documented in 4.3 % and ciprofloxacin resistance in 49.2 %. Among 48 strains with an MIC ≥ 0.125 μg/mL to cefixime, 58.3 % showed the penA mosaic pattern XXXIV, 98 % a Leu → Pro substitution at position 421 of the ponA gene, 100 % amino acid changes at positions 101 and 102 of the PorB1b porin, and 87.5 % of strains an adenine deletion in the promoter region of the MtrC-D-E efflux pump. A significant difference between strains with and without decreased cephalosporin susceptibility (MIC ≥ 0.125 μg/mL) was observed for these four genes. Of the 48 strains with an MIC ≥ 0.125 μg/mL to cefixime, 43.8 % belonged to the genogroup G1407 and 27.1 % belonged to the genogroup G2400. A significant association of G1407 with decreased susceptibility (MIC ≥ 0.125 μg/mL) and G2992 with susceptibility was found, and also between G1407 and mosaic pattern XXXIV and between G2400 and A501T substitution in penA. The NG resistance rate in our area is higher than the median of Europe. We have detected the emergence of G2400, which may be a source of antimicrobial resistance. PMID:27255221

  18. Neisseria-Avoiding the Jump to Conclusions

    ERIC Educational Resources Information Center

    Spivey, Maria I.; Paschall, Robert T.; Ferrett, Rhonda; Alexander, Randell

    2011-01-01

    "Neisseria gonorrhoeae" infection in a prepubertal child is virtually diagnostic of sexual abuse, provided perinatal infection has been excluded. Therefore, it is imperative that "Neisseria gonorrhoeae" be correctly identified. We present two cases of false positive "Neisseria gonorrhoeae" meningitis encountered at two different children's…

  19. Emerging resistance in Neisseria meningitidis and Neisseria gonorrhoeae.

    PubMed

    Stefanelli, Paola

    2011-02-01

    The value of monitoring antimicrobial resistance is particularly significant for Neisseria meningitidis and Neisseria gonorrhoeae diseases, even if it is for different reasons. Although there is no global alert for the spread of resistant meningococcal strains, the emergence of resistance is correlated to the outcome of treatment and the successful prophylaxis of close contacts. Few cases of resistance among meningococci have been recorded worldwide; it remains unclear what intriguing mechanism is responsible for maintaining resistance in these cases in the absence of significant antibiotic selective pressure, as in the case of penicillin; on the contrary, although rifampicin is the antibiotic of choice in the prophylaxis of close contacts, there is a very low rate of resistance. The emergence of multidrug-resistant N. gonorrhoeae is a great challenge in controlling gonorrhea as one of the main sexually transmitted bacterial diseases. International surveillance programs permit the monitoring of the susceptibility of the pathogen and allow the revision of the standardized treatment regimen when the situation changes. PMID:21342071

  20. Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica.

    PubMed

    Lucidarme, Jay; Gilchrist, Stefanie; Newbold, Lynne S; Gray, Stephen J; Kaczmarski, Edward B; Richardson, Lynne; Bennett, Julia S; Maiden, Martin C J; Findlow, Jamie; Borrow, Ray

    2013-09-01

    The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented. PMID:23803905

  1. L Form of Neisseria gonorrhoeae

    PubMed Central

    Roberts, Richard B.

    1966-01-01

    Roberts, Richard B. (Walter Reed Army Institute of Research, Washington, D.C.). L form of Neisseria gonorrhoeae. J. Bacteriol. 92:1609–1614. 1966.—L forms were produced by the penicillin gradient plate technique from a recently isolated strain of Neisseria gonorrhoeae. To date, these L forms have had 30 serial passages on medium containing penicillin. Stabilized L forms developed on penicillin-free medium after 10 or more passages in the presence of penicillin. Morphological characteristics of these organisms were identical to L forms of meningococci. Medium and environmental conditions necessary for optimal growth included: Brain Heart Infusion of pH 7.2 to 7.4, 1.1 to 1.3% agar, 10 to 20% sucrose, 10 to 20% horse serum, temperature at 35 to 36 C, and increased CO2 tension (candle jar). L forms were more resistant than the parent gonococcus to penicillin, ampicillin, methicillin, cycloserine, and cephalothin, whereas both organisms had similar sensitivities to bacitracin, vancomycin, ristocetin, novobiocin, tetracycline, and erythromycin. Revertant gonococci were produced on penicillin-free medium from L forms which had had 1, 5, and 10 serial passages. Morphology and fermentative reactions of revertant strains were identical to those of the parent gonococcus. Revertant strains produced L forms more readily than the parent organism; in fact, L forms from certain revertants did not require penicillin, but only serum and sucrose for their production and propagation on artificial medium. Images PMID:4959715

  2. Conjugative Plasmids of Neisseria gonorrhoeae

    PubMed Central

    Pachulec, Emilia; van der Does, Chris

    2010-01-01

    Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones) and with and without different tetM determinants (Dutch and American type tetM determinants) have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233) or containing Dutch (pEP5289) or American (pEP5050) type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1α, β, γ, δ and ε subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids conjugated efficiently between

  3. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein.

    PubMed

    Fletcher, Leah D; Bernfield, Liesel; Barniak, Vicki; Farley, John E; Howell, Alan; Knauf, Melissa; Ooi, Peggy; Smith, Robert P; Weise, Paige; Wetherell, Mike; Xie, Xiaoling; Zagursky, Robert; Zhang, Ying; Zlotnick, Gary W

    2004-04-01

    A novel antigen that induces cross-reactive bactericidal antibodies against a number of Neisseria meningitidis strains is described. This antigen, a approximately 28-kDa lipoprotein called LP2086, was first observed within a complex mixture of soluble outer membrane proteins (sOMPs) following a series of fractionation, protein purification, and proteomics steps. Approximately 95 different neisserial isolates tested positive by Western blotting and PCR screening methods for the presence of the protein and the gene encoding LP2086. The strains tested included isolates of N. meningitidis serogroups A, B, C, W135, and Y, Neisseria gonorrhoeae, and Neisseria lactamica. To better understand the microheterogeneity of this protein, the 2086 genes from 63 neisserial isolates were sequenced. Two different subfamilies of LP2086 were identified based on deduced amino acid sequence homology. A high degree of amino acid sequence similarity exists within each 2086 subfamily. The highest degree of genetic diversity was seen between the two subfamilies which share approximately 60 to 75% homology at the nucleic acid level. Flow cytometry (fluorescence-activated cell sorting) analyses and electron microscopy indicated that the LP2086 is localized on the outer surface of N. meningitidis. Antiserum produced against a single protein variant was capable of eliciting bactericidal activity against strains expressing different serosubtype antigens. Combining one recombinant lipidated 2086 (rLP2086) variant from each subfamily with two rPorA variants elicited bactericidal activity against all strains tested. The rLP2086 family of antigens are candidates worthy of further vaccine development. PMID:15039331

  4. Prosthetic valve endocarditis due to Neisseria skkuensis, a novel Neisseria species.

    PubMed

    Park, So Yeon; Kang, Seung Ji; Joo, Eun-Jeong; Ha, Young Eun; Baek, Jin Yang; Wi, Yu Mi; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam Young; Song, Jae-Hoon

    2012-08-01

    We describe the first reported case of endocarditis due to Neisseria skkuensis. The organism from the blood cultures taken on admission day was identified initially as unidentified Gram-negative cocci by Vitek2. Finally, it was identified as Neisseria skkuensis by 16 rRNA gene sequence analysis. PMID:22675133

  5. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    PubMed

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  6. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    PubMed Central

    Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  7. Biofilm Formation by Neisseria gonorrhoeae

    PubMed Central

    Greiner, L. L.; Edwards, J. L.; Shao, J.; Rabinak, C.; Entz, D.; Apicella, M. A.

    2005-01-01

    Studies were performed in continuous-flow chambers to determine whether Neisseria gonorrhoeae could form a biofilm. Under these growth conditions, N. gonorrhoeae formed a biofilm with or without the addition of 10 μM sodium nitrite to the perfusion medium. Microscopic analysis of a 4-day growth of N. gonorrhoeae strain 1291 revealed evidence of a biofilm with organisms embedded in matrix, which was interlaced with water channels. N. gonorrhoeae strains MS11 and FA1090 were found to also form biofilms under the same growth conditions. Cryofield emission scanning electron microscopy and transmission electron microscopy confirmed that organisms were embedded in a continuous matrix with membranous structures spanning the biofilm. These studies also demonstrated that N. gonorrhoeae has the capability to form a matrix in the presence and absence of CMP-N-acetylneuraminic acid (CMP-Neu5Ac). Studies with monoclonal antibody 6B4 and the lectins soy bean agglutinin and Maackia amurensis indicated that the predominate terminal sugars in the biofilm matrix formed a lactosamine when the biofilm was grown in the absence of CMP-Neu5Ac and sialyllactosamine in the presence of CMP-Neu5Ac. N. gonorrhoeae strain 1291 formed a biofilm on primary urethral epithelial cells and cervical cells in culture without loss of viability of the epithelial cell layer. Our studies demonstrated that N. gonorrhoeae can form biofilms in continuous-flow chambers and on living cells. Studies of these biofilms may have implications for understanding asymptomatic gonococcal infection. PMID:15784536

  8. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  9. Vaccine development against Neisseria meningitidis

    PubMed Central

    Vogel, Ulrich; Claus, Heike

    2011-01-01

    Summary Meningococcal disease is communicable by close contact or droplet aerosols. Striking features are high case fatality rates and peak incidences of invasive disease in infants, toddlers and adolescents. Vaccine development is hampered by bacterial immune evasion strategies including molecular mimicry. As for Haemophilus influenzae and Streptococcus pneumoniae, no vaccine has therefore been developed that targets all serogroups of Neisseria meningitidis. Polysaccharide vaccines available both in protein conjugated and non‐conjugated form, have been introduced against capsular serogroups A, C, W‐135 and Y, but are ineffective against serogroup B meningococci, which cause a significant burden of disease in many parts of the world. Detoxified outer membrane vesicles are used since decades to elicit protection against epidemic serogroup B disease. Genome mining and biochemical approaches have provided astounding progress recently in the identification of immunogenic, yet reasonably conserved outer membrane proteins. As subcapsular proteins nevertheless are unlikely to immunize against all serogroup B variants, thorough investigation by surrogate assays and molecular epidemiology approaches are needed prior to introduction and post‐licensure of protein vaccines. Research currently addresses the analysis of life vaccines, meningococcus B polysaccharide modifications and mimotopes, as well as the use of N. lactamicaouter membrane vesicles. PMID:21255369

  10. Characterization of a cryptic gene pair from Neisseria gonorrhoeae that is common to pathogenic Neisseria species.

    PubMed

    Seifert, H S; Wilson, D

    1992-03-01

    A pair of genes, each of which produces in Escherichia coli a 20-kDa, periplasmically localized protein that cross-reacts with anti-rpoN monoclonal antibody, was isolated from Neisseria gonorrhoeae. Homologs of the two genes were detected in pathogenic Neisseria species but not in commensal species. These genes are designated cnp1 and cnp2 (cryptic neisserial protein). PMID:1541538

  11. Lipopolysaccharide Engineering in Neisseria meningitidis

    PubMed Central

    Pupo, Elder; Hamstra, Hendrik-Jan; Meiring, Hugo; van der Ley, Peter

    2014-01-01

    Engineering the lipopolysaccharide (LPS) biosynthetic pathway offers the potential to obtain modified derivatives with optimized adjuvant properties. Neisseria meningitidis strain H44/76 was modified by expression of the pagL gene encoding lipid A 3-O-deacylase from Bordetella bronchiseptica and by inactivation of the lgtB gene encoding the terminal oligosaccharide galactosyltransferase. Mass spectrometry analysis of purified mutant LPS was used for detailed compositional analysis of all present molecular species. This determined that the modified LPS was mainly pentaacylated, demonstrating high efficiency of conversion from the hexaacyl to the 3-O-deacylated form by heterologous lipid A 3-O-deacylase (PagL) expression. MS analyses also provided evidence for expression of only one major oligosaccharide glycoform, which lacked the terminal galactose residue as expected from inactivation of the lgtB gene. The immunomodulatory properties of PagL-deacylated LPS were compared with another pentaacyl form obtained from an lpxL1− mutant, which lacks the 2′ secondary acyl chain. Although both LPS mutants displayed impaired capacity to induce production of the pro-inflammatory cytokine IL-6 in the monocytic cell line Mono Mac 6, induction of the Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-β-dependent chemokine interferon-γ-induced protein 10 was largely retained only for the lgtB−/pagL+ mutant. Removal of remaining hexaacyl species exclusively present in lgtB−/pagL+ LPS demonstrated that these minor species potentiate but do not determine the activity of this LPS. These results are the first to indicate a qualitatively different response of human innate cells to pentaacyl lpxL1− and pagL+ LPS and show the importance of detailed structure-function analysis when working with modified lipid A structures. The pagL+ LPS has significant potential as immune modulator in humans. PMID:24492609

  12. Cervical spondylitis due to Neisseria meningitidis.

    PubMed

    Mendes, Stéphanie; Bémer, Pascale; Corvec, Stéphane; Faure, Alexis; Redon, Hervé; Drugeon, Henri B

    2006-05-01

    The diverse clinical spectrum of meningococcal infections includes frequent clinical forms, such as meningitis or septicemia, and uncommon manifestations, such as septic arthritis. Neisseria meningitidis is not generally considered to be a causative agent of osteoarticular infections. We report the first case of acute primary cervical spondylitis in a 48-year-old man. PMID:16618455

  13. Ciprofloxacin-resistant Neisseria meningitidis, Delhi, India.

    PubMed

    Singhal, Smita; Purnapatre, Kedar P; Kalia, Vandana; Dube, Smita; Nair, Deepti; Deb, Monorama; Aggarwal, Pushpa; Gupta, Sunil; Upadhyay, Dilip J; Rattan, Ashok; Raj, V Samuel

    2007-10-01

    Decreased susceptibility of Neisseria meningitidis isolates to ciprofloxacin emerged from an outbreak in Delhi, India. Results of antimicrobial susceptibility testing of the meningococcal isolates to ciprofloxacin and further sequencing of DNA gyrase A quinolone-resistance-determining region confirmed the emergence of ciprofloxacin resistance in the outbreak. PMID:18258023

  14. Cellular Immune Responses to Neisseria meningitidis in Children

    PubMed Central

    Pollard, Andrew J.; Galassini, Rachel; Rouppe van der Voort, Eileene M.; Hibberd, Martin; Booy, Robert; Langford, Paul; Nadel, Simon; Ison, Catherine; Kroll, J. Simon; Poolman, Jan; Levin, Michael

    1999-01-01

    There is an urgent need for effective vaccines against serogroup B Neisseria meningitidis. Current experimental vaccines based on the outer membrane proteins (OMPs) of this organism provide a measure of protection in older children but have been ineffective in infants. We postulated that the inability of OMP vaccines to protect infants might be due to age-dependent defects in cellular immunity. We measured proliferation and in vitro production of gamma interferon (IFN-γ), tumor necrosis factor alpha, and interleukin-10 (IL-10) in response to meningococcal antigens by peripheral blood mononuclear cells (PBMCs) from children convalescing from meningococcal disease and from controls. After meningococcal infection, the balance of cytokine production by PBMCs from the youngest children was skewed towards a TH1 response (low IL-10/IFN-γ ratio), while older children produced more TH2 cytokine (higher IL-10/IFN-γ ratio). There was a trend to higher proliferative responses by PBMCs from older children. These responses were not influenced by the presence or subtype of class 1 (PorA) OMP or by the presence of class 2/3 (PorB) or class 4 OMP. Even young infants might be expected to develop adequate cellular immune responses to serogroup B N. meningitidis vaccines if a vaccine preparation can be formulated to mimic the immune stimulus of invasive disease, which may include stimulation of TH2 cytokine production. PMID:10225908

  15. Interaction of pathogenic neisseriae with nonphagocytic cells.

    PubMed Central

    Nassif, X; So, M

    1995-01-01

    The ability to interact with nonphagocytic cells is a crucial virulence attribute of the meningococcus and the genococcus. Like most bacterial pathogens, Neisseria meningitidis and Neisseria gonorrhoeae initiate infections by colonizing the mucosal epithelium, which serves as the site of entry. After this step, both bacteria cross the intact mucosal barrier. While N. gonorrhoeae is likely to remain in the subepithelial matrix, where it initiates an intense inflammatory reaction, N. meningitidis enters the bloodstream, and eventually the cerebrospinal fluid to cause meningitis. Both pathogens have evolved very similar mechanisms for interacting with host cells. Surface structures that influence bacterium-host interactions include pili, the meningococcal class 5 outer membrane proteins or the gonococcal opacity proteins, lipooligosaccharide, and the meningococcal capsule. This review examines what is known about the roles these structures play in bacterial adhesion and invasion, with special emphasis, on pilus-mediated adhesion. Finally, the importance of these structures in neisserial pathogenesis is discussed. PMID:7553571

  16. Antimicrobial Resistance and Neisseria gonorrhoeae Multiantigen Sequence Typing Profile of Neisseria gonorrhoeae in New Delhi, India.

    PubMed

    Mahajan, Neeraj; Sood, Seema; Singh, Rajendra; Kapil, Arti; Das, Bimal Kumar; Sreenivas, Vishnubhatla; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2016-08-01

    Molecular epidemiology of 100 consecutive gonococcal isolates collected between April 2010 and October 2013 from New Delhi was investigated using Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) along with its association with antimicrobial resistance profiles. Neisseria gonorrhoeae isolates were assigned into 60 different sequence types and 43 (71.6%) were novel. Sole representation was seen in 76.6% sequence types. There was significant association between ST6058 and resistance to penicillin (P = 0.00) and tetracycline (P = 0.002). PMID:27414684

  17. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae.

    PubMed

    Rohde, Kyle H; Dyer, David W

    2003-09-01

    It is well established that bacterial pathogenesis is dependent on the ability to acquire iron within the host. The success of the highly adapted obligate human pathogens Neisseria meningitidis (NM) and Neisseria gonorrhoeae (NG) can be attributed in part to the efficient utilization of multiple host iron (Fe) sources, allowing replication on mucosal surfaces, in the bloodstream, and intracellularly. Most Gram-negative bacterial strategies for scavenging iron from the human host rely on the TonB protein to energize active iron transport across the outer membrane. Pathogenic Neisseria express multiple high-affinity iron transporters including a family of two-component TonB-dependent receptors as well as multiple single-component TonB-dependent Fe transporters. This review describes our current understanding of the mechanisms Neisseria have evolved to utilize various iron sources encountered during infection of the human host. Recent studies have provided insight into the interaction of neisserial outer membrane receptors with host iron carrier proteins. Emerging structural information on neisserial iron transporters will be compared with the crystal structures and biochemical data available for homologous Escherichia coli TonB-dependent Fe-siderophore receptors. In the process, we will highlight the aspects of the iron transport process that are unique and those that remain to be experimentally demonstrated in Neisseria. These include receptor structure/function, the mechanism of iron removal from protein ligands, the fate of Fe and heme-Fe after traversing the outer membrane, and the role of TonB-associated energy in receptor functions. Finally, we will discuss regulatory mechanisms that control the expression of iron scavenging systems. The investigation of iron metabolism in NM and NG is important for understanding the biochemistry of this virulence factor, the development of vaccines targeted at outer membrane iron receptors, and therapeutic interventions

  18. Postgenomics of Neisseria meningitidis: an update.

    PubMed

    Bernardini, Giulia; Braconi, Daniela; Lusini, Paola; Santucci, Annalisa

    2009-04-01

    Neisseria meningitidis infection represents a major life-threatening bacterial disease worldwide. Genomics has revolutionized every aspect of the field of microbiology. As a consequence of genome sequencing, the postgenomic era commenced 15 years ago. Comparative genomics, functional genomics and proteomics, as well as a combination of these techniques, will play important roles in providing vital information regarding bacterial biological complexity and pathogenic traits, and accelerate the development of therapeutic drugs and vaccines for combating infections. This review summarizes the current knowledge regarding different approaches aimed to shed light on meningococcal biology and pathogenesis, and to accelerate the development and characterization of vaccines against pathogenic meningococci. PMID:19385941

  19. Mapping phosphoproteins in Neisseria meningitidis serogroup A.

    PubMed

    Bernardini, Giulia; Laschi, Marcella; Serchi, Tommaso; Arena, Simona; D'Ambrosio, Chiara; Braconi, Daniela; Scaloni, Andrea; Santucci, Annalisa

    2011-04-01

    To investigate the phosphorylation capability of serogroup A Neisseria meningitidis (MenA) and to implement our knowledge in meningococcal biology and in bacterial post-translational modifications, cell extracts were separated by 2-DE and 51 novel phosphoproteins were revealed by the use of the highly specific Ser/Thr/Tyr-phosphorylated proteins staining by Pro-Q Diamond and identified by MALDI-ToF/MS. Our results indicate that phosphorylation in MenA is comparable to that of other bacterial species. A first functional characterization of the identified modified proteins was also given, in order to understand their role in meningococcal physiopathology. PMID:21365747

  20. Historical perspectives and identification of Neisseria and related species.

    PubMed Central

    Knapp, J S

    1988-01-01

    The pathogenic Neisseria spp., N. gonorrhoeae and N. meningitidis, have been studied extensively and rapid identification procedures have been designed to distinguish these species from the commensal Neisseria and related species that are normal flora of the oro- and nasopharynx. The commensal Neisseria spp. have been largely ignored except for isolated studies. It is important that we know about these species, however, because not only may some be misidentified as pathogenic species if identified with inappropriate procedures, but also they may occasionally be isolated from unusual sites and must be correctly identified to the species level for clinical purposes. PMID:3069201

  1. Resistance to peroxynitrite in Neisseria gonorrhoeae.

    PubMed

    Barth, Kenneth R; Isabella, Vincent M; Wright, Lori F; Clark, Virginia L

    2009-08-01

    Neisseria gonorrhoeae encodes a number of important genes that aid in survival during times of oxidative stress. The same immune cells capable of oxygen-dependent killing mechanisms also have the capacity to generate reactive nitrogen species (RNS) that may function antimicrobially. F62 and eight additional gonococcal strains displayed a high level of resistance to peroxynitrite, while Neisseria meningitidis and Escherichia coli showed a four- to seven-log and a four-log decrease in viability, respectively. Mutation of gonococcal orthologues that are known or suspected to be involved in RNS defence in other bacteria (ahpC, dnrN and msrA) resulted in no loss of viability, suggesting that N. gonorrhoeae has a novel mechanism of resistance to peroxynitrite. Whole-cell extracts of F62 prevented the oxidation of dihydrorhodamine, and decomposition of peroxynitrite was not dependent on ahpC, dnrN or msrA. F62 grown in co-culture with E. coli strain DH10B was shown to protect E. coli viability 10-fold. Also, peroxynitrite treatment of F62 did not result in accumulation of nitrated proteins, suggesting that an active peroxynitrite reductase is responsible for peroxynitrite decomposition rather than a protein sink for amino acid modification. PMID:19406894

  2. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA.

    PubMed Central

    Correia, F F; Inouye, S; Inouye, M

    1986-01-01

    Two-dimensional heteroduplex mapping of Neisseria gonorrhoeae genomic DNA revealed a number of spots, indicating the existence of repetitive sequences. When one of the spots was extracted and used as a probe for Southern blot analysis, two HindIII bands (11.0 and 3.6 kilobases [kb]) of the genomic digest hybridized with approximately equal intensity. The 3.6-kb fragment was cloned and found to contain two different types of repeated sequence. One type was approximately 1.1 kb in length and was found at least twice in the entire genome. The other consisted of a 26-base-pair family GT(C/A)C(Py)G(Pu)TTTTTGTTAAT(Py)C(Pu)CTATA (Py, pyrimidine; Pu, purine) that was repeated at least 20 times in the entire genome. This repetitive sequence was found also in Neisseria meningitidis but not in various other gram-negative bacteria. Images PMID:3091577

  3. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    SciTech Connect

    Stephens, David S.; Gudlavalleti, Seshu K.; Tzeng, Yih-Ling; Datta, Anup K.; Carlson, Russell W.

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  4. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles.

    PubMed

    Seib, Kate L; Tseng, Hsing-Ju; McEwan, Alastair G; Apicella, Michael A; Jennings, Michael P

    2004-07-01

    Defenses against oxidative stress are crucial for the survival of the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. An Mn(II) uptake system is involved in manganese (Mn)-dependent resistance to superoxide radicals in N. gonorrhoeae. Here, we show that accumulation of Mn also confers resistance to hydrogen peroxide killing via a catalase-independent mechanism. An mntC mutant of N. meningitidis is susceptible to oxidative killing, but supplementation of growth media with Mn does not enhance the organism's resistance to oxidative killing. N. meningitidis is able to grow in the presence of millimolar levels of Mn ion, in contrast to N. gonorrhoeae, whose growth is retarded at Mn concentrations >100 micromol/L, indicating that Mn homeostasis in the 2 species is probably quite different. N. meningitidis superoxide dismutase B plays a role in protection against oxidative killing. However, a sodC mutant of N. meningitidis is no more sensitive to oxidative killing than is the wild type. A cytochrome c peroxidase (Ccp) is present in N. gonorrhoeae but not in N. meningitidis. Investigations of a ccp mutant revealed a role for Ccp in protection against hydrogen peroxide killing. These differences in oxidative defenses in the pathogenic Neisseria are most likely a result of their localization in different ecological niches. PMID:15195253

  5. Characterization of a stress protein from group B Neisseria meningitidis.

    PubMed Central

    Arakere, G; Kessel, M; Nguyen, N; Frasch, C E

    1993-01-01

    Increased levels of a 65-kDa stress protein (Msp65) were observed in group B Neisseria meningitidis grown under stationary-growth conditions. Electron microscopy showed two apposing rings of seven subunits, a structure typical of Escherichia coli GroEL. Msp65 was not found in either the periplasmic space or the outer membrane. Several important differences between the GroEL analogs of N. meningitidis and Neisseria gonorrhoeae are discussed. Images PMID:8099073

  6. Update on Quinolone Resistance in Neisseria gonorrhoeae.

    PubMed

    Zenilman, Jonathan M.

    2002-04-01

    Quinolones are widely used for treating gonococcal infections, typically in single-dose, oral regimens. However, in the 1990s, quinolone-resistant Neisseria gonorrhoeae emerged, potentially compromising the utility of this drug class. In the past year, these strains have widely disseminated, accounting for over half of isolates in parts of Southeast Asia. The molecular mechanism of resistance has been localized to multiple mutations in genes coding for the bacterial DNA gyrase and topoisomerase enzymes. These mutations accumulate until the minimum inhibitory concentration is 4.0 g/mL or more, which in clinical studies appears to be the threshold for clinical treatment failure. Quinolone-resistant N. gonorrhoeae is independent from other plasmid- and chromosomally-mediated resistance determinants; nearly all isolates to date have been sensitive to cephalosporins and spectinomycin. Nevertheless, designing public health strategies to contain quinolone-resistant N. gonorrhoeae will be difficult. PMID:11927047

  7. Drug-resistant Neisseria gonorrhoeae in Michigan

    PubMed Central

    Boehme, Martha S.; Rudrik, James T.; Ganoczy, Dara; Crandell-Alden, Erin; Schneider, William A.; Somsel, Patricia A.

    2005-01-01

    The increasing prevalence of quinolone-resistant Neisseria gonorrhoeae (QRNG) in the United States is a cause for concern. Detecting resistance is complicated by the widespread use of molecular tests that do not provide isolates for susceptibility testing. The Michigan Department of Community Health developed a sentinel surveillance program to detect antimicrobial drug resistance in N. gonorrhoeae. Sentinel surveillance from 11 laboratories submitted 1,122 isolates for antimicrobial drug susceptibility testing and detected 2 clusters of QRNG from January 2003 to September 2004. These clusters were epidemiologically distinct: one involved young, heterosexual youth, and the other involved older men who have sex with men. This finding led to changes in local treatment recommendations that limited spread of resistant strains. Development of the sentinel program, collection of data, and epidemiologic analysis of the clusters are discussed. PMID:16022773

  8. Occupational transmission of Neisseria meningitidis --- California, 2009.

    PubMed

    2010-11-19

    Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis . The case-fatality rate for meningococcal disease is 10%--14%; survivors can experience brain damage, hearing loss, limb loss, and learning disabilities . On December 11, 2009, the California Department of Public Health (CDPH) initiated an investigation of two secondary cases of meningococcal disease in a police officer and a respiratory therapist following occupational contact with an unconscious adult. This report describes the events surrounding occupational transmission of N. meningitidis and recommends measures to control and prevent secondary transmission of N. meningitidis. Breaches in infection control, notification delays, and lack of worker exposure assessment and postexposure chemoprophylaxis (PEP) likely contributed to secondary cases. Employers should provide adequate infection-control training to staff members, PEP to exposed workers, and report notifiable diseases promptly. PMID:21085089

  9. Conservation of meningococcal antigens in the genus Neisseria.

    PubMed

    Muzzi, Alessandro; Mora, Marirosa; Pizza, Mariagrazia; Rappuoli, Rino; Donati, Claudio

    2013-01-01

    Neisseria meningitidis, one of the major causes of bacterial meningitis and sepsis, is a member of the genus Neisseria, which includes species that colonize the mucosae of many animals. Three meningococcal proteins, factor H-binding protein (fHbp), neisserial heparin-binding antigen (NHBA), and N. meningitidis adhesin A (NadA), have been described as antigens protective against N. meningitidis of serogroup B, and they have been employed as vaccine components in preclinical and clinical studies. In the vaccine formulation, fHbp and NHBA were fused to the GNA2091 and GNA1030 proteins, respectively, to enhance protein stability and immunogenicity. To determine the possible impact of vaccination on commensal neisseriae, we determined the presence, distribution, and conservation of these antigens in the available genome sequences of the genus Neisseria, finding that fHbp, NHBA, and NadA were conserved only in species colonizing humans, while GNA1030 and GNA2091 were conserved in many human and nonhuman neisseriae. Sequence analysis showed that homologous recombination contributed to shape the evolution and distribution of both NHBA and fHbp, three major variants of which have been defined. fHbp variant 3 was probably the ancestral form of meningococcal fHbp, while fHbp variant 1 from N. cinerea was introduced into N. meningitidis by a recombination event. fHbp variant 2 was the result of a recombination event inserting a stretch of 483 bp from variant 1 into the variant 3 background. These data indicate that a high rate of exchange of genetic material between neisseriae that colonize the human upper respiratory tract exists. IMPORTANCE The upper respiratory tract of healthy individuals is a complex ecosystem colonized by many bacterial species. Among these, there are representatives of the genus Neisseria, including Neisseria meningitidis, a major cause of bacterial meningitis and sepsis. Given the close relationship between commensal and pathogenic species, a protein

  10. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  11. Meningitis and Bacteremia Due to Neisseria cinerea following a Percutaneous Rhizotomy of the Trigeminal Ganglion

    PubMed Central

    Richter, H.; Bruderer, T.; Goldenberger, D.; Emonet, S.; Strahm, C.

    2015-01-01

    Neisseria cinerea is a human commensal. The first known case of meningitis and bacteremia due to Neisseria cinerea following percutaneous glycerol instillation of the trigeminal ganglion is reported. Conventional phenotypic methods and complete 16S RNA gene sequencing accurately identified the pathogen. Difficulties in differentiation from pathogenic neisseriae are discussed. PMID:26511743

  12. Rapid identification of Neisseria gonorrhoeae and Neisseria meningitidis by using enzymatic profiles.

    PubMed Central

    D'Amato, R F; Eriquez, L A; Tomfohrde, K M; Singerman, E

    1978-01-01

    The enzymatic profiles of Neisseria gonorrhoeae, N. meningitidis, and related species were determined, using a total of 48 chromogenic substrates. Enzyme classes assayed for included glycosidases, aminopeptidases, phosphoamidases, proteases, lipases, esterases, and aryl sulfatase. A final test selection of 10 substrates, based upon their differential and reproducible characteristics, allowed the separation of N. gonorrhoeae and N. meningitidis from each other and from all species tested within 4 h after primary isolation on modified Thayer-Martin medium. The need for subculturing suspect colonies from modified Thayer-Martin medium to chocolate medium with a subsequent loss of 18 to 24 h of identification is eliminated. PMID:203607

  13. Molecular characterization of Neisseria meningitidis isolates using a resequencing DNA microarray.

    PubMed

    Corless, Caroline E; Kaczmarski, Edward; Borrow, Ray; Guiver, Malcolm

    2008-05-01

    Neisseria meningitidis is a major cause of both meningitis and septicemia. Typically, isolates are characterized by using a combination of immunological phenotyping, using monoclonal and polyclonal antisera, and Sanger nucleotide sequencing of epitope-encoding variable regions, although these methods can be both time-consuming and limited by reagent availability. Herein, we describe and evaluate a novel microarray to define the porB and porA serotypes of N. meningitidis by the resequencing of variable regions in a single hybridization reaction. PCR products for each gene were amplified, pooled in equimolar concentrations, hybridized to the microarray, and analyzed using Affymetrix GeneChip DNA Analysis Software. Resequencing of the microarray data was then validated by comparison with sequencing data. Molecular profiles were generated for 50 isolates that were combinations of phenotypically typeable (ie, PorA and PorB) and non-typeable (PorB only) isolates. Microarray-generated profiles from isolates with a PorB phenotype were concordant with predicted profiles compared with a previously described typing scheme. In addition, 42% (8 of 19) of previously non-typeable samples were assigned a PorB type when tested using the microarray. The remaining isolates were novel types for which no typing antisera are currently available. The porA data were 97% concordant with Sanger nucleotide sequencing. These results suggest that that microarray resequencing may be a useful tool for the characterization of meningococci, particularly for those isolates that cannot be phenotyped, offering an alternative to conventional sequencing methods. PMID:18372424

  14. Neisseria cuniculi in ruminants: epidemiological aspects.

    PubMed Central

    Elad, D.; Shlomovitz, S.; Bernstein, M.; Bassan, J.

    1990-01-01

    Neisseria cuniculi was isolated, between March 1987 and March 1989, from 38 cases of respiratory disease in small and large ruminants. In all but five cases N. cuniculi was cultured together with other potential respiratory pathogens. A survey was conducted to assess the prevalence of N. cuniculi in the pharyngeal region of Merino and Awassi purebred sheep, Awassi/East-Friesian and Merino/Romanov crossbred sheep and one exotic cross breed (goat/ibex). N. cuniculi was isolated from 80-88% of the animals under 1 month of age. Among older animals, the microorganism was isolated from 20.5% of the pure bred animals and 79.3% of the crossbred ones. This difference was significant (P less than 0.001) by the chi 2 test. The prevalence of N. cuniculi in the second age group coincides with the susceptibility of the breeds to respiratory pathology. This, we believe, is the first report of N. cuniculi involved in multiple cases of respiratory pathology and of a survey assessing the prevalence of this microorganism in small ruminants. PMID:2249720

  15. Regulation of capsule in Neisseria meningitidis.

    PubMed

    Tzeng, Yih-Ling; Thomas, Jennifer; Stephens, David S

    2016-09-01

    Neisseria meningitidis, a devastating pathogen exclusive to humans, expresses capsular polysaccharides that are the major meningococcal virulence determinants and the basis for successful meningococcal vaccines. With rare exceptions, the expression of capsule (serogroups A, B, C, W, X, Y) is required for systemic invasive meningococcal disease. Changes in capsule expression or structure (e.g. hypo- or hyper-encapsulation, capsule "switching", acetylation) can influence immunologic diagnostic assays or lead to immune escape. The loss or down-regulation of capsule is also critical in meningococcal biology facilitating meningococcal attachment, microcolony formation and the carriage state at human mucosal surfaces. Encapsulated meningococci contain a cps locus with promoters located in an intergenic region between the biosynthesis and the conserved capsule transport operons. The cps intergenic region is transcriptionally regulated (and thus the amount of capsule expressed) by IS element insertion, by a two-component system, MisR/MisS and through sequence changes that result in post-transcriptional RNA thermoregulation. Reversible on-off phase variation of capsule expression is controlled by slipped strand mispairing of homo-polymeric tracts and by precise insertion and excision of IS elements (e.g. IS1301) in the biosynthesis operon. Capsule structure can be altered by phase-variable expression of capsular polymer modification enzymes or "switched" through transformation and homologous recombination of different polymerases. Understanding the complex regulation of meningococcal capsule has important implications for meningococcal biology, pathogenesis, diagnostics, current and future vaccine development and vaccine strategies. PMID:26089023

  16. Metabolism and virulence in Neisseria meningitidis

    PubMed Central

    Schoen, Christoph; Kischkies, Laura; Elias, Johannes; Ampattu, Biju Joseph

    2014-01-01

    A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions. PMID:25191646

  17. Diagnosis of Neisseria gonorrhoeae Using Molecular Beacon

    PubMed Central

    Patel, Achchhe Lal; Sonkar, Subash Chandra; Kumari, Indu; Saluja, Daman

    2015-01-01

    Neisseria gonorrhoeae is an important sexually transmitted diseases (STD) causing pathogen worldwide. Due to absence of an affordable diagnostic assay, routine screening of gonococcal infection becomes impossible in developing countries where infection rates are maximum. Treatment is given on the basis of symptoms alone which leads to spread of infection. Thus, development of a rapid, sensitive, specific, and PCR based visual diagnostic assay suitable for developing countries, required for better disease management, is aimed at in present study. Endocervical swabs were collected from patients visiting gynecology department of various hospitals in Delhi. In-house PCR based assay was developed and modified to visual assay using molecular beacon for end-point detection. It was evaluated against Roche AMPLICOR NG kit and rmp gene. Specificity of beacon was confirmed by competition experiments. Diagnostic test was 98.21% specific and 99.59% sensitive whereas negative and positive predicted value were 99.40% and 98.78%, respectively. We also observed that twice the concentration (2X) of premix was stable at 4°C for 4 months and dry swab samples gave concordant results with that of wet swabs. These features make the test best suitable for routine diagnosis of genital infections in developing countries. PMID:25802857

  18. Phospholipids and fatty acids of Neisseria gonorrhoeae.

    PubMed Central

    Sud, I J; Feingold, D S

    1975-01-01

    The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed. PMID:810478

  19. An evaluation of the role of properdin in alternative pathway activation on Neisseria meningitidis and Neisseria gonorrhoeae.

    PubMed

    Agarwal, Sarika; Ferreira, Viviana P; Cortes, Claudio; Pangburn, Michael K; Rice, Peter A; Ram, Sanjay

    2010-07-01

    Properdin, a positive regulator of the alternative pathway (AP) of complement is important in innate immune defenses against invasive neisserial infections. Recently, commercially available unfractionated properdin was shown to bind to certain biological surfaces, including Neisseria gonorrhoeae, which facilitated C3 deposition. Unfractionated properdin contains aggregates or high-order oligomers, in addition to its physiological "native" (dimeric, trimeric, and tetrameric) forms. We examined the role of properdin in AP activation on diverse strains of Neisseria meningitidis and N. gonorrhoeae specifically using native versus unfractionated properdin. C3 deposition on Neisseria decreased markedly when properdin function was blocked using an anti-properdin mAb or when properdin was depleted from serum. Maximal AP-mediated C3 deposition on Neisseriae even at high (80%) serum concentrations required properdin. Consistent with prior observations, preincubation of bacteria with unfractionated properdin, followed by the addition of properdin-depleted serum resulted in higher C3 deposition than when bacteria were incubated with properdin-depleted serum alone. Unexpectedly, none of 10 Neisserial strains tested bound native properdin. Consistent with its inability to bind to Neisseriae, preincubating bacteria with native properdin followed by the addition of properdin-depleted serum did not cause detectable increases in C3 deposition. However, reconstituting properdin-depleted serum with native properdin a priori enhanced C3 deposition on all strains of Neisseria tested. In conclusion, the physiological forms of properdin do not bind directly to either N. meningitidis or N. gonorrhoeae but play a crucial role in augmenting AP-dependent C3 deposition on the bacteria through the "conventional" mechanism of stabilizing AP C3 convertases. PMID:20530262

  20. Detection of quinolone-resistant Neisseria gonorrhoeae.

    PubMed Central

    Kam, K M; Wong, P W; Cheung, M M; Ho, N K

    1996-01-01

    The present National Committee for Clinical Laboratory Standards (NCCLS) guideline for testing Neisseria gonorrhoeae quinolone susceptibility defines only a susceptible category for ciprofloxacin, enoxacin, lomefloxacin, and ofloxacin, while susceptible, intermediate, and resistant categories are defined for fleroxacin. To further define the criteria for detection of quinolone resistance in gonococci, by standard disk diffusion and agar dilution methodologies recommended by the NCCLS, we tested 29 strains of quinolone-resistant N. gonorrhoeae (QRNG) recently isolated from ofloxacin-treated patients who were considered clinical failures. Regression analyses were performed on these results together with those of another 20 strains showing reduced susceptibility and 13 fully susceptible strains (ofloxacin MICs of < or = 0.25 microgram/ml). With 5-micrograms ofloxacin disks, resistance in 27 (93.1%) of the QRNG strains (MICs of > 1 microgram/ml) was detected by the criterion of a zone diameter of < 22 mm, while in the remaining 2 (6.9%), the disks failed to detect resistance. A cluster of 15 highly resistant strains showed ofloxacin MICs of > 4 micrograms/ml and zone diameters of < 13 mm. When tested with 5-micrograms ciprofloxacin disks, the corresponding values for resistance and high-level resistance of these QRNG strains were < 25 mm (MICs of > 0.5 micrograms/ml) and < 15 mm (MICs of > 2 micrograms /ml), respectively. Six strains for which ofloxacin MICs were > or = 8 micrograms/ml showed no zones at all with both 5-micrograms ofloxacin and 5-micrograms ciprofloxacin disks. These QRNG strains are now firmly established in the Southeast Asia region, and it is important for clinical laboratories to recognize these clinically resistant strains and to monitor their spread. PMID:8735098

  1. Epidemiological characterization of Neisseria gonorrhoeae by lectins.

    PubMed Central

    Schalla, W O; Whittington, W L; Rice, R J; Larsen, S A

    1985-01-01

    A total of 101 isolates of penicillinase-producing and non-penicillinase-producing Neisseria gonorrhoeae with known nutritional requirements, plasmid content, and serovars, were examined for lectin agglutination patterns. These isolates were from outbreaks in Georgia, California, Hawaii, and Pennsylvania. Cell suspensions made from 16- to 18-h cultures were mixed with 14 different lectins, and the resultant agglutination patterns were classified as agglutination groups. Among the 101 isolates tested, 24 different agglutination groups were demonstrated. Of the organisms tested, 55% were located in 3 of the 24 groups, and 86% of the isolates reacted with the lectins Trichosanthes kinlowii, Griffonia simplicifolia I, peanut agglutinin, soybean agglutinin, potato agglutinin, and wheat germ agglutinin. One isolate did not react with peanut or potato agglutinin, five isolates lacked reactivity with potato agglutinin, and six isolates did not react with wheat germ agglutinin. Of the wheat germ-negative isolates, four were from Pennsylvania and were identical with regard to auxotype, plasmid content, serovar, and lectin group. The other two wheat germ-negative isolates were from California and were unrelated by the same criteria to the four Pennsylvania isolates and to each other. Among the isolates tested, there were no differences in lectin groups with regard to the sex of the patient. In the Georgia collection, agglutination with one lectin group was confined to isolates of serogroup IA. This association was not observed for the other geographic areas. Some isolates showing identical auxotype, plasmid content, and serovars could be differentiated based on lectin agglutination patterns, whereas other isolates were identical by all testing criteria. PMID:3930560

  2. Complete Genome Sequence of Neisseria weaveri Strain NCTC13585

    PubMed Central

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. PMID:27563039

  3. Transcriptional and functional analysis of the Neisseria gonorrhoeae fur regulon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator senses intracellular iron stores and acting as a repressor, directly regulates transcription of iron-responsive genes by binding to a conserve...

  4. DNA stability of Chlamydia trachomatis and Neisseria gonorrhoeae in urine.

    PubMed

    Le Guern, Rémi; Miaux, Brigitte; Pischedda, Patricia; Herwegh, Stéphanie; Courcol, René

    2016-07-01

    We evaluated the DNA stability of Chlamydia trachomatis and Neisseria gonorrhoeae in 55 urine samples. Crossing threshold (Ct) values were highly similar after 3 to 14 days at room temperature (+0.002, P = 0.99). Consequently, it does not seem necessary to transfer urine specimens into a transport medium in less than 24 hours as recommended by manufacturers. PMID:27130478

  5. The transferrin-iron import system from pathogenic Neisseria species.

    PubMed

    Noinaj, Nicholas; Buchanan, Susan K; Cornelissen, Cynthia Nau

    2012-10-01

    Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis. PMID:22957710

  6. Complete Genome Sequence of Neisseria weaveri Strain NCTC13585.

    PubMed

    Alexander, Sarah; Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Parkhill, Julian; Russell, Julie E

    2016-01-01

    Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. PMID:27563039

  7. Neisseria meningitidis ST-11 clonal complex, Chile 2012.

    PubMed

    Araya, Pamela; Fernández, Jorge; Del Canto, Felipe; Seoane, Mabel; Ibarz-Pavón, Ana B; Barra, Gisselle; Pidal, Paola; Díaz, Janepsy; Hormazábal, Juan C; Valenzuela, María T

    2015-02-01

    Serogroup W Neisseria meningitidis was the main cause of invasive meningococcal disease in Chile during 2012. The case-fatality rate for this disease was higher than in previous years. Genotyping of meningococci isolated from case-patients identified the hypervirulent lineage W:P1.5,2:ST-11, which contained allele 22 of the fHbp gene. PMID:25625322

  8. Neisseria meningitidis ST-11 Clonal Complex, Chile 2012

    PubMed Central

    Araya, Pamela; Del Canto, Felipe; Seoane, Mabel; Ibarz-Pavón, Ana B.; Barra, Gisselle; Pidal, Paola; Díaz, Janepsy; Hormazábal, Juan C.; Valenzuela, María T.

    2015-01-01

    Serogroup W Neisseria meningitidis was the main cause of invasive meningococcal disease in Chile during 2012. The case-fatality rate for this disease was higher than in previous years. Genotyping of meningococci isolated from case-patients identified the hypervirulent lineage W:P1.5,2:ST-11, which contained allele 22 of the fHbp gene. PMID:25625322

  9. Neisseria meningitidis Serogroup X in Sub-Saharan Africa

    PubMed Central

    Agnememel, Alain; Hong, Eva; Giorgini, Dario; Nuñez-Samudio, Viginia; Deghmane, Ala-Eddine

    2016-01-01

    The epidemiology of meningococcal disease varies by geography and time. Whole-genome sequencing of Neisseria meningitidis serogroup X isolates from sub-Saharan Africa and Europe showed that serogroup X emergence in sub-Saharan Africa resulted from expansion of particular variants within clonal complex 181. Virulence of these isolates in experimental mouse models was high. PMID:26982628

  10. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  11. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae.

    PubMed

    Peterson, S W; Martin, I; Demczuk, W; Bharat, A; Hoang, L; Wylie, J; Allen, V; Lefebvre, B; Tyrrell, G; Horsman, G; Haldane, D; Garceau, R; Wong, T; Mulvey, M R

    2015-07-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  12. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria.

    PubMed

    Barth, Kenneth R; Isabella, Vincent M; Clark, Virginia L

    2009-12-01

    Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only Neisseria mucosa contained a nitrate reductase (Nar), and only Neisseria lactamica, Neisseria cinerea, Neisseria subflava, Neisseria flavescens and Neisseria sicca contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except N. mucosa had a two- to fourfold lower nitrite reductase activity than N. gonorrhoeae, while N. meningitidis and most of the commensal Neisseria species had a two- to fourfold higher nitric oxide (NO) reductase activity. For N. meningitidis and most of the commensal Neisseria, there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with N. gonorrhoeae. All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of N. gonorrhoeae. The greatest difference between the Neisseria species was the lack of a functional Nos system in the pathogenic species N. gonorrhoeae and N. meningitidis. PMID:19762442

  13. Evaluation of molecular typing methods for identification of outbreak-associated Neisseria meningitidis isolates.

    PubMed

    Törös, Bianca; Hedberg, Sara T; Jacobsson, Susanne; Fredlund, Hans; Olcén, Per; Mölling, Paula

    2013-06-01

    It is essential in an outbreak investigation that strain characterization of Neisseria meningitidis is performed in a rapid and accurate manner. This study evaluated two new molecular typing methods, multiple-locus variable number tandem repeat analysis (MLVA) and repetitive sequence-based PCR (rep-PCR) (DiversiLab; bioMérieux) and compared them with current recommended methodologies. This retrospective study included 36 invasive N. meningitidis serogroup C isolates collected in Sweden 2001 through 2009 and previously subjected to outbreak investigation. All strains were typed with highly variable-MLVA (HV-MLVA) and rep-PCR. The isolates were further characterized by multilocus sequence typing (MLST) and sequencing of the fetA, fHbp, penA, porA and porB genes. The results showed that HV-MLVA had the highest index of diversity (0.99) and rep-PCR had the highest congruence (40%) with the currently recommended typing methods. The HV-MLVA correlated best to the spatiotemporal connections and had the overall highest Adjusted Wallace coefficients, suggesting that HV-MLVA can predict the results of the other typing methods in the study. We therefore suggest that after initial confirmation of species, serogroup and genosubtype, HV-MLVA should be used as the most discriminatory method for first hand investigation of N. meningitidis serogroup C isolates. PMID:23216005

  14. Sequence Type 4821 Clonal Complex Serogroup B Neisseria meningitidis in China, 1978–2013

    PubMed Central

    Zhu, Bingqing; Xu, Zheng; Du, Pengcheng; Xu, Li; Sun, Xiaofang; Gao, Yuan

    2015-01-01

    Serogroup B Neisseria meningitidis strains belonging to sequence type 4821 clonal complex (CC4821), a hyperinvasive lineage first identified for serogroup C in 2003, have been increasingly isolated in China. We characterized the outer membrane protein genes of 48 serogroup B and 214 serogroup C strains belonging to CC4821 and analyzed the genomic sequences of 22 strains. Four serogroup B strains had porin A (i.e., PorA), PorB, and ferric enterobactin transport (i.e., FetA) genotypes identical to those for serogroup C. Phylogenetic analysis of the genomic sequences showed that the 22 CC4821 strains from patients and healthy carriers were unevenly clustered into 2 closely related groups; each group contained serogroup B and C strains. Serogroup B strains appeared variable at the capsule locus, and several recombination events had occurred at uncertain breakpoints. These findings suggest that CC4821 serogroup C N. meningitidis is the probable origin of highly pathogenic CC4821 serogroup B strains. PMID:25989189

  15. [Purulent keratoconjunctivitis due to Neisseria gonorrhoeae and Chlamydia trachomatis coinfection].

    PubMed

    Arvai, Mariann; Ostorházi, Eszter; Mihalik, Noémi; Kárpáti, Sarolta; Marschalkó, Márta

    2013-05-26

    Gonococcal conjunctivitis is a rare infection induced by Neisseria gonorrhoeae and it usually manifests as a hyperacute purulent conjunctivitis. Ocular access of the infectious secretion during sexual intercourse is the way of transmission among adults. Inclusion conjunctivitis caused by the serovars D-K of Chlamydia trachomatis also affects the sexually active population. Authors present a case of a 33-year-old homosexual man who was treated for late latent syphilis formerly. Clinical symptoms were yellow purulent discharge for 3 weeks without any urological or upper respiratory tract symptoms. Conjunctival Neisseria gonorrhoeae and Chlamydia trachomatis infection was identified using cultures and polymerase chain reaction; pharyngeal swab culture and polymerase chain reaction showed positive results for both pathogens. The patient was probably under influence of party drugs at the time of sexual abuse when he became infected. After parenteral and oral cephalosporin and azithromycin therapy the patient had complete recovery within three weeks. PMID:23692878

  16. An unusual Neisseria isolated from conjunctival cultures in rural Egypt.

    PubMed

    Mazloum, H; Totten, P A; Brooks, G F; Dawson, C R; Falkow, S; James, J F; Knapp, J S; Koomey, J M; Lammel, C J; Peters, D

    1986-08-01

    Seven isolates of an unusual Neisseria sp. were obtained from eye cultures of children in two rural Egyptian villages. These Neisseria utilized only glucose, they exhibited a positive reaction when tested with antisera to crude antigen from Neisseria meningitidis and N. gonorrhoeae, and they did not react with the fluorescent antibody tests for N. gonorrhoeae or with the monoclonal antibodies used to serotype gonococci. The Egyptian isolates had colony morphology more typical of meningococci than gonococci and showed opaque and transparent colony variants. On SDS-PAGE, the major outer-membrane proteins had different patterns than those noted for comparable proteins of meningococci and gonococci; heat-modifiable outer-membrane proteins were present. Four of the six isolates examined had cryptic plasmids of 2.8 megadaltons, which were slightly larger than the cryptic plasmid of N. gonorrhoeae. These plasmids were homologous to the gonococcal cryptic plasmid, but had different restriction enzyme fragment patterns. The DNA from the Egyptian isolates, like DNA from N. meningitidis but unlike DNA from N. gonorrhoeae, could be cut with the restriction enzyme HaeIII. The frequency of transformation into a temperature-sensitive mutant of N. gonorrhoeae was 0.2 for the Egyptian isolates and 0.1 for N. meningitidis, a frequency that was 5-10-fold lower than that for the N. gonorrhoeae control isolates. Whole-cell DNA from the Egyptian isolates showed 68%-73% homology with N. gonorrhoeae and 57%-63% with N. meningitidis. On the basis of our observations, the Egyptian isolates are distinct from N. meningitidis and may represent a variant of N. gonorrhoeae. We suggest that the isolates be called Neisseria gonorrhoeae ssp. kochii. PMID:2873189

  17. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria.

    PubMed Central

    Archibald, F S; Duong, M N

    1986-01-01

    Among aerotolerant cells, Neisseria gonorrhoeae is very unusual because despite its obligately aerobic lifestyle and frequent isolation from purulent exudates containing polymorphonuclear leukocytes vigorously evolving O2- and H2O2, it contains no superoxide dismutase (SOD). Strains (14) of N. gonorrhoeae were compared with each other and with strains of Neisseria meningitidis, Neisseria mucosa, and Neisseria subflava under identical growth conditions for their contents of the oxy-protective enzymes catalase, peroxidase, and SOD, as well as respiratory chain proteins and activity. The absence of SOD from N. gonorrhoeae strains was demonstrated under a variety of oxygen-stress conditions. The neisserial species showed very different SOD, catalase, and peroxidase profiles. These profiles correlated well with the tolerance of the species to various intra- and extracellular oxygen insults. The high tolerance of N. gonorrhoeae for extracellular O2- and H2O2 appeared to be due to very high constitutive levels of peroxidase and catalase activity combined with a cell envelope impervious to O2-. Nevertheless, N. gonorrhoeae 19424 was much more sensitive to an intracellular flux of O2- than were the other (SOD-containing) neisserial species. The responses of N. gonorrhoeae and N. meningitidis respiratory and oxy-protective enzymes to growth under high and low oxygen tensions were followed, and a novel response, the apparent repression of the respiratory chain intermediates, respiration, and SOD, peroxidase, and catalase activity, was observed. The gonococcal catalase was partially purified and characterized. The results suggest that the very active terminal oxidase, low pO2 natural habitat, O2-stable catalase, and possibly the high glutathione content of the organism explain its aerobic survival in the absence of SOD. PMID:3943903

  18. Neisseria meningitidis with decreased susceptibility to penicillin in Saskatchewan, Canada.

    PubMed Central

    Blondeau, J M; Ashton, F E; Isaacson, M; Yaschuck, Y; Anderson, C; Ducasse, G

    1995-01-01

    Moderately penicillin-resistant Neisseria meningitidis is rare in North America. We report an outbreak of meningococcal disease in Saskatoon, Saskatchewan, Canada, with serogroup C N. meningitidis. The MICs of penicillin ranged from 0.12 to 0.25 micrograms/ml, and all isolates showing decreased susceptibility had identical genomic fingerprints when they were compared by pulsed-field gel electrophoresis. Our data indicate that N. meningitidis that is moderately resistant to penicillin is prevalent in Saskatchewan, Canada. PMID:7665646

  19. Meningitis due to Neisseria meningitidis serogroup B in India.

    PubMed

    Aggarwal, Meenakshi; Manchanda, Vikas; Talukdar, B

    2013-06-01

    Invasive meningococcal disease has a fulminant course and high mortality. Neisseria meningitidis serogroup A is predominantly responsible for meningococcal disease in India and the developing countries. Group B meningococcus, which is prevalent in the developing world is uncommon in India. We herein report the second case of group B meningococcal infection from the country, two decades after the reporting of the first case. Ineffective vaccines against serogroup B warrant the need for close surveillance of this disease. PMID:23942404

  20. An outbreak of meningitis caused by Neisseria meningitidis Group A.

    PubMed

    Annapurna, M E; Bhave, G G; Mathur, M

    1989-03-01

    During a period of six months from September, 1985 to March, 1986, there were twenty seven cases of pyogenic meningitis due to Neisseria meningitidis Group A. Maximum number of cases could be diagnosed by antigen detection by latex agglutination test. The organism was sensitive to all commonly used antibiotics. The patients affected were mostly young adults. The mortality rate was eleven per cent. PMID:2509544

  1. Structural basis for iron piracy by pathogenic Neisseria

    PubMed Central

    Noinaj, N.; Easley, N.C.; Oke, M.; Mizuno, N.; Gumbart, J.; Boura, E.; Steere, A.N.; Zak, O.; Aisen, P.; Tajkhorshid, E.; Evans, R.W.; Gorringe, A.R.; Mason, A.B.; Steven, A.C.; Buchanan, S.K.

    2012-01-01

    SUMMARY Neisseria are obligate human pathogens causing bacterial meningitis, septicemia, and gonorrhea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are: 1) how human transferrin is specifically targeted, and 2) how the bacteria liberate iron from transferrin at neutral pH. To address them, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Collectively, our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process. PMID:22327295

  2. Structural basis for iron piracy by pathogenic Neisseria.

    PubMed

    Noinaj, Nicholas; Easley, Nicole C; Oke, Muse; Mizuno, Naoko; Gumbart, James; Boura, Evzen; Steere, Ashley N; Zak, Olga; Aisen, Philip; Tajkhorshid, Emad; Evans, Robert W; Gorringe, Andrew R; Mason, Anne B; Steven, Alasdair C; Buchanan, Susan K

    2012-03-01

    Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process. PMID:22327295

  3. Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae.

    PubMed

    Lomholt, H; Poulsen, K; Kilian, M

    1995-02-01

    Cloning and sequencing of the IgA1 protease gene (iga) from Neisseria meningitidis strain HF13 showed an overall structure equivalent to iga genes from Neisseria gonorrhoeae and Haemophilus influenzae, although no region corresponding to the gonococcal alpha-peptide was evident. An additional 18 N. meningitidis and 3 H. influenzae iga genes were amplified by the polymerase chain reaction technique and sequenced corresponding approximately to the N-terminal half of the mature enzyme. Comparative analyses of a total of 29 iga genes showed that pathogenic Neisseria have iga genes with a significantly lower degree of heterogeneity than H. influenzae iga genes. Recombinational events indicated by mosaic-like structures corresponding to those found among N. gonorrhoeae protease genes were detected among N. meningitidis iga genes. One region showed characteristic differences in sequence and length which correlated with each of the different cleavage specificities. Meningococci were extremely conserved in this region with no evidence of recombination between isolates of different cleavage specificities. Sequences further downstream showed no obvious relationship with enzyme cleavage type. This region consisted of conserved areas interspersed with highly variable areas. Amino acid sequence homologies in the variable regions of meningococci reflected the antigenic types defined by using polyclonal neutralizing antibodies. PMID:7783620

  4. Improving the immunogenicity of a trivalent Neisseria meningitidis native outer membrane vesicle vaccine by genetic modification.

    PubMed

    Zhang, Lan; Wen, Zhiyun; Lin, Jing; Xu, Hui; Herbert, Paul; Wang, Xin-Min; Mehl, John T; Ahl, Patrick L; Dieter, Lance; Russell, Ryann; Kosinski, Mike J; Przysiecki, Craig T

    2016-07-29

    Trivalent native outer membrane vesicles (nOMVs) derived from three genetically modified Neisseria meningitidis serogroup B strains have been previously evaluated immunologically in mice and rabbits. This nOMV vaccine elicited serum bactericidal activity (SBA) against multiple N. meningitidis serogroup B strains as well as strains from serogroups C, Y, W, and X. In this study, we used trivalent nOMVs isolated from the same vaccine strains and evaluated their immunogenicity in an infant Rhesus macaque (IRM) model whose immune responses to the vaccine are likely to be more predictive of the responses in human infants. IRMs were immunized with trivalent nOMV vaccines and sera were evaluated for exogenous human serum complement-dependent SBA (hSBA). Antibody responses to selected hSBA generating antigens contained within the trivalent nOMVs were also measured and we found that antibody titers against factor H binding protein variant 2 (fHbpv2) were very low in the sera from animals immunized with these original nOMV vaccines. To increase the fHbp content in the nOMVs, the vaccine strains were further genetically altered by addition of another fHbp gene copy into the porB locus. Trivalent nOMVs from the three new vaccine strains had higher fHbp antigen levels and generated higher anti-fHbp antibody responses in immunized mice and IRMs. As expected, fHbp insertion into the porB locus resulted in no PorB expression. Interestingly, higher expression of PorA, an hSBA generating antigen, was observed for all three modified vaccine strains. Compared to the trivalent nOMVs from the original strains, higher PorA levels in the improved nOMVs resulted in higher anti-PorA antibody responses in mice and IRMs. In addition, hSBA titers against other strains with PorA as the only hSBA antigen in common with the vaccine strains also increased. PMID:27269057

  5. Fatal bacteremia by neisseria cinerea in a woman with myelodysplastic syndrome: a case report

    PubMed Central

    Zhu, Xiaofei; Li, Min; Cao, Huiling; Yang, Xuewen

    2015-01-01

    Neisseria cinerea has been rarely found in blood cultures. In this study, we are reporting a case of a Myelodysplastic Syndrome (MDS) patient in whose blood Neisseria cinerea was found and led a fatal consequence. This case will call our attentions to the uncommon pathogens in the pathogenicity of end-stage patients. PMID:26131259

  6. Neisseria Adhesin A Variation and Revised Nomenclature Scheme

    PubMed Central

    Bambini, Stefania; De Chiara, Matteo; Muzzi, Alessandro; Mora, Marirosa; Lucidarme, Jay; Brehony, Carina; Borrow, Ray; Masignani, Vega; Comanducci, Maurizio; Maiden, Martin C. J.; Pizza, Mariagrazia; Jolley, Keith A.

    2014-01-01

    Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/. PMID:24807056

  7. ZnuD, a Potential Candidate for a Simple and Universal Neisseria meningitidis Vaccine

    PubMed Central

    Hubert, Kerstin; Devos, Nathalie; Mordhorst, Ines; Tans, Christine; Baudoux, Guy; Feron, Christiane; Goraj, Karine; Tommassen, Jan; Vogel, Ulrich; Poolman, Jan T.

    2013-01-01

    Neisseria meningitidis serogroup B (MenB) is a major cause of bacterial sepsis and meningitis, with the highest disease burden in young children. Available vaccines are based on outer membrane vesicles (OMVs) obtained from wild-type strains. However, particularly in toddlers and infants, they confer protection mostly against strains expressing the homologous protein PorA, a major and variable outer membrane protein. In the quest for alternative vaccine antigens able to provide broad MenB strain coverage in younger populations, but potentially also across all age groups, ZnuD, a protein expressed under zinc-limiting conditions, may be considered a promising candidate. Here, we have investigated the potential value of ZnuD and show that it is a conserved antigen expressed by all MenB strains tested except for some strains of clonal complex ST-8. In mice and guinea pigs immunized with ZnuD-expressing OMVs, antibodies were elicited that were able to trigger complement-mediated killing of all the MenB strains and serogroup A, C, and Y strains tested when grown under conditions of zinc limitation. ZnuD is also expressed during infection, since anti-ZnuD antibodies were detected in sera from patients. In conclusion, we confirm the potential of ZnuD-bearing OMVs as a component of an effective MenB vaccine. PMID:23509142

  8. Surveillance of invasive Neisseria meningitidis with a serogroup Y update, Sweden 2010 to 2012.

    PubMed

    Törös, B; Thulin Hedberg, S; Jacobsson, S; Fredlund, H; Olcén, P; Mölling, P

    2014-01-01

    An increase of invasive meningococcal disease caused by Neisseria meningitidis serogroup Y has been noted in Sweden since 2005, and to a lower extent throughout Europe. The present study describes the epidemiology of invasive N. meningitidis isolates in Sweden in the period between 2010 and 2012, with a focus on serogroup Y. We also aimed to find an optimal molecular typing scheme for both surveillance and outbreak investigations. All invasive N. meningitidis isolates in Sweden during the study period (n=208) were genetically characterised. Serogroup Y predominated with 22/57, 31/61 and 44/90 of all invasive isolates (incidence 0.23, 0.33 and 0.46 per 100,000 population) in 2010, 2011 and 2012 respectively. In each of these years, 15/22, 22/31 and 19/44 of serogroup Y isolates were genetically clonal (Y: P1.5–2,10–1,36–2: F4–1: ST-23(cc23), ‘porB allele 3–36, fHbp allele 25 and penA allele 22). Our findings further support those of others that currently recommended FetA typing could be replaced by FHbp. Moreover, in line with a previous study that we conducted, the current results indicate that highly variable multilocus variable-number tandem repeat analysis (HV-MLVA) can be used as a first-hand rapid method for small outbreak investigations. PMID:25358044

  9. Polymicrobial infective endocarditis caused by Neisseria sicca and Haemophilus parainfluenzae.

    PubMed

    Koshkelashvili, Nikoloz; Shah, Mahek; Codolosa, J Nicolas; Climaco, Antonette

    2016-01-01

    Infective endocarditis is a common clinical problem in industrialized countries. Risk factors include abnormal cardiac valves, a history of endocarditis, intracardiac devices, prosthetic valves and intravenous drug use. We report a case of polymicrobial infective endocarditis in a 33 year-old female with a history chronic heroin use caused by Neisseria sicca and Haemophilus parainfluenzae. We believe the patient was exposed to these microbes by cleansing her skin with saliva prior to injection. Pairing a detailed history with the consideration of atypical agents is crucial in the proper diagnosis and management of endocarditis in patients with high-risk injection behaviors. PMID:27051571

  10. Detection of Neisseria gonorrhoeae Isolates from Tonsils and Posterior Oropharynx

    PubMed Central

    Whiley, D. M.; Lee, D. M.; Snow, A. F.; Fairley, C. K.; Peel, J.; Bradshaw, C. S.; Hocking, J. S.; Lahra, M. M.; Chen, M. Y.

    2015-01-01

    We examined the factors influencing gonorrhea detection at the pharynx. One hundred men infected with Neisseria gonorrhoeae were swabbed from the tonsils and posterior oropharynx. N. gonorrhoeae was reisolated from the tonsils and posterior oropharynx in 62% and 52%, respectively (P = 0.041). Culture positivity was greater with higher gonococcal DNA loads at the tonsils (P = 0.001) and oropharynx (P < 0.001). N. gonorrhoeae can be cultured from the tonsils and posterior oropharynx with greater isolation rates where gonococcal loads are higher. PMID:26292303

  11. Using laser tweezers to measure twitching motility in Neisseria.

    PubMed

    Maier, Berenike

    2005-06-01

    Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor. PMID:15939360

  12. Clinical and laboratory evidence for Neisseria meningitidis biofilms

    PubMed Central

    Neil, R Brock; Apicella, Michael A

    2010-01-01

    Neisseria meningitidis is the etiologic agent of meningococcal meningitis. Carriage of the organism is approximately 10% while active disease occurs at a rate of 1:100,000. Recent publications demonstrate that N. meningitidis has the ability to form biofilms on glass, plastic or cultured human bronchial epithelial cells. Microcolony-like structures are also observed in histological sections from patients with active meningococcal disease. This review investigates the possible role of meningococcal biofilms in carriage and active disease, based on the laboratory and clinical aspects of the disease. PMID:19492966

  13. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence.

    PubMed

    Meyer, T F; Billyard, E; Haas, R; Storzbach, S; So, M

    1984-10-01

    We have mapped two regions of the Neisseria gonorrheae genome, pilE1 and pilE2, which are involved in pilus expression. When the cells are in the piliated P+ state, these two loci carry sequences necessary for pilin production. A silent locus, pilS1, also maps near pilE1 and pilE2. pilS1 contains structural gene information but lacks pilus promoter sequences. The pilus gene sequences in pilE1 and pilE2 are identical in strain MS11. PMID:6148752

  14. Production of Neisseria gonorrhoeae pili (fimbriae) in Pseudomonas aeruginosa.

    PubMed Central

    Hoyne, P A; Haas, R; Meyer, T F; Davies, J K; Elleman, T C

    1992-01-01

    Pseudomonas aeruginosa K/2PfS, when transformed with an expression plasmid harboring the pilin gene (pilE1) of Neisseria gonorrhoeae MS11, was able to express and assemble gonococcal pilin monomers into surface-associated pili, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and immunoelectron microscopy. Concomitant with the expression of gonococcal pili in P. aeruginosa was the virtual loss of production of P. aeruginosa K/2PfS pili normally associated with the host cell. Images PMID:1358873

  15. Strain-specific virulence-associated antigen of Neisseria gonorrhoeae.

    PubMed Central

    Pierce, W A; Leong, J K; Hough, D M

    1975-01-01

    A strain-specific virulence-associated antigen has been found in Neisseria gonorrhoeae strain F-62. Using immunodiffusion in agar gel, it has been shown that the antigen is distinguishable from endotoxin and the virulence-associated toxic protein. It does not appear to be derived from pili. The antigen was not detected in T1 and/or T2 colony type cultures of 10 other isolates. It exhibited a possible partial immunological relationship with an antigen found in one additional strain. It was susceptible to digestion with Pronase and trypsin. Images PMID:804445

  16. Post-genomics of Neisseria meningitidis: an update.

    PubMed

    Bernardini, Giulia; Braconi, Daniela; Lusini, Paola; Santucci, Annalisa

    2011-12-01

    Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci. PMID:22087663

  17. Sigma factor RpoN (σ54) regulates pilE transcription in commensal Neisseria elongata.

    PubMed

    Rendón, María A; Hockenberry, Alyson M; McManus, Steven A; So, Magdalene

    2013-10-01

    Human-adapted Neisseria includes two pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, and at least 13 species of commensals that colonize many of the same niches as the pathogens. The Type IV pilus plays an important role in the biology of pathogenic Neisseria. In these species, Sigma factor RpoD (σ(70)), Integration Host Factor, and repressors RegF and CrgA regulate transcription of pilE, the gene encoding the pilus structural subunit. The Type IV pilus is also a strictly conserved trait in commensal Neisseria. We present evidence that a different mechanism regulates pilE transcription in commensals. Using Neisseria elongata as a model, we show that Sigma factor RpoN (σ(54)), Integration Host Factor, and an activator we name Npa regulate pilE transcription. Taken in context with previous reports, our findings indicate pilE regulation switched from an RpoN- to an RpoD-dependent mechanism as pathogenic Neisseria diverged from commensals during evolution. Our findings have implications for the timing of Tfp expression and Tfp-mediated host cell interactions in these two groups of bacteria. PMID:23899162

  18. Population and Functional Genomics of Neisseria Revealed with Gene-by-Gene Approaches

    PubMed Central

    Harrison, Odile B.

    2016-01-01

    Rapid low-cost whole-genome sequencing (WGS) is revolutionizing microbiology; however, complementary advances in accessible, reproducible, and rapid analysis techniques are required to realize the potential of these data. Here, investigations of the genus Neisseria illustrated the gene-by-gene conceptual approach to the organization and analysis of WGS data. Using the gene and its link to phenotype as a starting point, the BIGSdb database, which powers the PubMLST databases, enables the assembly of large open-access collections of annotated genomes that provide insight into the evolution of the Neisseria, the epidemiology of meningococcal and gonococcal disease, and mechanisms of Neisseria pathogenicity. PMID:27098959

  19. Population and Functional Genomics of Neisseria Revealed with Gene-by-Gene Approaches.

    PubMed

    Maiden, Martin C J; Harrison, Odile B

    2016-08-01

    Rapid low-cost whole-genome sequencing (WGS) is revolutionizing microbiology; however, complementary advances in accessible, reproducible, and rapid analysis techniques are required to realize the potential of these data. Here, investigations of the genus Neisseria illustrated the gene-by-gene conceptual approach to the organization and analysis of WGS data. Using the gene and its link to phenotype as a starting point, the BIGSdb database, which powers the PubMLST databases, enables the assembly of large open-access collections of annotated genomes that provide insight into the evolution of the Neisseria, the epidemiology of meningococcal and gonococcal disease, and mechanisms of Neisseria pathogenicity. PMID:27098959

  20. Molecular characterization of the interaction between sialylated Neisseria gonorrhoeae and factor H.

    PubMed

    Shaughnessy, Jutamas; Ram, Sanjay; Bhattacharjee, Arnab; Pedrosa, Joana; Tran, Connie; Horvath, Gabor; Monks, Brian; Visintin, Alberto; Jokiranta, T Sakari; Rice, Peter A

    2011-06-24

    Human factor H (HufH), a key inhibitor of the alternative pathway of complement, binds to Neisseria gonorrhoeae and constitutes an important mechanism of human-specific complement evasion. The C-terminal domain 20 of HufH contains the binding site for sialylated gonococci. We exploited differences in amino acid sequences between human and non-binding chimpanzee fH domain 20 to create cross-species mutations to define amino acids important for binding to sialylated gonococci. We used fH/Fc fusion constructs that contained contiguous fH domains 18-20 fused to Fc fragments of murine IgG2a. The Fc region was used both as a tag for detection of each fusion molecule on the bacterial surface and as an indicator for complement-dependent killing. Arg-1203 was critical for binding to both porin (Por) B.1A and PorB.1B strains. Modeling of the R1203N human-to-chimpanzee mutation using the crystal structure of HufH19-20 as a template showed a loss of positive charge that protrudes at the C terminus of domain 20. We tested the functional importance of Arg-1203 by incubating sialylated gonococci with normal human serum, in the presence of wild-type HufH18-20/Fc or its R1203A mutant. Gonococci bound and were killed by wild-type HufH18-20/Fc but not by the R1203A mutant. A recombinant fH/Fc molecule that contained chimpanzee domain 20, humanized only at amino acid 1203 (N1203R) also bound to sialylated gonococci and restored killing. These findings provide further insights into the species specificity of gonococcal infections and proof-of-concept of a novel therapeutic approach against gonorrhea, a disease rapidly becoming resistant to conventional antibiotics. PMID:21531728

  1. Geotemporal Analysis of Neisseria meningitidis Clones in the United States: 2000–2005

    PubMed Central

    Wiringa, Ann E.; Shutt, Kathleen A.; Marsh, Jane W.; Cohn, Amanda C.; Messonnier, Nancy E.; Zansky, Shelley M.; Petit, Susan; Farley, Monica M.; Gershman, Ken; Lynfield, Ruth; Reingold, Arthur; Schaffner, William; Thompson, Jamie; Brown, Shawn T.; Lee, Bruce Y.; Harrison, Lee H.

    2013-01-01

    Background The detection of meningococcal outbreaks relies on serogrouping and epidemiologic definitions. Advances in molecular epidemiology have improved the ability to distinguish unique Neisseria meningitidis strains, enabling the classification of isolates into clones. Around 98% of meningococcal cases in the United States are believed to be sporadic. Methods Meningococcal isolates from 9 Active Bacterial Core surveillance sites throughout the United States from 2000 through 2005 were classified according to serogroup, multilocus sequence typing, and outer membrane protein (porA, porB, and fetA) genotyping. Clones were defined as isolates that were indistinguishable according to this characterization. Case data were aggregated to the census tract level and all non-singleton clones were assessed for non-random spatial and temporal clustering using retrospective space-time analyses with a discrete Poisson probability model. Results Among 1,062 geocoded cases with available isolates, 438 unique clones were identified, 78 of which had ≥2 isolates. 702 cases were attributable to non-singleton clones, accounting for 66.0% of all geocoded cases. 32 statistically significant clusters comprised of 107 cases (10.1% of all geocoded cases) were identified. Clusters had the following attributes: included 2 to 11 cases; 1 day to 33 months duration; radius of 0 to 61.7 km; and attack rate of 0.7 to 57.8 cases per 100,000 population. Serogroups represented among the clusters were: B (n = 12 clusters, 45 cases), C (n = 11 clusters, 27 cases), and Y (n = 9 clusters, 35 cases); 20 clusters (62.5%) were caused by serogroups represented in meningococcal vaccines that are commercially available in the United States. Conclusions Around 10% of meningococcal disease cases in the U.S. could be assigned to a geotemporal cluster. Molecular characterization of isolates, combined with geotemporal analysis, is a useful tool for understanding the spread of virulent meningococcal

  2. Fluorescent monoclonal antibody for confirmation of Neisseria gonorrhoeae cultures.

    PubMed Central

    Laughon, B E; Ehret, J M; Tanino, T T; Van der Pol, B; Handsfield, H H; Jones, R B; Judson, F N; Hook, E W

    1987-01-01

    We evaluated a monoclonal fluorescent-antibody (FA) reagent (Neisseria gonorrhoeae Culture Confirmation Test; Syva Co., Palo Alto, Calif.) for confirmation of N. gonorrhoeae isolates obtained from clinics for sexually transmitted diseases in four cities. The FA test was performed in parallel with established confirmation procedures on all organisms growing on 773 primary culture plates of modified Thayer-Martin agar. All N. gonorrhoeae isolates reacted with the FA reagent and produced a bright, easily interpretable fluorescence. The FA test correctly identified 533 N. gonorrhoeae isolates from 474 patients and did not react with 90 N. meningitidis or with 213 non-Neisseria isolates. In one city (Baltimore), Gonochek II (Du Pont Co., Wilmington, Del.) failed to identify four N. gonorrhoeae isolates reactive with the FA reagent and confirmed as N. gonorrhoeae by Phadebact (Pharmacia Inc., Piscataway, N.J.) and acid production from sugars. The FA test was rapid and specific and could be performed directly from primary isolation plates. The test requires 1 h to perform and is applicable to mixed-flora cultures. PMID:3123514

  3. Transcriptional landscape and essential genes of Neisseria gonorrhoeae

    PubMed Central

    Remmele, Christian W.; Xian, Yibo; Albrecht, Marco; Faulstich, Michaela; Fraunholz, Martin; Heinrichs, Elisabeth; Dittrich, Marcus T.; Müller, Tobias; Reinhardt, Richard; Rudel, Thomas

    2014-01-01

    The WHO has recently classified Neisseria gonorrhoeae as a super-bacterium due to the rapid spread of antibiotic resistant derivatives and an overall dramatic increase in infection incidences. Genome sequencing has identified potential genes, however, little is known about the transcriptional organization and the presence of non-coding RNAs in gonococci. We performed RNA sequencing to define the transcriptome and the transcriptional start sites of all gonococcal genes and operons. Numerous new transcripts including 253 potentially non-coding RNAs transcribed from intergenic regions or antisense to coding genes were identified. Strikingly, strong antisense transcription was detected for the phase-variable opa genes coding for a family of adhesins and invasins in pathogenic Neisseria, that may have regulatory functions. Based on the defined transcriptional start sites, promoter motifs were identified. We further generated and sequenced a high density Tn5 transposon library to predict a core of 827 gonococcal essential genes, 133 of which have no known function. Our combined RNA-Seq and Tn-Seq approach establishes a detailed map of gonococcal genes and defines the first core set of essential gonococcal genes. PMID:25143534

  4. Uncovering oral Neisseria tropism and persistence using metagenomic sequencing.

    PubMed

    Donati, Claudio; Zolfo, Moreno; Albanese, Davide; Tin Truong, Duy; Asnicar, Francesco; Iebba, Valerio; Cavalieri, Duccio; Jousson, Olivier; De Filippo, Carlotta; Huttenhower, Curtis; Segata, Nicola

    2016-01-01

    Microbial epidemiology and population genomics have previously been carried out near-exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but it is still challenging to achieve strain-level characterization of microorganisms from culture-independent data with sufficient resolution for epidemiological modelling. Here, we have developed multiple complementary approaches that can be combined to profile and track individual microbial strains. To specifically profile highly recombinant neisseriae from oral metagenomes, we integrated four metagenomic analysis techniques: single nucleotide polymorphisms in the clade's core genome, DNA uptake sequence signatures, metagenomic multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The buccal mucosa appeared as an intermediate ecological niche between the plaque and the tongue. The resulting approaches to metagenomic strain profiling are generalizable and can be extended to other organisms and microbiomes across environments. PMID:27572971

  5. Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model.

    PubMed

    Lewis, Lisa A; Vu, David M; Granoff, Dan M; Ram, Sanjay

    2014-06-01

    Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats. PMID:24686052

  6. Inhibition of the Alternative Pathway of Nonhuman Infant Complement by Porin B2 Contributes to Virulence of Neisseria meningitidis in the Infant Rat Model

    PubMed Central

    Vu, David M.; Granoff, Dan M.; Ram, Sanjay

    2014-01-01

    Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats. PMID:24686052

  7. Neisseria meningitidis C114 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences.

    PubMed Central

    Perry, A C; Nicolson, I J; Saunders, J R

    1988-01-01

    Neisseria meningitidis pili can be classified into two groups: those (referred to here as class I pili) which are similar to gonococcal pili in that they react with monoclonal antibody SM1 and those that are dissimilar to gonococcal pili in that they lack the SM1-reactive epitope (class II pili). Pilus expression in N. meningitidis C114, a class II pilus-producing isolate, was investigated. The sole genomic segment of this strain that bore extensive homology with the pilE locus of Neisseria gonorrhoeae P9 was cloned in Escherichia coli. The production of the pilus structural subunit (pilin) from this meningococcal segment could not be detected by immunological and coupled in vitro transcription-translation analyses. Nucleotide sequence analysis revealed the presence in the C114 genome of two variant, tandemly arranged pilin genes (copies 1 and 2). Copies 1 and 2 are partial pilin genes that constitute part of a silent meningococcal pilin gene (pil gene) region, designated pilS. Both copies are truncated, corresponding to variable domains of the gonococcal pilE gene but lacking homologous N-terminal coding sequences. Located within sequences surrounding copies 1 and 2 were several classes of repeated elements that are associated with pil loci in N. gonorrhoeae. Images PMID:2895102

  8. Fulminant Endophthalmitis in a Child Caused by Neisseria meningitidis Serogroup C Detected by Specific DNA.

    PubMed

    Kallinich, Tilmann; von Bernuth, Horst; Kuhns, Martin; Elias, Johannes; Bertelmann, Eckart; Pleyer, Uwe

    2016-06-01

    This case report describes a local Neisseria meningitidis eye infection with a long protracted course in a seemingly healthy previously vaccinated child. Bacterial infection was detected by polymerase chain reaction techniques. PMID:27000867

  9. Electron capture gas chromatographic detection of acethylmethylcarbinol produced by neisseria gonorrhoeae.

    PubMed

    Morse, C D; Brooks, J B; Kellogg, D S

    1976-01-01

    Acetylmethylcarbinol (acetoin) production by Neisseria gonorrhoeae and other Neisseria species was established by gas-liquid chromatography and by mass spectrometric data. Sixty-nine isolates of Neisseria were tested by incubating them in a chemically defined fluid medium. The medium was extracted with organic solvents and derivatized with heptafluorobutryic anhydride for gas chromatography and mass spectrometry. Cultures of 58 of the same strains were tested with the conventional Voges-Proskauer reagents, and results were compared with those of gas-liquid chromatography. When glucose was used as an energy source, N. gonorrhoeae, some N. meningitidis, and N. lactamica produced enough acetoin in 16 h to be detectable by either method, whereas other Neisseria species produce amounts detectable only by gas chromatography. The conventional acetylmethylcarbinol test with the chemically defined medium and maltose as an energy source might be used to develop methods that would differentiate certain members of the genus, including the pathogenic species. PMID:815266

  10. Neisseria elongata subsp elongata infective endocarditis following endurance exercise.

    PubMed

    Jenkins, Joanne May; Fife, Amanda; Baghai, Max; Dworakowski, Rafal

    2015-01-01

    A 31-year-old Argentinian woman presented with a 3-week history of fever, night sweats, myalgia and lethargy following a work trip to Uganda where she ran a marathon. Malarial screens were negative but C reactive protein, erythrocyte sedimentation rate and neutrophil count were raised and she was anaemic. A new pansystolic murmur was heard over the mitral valve and the transthoracic echocardiogram showed a large vegetation (>1 cm) with at least moderate mitral regurgitation. Blood cultures grew Neisseria elongata, subsp elongata treated initially with ceftriaxone then oral ciprofloxacin to complete 4 weeks of treatment. CT scan revealed a wedge-shaped area of low attenuation in the spleen in keeping with a splenic infarct. Seven days postadmission, the patient underwent a successful mitral valve repair. Recovery was complicated by a likely embolic infarct in the right frontal lobe, but the patient was discharged 12 days postoperative with no neurological sequelae. PMID:26655669

  11. Pili-taxis: Clustering of Neisseria gonorrhoeae bacteria

    NASA Astrophysics Data System (ADS)

    Taktikos, Johannes; Zaburdaev, Vasily; Biais, Nicolas; Stark, Holger; Weitz, David A.

    2012-02-01

    The first step of colonization of Neisseria gonorrhoeae bacteria, the etiological agent of gonorrhea, is the attachment to human epithelial cells. The attachment of N. gonorrhoeae bacteria to surfaces or other cells is primarily mediated by filamentous appendages, called type IV pili (Tfp). Cycles of elongation and retraction of Tfp are responsible for a common bacterial motility called twitching motility which allows the bacteria to crawl over surfaces. Experimentally, N. gonorrhoeae cells initially dispersed over a surface agglomerate into round microcolonies within hours. It is so far not known whether this clustering is driven entirely by the Tfp dynamics or if chemotactic interactions are needed. Thus, we investigate whether the agglomeration may stem solely from the pili-mediated attraction between cells. By developing a statistical model for pili-taxis, we try to explain the experimental measurements of the time evolution of the mean cluster size, number of clusters, and area fraction covered by the cells.

  12. Neisseria gonorrhoeae and fosfomycin: Past, present and future.

    PubMed

    Tesh, Lauren D; Shaeer, Kristy M; Cho, Jonathan C; Estrada, Sandy J; Huang, Vanthida; Bland, Christopher M; DiMondi, V Paul; Potter, Alicia N; Hussein, Gamal; Bookstaver, P Brandon

    2015-09-01

    Drug-resistant Neisseria gonorrhoeae has become a global health concern that requires immediate attention. Due to increasing resistance to cephalosporins, pursuing novel alternatives for treating N. gonorrhoeae infections is paramount. Whilst new drug development is often cumbersome, reviving antiquated antibiotic agents for treatment of modern infections has become prevalent in clinical practice. Fosfomycin exhibits bactericidal activity through a unique mechanism of action, and a variety of organisms including N. gonorrhoeae are susceptible. In vitro studies have demonstrated that fosfomycin can retain activity against ceftriaxone-resistant N. gonorrhoeae; however, it remains unclear whether there is synergy between fosfomycin and other antibiotics. Clinical investigations evaluating fosfomycin for the treatment of N. gonorrhoeae infections are confounded by methodological limitations, none the less they do provide some perspective on its potential role in therapy. Future studies are needed to establish a safe, convenient and effective fosfomycin regimen for treating N. gonorrhoeae infections. PMID:26145201

  13. Neisseria gonorrhoeae and humans perform an evolutionary LINE dance.

    PubMed

    Anderson, Mark T; Seifert, H Steven

    2011-05-01

    Horizontal gene transfer is an important mechanism for generating genetic diversity. As the number of sequenced genomes continues to increase, so do the examples of horizontal genetic exchange between both related and divergent organisms. Here we discuss the recent finding that certain strains of the human pathogen Neisseria gonorrhoeae have incorporated a small fragment of human DNA sequence into their genomes. The horizontally acquired sequence exhibits 98-100% nucleotide identity to a 685 bp portion of the highly repetitive retrotransposable element L1 and its presence in the gonococcal genome has been confirmed by multiple molecular techniques. The possibility of similar L1 horizontal gene transfer events having occurred in other bacteria based on genomic sequence evidence is explored. Potential mechanisms of how N. gonorrhoeae was able to acquire and maintain this human sequence are also discussed in addition to the evolutionary implications of such an event. PMID:22016852

  14. [Antimicrobial susceptibility of Neisseria gonorrhoeae strains determined by disk diffusion].

    PubMed

    Llanes Caballero, R; Acosta Giraldo, J C; Sosa Puente, J; Guzmán Hernández, D; Gutiérrez González, O; Llop Hernández, A

    1999-01-01

    The Gonoccocus Laboratory of "Pedro Kourí" Tropical Medicine Institute carried out a study of in vitro susceptibility of Neisseria gonorrhoeae to penicillin, tetracycline, cefuroxime ceftriaxone, cefotaxine and ciprofoxacin by means of a disk diffusion method with the culture medium agar base GC plus supplement. In the first phase, the method was standardized and the reference N. gonorrhoeae ATCC 49226 strain was used whereas in the second phase, 50 gonococcal strains isolated in 8 provinces during 1995 and 1996 were examined. The results of such standardization confirmed that the antimicrobial susceptibility values were within the allowable limits. 52 and 34% of strains were resistant to penicillin and tetracycline respectively and all of them showed susceptibility to the rest of evaluated antimicrobial drugs. We recommend the use of the disk diffusion method for surveillance of gonococci resistance to these drugs in our country. PMID:10887570

  15. In Vitro Antibiotic Susceptibility of Neisseria gonorrhoeae in Jakarta, Indonesia

    PubMed Central

    Lesmana, Murad; Lebron, Carlos I.; Taslim, Djufri; Tjaniadi, Periska; Subekti, Decy; Wasfy, Momtaz O.; Campbell, James R.; Oyofo, Buhari A.

    2001-01-01

    Antibiotic susceptibilities were determined for 122 Neisseria gonorrheae isolates obtained from 400 sex workers in Jakarta, Indonesia, and susceptibilities to ciprofloxacin, cefuroxime, cefoxitin, cefotaxime, ceftriaxone, chloramphenicol, and spectinomycin were found. All isolates were resistant to tetracycline. A number of the isolates demonstrated decreased susceptibilities to erythromycin (MIC ≥ 1.0 μg/ml), thiamphenicol (MIC ≥ 1.0 μg/ml), kanamycin (MIC ≥ 16.0 μg/ml), penicillin (MIC ≥ 2.0 μg/ml), gentamicin (MIC ≥ 16.0 μg/ml), and norfloxacin (MIC = 0.5 μg/ml). These data showed that certain antibiotics previously used in the treatment of gonorrhea are no longer effective. PMID:11120999

  16. Experimental Methods for Studying the BAM Complex in Neisseria meningitidis.

    PubMed

    Bos, Martine P; Boxtel, Ria Tommassen-van; Tommassen, Jan

    2015-01-01

    Neisseria meningitidis is a human pathogen. It is intensively studied for host-pathogen interactions and vaccine development. However, its favorable growth properties, genetic accessibility, and small genome size also make it an excellent model organism for studying fundamental biological processes, such as outer membrane biogenesis. Indeed, the first component of the assembly machinery for outer-membrane proteins, the BAM complex, was identified in N. meningitidis. Here, we describe protocols to inactivate chromosomal genes and to express genes from a well-controlled promoter on a plasmid in N. meningitidis. Together, these protocols can be used, for example, to deplete cells from essential components of the BAM complex. We also describe a simple, gel-based assay to assess the proper functioning of the BAM complex in vivo. PMID:26427674

  17. Pilin gene variation in Neisseria gonorrhoeae: reassessing the old paradigms

    PubMed Central

    Hill, Stuart A.; Davies, John K.

    2009-01-01

    Neisseria gonorrhoeae displays considerable potential for antigenic variation as shown in human experimental studies. Various surface antigens can change either by antigenic variation using RecA-dependent recombination schemes (e.g., PilE antigenic variation), or, alternatively, through phase variation (on/off switching) in a RecA-independent fashion (e.g., Opa and LOS phase variation). PilE antigenic variation has been well documented over the years. However, with the availability of the Nesseria gonorrhoeae FA1090 genome sequence, considerable genetic advances have recently been made regarding the mechanistic considerations of the gene conversion event leading to an altered PilE protein. This review will compare the various models that have been presented and will highlight potential mechanistic problems that may constrain any genetic model for pilE gene variation. PMID:19396954

  18. Possible Mechanism of Decreased Susceptibility of Neisseria gonorrhoeae to Penicillin

    PubMed Central

    Rodriguez, William; Saz, Arthur K.

    1975-01-01

    By use of 14C-labeled benzyl penicillin, it has been established that β-lactamases and/or acylases play no role in the resistance of Neisseria gonorrhoeae to penicillin. It has been found, however, that very susceptible strains of the organisms (minimal inhibitory concentration, 0.008 μg/ml) bind 10 to 15 times as much penicillin as do moderately to highly resistant strains of the gonoccoccus (minimal inhibitory concentration, 0.125 to 2.0 μg/ml). It is postulated that this degree of change in binding components of the whole cell and whole cytoplasmic membrane is sufficient to account for the decreased susceptibility of the organism to penicillin. PMID:808158

  19. Neisseria meningitidis serogroup B bivalent factor H binding protein vaccine.

    PubMed

    Brendish, Nathan James; Read, Robert Charles

    2015-04-01

    With the successful development of meningococcal vaccines against other serogroups, disease caused by Neisseria meningitidis serogroup B now accounts for a disproportionate frequency compared with other serogroups, particularly in the US and Europe. Infants and adolescents bear the highest incidence of disease, which typically manifests as meningitis and septicemia. This vaccine profile article examines a bivalent factor H binding protein (fHbp; also known as LP2086) vaccine that has now been approved by the US FDA for use in 10- to 25-year olds. The manufacturer has shelved plans for further investigation of its use in infants because of high rates of fever in Phase I and II trials in that age group. PMID:25703792

  20. Transformation-deficient mutants of piliated Neisseria gonorrhoeae.

    PubMed Central

    Biswas, G D; Lacks, S A; Sparling, P F

    1989-01-01

    Seven transformation-deficient mutants of piliated, competent Neisseria gonorrhoeae were isolated by screening them for their inability to be transformed by chromosomal DNA after chemical mutagenesis. Three distinct classes of mutants were obtained, each of which was piliated, as determined by electron microscopy. One class exhibited abnormal colony morphology and was unable to take up DNA into a DNase-resistant state. A second class was morphologically normal and took up DNA into a DNase-resistant state normally, but was deficient in both chromosomal and plasmid transformation; mutations in these mutants may affect entry of DNA into the cell proper. A third class was similar to the second but was fully competent for plasmid transformation, suggesting that there was a defect in a late stage of chromosomal transformation. Images PMID:2563367

  1. Neisseria meningitidis: serotyping and subtyping by whole cell ELISA.

    PubMed

    Prakash, K; Lakshmy, A; Malhotra, V L

    1993-09-01

    Twenty strains of Neisseria meningitidis isolated from clinically diagnosed cases of meningococcal disease were subjected to serogrouping, employing slide agglutination followed by serotyping and serosubtyping by whole cell ELISA using monoclonal typing antisera. All isolates were from sporadic cases of meningitis during a period of two years from various hospitals in Delhi. All 20 isolates were grouped as serogroup A and typed as serotype 4, except one strain which was untypable. On serosubtyping the isolates were found to belong to P1.9 (7 strains) followed by P1.1 (5), P1.9 (2), P1.16,1 (2), P1.6,10 (2), P1.10,7,1 (1) and non-subtypable (1). PMID:8241833

  2. Neisseria sicca meningitis following intracranial hemorrhage and ventriculostomy tube placement.

    PubMed

    Carter, J Elliot; Mizell, Kelly N; Evans, Tara N

    2007-12-01

    A normal component of the flora of the oropharynx, Neisseria sicca was first isolated in 1906 and has since been reported as a rare cause of various human infections including endocarditis, pneumonia, sinusitis, sepsis, and urethritis. We report the case of a 44-year-old African-American female with a history of hypertension who presented with complaints of right frontal headache, nausea, photophobia, and vomiting. A computed tomography scan of the patient's brain showed a large subarachnoid hemorrhage, and an arteriogram confirmed a large posterior communicating artery aneurysm. A ventriculostomy tube was placed, and the patient subsequently developed an elevated temperature and elevated white blood cell count. Cerebrospinal fluid studies showed elevated protein and glucose levels and cultures positive for N. sicca. This is only the seventh reported case of culture-proven meningitis related to N. sicca, and the first reported case associated with intracranial hemorrhage and ventriculostomy tube placement. PMID:17904282

  3. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes

    PubMed Central

    Baart, Gino JE; Zomer, Bert; de Haan, Alex; van der Pol, Leo A; Beuvery, E Coen; Tramper, Johannes; Martens, Dirk E

    2007-01-01

    Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature. PMID:17617894

  4. NadA Diversity and Carriage in Neisseria meningitidis

    PubMed Central

    Comanducci, Maurizio; Bambini, Stefania; Caugant, Dominique A.; Mora, Marirosa; Brunelli, Brunella; Capecchi, Barbara; Ciucchi, Laura; Rappuoli, Rino; Pizza, Mariagrazia

    2004-01-01

    NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal species Neisseria lactamica was also found not to have the nadA gene. Eighteen of the carrier strains belonged to the ET-5 and ET-37 hypervirulent clusters, indicating that only the 5.1% of the genuine carrier population actually harbored nadA (7 of 136 strains). Five of the seven strains harbored a novel allele of the nadA gene that was designated nadA4. The NadA4 protein was present on the bacterial surface as heat-stable high-molecular-weight oligomers. Antibodies against the recombinant NadA4 protein were bactericidal against homologous strains, whereas the activity against other NadA alleles was weak. In conclusion, the nadA gene segregates differently in the population of strains isolated from healthy individuals and in the population of strains isolated from patients. The presence of NadA can therefore be used as a tool to study the dynamics of meningococcal infections and understand why this bacterium, which is mostly a commensal, can become a severe pathogen. PMID:15213166

  5. Functional significance of factor H binding to Neisseria meningitidis.

    PubMed

    Schneider, Muriel C; Exley, Rachel M; Chan, Hannah; Feavers, Ian; Kang, Yu-Hoi; Sim, Robert B; Tang, Christoph M

    2006-06-15

    Neisseria meningitidis is an important cause of septicemia and meningitis. To cause disease, the bacterium must successfully survive in the bloodstream where it has to avoid being killed by host innate immune mechanisms, particularly the complement system. A number of pathogenic microbes bind factor H (fH), the negative regulator of the alternative pathway of complement activation, to promote their survival in vivo. In this study, we show that N. meningitidis binds fH to its surface. Binding to serogroups A, B, and C N. meningitidis strains was detected by FACS and Far Western blot analysis, and occurred in the absence of other serum factors such as C3b. Unlike Neisseria gonorrhoeae, binding of fH to N. meningitidis was independent of sialic acid on the bacterium, either as a component of its LPS or its capsule. Characterization of the major fH binding partner demonstrated that it is a 33-kDa protein; examination of insertion mutants showed that porins A and B, outer membrane porins expressed by N. meningitidis, do not contribute significantly to fH binding. We examined the physiological consequences of fH bound to the bacterial surface. We found that fH retains its activity as a cofactor of factor I when bound to the bacterium and contributes to the ability of N. meningitidis to avoid complement-mediated killing in the presence of human serum. Therefore, the recruitment of fH provides another mechanism by which this important human pathogen evades host innate immunity. PMID:16751403

  6. NadA diversity and carriage in Neisseria meningitidis.

    PubMed

    Comanducci, Maurizio; Bambini, Stefania; Caugant, Dominique A; Mora, Marirosa; Brunelli, Brunella; Capecchi, Barbara; Ciucchi, Laura; Rappuoli, Rino; Pizza, Mariagrazia

    2004-07-01

    NadA is a novel vaccine candidate recently identified in Neisseria meningitidis and involved in adhesion to host tissues. The nadA gene has been found in approximately 50% of the strains isolated from patients and in three of the four hypervirulent lineages of non-serogroup A strains. Here we investigated the presence of the nadA gene in 154 meningococcal strains isolated from healthy people (carrier strains). Only 25 (16.2%) of the 154 carrier isolates harbored the nadA gene. The commensal species Neisseria lactamica was also found not to have the nadA gene. Eighteen of the carrier strains belonged to the ET-5 and ET-37 hypervirulent clusters, indicating that only the 5.1% of the genuine carrier population actually harbored nadA (7 of 136 strains). Five of the seven strains harbored a novel allele of the nadA gene that was designated nadA4. The NadA4 protein was present on the bacterial surface as heat-stable high-molecular-weight oligomers. Antibodies against the recombinant NadA4 protein were bactericidal against homologous strains, whereas the activity against other NadA alleles was weak. In conclusion, the nadA gene segregates differently in the population of strains isolated from healthy individuals and in the population of strains isolated from patients. The presence of NadA can therefore be used as a tool to study the dynamics of meningococcal infections and understand why this bacterium, which is mostly a commensal, can become a severe pathogen. PMID:15213166

  7. Alterations in Dihydropteroate Synthetase in Cell-Free Extracts of Sulfanilamide-Resistant Neisseria meningitidis and Neisseria gonorrhoeae

    PubMed Central

    Ho, Richard I.; Corman, Leonard; Morse, Stephen A.; Artenstein, Malcolm S.

    1974-01-01

    Extracts from Neisseria meningitidis and N. gonorrhoeae with varying susceptibility to sulfanilamide have been investigated for dihydropteroate synthetase activity. Sulfanilamide was a competitive inhibitor of dihydropteroate synthetase with respect to p-aminobenzoate in extracts from both species. Though the Km for p-aminobenzoate was unaffected, the Ki for sulfanilamide increased and the Vmax decreased as the strains' resistance to sulfanilamide increased. Temperature studies have revealed differences in the dihydropteroate synthetase from N. meningitidis and N. gonorrhoeae. A direct relationship was observed between the minimal inhibitory concentration of sulfanilamide determined in vitro and the ratio of Ki/Km. This ratio may be a molecular explanation of sulfanilamide resistance for both N. meningitidis and N. gonorrhoeae. PMID:15825393

  8. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b.

    PubMed

    Stevenson, P; Williams, P; Griffiths, E

    1992-06-01

    There is now considerable evidence to show that in the Neisseria and Haemophilus species, membrane receptors specific for either transferrin or lactoferrin are involved in the acquisition of iron from these glycoproteins. In Neisseria meningitidis, the transferrin receptor appears to consist of two proteins, one of which (TBP 1) has an M(r) of 95,000 and the other of which (TBP 2) has an M(r) ranging from 68,000 to 85,000, depending on the strain; TBP 2 binds transferrin after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting, but TBP 1 does not do so. The relative contributions of these two proteins to the binding reaction observed with intact cells and to iron uptake are presently unknown. However, they are being considered as potential components of a group B meningococcal vaccine. Analogous higher- and lower-molecular-weight proteins associated with transferrin binding have been found in N. gonorrhoeae and Haemophilus influenzae. Previous work with polyclonal antibodies raised in mice with whole cells of iron-restricted N. meningitidis showed that the meningococcal TBP 2 exhibits considerable antigenic heterogeneity. Here, we report that antiserum against purified TBP 2 from one strain of N. meningitidis cross-reacts on immunoblotting with the TBP 2 of all meningococcal isolates examined, as well as with the TBP 2 of N. gonorrhoeae. This antiserum also cross-reacted with the TBP 2 of several strains of H. influenzae type b, thus showing the presence of common antigenic domains among these functionally equivalent proteins in different pathogens; no cross-reaction was detected with a purified sample of the human transferrin receptor. PMID:1587606

  9. Impact of Reducing Complement Inhibitor Binding on the Immunogenicity of Native Neisseria meningitidis Outer Membrane Vesicles

    PubMed Central

    Daniels-Treffandier, Helene; de Nie, Karlijn; Marsay, Leanne; Dold, Christina; Sadarangani, Manish; Reyes-Sandoval, Arturo; Langford, Paul R.; Wyllie, David; Hill, Fergal; Pollard, Andrew J.; Rollier, Christine S.

    2016-01-01

    Neisseria meningitidis recruits host human complement inhibitors to its surface to down-regulate complement activation and enhance survival in blood. We have investigated whether such complement inhibitor binding occurs after vaccination with native outer membrane vesicles (nOMVs), and limits immunogenicity of such vaccines. To this end, nOMVs reactogenic lipopolysaccharide was detoxified by deletion of the lpxl1 gene (nOMVlpxl1). nOMVs unable to bind human complement factor H (hfH) were generated by additional deletions of the genes encoding factor H binding protein (fHbp) and neisserial surface protein A (NspA) (nOMVdis). Antibody responses elicited in mice with nOMVdis were compared to those elicited with nOMVlpxl1 in the presence of hfH. Results demonstrate that the administration of human fH to mice immunized with fHbp containing OMVlpxl1 decreased immunogenicity against fHbp (but not against the OMV as a whole). The majority of the OMV-induced bactericidal immune response (OMVlpxl1 or OMVdis) was versus PorA. Despite a considerable reduction of hfH binding to nOMVdis, and the absence of the vaccine antigen fHbp, immunogenicity in mice was not different from nOMVlpxl1, in the absence or presence of hfH (serum bactericidal titers of 1:64 vs 1:128 after one dose in the nOMVdis and nOMVlpxl1–immunized groups respectively). Therefore, partial inhibition of fH binding did not enhance immunity in this model. PMID:26871712

  10. Impact of Reducing Complement Inhibitor Binding on the Immunogenicity of Native Neisseria meningitidis Outer Membrane Vesicles.

    PubMed

    Daniels-Treffandier, Helene; de Nie, Karlijn; Marsay, Leanne; Dold, Christina; Sadarangani, Manish; Reyes-Sandoval, Arturo; Langford, Paul R; Wyllie, David; Hill, Fergal; Pollard, Andrew J; Rollier, Christine S

    2016-01-01

    Neisseria meningitidis recruits host human complement inhibitors to its surface to down-regulate complement activation and enhance survival in blood. We have investigated whether such complement inhibitor binding occurs after vaccination with native outer membrane vesicles (nOMVs), and limits immunogenicity of such vaccines. To this end, nOMVs reactogenic lipopolysaccharide was detoxified by deletion of the lpxl1 gene (nOMVlpxl1). nOMVs unable to bind human complement factor H (hfH) were generated by additional deletions of the genes encoding factor H binding protein (fHbp) and neisserial surface protein A (NspA) (nOMVdis). Antibody responses elicited in mice with nOMVdis were compared to those elicited with nOMVlpxl1 in the presence of hfH. Results demonstrate that the administration of human fH to mice immunized with fHbp containing OMVlpxl1 decreased immunogenicity against fHbp (but not against the OMV as a whole). The majority of the OMV-induced bactericidal immune response (OMVlpxl1 or OMVdis) was versus PorA. Despite a considerable reduction of hfH binding to nOMVdis, and the absence of the vaccine antigen fHbp, immunogenicity in mice was not different from nOMVlpxl1, in the absence or presence of hfH (serum bactericidal titers of 1:64 vs 1:128 after one dose in the nOMVdis and nOMVlpxl1-immunized groups respectively). Therefore, partial inhibition of fH binding did not enhance immunity in this model. PMID:26871712

  11. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria.

    PubMed

    Källström, H; Liszewski, M K; Atkinson, J P; Jonsson, A B

    1997-08-01

    Pili of Neisseria gonorrhoeae and Neisseria meningitidis mediate binding of the bacteria to human cell-surface receptors. We found that purified pili bound to a 55- to 60-kDa doublet band on SDS-PAGE of separated human epithelial cell extracts. This is a migration pattern typical of membrane cofactor protein (MCP or CD46). MCP is a widely distributed human complement regulatory protein. Attachment of the bacteria to epithelial cells was blocked by polyclonal and monoclonal antibodies directed against MCP, suggesting that this complement regulator is a receptor for piliated Neisseria. We proved this hypothesis by demonstrating that piliated, but not non-piliated, gonococci bound to CHO cells transfected with human MCP-cDNA. We also demonstrated a direct interaction between purified recombinant MCP and piliated Neisseria. Finally, recombinant MCP protein produced in E. coli inhibited attachment of the bacteria to target cells. Taken together, our data show that MCP is a human cell-surface receptor for piliated pathogenic Neisseria. PMID:9379894

  12. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes

    PubMed Central

    Criss, Alison K.; Seifert, H. Steven

    2008-01-01

    Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa− and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat killed. Liquid-grown Opa- Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signaling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrheal disease. PMID:18684112

  13. NadA, a Novel Vaccine Candidate of Neisseria meningitidis

    PubMed Central

    Comanducci, Maurizio; Bambini, Stefania; Brunelli, Brunella; Adu-Bobie, Jeannette; Aricò, Beatrice; Capecchi, Barbara; Giuliani, Marzia Monica; Masignani, Vega; Santini, Laura; Savino, Silvana; Granoff, Dan M.; Caugant, Dominique A.; Pizza, Mariagrazia; Rappuoli, Rino; Mora, Marirosa

    2002-01-01

    Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages. PMID:12045242

  14. Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population.

    PubMed Central

    Caugant, D A; Høiby, E A; Magnus, P; Scheel, O; Hoel, T; Bjune, G; Wedege, E; Eng, J; Frøholm, L O

    1994-01-01

    To estimate the extent of meningococcal carriage in the Norwegian population and to investigate the relationship of several characteristics of the population to the carrier state, 1,500 individuals living in rural and small-town areas near Oslo were selected at random from the Norwegian National Population Registry. These persons were asked to complete a questionnaire and to volunteer for a bacteriological tonsillopharyngeal swab sampling. Sixty-three percent of the selected persons participated in the survey. Ninety-one (9.6%) of the volunteers harbored Neisseria meningitidis. The isolates were serogrouped, serotyped, tested for antibiotic resistance, and analyzed by multilocus enzyme electrophoresis. Eight (8.8%) of the 91 isolates represented clones of the two clone complexes that have been responsible for most of the systemic meningococal disease in Norway in the 1980s. Age between 15 and 24, male sex, and active and passive smoking were found to be independently associated with meningococcal carriage in logistic regression analyses. Working outside the home and having an occupation in transportation or industry also increased the risk for meningococcal carriage in individuals older than 17, when corrections for gender and smoking were made. Assuming that our sample is representative of the Norwegian population, we estimated that about 40,000 individuals in Norway are asymptomatic carriers of isolates with epidemic potential. Thus, carriage eradication among close contacts of persons with systemic disease is unlikely to have a significant impact on the overall epidemiological situation. PMID:8150942

  15. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    PubMed

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment. PMID:26665738

  16. Functional analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae.

    PubMed

    Pachulec, Emilia; Siewering, Katja; Bender, Tobias; Heller, Eva-Maria; Salgado-Pabon, Wilmara; Schmoller, Shelly K; Woodhams, Katelynn L; Dillard, Joseph P; van der Does, Chris

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that is responsible for the sexually-transmitted disease gonorrhea. N. gonorrhoeae encodes a T4SS within the Gonococcal Genetic Island (GGI), which secretes ssDNA directly into the external milieu. Type IV secretion systems (T4SSs) play a role in horizontal gene transfer and delivery of effector molecules into target cells. We demonstrate that GGI-like T4SSs are present in other β-proteobacteria, as well as in α- and γ-proteobacteria. Sequence comparison of GGI-like T4SSs reveals that the GGI-like T4SSs form a highly conserved unit that can be found located both on chromosomes and on plasmids. To better understand the mechanism of DNA secretion by N. gonorrhoeae, we performed mutagenesis of all genes encoded within the GGI, and studied the effects of these mutations on DNA secretion. We show that genes required for DNA secretion are encoded within the yaa-atlA and parA-parB regions, while genes encoded in the yfeB-exp1 region could be deleted without any effect on DNA secretion. Genes essential for DNA secretion are encoded within at least four different operons. PMID:25340397

  17. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid.

    PubMed

    Tobiason, Deborah M; Seifert, H Steven

    2006-06-01

    We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts. PMID:16719561

  18. NadA, a novel vaccine candidate of Neisseria meningitidis.

    PubMed

    Comanducci, Maurizio; Bambini, Stefania; Brunelli, Brunella; Adu-Bobie, Jeannette; Aricò, Beatrice; Capecchi, Barbara; Giuliani, Marzia Monica; Masignani, Vega; Santini, Laura; Savino, Silvana; Granoff, Dan M; Caugant, Dominique A; Pizza, Mariagrazia; Rappuoli, Rino; Mora, Marirosa

    2002-06-01

    Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages. PMID:12045242

  19. Radioimmunoassay for detection of antibodies to Neisseria gonorrhoeae.

    PubMed Central

    Usategui, M; Savard, E V; Mondabaugh, S M; Keigher, N L

    1982-01-01

    A radioimmunoassay has been developed and evaluated for the serological diagnosis of gonorrhea. Purified gonococcal antigen was obtained from a culture of Neisseria gonorrhoeae (B370) and labeled with 125I for use in a double-antibody test system. The test was evaluated in populations segregated by sex and risk. The specificity of the assay in females was 90.2% (55/61) in low risk, 82.2% (2,245/ 2,732) in medium risk, and 54.1% (335/619) in high risk. The sensitivity was 69% (20/29) in medium risk and 78.3% (288/367) in high risk. In males, test specificity was 92.3% (24/26) in low risk and 50% (48/96) in high risk. The sensitivity was 70.8% (143/202) in the high-risk group. The data in this study indicate that this assay should not be employed for screening of either high- or medium-risk populations. PMID:6809784

  20. Porin protein of Neisseria gonorrhoeae: cloning and gene structure.

    PubMed Central

    Gotschlich, E C; Seiff, M E; Blake, M S; Koomey, M

    1987-01-01

    The outer membrane porin molecule of Neisseria gonorrhoeae is known as protein I (PI). Among different strains of gonococci there is variability of PI, and two main classes, PIA and PIB, have been recognized. A lambda gt11 bank of gonococcal DNA was screened using monoclonal antibodies directed to a PIB-type porin molecule of N. gonorrhoeae, and three immunoreactive clones were isolated. DNA sequence analysis indicated that each contained only portions of the PI structural gene, but that together they contained the complete gene, and its structure was determined. The DNA sequence predicts a protein of 348 amino acids with a typical 19 amino acid signal peptide. The PI protein resembles Escherichia coli porins in size, lack of long hydrophobic sequences, and absence of cysteine residues. Sequence homologies between PI and the E. coli porins were found, particularly in the 100 N-terminal and the 110 C-terminal amino acids. In addition to the coding sequence of PI, the complementary strand contains a large open reading frame. At the 3' end of the PI gene, immediately following an inverted repeat (probably the transcription terminator), the clone contains an unusual sequence consisting of 31 perfect repeats of the heptamer CTGTTTT. Hybridization analysis suggests that there is a single structural gene for PI and that it is homologous to the gene found in a PIA-bearing strain of gonococcus. Images PMID:2825179

  1. Transport and Catabolism of Carbohydrates by Neisseria meningitidis.

    PubMed

    Derkaoui, Meriem; Antunes, Ana; Nait Abdallah, Jamila; Poncet, Sandrine; Mazé, Alain; Ma Pham, Que Mai; Mokhtari, Abdelhamid; Deghmane, Ala-Eddine; Joyet, Philippe; Taha, Muhamed-Kheir; Deutscher, Josef

    2016-01-01

    We identified the genes encoding the proteins for the transport of glucose and maltose in Neisseria meningitidis strain 2C4-3. A mutant deleted for NMV_1892(glcP) no longer grew on glucose and deletion of NMV_0424(malY) prevented the utilization of maltose. We also purified and characterized glucokinase and α-phosphoglucomutase, which catalyze early catabolic steps of the two carbohydrates. N. meningitidis catabolizes the two carbohydrates either via the Entner-Doudoroff (ED) pathway or the pentose phosphate pathway, thereby forming glyceraldehyde-3-P and either pyruvate or fructose-6-P, respectively. We purified and characterized several key enzymes of the two pathways. The genes required for the transformation of glucose into gluconate-6-P and its further catabolism via the ED pathway are organized in two adjacent operons. N. meningitidis also contains genes encoding proteins which exhibit similarity to the gluconate transporter (NMV_2230) and gluconate kinase (NMV_2231) of Enterobacteriaceae and Firmicutes. However, gluconate might not be the real substrate of NMV_2230 because N. meningitidis was not able to grow on gluconate as the sole carbon source. Surprisingly, deletion of NMV_2230 stimulated growth in minimal medium in the presence and absence of glucose and drastically slowed the clearance of N. meningitidis cells from transgenic mice after intraperitoneal challenge. PMID:27454890

  2. Preservation of Neisseria gonorrhoeae at -20 degrees C.

    PubMed Central

    Harbec, P S; Turcotte, P

    1996-01-01

    To explore the feasibility of preserving Neisseria gonorrhoeae at -20 degrees C, we studied its viability quantitatively and qualitatively for 12 and 18 months, respectively, in the following media: a gelatin-based medium used mainly to prepare dried gelatin discs (S. Yamai, Y. Obara, T. Nikkawa, Y Shimoda, and Y. Miyamoto, Br. J. Vener. Dis. 55:90-93, 1979), a simplified version (LSPQ preservation medium), and Trypticase soy broth with 10% (vol/vol) glycerol, a medium commonly used for preservation at -70 degrees C. The latter was studied for 4 months only. Four reference strains and two clinical isolates of N. gonorrhoeae were used. The storage temperature was rigorously preadjusted and monitored at -20 +/- 1 degree C during the entire project. After 12 months of storage, all strains remained viable in both gelatin-based media, whereas a significant loss of viability was observed in Trypticase soy broth-10% glycerol after only 4 months. After 18 months, five strains were still viable in both gelatin-based media and no significant difference was observed between antimicrobial susceptibility results and those of the original strains preserved at -70 degrees C. On the basis of these results, we believe that LSPQ preservation medium represents a good alternative for the storage of N. gonorrhoeae at -20 degrees C for at least a year. Furthermore, it is easy to prepare and use and can by stored at 4 to 8 degrees C for a year prior to use. PMID:8727891

  3. Neisseria meningitidis Lactate Permease Is Required for Nasopharyngeal Colonization

    PubMed Central

    Exley, Rachel M.; Goodwin, Linda; Mowe, Eva; Shaw, Jonathan; Smith, Harry; Read, Robert C.; Tang, Christoph M.

    2005-01-01

    Neisseria meningitidis is a human specific pathogen that is part of the normal nasopharyngeal flora. Little is known about the metabolic constraints on survival of the meningococcus during colonization of the upper airways. Here we show that glucose and lactate, both carbon energy sources for meningococcal growth, are present in millimolar concentrations within nasopharyngeal tissue. We used a mutant defective for the uptake of lactate (C311ΔlctP) to investigate the contribution of this energy source during colonization. Explants of nasopharyngeal tissue were inoculated with the wild-type strain (C311) and C311ΔlctP; the mutant was recovered at significantly lower levels (P = 0.01) than C311 18 h later. This defect was not due to changes in the expression of adhesins or initial adhesion in C311ΔlctP to epithelial cells. Instead, lactate appears to be important energy source for the bacterium during colonization and is necessary for growth of the bacterium in nasopharyngeal tissue. Studies with other strains defective for the uptake of specific nutrients should provide valuable information about the environment in which N. meningitidis persists during carriage. PMID:16113293

  4. Molecular characterization of rifampin-resistant Neisseria meningitidis.

    PubMed Central

    Carter, P E; Abadi, F J; Yakubu, D E; Pennington, T H

    1994-01-01

    Primers were designed to amplify the rpoB gene of Neisseria meningitidis. The region of the gene amplified covered clusters I and II of the rifampin resistance (Rifr) mutation sites identified in Escherichia coli. DNAs from six Rifr isolates and 21 rifampin-susceptible isolates from the United Kingdom representing a number of serogroups were amplified and sequenced. All six Rifr isolates had identical DNA sequences and the same amino acid change, a His to an Asn change at position 35 (H35N). This His residue is equivalent to the His residue at position 526 in E. coli, one of the known Rifr mutation sites. DNAs from an additional six Rifr mutations generated in vitro were amplified and sequenced. Three had H35Y changes, one had an H35R change, one had an H35N change and one had an S40F change. The predominance of mutations at the His residue at position 35 in Rifr N. meningitidis isolates suggests that it plays a critical role in the selection of antibiotic-resistant variants. All six Rifr isolates belonged to the same clonal group when analyzed by restriction enzyme analysis and pulsed-field gel electrophoresis. These data suggest that a single clone of Rifr N. meningitidis is present and widespread throughout the United Kingdom. Images PMID:8092823

  5. Neisseria gonorrhoeae prepilin export studied in Escherichia coli.

    PubMed Central

    Dupuy, B; Taha, M K; Pugsley, A P; Marchal, C

    1991-01-01

    The pilE gene of Neisseria gonorrhoeae MS11 and a series of pilE-phoA gene fusions were expressed in Escherichia coli. The PhoA hybrid proteins were shown to be located in the membrane fraction of the cells, and the prepilin product of the pilE gene was shown to be located exclusively in the cytoplasmic membrane. Analysis of the prepilin-PhoA hybrids showed that the first 20 residues of prepilin can function as an efficient export (signal) sequence. This segment of prepilin includes an unbroken sequence of 8 hydrophobic or neutral residues that form the N-terminal half of a 16-residue hydrophobic region of prepilin. Neither prepilin nor the prepilin-PhoA hybrids were processed by E. coli leader peptidase despite the presence of two consensus cleavage sites for this enzyme just after this hydrophobic region. Comparisons of the specific molecular activities of the four prepilin-PhoA hybrids and analysis of their susceptibility to proteolysis by trypsin and proteinase K in spheroplasts allow us to propose two models for the topology of prepilin in the E. coli cytoplasmic membrane. The bulk of the evidence supports the simplest of the two models, in which prepilin is anchored in the membrane solely by the N-terminal hydrophobic domain, with the extreme N terminus facing the cytoplasm and the longer C terminus facing the periplasm. Images FIG. 2 FIG. 4 FIG. 5 FIG. 6 PMID:1938955

  6. Genetic transformation of genes for protein II in Neisseria gonorrhoeae.

    PubMed Central

    Schwalbe, R S; Cannon, J G

    1986-01-01

    The protein II (PII) outer membrane proteins of Neisseria gonorrhoeae are a family of heat-modifiable proteins that are subject to phase variation, in which the synthesis of different PII species is turned on and off at a high frequency. Transformation of PII genes from a donor gonococcal strain into a recipient strain was detected with monoclonal antibodies specific for the PII proteins of the donor. Individual PII protein-expressing transformants generally bound only one donor-specific PII monoclonal antibody. Recovery of transformants expressing a donor-specific PII protein depended on the PII protein expression state of the donor: the transformed population bound only monoclonal antibodies specific for PII proteins that were expressed in the donor. Colony variants with an altered frequency of switching of PII protein expression were isolated, but the altered switch phenotype did not cotransform with the PII structural gene. These results provide genetic evidence that PII proteins are the products of different genes and that expressed and unexpressed forms of the PII gene are different from each other. Images PMID:3087951

  7. Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules.

    PubMed Central

    Lysko, P G; Morse, S A

    1981-01-01

    Isogenic variants of antibiotic-resistant and -sensitive Neisseria gonorrhoeae were examined for differences in the inhibition of oxygen uptake by steroid hormones. Mutants designated as env, which possessed cell envelope mutations allowing phenotypic suppression of low-level antibiotic resistance, were more sensitive to steroid hormone inhibition of oxygen uptake than the wild-type parental strains. Possession of an mtr locus, which confers nonspecific resistance to multiple antibiotics, dyes, and detergents, was also associated with an increase in resistance to steroid hormone inhibition of oxygen uptake. The penA2 locus, which confers an eightfold increase in resistance to penicillin, was not responsible for the increased resistance to steroid hormones. Phospholipids in the outer membrane of intact env-2 cells were susceptible to digestion by phospholipase C, indicating exposure of phospholipid head groups on the outer surface. Cells of a wild-type and mtr-2 strain were not susceptible to phospholipase C digestion unless they were pretreated with mixed exoglycosidases. This pretreatment also increased the sensitivity of mtr-2 cells to progesterone inhibition of O2 uptake. These data suggest that the permeability of the gonococcus to hydrophobic antibiotic and steroid molecules is mediated by the degree of phospholipid exposure on the outer membrane. PMID:6780535

  8. Isolation and characterization of a Neisseria sp. from the captive wild goose (Anser anser).

    PubMed

    Wang, Chengmin; Luo, Jing; Wang, Haijing; Amer, Said; Ding, Hua; Dong, Ying; He, Hongxuan

    2016-03-01

    The present study investigated 15 dead cases of captive wild goslings (Anser anser), which were bred in a small poultry farm in Shandong Province, China. The examined cases presented diverse clinical signs accompanied with neurological manifestations and fatal outcomes. Bacterial culture identified the gram-negative Neisseria sp. from the brain homogenate of most examined cases (10/15, 66.7%). The isolated bacteria were identified based on morphologic characteristics, biochemical tests and 16S rDNA typing. Results proved that 1 identical bacterial strain (BNO09-3) was isolated from the positive cases. The phylogeny based on the 16S rDNA gene sequences indicated that this isolate has a close relationship with various strains of genus Neisseria sp. isolated from liver and feces of duck. This is the first report of Neisseria sp. causing fatality in captive wild geese in China. PMID:26767581

  9. Construction of Hermes shuttle vectors: a versatile system useful for genetic complementation of transformable and non-transformable Neisseria mutants.

    PubMed

    Kupsch, E M; Aubel, D; Gibbs, C P; Kahrs, A F; Rudel, T; Meyer, T F

    1996-03-20

    A versatile shuttle system has been developed for genetic complementation with cloned genes of transformable and non-transformable Neisseria mutants. By random insertion of a selectable marker into the conjugative Neisseria plasmid ptetM25.2, a site within this plasmid was identified that is compatible with plasmid replication and with conjugative transfer of plasmid. Regions flanking the permissive insertion site of ptetM25.2 were cloned in Escherichia coli and served as a basis for the construction of the Hermes vectors. Hermes vectors are composed of an E. coli replicon that does not support autonomous replication in Neisseria, e.g. ColE1, p15A, or ori(fd), fused with a shuttle consisting of a selectable marker and a multiple cloning site flanked by the integration region of ptetM25.2. Complementation of a non-transformable Neisseria strain involves a three-step process: (i) insertion of the desired gene into a +Hermes vector; (ii) transformation of Hermes into a Neisseria strain containing ptetM25.2 to create a hybrid ptetM25.2 via gene replacement by the Hermes shuttle cassette; and (iii) conjugative transfer of the hybrid ptetM25.2 into the final Neisseria recipient. Several applications for the genetic manipulation of pathogenic Neisseriae are described. PMID:8676859

  10. Distribution and diversity of the haemoglobin–haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria

    PubMed Central

    Harrison, Odile B.; Bennett, Julia S.; Derrick, Jeremy P.; Bayliss, Christopher D.

    2013-01-01

    A new generation of vaccines containing multiple protein components that aim to provide broad protection against serogroup B meningococci has been developed. One candidate, 4CMenB (4 Component MenB), has been approved by the European Medicines Agency, but is predicted to provide at most 70–80 % strain coverage; hence there is a need for second-generation vaccines that achieve higher levels of coverage. Prior knowledge of the diversity of potential protein vaccine components is a key step in vaccine design. A number of iron import systems have been targeted in meningococcal vaccine development, including the HmbR and HpuAB outer-membrane proteins, which mediate the utilization of haemoglobin or haemoglobin–haptoglobin complexes as iron sources. While the genetic diversity of HmbR has been described, little is known of the diversity of HpuAB. Using whole genome sequences deposited in a Bacterial Isolate Genome Sequence Database (BIGSDB), the prevalence and diversity of HpuAB among Neisseria were investigated. HpuAB was widely present in a range of Neisseria species whereas HmbR was mainly limited to the pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae. Patterns of sequence variation in sequences from HpuAB proteins were suggestive of recombination and diversifying selection consistent with strong immune selection. HpuAB was subject to repeat-mediated phase variation in pathogenic Neisseria and the closely related non-pathogenic Neisseria species Neisseria lactamica and Neisseria polysaccharea but not in the majority of other commensal Neisseria species. These findings are consistent with HpuAB being subject to frequent genetic transfer potentially limiting the efficacy of this receptor as a vaccine candidate. PMID:23813677

  11. Characterization of DsbD in Neisseria meningitidis

    PubMed Central

    Kumar, Pradeep; Sannigrahi, Soma; Scoullar, Jessica; Kahler, Charlene M.; Tzeng, Yih-Ling

    2011-01-01

    Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalyzed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome c (CcsX) or repair oxidative protein damages (MrsAB). The expression of dsbD, but not other dsb genes, is positively regulated by the MisR/S two-component system. qRT-PCR analyses showed significantly reduced dsbD expression in all misR/S mutants, which was rescued by genetic complementation. The direct and specific interaction of MisR with the upstream region of the dsbD promoter was demonstrated by EMSA, and the MisR-binding sequences were mapped. Further, the expression of dsbD was found to be induced by dithiothrietol (DTT), through the MisR/S regulatory system. Surprisingly, we revealed that inactivation of dsbD can only be achieved in a strain carrying an ectopically located dsbD, in the dsbA1A2 double mutant or in the dsbA1A2A3 triple mutant, thus DsbD is indispensable for DsbA-catalyzed oxidative protein folding in N. meningitidis. The defects of the meningococcal dsbA1A2 mutant in transformation and resistance to oxidative stress were more severe in the absence of dsbD. PMID:21219471

  12. Ceftibuten Resistance and Treatment Failure of Neisseria gonorrhoeae Infection▿

    PubMed Central

    Lo, Janice Y. C.; Ho, K. M.; Leung, Anna O. C.; Tiu, Felisa S. T.; Tsang, Grand K. L.; Lo, Angus C. T.; Tapsall, John W.

    2008-01-01

    Neisseria gonorrhoeae infections have been empirically treated in Hong Kong with a single oral 400-mg dose of ceftibuten since 1997. Following anecdotal reports of the treatment failure of gonorrhea with oral extended-spectrum cephalosporins, the current study was undertaken to determine the antimicrobial susceptibility pattern and molecular characteristics of isolates of N. gonorrhoeae among patients with putative treatment failure in a sexually transmitted disease clinic setting. Between October 2006 and August 2007, 44 isolates of N. gonorrhoeae were studied from patients identified clinically to have treatment failure with empirical ceftibuten. The ceftibuten MICs for three strains were found to have been 8 mg/liter. These strains were determined by N. gonorrhoeae multiantigen sequence typing to belong to sequence type 835 (ST835) or the closely related ST2469. The testing of an additional eight archived ST835 strains revealed similarly elevated ceftibuten MICs. The penA gene sequences of these 11 isolates all had the mosaic pattern previously described as pattern X. Of note is that the ceftriaxone susceptibility results of these strains all fell within the susceptible range. It is concluded that ceftibuten resistance may contribute to the empirical treatment failure of gonorrhea caused by strains harboring the mosaic penA gene, which confers reduced susceptibility to oral extended-spectrum cephalosporins. Screening for such resistance in the routine clinical laboratory may be undertaken by the disk diffusion test. The continued monitoring of antimicrobial resistance and molecular characteristics of N. gonorrhoeae isolates is important to ensure that control and prevention strategies remain effective. PMID:18663018

  13. Toxicity and immunogenicity of Neisseria meningitidis lipopolysaccharide incorporated into liposomes.

    PubMed Central

    Petrov, A B; Semenov, B F; Vartanyan, Y P; Zakirov, M M; Torchilin, V P; Trubetskoy, V S; Koshkina, N V; L'Vov, V L; Verner, I K; Lopyrev, I V

    1992-01-01

    To obtain nontoxic and highly immunogenic lipopolysaccharide (LPS) for immunization, we incorporated Neisseria meningitidis LPS into liposomes. Native LPS and its salts were incorporated by the method of dehydration-rehydration of vesicles or prolonged cosonication. The most complete incorporation of LPS into liposomes and a decrease in toxicity were achieved by the method of dehydration-rehydration of vesicles. Three forms of LPS (H+ form, Mg2+ salt, and triethanolamine salt) showed different solubilities in water, the acidic form of LPS, with the most pronounced hydrophobic properties, being capable of practically complete association with liposomal membranes. An evaluation of the activity of liposomal LPS in vitro (by the Limulus amoebocyte test) and in vivo (by monitoring the pyrogenic reaction in rabbits) revealed a decrease in endotoxin activity of up to 1,000-fold. In addition, the pyrogenic activity of liposomal LPS was comparable to that of a meningococcal polysaccharide vaccine. Liposomes had a pronounced adjuvant effect on the immune response to LPS. Thus, the level of anti-LPS plaque-forming cells in the spleens of mice immunized with liposomal LPS was 1 order of magnitude higher and could be observed for a longer time (until day 21, i.e., the term of observation) than in mice immunized with free LPS. The same regularity was revealed in a study done with an enzyme-linked immunosorbent assay. This study also established that antibodies induced by immunization belonged to the immunoglobulin M and G classes, which are capable of prolonged circulation. Moreover, liposomal LPS induced a pronounced immune response in CBA/N mice (defective in B lymphocytes of the LyB-5+ subpopulation). The latter results indicate that the immunogenic action of liposomal LPS occurs at an early age. PMID:1500196

  14. History and epidemiology of antibiotic susceptibilities of Neisseria gonorrhoeae.

    PubMed

    Shigemura, Katsumi; Fujisawa, Masato

    2015-01-01

    Neisseria gonorrhoeae is a common causative microorganism of male urethritis. The most important problem with this infectious disease is antibiotic resistance. For instance, in the 1980's-1990's, most studies showed almost 100% susceptibility of N. gonorrhoeae to the representative cephalosporins, cefixime and cefpodoxime. By the late 1990s, the reported susceptibility decreased to 93.3-100% and further decreased to 82.9-100% in the early 2000's. However, reported susceptibility was revived to 95.8-100% in the late 2000's to 2010's. The susceptibility of N. gonorrhoeae to penicillins varied in different countries and regions. A 2002 Japanese study showed a resistance ratio of about 30% and while Laos, China and Korea showed 80-100% resistance. Fluoroquinolones have shown a dramatic change in their effect on N. gonorrhoeae. In the early 1990's, 0.3-1.3% of N. gonorrhoeae showed low susceptibility or resistance to ciprofloxacin in the US but this figure jumped to 9.5% by 1999. In Asia, N. gonorrhoeae ciprofloxacin resistance or lower susceptibility was about 80-90% in the early 2000's and this trend continues to the present day. Azithromycin is currently the possible last weapon for N. gonorrhoeae treatment per oral administration. The susceptibility of N. gonorrhoeae to azithromycin was 100% in Indonesia in 2004 and the latest study from Germany showed 6% resistance in strains from 2010-2011. This review summarizes the history and epidemiology of N. gonorrhoeae antibiotic susceptibilities, for which the most frequently used antibiotics vary between countries or regions. PMID:25410409

  15. Toxicity and immunogenicity of Neisseria meningitidis lipopolysaccharide incorporated into liposomes.

    PubMed

    Petrov, A B; Semenov, B F; Vartanyan, Y P; Zakirov, M M; Torchilin, V P; Trubetskoy, V S; Koshkina, N V; L'Vov, V L; Verner, I K; Lopyrev, I V

    1992-09-01

    To obtain nontoxic and highly immunogenic lipopolysaccharide (LPS) for immunization, we incorporated Neisseria meningitidis LPS into liposomes. Native LPS and its salts were incorporated by the method of dehydration-rehydration of vesicles or prolonged cosonication. The most complete incorporation of LPS into liposomes and a decrease in toxicity were achieved by the method of dehydration-rehydration of vesicles. Three forms of LPS (H+ form, Mg2+ salt, and triethanolamine salt) showed different solubilities in water, the acidic form of LPS, with the most pronounced hydrophobic properties, being capable of practically complete association with liposomal membranes. An evaluation of the activity of liposomal LPS in vitro (by the Limulus amoebocyte test) and in vivo (by monitoring the pyrogenic reaction in rabbits) revealed a decrease in endotoxin activity of up to 1,000-fold. In addition, the pyrogenic activity of liposomal LPS was comparable to that of a meningococcal polysaccharide vaccine. Liposomes had a pronounced adjuvant effect on the immune response to LPS. Thus, the level of anti-LPS plaque-forming cells in the spleens of mice immunized with liposomal LPS was 1 order of magnitude higher and could be observed for a longer time (until day 21, i.e., the term of observation) than in mice immunized with free LPS. The same regularity was revealed in a study done with an enzyme-linked immunosorbent assay. This study also established that antibodies induced by immunization belonged to the immunoglobulin M and G classes, which are capable of prolonged circulation. Moreover, liposomal LPS induced a pronounced immune response in CBA/N mice (defective in B lymphocytes of the LyB-5+ subpopulation). The latter results indicate that the immunogenic action of liposomal LPS occurs at an early age. PMID:1500196

  16. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis.

    PubMed

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2015-10-01

    Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African 'meningitis belt' and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution. PMID:26629539

  17. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis

    PubMed Central

    Mustapha, Mustapha M.; Marsh, Jane W.; Krauland, Mary G.; Fernandez, Jorge O.; de Lemos, Ana Paula S.; Dunning Hotopp, Julie C.; Wang, Xin; Mayer, Leonard W.; Lawrence, Jeffrey G.; Hiller, N. Luisa; Harrison, Lee H.

    2015-01-01

    Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution. PMID:26629539

  18. Towards a synthetic glycoconjugate vaccine against Neisseria meningitidis A.

    PubMed

    Berkin, Ali; Coxon, Bruce; Pozsgay, Vince

    2002-10-01

    Albumin conjugates of synthetic fragments of the capsular polysaccharide of the Gram-negative bacterium Neisseria meningitidis serogroup A were prepared. The fragments include monosaccharides 1 [alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)] and 2 [6-O-P(O)(O(-))(2)-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)], disaccharide 3 [alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)], and trisaccharide 4 [alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)]. Two monosaccharide blocks were employed as key intermediates. The reducing-end mannose unit featured the NHAc group at C-2, and contained the aminoethyl spacer as the aglycon for the final bioconjugation. The interresidual phosphodiester linkages were fashioned from an anomerically positioned H-phosphonate group in a 2-azido-mannose building block. The spacer-linked saccharides 1-4 were N-acylated with hepta-4,6-dienoic acid and the resulting conjugated diene-equipped saccharides were subjected to Diels-Alder-type addition with maleimidobutyryl-group functionalized human serum albumin to form covalent conjugates containing up to 26 saccharide haptens per albumin molecule. Complete (1)H, (13)C, and (31)P NMR assignments for 1-4 are given. Antigenicity of the neoglycoconjugates containing 1-4 was demonstrated by a double immunodiffusion assay which indicated that a fragment as small as a monosaccharide is recognized by a polyclonal meningococcus group A antiserum and that the O-acetyl group(s) present in the natural capsular material is not essential for antigenicity. PMID:12355530

  19. Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage.

    PubMed

    Vaughan, Andrew T; Gorringe, Andrew; Davenport, Victoria; Williams, Neil A; Heyderman, Robert S

    2009-02-15

    The normal flora that colonizes the mucosal epithelia has evolved diverse strategies to evade, modulate, or suppress the immune system and avoid clearance. Neisseria lactamica and Neisseria meningitidis are closely related obligate inhabitants of the human upper respiratory tract. N. lactamica is a commensal but N. meningitidis is an opportunistic pathogen that occasionally causes invasive disease such as meningitis and septicemia. We demonstrate that unlike N. meningitidis, N. lactamica does not prime the development of mucosal T or B cell memory during the peak period of colonization. This cannot be explained by the induction of peripheral tolerance or regulatory CD4(+)CD25(+) T cell activity. Instead, N. lactamica mediates a B cell-dependent mitogenic proliferative response that is absent to N. meningitidis. This mitogenic response is associated with the production of T cell-independent polyclonal IgM that we propose functions by shielding colonizing N. lactamica from the adaptive immune system, maintaining immunological ignorance in the host. We conclude that, in contrast to N. meningitidis, N. lactamica maintains a commensal relationship with the host in the absence of an adaptive immune response. This may prolong the period of susceptibility to colonization by both pathogenic and nonpathogenic Neisseria species. PMID:19201877

  20. Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England.

    PubMed

    Ladhani, Shamez N; Giuliani, Marzia Monica; Biolchi, Alessia; Pizza, Mariagrazia; Beebeejaun, Kazim; Lucidarme, Jay; Findlow, Jamie; Ramsay, Mary E; Borrow, Ray

    2016-02-01

    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain. PMID:26811872

  1. Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like most microorganisms, Neisseria gonorrhoeae alters gene expression in response to iron availability. The ferric uptake regulator Fur has been shown to be involved in controlling this response, but the extent of this involvement remains unknown. It is known that in addition to working directly to...

  2. Decline in Decreased Cephalosporin Susceptibility and Increase in Azithromycin Resistance in Neisseria gonorrhoeae, Canada

    PubMed Central

    Sawatzky, P.; Liu, G.; Allen, V; Lefebvre, B.; Hoang, L.; Drews, S.; Horsman, G.; Wylie, J.; Haldane, D.; Garceau, R.; Ratnam, S.; Wong, T.; Archibald, C.; Mulvey, M.R.

    2016-01-01

    Antimicrobial resistance profiles were determined for Neisseria gonorrhoeae strains isolated in Canada during 2010–2014. The proportion of isolates with decreased susceptibility to cephalosporins declined significantly between 2011 and 2014, whereas azithromycin resistance increased significantly during that period. Continued surveillance of antimicrobial drug susceptibilities is imperative to inform treatment guidelines. PMID:26689114

  3. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    PubMed Central

    Passaretti, Teresa V.; Jose, Reashma; Cole, Jocelyn; Coorevits, An; Carpenter, Andrea N.; Jose, Sherly; Van Landschoot, Anita; Izard, Jacques; Kohlerschmidt, Donna J.; Vandamme, Peter; Dewhirst, Floyd E.; Fisher, Mark A.; Musser, Kimberlee A.

    2013-01-01

    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed. PMID:22798652

  4. Draft Genome Sequence of Neisseria gonorrhoeae Sequence Type 1407, a Multidrug-Resistant Clinical Isolate.

    PubMed

    Anselmo, A; Ciammaruconi, A; Carannante, A; Neri, A; Fazio, C; Fortunato, A; Palozzi, A M; Vacca, P; Fillo, S; Lista, F; Stefanelli, P

    2015-01-01

    Gonorrhea may become untreatable due to the spread of resistant or multidrug-resistant strains. Cefixime-resistant gonococci belonging to sequence type 1407 have been described worldwide. We report the genome sequence of Neisseria gonorrhoeae strain G2891, a multidrug-resistant isolate of sequence type 1407, collected in Italy in 2013. PMID:26272575

  5. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  6. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples.

    PubMed

    Wolfgang, William J; Passaretti, Teresa V; Jose, Reashma; Cole, Jocelyn; Coorevits, An; Carpenter, Andrea N; Jose, Sherly; Van Landschoot, Anita; Izard, Jacques; Kohlerschmidt, Donna J; Vandamme, Peter; Dewhirst, Floyd E; Fisher, Mark A; Musser, Kimberlee A

    2013-04-01

    A polyphasic analysis was undertaken of seven independent isolates of gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7-100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA-DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332(T)  = DSM 25276(T)  = LMG 26725(T)) is proposed. PMID:22798652

  7. A modified reduced transport fluid for the preservation of Neisseria gonorrhoeae during transport.

    PubMed

    Finlayson, M H; Koralewski, F F; Kindermann, R A

    1975-10-11

    Reduced transport fluid (RTF) was modified by altering its pH and by the addition of a yeast dialysate. This reduced transport yeast-containing fluid (RTYF) was shown to be superior to RTF in maintaining viability of Neisseria gonorrhoeae in cultures and in clinical material. PMID:242082

  8. Resistance to penicillin and identification of penicillinase-producing Neisseria gonorrhoeae among clinical isolates in Thailand.

    PubMed Central

    Crum, J W; Duangmani, C; Vibulyasekha, S; Suthisomboon, K

    1980-01-01

    Penicillin-resistant Neisseria gonorrhoeae from 405 patients were studied by determination of penicillin minimal inhibitory concentrations an penicillinase production. Eighteen percent were identified as penicillin-producing N. gonorrhoeae and the mean minimal inhibitory concentration, for all except penicillin-producing strains, was 0.805 micrograms/ml. PMID:6778382

  9. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices §...

  10. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices §...

  11. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neisseria spp. direct serological test reagents. 866.3390 Section 866.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  12. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neisseria spp. direct serological test reagents. 866.3390 Section 866.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  13. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neisseria spp. direct serological test reagents. 866.3390 Section 866.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  14. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices §...

  15. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neisseria spp. direct serological test reagents. 866.3390 Section 866.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  16. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices §...

  17. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices §...

  18. 21 CFR 866.3390 - Neisseria spp. direct serological test reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neisseria spp. direct serological test reagents. 866.3390 Section 866.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  19. Microbiological Characteristics of Chlamydia trachomatis and Neisseria gonorrhoeae Infections in South African Women

    PubMed Central

    de Waaij, Dewi J.; Bos, Myrte; van der Eem, Lisette; Bébéar, Cécile; Mbambazela, Nontembeko; Ouburg, Sander; Peters, Remco P. H.

    2015-01-01

    We analyzed data of 263 women with at least one genital or anorectal sexually transmitted infection from a cross-sectional study conducted in rural South Africa. We provide new insights concerning the concurrence of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, and Trichomonas vaginalis infections as well as the characteristics of bacterial loads. PMID:26511740

  20. Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England

    PubMed Central

    Giuliani, Marzia Monica; Biolchi, Alessia; Pizza, Mariagrazia; Beebeejaun, Kazim; Lucidarme, Jay; Findlow, Jamie; Ramsay, Mary E.; Borrow, Ray

    2016-01-01

    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain. PMID:26811872

  1. Transcriptional Profiling of Neisseria meningitidis Interacting with Human Epithelial Cells in a Long-Term In Vitro Colonization Model

    PubMed Central

    Hey, Ariann; Hudson, Michael J.; Langford, Paul R.; Kroll, J. Simon

    2013-01-01

    Neisseria meningitidis is a commensal of humans that can colonize the nasopharyngeal epithelium for weeks to months and occasionally invades to cause life-threatening septicemia and meningitis. Comparatively little is known about meningococcal gene expression during colonization beyond those first few hours. In this study, the transcriptome of adherent serogroup B N. meningitidis strain MC58 was determined at intervals during prolonged cocultivation with confluent monolayers of the human respiratory epithelial cell line 16HBE14. At different time points up to 21 days, 7 to 14% of the meningococcal genome was found to be differentially regulated. The transcriptome of adherent meningococci obtained after 4 h of coculture was markedly different from that obtained after prolonged cocultivation (24 h, 96 h, and 21 days). Genes persistently upregulated during prolonged cocultivation included three genes (hfq, misR/phoP, and lrp) encoding global regulatory proteins. Many genes encoding known adhesins involved in epithelial adherence were upregulated, including those of a novel locus (spanning NMB0342 to NMB0348 [NMB0342-NMB0348]) encoding epithelial cell-adhesive function. Sixteen genes (including porA, porB, rmpM, and fbpA) encoding proteins previously identified by their immunoreactivity to sera from individuals colonized long term with serogroup B meningococci were also upregulated during prolonged cocultivation, indicating that our system models growth conditions in vivo during the commensal state. Surface-expressed proteins downregulated in the nasopharynx (and thus less subject to selection pressure) but upregulated in the bloodstream (and thus vulnerable to antibody-mediated bactericidal activity) should be interesting candidate vaccine antigens, and in this study, three new proteins fulfilling these criteria have been identified: NMB0497, NMB0866, and NMB1882. PMID:23980104

  2. Recognition of Neisseria meningitidis by the Long Pentraxin PTX3 and Its Role as an Endogenous Adjuvant

    PubMed Central

    Bottazzi, Barbara; Santini, Laura; Savino, Silvana; Giuliani, Marzia M.; Dueñas Díez, Ana I.; Mancuso, Giuseppe; Beninati, Concetta; Sironi, Marina; Valentino, Sonia; Deban, Livija; Garlanda, Cecilia; Teti, Giuseppe; Pizza, Mariagrazia; Rappuoli, Rino; Mantovani, Alberto

    2015-01-01

    Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium. PMID:25786110

  3. Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and he...

  4. Genetic characterization of pilin glycosylation in Neisseria meningitidis.

    PubMed

    Power, P M; Roddam, L F; Dieckelmann, M; Srikhanta, Y N; Tan, Y C; Berrington, A W; Jennings, M P

    2000-04-01

    Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of an O-linked trisaccharide, Gal(beta1-4)Gal(alpha1-3)2,4-diacetimido-2,4,6-trideoxyhexose++ +. In a previous study the authors identified and characterized a gene, pglA, encoding a galactosyltransferase involved in pilin glycosylation. In this study a set of random genomic sequences from N. meningitidis strain MC58 was used to search for further genes involved in pilin glycosylation. Initially, an open reading frame was identified, and designated pglD (pilin glycosylation gene D), which was homologous to genes involved in polysaccharide biosynthesis. The region adjacent to this gene was cloned and nucleotide sequence analysis revealed two further genes, pglB and pglC, which were also homologous with genes involved in polysaccharide biosynthesis. Insertional mutations were constructed in pglB, pglC and pglD in N. meningitidis C311#3, a strain with well-defined LPS and pilin-linked glycan structures, to determine whether these genes had a role in the biosynthesis of either of these molecules. Analysis of these mutants revealed that there was no alteration in the phenotype of LPS in any of the mutant strains as judged by SDS-PAGE gel migration. In contrast, increased gel migration of the pilin subunit molecules of pglB, pglC and pglD mutants by Western analysis was observed. Pilin from each of the pglB, pglC and pglD mutants did not react with a terminal-galactose-specific stain, confirming that the gel migration differences were due to the alteration or absence of the pilin-linked trisaccharide structure in these mutants. In addition, antisera specific for the C311#3 trisaccharide failed to react with pilin from the pglB, pglC, pglD and galE mutants. Analysis of nucleotide sequence homologies has suggested specific roles for pglB, pglC and pglD in the

  5. Protocol for Gene Expression Profiling Using DNA Microarrays in Neisseria gonorrhoeae

    PubMed Central

    Jackson, Lydgia A.; Dyer, David W.

    2016-01-01

    Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp. PMID:22782831

  6. Nasopharyngeal carriage of Neisseria meningitidis in general population and meningococcal disease.

    PubMed

    Ichhpujani, R L; Mohan, R; Grover, S S; Joshi, P R; Kumari, S

    1990-12-01

    Nasopharyngeal carriage of Neisseria meningitidis was determined in the normal healthy population in Delhi at monthly intervals for a period of 2 years from January, 1986 to December, 1987. Of a total of 6513 individuals screened only 107 (1.64 per cent) were found to carry Neisseria meningitidis serogroup A. There was no age and sex difference in carriage. During the same period, data of laboratory confirmed cases of meningitis due to N. meningitidis serogroup A was obtained from 6 hospitals of Delhi which acted as sentinel centres. Of the total 11,870 pyogenic C.S.F. samples processed, only 557 (4.69 per cent) were due to N. meningitidis serogroup A. There was no correlation observed between the nasopharyngeal meningococcal carriage in the healthy population with the disease prevalence. There was no seasonal variation in nasopharyngeal carriage though upsurge in the number of meningococcal meningitis cases was noticed from January to April. PMID:2129123

  7. Molecular and serological diversity of Neisseria meningitidis carrier strains isolated from Italian students aged 14 to 22 years.

    PubMed

    Gasparini, Roberto; Comanducci, Maurizio; Amicizia, Daniela; Ansaldi, Filippo; Canepa, Paola; Orsi, Andrea; Icardi, Giancarlo; Rizzitelli, Emanuela; De Angelis, Gabriella; Bambini, Stefania; Moschioni, Monica; Comandi, Sara; Simmini, Isabella; Boccadifuoco, Giueseppe; Brunelli, Brunella; Giuliani, Marzia Monica; Pizza, Mariagrazia; Panatto, Donatella

    2014-06-01

    Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage. PMID:24648565

  8. Molecular and Serological Diversity of Neisseria meningitidis Carrier Strains Isolated from Italian Students Aged 14 to 22 Years

    PubMed Central

    Comanducci, Maurizio; Amicizia, Daniela; Ansaldi, Filippo; Canepa, Paola; Orsi, Andrea; Icardi, Giancarlo; Rizzitelli, Emanuela; De Angelis, Gabriella; Bambini, Stefania; Moschioni, Monica; Comandi, Sara; Simmini, Isabella; Boccadifuoco, Giueseppe; Brunelli, Brunella; Giuliani, Marzia Monica; Pizza, Mariagrazia

    2014-01-01

    Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage. PMID:24648565

  9. Genetic characteristics of Neisseria meningitidis serogroup B strains carried by adolescents living in Milan, Italy: implications for vaccine efficacy.

    PubMed

    Esposito, Susanna; Zampiero, Alberto; Terranova, Leonardo; Montinaro, Valentina; Scala, Alessia; Ansuini, Valentina; Principi, Nicola

    2013-11-01

    Before a protein vaccine is introduced into a country, it is essential to evaluate its potential impact and estimate its benefits and costs. The aim of this study was to determine the genetic characteristics of Neisseria meningitidis B (NmB) in the pharyngeal secretions of 1375 healthy adolescents aged 13-19 y living in Milan, Italy, in September 2012, and the possible protection offered by the two currently available NmB protein vaccines. Ninety-one subjects were Nm carriers (6.6%), 29 (31.9%) of whom carried the NmB capsular gene. The 29 identified strains belonged to eight clonal complexes (CCs), the majority of which were in the ST-41/44/Lin.3 CC (n = 11; 37.9%). All of the identified strains harboured ƒHbp alleles representing a total of 15 sub-variants: the gene for NHBA protein was found in all but three of the studied strains (10.3%) with 13 identified sub-variants. There were 15 porA sub-types, seven of which were identified in just one CC. The findings of this study seem to suggest that both of the protein vaccines proposed for the prevention of invasive disease due to NmB (the 4-protein and the 2-protein products) have a composition that can evoke a theoretically effective antibody response against the meningococcal strains currently carried by adolescents living in Northern Italy. The genetic characteristics of NmB strains can be easily evaluated by means of molecular methods, the results of which can provide an albeit approximate estimate of the degree of protection theoretically provided by the available vaccines, and the possible future need to change their composition. PMID:23880917

  10. Acquisition of heme iron by Neisseria meningitidis does not involve meningococcal transferrin-binding proteins.

    PubMed

    Martel, N; Lee, B C

    1994-02-01

    Similarities in size between hemin-binding protein 1 (HmBP1) and transferrin-binding protein 1 (TBP1) of Neisseria meningitidis suggest that these proteins are functionally homologous. However, a meningococcal mutant lacking the transferrin-binding proteins retained the capacity to acquire iron from heme and hemoglobin. In immunoblots, hyperimmune polyclonal antiserum against TBP1 did not react with HmBP1. PMID:8300227

  11. Efficacy of a Novel Tricyclic Topoisomerase Inhibitor in a Murine Model of Neisseria gonorrhoeae Infection.

    PubMed

    Savage, Victoria J; Charrier, Cédric; Salisbury, Anne-Marie; Box, Helen; Chaffer-Malam, Nathan; Huxley, Anthony; Kirk, Ralph; Noonan, Gary M; Mohmed, Sarfraz; Craighead, Mark W; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2016-09-01

    There is an urgent need for new antibiotics to treat multidrug-resistant Neisseria gonorrhoeae In this report, the microbiology, in vivo pharmacokinetics, and efficacy of REDX05931, a representative novel tricyclic topoisomerase inhibitor, were evaluated. REDX05931 demonstrated high oral bioavailability in mice and reduced N. gonorrhoeae infection after a single dose in a mouse model of gonorrhea. These data support the potential of this series of small molecules as a new treatment for drug-resistant gonorrheal infections. PMID:27324777

  12. Zabofloxacin (DW-224a) activity against Neisseria gonorrhoeae including quinolone-resistant strains.

    PubMed

    Jones, Ronald N; Biedenbach, Douglas J; Ambrose, Paul G; Wikler, Matthew A

    2008-09-01

    Zabofloxacin, a new fluoroquinolone compound (DW-224a), was tested by reference agar dilution methods against 35 strains of multiresistant Neisseria gonorrhoeae. The potency of zabofloxacin (MIC(50), 0.016 microg/mL) was generally comparable with azithromycin but 8-fold superior to ciprofloxacin. This novel naphthyridine should be explored as an alternative therapy for quinolone-nonsusceptible gonorrhea and Chlamydia trachomatis infections. PMID:18620833

  13. In Vitro selection of Neisseria gonorrhoeae mutants with elevated MIC values and increased resistance to cephalosporins.

    PubMed

    Johnson, Steven R; Grad, Yonatan; Ganakammal, Satishkumar Ranganathan; Burroughs, Mark; Frace, Mike; Lipsitch, Marc; Weil, Ryan; Trees, David

    2014-11-01

    Strains of Neisseria gonorrhoeae with mosaic penA genes bearing novel point mutations in penA have been isolated from ceftriaxone treatment failures. Such isolates exhibit significantly higher MIC values to third-generation cephalosporins. Here we report the in vitro isolation of two mutants with elevated MICs to cephalosporins. The first possesses a point mutation in the transpeptidase region of the mosaic penA gene, and the second contains an insertion mutation in pilQ. PMID:25199775

  14. Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence.

    PubMed Central

    Seifert, H S; Ajioka, R S; Paruchuri, D; Heffron, F; So, M

    1990-01-01

    The method of shuttle mutagenesis has been extended to Neisseria gonorrhoeae. We have constructed a defective mini-Tn3 derivative that encodes chloramphenicol resistance in both N. gonorrhoeae and Escherichia coli and selected for mutations in the chloramphenicol resistance gene that express higher levels of antibiotic resistance in N. gonorrhoeae. Isogenic N. gonorrhoeae strains that differ only in pilin expression were constructed and used to test the effect of pilin null mutations on DNA transformation competence. PMID:2152910

  15. Neonatal Infection with Neisseria meningitidis: Analysis of a 97-Year Period Plus Case Study

    PubMed Central

    Bülbül, Ali; Cömert, Serdar; Uslu, Sinan; Arslan, Selda; Nuhoglu, Asiye

    2014-01-01

    Neisseria meningitidis is one of the major causes of meningitis in children and adolescents, but it is rarely found during the neonatal period. Here, we describe a neonate with meningococcal sepsis who was admitted to the hospital on postnatal day 10, and we discuss the clinical features of neonatal infection with N. meningitidis in relation to the literature (analysis of a 97-year period). PMID:25031437

  16. Anaerobic survival of clinical isolates and laboratory strains of Neisseria gonorrhoea: use in transfer and storage.

    PubMed Central

    Short, H B; Clark, V L; Kellogg, D S; Young, F E

    1982-01-01

    Eleven laboratory strains and 67 clinical isolates of Neisseria gonorrhoeae were tested for the ability to survive during anaerobic incubation. The survival of the laboratory strains was dependent on auxotype, temperature, and cell density on agar plates. For both the laboratory strains and the clinical isolates, anaerobic survival was better at lower temperatures. We concluded that anaerobic incubation, for as long as 7 days, is useful when transporting or storing N. gonorrhoeae. Images PMID:6808019

  17. Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria.

    PubMed

    Davis, J; Smith, A L; Hughes, W R; Golomb, M

    2001-08-01

    The genomes of pathogenic Haemophilus influenzae strains are larger than that of Rd KW20 (Rd), the nonpathogenic laboratory strain whose genome has been sequenced. To identify potential virulence genes, we examined genes possessed by Int1, an invasive nonencapsulated isolate from a meningitis patient, but absent from Rd. Int1 was found to have a novel gene termed lav, predicted to encode a member of the AIDA-I/VirG/PerT family of virulence-associated autotransporters (ATs). Associated with lav are multiple repeats of the tetranucleotide GCAA, implicated in translational phase variation of surface molecules. Laterally acquired by H. influenzae, lav is restricted in distribution to a few pathogenic strains, including H. influenzae biotype aegyptius and Brazilian purpuric fever isolates. The DNA sequence of lav is surprisingly similar to that of a gene previously described for Neisseria meningitidis. Sequence comparisons suggest that lav was transferred relatively recently from Haemophilus to Neisseria, shortly before the divergence of N. meningitidis and Neisseria gonorrhoeae. Segments of lav predicted to encode passenger and beta-domains differ sharply in G+C base content, supporting the idea that AT genes have evolved by fusing domains which originated in different genomes. Homology and base sequence comparisons suggest that a novel biotype aegyptius AT arose by swapping an unrelated sequence for the passenger domain of lav. The unusually mobile lav locus joins a growing list of genes transferred from H. influenzae to Neisseria. Frequent gene exchange suggests a common pool of hypervariable contingency genes and may help to explain the origin of invasiveness in certain respiratory pathogens. PMID:11443098

  18. The analysis of Neisseria meningitidis proteomes: Reference maps and their applications.

    PubMed

    Bernardini, Giulia; Braconi, Daniela; Santucci, Annalisa

    2007-08-01

    Neisseria meningitidis is an encapsulated Gram-negative bacterium responsible for significant morbidity and mortality worldwide. The availability of meningococcal genome sequences in combination with the rapid growth of proteomic techniques and other high-throughput methods, provided new approaches to the analysis of bacterial system biology. This review considers the meningococcal reference maps so far published as a starting point aimed to elucidate bacterial physiology and pathogenicity, paying particular attention to proteins with potential vaccine and diagnostic applications. PMID:17628027

  19. Studies on gonococcus infection. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association.

    PubMed Central

    King, G J; Swanson, J

    1978-01-01

    Neisseria gonorrhoeae which exhibit high levels of leukocyte association have a surface protein which is considerably diminished in isogenic gonococci which exhibit low levels of leukocyte association (LA). The LA protein exhibits strain variation in molecular weight and immunogenicity. Membranes derived from LA+ and LA- organisms show quantitative differences in their adsorption to leukocytes; these differences are analogous to those found for the intact organisms regarding their association with leukocytes. Images PMID:211086

  20. Construtcion of Neisseria gonorrhoeae porin B plasmid recombinant and its expression in E. coli.

    PubMed

    Song, Qifa; Liao, Fang; Ye, Siying; Cui, Bing; Xiong, Ping

    2005-01-01

    A prokaryotic expression recombinant plasmid pET-PIB to express porin B (PIB) of Neisseria gonorrhoeae in E. coli DE3 was constructed in order to provide a basis of research in detection, prophylactic and therapeutic vaccine against the pathogen infection. The gene encoding PIB was amplified by PCR from Neisseria gonorrhoeae and cloned into prokaryotic expression plasmid pET-28a(+) to construct a pET-PIB recombinant, which was verified by restriction endonuclease and DNA sequencing. Protein PIB was expressed in E. coli DE3 induced with IPTG. The antigenicity of the expressed protein was evaluated by indirect ELISA. Rabbits were immunized with the protein and serum was collected after immunization. To assess the immunogenicity of the protein, the titer of serum to protein PIB was determined by ELISA. DNA sequence analysis showed that the nucleic acid sequence of PIB gene was 99.28% of homology compared with that (NGPIB18) published in GenBank. A 41 kD fused protein was detected by SDS-PAGE and was proven to have reactivity with anti-PIB polyclonal antibody from mouse. A polyclonal antibody to PIB of 1:4000 titer determined by indirect EISA was obtained from rabbit immunized with the purified product. Recombinant plasmid encoding PIB of Neisseria gonorrhoeae was constructed. Protein PIB with antigenicity and immunogenicity was successfully expressed. PMID:16201262

  1. E test as susceptibility test and epidemiologic tool for evaluation of Neisseria meningitidis isolates.

    PubMed Central

    Hughes, J H; Biedenbach, D J; Erwin, M E; Jones, R N

    1993-01-01

    The E test (AB Biodisk, Solna, Sweden), a new approach developed to test antimicrobial susceptibility, was compared with the agar dilution method for seven-drug antibiogram analysis of Neisseria meningitidis isolates. The overall E-test quantitative accuracy (+/- 1 log2 dilution) was 93% compared with that of agar dilution testing. The E test was then used to perform the susceptibility tests on a 10-year sample of 102 N. meningitidis isolates, including 5 from a recent epidemic outbreak in the University of Iowa (Iowa City) community. The E test proved to be an efficient methodology for identifying common source clusters of meningococcal disease having resistance to rifampin or sulfonamides. Moreover, the data demonstrated a recent increase in penicillin MICs (MIC for 90% of strains, 0.094 microgram/ml) and an escalation of high-level resistance to trimethoprimsulfamethoxazole (33%) and rifampin (14%). The E test should be considered a simple and accurate susceptibility method for the emerging need to test meningococci and other pathogenic neisserias. Chocolate Mueller-Hinton agar was observed to provide the best support of growth and E-test MIC results that correlated well with results of the reference agar dilution method previously used for neisserias. PMID:8308119

  2. Type IV prepilin peptidase gene of Neisseria gonorrhoeae MS11: presence of a related gene in other piliated and nonpiliated Neisseria strains.

    PubMed Central

    Dupuy, B; Pugsley, A P

    1994-01-01

    The assembly of type IV pili in Neisseria gonorrhoeae is a complex process likely to require the products of many genes. One of these is the enzyme prepilin peptidase, which cleaves and then N methylates the precursor pilin subunits prior to their assembly into pili. We have used a PCR amplification strategy to clone the N. gonorrhoeae prepilin peptidase gene, pilDNg. A single copy of the gene is shown to be present in the chromosome. Its product promotes correct cleavage of the gonococcal prepillin in Escherichia coli cells carrying both the prepilin peptidase gene and the pilin structural gene. PilDNg also cleaves prePulG, a type IV pilin-like protein of Klebsiella oxytoca. Moreover, PilDNg complements a mutation in the gene coding for the prepilin peptidase-like protein of K. oxytoca, pulO, partially restoring PulG-PulO-dependent extracellular secretion of the enzyme pullulanase. Finally, we show that genes homologous to pilDNg are present and expressed in a variety of species in the genus Neisseria, including some commensal strains. Images PMID:7906688

  3. Neisseria gonorrhoeae PIII has a role on NG1873 outer membrane localization and is involved in bacterial adhesion to human cervical and urethral epithelial cells

    PubMed Central

    2013-01-01

    Background Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated. Results We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain. We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells. Conclusion Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII

  4. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations.

    PubMed

    Olesky, Melanie; Zhao, Shuqing; Rosenberg, Robert L; Nicholas, Robert A

    2006-04-01

    Neisseria gonorrhoeae has two porins, PIA and PIB, whose genes (porA and porB, respectively) are alleles of a single por locus. We recently demonstrated that penB mutations at positions 120 and 121 in PIB, which are presumed to reside in loop 3 that forms the pore constriction zone, confer intermediate-level resistance to penicillin and tetracycline (M. Olesky, M. Hobbs, and R. A. Nicholas, Antimicrob. Agents Chemother. 46:2811-2820, 2002). In the present study, we investigated the electrophysiological properties as well as solute and antibiotic permeation rates of recombinant PIB proteins containing penB mutations (G120K, G120D/A121D, G120P/A121P, and G120R/A121H). In planar lipid bilayers, the predominant conducting state of each porin variant was 30 to 40% of the wild type, even though the anion selectivity and maximum channel conductance of each PIB variant was similar to that of the wild type. Liposome-swelling experiments revealed no significant differences in the permeation of sugars or beta-lactam antibiotics through the wild type or PIB variants. Although these results are seemingly contradictory with the ability of these variants to increase antibiotic resistance, they are consistent with MIC data showing that these porin mutations confer resistance only in strains containing an mtrR mutation, which increases expression of the MtrC-MtrD-MtrE efflux pump. Moreover, both the mtrR and penB mutations were required to decrease in vivo permeation rates below those observed in the parental strain containing either mtrR or porin mutations alone. Thus, these data demonstrate a novel mechanism of porin-mediated resistance in which mutations in PIB have no affect on antibiotic permeation alone but instead act synergistically with the MtrC-MtrD-MtrE efflux pump in the development of antibiotic resistance in gonococci. PMID:16547016

  5. Determination of serotyping antigens, clonal analysis and genetic characterization of the 4CMenB vaccine antigen genes in invasive Neisseria meningitidis from Western Canada, 2009 to 2013.

    PubMed

    Law, Dennis K S; Zhou, Jianwei; Deng, Saul; Hoang, Linda; Tyrrell, Gregory; Horsman, Greg; Wylie, John; Tsang, Raymond S W

    2014-11-01

    This study examined invasive Neisseria meningitidis recovered from invasive meningococcal disease (IMD) cases in Western Canada between 2009 and 2013. A total of 161 isolates from individual IMD cases were analysed for serogroup, serotype, serosubtype, PorA genotype, multi-locus sequence type and nucleotide sequence of their 4CMenB vaccine antigen genes. Sixty-nine isolates were serogroup B (MenB), 47 were serogroup Y (MenY), 22 were serogroup C (MenC), 19 were serogroup W (MenW), three were serogroup E and one was non-encapsulated. MenC, MenY and MenW were mainly clonal, represented primarily by clonal complex (cc) 11, cc23 or cc167, and cc22, respectively. In contrast, MenB were composed of eight different ccs together with 11 isolates not assigned to any known cc. Antigenic analysis and PorA genotyping confirmed the heterogeneity of MenB isolates, while such results supported the clonal nature of most MenC, MenY and MenW isolates. Thirty-four (21.1%) isolates had at least one gene that encoded one matching vaccine protein component of the 4CMenB vaccine (i.e. PorA P1.4; fHbp variant 1.1; NHBA peptide 2; and NadA-1, -2, or -3). An additional 18 isolates had genes that encoded variant 1 or subfamily B factor H binding proteins of this same vaccine. PMID:25165123

  6. Potential impact of vaccination against Neisseria meningitidis on Neisseria gonorrhoeae in the United States: results from a decision-analysis model.

    PubMed

    Régnier, Stéphane A; Huels, Jasper

    2014-01-01

    Components in 4CMenB vaccine against Neisseria meningitidis serogroup B have shown to potentially cross-react with Neisseria gonorrhoeae. We modeled the theoretical impact of a US 4CMenB vaccination program on gonorrhea outcomes. A decision-analysis model was populated using published healthcare utilization and cost data. A two-dose adolescent vaccination campaign was assumed, with protective immunity starting at age 15 years and a base-case efficacy against gonorrhea of 20%. The 20%-efficacy level is an assumption since no clinical data have yet quantified the efficacy of 4CMenB against Neisseria gonorrhoea. Key outcome measures were reductions in gonorrhea and HIV infections, reduction in quality-adjusted life-years (QALYs) lost, and the economically justifiable price assuming a willingness-to-pay threshold of $75,000 per QALY gained. Adolescent vaccination with 4CMenB would prevent 83,167 (95% credible interval [CrI], 44,600-134,600) gonorrhea infections and decrease the number of HIV infections by 55 (95% CrI, 2-129) per vaccinated birth cohort in the USA. Excluding vaccination costs, direct medical costs for gonorrhea would reduce by $28.7 million (95% CrI, $6.8-$70.0 million), and income and productivity losses would reduce by $40.0 million (95% CrI, $8.2-$91.7 million). Approximately 83% of the reduction in lost productivity is generated by avoiding HIV infections. At a cost of $75,000 per QALY gained, and incremental to the vaccine's effect on meningococcal disease, a price of $26.10 (95% CrI, $9.10-$57.20) per dose, incremental to the price of the meningococcal vaccine, would be justified from the societal perspective. At this price, the net cost per infection averted would be $1,677 (95% CrI, $404-$2,564). Even if the cross-immunity of 4CMenB vaccine and gonorrhea is only 20%, the reduction in gonorrhea infections and associated costs would be substantial. PMID:25483706

  7. Neisseria lactamica Causing a Lung Cavity and Skin Rash in a Renal Transplant Patient: First Report from India

    PubMed Central

    Raina, Adnan; Altaf, Sheikh Shoaib

    2016-01-01

    Neisseria lactamica, a commensal, has been very rarely reported to cause diseases in immunocompromised hosts. In medical literature, there is only one report of a cavitatory lung lesion caused by it. The patient was a kidney transplant recipient. Neisseria lactamica was found to be the cause of his pulmonary cavity and a desquamating rash on feet. With the rapidly spreading medical advance, more and more patients are getting organ transplants, so the population of immunocompromised people is on the rise. We expect more sinister and less expected organisms to cause diseases in patients who have organ transplants. PMID:27006840

  8. Inversion of Moraxella lacunata type 4 pilin gene sequences by a Neisseria gonorrhoeae site-specific recombinase.

    PubMed Central

    Rozsa, F W; Meyer, T F; Fussenegger, M

    1997-01-01

    A plasmid library of Neisseria gonorrhoeae sequences was screened for the ability to mediate recombinations on a sequence containing the Moraxella lacunata type 4 pilin gene invertible region in Escherichia coli. A plasmid containing the N. gonorrhoeae sequence encoding the putative recombinase (gcr) was identified and sequenced. Plasmids containing gcr were able to mediate site-specific recombinations despite a weak amino acid homology to Piv, the native M. lacunata pilin gene invertase. The gcr gene is present only in pathogenic strains of Neisseria tested; however, in our assays gene knockouts of gcr did not alter the variation of surface features that play a role in the pathogenesis of N. gonorrhoeae. PMID:9079926

  9. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06

    PubMed Central

    2010-01-01

    Background The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. Results Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. Conclusion The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed. PMID:21092259

  10. Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species.

    PubMed Central

    Aho, E L; Botten, J W; Hall, R J; Larson, M K; Ness, J K

    1997-01-01

    Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular weights than do gonococcal or meningococcal class I pili. In this study, we have determined the N-terminal amino acid sequence for class II pilin and isolated the expression locus encoding class II pilin from N. meningitidis FAM18. Meningococcal class II pilin displays features typical of type IV pili and shares extensive amino acid identity with the N-terminal conserved regions of other neisserial pilin proteins. However, the deduced class II pilin sequence displays several unique features compared with previously reported meningococcal class I and gonococcal pilin sequences. Class II pilin lacks several conserved peptide regions found within the semivariable and hypervariable regions of other neisserial pilins and displays a large deletion in a hypervariable region of the protein believed to be exposed on the pilus face in gonococcal pili. DNA sequence comparisons within all three regions of the coding sequence also suggest that the meningococcal class II pilin gene is the most dissimilar of the three types of neisserial pilE loci. Additionally, the class II locus fails to display flanking-sequence homology to class I and gonococcal genes and lacks a downstream Sma/Cla repeat sequence, a feature present in all other neisserial pilin genes examined to date. These data indicate meningococcal class II pili represent a structurally distinct class of pili and suggest that relationships among pilin genes in pathogenic Neisseria do not necessarily follow species boundaries. PMID:9199428

  11. Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis.

    PubMed

    Bonnah, Robert A; Muckenthaler, Martina U; Carlson, Hanqian; Minana, Belen; Enns, Caroline A; Hentze, Matthias W; So, Magdalene

    2004-05-01

    Infection by the obligate human pathogens Neisseria meningitidis (MC) and Neisseria gonorrhoeae (GC) reduces the expression of host epithelial cell transferrin receptor 1 (TfR-1) (Bonnah et al., 2000, Cellular Microbiology 2: 207-218). In addition, the rate and pattern of TfR-1 cycling is altered, leading to diminished uptake of Tf-iron by infected host cells. As Tf-iron is important for maintaining iron homeostasis in the eukaryotic cell, these findings raised the possibility that Neisseria infection might affect further pathways of epithelial cell iron metabolism. We used a specialized cDNA microarray platform, the 'IronChip', to investigate the expression of genes involved in iron transport, storage and regulation. We show that mRNA expression of several host genes involved in iron homeostasis is altered. Surprisingly, the general mRNA expression profile of infected cells closely resembled that of uninfected cells grown in an iron-limited environment. An important exception to this profile is TfR-1, the mRNA level of which is strongly reduced. Low TfR-1 expression may be explained in part by decreased activity of the iron-regulatory proteins (IRPs) in MC-infected cells, which may result in the destabilization of TfR-1 mRNA. Intriguingly, low IRP activity contrasts with the decrease in H-ferritin protein levels in infected cells. This finding suggests that low IRP activity may be responsible in part for the decrease in TfR-1 mRNA levels. A discussion of these novel findings in relation to MC infection and virulence is provided. PMID:15056217

  12. Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae.

    PubMed Central

    Birkenmeyer, L; Armstrong, A S

    1992-01-01

    Rapid identification of Neisseria gonorrhoeae in clinical specimens is essential for effective control. Traditional culture requires a minimum of 24 h, and for some specimens harboring gonococci, the gonococci fail to grow or are misidentified. The recently described ligase chain reaction (LCR) is a highly specific and sensitive DNA amplification technique which was evaluated as an alternative to routine culture. Three LCR probe sets were used. Two of the probe sets were directed against the multi-copy Opa genes (Omp-II), while the third set was targeted against the multicopy Pilin genes. Each LCR probe set was evaluated with 260 microorganisms including 136 global isolates of N. gonorrhoeae, 41 isolates of N. meningitidis, and 10 isolates of N. lactamica; 26 nonpathogenic Neisseria strains; and 47 isolates of non-Neisseria species that may reside in clinical specimens. Amplification products were detected by using the IMx LCR format (Abbott Laboratories, Abbott Park, Ill.). Strains of N. gonorrhoeae were assayed at 270 cells per LCR (approximately 6.7 x 10(4) CFU/ml) with the Opa and Pilin probes, producing signals at least 21 and 15 times above background, respectively. In contrast, only background values were observed when testing the probe sets with 124 nongonococcal strains at 1.3 x 10(6) cells per LCR (approximately 3.2 x 10(8) CFU/ml). One hundred urogenital specimens were assayed by LCR, and compared with culture, the three probes were 100% sensitive (8 of 8) and 97.8% specific (90 of 92), resulting in an agreement of 98% (98 of 100). On the basis of the results of these preliminary studies, LCR has the potential to be an accurate and rapid DNA probe assay for the detection of N. gonorrhoeae in clinical specimens. PMID:1452689

  13. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp.

    PubMed

    Snyder, Lori A S; Shafer, William M; Saunders, Nigel J

    2003-01-01

    Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components. PMID:12519193

  14. Use of Restriction Fragment Length Polymorphisms to Investigate Strain Variation Within Neisseria Meningitidis.

    NASA Astrophysics Data System (ADS)

    Williams, Shelley Diane

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty -six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P ^{32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analysed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population. This analysis demonstrates the lack of structure within Neisseria meningitidis due primarily to a heterogenous population and the lack of geographic segregation. The potential utility of this technique as a

  15. Review and International Recommendation of Methods for Typing Neisseria gonorrhoeae Isolates and Their Implications for Improved Knowledge of Gonococcal Epidemiology, Treatment, and Biology

    PubMed Central

    Unemo, Magnus; Dillon, Jo-Anne R.

    2011-01-01

    Summary: Gonorrhea, which may become untreatable due to multiple resistance to available antibiotics, remains a public health problem worldwide. Precise methods for typing Neisseria gonorrhoeae, together with epidemiological information, are crucial for an enhanced understanding regarding issues involving epidemiology, test of cure and contact tracing, identifying core groups and risk behaviors, and recommending effective antimicrobial treatment, control, and preventive measures. This review evaluates methods for typing N. gonorrhoeae isolates and recommends various methods for different situations. Phenotypic typing methods, as well as some now-outdated DNA-based methods, have limited usefulness in differentiating between strains of N. gonorrhoeae. Genotypic methods based on DNA sequencing are preferred, and the selection of the appropriate genotypic method should be guided by its performance characteristics and whether short-term epidemiology (microepidemiology) or long-term and/or global epidemiology (macroepidemiology) matters are being investigated. Currently, for microepidemiological questions, the best methods for fast, objective, portable, highly discriminatory, reproducible, typeable, and high-throughput characterization are N. gonorrhoeae multiantigen sequence typing (NG-MAST) or full- or extended-length porB gene sequencing. However, pulsed-field gel electrophoresis (PFGE) and Opa typing can be valuable in specific situations, i.e., extreme microepidemiology, despite their limitations. For macroepidemiological studies and phylogenetic studies, DNA sequencing of chromosomal housekeeping genes, such as multilocus sequence typing (MLST), provides a more nuanced understanding. PMID:21734242

  16. Identification of Neisseria meningitidis genetic loci involved in the modulation of phase variation frequencies.

    PubMed

    Alexander, Heather L; Rasmussen, Andrew W; Stojiljkovic, Igor

    2004-11-01

    It has been proposed that increased phase variation frequencies in Neisseria meningitidis augment transmissibility and invasiveness. A Himar1 mariner transposon mutant library was constructed in serogroup A N. meningitidis and screened for clones with increased phase variation frequencies. Insertions increasing the frequency of slippage events within mononucleotide repeat tracts were identified in three known phase variation-modulating genes (mutS, mutL, and uvrD), as well as six additional loci (pilP, fbpA, fbpB, NMA1233, and two intergenic regions). The implications of these insertion mutations are discussed. PMID:15501815

  17. Serogroup identification of Neisseria meningitidis: comparison of an antiserum agar method with bacterial slide agglutination.

    PubMed Central

    Craven, D E; Frasch, C E; Robbins, J B; Feldman, H A

    1978-01-01

    A serum agar method for serogrouping Neisseria meningitidis is described and compared with conventional bacterial slide agglutination. There was 93% agreement for 300 strains examined individually by each method. Among strains from serogroups A, B, C, Y, and W135, there was 100% correlation, whereas strains from serogroup 29E (Z') had only 67% correlation. The serum agar method was rapid, as well as easy to perform and interpret. The potential benefits of this method for epidemiological studies and reference laboratories processing large numbers of meningococcal isolates are emphasized. Images PMID:96123

  18. Multicenter Investigation of Gepotidacin (GSK2140944) Agar Dilution Quality Control Determinations for Neisseria gonorrhoeae ATCC 49226.

    PubMed

    Jones, Ronald N; Fedler, Kelley A; Scangarella-Oman, Nicole E; Ross, James E; Flamm, Robert K

    2016-07-01

    Gepotidacin, a novel triazaacenaphthylene antibacterial agent, is the first in a new class of type IIA topoisomerase inhibitors with activity against many biothreat and conventional pathogens, including Neisseria gonorrhoeae To assist ongoing clinical studies of gepotidacin to treat gonorrhea, a multilaboratory quality assurance investigation determined the reference organism (N. gonorrhoeae ATCC 49226) quality control MIC range to be 0.25 to 1 μg/ml (88.8% of gepotidacin MIC results at the 0.5 μg/ml mode). PMID:27161642

  19. Induction of HIV-1 long terminal repeat-mediated transcription by Neisseria gonorrhoeae.

    PubMed

    Chen, Adrienne; Boulton, Ian C; Pongoski, Jodi; Cochrane, Alan; Gray-Owen, Scott D

    2003-03-01

    Gonorrhoea enhances the transmission of HIV through increased viral shedding and the increased probability of seroconversion among previously HIV-negative individuals. However, the mechanism(s) underlying these influences remain poorly understood. We demonstrated that exposure to Neisseria gonorrhoeae induces the nuclear factor kappa B-dependent transcription from the HIV-1 long terminal repeat in derivatives of the Jurkat CD4 T cell line. These data suggest that gonococcal infection directly impacts HIV-1 transmission through the localized stimulation of viral expression. PMID:12598784

  20. High-level azithromycin-resistant Neisseria gonorrhoeae clinical isolate in France, March 2014.

    PubMed

    Bercot, B; Belkacem, A; Goubard, A; Mougari, F; Sednaoui, P; La Ruche, G; Cambau, E

    2014-01-01

    We report the first case in France of a high-level azithromycin-resistant Neisseria gonorrhoeae (minimum inhibitory concentration (MIC) = 96 mg/L) assigned to MLST7363 (NG-MAST ST6360), also resistant to ciprofloxacin and tetracycline but susceptible to ceftriaxone. The patient was a 51 year-old heterosexual man who returned following 1g azithromycin monotherapy. Mechanisms of azithromycin resistance were a C2599T mutation in the four copies of the rrl gene and a novel mutation in the promoter of the mtrR gene. PMID:25394255

  1. Enhancement of recovery of Neisseria meningitidis by gelatin in blood culture media.

    PubMed Central

    Pai, C H; Sorger, S

    1981-01-01

    The efficacy of gelatin for the recovery of Neisseria meningitidis from blood cultures was evaluated in a clinical setting. The organism was isolated from seven patients with meningococcal infections in blood culture media containing 1% gelatin. In contrast, only two blood cultures from these patients were positive in media without gelatin (P less than 0.05). Gelatin did not influence the recovery of other organisms isolated during this study. Conventional blood culture media may be supplemented with gelatin when meningococcemia is suspected. PMID:6790567

  2. The Discovery and Development of a Novel Vaccine to Protect against Neisseria meningitidis Serogroup B Disease

    PubMed Central

    Zlotnick, Gary W; Jones, Thomas R; Liberator, Paul; Hao, Li; Harris, Shannon; McNeil, Lisa K; Zhu, Duzhang; Perez, John; Eiden, Joseph; Jansen, Kathrin U; Anderson, Annaliesa S

    2014-01-01

    Vaccines have had a major impact on the reduction of many diseases globally. Vaccines targeted against invasive meningococcal disease (IMD) due to serogroups A, C, W, and Y are used to prevent these diseases. Until recently no vaccine had been identified that could confer broad protection against Neisseria meningitidis serogroup B (MnB). MnB causes IMD in the very young, adolescents and young adults and thus represents a significant unmet medical need. In this brief review, we describe the discovery and development of a vaccine that has the potential for broad protection against this devastating disease. PMID:25483509

  3. Novel identification of expressed genes and functional classification of hypothetical proteins from Neisseria meningitidis serogroup A.

    PubMed

    Bernardini, Giulia; Arena, Simona; Braconi, Daniela; Scaloni, Andrea; Santucci, Annalisa

    2007-09-01

    To implement the 2-DE database of serogroup A Neisseria meningitidis (MenA) and improve its potential of investigation in bacterial biology, cell extracts were separated by tricine-SDS-PAGE and 131 novel proteins were identified by microLC-ESI-IT-MS/MS. These identifications extended to 404, the number of MenA gene expression products characterized at the proteome level, approximately covering 20% of the total ORFs predicted from genome sequence. This technical approach was particularly useful in ascertaining expression of ribosomal as well as hypothetical proteins. Particular attention was paid to functional characterization of hypothetical proteins by means of software analyses and database searches. PMID:17849410

  4. Neisseria mucosa bursitis. A rare cause of gas in soft tissue.

    PubMed

    Linquist, P R; Linquist, J A

    1988-06-01

    A 24-year-old woman with shoulder pain had an expanding gas-containing radiolucency adjacent to the glenoid. She had been treated with prednisone intermittently for asthma. After unsuccessful attempts at percutaneous drainage, open exploration was performed with resection of a bursa containing gelatinous material and gas bubbles. The culture grew Neisseria mucosa, an organism that infrequently causes infections and is often categorized as nonpathogenic. This case illustrates that soft tissue gas accumulation is not always ominous but may be due to fastidious low virulence organisms. Appropriate surgical drainage and persistent microorganism cultures are required for definitive diagnosis and therapy. PMID:3370877

  5. Draft Genome Sequence of Neisseria gonorrhoeae Strain NG_869 with Penicillin, Tetracycline and Ciprofloxacin Resistance Determinants Isolated from Malaysia.

    PubMed

    Ang, Geik Yong; Yu, Choo Yee; Yong, Delicia Ann; Cheong, Yuet Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2016-06-01

    Gonorrhea is a sexually transmitted infection caused by Neisseria gonorrhoeae and the increasing reports of multidrug-resistant gonococcal isolates are a global public health care concern. Herein, we report the genome sequence of N. gonorrhoeae strain NG_869 isolated from Malaysia which may provide insights into the drug resistance determinants in gonococcal bacteria. PMID:27570316

  6. Identification of Neisseria by electron capture gas-liquid chromatography of metabolites in a chemically defined growth medium.

    PubMed Central

    Morse, C D; Brooks, J B; Kellogg, D S

    1977-01-01

    A dual-purpose study was carried out in an attempt to develop a rapid, sensitive method to identify Neisseria species by gas chromatography and to learn more about the metabolism of these organisms. Sixty-nine isolates of Neisseria were grown in a chemically defined fluid medium; the spent medium was extracted sequentially at pH 2 with diethyl ether and at pH 10 with chloroform. The pH 10 extracts were derivatized with heptafluorobutyric anhydride and analyzed by electron capture gas-liquid chromatography. The resulting spent culture medium electron capture gas-liquid chromatography profiles showed several qualitative and significant quantitative differences among the Neisseria species potentially useful in separating and identifying these organisms. Putrescine and cadaverine which were present in the spent culture medium of some Neisseria, including N. gonorrhoeae, were tentatively identified. Substituting carbohydrates for the chemically defined medium containing glucose in the base medium produced altered profiles with increased quantitative and qualitative differences. PMID:21889

  7. Neisseria meningitidis serogroup 29E (Z') septicemia in a patient with far advanced multiple myeloma (plasma cell leukemia).

    PubMed Central

    Wachter, E; Brown, A E; Kiehn, T E; Lee, B J; Armstrong, D

    1985-01-01

    A case of septicemia caused by Neisseria meningitidis serogroup 29E (Z') in a patient with plasma cell leukemia is described. The patient developed disseminated intravascular coagulation, had a cardiopulmonary arrest, and died. The effects of altered immune function leading to a predisposition to meningococcal infections are discussed. PMID:3920242

  8. The comparative activity of twelve 4-quinolone antimicrobials and sulphadiazine against Neisseria meningitidis.

    PubMed

    Felmingham, D; Wall, R A

    1985-01-01

    The minimal inhibitory concentrations (MICs) of twelve 4-quinolone antimicrobials and sulphadiazine were determined for 160 clinical isolates of Neisseria meningitidis. The bacteria were recovered from nasopharyngeal carriers and cases of meningitis examined in The Gambia, West Africa, during the 1982-83 dry season. MICs were determined using an agar dilution technique in Mueller-Hinton agar supplemented with 10% lysed horse blood. The inoculum used was approximately 10(4) colony-forming units of each organism, contained in 10 microliters of Mueller-Hinton broth, which was applied to the agar plates using a multipoint inoculator. Following inoculation, plates were incubated for 18 h at 37 degrees C in an atmosphere enriched to 5% carbon dioxide. The MIC of each antimicrobial for each isolate examined was determined as the lowest concentration of the antimicrobial which completely inhibited growth of the inoculum. The minimum concentrations of each antimicrobial required to inhibit 50% (MIC50) and 90% (MIC90) of the isolates examined were also determined. The more recently synthesised 4-quinolones were very active against the isolates of Neisseria meningitidis, ciprofloxacin being marginally the most active (MIC90 0.008 micrograms/ml). The activity of the 4-quinolone antimicrobials was unaffected by the MICs of sulphadiazine required by the organisms, which ranged from 0.5- greater than 64 micrograms/ml. PMID:3939218

  9. NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis.

    PubMed

    Masignani, Vega; Balducci, Enrico; Di Marcello, Federica; Savino, Silvana; Serruto, Davide; Veggi, Daniele; Bambini, Stefania; Scarselli, Maria; Aricò, Beatrice; Comanducci, Maurizio; Adu-Bobie, Jeannette; Giuliani, Marzia M; Rappuoli, Rino; Pizza, Mariagrazia

    2003-11-01

    Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE). NarE shows structural homologies with E. coli heat-labile enterotoxin (LT) and cholera toxin (CT) and possesses ADP-ribosylating and NAD-glycohydrolase activities. As in the case of LT and CT, NarE catalyses the transfer of the ADP-ribose moiety to arginine residues. Despite the absence of a signal peptide, the protein is efficiently exported into the periplasm of Neisseria. The narE gene is present in 25 out of 43 strains analysed, is always present in ET-5 and Lineage 3 but absent in ET-37 and Cluster A4 hypervirulent lineages. When present, the gene is 100% conserved in sequence and is inserted upstream of and co-transcribed with the lipoamide dehydrogenase E3 gene. Possible roles in the pathogenesis of N. meningitidis are discussed. PMID:14617161

  10. GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence

    PubMed Central

    Adu-Bobie, Jeannette; Lupetti, Pietro; Brunelli, Brunella; Granoff, Dan; Norais, Nathalie; Ferrari, Germano; Grandi, Guido; Rappuoli, Rino; Pizza, Mariagrazia

    2004-01-01

    GNA33 is a membrane-bound lipoprotein with murein hydrolase activity that is present in all Neisseria species and well conserved in different meningococcal isolates. The protein shows 33% identity to a lytic transglycolase (MltA) from Escherichia coli and has been shown to be involved in the degradation of both insoluble murein sacculi and unsubstituted glycan strands. To study the function of the gene and its role in pathogenesis and virulence, a knockout mutant of a Neisseria meningitidis serogroup B strain was generated. The mutant exhibited retarded growth in vitro. Transmission electron microscopy revealed that the mutant grows in clusters which are connected by a continuous outer membrane, suggesting a failure in the separation of daughter cells. Moreover, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatant revealed that the mutant releases several proteins in the medium. The five most abundant proteins, identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis, belong to the outer membrane protein family. Finally, the mutant showed an attenuated phenotype, since it was not able to cause bacteremia in the infant rat model. We conclude that GNA33 is a highly conserved lipoprotein which plays an important role in peptidoglycan metabolism, cell separation, membrane architecture, and virulence. PMID:15039310

  11. Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.

    PubMed

    Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C

    1990-03-01

    We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis. PMID:2106493

  12. Outer membrane protein (OMP) based vaccine for Neisseria meningitidis serogroup B.

    PubMed

    Pillai, Subramonia; Howell, Alan; Alexander, Kristin; Bentley, B Erin; Jiang, Han-Qian; Ambrose, Karita; Zhu, Duzhang; Zlotnick, Gary

    2005-03-18

    A family of outer membrane lipoproteins of Neisseria meningitidis, LP2086, has been shown to induce serum bactericidal activity against a broad variety of meningococcal strains. Two sub-families of serologically distinct LP2086 proteins (A and B) have been identified. In the present study, we have shown that polyclonal anti-serum against rLP2086 is protective in vivo in an infant rat passive-protection model. Additionally, the LP2086 protein is displayed on the surface of 91% meningococcal strains as measured in a whole cell ELISA using polyclonal anti-sera raised against these proteins. We also demonstrate based on the reactivity of anti-rLP2086 antibody with recombinantly expressed C- and N-terminal fragments of rLP2086 in a Western blot assay that the C-terminal fragment of LP2086 dictates sub-family specificity and the N-terminal fragment determines the family specificity. A formulation containing family A and B of LP2086 potentially would provide broad protection against a majority of Neisseria meningitidis strains. PMID:15755596

  13. Changing antimicrobial resistance profiles among Neisseria gonorrhoeae isolates in Italy, 2003 to 2012.

    PubMed

    Carannante, Anna; Renna, Giovanna; Dal Conte, Ivano; Ghisetti, Valeria; Matteelli, Alberto; Prignano, Grazia; Impara, Giampaolo; Cusini, Marco; D'Antuono, Antonietta; Vocale, Caterina; Antonetti, Raffaele; Gaino, Marina; Busetti, Marina; Latino, Maria Agnese; Mencacci, Antonella; Bonanno, Carmen; Cava, Maria Carmela; Giraldi, Cristina; Stefanelli, Paola

    2014-10-01

    The emergence of Neisseria gonorrhoeae isolates displaying resistance to antimicrobial agents is a major public health concern and a serious issue related to the occurrence of further untreatable gonorrhea infections. A retrospective analysis on 1,430 N. gonorrhoeae isolates, collected from 2003 through 2012, for antimicrobial susceptibility by Etest and molecular characterization by Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) was carried out in Italy. Azithromycin-resistant gonococci decreased from 14% in 2007 to 2.2% in 2012. Similarly, isolates with high MICs to cefixime (>0.125 mg/liter) decreased from 11% in 2008 to 3.3% in 2012. The ciprofloxacin resistance rate remains quite stable, following an increasing trend up to 64% in 2012. The percentage of penicillinase-producing N. gonorrhoeae (PPNG) significantly declined from 77% in 2003 to 7% in 2012. A total of 81 multidrug-resistant (MDR) gonococci were identified, showing 11 different antimicrobial resistance patterns. These were isolated from men who have sex with men (MSM) and from heterosexual patients. Two sequence types (STs), ST661 and ST1407, were the most common. Genogroup 1407, which included cefixime-, ciprofloxacin-, and azithromycin-resistant isolates, was found. In conclusion, a change in the antimicrobial resistance profiles among gonococci was identified in Italy together with a percentage of MDR isolates. PMID:25070110

  14. Pili-mediated Interactions between Neisseria Gonorrhoeae Bacteria are the Driving Mechanism of Microcolony Merging

    NASA Astrophysics Data System (ADS)

    Poenisch, Wolfram; Weber, Christoph; Alzurqa, Khaled; Nasrollahi, Hadi; Biais, Nicolas; Zaburdaev, Vasily; Collective Dynamics of Cells Team; Mechano-Micro-Biology Lab Team

    2015-03-01

    During the early infection with Neisseria gonorrhoeae the bacteria form microcolonies consisting of a few hundreds to a few thousands of cells. The formation of colonies is mediated by type IV pili, thin and long filaments that are also involved in the motion of single cells over a substrate. A related process causes attractive cell-cell-interactions. While the motion of single cells has been extensively studied during the past years, the physical principles driving the growth of these colonies are poorly understood. One key mechanism of colony growth is coalescence of smaller colonies. Therefore we experimentally examine the process of merging of two Neisseria gonorrhoeae colonies. We develop a theoretical microscopic model of single cells interacting solely by their pili. The experimental data and the results obtained from our model are in excellent quantitative agreement. We observe a fast initial approach of the two merging colonies within a few minutes, that is followed by a slow relaxation of the colony shape with a characteristic time of several hours. These findings suggest that pili-mediated interactions are the primary driving mechanism of the microcolony merging process.

  15. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.

    PubMed

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A; Ingalls, Robin R

    2014-05-01

    NOD1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. We examined the ability of NOD1 and NOD2 to recognize Neisseria gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. Gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2. We identified a number of cytokines and chemokines that were differentially expressed in wild type versus NOD2-deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling up-regulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. Thus, NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  16. Presenilin/gamma-secretase cleaves CD46 in response to Neisseria infection.

    PubMed

    Weyand, Nathan J; Calton, Christine M; Higashi, Dustin L; Kanack, Kristen J; So, Magdalene

    2010-01-15

    CD46 is a type I transmembrane protein with complement and T cell regulatory functions in human cells. CD46 has signaling and receptor properties in immune and nonimmune cells, many of which are dependent on the expression of cytoplasmic tail (cyt) isoforms cyt1 or cyt2. Little is known about how cyt1 and cyt2 mediate cellular responses. We show that CD46-cyt1 and CD46-cyt2 are substrates for presenilin/gamma-secretase (PS/gammaS), an endogenous protease complex that regulates many important signaling proteins through proteolytic processing. PS/gammaS processing of CD46 releases immunoprecipitable cyt1 and cyt2 tail peptides into the cell, is blocked by chemical inhibitors, and is prevented in dominant negative presenilin mutant cell lines. Two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, stimulate PS/gammaS processing of CD46-cyt1 and CD46-cyt2. This stimulation requires type IV pili and PilT, the type IV pilus retraction motor, implying that mechanotransduction plays a role in this event. We present a model for PS/gammaS processing of CD46 that provides a mechanism by which signals are transduced via the cyt1 and cyt2 tails to regulate CD46-dependent cellular responses. Our findings have broad implications for understanding the full range of CD46 functions in infection and noninfection situations. PMID:20018629

  17. Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase.

    PubMed

    Pfeffer, John M; Weadge, Joel T; Clarke, Anthony J

    2013-01-25

    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  18. Incidence, epidemiology and evolution of reduced susceptibility to ciprofloxacin in Neisseria gonorrhoeae in Korea.

    PubMed

    Lee, Kyungwon; Chong, Yunsop; Erdenechemeg, L.; Soon Song, Kyung; Hun Shin, Kwang

    1998-01-01

    OBJECTIVE: To verify the decrease of susceptibility to ciprofloxacin in Neisseria gonorrhoeae, determine the size of the recently reported new beta-lactamase plasmid and explain the high prevalence of penicillinase-producing Neisseria gonorrhoeae (PPNG). METHODS: Gonococci were isolated from prostitutes in Korea. Antimicrobial susceptibility was tested by NCCLS disk diffusion and agar dilution methods. Plasmid was isolated by an alkaline lysis method. Patterns of Nhel-digested genomic DNA were compared after pulsed-field gel electrophoresis (PFGE). RESULTS: The minimum inhibitory concentration of ciprofloxacin for 50% of the isolates rose from 0.015 mg/L in 1993 to 0.12 mg/L in 1996. The proportion of PPNG remained at 70% or over during the 5-year period. The size of a novel beta-lactamase plasmid, first reported in 1994, was determined to be approximately 3.2 MDa, and 48% of the PPNG isolates contained it. Twelve of 50 isolates had the same PFGE pattern and nine others another pattern. CONCLUSION: The rapid decrease of fluoroquinolone-susceptible gonococci suggests that in the near future the drug may become less useful for gonorrhea treatment. The new 3.2-MDa plasmid may have been introduced as a result of the recent increase in overseas travel. The PFGE pattern suggests that high prevalence of PPNG may be due to dissemination of a few resistant clones among the high-risk groups. PMID:11864261

  19. Study of the Moraxella Group I. Genus Moraxella and the Neisseria catarrhalis Group1

    PubMed Central

    Baumann, P.; Doudoroff, M.; Stanier, R. Y.

    1968-01-01

    A number of strains of oxidase-positive moraxellas and of neisserias related to Neisseria catarrhalis were characterized with respect to a number of nutritional and physiological properties and could be assigned to several species or species groups on the basis of their phenotypic traits. This grouping was consistent with that established by Bövre on the basis of transformation frequencies for streptomycin resistance. It is proposed to reserve the generic name Moraxella for the oxidase-positive rodshaped organisms, and a redescription of the genus is offered. Following the recent taxonomic proposals of Bövre and Henriksen, the specific name Moraxella osloensis is applied to the nutritionally unexacting strains that accumulate poly-β-hydroxybutyrate as carbon reserve. The nutritionally exacting strains are assigned to three distinct groups which can be regarded as separate species or as varieties of M. lacunata. The epithets applicable to these groups appear to be lacunata, nonliquefaciens, and bovis. The “false neisserias” could be assigned to at least three subgroups, one of which constitutes the clearly defined entity, N. catarrhalis, which could be distinguished from N. caviae and N. ovis. Images PMID:4866103

  20. Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.

    PubMed Central

    Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C

    1990-01-01

    We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis. Images PMID:2106493

  1. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction.

    PubMed

    John, Constance M; Liu, Mingfeng; Jarvis, Gary A

    2009-03-01

    Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically. PMID:18832773

  2. Analysis of protein binding to the Sma/Cla DNA repeat in pathogenic Neisseriae.

    PubMed Central

    Wainwright, L A; Frangipane, J V; Seifert, H S

    1997-01-01

    Antigenic variation of the pilus is an essential component of Neisseria gonorrhoeae pathogenesis. Unidirectional recombination of silent pilin DNA into an expressed pilin gene allows for substantial sequence variation of this highly immunogenic surface structure. While the RecA protein is required for pilin gene recombination, the factors which maintain the silent reservoir of pilin sequences and/or allow unidirectional recombination from silent to expression loci remain undefined. We have previously shown that a conserved sequence at the 3'end of all pilin loci (the Sma/Cla repeat) is required to be present at the expression locus for efficient recombination from the silent loci. In this study, the binding of gonococcal proteins to this DNA sequence was investigated. Gel mobility shift assays and competition experiments using deletion derivatives of the repeat, show that multiple activities bind to different regions of the Sma/Cla repeat and define the boundaries of the binding sequences. Moreover, only the pathogenic Neisseria harbor proteins which specifically bind to this repeat, suggesting a correlation between the expression of these DNA binding proteins and the potential to cause disease. PMID:9060430

  3. Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability.

    PubMed Central

    Abadi, F J; Carter, P E; Cash, P; Pennington, T H

    1996-01-01

    Rifampin-resistant (Rifr) Neisseria meningitidis strains are known to have single point mutations in the central conserved regions of the rpoB gene. We have demonstrated two distinct resistance phenotypes in strains with identical mutations in this region, an intermediate level of resistance in Rifr clinical isolates and a high level of resistance in mutants selected in vitro. The possible role of membrane permeability in the latter was investigated by measuring MICs in the presence of Tween 80; values for high-level-resistance mutants were reduced to intermediate levels, whereas those for intermediate-level-resistance strains were unaffected. The highly resistant mutants were also found to have increased resistance to Triton X-100 and gentian violet. Sequencing of the meningococcal mtrR gene and its promoter region (which determine resistance to hydrophobic agents in Neisseria gonorrhoeae) from susceptible or intermediate strains and highly resistant mutants generated from them showed no mutation within this region. Two-dimensional gel electrophoresis of two parent and Rif mutant strains showed identical shifts in the pI of one protein, indicating that differences between the parent and the highly Rifr mutant are not confined to the rpoB gene. These results indicate that both permeability and rpoB mutations play a role in determining the resistance of N. meningitidis to rifampin. PMID:8851587

  4. Mechanism of Action of Neisseria gonorrhoeae O-Acetylpeptidoglycan Esterase, an SGNH Serine Esterase*

    PubMed Central

    Pfeffer, John M.; Weadge, Joel T.; Clarke, Anthony J.

    2013-01-01

    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  5. 16th International Pathogenic Neisseria Conference: recent progress towards effective meningococcal disease vaccines.

    PubMed

    Gorringe, Andrew R; van Alphen, Loek

    2009-02-01

    The report describes developments in meningococcal disease vaccines presented at the 16th International Pathogenic Neisseria Conference, Rotterdam, 7-12 September 2008. Great progress has been made by the Meningitis Vaccine Project to provide an affordable and effective serogroup A conjugate vaccine for use in the meningitis belt of Sub-Saharan Africa. The vaccine has been shown to be safe and to produce excellent immune response in phase 2 clinical trials in India and Africa in the target populations and will be rolled out to the worst affected countries from 2009. This vaccine has the potential to make a huge impact on public health in this region. This conference heard that the use of an epidemic strain-specific outer membrane vesicle (OMV) vaccine in New Zealand has been discontinued. Views for and against this decision were presented. Several MenB vaccines have progressed to clinical evaluation. The most advanced are the Novartis five recombinant protein variants and the Wyeth vaccine based on two factor H binding protein variants. Promising results from both vaccines with genetically-detoxified lipooligosaccharide and overexpressed heterologous antigens, OMV's from Neisseria lactamica and recombinant Opa proteins. PMID:19684470

  6. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    PubMed

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector. PMID:10648099

  7. The porA gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation.

    PubMed

    Suker, J; Feavers, I M; Achtman, M; Morelli, G; Wang, J F; Maiden, M C

    1994-04-01

    Molecular analyses were applied to the genes encoding variants of the serosubtyping antigen, the class 1 outer membrane protein (PorA), from 55 serogroup A Neisseria meningitidis strains. These genes were evolutionarily stable and exhibited a limited range of genetic variation, primarily generated by recombination. Translation of the gene sequences revealed a total of 19 distinct amino acid sequences in the variable regions of the protein, 6 of which were not recognized by currently available serosubtyping monoclonal antibodies. Knowledge of these amino acid sequences permitted a rational re-assignment of serosubtype names. Comparison of the complete genes with porA gene sequences from serogroup B and C meningococci showed that serogroup A possessed a limited number of the possible porA genes from a globally distributed gene pool. Each serogroup A subgroup was characterized by one of four porA gene types, probably acquired upon subgroup divergence, which was stable over periods of decades and during epidemiological spread. Comparison with other variable genes (pil and iga) indicated that the three alleles were independently assorted within the subgroup, suggesting that their gene types were older than the subgroups in which they occurred. PMID:8057850

  8. Identification of Neisseria gonorrhoeae by the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System Is Improved by a Database Extension.

    PubMed

    Schweitzer, Valentijn A; van Dam, Alje P; Hananta, I Putu Yuda; Schuurman, Rob; Kusters, Johannes G; Rentenaar, Rob J

    2016-04-01

    Identification ofNeisseria gonorrhoeaeby the Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system may be affected by "B consistency categorization." A supplementary database of 17N. gonorrhoeaemain spectra was constructed. Twelve of 64N. gonorrhoeaeidentifications were categorized with B consistency, which disappeared using the supplementary database. Database extension did not result in misidentification ofNeisseria meningitidis. PMID:26763972

  9. Erythrocyte gangliosides act as receptors for Neisseria subflava: identification of the Sia-1 adhesin.

    PubMed Central

    Nyberg, G; Strömberg, N; Jonsson, A; Karlsson, K A; Normark, S

    1990-01-01

    Neisseria gonorrhoeae was recently shown to bind to a subset of lactose-containing glycolipids (N. Strömberg, C. Deal, G. Nyberg, S. Normark, M. So, and K.-A. Karlsson, Proc. Natl. Acad. Sci. USA 85:4902-4906, 1988). A number of commensal Neisseria strains were also shown to be lactose binders. In addition, Neisseria subflava bound to immobilized gangliosides, such as hematoside and sialosyl paragloboside, carrying the NeuAc alpha 2-3Gal beta 1-4Glc sequence. To a lesser extent, N. gonorrhoeae also bound to this receptor in vitro. In N. subflava GN01, this binding property mediated agglutination of human erythrocytes in a neuraminidase-sensitive fashion. Nitrosoguanidine-induced nonhemagglutinative mutants of N. subflava GN01 had lost the ability to bind hematoside and sialosylparagloboside but remained able to bind lactosylceramide and gangliotetraosylceramide. These mutants fell into three classes with respect to their outer membrane protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Class 1 mutants were identical to the parent strain save for the loss of a 27-kilodalton (kDa) protein. Class 2 mutants showed an outer membrane protein profile identical to that of the wild type, whereas mutants belonging to class 3 showed a number of changes, including the apparent absence of the 27-kDa protein. The 27-kDa protein from N. subflava GN01 was purified from the supernatant. A polyclonal antiserum to the purified Sia-1 protein as well as a Sia-1-specific monoclonal antibody inhibited hemagglutination by strain GN01. The purified Sia-1 protein in the presence of diluted anti-Sia-1 antiserum mediated a neuraminidase-sensitive hemagglutination. The purified Sia protein from a class 2 mutant was not able to hemagglutinate when cross-linked with antibodies, suggesting that it is a mutant form of Sia-1 affected in the receptor-binding site. Immunoelectron microscopy with a Sia-1-specific monoclonal antibody revealed that the adhesin was

  10. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  11. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor.

    PubMed

    Kaur, Gurpreet; Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-04-15

    Herein, we report the development of a surface plasmon resonance (SPR) based biosensor for the detection of Neisseria meningitidis DNA employing Kretschmann configuration. Highly c-axis oriented ZnO thin film of thickness 200nm was deposited on gold coated glass prisms by RF sputtering technique. Single stranded probe DNA was immobilized on the surface of ZnO thin film by physical adsorption method. SPR reflectance curves were recorded as a function of incident angle of He-Ne laser beam using a laboratory assembled SPR setup. The prepared biosensor exhibits a linear response towards target meningitidis DNA over the concentration range from 10 to 180 ng/μl with a high sensitivity of about 0.03°/(ng/μl) and a low limit of detection of 5 ng/μl. The SPR biosensor demonstrated high specificity and long shelf life thus, pointing towards a promising application in the field of meningitidis diagnosis. PMID:26599479

  12. Characteristics of antisera against periodate-resistant membrane antigens from Neisseria gonorrhoeae.

    PubMed

    Røe, S F; Eggset, G; Iversen, O J; Maeland, J A

    1980-12-01

    Crude outer membrane (OM) was prepared by extraction of bacteria of the Neisseria gonorrhoeae strains 8551. V, and VII, with an EDTA-containing buffer. The preparations contained the lipopolysaccharide (LPS) and at least 10 proteins as shown by SDS-polyacrylamide gel electrophoresis. Immunization of rabbits with untreated OM resulted in production of antibodies against several antigens, including LPS. Antisera raised against periodate-treated OM did not contain antibodies against LPS. These latter antisera agglutinated heat-treated (100 degrees C, 60 min) gonoccal cells by means of antibodies to one or more common agglutinogens and against a strain-specific agglutinogen that was susceptible to digestion with proteolytic enzymes. Both side agglutination and a plate agglutination test could be used to detect antibodies against these agglutinogens. PMID:6261525

  13. Characterization of epidemic Neisseria meningitidis serogroup C strains in several Brazilian states.

    PubMed Central

    Sacchi, C T; Tondella, M L; de Lemos, A P; Gorla, M C; Berto, D B; Kumiochi, N H; Melles, C E

    1994-01-01

    Epidemic strains of the Neisseria meningitidis C:2b:P1.3 electrophoretic type 11 complex were responsible for an outbreak in Curitiba, Parana State, Brazil, from 1990 to 1991. Strains of this complex were also isolated in other Brazilian states and were responsible for a meningococcal disease epidemic in São Paulo State in 1990. Serotyping both with monoclonal antibodies and by multilocus enzyme electrophoresis was useful for typing these epidemic strains related to the increased incidence of meningococcal disease. The genetic similarity of members of the electrophoretic type 11 complex was confirmed by the ribotyping method by using EcoRI or ClaI endonuclease restriction enzymes. Images PMID:7929775

  14. Evaluation of the Microcult system for isolating and identifying Neisseria gonorrhoeae.

    PubMed Central

    Williams, R J; Ratnatunga, C S; Hamilton-Miller, J M; Brumfitt, W

    1978-01-01

    Specimens from 95 patients attending a venereal diseases clinic were examined for gonococci by three methods--a conventional culture technique using modified Thayer-Martin medium, microscopy of a Gram-stained direct smear, and the Microcult system. For 56% of the specimens the results by all three methods agreed. Assuming the results obtained by culture on Thayer-Martin medium to be correct, the largest source of error was due to false-positive results: microscopy gave 26 and Microcult gave 15 such results. False-negative results were less common: Microcult gave 14, microscopy six. Microcult gave positive results more quickly than the conventional Thayer-Martin cultural method, but the gonococci were difficult to isolate by subculture from the Microcult culture pads. The Microcult medium was not absolutely specific for Neisseria gonorrhoeae. Nevertheless, the Microcult test may well prove to be a useful adjunct to the diagnosis of gonorrhoea, especially when laboratory facilities are not readily available. PMID:417090

  15. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis.

    PubMed

    Power, P M; Roddam, L F; Rutter, K; Fitzpatrick, S Z; Srikhanta, Y N; Jennings, M P

    2003-08-01

    Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pglB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pglB2 polymorphisms were not found in strain C311 musical sharp 3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311 musical sharp 3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating

  16. [Electron microscopic representation of the pili structure of Neisseria gonorrhoeae (author's transl)].

    PubMed

    Müller, G; Klug, H

    1979-01-01

    The technique of negative staining and ultra-thin section has been used for investigations of 30 Neisseria gonorrhoeae strains in order to represent the structure of pili (fimbriae) electron microscopically. The staining of the gonococci was effected by phosphotungstic acid (0,5%). The pili ascertained were 30 to 60 A thick. In course of in vitro passages up to 10. subculture morphological changes of the pili have been observed. The application of trisbuffer or solution of Hylase (hyaluronidase) showed not any improved results in comparison with buffered NaCl-solution as suspension medium. The investigation of ultra-thin sections showed that the structure of the pili could be exhibited not clearly. Therefore, these technique seems to be not suitable for qualitative representative of the pili. PMID:86464

  17. Evaluation of the phadebact gonococcus test, a coagglutination procedure for confirmation of Neisseria gonorrhoeae.

    PubMed Central

    Lewis, J S; Martin, J E

    1980-01-01

    Rapid and accurate immunological confirmation of presumptively positive gonococci could be facilitated with the Phadebact Gonococcus Test, a slide coagglutination procedure. The test was compared with carbohydrate utilization and fluorescent-antibody tests on 235 clinical isolates. With the coagglutination procedure, 97.1% of the isolates were identified as compared with 93.1% by carbohydrate utilization and 98.7% by fluorescent antibody. The Phadebact test was highly specific, showing no cross-reactions with 55 other Neisseria species or with 50 miscellaneous organisms occasionally found growing on selective culture media. Because of its high sensitivity and specificity, ease of performance, and ability to provide results in 2 to 3 min, this procedure provides a suitable alternative to the carbohydrate utilization and fluorescent-antibody tests for confirmation of N. gonorrhoeae. PMID:6766952

  18. Specificity of the immune response to the group B polysaccharide of Neisseria meningitidis.

    PubMed

    Lifely, M R; Esdaile, J

    1991-11-01

    A panel of monoclonal antibodies (mAb) and polyclonal sera of murine, human and equine origin, of IgM isotype and with specificity for Neisseria meningitidis group B polysaccharide, an alpha(2----8)-linked homopolymer of sialic acid, were examined for their antigenic and biological specificities. The nature of the antigenic determinants on B polysaccharide was investigated using a series of N-acyl derivatives of B polysaccharide, two sialic acid polymers containing alpha(2----9)-linkages and a series of polynucleotides. The panel of antibodies recognized an array of unrelated antigenic determinants on the B polysaccharide, despite its structural simplicity, and all but one were highly effective in an in vitro bactericidal assay and/or in an in vivo murine passive protection model. There was no evidence that B polysaccharide induced antibody capable of blocking biological activity (blocking antibody). PMID:1722773

  19. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.

    PubMed

    Lei, Hsiang-Ting; Chou, Tsung-Han; Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Do, Sylvia V; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2014-01-01

    Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel. PMID:24901251

  20. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    PubMed

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  1. Evidence for a reserpine-affected mechanism of resistance to tetracycline in Neisseria gonorrhoeae.

    PubMed

    Ruiz, Joaquim; Ribera, Anna; Jurado, Angels; Marco, Francesc; Vila, Jordi

    2005-10-01

    The presence of a reserpine-affected mechanism of tetracycline resistance was investigated in 17 Neisseria gonorrhoeae clinical isolates. To establish this fact the MIC of tetracycline in the presence and absence of reserpine was determined, and, in addition, mechanisms of tetracycline resistance were analyzed by PCR. The results showed that reserpine affects the MIC of tetracycline at least 4-fold in all isolates, including those containing the tetM gene. An inhibitory effect of reserpine against the MtrCDE efflux system was ruled out by using strains either with an inactive or with an unrepressed MtrCDE system. The results suggest the presence of a constitutive system of resistance to tetracycline, by a possible efflux pump, which may be inhibited by reserpine. Further studies are required to determine the exact nature of the action of reserpine on the MIC of tetracycline. PMID:16309425

  2. Neisseria gonorrhoeae enhances infection of dendritic cells by HIV type 1.

    PubMed

    Zhang, Jizhong; Li, Geling; Bafica, Andre; Pantelic, Milica; Zhang, Pei; Broxmeyer, Hal; Liu, Ying; Wetzler, Lee; He, Johnny J; Chen, Tie

    2005-06-15

    Clinical studies indicate that Neisseria gonorrhoeae (gonococci (GC)) has the capacity to enhance HIV type 1 (HIV-1) infection. We studied whether GC enhances HIV infection of activated dendritic cells (DCs). The results show that GC can dramatically enhance HIV replication in human DCs during coinfection. The GC component responsible for HIV infection enhancement may be peptidoglycan, which activates TLR2. TLR2 involvement is suggested by bacterial lipoprotein, a TLR2-specific inducer, which stimulates a strong enhancement of HIV infection by human DCs. Moreover, participation of TLR2 is further implicated because GC is unable to stimulate expression of HIV in DCs of TLR2-deficient HIV-1-transgenic mice. These results provide one potential mechanism through which GC infection increases HIV replication in patients infected with both GC and HIV. PMID:15944306

  3. Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs.

    PubMed Central

    De Gregorio, Eliana; Abrescia, Chiara; Carlomagno, M Stella; Di Nocera, Pier Paolo

    2003-01-01

    Approx. 2% of the Neisseria meningitidis genome consists of small DNA insertion sequences known as Correia or nemis elements, which feature TIRs (terminal inverted repeats) of 26-27 bp in length. Elements interspersed with coding regions are co-transcribed with flanking genes into mRNAs, processed at double-stranded RNA structures formed by TIRs. N. meningitidis RNase III (endoribonuclease III) is sufficient to process nemis+ RNAs. RNA hairpins formed by nemis with the same termini (26/26 and 27/27 repeats) are cleaved. By contrast, bulged hairpins formed by 26/27 repeats inhibit cleavage, both in vitro and in vivo. In electrophoretic mobility shift assays, all hairpin types formed similar retarded complexes upon incubation with RNase III. The levels of corresponding nemis+ and nemis- mRNAs, and the relative stabilities of RNA segments processed from nemis+ transcripts in vitro, may both vary significantly. PMID:12826014

  4. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent.

    PubMed

    Niebla, O; Alvarez, A; Martín, A; Rodríguez, A; Delgado, M; Falcón, V; Guillén, G

    2001-05-14

    The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions. PMID:11348724

  5. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis.

    PubMed

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna; Prabhala, Bala K; Mirza, Osman

    2016-01-01

    Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the Neisseria meningitidis proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates. PMID:27438044

  6. The class III ribonucleotide reductase from Neisseria bacilliformis can utilize thioredoxin as a reductant

    PubMed Central

    Wei, Yifeng; Funk, Michael A.; Rosado, Leonardo A.; Baek, Jiyeon; Drennan, Catherine L.; Stubbe, JoAnne

    2014-01-01

    The class III anaerobic ribonucleotide reductases (RNRs) studied to date couple the reduction of ribonucleotides to deoxynucleotides with the oxidation of formate to CO2. Here we report the cloning and heterologous expression of the Neisseria bacilliformis class III RNR and show that it can catalyze nucleotide reduction using the ubiquitous thioredoxin/thioredoxin reductase/NADPH system. We present a structural model based on a crystal structure of the homologous Thermotoga maritima class III RNR, showing its architecture and the position of conserved residues in the active site. Phylogenetic studies suggest that this form of class III RNR is present in bacteria and archaea that carry out diverse types of anaerobic metabolism. PMID:25157154

  7. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance.

    PubMed

    Ezewudo, Matthew N; Joseph, Sandeep J; Castillo-Ramirez, Santiago; Dean, Deborah; Del Rio, Carlos; Didelot, Xavier; Dillon, Jo-Anne; Selden, Richard F; Shafer, William M; Turingan, Rosemary S; Unemo, Magnus; Read, Timothy D

    2015-01-01

    Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups. PMID:25780762

  8. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis.

    PubMed

    Reinhardt, Anika; Yang, You; Claus, Heike; Pereira, Claney L; Cox, Andrew D; Vogel, Ulrich; Anish, Chakkumkal; Seeberger, Peter H

    2015-01-22

    Neisseria meningitidis is a leading cause of bacterial meningitis worldwide. We studied the potential of synthetic lipopolysaccharide (LPS) inner core structures as broadly protective antigens against N. meningitidis. Based on the specific reactivity of human serum antibodies to synthetic LPS cores, we selected a highly conserved LPS core tetrasaccharide as a promising antigen. This LPS inner core tetrasaccharide induced a robust IgG response in mice when formulated as an immunogenic glycoconjugate. Binding of raised mouse serum to a broad collection of N. meningitidis strains demonstrated the accessibility of the LPS core on viable bacteria. The distal trisaccharide was identified as the crucial epitope, whereas the proximal Kdo moiety was immunodominant and induced mainly nonprotective antibodies that are responsible for lack of functional protection in polyclonal serum. Our results identified key antigenic determinants of LPS core glycan and, hence, may aid the design of a broadly protective immunization against N. meningitidis. PMID:25601073

  9. Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins

    PubMed Central

    Morand, Philippe C; Bille, Emmanuelle; Morelle, Sandrine; Eugène, Emmanuel; Beretti, Jean-Luc; Wolfgang, Matthew; Meyer, Thomas F; Koomey, Michael; Nassif, Xavier

    2004-01-01

    Pathogenic Neisseria express type IV pili (tfp), which have been shown to play a central role in the interactions of bacteria with their environment. The regulation of piliation thus constitutes a central element in bacterial life cycle. The PilC proteins are outer membrane-associated proteins that have a key role in tfp biogenesis since PilC-null mutants appear defective for fibre expression. Moreover, tfp are also subjected to retraction, which is under the control of the PilT nucleotide-binding protein. In this work, we bring evidence that fibre retraction involves the translocation of pilin subunits to the cytoplasmic membrane. Furthermore, by engineering meningococcal strains that harbour inducible pilC genes, and with the use of meningococcus–cell interaction as a model for the sequential observation of fibre expression and retraction, we show that the PilC proteins regulate PilT-mediated fibre retraction. PMID:15103324

  10. Proteins that appear to be associated with pili in Neisseria gonorrhoeae.

    PubMed Central

    Muir, L L; Strugnell, R A; Davies, J K

    1988-01-01

    Pili of Neisseria gonorrhoeae are thought to be composed entirely of identical subunits, called pilin, that self-assemble in vitro. Previous pilus purification methods have relied on this latter point, and dissociation and reassociation of pilin subunits has yielded pilin preparations of high purity. Such a procedure could result in the loss of any pilus-associated proteins. We have developed a procedure for the isolation of intact native pili in a deoxycholate-urea buffer in which the pili are fractionated on the basis of size and hydrophobicity. Electron microscopy indicates that the pili are largely free from outer membrane vesicles and other cellular material. Electrophoretic analysis has shown that a number of proteins copurify with pilin. Antibodies to these proteins could be removed from an antiserum against whole piliated cells by absorption with piliated cells but not by absorption with nonpiliated cells. Hence, our results indicate that these proteins could be pilus associated. Images PMID:2898429

  11. A Case of Diabetic Mellitus Foot Infection by a Newly Reported Neisseria Skkuensis: Case Report.

    PubMed

    Cho, Chi Hyun; Lee, Chang Kyu; Nam, Myung-Hyun; Yoon, Soo-Young; Lim, Chae Seung; Cho, Yunjung; Kim, Young Kee

    2015-01-01

    In pus and wound samples collected from the right second toe of a 61-year-old woman with diabetes mellitus (DM), gram-negative diplococci bacterium was observed. However, the bacterium could not be identified by conventional microbiological methods and mass spectrometry. In the partial 16S rRNA gene sequence analysis, the bacterium showed a 100% identity match with GenBank sequence FJ0763637.1 (Neisseria skkuensis). N. skkuensis, SMC-A9199 strain, was reported as a novel species in 2010 based on its phenotypic characteristics and the 16S rRNA gene sequence, which was isolated from the blood and wound pus of a DM patient with a foot ulcer. The second reported N. skkuensis was identified from the blood cultures of a patient with endocarditis. To the best of our knowledge, this is only the third report of N. skkuensis. PMID:26275699

  12. The factor H binding protein of Neisseria meningitidis interacts with xenosiderophores in vitro.

    PubMed

    Veggi, Daniele; Gentile, Maria A; Cantini, Francesca; Lo Surdo, Paola; Nardi-Dei, Vincenzo; Seib, Kate L; Pizza, Mariagrazia; Rappuoli, Rino; Banci, Lucia; Savino, Silvana; Scarselli, Maria

    2012-11-20

    The factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis that confers to the bacterium the ability to resist killing by human serum. The determination of its three-dimensional structure revealed that the carboxyl terminus of the protein folds into an eight-stranded β barrel. The structural similarity of this part of the protein to lipocalins provided the rationale for exploring the ability of fHbp to bind siderophores. We found that fHbp was able to bind in vitro siderophores belonging to the cathecolate family and mapped the interaction site by nuclear magnetic resonance. Our results indicated that the enterobactin binding site was distinct from the site involved in binding to human factor H and stimulates new hypotheses about possible multiple activities of fHbp. PMID:23121397

  13. Antimicrobial susceptibility testing of Neisseria gonorrhoeae and implications for epidemiology and therapy.

    PubMed Central

    Fekete, T

    1993-01-01

    Antimicrobial susceptibility testing (AST) of Neisseria gonorrhoeae has been under development since the early days of antimicrobial agents. However, it is rarely applied to clinical isolates today. The history of the various in vitro tests to determine the susceptibility of N. gonorrhoeae to antibiotics is rich with evidence that these results predict response to therapy for almost all agents tested. Further, AST is a useful and important aspect of strain characterization and disease epidemiology in conjunction with the more specific but laborious techniques of auxotyping, serotyping, and plasmid analysis. Current technology has overcome many of the objections to AST for N. gonorrhoeae with standardization of test media and the development of an accurate disk diffusion AST method that is suited to most clinical laboratories regardless of volume or level of technical expertise. Ironically, the very low level of resistance to the current primary treatment strategy in the United States, ceftriaxone or another potent cephalosporin, makes the use of AST somewhat superfluous. PMID:8457978

  14. Purification of capsular polysaccharide from Neisseria meningitidis serogroup C by liquid chromatography.

    PubMed

    Pato, Tânia Pinheiro; Barbosa, Antonio de Pádua R; da Silva Junior, José Godinho

    2006-03-01

    Neisseria meningitidis serogroup C capsular polysaccharide (MenCPS) is an important antigen against meningococcal infection. This paper describes a new purification methodology employing liquid chromatography that resulted in a polysaccharide showing the characteristics recommended by the World Health Organization for vaccine purposes. In this method, steps of the traditional procedure that yield low recovery and use toxic materials were modified. The present process consists in the following steps: (1) continuous flow centrifugation of the culture for removal of the cells; (2) supernatant concentration by tangential filtration (100 kDa cutoff); (3) addition of 0.5% DOC, heating to 55 degrees C during 30 min and tangential filtration (100 kDa cutoff); (4) anion exchange chromatography (Source 15Q) and (5) size exclusion chromatography (Sepharose CL-4B). The polysaccharide C fraction obtained in that way was dialyzed and freeze-dried. The structural identity of the polysaccharide was demonstrated by (1)H-NMR spectrometry. PMID:16469547

  15. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display

    PubMed Central

    Connor, Daniel O.; Zantow, Jonas; Hust, Michael; Bier, Frank F.; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  16. Ofloxacin susceptibilities of 5,667 Neisseria gonorrhoeae strains isolated in Hong Kong.

    PubMed Central

    Kam, K M; Lo, K K; Lai, C F; Lee, Y S; Chan, C B

    1993-01-01

    Of 5,667 strains of Neisseria gonorrhoeae isolated from the Government Social Hygiene (sexually transmitted disease) Clinics in Hong Kong from 1990 to 1992, there was a trend toward an increase in the percentage of strains resistant in vitro to 0.01 and 0.1 microgram of ofloxacin per ml, with 54.3 and 5.5% resistant strains, respectively, in January 1990, rising to 95.3 and 41.5%, respectively, in December 1992. The percentage of strains for which the MIC is > 1 microgram/ml remains stable, and no clinical failure has yet been seen. This trend of decreasing susceptibility warrants close monitoring when ofloxacin is used as first-line treatment for gonorrhea. PMID:8239622

  17. Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B.

    PubMed

    Singh, Manmohan; Kazzaz, Jina; Chesko, James; Soenawan, Elawati; Ugozzoli, Mildred; Giuliani, Marzia; Pizza, Mariagrazia; Rappouli, Rino; O'Hagan, Derek T

    2004-02-01

    The adsorption behavior of model proteins onto anionic poly(lactide-co-glycolide) (PLG) microparticles was evaluated. PLG microparticles were prepared by a w/o/w solvent evaporation process in the presence of the anionic surfactant dioctyl sodium sulfosuccinate (DSS). The effect of surfactant concentration and adsorption conditions on the adsorption efficiency and release rates in vitro was also studied. Subsequently, the microparticle formulation was tested to evaluate the efficacy of anionic microparticles as delivery systems for recombinant antigens from Neisseria meningitides type B (Men B), with and without CpG adjuvant. Protein (antigen) binding to anionic PLG microparticles was influenced by both electrostatic interaction and by other mechanisms, including hydrophobic attraction. The Men B antigens adsorbed efficiently onto anionic PLG microparticles and, following immunization in mice, induced potent enzyme-linked immunosorbent assay (ELISA) and serum bactericidal activity in comparison to alum-adsorbed formulations. These Men B antigens represent an attractive approach for vaccine development. PMID:14705185

  18. Multilocus variable-number tandem-repeat analysis of Neisseria meningitidis serogroup C in China.

    PubMed

    Shan, X Y; Zhou, H J; Zhang, J; Zhu, B Q; Xu, L; Xu, Z; Hu, G C; Bai, A Y; Shi, Y W; Jiang, B F; Shao, Z J

    2015-10-01

    This study characterized Neisseria meningitidis serogroup C strains in China in order to establish their genetic relatedness and describe the use of multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) to provide useful epidemiological information. A total of 215 N. meningitidis serogroup C strains, obtained from 2003 to 2012 in China, were characterized by MLVA with different published schemes as well as multilocus sequence typing. (i) Based on the MLVA scheme with a combination of five highly variable loci, 203 genotypes were identified; this level of discrimination supports its use for resolving closely related isolates. (ii) Based on a combination of ten low variable loci, clear phylogenetic relationships were established within sequence type complexes. In addition, there was evidence of microevolution of VNTR loci over the decade as strain lineages spread from Anhui to other provinces, the more distant the provinces from Anhui, the higher the genetic variation. PMID:25778999

  19. Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae.

    PubMed

    LeCuyer, Brian E; Criss, Alison K; Seifert, H Steven

    2010-02-01

    Nucleotide excision repair (NER) is universally used to recognize and remove many types of DNA damage. In eubacteria, the NER system typically consists of UvrA, UvrB, UvrC, the UvrD helicase, DNA polymerase I, and ligase. In addition, when DNA damage blocks transcription, transcription-repair coupling factor (TRCF), the product of the mfd gene, recruits the Uvr complex to repair the damage. Previous work using selected mutants and assays have indicated that pathogenic Neisseria spp. carry a functional NER system. In order to comprehensively examine the role of NER in Neisseria gonorrhoeae DNA recombination and repair processes, the predicted NER genes (uvrA, uvrB, uvrC, uvrD, and mfd) were each disrupted by a transposon insertion, and the uvrB and uvrD mutants were complemented with a copy of each gene in an ectopic locus. Each uvr mutant strain was highly sensitive to UV irradiation and also showed sensitivity to hydrogen peroxide killing, confirming that all of the NER genes in N. gonorrhoeae are functional. The effect of RecA expression on UV survival was minor in uvr mutants but much larger in the mfd mutant. All of the NER mutants demonstrated wild-type levels of pilin antigenic variation and DNA transformation. However, the uvrD mutant exhibited higher frequencies of PilC-mediated pilus phase variation and spontaneous mutation, a finding consistent with a role for UvrD in mismatch repair. We conclude that NER functions are conserved in N. gonorrhoeae and are important for the DNA repair capabilities of this strict human pathogen. PMID:19933360

  20. Polymorphisms in pilin glycosylation Locus of Neisseria meningitidis expressing class II pili.

    PubMed

    Kahler, C M; Martin, L E; Tzeng, Y L; Miller, Y K; Sharkey, K; Stephens, D S; Davies, J K

    2001-06-01

    We have located a locus, pgl, in Neisseria meningitidis strain NMB required for the glycosylation of class II pili. Between five and eight open reading frames (ORFs) (pglF, pglB, pglC, pglB2, orf2, orf3, orf8, and avtA) were present in the pgl clusters of different meningococcal isolates. The Class I pilus-expressing strains Neisseria gonorrhoeae MS11 and N. meningitidis MC58 each contain a pgl cluster in which orf2 and orf3 have been deleted. Strain NMB and other meningococcal isolates which express class II type IV pili contained pgl clusters in which pglB had been replaced by pglB2 and an additional novel ORF, orf8, had been inserted between pglB2 and pglC. Insertional inactivation of the eight ORFs of the pgl cluster of strain NMB showed that pglF, pglB2, pglC, and pglD, but not orf2, orf3, orf8, and avtA, were necessary for pilin glycosylation. Pilin glycosylation was not essential for resistance to normal human serum, as pglF and pglD mutants retained wild-type levels of serum resistance. Although pglB2 and pglC mutants were significantly sensitive to normal human serum under the experimental conditions used, subsequent examination of the encapsulation phenotypes revealed that pglB2 and pglC mutants expressed almost 50% less capsule than wild-type NMB. A mutation in orf3, which did not affect pilin glycosylation, also resulted in a 10% reduction in capsule expression and a moderately serum sensitive phenotype. On the basis of these results we suggest that pilin glycosylation may proceed via a lipid-linked oligosaccharide intermediate and that blockages in this pathway may interfere with capsular transport or assembly. PMID:11349019

  1. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation.

    PubMed

    Obergfell, Kyle P; Seifert, H Steven

    2016-05-01

    The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3' third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic variants

  2. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae.

    PubMed

    Ram, Sanjay; Shaughnessy, Jutamas; DeOliveira, Rosane B; Lewis, Lisa A; Gulati, Sunita; Rice, Peter A

    2016-10-01

    Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms. PMID:27297292

  3. Will targeting oropharyngeal gonorrhoea delay the further emergence of drug-resistant Neisseria gonorrhoeae strains?

    PubMed

    Lewis, D A

    2015-06-01

    Gonorrhoea is an important sexually transmitted infection associated with serious complications and enhanced HIV transmission. Oropharyngeal infections are often asymptomatic and will only be detected by screening. Gonococcal culture has low sensitivity (<50%) for detecting oropharyngeal gonorrhoea, and, although not yet approved commercially, nucleic acid amplification tests (NAAT) are the assay of choice. Screening for oropharyngeal gonorrhoea should be performed in high-risk populations, such as men-who-have-sex-with-men(MSM). NAATs have a poor positive predictive value when used in low-prevalence populations. Gonococci have repeatedly thwarted gonorrhoea control efforts since the first antimicrobial agents were introduced. The oropharyngeal niche provides an enabling environment for horizontal transfer of genetic material from commensal Neisseria and other bacterial species to Neisseria gonorrhoeae. This has been the mechanism responsible for the generation of mosaic penA genes, which are responsible for most of the observed cases of resistance to extended-spectrum cephalosporins (ESC). As antimicrobial-resistant gonorrhoea is now an urgent public health threat, requiring improved antibiotic stewardship, laboratory-guided recycling of older antibiotics may help reduce ESC use. Future trials of antimicrobial agents for gonorrhoea should be powered to test their efficacy at the oropharynx as this is the anatomical site where treatment failure is most likely to occur. It remains to be determined whether a combination of frequent screening of high-risk individuals and/or laboratory-directed fluoroquinolone therapy of oropharyngeal gonorrhoea will delay the further emergence of drug-resistant N. gonorrhoeae strains. PMID:25911525

  4. Comparative genomics of Neisseria meningitidis strains: new targets for molecular diagnostics.

    PubMed

    Diene, S M; Bertelli, C; Pillonel, T; Jacquier, N; Croxatto, A; Jaton, K; Greub, G

    2016-06-01

    In 2010, Jaton et al. (False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol 2010;48:4590-2) reported an isolate of Neisseria meningitidis serogroup B that was not detected by the ctrA quantitative real-time PCR (qRT-PCR) used in our diagnostic laboratory. Sequence analysis of ctrA revealed several single nucleotide polymorphisms responsible for the negative qRT-PCR. Therefore, we sequenced the genome of this isolate and performed comparative genomics to propose new gene targets for the specific detection of N. meningitidis from clinical specimens. We identified 11 genes as specific to N. meningitidis genomes and common to at least 177 (97%) of the 183 genomes available. Among them, three genes (metA, tauE and shlA) were selected to develop new qRT-PCRs for the detection of N. meningitidis DNA. The three qRT-PCRs were highly sensitive and specific, and they exhibited a good reproducibility when tested on plasmidic positive controls and genomic DNA extracted from strains of N. meningitidis and other relevant bacterial species. The clinical sensitivity and specificity of metA and tauE qRT-PCRs were both 100% based on a testing of cerebrospinal fluid samples positive for N. meningitidis or other clinically relevant bacteria. Despite a 100% specificity, the sensitivity of the shlA qRT-PCR was only 70%. We thus recommend using the metA and/or tauE qRT-PCRs developed here. To prevent PCR failure in the presence of new polymorphic strains, the detection of dual targets by duplex qRT-PCR would be more accurate and suitable for the diagnosis of N. meningitidis from clinical specimens. PMID:27085725

  5. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation

    PubMed Central

    2016-01-01

    The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3’ third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic

  6. Synthesis and biological evaluation of phosphono analogues of capsular polysaccharide fragments from Neisseria meningitidis A.

    PubMed

    Torres-Sanchez, Maria I; Zaccaria, Cristina; Buzzi, Benedetta; Miglio, Gianluca; Lombardi, Grazia; Polito, Laura; Russo, Giovanni; Lay, Luigi

    2007-01-01

    Neisseria meningitidis type A (MenA) is a Gram-negative encapsulated bacterium that may cause explosive epidemics of meningitis, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against Neisseria meningitidis A is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, which is made up of (1-->6)-linked 2-acetamido-2-deoxy-alpha-D-mannopyranosyl phosphate repeating units. Since this chemical lability is a product of the inherent instability of the phosphodiester bridges, here we report the synthesis of phosphonoester-linked oligomers of N-acetyl mannosamine as candidates for stabilised analogues of the corresponding phosphate-bridged saccharides. The installation of each interglycosidic phosphonoester linkage was achieved by Mitsunobu coupling of a glycosyl C-phosphonate building block with the 6-OH moiety of a mannosaminyl residue. Each of the synthesised compounds contains an O-linked aminopropyl spacer at its reducing end (alpha- or beta-oriented) to allow for protein conjugation. The relative affinities of the synthetic molecules were investigated by a competitive ELISA assay and showed that a human polyclonal anti-MenA serum can recognise both the phosphonoester-bridged fragments 1-3 and their monomeric subunits, glycosides 20 and 21. Moreover, the biological results suggest that the abilities of these compounds to inhibit the binding of a specific antibody to MenA polysaccharide are dependent on the chain lengths of the molecules, but independent on the orientations of the anomeric linkers. PMID:17508372

  7. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity

    PubMed Central

    Ayala, Inmaculada; Colanzi, Antonino; Lapazio, Lucia; Corda, Daniela; Soriani, Marco; Pizza, Mariagrazia; Rossi Paccani, Silvia

    2015-01-01

    Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis. PMID:25996923

  8. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells.

    PubMed Central

    Makino, S; van Putten, J P; Meyer, T F

    1991-01-01

    Neisseria gonorrhoeae is a facultative intracellular bacterium capable of penetrating into certain human epithelial cell types. In order to identify gonococcal factors essential for invading Chang human conjunctiva cells, a gentamicin selection assay for the quantification of viable intracellular bacteria was used in conjunction with microscopy. The results demonstrate a correlation between the invasive behaviour of gonococci and the expression of Opa proteins, a family of variable outer membrane proteins present in all pathogenic Neisseria species. However, only particular Opa proteins supported invasion into Chang cells as indicated by the use of two unrelated gonococcal strains. Invasion was sensitive to cytochalasin D, and strong adherence mediated by the Opa proteins appeared to be essential for the internalization of gonococci. In contrast pili, which also conferred binding to Chang conjunctiva cells, did not support cellular invasion but rather were inhibitory. Images PMID:1673923

  9. Genotypic comparison of invasive Neisseria meningitidis serogroup Y isolates from the United States, South Africa, and Israel, isolated from 1999 through 2002.

    PubMed

    Whitney, Anne M; Coulson, Garry B; von Gottberg, Anne; Block, Colin; Keller, Nathan; Mayer, Leonard W; Messonnier, Nancy E; Klugman, Keith P

    2009-09-01

    The proportion of meningococcal disease in the United States, South Africa, and Israel caused by Neisseria meningitidis serogroup Y (NmY) was greater than the worldwide average during the period 1999-2002. Genotypic characterization of 300 NmY isolates by multilocus sequence typing, 16S rRNA gene sequencing, and PorA variable region typing was conducted to determine the relationships of the isolates from these three countries. Seventy different genotypes were found. Two groups of ST-23 clonal complex isolates accounted for 88% of the U.S. isolates, 12% of the South African isolates, and 96% of the isolates from Israel. The single common clone (ST-23/16S-19/P1.5-2,10-1) represented 57, 5, and 35% of the NmY isolates from the United States, South Africa, and Israel. The predominant clone in South Africa (ST-175/16S-21/P1.5-1,2-2), and 11 other closely related clones made up 77% of the South African study isolates and were not found among the isolates from the United States or Israel. ST-175 was the predicted founder of the ST-175 clonal complex, and isolates of ST-175 and related sequence types have been described previously in other African countries. Continued active surveillance and genetic characterization of NmY isolates causing disease in the United States, South Africa, and Israel will provide valuable data for local and global epidemiology and allow monitoring for any expansion of existing clonal complexes and detection of the emergence of new virulent clones in the population. PMID:19571028

  10. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Nicholas, Robert; Ohnishi, Makoto; Gallay, Anne; Sednaoui, Patrice

    2012-03-01

    Recently, the first Neisseria gonorrhoeae strain (H041) highly resistant to the expanded-spectrum cephalosporins (ESCs) ceftriaxone and cefixime, which are the last remaining options for first-line gonorrhea treatment, was isolated in Japan. Here, we confirm and characterize a second strain (F89) with high-level cefixime and ceftriaxone resistance which was isolated in France and most likely caused a treatment failure with cefixime. F89 was examined using six species-confirmatory tests, antibiograms (33 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of known gonococcal resistance determinants (penA, mtrR, penB, ponA, and pilQ). F89 was assigned to MLST sequence type 1901 (ST1901) and NG-MAST ST1407, which is a successful gonococcal clone that has spread globally. F89 has high-level resistance to cefixime (MIC = 4 μg/ml) and ceftriaxone (MIC = 1 to 2 μg/ml) and resistance to most other antimicrobials examined. A novel penA mosaic allele (penA-CI), which was penA-XXXIV with an additional A501P alteration in penicillin-binding protein 2, was the primary determinant for high-level ESC resistance, as determined by transformation into a set of recipient strains. N. gonorrhoeae appears to be emerging as a superbug, and in certain circumstances and settings, gonorrhea may become untreatable. Investigations of the biological fitness and enhanced understanding and monitoring of the ESC-resistant clones and their international transmission are required. Enhanced disease control activities, antimicrobial resistance control and surveillance worldwide, and public health response plans for global (and national) perspectives are also crucial. Nevertheless, new treatment strategies and/or drugs and, ideally, a vaccine are essential to develop for efficacious gonorrhea management. PMID:22155830

  11. Invasive serogroup B Neisseria meningitidis in Quebec, Canada, 2003 to 2010: persistence of the ST-269 clone since it first emerged in 2003.

    PubMed

    Zhou, Jianwei; Lefebvre, Brigitte; Deng, Saul; Gilca, Rodica; Deceuninck, Genevieve; Law, Dennis K S; De Wals, Philippe; Tsang, Raymond S W

    2012-05-01

    In the era after the introduction of the meningococcal serogroup C conjugate vaccine, from 1 January 2003 to 31 December 2010, serogroup B meningococci were the major cause of invasive meningococcal disease in the province of Québec, Canada, being responsible for 72% of all meningococcal disease cases. Of the 334 invasive serogroup B Neisseria meningitidis strains analyzed, 53.9% belonged to the ST-269 clonal complex (CC). Since it first emerged in 2003, the percentage of invasive serogroup B isolates that belonged to the ST-269 CC had increased from 35% in 2003 to 76% in 2010. Among the 180 meningococci in the ST-269 CC, 91.7% belonged to a single ST (ST-269). The most common PorA genotypes identified in the ST-269 CC were (i) VR1 19-1, VR2 15-11, VR3 36 (84%) and (ii) VR1 18-7, VR2 9, VR3 35-1 (9%). Cases of invasive disease due to the ST-269 CC were commonly found in those aged 11 to 19 years (30.5%) and 20 to 40 years (25.5%). Meningococci of the ST-269 CC were uncommon in other Canadian provinces. In contrast to the ST-269 CC, invasive serogroup B meningococci that belonged to the ST-41/44 CC were much more diverse genetically. However, one ST (ST-571), which is uncommon in the United States, accounted for 35% of all cases due to this CC. The current finding suggests that the ST-269 clone may indeed represent an emerging hypervirulent clone of meningococci. PMID:22337990

  12. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone.

    PubMed

    Ohnishi, Makoto; Golparian, Daniel; Shimuta, Ken; Saika, Takeshi; Hoshina, Shinji; Iwasaku, Kazuhiro; Nakayama, Shu-ichi; Kitawaki, Jo; Unemo, Magnus

    2011-07-01

    Recently, the first Neisseria gonorrhoeae strain (H041) that is highly resistant to the extended-spectrum cephalosporin (ESC) ceftriaxone, the last remaining option for empirical first-line treatment, was isolated. We performed a detailed characterization of H041, phenotypically and genetically, to confirm the finding, examine its antimicrobial resistance (AMR), and elucidate the resistance mechanisms. H041 was examined using seven species-confirmatory tests, antibiograms (30 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of ESC resistance determinants (penA, mtrR, penB, ponA, and pilQ). Transformation, using appropriate recipient strains, was performed to confirm the ESC resistance determinants. H041 was assigned to serovar Bpyust, MLST sequence type (ST) ST7363, and the new NG-MAST ST4220. H041 proved highly resistant to ceftriaxone (2 to 4 μg/ml, which is 4- to 8-fold higher than any previously described isolate) and all other cephalosporins, as well as most other antimicrobials tested. A new penA mosaic allele caused the ceftriaxone resistance. In conclusion, N. gonorrhoeae has now shown its ability to also develop ceftriaxone resistance. Although the biological fitness of ceftriaxone resistance in N. gonorrhoeae remains unknown, N. gonorrhoeae may soon become a true superbug, causing untreatable gonorrhea. A reduction in the global gonorrhea burden by enhanced disease control activities, combined with wider strategies for general AMR control and enhanced understanding of the mechanisms of emergence and spread of AMR, which need to be monitored globally, and public health response plans for global (and national) perspectives are important. Ultimately, the development of new drugs for efficacious gonorrhea treatment is necessary. PMID:21576437

  13. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated from Guangzhou, China, 2000 to 2005 and 2008 to 2013.

    PubMed

    Cao, Wen-Ling; Liang, Jing-Yao; Li, Xiao-Dong; Bi, Chao; Yang, Ri-Dong; Liang, Yan-Hua; Li, Ping; Zhong, Dao-Qing; Ye, Xing-Dong; Zhang, Xi-Bao

    2015-01-01

    A total of 1224 Neisseria gonorrhoeae isolates from Guangzhou in 2 periods (2000-2005 and 2008-2013) were subjected to antimicrobial susceptibility testing. The percentage of penicillin- and ciprofloxacin-resistant isolates increased from 71.1% (473/665) to 90.9% (508/559) and 88.9% (591/665) to 98.0% (548/559), respectively. All isolates remain susceptible to spectinomycin and ceftriaxone, with increasing minimum inhibitory concentrations. PMID:25504297

  14. Single 1 g dose of cefotaxime in the treatment of infections due to penicillinase-producing strains of Neisseria gonorrhoeae.

    PubMed Central

    de Koning, G A; Tio, D; van den Hoek, J A; van Klingeren, B

    1983-01-01

    One hundred and two patients with an uncomplicated infection due to penicillinase-producing strains of Neisseria gonorrhoeae (PPNG) were treated with a single 1 g dose of cefotaxime. At follow-up within 15 days all genital and rectal infections were cured. Pharyngeal infections also seemed to respond to this treatment. A relatively high proportion (30.9%) of patients, however, developed post-gonococcal urethritis. PMID:6299449

  15. Invasion by Neisseria meningitidis varies widely between clones and among nasopharyngeal mucosae derived from adult human hosts.

    PubMed

    Townsend, Robert; Goodwin, Linda; Stevanin, Tania M; Silcocks, Paul B; Parker, Andrew; Maiden, Martin C J; Read, Robert C

    2002-05-01

    Colonization of the human nasopharynx is a feature of some species of Neisseria, and is a prerequisite of invasive meningococcal disease. The likelihood of colonization by Neisseria meningitidis varies widely between humans, and very few develop invasive disease. Explants of nasal mucosa derived from adult patients with non-allergic nasal obstruction were infected experimentally with Neisseria spp. At intervals over 18 h incubation, washed explants were homogenized, and viable bacteria were counted. To estimate bacterial invasion of mucosa, explants were exposed to 0.25% sodium taurocholate for 30 s prior to homogenization. N. meningitidis was recovered from the mucosa and the organism invaded and replicated within the tissue, in contrast to N. lactamica and N. animalis (n=9, P<0.008). N. meningitidis isolates of clones ET-5, ET-37 and lineage III were recovered from and invaded tissue, but strains of clones A4, A:subgroup I, A:subgroup III and A:subgroup IV-1 did not invade (n=6). To measure host variation, survival of N. meningitidis within nasal mucosa of 40 different human donors was measured. Intra-class correlation of replicates was 0.97, but the coefficient of variation of recovered viable counts was 1335% after 4 h and 77% after 18 h incubation. It is concluded that the distinctive colonization and disease potential of Neisseria spp. may be partly a consequence of their ability to invade and survive within human nasopharyngeal mucosa, but that this is influenced greatly by genetic or environmental factors operating on the host mucosa. This is consistent with the unpredictable epidemiology of meningococcal disease. PMID:11988521

  16. Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae.

    PubMed Central

    Stojiljkovic, I; Srinivasan, N

    1997-01-01

    We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism. PMID:9006036

  17. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro.

    PubMed

    Gong, Zijian; Lai, Wei; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-04-01

    The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry. PMID:26787702

  18. Construction of prokaryotic expression plasmid of mtrC protein of Neisseria gonorrhoeae and its expression in E. coli.

    PubMed

    Chen, Hongxiang; Tu, Yating; Lin, Nengxing; Huang, Changzheng

    2005-01-01

    In order to provide a rational research basis for detection of resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents and study on the resistant mechanism of multiple transferable resistance (mtr) efflux system, plasmid pET-28a(+) encoding mtrC gene was constructed and the related target protein was expressed in Escherichia coli (E. coli) DE3. The fragments of mtrC gene of Neisseria gonorrhoeae from the standard strains were amplified and cloned into prokaryotic expression plasmid pET-28a(+) with restriction endonuclease to construct recombinant pET-mtrC which was verified by restriction endonuclease and DNA sequencing. The recombinant was transformed into E. coli DE3 to express the protein mtrC induced by IPTG. The results showed mtrC DNA fragment was proved correct through restriction endonuclease and DNA sequencing. Its sequence was 99.5% homologus to that published on GeneBank (U14993). A 48.5 kD fusion protein which was induced by IPTG was detected by SDS-PAGE. It was concluded that the construction of prokaryotic expression plasmid of mtrC protein of Neisseria gonorrhoeae was correct and the fusion protein was successively expressed in E. coli. PMID:16463681

  19. Control of pili and sialyltransferase expression in Neisseria gonorrhoeae is mediated by the transcriptional regulator CrgA.

    PubMed

    Matthias, Kathryn A; Rest, Richard F

    2014-03-01

    Contact-regulated gene A (CrgA) is a transcriptional regulator present in the pathogenic Neisseria that functions as both an activator and a repressor of transcription following contact with host cells. While its mechanism of action has been studied extensively in Neisseria meningitidis, the specific subset of genes that CrgA targets has been debated. Although the majority of these constitute virulence genes, suggesting that CrgA is important in pathogenesis, no study to date has examined the effects of CrgA in Neisseria gonorrhoeae. In this report, we generated a knockout mutant of crgA (ΔcrgA) in the serum-sensitive gonococcal strain F62. crgA deletion resulted in a reduction in the transcript and protein levels of the primary pilin component pilE via mechanisms that were both contact-dependent and -independent. In contrast, ΔcrgA overexpressed the main determinant of serum resistance in F62, lipooligosaccharide sialyltransferase (Lst). CrgA-mediated lst repression was direct as both recombinant and native CrgA bound to the lst promoter at multiple locations in EMSA and ChIP assays respectively. The increase in Lst levels associated with crgA deletion correlated with enhanced protection against killing by normal human serum. These data suggest a role for CrgA in virulence regulation during both cell adherence and planktonic growth. PMID:24433334

  20. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue.

    PubMed

    Shams, Fariza; Oldfield, Neil J; Lai, Si Kei; Tunio, Sarfraz A; Wooldridge, Karl G; Turner, David P J

    2016-04-01

    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6-bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu-plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved. PMID:26732512

  1. A large genomic island allows Neisseria meningitidis to utilize propionic acid, with implications for colonization of the human nasopharynx

    PubMed Central

    Catenazzi, Maria Chiara E; Jones, Helen; Wallace, Iain; Clifton, Jacqueline; Chong, James P J; Jackson, Matthew A; Macdonald, Sandy; Edwards, James; Moir, James W B

    2014-01-01

    Neisseria meningitidis is an important human pathogen that is capable of killing within hours of infection. Its normal habitat is the nasopharynx of adult humans. Here we identify a genomic island (the prp gene cluster) in N. meningitidis that enables this species to utilize propionic acid as a supplementary carbon source during growth, particularly under nutrient poor growth conditions. The prp gene cluster encodes enzymes for a methylcitrate cycle. Novel aspects of the methylcitrate cycle in N. meningitidis include a propionate kinase which was purified and characterized, and a putative propionate transporter. This genomic island is absent from the close relative of N. meningitidis, the commensal Neisseria lactamica, which chiefly colonizes infants not adults. We reason that the possession of the prp genes provides a metabolic advantage to N. meningitidis in the adult oral cavity, which is rich in propionic acid-generating bacteria. Data from classical microbiological and sequence-based microbiome studies provide several lines of supporting evidence that N. meningitidis colonization is correlated with propionic acid generating bacteria, with a strong correlation between prp-containing Neisseria and propionic acid generating bacteria from the genus Porphyromonas, and that this may explain adolescent/adult colonization by N. meningitidis. PMID:24910087

  2. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria.

    PubMed

    Hooda, Yogesh; Lai, Christine Chieh-Lin; Judd, Andrew; Buckwalter, Carolyn M; Shin, Hyejin Esther; Gray-Owen, Scott D; Moraes, Trevor F

    2016-01-01

    Lipoproteins decorate the surface of many Gram-negative bacterial pathogens, playing essential roles in immune evasion and nutrient acquisition. In Neisseria spp., the causative agents of gonorrhoea and meningococcal meningitis, surface lipoproteins (SLPs) are required for virulence and have been extensively studied as prime candidates for vaccine development. However, the machinery and mechanism that allow for the surface display of SLPs are not known. Here, we describe a transposon (Tn5)-based search for the proteins required to deliver SLPs to the surface of Neisseria meningitidis, revealing a family of proteins that we have named the surface lipoprotein assembly modulator (Slam). N. meningitidis contains two Slam proteins, each exhibiting distinct substrate preferences. The Slam proteins are sufficient to reconstitute SLP transport in laboratory strains of Escherichia coli, which are otherwise unable to efficiently display these lipoproteins on their cell surface. Immunoprecipitation and domain probing experiments suggest that the SLP, TbpB, interacts with Slam during the transit process; furthermore, the membrane domain of Slam is sufficient for selectivity and proper surface display of SLPs. Rather than being a Neisseria-specific factor, our bioinformatic analysis shows that Slam can be found throughout proteobacterial genomes, indicating a conserved but until now unrecognized virulence mechanism. PMID:27572441

  3. A Role for Lactate Dehydrogenases in the Survival of Neisseria gonorrhoeae in Human Polymorphonuclear Leukocytes and Cervical Epithelial Cells

    PubMed Central

    Atack, John M.; Ibranovic, Ines; Ong, Cheryl-Lynn Y.; Djoko, Karrera Y.; Chen, Nathan H.; vanden Hoven, Rachel; Jennings, Michael P.; Edwards, Jennifer L.; McEwan, Alastair G.

    2014-01-01

    Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD+-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells. PMID:24737798

  4. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  5. Recommendations for the Laboratory-Based Detection of Chlamydia trachomatis and Neisseria gonorrhoeae — 2014

    PubMed Central

    Papp, John R.; Schachter, Julius; Gaydos, Charlotte A.; Van Der Pol, Barbara

    2014-01-01

    Summary This report updates CDC's 2002 recommendations regarding screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections (CDC. Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections—2002. MMWR 2002;51[No. RR-15]) and provides new recommendations regarding optimal specimen types, the use of tests to detect rectal and oropharyngeal C. trachomatis and N. gonorrhoeae infections, and circumstances when supplemental testing is indicated. The recommendations in this report are intended for use by clinical laboratory directors, laboratory staff, clinicians, and disease control personnel who must choose among the multiple available tests, establish standard operating procedures for collecting and processing specimens, interpret test results for laboratory reporting, and counsel and treat patients. The performance of nucleic acid amplification tests (NAATs) with respect to overall sensitivity, specificity, and ease of specimen transport is better than that of any of the other tests available for the diagnosis of chlamydial and gonococcal infections. Laboratories should use NAATs to detect chlamydia and gonorrhea except in cases of child sexual assault involving boys and rectal and oropharyngeal infections in prepubescent girls and when evaluating a potential gonorrhea treatment failure, in which case culture and susceptibility testing might be required. NAATs that have been cleared by the Food and Drug Administration (FDA) for the detection of C. trachomatis and N. gonorrhoeae infections are recommended as screening or diagnostic tests because they have been evaluated in patients with and without symptoms. Maintaining the capability to culture for both N. gonorrhoeae and C. trachomatis in laboratories throughout the country is important because data are insufficient to recommend nonculture tests in cases of sexual assault in prepubescent boys and extragenital anatomic site exposure in prepubescent girls. N

  6. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011

    PubMed Central

    2013-01-01

    Background Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major public health concern worldwide. In Vietnam, knowledge regarding N. gonorrhoeae prevalence and AMR is limited, and data concerning genetic characteristics of N. gonorrhoeae is totally lacking. Herein, we investigated the phenotypic AMR (previous, current and possible future treatment options), genetic resistance determinants for extended-spectrum cephalosporins (ESCs), and genotypic distribution of N. gonorrhoeae isolated in 2011 in Hanoi, Vietnam. Methods N. gonorrhoeae isolates from Hanoi, Vietnam isolated in 2011 (n = 108) were examined using antibiograms (Etest for 10 antimicrobials), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST), and sequencing of ESC resistance determinants (penA, mtrR and penB). Results The levels of in vitro resistance were as follows: ciprofloxacin 98%, tetracycline 82%, penicillin G 48%, azithromycin 11%, ceftriaxone 5%, cefixime 1%, and spectinomycin 0%. The MICs of gentamicin (0.023-6 mg/L), ertapenem (0.002-0.125 mg/L) and solithromycin (<0.016-0.25 mg/L) were relatively low. No penA mosaic alleles were found, however, 78% of the isolates contained an alteration of amino acid A501 (A501V (44%) and A501T (34%)) in the encoded penicillin-binding protein 2. A single nucleotide (A) deletion in the inverted repeat of the promoter region of the mtrR gene and amino acid alterations in MtrR was observed in 91% and 94% of the isolates, respectively. penB resistance determinants were detected in 87% of the isolates. Seventy-five different NG-MAST STs were identified, of which 59 STs have not been previously described. Conclusions In Vietnam, the highly diversified gonococcal population displayed high in vitro resistance to antimicrobials previously recommended for gonorrhoea treatment (with exception of spectinomycin), but resistance also to the currently recommended ESCs were found. Nevertheless, the MICs of three potential future treatment

  7. Clonal analysis of Neisseria meningitidis serogroup B strains in South Africa, 2002 to 2006: emergence of new clone ST-4240/6688.

    PubMed

    Moodley, Chivonne; du Plessis, Mignon; Ndlangisa, Kedibone; de Gouveia, Linda; Klugman, Keith P; von Gottberg, Anne

    2012-11-01

    From August 1999 through July 2002, hyperinvasive Neisseria meningitidis serogroup B (MenB) clonal complexes (CCs), namely, ST-32/ET-5 (CC32) and ST-41/44/lineage 3 (CC41/44), were predominant in the Western Cape Province of South Africa. This study analyzed MenB invasive isolates from a national laboratory-based surveillance system that were collected from January 2002 through December 2006. Isolates were characterized by pulsed-field gel electrophoresis (PFGE) (n = 302), and multilocus sequence typing (MLST) and PorA and FetA typing were performed on randomly selected isolates (34/302, 11%). In total, 2,400 cases were reported, with the highest numbers from Gauteng Province (1,307/2,400, 54%) and Western Cape Province (393/2,400, 16%); 67% (1,617/2,400) had viable isolates and 19% (307/1,617) were identified as serogroup B. MenB incidence remained stable over time (P = 0.77) (average incidence, 0.13/100,000 population [range, 0.10 to 0.16/100,000 population]). PFGE (302/307, 98%) divided isolates (206/302, 68%) into 13 clusters and 96 outliers. The largest cluster, B1, accounted for 25% of isolates (76/302) over the study period; its prevalence decreased from 43% (20/47) in 2002 to 13% (8/62) in 2006 (P < 0.001), and it was common in the Western Cape (58/76, 76%). Clusters B2 and B3 accounted for 10% (31/302) and 6% (19/302), respectively, and showed no significant change over time and were predominant in Gauteng. Randomly selected isolates from clusters B1, B2, and B3 belonged to CC32, CC41/44, and the new CC4240/6688, respectively. Overall, 15 PorA and 12 FetA types were identified. MenB isolates were mostly diverse with no single dominant clone; however, CC32 and CC41/44 accounted for 35% and the new CC4240/6688 was the third most prevalent clone. PMID:22972827

  8. Optimization of Molecular Approaches to Genogroup Neisseria meningitidis Carriage Isolates and Implications for Monitoring the Impact of New Serogroup B Vaccines

    PubMed Central

    Rojas, Eduardo; Hoyos, Johanna; Oldfield, Neil J.; Lee, Philip; Flint, Mike; Jones, C. Hal; Ala’Aldeen, Dlawer A. A.; Jansen, Kathrin U.; Anderson, Annaliesa S.

    2015-01-01

    The reservoir for Neisseria meningitidis (Nm) is the human oropharynx. Implementation of Nm serogroup C (NmC) glycoconjugate vaccines directly reduced NmC carriage. Prophylactic vaccines are now available to prevent disease caused by the five major Nm disease causing serogroups (ABCWY). Nm serogroup B (NmB) vaccines are composed of antigens that are conserved across Nm serogroups and therefore have the potential to impact all Nm carriage. To assess the effect of these vaccines on carriage, standardized approaches to identify and group Nm are required. Real-time PCR (rt-PCR) capsule grouping assays that were internally controlled to confirm Nm species were developed for eight serogroups associated with carriage (A, B, C, E, W, X, Y and Z). The grouping scheme was validated using diverse bacterial species associated with carriage and then used to evaluate a collection of diverse Nm carriage isolates (n=234). A scheme that also included porA and ctrA probes was able to speciate the isolates, while ctrA also provided insights on the integrity of the polysaccharide loci. Isolates were typed for the Nm vaccine antigen factor H binding protein (fHbp), and were found to represent the known diversity of this antigen. The porA rt-PCR yielded positive results with all 234 of the Nm carriage isolates. Genogrouping assays classified 76.5% (179/234) of these isolates to a group, categorized 53 as nongenogroupable (NGG) and two as mixed results. Thirty seven NGG isolates evidenced a disrupted capsular polysaccharide operon judged by a ctrA negative result. Only 28.6% (67/234) of the isolates were serogrouped by slide agglutination (SASG), highlighting the reduced capability of carriage strains to express capsular polysaccharide. These rt-PCR assays provide a comprehensive means to identify and genogroup N. meningitidis in carriage studies used to guide vaccination strategies and to assess the impact of novel fHbp containing vaccines on meningococcal carriage. PMID:26147212

  9. Optimization of Molecular Approaches to Genogroup Neisseria meningitidis Carriage Isolates and Implications for Monitoring the Impact of New Serogroup B Vaccines.

    PubMed

    Rojas, Eduardo; Hoyos, Johanna; Oldfield, Neil J; Lee, Philip; Flint, Mike; Jones, C Hal; Ala'Aldeen, Dlawer A A; Jansen, Kathrin U; Anderson, Annaliesa S

    2015-01-01

    The reservoir for Neisseria meningitidis (Nm) is the human oropharynx. Implementation of Nm serogroup C (NmC) glycoconjugate vaccines directly reduced NmC carriage. Prophylactic vaccines are now available to prevent disease caused by the five major Nm disease causing serogroups (ABCWY). Nm serogroup B (NmB) vaccines are composed of antigens that are conserved across Nm serogroups and therefore have the potential to impact all Nm carriage. To assess the effect of these vaccines on carriage, standardized approaches to identify and group Nm are required. Real-time PCR (rt-PCR) capsule grouping assays that were internally controlled to confirm Nm species were developed for eight serogroups associated with carriage (A, B, C, E, W, X, Y and Z). The grouping scheme was validated using diverse bacterial species associated with carriage and then used to evaluate a collection of diverse Nm carriage isolates (n=234). A scheme that also included porA and ctrA probes was able to speciate the isolates, while ctrA also provided insights on the integrity of the polysaccharide loci. Isolates were typed for the Nm vaccine antigen factor H binding protein (fHbp), and were found to represent the known diversity of this antigen. The porA rt-PCR yielded positive results with all 234 of the Nm carriage isolates. Genogrouping assays classified 76.5% (179/234) of these isolates to a group, categorized 53 as nongenogroupable (NGG) and two as mixed results. Thirty seven NGG isolates evidenced a disrupted capsular polysaccharide operon judged by a ctrA negative result. Only 28.6% (67/234) of the isolates were serogrouped by slide agglutination (SASG), highlighting the reduced capability of carriage strains to express capsular polysaccharide. These rt-PCR assays provide a comprehensive means to identify and genogroup N. meningitidis in carriage studies used to guide vaccination strategies and to assess the impact of novel fHbp containing vaccines on meningococcal carriage. PMID:26147212

  10. Dynamics of the Murine Humoral Immune Response to Neisseria meningitidis Group B Capsular Polysaccharide

    PubMed Central

    Colino, Jesús; Outschoorn, Ingrid

    1998-01-01

    Immunization with Neisseria meningitidis group B capsular polysaccharide (CpsB) elicited responses in adult mice that showed the typical dynamic characteristics of the response to a thymus-independent antigen, in contrast to the thymus-dependent behavior of antibody responses to CpsC. The former had a short latent period and showed a rapid increase in serum antibodies that peaked at day 5, and immunoglobulin M (IgM) was the major isotype even though IgG (mainly IgG2a and IgG2b) was also detectable. This response was of short duration, and the specific antibodies were rapidly cleared from the circulation. The secondary responses were similar in magnitude, kinetics, IgM predominance, and IgG distribution. Nevertheless, a threefold IgG increase, a correlation between IgM and IgG levels, and dose-dependent secondary responses were observed. Hyperimmunization considerably reinforced these responses: 10-fold for IgM and 300-fold for IgG. This favored isotype switch was accompanied by a progressive change in the subclass distribution to IgG3 (62%) and IgG1 (28%), along with the possible generation of B-cell memory. The results indicate that CpsB is being strictly thymus independent and suggest that unresponsiveness to purified CpsB is due to tolerance. PMID:9453603

  11. Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae.

    PubMed

    Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila

    2015-04-01

    In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae. PMID:25673666

  12. Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis

    SciTech Connect

    Vivian, Julian P.; Scoullar, Jessica; Robertson, Amy L.; Bottomley, Stephen P.; Horne, James; Chin, Yanni; Wielens, Jerome; Thompson, Philip E.; Velkov, Tony; Piek, Susannah; Byres, Emma; Beddoe, Travis; Wilce, Matthew C.J.; Kahler, Charlene M.; Rossjohn, Jamie; Scanlon, Martin J.

    2009-09-02

    DsbA is an enzyme found in the periplasm of Gram-negative bacteria that catalyzes the formation of disulfide bonds in a diverse array of protein substrates, many of which are involved in bacterial pathogenesis. Although most bacteria possess only a single essential DsbA, Neisseria meningitidis is unusual in that it possesses three DsbAs, although the reason for this additional redundancy is unclear. Two of these N. meningitidis enzymes (NmDsbA1 and NmDsbA2) play an important role in meningococcal attachment to human epithelial cells, whereas NmDsbA3 is considered to have a narrow substrate repertoire. To begin to address the role of DsbAs in the pathogenesis of N. meningitidis, we have determined the structure of NmDsbA3 to 2.3-{angstrom} resolution. Although the sequence identity between NmDsbA3 and other DsbAs is low, the NmDsbA3 structure adopted a DsbA-like fold. Consistent with this finding, we demonstrated that NmDsbA3 acts as a thiol-disulfide oxidoreductase in vitro and is reoxidized by Escherichia coli DsbB (EcDsbB). However, pronounced differences in the structures between DsbA3 and EcDsbA, which are clustered around the active site of the enzyme, suggested a structural basis for the unusual substrate specificity that is observed for NmDsbA3.

  13. Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein

    PubMed Central

    Rippa, Valentina; Santini, Laura; Lo Surdo, Paola; Cantini, Francesca; Veggi, Daniele; Gentile, Maria Antonietta; Grassi, Eva; Iannello, Giulia; Brunelli, Brunella; Ferlicca, Francesca; Palmieri, Emiliano; Pallaoro, Michele; Aricò, Beatrice; Pizza, Mariagrazia

    2015-01-01

    Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability. In the present study, we used epitope mapping information on the well-characterized antigen of Neisseria meningitidis factor H binding protein (fHbp) to engineer its gonococcal homologue, Ghfp. Meningococcal fHbp is typically classified in three distinct antigenic variants. We introduced epitopes of fHbp variant 1 onto the surface of Ghfp, which is naturally able to protect against meningococcal strains expressing fHbp of variants 2 and 3. Heterologous epitopes were successfully transplanted, as engineered Ghfp induced functional antibodies against all three fHbp variants. These results confirm that structural vaccinology represents a successful strategy for modulating immune responses, and it is a powerful tool for investigating the extension and localization of immunodominant epitopes. PMID:25947148

  14. An Outer Membrane Receptor of Neisseria meningitidis Involved in Zinc Acquisition with Vaccine Potential

    PubMed Central

    Jongerius, Ilse; de Kok, Natasja; Schilders, Ingrid; Weynants, Vincent E.; Poolman, Jan T.; Tommassen, Jan

    2010-01-01

    Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract. PMID:20617164

  15. Polysaccharide Production in Pilot Scale Bioreactor Cultivations of Neisseria meningitidis Serogroup C

    PubMed Central

    Baruque-Ramos, Julia; Juncioni de Arauz, Luciana; Fossa da Paz, Marcelo; Vicentin, Marcio Alberto; Hiss, Haroldo

    2016-01-01

    Serogroup C polysaccharide from Neisseria meningitidis (PS) constitutes the antigen for the respective vaccine production. In order to investigate the enhancement of the final PS concentration (Pf), as well as the overall yield factor (PS/biomass) (YP/X), 13 total cultivations distributed in 6 series (from A to F) were carried out in Frantz medium (40 L plus inoculum) in a 80L bioreactor at 35oC, 0.4 atm, 120 rpm, airflow rate of 5 L/min and KLa = 4.2 h-1. The series (A-F) correspond to different experimental conditions as follows: A) without pH and dissolved O2 controls; B) pH control at 6.5; C) pH control at 6.5 and glucose pulse at the 10th hour; D) dissolved O2 control at 10% saturation value; E) pH control at 7.4; F) dissolved O2 limitation (set rotation at 55 rpm). Concentrations of dry biomass, PS, cellular nitrogen, residual glucose, organic and inorganic nitrogen in the medium were measured. The best results were represented by series A (averages of Pf = 0.15 g/L and YP/X = 107 mg/g). The presented findings could be useful for a proper Frantz medium reformulation in order to obtain a greater amount of PS and improve the vaccine development in industrial scale-up production.

  16. Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae

    PubMed Central

    Ducey, Thomas F.; Jackson, Lydgia; Orvis, Joshua; Dyer, David W.

    2016-01-01

    Like most microorganisms, Neisseria gonorrhoeae alters gene expression in response to iron availability. The ferric uptake regulator Fur has been shown to be involved in controlling this response, but the extent of this involvement remains unknown. It is known that in addition to working directly to repress gene expression, Fur may also work indirectly by controlling additional regulatory elements. Using in silico analysis, we identified a putative small RNA (sRNA) homolog of the meningococcal nrrF locus, and demonstrate that this sRNA is iron-repressible, suggesting that this is the gonococcal analog of the rhyB locus in Escherichia coli. Quantitative real-time RT-PCR analysis indicates that this transcript may also be temporally regulated. Transcript analysis identified the 5′ start of the transcript, using a single reaction, fluorescent-based, primer extension assay. This protocol allows for the rapid identification of transcriptional start sites of RNA transcripts, and could be used for high-throughput transcript mapping. PMID:19162160

  17. Immunoglobulin A1 Protease, an Exoenzyme of Pathogenic Neisseriae, Is a Potent Inducer of Proinflammatory Cytokines

    PubMed Central

    Lorenzen, Dirk R.; Düx, Frank; Wölk, Uwe; Tsirpouchtsidis, Anastasios; Haas, Gaby; Meyer, Thomas F.

    1999-01-01

    A characteristic of human pathogenic Neisseriae is the production and secretion of an immunoglobulin (Ig)A1-specific serine protease (IgA1 protease) that cleaves preferentially human IgA1 and other target proteins. Here we show a novel function for native IgA1 protease, i.e., the induction of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 from peripheral blood mononuclear cells. The capacity of IgA1 protease to elicit such cytokine responses in monocytes was enhanced in the presence of T lymphocytes. IgA1 protease did not induce the regulatory cytokine IL-10, which was, however, found in response to lipopolysaccharide and phytohemagglutinin. The immunomodulatory effects caused by IgA1 protease require a native form of the enzyme, and denaturation abolished cytokine induction. However, the proteolytic activity is not required for the cytokine induction by IgA1 protease. Our results indicate that IgA1 protease exhibits important immunostimulatory properties and may contribute substantially to the pathogenesis of neisserial infections by inducing large amounts of TNF-α and other proinflammatory cytokines. In particular, IgA1 protease may represent a key virulence determinant of bacterial meningitis. PMID:10523603

  18. Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis.

    PubMed

    Wooldridge, Karl G; Kizil, Murat; Wells, Damien B; Ala'aldeen, Dlawer A A

    2005-09-01

    Proteins secreted by Neisseria meningitidis are thought to play important roles in the pathogenesis of meningococcal disease. These proteins include the iron-repressible repeat-in-toxin (RTX) exoprotein FrpC. Related proteins in other pathogens are secreted via a type I secretion system (TOSS), but such a system has not been demonstrated in N. meningitidis. An in silico search of the group B meningococcal genome suggested the presence of a uniquely organized TOSS. Genes encoding homologs of the Escherichia coli HlyB (ATP-binding), HlyD (membrane fusion), and TolC (outer membrane channel) proteins were identified. In contrast to the cistronic organization of the secretion genes in most other rtx operons, the hlyD and tolC genes were adjacent but unlinked to hlyB; neither locus was part of an operon containing genes encoding putative TOSS substrates. Both loci were flanked by genes normally associated with mobile genetic elements. The three genes were shown to be expressed independently. Mutation at either locus resulted in an inability to secrete FrpC and a related protein, here called FrpC2. Successful complementation of these mutations at an ectopic site confirmed the observed phenotypes were caused by loss of function of the putative TOSS genes. We show that genes scattered in the meningococcal genome encode a functional TOSS required for secretion of the meningococcal RTX proteins. PMID:16113272

  19. Neisseria gonorrhoeae Modulates Iron-Limiting Innate Immune Defenses in Macrophages

    PubMed Central

    Zughaier, Susu M.; Kandler, Justin L.; Shafer, William M.

    2014-01-01

    Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival. PMID:24489950

  20. Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of neisseria meningitidis.

    PubMed

    Zarantonelli, Maria Leticia; Skoczynska, Anna; Antignac, Aude; El Ghachi, Meriem; Deghmane, Ala-Eddine; Szatanik, Marek; Mulet, Céline; Werts, Catherine; Peduto, Lucie; d'Andon, Martine Fanton; Thouron, Françoise; Nato, Faridabano; Lebourhis, Lionel; Philpott, Dana J; Girardin, Stephen E; Vives, Francina Langa; Sansonetti, Philippe; Eberl, Gérard; Pedron, Thierry; Taha, Muhamed-Kheir; Boneca, Ivo G

    2013-06-12

    Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains. PMID:23768497

  1. Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein.

    PubMed

    Rippa, Valentina; Santini, Laura; Lo Surdo, Paola; Cantini, Francesca; Veggi, Daniele; Gentile, Maria Antonietta; Grassi, Eva; Iannello, Giulia; Brunelli, Brunella; Ferlicca, Francesca; Palmieri, Emiliano; Pallaoro, Michele; Aricò, Beatrice; Banci, Lucia; Pizza, Mariagrazia; Scarselli, Maria

    2015-07-01

    Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability. In the present study, we used epitope mapping information on the well-characterized antigen of Neisseria meningitidis factor H binding protein (fHbp) to engineer its gonococcal homologue, Ghfp. Meningococcal fHbp is typically classified in three distinct antigenic variants. We introduced epitopes of fHbp variant 1 onto the surface of Ghfp, which is naturally able to protect against meningococcal strains expressing fHbp of variants 2 and 3. Heterologous epitopes were successfully transplanted, as engineered Ghfp induced functional antibodies against all three fHbp variants. These results confirm that structural vaccinology represents a successful strategy for modulating immune responses, and it is a powerful tool for investigating the extension and localization of immunodominant epitopes. PMID:25947148

  2. Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages.

    PubMed

    Zughaier, Susu M; Kandler, Justin L; Balthazar, Jacqueline T; Shafer, William M

    2015-01-01

    Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA) addition to the 4' position of the lipid A (PEA-lipid A) moiety of the lipooligosaccharide (LOS) produced by gonococci performs a critical role in this pathogen's ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense) peptides, complement-mediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses. PMID:26641098

  3. Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonorrhoeae.

    PubMed Central

    Pannekoek, Y; van Putten, J P; Dankert, J

    1992-01-01

    Iron limitation, glucose deprivation, and growth under low oxygen supply (environmental stress) increased the expression of several proteins of Neisseria gonorrhoeae, including a 63-kilodalton protein identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This gonococcal stress protein (GSP63) was detected in the cytosol and copurified with lithium acetate-derived outer membranes. Successful purification of the protein was achieved by sucrose density gradient centrifugation and by chromatography on phenyl-Sepharose. Gel filtration of the purified protein revealed a molecular weight of approximately 450,000, suggesting that in its native state, the protein consists of a multimer of six to eight subunits. Isoelectric focusing indicated a pI of 5.2. Immunoblotting experiments using a polyclonal antiserum raised against the purified protein demonstrated cross-reactivity with a protein of the same electrophoretic mobility as GSP63 in all eight gonococcal isolates tested. N-terminal amino acid sequencing of the protein revealed up to 65% homology with members of the Hsp60 heat shock protein family, suggesting that GSP63 is related to this group of proteins. This relationship was further substantiated by the immunological cross-reactivity of GSP63 with mycobacterial Hsp60 and the ATP-binding activity of the gonococcal stress protein. Images PMID:1400243

  4. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells.

    PubMed

    Nassif, X; Lowy, J; Stenberg, P; O'Gaora, P; Ganji, A; So, M

    1993-05-01

    Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence. PMID:8332064

  5. Regulation of catalase in Neisseria gonorrhoeae. Effects of oxidant stress and exposure to human neutrophils.

    PubMed

    Zheng, H Y; Hassett, D J; Bean, K; Cohen, M S

    1992-09-01

    We studied the effects of oxidant stress on the catalase activity and hydrogen peroxide sensitivity of Neisseria gonorrhoeae. N. gonorrhoeae is an obligate pathogen of man that evokes a remarkable but ineffective neutrophil response. Gonococci make no superoxide dismutase but express high catalase activity. Gonococcal catalase activity increased threefold when organisms were subjected to 1.0 mM hydrogen peroxide. This increase in catalase activity was marked by a parallel increase in protein concentration recognized by a rabbit polyclonal antibody raised against the purified gonococcal enzyme. Catalase was primarily localized to the gonococcal cytoplasm in the presence or absence of stress; only a single isoenzyme of catalase could be identified. Exposure of gonococci to neutrophil-derived oxidants was accomplished by stimulating neutrophils with phorbol myristate acetate or by using gonococcal Opa variants that interacted with neutrophils with different degrees of efficiency. Gonococci exposed to neutrophils demonstrated a twofold increase in catalase activity in spite of some reduction in viability. Exposure of gonococci to 1.0 mM hydrogen peroxide made the organisms significantly more resistant to higher concentrations of hydrogen peroxide and to neutrophils than control organisms. These results suggest that catalase is an important defense for N. gonorrhoeae during attack by human neutrophils. The rapid response of this enzyme to hydrogen peroxide should be taken into consideration in studies designed to evaluate the interaction between neutrophils and gonococci. PMID:1522209

  6. Synthesis and preliminary biological evaluation of carba analogues from Neisseria meningitidis A capsular polysaccharide.

    PubMed

    Gao, Qi; Zaccaria, Cristina; Tontini, Marta; Poletti, Laura; Costantino, Paolo; Lay, Luigi

    2012-09-01

    The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy-α-d-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree of 3. PMID:22850927

  7. Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonorrhoeae.

    PubMed

    Pannekoek, Y; van Putten, J P; Dankert, J

    1992-11-01

    Iron limitation, glucose deprivation, and growth under low oxygen supply (environmental stress) increased the expression of several proteins of Neisseria gonorrhoeae, including a 63-kilodalton protein identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This gonococcal stress protein (GSP63) was detected in the cytosol and copurified with lithium acetate-derived outer membranes. Successful purification of the protein was achieved by sucrose density gradient centrifugation and by chromatography on phenyl-Sepharose. Gel filtration of the purified protein revealed a molecular weight of approximately 450,000, suggesting that in its native state, the protein consists of a multimer of six to eight subunits. Isoelectric focusing indicated a pI of 5.2. Immunoblotting experiments using a polyclonal antiserum raised against the purified protein demonstrated cross-reactivity with a protein of the same electrophoretic mobility as GSP63 in all eight gonococcal isolates tested. N-terminal amino acid sequencing of the protein revealed up to 65% homology with members of the Hsp60 heat shock protein family, suggesting that GSP63 is related to this group of proteins. This relationship was further substantiated by the immunological cross-reactivity of GSP63 with mycobacterial Hsp60 and the ATP-binding activity of the gonococcal stress protein. PMID:1400243

  8. Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae.

    PubMed

    Harvey, H A; Ketterer, M R; Preston, A; Lubaroff, D; Williams, R; Apicella, M A

    1997-06-01

    In men with gonococcal urethritis, the urethral epithelial cell is a site of infection. To study the pathogenesis of gonorrhea in this cell type, we have developed a method to culture primary human urethral epithelial cells obtained at the time of urologic surgery. Fluorescent analysis demonstrated that 100% of the cells stained for keratin. Microscopic analyses indicated that these epithelial cells arrayed in a pattern similar to that seen in urethral epithelium. Using immunoelectron and confocal microscopy, we compared the infection process seen in primary cells with events occurring during natural infection of the same cell type in men with gonococcal urethritis. Immunoelectron microscopy studies of cells infected with Neisseria gonorrhoeae 1291 Opa+ P+ showed adherence of organisms to the epithelial cell membrane, pedestal formation with evidence of intimate association between the gonococcal and the epithelial cell membranes, and intracellular gonococci present in vacuoles. Confocal studies of primary urethral epithelial cells showed actin polymerization upon infection. Polyclonal antibodies to the asialoglycoprotein receptor (ASGP-R) demonstrated the presence of this receptor on infected cells in the primary urethral cell culture. In situ hybridization using a fluorescent-labeled probe specific to the ASGP-R mRNA demonstrated this message in uninfected and infected cells. These features were identical to those seen in urethral epithelial cells in exudates from males with gonorrhea. Infection of primary urethral cells in culture mimics events seen in natural infection and will allow detailed molecular analysis of gonococcal pathogenesis in a human epithelial cell which is commonly infected. PMID:9169783

  9. Insertion of Tn916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide.

    PubMed

    Stephens, D S; Swartley, J S; Kathariou, S; Morse, S A

    1991-11-01

    We recently found that the 16.4-kb conjugative transposon Tn916 could be introduced into Neisseria meningitidis by transformation and that it appeared to transpose to many different sites in the chromosome of recipient meningococci. In order to identify transposon-induced alterations of specific meningococcal virulence determinants, a library of meningococcal Tetr transformants containing Tn916 was made and screened for those altered in the production of group B capsular polysaccharide. A capsule-defective mutant, M7, was identified by using monoclonal and polyclonal antisera to group B polysaccharide in immunoblot and agar antiserum procedures. Growth of M7 was similar to that of the parent strain. M7 produced no group B capsular polysaccharide by rocket immunoelectrophoresis, and the mutation was stable during laboratory passage. The capsule-defective phenotype was linked to Tetr, as demonstrated by immunoblot and Southern blot analysis of progeny Tetr transformants (transformants of the parent strain obtained with DNA from M7). A capsule-deficient mutant, O8, was identified by using a similar approach. Analysis of the Tn916 insertions in M7 and O8 indicated that a significant portion of the transposon on either side of the tetM determinant had been lost. The ability of Tn916 to generate defined, stable mutations in meningococcal virulence determinants is demonstrated by our study. PMID:1657783

  10. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes.

    PubMed

    Gray-Owen, S D; Dehio, C; Haude, A; Grunert, F; Meyer, T F

    1997-06-16

    Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae. PMID:9218786

  11. Functional analysis of NsrR, a nitric oxide sensing Rrf2 repressor in Neisseria gonorrhoeae

    PubMed Central

    Isabella, Vincent M.; Lapek, John D.; Kennedy, Edward M.; Clark, Virginia L.

    2008-01-01

    Nitric oxide has been shown to be an important component of the human immune response, and as such, it is important to understand how pathogenic organisms respond to its presence. In Neisseria gonorrhoeae, recent work has revealed that NsrR, an Rrf2-type transcriptional repressor, can sense NO and control the expression of genes responsible for NO metabolism. A highly pure extract of epitope tagged NsrR was isolated and mass spectroscopic analysis suggested that the protein contained a [2Fe-2S] cluster. NsrR/DNA interactions were thoroughly analyzed in vitro. Using EMSA analysis, NsrR::FLAG was shown to interact with predicted operators in the norB, aniA, and nsrR upstream regions with a Kd of 7 nM, 19 nM, and 35 nM respectively. DNase I footprint analysis was performed on the upstream regions of norB and nsrR, where NsrR was shown to protect the predicted 29 bp binding sites. The presence of exogenously added NO inhibited DNA binding by NsrR. Alanine substitution of C90, C97, or C103 in NsrR abrogated repression of norB::lacZ and inhibited DNA binding, consistent with their presumed role in coordination of a NO-sensitive Fe-S center required for DNA binding. PMID:19007408

  12. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response

    PubMed Central

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A.; Ingalls, Robin R.

    2013-01-01

    Nucleotide-binding oligomerization domain (NOD)-1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. In this study we examined the ability of NOD1 and NOD2 to recognize N. gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. We found that gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2 (RIPK2). We identified a number of cytokines and chemokines that were differentially expressed in wild type vs. NOD2 deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling upregulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. These data demonstrate that NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  13. Molecular Epidemiology of Recent Belgian Isolates of Neisseria meningitidis Serogroup B

    PubMed Central

    Van Looveren, M.; Vandamme, P.; Hauchecorne, M.; Wijdooghe, M.; Carion, F.; Caugant, D. A.; Goossens, H.

    1998-01-01

    In Belgium an increase in the incidence of meningococcal disease has been noted since the early 1990s. Four hundred twenty clinical strains isolated during the period from 1990 to 1995, along with a set of 30 European reference strains, and 20 Dutch isolates were examined by random-primer and repetitive-motif-based PCR. A subset was investigated by multilocus enzyme electrophoresis and pulsed-field gel electrophoresis. The data were compared with results obtained by serotyping (M. Van Looveren, F. Carion, P. Vandamme, and H. Goossens, Clin. Microbiol. Infect. 4:224–228, 1998). Both phenotypic and molecular epidemiological data suggest that the lineage III of Neisseria meningitidis, first encountered in The Netherlands in about 1980, has been introduced in Belgium. The epidemic clone, as defined by oligonucleotide D8635-primed PCR, encompasses mainly phenotypes B:4:P1.4 and B:nontypeable:P1.4, but strains with several other phenotypes were also encountered. Therefore, serotyping alone would underestimate the prevalence of the epidemic clone. PMID:9738028

  14. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps.

    PubMed

    Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2015-04-01

    Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs. PMID:25818299

  15. Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin.

    PubMed

    Nabu, Sunanta; Lawung, Ratana; Isarankura-Na-Ayudhya, Patcharee; Isarankura-Na-Ayudhya, Chartchalerm; Roytrakul, Sittiruk; Prachayasittikul, Virapong

    2014-03-01

    A proteome reference map of Neisseria gonorrhoeae was successfully established using two-dimensional gel electrophoresis in conjunction with matrix-assisted laser desorption ionization-time of flight mass spectrometry. This map was further applied to compare protein expression profiles of high-level spectinomycin-resistant (clinical isolate) and -susceptible (reference strain) N. gonorrhoeae following treatment with subminimal inhibitory concentrations (subMICs) of spectinomycin. Approximately 200 protein spots were visualized by Coomassie brilliant blue G-250 staining and 66 spots representing 58 unique proteins were subsequently identified. Most of the identified proteins were analysed as cytoplasmic proteins and belonged to the class of energy metabolism. Comparative proteomic analysis of whole protein expression of susceptible and resistant gonococci showed up to 96% similarity while eight proteins were found to be differentially expressed in the resistant strain. In the presence of subMICs of spectinomycin, it was found that 50S ribosomal protein L7/L12, an essential component for ribosomal translocation, was upregulated in both strains, ranging from 1.5- to 3.5-fold, suggesting compensatory mechanisms of N. gonorrhoeae in response to antibiotic that inhibits protein synthesis. Moreover, the differential expression of proteins involved in energy metabolism, amino acid biosynthesis, and the cell envelope was noticeably detected, indicating significant cellular responses and adaptation against antibiotic stress. Such knowledge provides valuable data, not only fundamental proteomic data, but also knowledge of the mode of action of antibiotic and secondary target proteins implicated in adaptation and compensatory mechanisms. PMID:24567501

  16. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier

    PubMed Central

    Mairey, Emilie; Genovesio, Auguste; Donnadieu, Emmanuel; Bernard, Christine; Jaubert, Francis; Pinard, Elisabeth; Seylaz, Jacques; Olivo-Marin, Jean-Christophe; Nassif, Xavier; Duménil, Guillaume

    2006-01-01

    Neisseria meningitidis is a commensal bacterium of the human nasopharynx. Occasionally, this bacterium reaches the bloodstream and causes meningitis after crossing the blood–brain barrier by an unknown mechanism. An immunohistological study of a meningococcal sepsis case revealed that neisserial adhesion was restricted to capillaries located in low blood flow regions in the infected organs. This study led to the hypothesis that drag forces encountered by the meningococcus in the bloodstream determine its attachment site in vessels. We therefore investigated the ability of N. meningitidis to bind to endothelial cells in the presence of liquid flow mimicking the bloodstream with a laminar flow chamber. Strikingly, average blood flows reported for various organs strongly inhibited initial adhesion. As cerebral microcirculation is known to be highly heterogeneous, cerebral blood velocity was investigated at the level of individual vessels using intravital imaging of rat brain. In agreement with the histological study, shear stress levels compatible with meningococcal adhesion were only observed in capillaries, which exhibited transient reductions in flow. The flow chamber assay revealed that, after initial attachment, bacteria resisted high blood velocities and even multiplied, forming microcolonies resembling those observed in the septicemia case. These results argue that the combined mechanical properties of neisserial adhesion and blood microcirculation target meningococci to transiently underperfused cerebral capillaries and thus determine disease development. PMID:16864659

  17. Structural and biochemical characterization of the oxidoreductase NmDsbA3 from Neisseria meningitidis.

    PubMed

    Vivian, Julian P; Scoullar, Jessica; Robertson, Amy L; Bottomley, Stephen P; Horne, James; Chin, Yanni; Wielens, Jerome; Thompson, Philip E; Velkov, Tony; Piek, Susannah; Byres, Emma; Beddoe, Travis; Wilce, Matthew C J; Kahler, Charlene M; Rossjohn, Jamie; Scanlon, Martin J

    2008-11-21

    DsbA is an enzyme found in the periplasm of Gram-negative bacteria that catalyzes the formation of disulfide bonds in a diverse array of protein substrates, many of which are involved in bacterial pathogenesis. Although most bacteria possess only a single essential DsbA, Neisseria meningitidis is unusual in that it possesses three DsbAs, although the reason for this additional redundancy is unclear. Two of these N. meningitidis enzymes (NmDsbA1 and NmDsbA2) play an important role in meningococcal attachment to human epithelial cells, whereas NmDsbA3 is considered to have a narrow substrate repertoire. To begin to address the role of DsbAs in the pathogenesis of N. meningitidis, we have determined the structure of NmDsbA3 to 2.3-A resolution. Although the sequence identity between NmDsbA3 and other DsbAs is low, the NmDsbA3 structure adopted a DsbA-like fold. Consistent with this finding, we demonstrated that NmDsbA3 acts as a thiol-disulfide oxidoreductase in vitro and is reoxidized by Escherichia coli DsbB (EcDsbB). However, pronounced differences in the structures between DsbA3 and EcDsbA, which are clustered around the active site of the enzyme, suggested a structural basis for the unusual substrate specificity that is observed for NmDsbA3. PMID:18715864

  18. A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis.

    PubMed

    Herbst de Cortina, Sasha; Bristow, Claire C; Joseph Davey, Dvora; Klausner, Jeffrey D

    2016-01-01

    Objectives. Systematic review of point of care (POC) diagnostic tests for sexually transmitted infections: Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Trichomonas vaginalis (TV). Methods. Literature search on PubMed for articles from January 2010 to August 2015, including original research in English on POC diagnostics for sexually transmitted CT, NG, and/or TV. Results. We identified 33 publications with original research on POC diagnostics for CT, NG, and/or TV. Thirteen articles evaluated test performance, yielding at least one test for each infection with sensitivity and specificity ≥90%. Each infection also had currently available tests with sensitivities <60%. Three articles analyzed cost effectiveness, and five publications discussed acceptability and feasibility. POC testing was acceptable to both providers and patients and was also demonstrated to be cost effective. Fourteen proof of concept articles introduced new tests. Conclusions. Highly sensitive and specific POC tests are available for CT, NG, and TV, but improvement is possible. Future research should focus on acceptability, feasibility, and cost of POC testing. While pregnant women specifically have not been studied, the results available in nonpregnant populations are encouraging for the ability to test and treat women in antenatal care to prevent adverse pregnancy and neonatal outcomes. PMID:27313440

  19. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection.

    PubMed

    Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D

    2016-10-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503

  20. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  1. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    PubMed

    Ilina, Elena N; Malakhova, Maya V; Bodoev, Ivan N; Oparina, Nina Y; Filimonova, Alla V; Govorun, Vadim M

    2013-01-01

    Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10(-5) colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT). PMID:23847609

  2. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  3. Serotype and serovar distribution of Neisseria gonorrhoeae isolated from high-risk populations in Bangladesh.

    PubMed

    Alam, M A; Chowdhury, M Z; Ahmed, F; Alam, A; Hossain, M A

    2012-12-01

    Neisseria gonorrhoeae, the causative agent of gonococcal infection, is known to frequently change their characteristics to evade host immune mechanism. Characterization of the clinical isolates of the organism can lead to identification of the circulating strains and often a sexual network in a community to help in designing the control strategy. Keeping in mind the above consideration, a total of 239 N. gonorrhoeae, isolated from high-risk populations, were characterized for serotypes and serovars by monoclonal antibodies against protein 1 of the organism. Majority of the serotypes were serotype B (142, 59.4%). Majority of the isolates showing resistance to at least one of the antibiotics tested were also serotype B (139, 59.2%), whereas, majority of the isolates showing resistance to any three of the antibiotics (multidrug resistant, MDR) (63%) was serotype A. A total of 41 different serovars were also identified and five of which (Arst, Bropt, Bopt, Arost, and Brop) included the highest percent (49.3%) of the isolates. Many serovars (23/41, 56.1%) were new emergent and included 58 (24.3%) of the isolates investigated. All of the new serovars were resistant to at least one of the antibiotics tested and the highest rate (40/102, 39.2%) was MDR. Serotyping and serovar determination was found contributory to understand the microepidemics of the N. gonorrhoeae isolates. Further studies including antibiogram and contact tracing can efficiently help in control of the disease. PMID:23540188

  4. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils.

    PubMed

    Johnson, M Brittany; Criss, Alison K

    2013-08-01

    Symptomatic infection with Neisseria gonorrhoeae (Gc) promotes inflammation driven by polymorphonuclear leucocytes (PMNs, neutrophils), yet some Gc survive PMN exposure during infection. Here we report a novel mechanism of gonococcal resistance to PMNs: Gc phagosomes avoid maturation into phagolysosomes by delayed fusion with primary (azurophilic) granules, which contain antimicrobial components including serine proteases. Reduced phagosome-primary granule fusion was observed in gonorrheal exudates and human PMNs infected ex vivo. Delayed phagosome-granule fusion could be overcome by opsonizing Gc with immunoglobulin. Using bacterial viability dyes along with antibodies to primary granules revealed that Gc survival in PMNs correlated with early residence in primary granule-negative phagosomes. However, when Gc was killed prior to PMN exposure, dead bacteria were also found in primary granule-negative phagosomes. These results suggest that Gc surface characteristics, rather than active bacterial processes, influence phagosome maturation and that Gc death inside PMNs occurs after phagosome-granule fusion. Ectopically increasing primary granule-phagosome fusion, by immunoglobulin opsonization or PMN treatment with lysophosphatidylcholine, reduced intracellular Gc viability, which was attributed in part to serine protease activity. We conclude that one method for Gc to avoid PMN clearance in acute gonorrhoea is by delaying primary granule-phagosome fusion, thus preventing formation of a degradative phagolysosome. PMID:23374609

  5. Uncovering the mechanism of trapping and cell orientation during Neisseria gonorrhoeae twitching motility.

    PubMed

    Zaburdaev, Vasily; Biais, Nicolas; Schmiedeberg, Michael; Eriksson, Jens; Jonsson, Ann-Beth; Sheetz, Michael P; Weitz, David A

    2014-10-01

    Neisseria gonorrheae bacteria are the causative agent of the second most common sexually transmitted infection in the world. The bacteria move on a surface by means of twitching motility. Their movement is mediated by multiple long and flexible filaments, called type IV pili, that extend from the cell body, attach to the surface, and retract, thus generating a pulling force. Moving cells also use pili to aggregate and form microcolonies. However, the mechanism by which the pili surrounding the cell body work together to propel bacteria remains unclear. Understanding this process will help describe the motility of N. gonorrheae bacteria, and thus the dissemination of the disease which they cause. In this article we track individual twitching cells and observe that their trajectories consist of alternating moving and pausing intervals, while the cell body is preferably oriented with its wide side toward the direction of motion. Based on these data, we propose a model for the collective pili operation of N. gonorrheae bacteria that explains the experimentally observed behavior. Individual pili function independently but can lead to coordinated motion or pausing via the force balance. The geometry of the cell defines its orientation during motion. We show that by changing pili substrate interactions, the motility pattern can be altered in a predictable way. Although the model proposed is tangibly simple, it still has sufficient robustness to incorporate further advanced pili features and various cell geometries to describe other bacteria that employ pili to move on surfaces. PMID:25296304

  6. DC-SIGN (CD209) recognition of Neisseria gonorrhoeae is circumvented by lipooligosaccharide variation.

    PubMed

    Zhang, Pei; Schwartz, Olivier; Pantelic, Milica; Li, Geling; Knazze, Quita; Nobile, Cinzia; Radovich, Milan; He, Johnny; Hong, Soon-Cheol; Klena, John; Chen, Tie

    2006-04-01

    Neisseria gonorrhoeae (GC) or Escherichia coli HB101 (hereafter referred to as E. coli) expressing opacity (Opa) proteins adhere to human host cells and stimulate phagocytosis as a result of the interaction of certain Opa proteins to carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1; CD66a) receptors. Our experiments show that the Opa-CEACAM1 interaction does not play a significant role in adherence between these bacteria and dendritic cells (DCs). Instead, phagocytosis of GC and E. coli by DCs is mediated by the DC-specific intercellular adhesion molecule-grabbing nonintegrin, (SIGN; CD209) receptor. DC-SIGN recognition and subsequent phagocytosis of GC are limited, however, to a lipooligosaccharide (LOS) mutant (lgtB) of GC. This conclusion is supported by experiments demonstrating that HeLa cells expressing human DC-SIGN (HeLa-DC-SIGN) bind exclusively to and engulf an lgtB mutant of GC, and this interaction is blocked specifically by an anti-DC-SIGN antibody. The experiments suggest that LOS variation may have evolved as a mechanism for GC to avoid phagocytosis by DCs. PMID:16461738

  7. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  8. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    PubMed

    Li, Lan-Hui; Yen, Muh-Yong; Ho, Chao-Chi; Wu, Ping; Wang, Chien-Chun; Maurya, Pawan Kumar; Chen, Pai-Shan; Chen, Wei; Hsieh, Wan-Yu; Chen, Huei-Wen

    2013-01-01

    The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226). Silver nanoparticles (Ag NPs, 120 nm) showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml) and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae. PMID:23705013

  9. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae.

    PubMed

    Barh, Debmalya; Kumar, Anil

    2009-01-01

    Neisseria gonorrhoeae is responsible for causing gonorrhea, one of the most common sexually transmitted diseases prevailing globally. Although extensive researches are in progress in order to control the transmission of the disease and to develop drug(s) against the pathogen, till date no effective vaccine or specific drug could be developed and only antibiotic treatment is in use. Perhaps, due to excess use of antibiotics, several resistant strains have been found. In the present study, metabolic pathways-related candidate drug and vaccine targets have been identified in N. gonorrhoeae virulent strain FA 1090 using an in silico subtractive genomics approach. 106 putative drug targets out of 537 essential genes have been predicted. 67 cytoplasmic and 9 membrane enzymes, along with 10 membrane transporters are found to be the potential drug targets from the host-pathogen common metabolic pathways. Among these targets, competence lipoproteins (NGO0277) and cysW have been identified as candidate vaccine targets. 20 drug targets have been identified from pathogen specific unique metabolic pathways. Out of these, 6 enzymes are involved in dual metabolic pathways and 2 are expressed in cell wall and fimbrium. These gonococci-specific proteins are expected to be better possible drug targets. Screening of the functional inhibitors against these novel targets may result in discovery of novel therapeutic compounds that can be effective against antibiotic resistant strains. PMID:20109152

  10. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    PubMed

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  11. A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes.

    PubMed Central

    Liu, M A; Friedman, A; Oliff, A I; Tai, J; Martinez, D; Deck, R R; Shieh, J T; Jenkins, T D; Donnelly, J J; Hawe, L A

    1992-01-01

    Protein carriers vary in their ability to increase the immunogenicity of poorly immunogenic or T-lymphocyte-independent antigens. We examined one such carrier, the outer membrane protein complex derived from Neisseria meningitidis serogroup B strain B11, in an attempt to determine why this outer membrane protein complex was more immunogenic in young infants and in relevant animal models than two other carriers used in conjugates made with Haemophilus influenzae type b polysaccharide, a T-cell-independent antigen. A single protein of the outer membrane protein complex, the class 2 porin protein, was purified and shown to function as a T-helper lymphocyte carrier protein. Unexpectedly, it was also found to have mitogenic activity for lymphocytes that was not due to lipopolysaccharide. This mitogenic activity appears to date to be unique to this carrier protein of the carrier proteins tested and may contribute to the ability of the H. influenzae type b conjugate vaccine made with the outer membrane protein complex to generate IgG anti-polysaccharide antibody responses in mice and infant monkeys and protective immune responses in infants less than 6 months of age. Images PMID:1533934

  12. Use of New York City medium for improved recovery of Neisseria gonorrhoeae from clinical specimens.

    PubMed Central

    Granato, P A; Schneible-Smith, C; Weiner, L B

    1981-01-01

    New York City (NYC) and Martin-Lewis (ML) media were evaluated comparatively for their ability to support the growth of Neisseria gonorrhoeae from clinical specimens. A total of 1,010 urethral, cervical, pharyngeal, and rectal specimens were collected from walk-in patients attending a clinic for sexually transmitted diseases. A total of 187 and 165 isolates of gonococci were cultivated on NYC and ML media, respectively, with 161 of these isolates being recovered on both media. Overall, the use of NYC medium resulted in a 13.3% increased recovery rate of gonococci. When gonococci were recovered on both media from primary isolation, the NYC medium supported a more luxuriant growth and a greater number of colonies, which usually resulted in the detection of positive cultures 1 day sooner than on ML medium. Both media were comparable in their ability to suppress the growth of saprophytic microorganisms. The results of this study demonstrated that the use of NYC medium markedly enhanced the recovery of N. gonorrhoeae from clinical specimens as compared to ML medium. Images PMID:6787078

  13. Isolation of Neisseria gonorrhoeae on selective and nonselective media in a sexually transmitted disease clinic.

    PubMed Central

    Bonin, P; Tanino, T T; Handsfield, H H

    1984-01-01

    To assess the practical significance of reported increases in the prevalence of vancomycin-susceptible strains of Neisseria gonorrhoeae on isolation of this organism, antibiotic-free chocolate agar (CA), modified Thayer-Martin medium (MTM), and a vancomycin-free selective medium (VFSM) were compared in a sexually transmitted disease clinic. Among 326 cervical gonococcal infections detected in a comparison of CA with MTM, 92.0% were detected on CA, compared with 98.2% on MTM (P less than 0.001). Similarly, among 306 cervical infections detected in a comparison of MTM and VFSM, 95.8% of infections were detected with VFSM, compared with 98.4% for MTM (P = 0.10). For 1,632 urethral infections in men, all three media were equivalent, with none detecting fewer than 98% of the infections. Compared with a single inoculation, dual inoculation of MTM increased the diagnostic yield by 1.5% for 206 urethral infections and 2.4% for 83 cervical infections. In our clinic population, MTM is superior to CA or VFSM for the diagnosis of genital gonococcal infections, especially in women. The increased yield that accrued from inoculation of both MTM and either of the other media was not sufficiently high to warrant routine use of this practice in our clinic. PMID:6421872

  14. Trends in susceptibility of Neisseria gonorrhoeae to ceftriaxone from 1985 through 1991.

    PubMed Central

    Schwebke, J R; Whittington, W; Rice, R J; Handsfield, H H; Hale, J; Holmes, K K

    1995-01-01

    The antimicrobial susceptibilities of 16,441 gonococcal isolates from Seattle-King County were determined for ceftriaxone, cefoxitin, penicillin G, and tetracycline. From 1985 to 1989, ceftriaxone, in combination with doxycycline, was increasingly used for treatment of gonorrhea, and by 1989, it was used as therapy for > 80% of cases in Seattle-King County. MICs of ceftriaxone correlated significantly (P < 0.001) with those of the other beta-lactam antibodies included in this study. Geometric mean MICs of penicillin G for isolates that did not produce beta-lactamase increased from 1985 to 1991. The geometric mean MICs of cefoxitin, ceftriaxone, and tetracycline began to decline in 1987 but increased in 1990 and 1991. The percentage of strains with decreased susceptibility to ceftriaxone (MIC, 0.06 to 0.25 microgram/ml) rose from 0.3% in 1985 to 5.3% in 1987 but subsequently declined steadily to 2.6% in 1991, despite increased use of ceftriaxone as routine therapy for gonorrhea. Changes in patterns of antimicrobial susceptibility may be related not only to antimicrobial selection pressures but also to less well understood population shifts among Neisseria gonorrhoeae strains within a community. PMID:7785995

  15. Antigen-specific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein.

    PubMed Central

    Buchanan, T M; Hildebrandt, J F

    1981-01-01

    Principal outer membrane protein (protein I) of Neisseria gonorrhoeae was prepared nearly free of lipopolysaccharide (LPS) and substantially purified from other membrane proteins by chromatography of partially purified gonococcal outer membranes over Sepharose 6B in the presence of deoxycholate at pH 9.0. This protein I of nine separate antigenic types was coated to polystyrene tubes and used in the enzyme-linked immunosorbent assay (ELISA) to measure antibody to protein I or in inhibition tests to quantitate protein I antigen. No significant inhibition of the ELISA test was produced by purified LPS from the strain used to prepare each of the protein I types or by whole gonococci bearing the same LPS but different protein I antigens as the strain used to produce a given protein I antigen. Of 125 strains of gonococci used as whole organisms to inhibit the protein I ELISA, 124 (99%) typed with one or more of the nine protein I types, and 35% of these typed with a single protein I serotype. Sixty-one of 65 (94%) strains from Seattle and Atlanta patients with disseminated gonococcal infection contained protein I serotype 1, and 16 of 24 (64%) strains from Seattle patients with salpingitis bore one or both of protein I serotypes 1 and 2. Images PMID:6166568

  16. Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae.

    PubMed Central

    Picard, F J; Dillon, J R

    1989-01-01

    A genomic library for Neisseria gonorrhoeae, constructed in the lambda cloning vector EMBL4, was screened for clones carrying arginine biosynthesis genes by complementation of Escherichia coli mutants. Clones complementing defects in argA, argB, argE, argG, argIF, carA, and carB were isolated. An E. coli defective in the acetylornithine deacetylase gene (argE) was complemented by the ornithine acetyltransferase gene (argJ) from N. gonorrhoeae. This heterologous complementation is reported for the first time. The carAB operon from E. coli hybridized with the gonococcal clones that carried carA or carB genes under conditions of high stringency, detecting 80% or greater similarity and showing that the nucleotide sequence of the carbamoylphosphate synthetase genes is very similar in these two organisms. Under these conditions for hybridization, the gonococcal clones carrying argB or argF genes did not hybridize with plasmids containing the corresponding E. coli gene. Cocomplementation experiments established gene linkage between carA and carB. Clones complementing a gene defect in argE were also able to complement an argA mutation. This suggests that the enzyme ornithine acetyltransferase from N. gonorrhoeae (encoded by argJ) may be able to complement both argA and argE mutations in E. coli. The arginine biosynthesis genes in N. gonorrhoeae appear to be scattered as in members of the family Pseudomonadaceae. Images PMID:2493452

  17. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae

    PubMed Central

    Wu, Hsing-Ju; Seib, Kate L.; Srikhanta, Yogitha N.; Edwards, Jennifer; Kidd, Stephen P.; Maguire, Tina L .; Hamilton, Amanda; Pan, Kuan-Tin; Hsiao, He-Hsuan; Yao, Chen-Wen; Grimmond, Sean M.; Apicella, Michael A.; McEwan, Alastair G.; Wang, Andrew H-J.; Jennings, Michael P.

    2014-01-01

    Neisseria gonorrhoeae has evolved a complex and novel network of oxidative stress responses, including defense mechanisms that are dependent on manganese (Mn). We performed systematic analyses at the transcriptomic and proteomic (1D SDS-PAGE and Isotope-Coded Affinity Tag [ICAT]) levels to investigate the global expression changes that take place in a high Mn environment, which results in a Mn-dependent oxidative stress resistance phenotype. These studies revealed that 97 proteins are regulated at the post-transcriptional level under conditions of increased Mn concentration, including proteins involved in virulence (eg. Pilin, a key adhesin), oxidative stress defence (eg. superoxide dismutase), cellular metabolism, protein synthesis, RNA processing and cell division. Mn regulation of inorganic pyrophosphatase (Ppa) indicated the potential involvement of phosphate metabolism in the Mn-dependent oxidative stress defense. A detailed analysis of the role of Ppa and polyphosphate kinase (Ppk) in the gonococcal oxidative stress response revealed that ppk and ppa mutant strains showed increased resistance to oxidative stress. Investigation of these mutants grown with high Mn suggests that phosphate and pyrophosphate are involved in Mn-dependent oxidative stress resistance. PMID:20004262

  18. Non-Cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria gonorrhoeae

    PubMed Central

    Li, Lan-Hui; Yen, Muh-Yong; Ho, Chao-Chi; Wu, Ping; Wang, Chien-Chun; Maurya, Pawan Kumar; Chen, Pai-Shan; Chen, Wei; Hsieh, Wan-Yu; Chen, Huei-Wen

    2013-01-01

    The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226). Silver nanoparticles (Ag NPs, 120 nm) showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml) and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae. PMID:23705013

  19. Antimicrobial susceptibility and genotyping analysis of Hungarian Neisseria gonorrhoeae strains in 2013.

    PubMed

    Nemes-Nikodém, Éva; Brunner, Alexandra; Pintér, Dóra; Mihalik, Noémi; Lengyel, György; Marschalkó, Márta; Kárpáti, Sarolta; Szabó, Dóra; Ostorházi, Eszter

    2014-12-01

    Emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is a major public health concern worldwide. The current study aims to determine the antimicrobial resistance in N. gonorrhoeae and associated molecular typing to enhance gonococcal antimicrobial surveillance in Hungary. In the National N. gonorrhoeae Reference Laboratory of Hungary 187 N. gonorrhoeae infections were detected in 2013, antibiograms were determined for all the isolated strains, and 52 (one index strain from every sexually contact related group) of them were also analysed by the N. gonorrhoeae multi-antigen sequence typing (NG-MAST) method. Twenty-two different NG-MAST sequence types (STs) were identified, of which 8 STs had not been previously described. In Hungary, the highly diversified gonococcal population displayed high resistance to penicillin, ciprofloxacin and tetracycline (the antimicrobials previously recommended for gonorrhoea treatment). Resistance to the currently recommended extended spectrum cephalosporines were rare: only two of the expected strains, an ST 1407 and an ST 210, had cefixime MIC above the resistance breakpoint. By the revision of our National Treatment Guideline, it must be considered, that the azithromycin resistance is about 60% among the four most frequently isolated STs in Hungary. PMID:25496972

  20. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future

    PubMed Central

    Unemo, Magnus

    2014-01-01

    SUMMARY Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  1. Characterisation of Neisseria gonorrhoeae in semen during urethral infection in men.

    PubMed Central

    Isbey, S F; Alcorn, T M; Davis, R H; Haizlip, J; Leone, P A; Cohen, M S

    1997-01-01

    OBJECTIVE: To determine the number of Neisseria gonorrhoeae organisms in urine and semen in men with gonococcal urethritis, and to compare selected phenotypic characteristics of organisms harvested from the urethra and semen. DESIGN: Samples from two groups of subjects were examined. Patients with symptomatic urethritis receiving treatment at an STD clinic, as well as six subjects with experimental urethritis. Semen and urine specimens were obtained after the urethral exudate was sampled. RESULTS: Using quantitative cultures, we found an average of 6 x 10(6) gonococci in urine or semen of 17 men with symptomatic urethritis seeking treatment at an STD clinic, and 2 x 10(4) gonococci in secretions of six male subjects with early experimental infection. Gonococcal outer membrane opacity (Opa) proteins and lipo-oligosaccharide (LOS) recovered from urine and semen of these subjects were very similar. CONCLUSIONS: Men with symptomatic gonorrhoea excrete a large number of gonococci in semen which is not affected by the duration of symptoms. The similar phenotype of organisms in urine and semen suggests the bacteria come from the same compartment. These data help to explain the efficiency of gonococcal transmission from men to their partners, and identify an appropriate target for a preventative vaccine or immunotherapy designed to reduce the inoculum in infected patients. Images PMID:9534748

  2. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  3. Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells

    PubMed Central

    Jennings, Michael P.; Jen, Freda E.-C.; Roddam, Louise F.; Apicella, Michael A.; Edwards, Jennifer L.

    2013-01-01

    Summary Expression of type IV pili by Neisseria gonorrhoeae plays a critical role in mediating adherence to human epithelial cells. Gonococcal pilin is modified with an O-linked glycan, which may be present as a di- or monosaccharide because of phase variation of select pilin glycosylation genes. It is accepted that bacterial proteins may be glycosylated; less clear is how the protein glycan may mediate virulence. Using primary, human, cervical epithelial (i.e. pex) cells, we now provide evidence to indicate that the pilin glycan mediates productive cervical infection. In this regard, pilin glycan-deficient mutant gonococci exhibited an early hyper-adhesive phenotype but were attenuated in their ability to invade pex cells. Our data further indicate that the pilin glycan was required for gonococci to bind to the I-domain region of complement receptor 3, which is naturally expressed by pex cells. Comparative, quantitative, infection assays revealed that mutant gonococci lacking the pilin glycan did not bind to the I-domain when it is in a closed, low-affinity conformation and cannot induce an active conformation to complement receptor 3 during pex cell challenge. To our knowledge, these are the first data to directly demonstrate how a protein-associated bacterial glycan may contribute to pathogenesis. PMID:21371235

  4. Pilin regulation in the pilT mutant of Neisseria gonorrhoeae strain MS11

    PubMed Central

    Dietrich, Manuela; Mollenkopf, Hans; So, Magdalene; Friedrich, Alexandra

    2009-01-01

    The ATPase protein PilT mediates retraction of type IV pili (Tfp). Tfp retraction of Neisseria gonorrhoeae causes many signal transduction events and changes in gene expression in infected epithelial cells. To find out whether a pilT mutation and lack of Tfp retraction, respectively, lead also to gene regulation in bacteria we performed microarrays comparing the transcriptional profiles of the N. gonorrhoeae parent strain MS11 and its isogenic pilT mutant during growth in vitro. A loss-of-function-mutation in pilT led to altered transcript levels of 63 open reading frames. Levels of pilE transcripts and its deduced protein the major Tfp subunit pilin, were increased most markedly by a mutation in pilT. Further studies revealed that pilE expression was also controlled by two other genes encoding Tfp biogenesis proteins, pilD and pilF. Our studies strongly suggest that pilE expression is a finely-tuned process. PMID:19486161

  5. Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae.

    PubMed Central

    Clark, V L; Campbell, L A; Palermo, D A; Evans, T M; Klimpel, K W

    1987-01-01

    Neisseria gonorrhoeae is generally considered to be an obligate aerobe; it can, however, grow in the absence of oxygen by anaerobic respiration by using nitrite as a terminal electron acceptor. The outer membrane protein compositions of aerobically and anaerobically grown N. gonorrhoeae strains were compared by one- and two-dimensional polyacrylamide gel electrophoresis. Anaerobically grown strains expressed at least three proteins (Pan 1 to Pan 3) at much higher levels than did aerobically grown cells. Conversely, at least five other proteins (Pox 1 to Pox 5) were found to be expressed at significantly higher levels in aerobically grown cells. None of the Pan or Pox proteins were heat modifiable, and none of the heat-modifiable protein IIs or other major outer membrane proteins (protein I, protein III, pilin, or H-8 protein) were significantly altered in expression by anaerobic growth. There were also no apparent differences in lipopolysaccharide composition in aerobically and anaerobically grown gonococci. The regulation of protein expression by oxygen availability suggests that anaerobic growth is a physiologically significant state for this organism. Images PMID:3106220

  6. Multiple protein differences exist between Neisseria gonorrhoeae type 1 and type 4.

    PubMed Central

    Klimpel, K W; Clark, V L

    1988-01-01

    Neisseria gonorrhoeae undergoes a spontaneous conversion from a form which is virulent, competent for DNA-mediated transformation, and piliated (type 1) to a form which is avirulent and neither piliated nor competent (type 4). This phase variation has become thought of as simply a conversion from piliated to nonpiliated. Using the techniques of cell fractionation, two-dimensional electrophoresis, and nonequilibrium pH gradient gel electrophoresis, we identified differences in the expression levels of multiple proteins between type 1 and type 4 cells. A total of 26 type 1-specific (T1S) and 23 type 4-specific (T4S) cytoplasmic or cytoplasmic membrane proteins were identified in O'Farrell two-dimensional gels. Using nonequilibrium pH gradient gel electrophoresis, we detected a minimum of eight T1S outer membrane proteins and four T4S outer membrane proteins which were not detected in the O'Farrell gels. Thus, the conversion from type 1 to type 4 is a complex event involving many different proteins of all cellular locations. Images PMID:3126144

  7. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future.

    PubMed

    Unemo, Magnus; Shafer, William M

    2011-08-01

    The strict human pathogen Neisseria gonorrhoeae has caused gonorrhea for thousands of years, and currently gonorrhea is the second most prevalent bacterial sexually transmitted infection worldwide. Given the ancient nature of N. gonorrhoeae and its unique obligate relationship with humankind over the millennia, its remarkable ability to adapt to the host immune system and cause repeated infections, and its propensity to develop resistance to all clinically useful antibiotics, the gonococcus is an ideal pathogen on which to study the evolution of bacterial pathogenesis, including antimicrobial resistance, over the long term and within the host during infection. Recently, the first gonococcus displaying high-level resistance to ceftriaxone, identified in Japan, was characterized in detail. Ceftriaxone is the last remaining option for empirical first-line treatment, and N. gonorrhoeae now seems to be evolving into a true "superbug." In the near future, gonorrhea may become untreatable in certain circumstances. Herein, the history of antibiotics used for treatment of gonorrhea, the evolution of resistance emergence in N. gonorrhoeae, the linkage between resistance and biological fitness of N. gonorrhoeae, lessons learned, and future perspectives are reviewed and discussed. PMID:22239555

  8. Coupling electrochemical response of a DNA biosensor with PCR for Neisseria gonorrhoeae detection.

    PubMed

    Verma, Rachna; Sood, Seema; Singh, Renu; Sumana, Gajjala; Bala, Manju; Sharma, Vinod K; Samantaray, Jyotish C; Pandey, Ravindra M; Malhotra, Bansi D

    2014-01-01

    Early diagnosis of gonococcal infections is important with regard to a patient's health and stage of infection. In this context, we report the development of an opa-gene-based electrochemical DNA biosensor for detection of Neisseria gonorrhoeae by monitoring redox peak of methylene blue indicator. The fabricated biosensor has been shown to be highly sensitive and specific when evaluated with complementary, non-complementary, and 1-base mismatch DNA sequences and polymerase chain reaction (PCR) amplified products (amplicons) of standard strain of N. gonorrhoeae (ATCC49226). The biosensor has been further evaluated using amplicons of known positive and negative clinical samples, and cut-off for positives has been determined using receiver operating characteristic curve. The sensitivity (SN), specificity (SP), positive predictive value, and negative predictive value of the biosensor have been found to be 96.2%, 88.2%, 92.6%, and 93.8%, respectively. We conclude that the combination of PCR amplification with electrochemical detection shows distinct advantage of high SN and increased SP for gonococcal detection. PMID:24207077

  9. Patterns of meningococcal infection in Sudan with emergence of Neisseria meningitidis serogroup W135.

    PubMed

    Karsany, M S; Elshayeb, A A; Saeed, E S; Elaagib, R; Ibrahim, S A; Elsamani, E; Hussien, K; Salih, K M

    2013-10-01

    This study was conducted during the 2004-2006 epidemic of meningitis in Sudan to follow-up the frequency of disease outbreak or endemic waves and to evaluate the new quadrivalent vaccine for actual application. Samples were collected from Darfur, El Gedaref, Kassala and Khartoum States and transported to the National Health Central Laboratory in Khartoum. Of 196 patients with clinical symptoms and signs of meningitis, conventional culture identified Neisseria meningitidis in 37 (189%), confirmed by polymerase chain reaction. N. meningitidis type A was identified in 29 (78.4%) patients, type C in 3 (8.1%) and N. meningitidis W135 in 5 (15.5%). The serotyping and molecular diagnosis patterns of N. meningitidis showed the emergence of the new strain, W135, in 5 (15.5%). The patients from the borders of Sudan, 3 from the West Darfur, and 1 each from El Gedaref and Kassala. These could be related to the movement of pilgrims through the borders to Saudi Arabia in the Hajj season. Serious consideration may be needed for quadrivalent vaccination to prevent seasonal and Hajj season outbreaks. PMID:24313147

  10. Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3.

    PubMed Central

    Mendelman, P M; Campos, J; Chaffin, D O; Serfass, D A; Smith, A L; Sáez-Nieto, J A

    1988-01-01

    We examined clinical isolates of Neisseria meningitidis relatively resistant to penicillin G (mean MIC, 0.3 micrograms/ml; range, 0.1 to 0.7 micrograms/ml), which were isolated from blood and cerebrospinal fluid for resistance mechanisms, by using susceptible isolates (mean MIC, less than or equal to 0.06 micrograms/ml) for comparison. The resistant strains did not produce detectable beta-lactamase activity, otherwise modify penicillin G, or bind less total penicillin. Penicillin-binding protein (PBP) 3 of the six resistant isolates tested uniformly bound less penicillin G in comparison to the same PBP of four susceptible isolates. Reflecting the reduced binding affinity of PBP 3 of the two resistant strains tested, the amount of 3H-labeled penicillin G required for half-maximal binding was increased in comparison with that of PBP 3 of the two susceptible isolates. We conclude that the mechanism of resistance in these meningococci relatively resistant to penicillin G was decreased affinity of PBP 3. Images PMID:3134848

  11. The Development of an Experimental Multiple Serogroups Vaccine for Neisseria meningitidis

    PubMed Central

    Pinto, Valerian B.; Burden, Robert; Wagner, Allyn; Moran, Elizabeth E.; Lee, Che-Hung

    2013-01-01

    A native outer membrane vesicles (NOMV) vaccine was developed from three antigenically diverse strains of Neisseria meningitidis that express the L1,8, L2, and L3,7 lipooligosaccharide (LOS) immunotypes, and whose synX, and lpxL1 genes were deleted.. Immunogenicity studies in mice showed that the vaccine induced bactericidal antibody against serogroups B, C, W, Y and X N. meningitidis strains. However, this experimental NOMV vaccine was not effective against serogroup A N. meningitidis strains. N. meningitidis capsular polysaccharide (PS) from serogroups A, C, W and Y were effective at inducing bactericidal antibody when conjugated to either tetanus toxoid or the fHbp1-fHbp2 fusion protein fHbp(1+2). The combination of the NOMV vaccine and the N. meningitidis serogroup A capsular polysaccharide (MAPS) protein conjugate was capable of inducing bactericidal antibodies against a limited number of N. meningitidis strains from serogroups A, B, C, W, Y and X tested in this study. PMID:24244473

  12. Characterization of invasive Neisseria meningitidis strains isolated at the Children's Hospital of Tunis, Tunisia.

    PubMed

    Saguer, A; Smaoui, H; Taha, M-K; Kechrid, A

    2016-05-01

    Neisseria meningitidis, a leading cause of bacterial meningitis and other serious infections, is responsible for approximately one-third of cases of bacterial meningitis in the Children's Hospital of Tunis. The serogroup distribution, antibiotic susceptibility and antigenic and molecular characteristics of N. meningitidis isolates were determined in patients aged 3 days-13 years between February 1998 and June 2013. In all 107 invasive strains of N. meningitidis were isolated. Reduced susceptibility to penicillin G was seen in 55.7% of isolates, with a low level of resistance in all cases; 28.4% showed a low level of resistance to amoxicillin. Serogroup B isolates were the most frequent (80.4%), followed by serogroups C (12.2%) and A (5.6%). Isolates of serogroup A had the same antigenic formula (A:4:P1.9), the same variable regions VR1, VR2 and VR3, and belonged to the same clonal complex (CC5). Isolates of serogroups B and C were more heterogeneous with several antigenic formulae. The most frequent clonal complex in these isolates was CC35. Serogroup B accounted for a large percentage of our isolates with marked diversity. PMID:27553401

  13. Analysis of transcriptional control mechanisms of capsule expression in Neisseria meningitidis.

    PubMed

    Von Loewenich, F D; Wintermeyer, E; Dümig, M; Frosch, M

    2001-11-01

    The major virulence factor which contributes to the survival of Neisseria meningitidis in the blood stream and the cerebrospinal fluid is the capsular polysaccharide. Expression of the capsule genes of N. meningitidis serogroups B, C, W-135 and Y is controlled by an intergenic region separating the capsule biosynthesis operon (siaA-D) and the capsule transport operon (ctrA-D). To further investigate capsule expression in N. meningitidis we amplified and sequenced the intergenic region of 42 meningococcal isolates of different serogroups. Sequence variations were found mainly in a repeat region preceding the siaA start codon. Correlation between sequence variation and serogroup could not be observed. To measure the transcriptional and translational activity of the respective intergenic regions we performed transcriptional and translational fusions with the lacZ gene integrated into the chromosome of N. meningitidis. Sequence variations preceding the siaA start codon had no effect on beta-galactosidase activity. Different in vitro growth conditions such as temperature, glucose concentration, osmolarity, pH and iron concentration also did not influence beta-galactosidase activity. Sequential deletions of the intergenic region showed that an Up-like element adjacent to the predicted -35 box is necessary for full transcriptional activity. The deletion of the untranslated region preceding the siaA start codon led to a threefold higher beta-galactosidase activity compared with the full-length construct suggesting that the respective region may be involved in capsule regulation. PMID:11727820

  14. The development of an experimental multiple serogroups vaccine for Neisseria meningitidis.

    PubMed

    Pinto, Valerian B; Burden, Robert; Wagner, Allyn; Moran, Elizabeth E; Lee, Che-Hung

    2013-01-01

    A native outer membrane vesicles (NOMV) vaccine was developed from three antigenically diverse strains of Neisseria meningitidis that express the L1,8, L2, and L3,7 lipooligosaccharide (LOS) immunotypes, and whose synX, and lpxL1 genes were deleted.. Immunogenicity studies in mice showed that the vaccine induced bactericidal antibody against serogroups B, C, W, Y and X N. meningitidis strains. However, this experimental NOMV vaccine was not effective against serogroup A N. meningitidis strains. N. meningitidis capsular polysaccharide (PS) from serogroups A, C, W and Y were effective at inducing bactericidal antibody when conjugated to either tetanus toxoid or the fHbp1-fHbp2 fusion protein fHbp(1+2). The combination of the NOMV vaccine and the N. meningitidis serogroup A capsular polysaccharide (MAPS) protein conjugate was capable of inducing bactericidal antibodies against a limited number of N. meningitidis strains from serogroups A, B, C, W, Y and X tested in this study. PMID:24244473

  15. Identification, localization, and distribution of the PilT protein in Neisseria gonorrhoeae.

    PubMed Central

    Brossay, L; Paradis, G; Fox, R; Koomey, M; Hébert, J

    1994-01-01

    A monoclonal antibody (MAb) directed against a highly conserved protein of Neisseria gonorrhoeae with a molecular size of 40 kDa was isolated and characterized. The protein antigen detected by this MAb was detected by enzyme-linked immunosorbent assay and immunoblotting in all strains of N. gonorrhoeae tested across a wide range of serovars. The 40-kDa protein was found to be expressed at relatively low levels and localized to both the cytosolic and cytoplasmic membrane fractions. Screening of a lambda gt11 expression library derived from gonococcal genomic DNA with the anti-40-kDa MAb and DNA sequence analysis suggested that the 40-kDa protein and the product of the gonococcal pilT gene were identical. Immunoblotting analysis of gonococcal mutants carrying defined mutations in the pilT gene confirmed that the 40-kDa protein was indeed PilT. The N-terminal sequence derived by microsequencing of the protein purified from gonococci led to the correction of the previously published pilT gene sequence. Sequencing of the pilT gene from three different strains revealed an extremely high degree of conservation at both the amino acid and DNA levels. Images PMID:8188352

  16. Neisseria gonorrhoeae PilC expression provides a selective mechanism for structural diversity of pili.

    PubMed Central

    Jonsson, A B; Pfeifer, J; Normark, S

    1992-01-01

    Pili of Neisseria gonorrhoeae undergo both phase and structural variation. Phase variation of gonococcal pili can be caused by a RecA-independent on/off switch in PilC, a protein involved in pilus biogenesis. We show here that spontaneous nonpiliated PilC- derivatives as well as PilC- insertional mutants have also acquired sequence alterations in pilE relative to the pilE gene of the piliated MS11mk(P+)-u parent, so that the pilin produced is processed to soluble S-pilin and can be released into the medium. It is proposed that pilin alterations are selected for in PilC- bacteria if the parental nonassembled pilin is toxic to the cells--i.e., is not degradable to S-pilin at rates sufficient to allow viability of the cells. Toxicity is indicated by the extreme instability of certain unassembled pilin sequences and by the low frequency of nonpiliated, pilin+, PilC- variants that emerge from piliated recA- cells. The presence of a point mutation changing leucine-39 to phenylalanine at the cleavage site for S-pilin in one nonpiliated, PilC-, recA- variant relative to its piliated parent is a further argument for a selective mechanism of structural diversity of the gonococcal pilin. Images PMID:1348857

  17. Ligase chain reaction for detection of Neisseria gonorrhoeae in urogenital swabs.

    PubMed Central

    Ching, S; Lee, H; Hook, E W; Jacobs, M R; Zenilman, J

    1995-01-01

    The ligase chain reaction (LCR) is an in vitro nucleic acid amplification technique that exponentially amplifies targeted DNA sequences. In a multicenter study, we evaluated the use of a 4-h LCR-based assay for the diagnosis of Neisseria gonorrhoeae infection of the cervix and male urethra. The LCR results were compared with those of culture for N. gonorrhoeae by using selective media. This assay amplifies target sequences within the N. gonorrhoeae opacity gene. Discordant LCR-positive and culture-negative specimens were further evaluated by testing by another LCR assay which used N. gonorrhoeae-specific pilin probe sets. A total of 1,539 female endocervical specimens and 808 male urethral swab specimens were evaluated in the study. An expanded "gold standard" was defined to include all culture-positive as well as culture-negative, confirmed LCR-positive specimens. After resolution of discrepant samples, the sensitivities of the N. gonorrhoeae LCR assays for the female and male specimens were 97.3 and 98.5%, respectively, with specificities of 99.6 and 99.8%, respectively. Resolved culture sensitivities were 83.9 and 96.5% for the female and male specimens, respectively. The LCR assay for gonorrhea is a rapid, highly sensitive nonculture method for detecting gonococcal infection of the cervix and male urethra. PMID:8586683

  18. Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae.

    PubMed Central

    Stromberg, N; Deal, C; Nyberg, G; Normark, S; So, M; Karlsson, K A

    1988-01-01

    Different strains and isogenic variants of Neisseria gonorrhoeae were assayed for their ability to bind glycolipids extracted from various sources. Among a large number of reference glycolipids, binding was observed only to lactosylceramide [Gal(beta 1-4)Glc(beta 1-1)Cer], isoglobotriaosylceramide [Gal(alpha 1-3)Gal(beta 1-4)Glc(beta 1-1)Cer], gangliotriaosylceramide [GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], and gangliotetraosylceramide [Gal(beta 1-3)GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer]. The latter two glycolipids bound gonococci with the highest affinity. Lactosylceramide and gangliotriaosylceramide were found in glycolipid preparations from ME180 cells, an epithelial cell line derived from a human cervical carcinoma, and thus are possible receptors for gonococci. The gonococcal surface component that bound the above glycolipids is a protein distinct from pilin and protein II. Images PMID:2898784

  19. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae.

    PubMed Central

    Goodman, S D; Scocca, J J

    1988-01-01

    DNA segments from Neisseria gonorrhoeae, cloned and propagated in Escherichia coli, were tested for the ability to competitively inhibit gonococcal transformation. The nucleotide sequences of active segments were determined and compared; these sequences contained the sequence 5' GCCGTCTGAA 3' in common. Subcloning studies confirmed the identity of this sequence as the gonococcal DNA recognition site. The three instances of the recognition sequence isolated from N. gonorrhoeae chromosomal DNA contain the sequence in the immediate neighborhood of its inverted repeat. Because a single copy of the sequence functions as a recognition site, the inverted duplication is not required for specific binding. The dyad symmetric arrangements of the chromosomal recognition sequences may form stable stem-loop structures that can function as terminators or attenuators of transcription. These inverted repeats are located at the boundaries of long open reading frames. The recognition sequence also constitutes part of two other probable terminators of gonococcal genes. We conclude that the signal for recognition of transforming DNA by gonococci is a frequent component of transcriptional terminator sequences. This regulatory function might account for the origin and maintenance of recognition sequences in the chromosomes of Gram-negative transformable bacteria. PMID:3137581

  20. Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin.

    PubMed Central

    Paruchuri, D K; Seifert, H S; Ajioka, R S; Karlsson, K A; So, M

    1990-01-01

    We recently identified a set of mammalian cell receptors for Neisseria gonorrhoeae that are glycolipids. These receptors, lactosylceramide [Gal(beta 1-4)Glc(beta 1-1)Cer], gangliotriosylceramide [GalNAc( beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], and gangliotetraosylceramide [Gal(beta 1-3)GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], were shown to be specifically bound by a gonococcal outer membrane protein distinct from pilin and protein II. Here we report the isolation of the gene encoding the gangliotetraosylceramide-binding adhesin from a N. gonorrhoeae MS11 gene bank in Escherichia coli. Transposon mutagenesis studies in E. coli indicate that the adhesion is a protein with a molecular mass of 36,000 Da. The gene encoding the 36-kDa protein is duplicated in MS11 since two transposon insertions were required to abolish expression of the gene in this bacterium. This protein is present on the surface of the gonococcus and is not associated with the pilus. Images PMID:2153292

  1. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae.

    PubMed Central

    Haas, R; Schwarz, H; Meyer, T F

    1987-01-01

    Gene conversion appears to be the frequent mechanism in Neisseria gonorrhoeae that leads to an altered expression of pilin, the subunit component of the pili. In this process segments of variable sequence information, the minicassettes, are transferred from silent storage loci into an expression locus. As a putative consequence of the rearrangement in the pilE gene, gonococci can enter a different phase of pilin production. Although the removal of a 7-amino acid leader peptide results in the production of typical P+ pilin used to form pili, the loss of an additional 39 amino acids yields S-pilin, a soluble form of pilin that is efficiently secreted into the extracellular environment. Both pilin types can coexist in an apparently homogeneous culture. Ps cells usually are piliated, although less extensively with regard to the length and the number of the pili when compared with P+ cells. Ps cells form T3/T4-type colonies also typical of nonpiliated cells (P-). The observations further suggest that the classical nonsecretory P- phenotype is not generated as a rule by precise gene conversion but rather by genetic changes that cause the production of an over-length pilin (L-pilin). Images PMID:2892194

  2. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  3. [Standardization of the Neisseria meningitidis antibiogram. Detection of strains relatively resistant to penicillin].

    PubMed

    Nicolas, P; Cavallo, J D; Fabre, R; Martet, G

    1998-01-01

    Studying the susceptibility of 189 Neisseria meningitidis strains to penicillin, amoxicillin, cefotaxime, ceftriaxone, chloramphenicol and rifampicin by determination of minimum inhibitory concentrations (MICs) by agar dilution (reference method), E-test and disc diffusion method on Mueller-Hinton agar at 37 degrees C with 5% CO2 enabled us to standardize the antibiograms. While MIC determination by agar dilution is still the reference method, it is possible to obtain exact or approximate MIC values using the E-test. For laboratories that cannot determine penicillin MICs, it is impossible to detect strains that are relatively resistant to penicillin (RRP strains: 0.1 < or = MIC < or = 1 mg/l) using a 10-U penicillin disc. A 1 microgram-oxacillin disc allows MIC to be determined in most cases when the oxacillin inhibition zone is < or = 10 mm. Such strains must be sent to a reference laboratory for exact MIC determination. Based on our results and literature data on pharmacokinetics, we propose critical concentrations for these various antibiotics as well as critical diameters for chloramphenicol and rifampicin discs. PMID:9803590

  4. Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages

    PubMed Central

    Zughaier, Susu M.; Kandler, Justin L.; Balthazar, Jacqueline T.; Shafer, William M.

    2015-01-01

    Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA) addition to the 4' position of the lipid A (PEA-lipid A) moiety of the lipooligosaccharide (LOS) produced by gonococci performs a critical role in this pathogen’s ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense) peptides, complement-mediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses. PMID:26641098

  5. A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis

    PubMed Central

    Herbst de Cortina, Sasha; Bristow, Claire C.; Joseph Davey, Dvora; Klausner, Jeffrey D.

    2016-01-01

    Objectives. Systematic review of point of care (POC) diagnostic tests for sexually transmitted infections: Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Trichomonas vaginalis (TV). Methods. Literature search on PubMed for articles from January 2010 to August 2015, including original research in English on POC diagnostics for sexually transmitted CT, NG, and/or TV. Results. We identified 33 publications with original research on POC diagnostics for CT, NG, and/or TV. Thirteen articles evaluated test performance, yielding at least one test for each infection with sensitivity and specificity ≥90%. Each infection also had currently available tests with sensitivities <60%. Three articles analyzed cost effectiveness, and five publications discussed acceptability and feasibility. POC testing was acceptable to both providers and patients and was also demonstrated to be cost effective. Fourteen proof of concept articles introduced new tests. Conclusions. Highly sensitive and specific POC tests are available for CT, NG, and TV, but improvement is possible. Future research should focus on acceptability, feasibility, and cost of POC testing. While pregnant women specifically have not been studied, the results available in nonpregnant populations are encouraging for the ability to test and treat women in antenatal care to prevent adverse pregnancy and neonatal outcomes. PMID:27313440

  6. Emergence of fluoroquinolone-resistant Neisseria meningitidis--Minnesota and North Dakota, 2007-2008.

    PubMed

    2008-02-22

    Meningoccocal disease causes substantial morbidity and mortality; approximately 10% of cases are fatal. Among those who survive, 10%-15% have long-term sequelae. Nasopharyngeal carriage of Neisseria meningitidis is a precursor to disease; however, the majority of carriers do not develop disease. Household and other close contacts of persons with meningococcal disease have a higher risk for carriage and therefore invasive disease. These persons should receive antibiotic chemoprophylaxis to eliminate nasopharyngeal carriage of N. meningitidis as soon as possible. The rate of secondary disease for close contacts is highest immediately after onset of disease in the index patient; secondary cases rarely occur after 14 days. Ciprofloxacin, a second-generation fluoroquinolone, is an effective single-dose oral chemoprophylaxis agent. Although isolated cases of ciprofloxacin-resistant meningoccocal disease have been described in Argentina, Australia, China, France, India, and Spain, resistance has not been reported in North America. This report describes a cluster of three cases of fluoroquinolone-resistant meningococcal disease that occurred among residents of the border area of North Dakota and Minnesota during January 2007-January 2008. The first of these cases was epidemiologically linked and had closely related molecular features to a 2006 case of fluoroquinolone-susceptible meningococcal disease that occurred in the same geographic region. Until further notice, ciprofloxacin should not be used for chemoprophylaxis of close contacts of persons with meningococcal disease in selected counties in North Dakota and Minnesota. Ceftriaxone, rifampin, and azithromycin are alternative agents. PMID:18288075

  7. Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin.

    PubMed

    Paruchuri, D K; Seifert, H S; Ajioka, R S; Karlsson, K A; So, M

    1990-01-01

    We recently identified a set of mammalian cell receptors for Neisseria gonorrhoeae that are glycolipids. These receptors, lactosylceramide [Gal(beta 1-4)Glc(beta 1-1)Cer], gangliotriosylceramide [GalNAc( beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], and gangliotetraosylceramide [Gal(beta 1-3)GalNAc(beta 1-4)Gal(beta 1-4)Glc(beta 1-1)Cer], were shown to be specifically bound by a gonococcal outer membrane protein distinct from pilin and protein II. Here we report the isolation of the gene encoding the gangliotetraosylceramide-binding adhesin from a N. gonorrhoeae MS11 gene bank in Escherichia coli. Transposon mutagenesis studies in E. coli indicate that the adhesion is a protein with a molecular mass of 36,000 Da. The gene encoding the 36-kDa protein is duplicated in MS11 since two transposon insertions were required to abolish expression of the gene in this bacterium. This protein is present on the surface of the gonococcus and is not associated with the pilus. PMID:2153292

  8. Comparison of Direct Inoculation and Copan Transport Systems for Isolation of Neisseria gonorrhoeae from Endocervical Specimens

    PubMed Central

    Olsen, C. C.; Schwebke, J. R.; Benjamin, W. H.; Beverly, A.; Waites, K. B.

    1999-01-01

    Two commercial swab transport systems, Copan Amies gel agar with and without charcoal (Copan Diagnostics, Corona, Calif.), were compared to direct inoculation onto modified Thayer-Martin medium for detection of Neisseria gonorrhoeae in 1,490 endocervical specimens obtained from women attending a sexually transmitted disease clinic. Copan swabs were held in the transport system for 24 h at room temperature prior to inoculation onto modified Thayer-Martin medium. All cultures were incubated at 35°C in 5% CO2, and bacteria were identified on the basis of Gram stain, oxidase, and biochemical reactions. Copan Amies gel agar transport system without charcoal detected 77 of 81 (95%) direct inoculation culture-positive specimens, and Copan Amies gel agar transport system with charcoal detected 53 of 56 (95%) directly inoculated culture-positive specimens. Copan Amies gel agar without charcoal inoculated after 6 h supported growth of 56 (98%) positive cultures out of only 55 directly inoculated culture-positive specimens. This study demonstrates that Copan swabs represent a reasonable alternative, providing convenience, low cost, and ease of use while still maintaining a satisfactory recovery rate of N. gonorrhoeae from clinical specimens, if specimens can be inoculated onto selective media within a relatively short time period not involving overnight shipment. PMID:10523556

  9. Methods for Identifying Neisseria meningitidis Carriers: A Multi-Center Study in the African Meningitis Belt

    PubMed Central

    Basta, Nicole E.; Stuart, James M.; Nascimento, Maria C.; Manigart, Olivier; Trotter, Caroline; Hassan-King, Musa; Chandramohan, Daniel; Sow, Samba O.; Berthe, Abdoulaye; Bedru, Ahmed; Tekletsion, Yenenesh K.; Collard, Jean-Marc; Jusot, Jean-François; Diallo, Aldiouma; Basséne, Hubert; Daugla, Doumagoum M.; Gamougam, Khadidja; Hodgson, Abraham; Forgor, Abudulai A.; Omotara, Babatunji A.; Gadzama, Galadima B.; Watkins, Eleanor R.; Rebbetts, Lisa S.; Diallo, Kanny; Weiss, Noel S.; Halloran, M. Elizabeth; Maiden, Martin C. J.; Greenwood, Brian

    2013-01-01

    Objective Detection of meningococcal carriers is key to understanding the epidemiology of Neisseria meningitidis, yet no gold standard has been established. Here, we directly compare two methods for collecting pharyngeal swabs to identify meningococcal carriers. Methods We conducted cross-sectional surveys of schoolchildren at multiple sites in Africa to compare swabbing the posterior pharynx behind the uvula (U) to swabbing the posterior pharynx behind the uvula plus one tonsil (T). Swabs were cultured immediately and analyzed using molecular methods. Results One thousand and six paired swab samples collected from schoolchildren in four countries were analyzed. Prevalence of meningococcal carriage was 6.9% (95% CI: 5.4-8.6%) based on the results from both swabs, but the observed prevalence was lower based on one swab type alone. Prevalence based on the T swab or the U swab alone was similar (5.2% (95% CI: 3.8-6.7%) versus 4.9% (95% CI: 3.6-6.4%) respectively (p=0.6)). The concordance between the two methods was 96.3% and the kappa was 0.61 (95% CI: 0.50-0.73), indicating good agreement. Conclusions These two commonly used methods for collecting pharyngeal swabs provide consistent estimates of the prevalence of carriage, but both methods misclassified carriers to some degree, leading to underestimates of the prevalence. PMID:24194921

  10. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  11. Recognition of serogroup A Neisseria meningitidis serotype antigens by human antisera.

    PubMed Central

    Sugasawara, R J

    1985-01-01

    The antigens of Neisseria meningitidis serogroup A which were recognized by human antisera were identified by Western blot and enzyme-linked immunosorbent assay techniques. The components of six prototype strains used for serotyping serogroup A meningococci were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then transferred to nitrocellulose for immunoperoxidase staining with sera collected from 10 acute-phase and 14 convalescent-phase patients. Six acute-phase sera detected six major antigens having apparent molecular weights between 14,000 and 82,000. In addition to recognizing these antigens, the convalescent-phase sera detected a protease-sensitive antigen with an apparent molecular weight of 20,000 for one strain and 27,000 for five strains, lipopolysaccharide, and the heat-modifiable proteins. The sera recognized lipopolysaccharide in a serotype-specific manner, whereas their reactions with the heat-modifiable protein were not serotype specific. Convalescent-phase sera recognized components from eight meningococcal serogroups. The concentrations of immunoglobulin G directed to capsular polysaccharide were determined by the enzyme-linked immunosorbent assay; seven acute-phase sera had less than 0.39 micrograms of antibody per ml, whereas the average concentration in convalescent-phase sera was 3.22 micrograms/ml and the range was 0.40 to 7.50 micrograms/ml. Images PMID:3920147

  12. Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines.

    PubMed

    Jiang, Jhih-Hang; Davies, John K; Lithgow, Trevor; Strugnell, Richard A; Gabriel, Kipros

    2011-11-01

    Mitochondria originated from Gram-negative bacteria through endosymbiosis. In modern day mitochondria, the Sorting and Assembly Machinery (SAM) is responsible for eukaryotic β-barrel protein assembly in the mitochondrial outer membrane. The SAM is the functional equivalent of the β-barrel assembly machinery found in the outer membrane of Gram-negative bacteria. In this study we examined the import pathway of a pathogenic bacterial protein, PorB, which is targeted from pathogenic Neisseria to the host mitochondria. We have developed a new method for measurement of PorB assembly into mitochondria that relies on the mobility shift exhibited by bacterial β-barrel proteins once folded and separated under semi-native electrophoretic conditions. We show that PorB is targeted to the outer mitochondrial membrane with a dependence on the intermembrane space shuttling chaperones and the core component of the SAM, Sam50, which is a functional homologue of BamA that is required for PorB assembly in bacteria. The peripheral subunits of the SAM, Sam35 and Sam37, which are essential for eukaryotic β-barrel protein assembly but do not have distinguishable functional homologues in bacteria, are not required for PorB assembly in eukaryotes. This shows that PorB uses an evolutionary conserved 'bacterial like' mechanism to infiltrate the host mitochondrial outer membrane. PMID:22032638

  13. Notes from the Field: Increase in Neisseria meningitidis-Associated Urethritis Among Men at Two Sentinel Clinics - Columbus, Ohio, and Oakland County, Michigan, 2015.

    PubMed

    Bazan, Jose A; Peterson, Amy S; Kirkcaldy, Robert D; Briere, Elizabeth C; Maierhofer, Courtney; Turner, Abigail Norris; Licon, Denisse B; Parker, Nicole; Dennison, Amanda; Ervin, Melissa; Johnson, Laura; Weberman, Barbara; Hackert, Pamela; Wang, Xin; Kretz, Cecilia B; Abrams, A Jeanine; Trees, David L; Del Rio, Carlos; Stephens, David S; Tzeng, Yih-Ling; DiOrio, Mary; Roberts, Mysheika Williams

    2016-01-01

    Neisseria meningitidis (Nm) urogenital infections, although less common than infections caused by Neisseria gonorrhoeae (Ng), have been associated with urethritis, cervicitis, proctitis, and pelvic inflammatory disease. Nm can appear similar to Ng on Gram stain analysis (gram-negative intracellular diplococci) (1-5). Because Nm colonizes the nasopharynx, men who receive oral sex (fellatio) can acquire urethral Nm infections (1,3,5). This report describes an increase in Nm-associated urethritis in men attending sexual health clinics in Columbus, Ohio, and Oakland County, Michigan. PMID:27254649

  14. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    PubMed

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing. PMID:27225407

  15. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan.

    PubMed

    Nakayama, Shu-Ichi; Shimuta, Ken; Furubayashi, Kei-Ichi; Kawahata, Takuya; Unemo, Magnus; Ohnishi, Makoto

    2016-07-01

    We have characterized in detail a new ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain (FC428) isolated in Japan in 2015. FC428 differed from previous ceftriaxone-resistant strains and contained a novel mosaic penA allele encoding a new mosaic penicillin-binding protein 2 (PBP 2). However, the resistance-determining 3'-terminal region of penA was almost identical to the regions of two previously reported ceftriaxone-resistant strains from Australia and Japan, indicating that both ceftriaxone-resistant strains and conserved ceftriaxone resistance-determining PBP 2 regions might spread. PMID:27067334

  16. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae.

    PubMed

    Golparian, Daniel; Shafer, William M; Ohnishi, Makoto; Unemo, Magnus

    2014-06-01

    The contribution of drug efflux pumps in clinical isolates of Neisseria gonorrhoeae that express extensively drug-resistant or multidrug-resistant phenotypes has heretofore not been examined. Accordingly, we assessed the effect on antimicrobial resistance of loss of the three gonococcal efflux pumps associated with a known capacity to export antimicrobials (MtrC-MtrD-MtrE, MacA-MacB, and NorM) in such clinical isolates. We report that the MIC of several antimicrobials, including seven previously and currently recommended for treatment was significantly impacted. PMID:24733458

  17. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells.

    PubMed

    Stein, Daniel C; LeVan, Adriana; Hardy, Britney; Wang, Liang-Chun; Zimmerman, Lindsey; Song, Wenxia

    2015-01-01

    Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions. PMID:26244560

  18. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells

    PubMed Central

    Stein, Daniel C.; LeVan, Adriana; Hardy, Britney; Wang, Liang-Chun; Zimmerman, Lindsey; Song, Wenxia

    2015-01-01

    Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions. PMID:26244560

  19. Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae.

    PubMed

    Criss, Alison K; Bonney, Kevin M; Chang, Rhoda A; Duffin, Paul M; LeCuyer, Brian E; Seifert, H Steven

    2010-01-01

    The mismatch correction (MMC) system repairs DNA mismatches and single nucleotide insertions or deletions postreplication. To test the functions of MMC in the obligate human pathogen Neisseria gonorrhoeae, homologues of the core MMC genes mutS and mutL were inactivated in strain FA1090. No mutH homologue was found in the FA1090 genome, suggesting that gonococcal MMC is not methyl directed. MMC mutants were compared to a mutant in uvrD, the helicase that functions with MMC in Escherichia coli. Inactivation of MMC or uvrD increased spontaneous resistance to rifampin and nalidixic acid, and MMC/uvrD double mutants exhibited higher mutation frequencies than any single mutant. Loss of MMC marginally enhanced the transformation efficiency of DNA carrying a single nucleotide mismatch but not that of DNA with a 1-kb insertion. Unlike the exquisite UV sensitivity of the uvrD mutant, inactivating MMC did not affect survival after UV irradiation. MMC and uvrD mutants exhibited increased PilC-dependent pilus phase variation. mutS-deficient gonococci underwent an increased frequency of pilin antigenic variation, whereas uvrD had no effect. Recombination tracts in the mutS pilin variants were longer than in parental gonococci but utilized the same donor pilS loci. These results show that gonococcal MMC repairs mismatches and small insertion/deletions in DNA and also affects the recombination events underlying pilin antigenic variation. The differential effects of MMC and uvrD in gonococci unexpectedly reveal that MMC can function independently of uvrD in this human-specific pathogen. PMID:19854909

  20. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation.

    PubMed

    Gault, Joseph; Ferber, Mathias; Machata, Silke; Imhaus, Anne-Flore; Malosse, Christian; Charles-Orszag, Arthur; Millien, Corinne; Bouvier, Guillaume; Bardiaux, Benjamin; Péhau-Arnaudet, Gérard; Klinge, Kelly; Podglajen, Isabelle; Ploy, Marie Cécile; Seifert, H Steven; Nilges, Michael; Chamot-Rooke, Julia; Duménil, Guillaume

    2015-09-01

    The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. PMID:26367394

  1. Monoclonal Antibodies Specific for Neisseria meningitidis Group B Polysaccharide and Their Peptide Mimotopes

    PubMed Central

    Shin, J. S.; Lin, J. S.; Anderson, P. W.; Insel, R. A.; Nahm, M. H.

    2001-01-01

    From five mice immunized with Escherichia coli K1 bacteria, we produced 12 immunoglobulin M hybridomas secreting monoclonal antibodies (MAbs) that bind to Neisseria meningitidis group B (NMGB). The 12 MAbs also bound the capsular polysaccharide (PS) of E. coli K1 [which, like NMGB, is α(2-8)-linked polysialic acid (PSA)] and bound to EV36, a nonpathogenic E. coli K-12 strain producing α(2-8) PSA. Except for HmenB5, which cross-reacted with N. meningitidis group C, none of the MAbs bound to N. meningitidis groups A, C, and Y. Of the 12 MAbs, 6 were autoantibodies as defined by binding to CHP-134, a neuroblastoma cell line expressing short-chain α(2-8) PSA; five of these MAbs killed NMGB in the presence of rabbit complement, and two also killed NMGB with human complement. The other six MAbs, however, were nonautoreactive; all killed NMGB with rabbit complement, and five killed NMGB with human complement. To obtain peptide mimotopes of NMGB PS, four of the nonautoreactive MAbs (HmenB2, HmenB3, HmenB13, and HmenB14) were used to screen two types of phage libraries, one with a linear peptide of 7 amino acids and the other with a circular peptide of 7 amino acids inserted between two linked cysteines. We obtained 86 phage clones that bound to the screening MAb in the absence but not in the presence of E. coli K1 PSA in solution. The clones contained 31 linear and 4 circular mimotopes expressing unique sequences. These mimotopes nonrandomly expressed amino acids and were different from previously described mimotopes for NMGB PS. The new mimotopes may be useful in producing a vaccine(s) capable of eliciting anti-NMGB antibodies not reactive with neuronal tissue. PMID:11292756

  2. Specificity of antibodies against Neisseria gonorrhoeae that stimulate neutrophil chemotaxis. Role of antibodies directed against lipooligosaccharides.

    PubMed Central

    Densen, P; Gulati, S; Rice, P A

    1987-01-01

    Five strains each of Neisseria gonorrhoeae sensitive or resistant to complement (C) dependent killing by normal human serum (NHS) were examined for their ability to stimulate chemotaxis of polymorphonuclear leukocytes (PMNs) after preincubation with NHS; or IgM or IgG derived from NHS. Serum-sensitive N. gonorrhoeae stimulated C-dependent chemotaxis when opsonized with IgM, but not IgG, however, serum-resistant strains, taken as a whole, failed to promote chemotaxis when opsonized with either isotype. IgM titers in NHS against lipooligosaccharide (LOS) antigens from individual serum-sensitive, but not serum-resistant strains, correlated with the magnitude of chemotaxis generated by the corresponding opsonized strains (r = 0.99). Western blots demonstrated that IgM and IgG from NHS recognized different antigenic determinants on LOS from serum-sensitive gonococci. IgM from NHS immunopurified against serum-sensitive LOS accounted for two-thirds of the chemotaxis promoting activity present in whole serum. IgG titers in NHS against LOS antigens from individual serum-resistant strains also correlated with magnitude of chemotaxis generated by the corresponding opsonized strains (r = 0.87), although most opsonized serum-resistant strains did not generate significantly higher magnitudes of chemotaxis than controls. In contrast, a serum-resistant isolate from a patient with disseminated gonococcal infection (DGI) stimulated chemotaxis when opsonized with IgG obtained from the patient's convalescent serum. By Western blot, convalescent IgG antibody recognized an additional determinant on serum-resistant LOS not seen by normal IgG. Images PMID:2439546

  3. Identification of Regulatory Elements That Control Expression of the tbpBA Operon in Neisseria gonorrhoeae

    PubMed Central

    Vélez Acevedo, Rosuany N.; Ronpirin, Chalinee; Kandler, Justin L.; Shafer, William M.

    2014-01-01

    Iron is an essential nutrient for survival and establishment of infection by Neisseria gonorrhoeae. The neisserial transferrin binding proteins (Tbps) comprise a bipartite system for iron acquisition from human transferrin. TbpA is the TonB-dependent transporter that accomplishes iron internalization. TbpB is a surface-exposed lipoprotein that makes the iron uptake process more efficient. Previous studies have shown that the genes encoding these proteins are arranged in a bicistronic operon, with the tbpB gene located upstream of tbpA and separated from it by an inverted repeat. The operon is under the control of the ferric uptake regulator (Fur); however, promoter elements necessary for regulated expression of the genes have not been experimentally defined. In this study, putative regulatory motifs were identified and confirmed by mutagenesis. Further examination of the sequence upstream of these promoter/operator motifs led to the identification of several novel repeats. We hypothesized that these repeats are involved in additional regulation of the operon. Insertional mutagenesis of regions upstream of the characterized promoter region resulted in decreased tbpB and tbpA transcript levels but increased protein levels for both TbpA and TbpB. Using RNA sequencing (RNA-Seq) technology, we determined that a long RNA was produced from the region upstream of tbpB. We localized the 5′ endpoint of this transcript to between the two upstream insertions by qualitative RT-PCR. We propose that expression of this upstream RNA leads to optimized expression of the gene products from within the tbpBA operon. PMID:24837286

  4. Alternative Neisseria spp. type IV pilin glycosylation with a glyceramido acetamido trideoxyhexose residue.

    PubMed

    Chamot-Rooke, Julia; Rousseau, Benoit; Lanternier, Fanny; Mikaty, Guillain; Mairey, Emilie; Malosse, Christian; Bouchoux, Guy; Pelicic, Vladimir; Camoin, Luc; Nassif, Xavier; Duménil, Guillaume

    2007-09-11

    The importance of protein glycosylation in the interaction of pathogenic bacteria with their host is becoming increasingly clear. Neisseria meningitidis, the etiological agent of cerebrospinal meningitis, crosses cellular barriers after adhering to host cells through type IV pili. Pilin glycosylation genes (pgl) are responsible for the glycosylation of PilE, the major subunit of type IV pili, with the 2,4-diacetamido-2,4,6-trideoxyhexose residue. Nearly half of the clinical isolates, however, display an insertion in the pglBCD operon, which is anticipated to lead to a different, unidentified glycosylation. Here the structure of pilin glycosylation was determined in such a strain by "top-down" MS approaches. MALDI-TOF, nanoelectrospray ionization Fourier transform ion cyclotron resonance, and nanoelectrospray ionization quadrupole TOF MS analysis of purified pili preparations originating from N. meningitidis strains, either wild type or deficient for pilin glycosylation, revealed a glycan mass inconsistent with 2,4-diacetamido-2,4,6-trideoxyhexose or any sugar in the databases. This unusual modification was determined by in-source dissociation of the sugar from the protein followed by tandem MS analysis with collision-induced fragmentation to be a hexose modified with a glyceramido and an acetamido group. We further show genetically that the nature of the sugar present on the pilin is determined by the carboxyl-terminal region of the pglB gene modified by the insertion in the pglBCD locus. We thus report a previously undiscovered monosaccharide involved in posttranslational modification of type IV pilin subunits by a MS-based approach and determine the molecular basis of its biosynthesis. PMID:17804791

  5. Characterization of epidemic and nonepidemic Neisseria meningitidis serogroup A strains from Sudan and Sweden.

    PubMed Central

    Salih, M A; Danielsson, D; Bäckman, A; Caugant, D A; Achtman, M; Olcén, P

    1990-01-01

    A random selection of 25 strains isolated during an epidemic caused by serogroup A Neisseria meningitidis in Sudan (1988), 3 preepidemic meningococcal strains (1985), and 26 serogroup A strains isolated from sporadic cases of meningitis in Sweden (1973 to 1987) were assessed for multilocus enzyme genotypes (ETs), DNA restriction enzyme patterns, outer membrane proteins, lipopolysaccharides, pilus formation, and antibiograms. All of the 25 Sudanese epidemic isolates and 22 of the Swedish strains were of the same or closely related ETs (ETs 3, 4, and 5), corresponding to clone III-1, which has been responsible for two pandemic waves in the last three decades. The earlier pandemic involved Scandinavia, and the last one caused an outbreak during the pilgrimage to Mecca, Saudi Arabia (August 1987), spreading to Sudan, Chad, and Ethiopia. The three Sudanese preepidemic isolates (1985) were clone IV-1 (sulfonamide susceptible), which has been resident in the African meningitis belt for the last 25 years. The uniformity of clone III-1 strains (all sulfonamide resistant) from Sudan and Sweden was confirmed by DNA restriction enzyme patterns. ETs 3, 4, and 5 from Sudan and Sweden had 86 to 100% similarity to a Swedish clone III-1 reference strain, whereas ETs 1, 2, 6, and 7 showed 50 to 80% similarity. Class 1 protein for clone III-1 showed serosubtype antigens P1.9 and P1.x, whereas ET6 strains (clone IV-1) had serosubtype P1.7. Lipopolysaccharides were variable in the Sudanese and Swedish strains. Pili were expressed in all clone III-1 isolates from Sudan and Sweden but in none of the clone IV-1 isolates (Sudan, 1985). Images PMID:1975593

  6. A Novel Factor H-Fc Chimeric Immunotherapeutic Molecule against Neisseria gonorrhoeae.

    PubMed

    Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A; Golenbock, Douglas T; Reed, George W; Rice, Peter A; Ram, Sanjay

    2016-02-15

    Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including N. gonorrhoeae, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the use of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to N. gonorrhoeae, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc but, unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical N. gonorrhoeae isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10 of 15 (67%) strains, and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant N. gonorrhoeae. PMID:26773149

  7. Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies.

    PubMed

    Forest, K T; Bernstein, S L; Getzoff, E D; So, M; Tribbick, G; Geysen, H M; Deal, C D; Tainer, J A

    1996-02-01

    The relationship between the sequence of Neisseria gonorrhoeae pilin and its quaternary assembly into pilus fibers was studied with a set of site-directed antibody probes and by mapping the specificities of antipilus antisera with peptides. Buried and exposed peptides in assembled pili were identified by competitive immunoassays and immunoelectron microscopy with polyclonal antibodies raised against 11 peptides spanning the pilin sequence. Pili did not compete significantly with pilin subunits for binding to antibodies against residues 13 to 31 (13-31) and 18-36. Pilus fibers competed well with pilin protein subunits for binding to antibodies raised against peptides 37-56, 58-78, 110-120, 115-127, 122-139, and 140-159 and competed weakly for antibodies against residues 79-93 and 94-108. Antibodies to sequence-conserved residues 37-56 and to semiconserved residues 94-108 preferentially bound pilus ends as shown by immunoelectron microscopy. The exposure of pilus regions to the immune system was tested by peptide mapping of antiserum specificities against sets of overlapping peptides representing all possible hexameric or octameric peptides from the N. gonorrhoeae MS11 pilin sequence. The immunogenicity of exposed peptides incorporating semiconserved residues 49-56 and 121-126 was revealed by strong, consistent antigenic reactivity to these regions measured in antipilus sera from rabbits, mice, and human and in sera from human volunteers with gonorrhea. The conservation and variation of antigenic responses among these three species clarify the relevance of immunological studies of other species to the human immune response against pathogens. Overall, our results explain the extreme conservation of the entire N-terminal one-third of the pilin protein by its dominant role in pilus assembly: hydrophobic residues 1-36 are implicated in buried lateral contacts, and polar residues 37-56 are implicated in longitudinal contacts within the pilus fiber. PMID:8550220

  8. Chemical characterization of binding properties of opacity-associated protein II from Neisseria gonorrhoeae.

    PubMed Central

    Bessen, D; Gotschlich, E C

    1987-01-01

    Binding of an opacity-associated protein II (PIIop) from Neisseria gonorrhoeae to eucaryotic macromolecules was studied. HeLa cell extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose, and purified PIIop bound to approximately 50 distinct molecular species. The binding of PIIop to HeLa cell components was stable in high salt and nonionic detergent and was not inhibited by a variety of monosaccharides and polyionic substances. PIIop binding behavior was compared with that of two model carbohydrate-binding proteins, wheat germ agglutinin (WGA) and concanavalin A (ConA). Model glycoproteins (ovomucoid, fetuin, mucin, ovalbumin) inhibited binding by PIIop, WGA, and ConA to various degrees. HeLa cell glycopeptides, generated by pronase digestion of chloroform-methanol-extracted cells, were tested for their ability to inhibit binding by PIIop to Western blots of HeLa cell macromolecules. HeLa cell extracts inhibited PIIop binding before pronase treatment, but inhibitory activity was lost as a result of pronase digestion. Direct binding to defined glycosylated and nonglycosylated proteins revealed that ConA and WGA bound only glycoproteins, whereas PIIop bound to proteins lacking carbohydrate as well. PIIop binding to human and bovine serum albumins was of high affinity and required partial unfolding of albumin; native albumin was not bound by PIIop; however, both the denatured, reduced form of albumin and the compact, nonreduced form of carboxymethylated albumin were bound strongly by PIIop. Albumin-PIIop interaction did not involve covalent bond formation through sulfhydryl groups. The predominant binding interactions of PIIop found in this study were with protein rather than carbohydrate, and the chemical nature of the interactions is more complex than involvement of purely ionic or hydrophobic forces. Images PMID:3098683

  9. New Rapid Diagnostic Tests for Neisseria meningitidis Serogroups A, W135, C, and Y

    PubMed Central

    Chanteau, Suzanne; Dartevelle, Sylvie; Mahamane, Ali Elhadj; Djibo, Saacou; Boisier, Pascal; Nato, Farida

    2006-01-01

    Background Outbreaks of meningococcal meningitis (meningitis caused by Neisseria meningitidis) are a major public health concern in the African “meningitis belt,” which includes 21 countries from Senegal to Ethiopia. Of the several species that can cause meningitis, N. meningitidis is the most important cause of epidemics in this region. In choosing the appropriate vaccine, accurate N. meningitidis serogroup determination is key. To this end, we developed and evaluated two duplex rapid diagnostic tests (RDTs) for detecting N. meningitidis polysaccharide (PS) antigens of several important serogroups. Methods and Findings Mouse monoclonal IgG antibodies against N. meningitidis PS A, W135/Y, Y, and C were used to develop two immunochromatography duplex RDTs, RDT1 (to detect serogroups A and W135/Y) and RDT2 (to detect serogroups C and Y). Standards for Reporting of Diagnostic Accuracy criteria were used to determine diagnostic accuracy of RDTs on reference strains and cerebrospinal fluid (CSF) samples using culture and PCR, respectively, as reference tests. The cutoffs were 105 cfu/ml for reference strains and 1 ng/ml for PS. Sensitivities and specificities were 100% for reference strains, and 93.8%–100% for CSF serogroups A, W135, and Y in CSF. For CSF serogroup A, the positive and negative likelihood ratios (± 95% confidence intervals [CIs]) were 31.867 (16.1–63.1) and 0.065 (0.04–0.104), respectively, and the diagnostic odds ratio (± 95% CI) was 492.9 (207.2–1,172.5). For CSF serogroups W135 and Y, the positive likelihood ratio was 159.6 (51.7–493.3) Both RDTs were equally reliable at 25 °C and 45 °C. Conclusions These RDTs are important new bedside diagnostic tools for surveillance of meningococcus serogroups A and W135, the two serogroups that are responsible for major epidemics in Africa. PMID:16953658

  10. Assessment of Etest as an alternative to agar dilution for antimicrobial susceptibility testing of Neisseria gonorrhoeae.

    PubMed

    Liu, Hsi; Taylor, Thomas H; Pettus, Kevin; Trees, David

    2014-05-01

    We studied whether the Etest can be used as an alternative to agar dilution to determine antimicrobial susceptibilities of ceftriaxone, cefixime, and cefpodoxime in Neisseria gonorrhoeae surveillance. One hundred fifteen clinical and laboratory isolates of N. gonorrhoeae were tested following the Clinical Laboratory Improvement Amendments (CLIA)-approved CLSI standard agar dilution method and, separately, by the Etest according to the manufacturer's recommendations. The MICs were determined and compared. Ten laboratory-generated mutants were used to simulate substantially nonsusceptible specimens. The Etest and agar dilution methods were well correlated. Statistical tests produced regression R2 values of 88%, 82%, and 85% and Pearson correlation coefficients of 92%, 91%, and 92% for ceftriaxone, cefixime, and cefpodoxime, respectively. When paired comparisons were made, the two tests were 88.7%, 80%, and 87% within 1 log2 dilution from each other for ceftriaxone, cefixime, and cefpodoxime, respectively. The within-2-log2 agreements were 99.1%, 98.3%, and 94.8% for ceftriaxone, cefixime, and cefpodoxime, respectively. Notwithstanding the good correlations and the within-2-log2 general agreement, the Etest results produced slightly lower MICs than the agar dilution results. In conclusion, we found that the Etest can be effectively used as an alternative to agar dilution testing to determine the susceptibility of N. gonorrhoeae to ceftriaxone, cefixime, and cefpodoxime, although we recommend further research into extremely resistant isolates. For isolates within the typical range of clinical MICs, reexamination of the Etest interpretation of susceptible and nonsusceptible categories would likely allow for successful transition from agar dilution to the Etest. PMID:24554750

  11. Extragenital Infections Caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A Review of the Literature.

    PubMed

    Chan, Philip A; Robinette, Ashley; Montgomery, Madeline; Almonte, Alexi; Cu-Uvin, Susan; Lonks, John R; Chapin, Kimberle C; Kojic, Erna M; Hardy, Erica J

    2016-01-01

    In the United States, sexually transmitted diseases due to Chlamydia trachomatis and Neisseria gonorrhoeae continue to be a major public health burden. Screening of extragenital sites including the oropharynx and rectum is an emerging practice based on recent studies highlighting the prevalence of infection at these sites. We reviewed studies reporting the prevalence of extragenital infections in women, men who have sex with men (MSM), and men who have sex only with women (MSW), including distribution by anatomical site. Among women, prevalence was found to be 0.6-35.8% for rectal gonorrhea (median reported prevalence 1.9%), 0-29.6% for pharyngeal gonorrhea (median 2.1%), 2.0-77.3% for rectal chlamydia (median 8.7%), and 0.2-3.2% for pharyngeal chlamydia (median 1.7%). Among MSM, prevalence was found to be 0.2-24.0% for rectal gonorrhea (median 5.9%), 0.5-16.5% for pharyngeal gonorrhea (median 4.6%), 2.1-23.0% for rectal chlamydia (median 8.9%), and 0-3.6% for pharyngeal chlamydia (median 1.7%). Among MSW, the prevalence was found to be 0-5.7% for rectal gonorrhea (median 3.4%), 0.4-15.5% for pharyngeal gonorrhea (median 2.2%), 0-11.8% for rectal chlamydia (median 7.7%), and 0-22.0% for pharyngeal chlamydia (median 1.6%). Extragenital infections are often asymptomatic and found in the absence of reported risk behaviors, such as receptive anal and oral intercourse. We discuss current clinical recommendations and future directions for research. PMID:27366021

  12. In Vitro Activity of Delafloxacin against Clinical Neisseria gonorrhoeae Isolates and Selection of Gonococcal Delafloxacin Resistance.

    PubMed

    Soge, Olusegun O; Salipante, Stephen J; No, David; Duffy, Erin; Roberts, Marilyn C

    2016-05-01

    We evaluated the in vitro activity of delafloxacin against a panel of 117 Neisseria gonorrhoeae strains, including 110 clinical isolates collected from 2012 to 2015 and seven reference strains, compared with the activities of seven antimicrobials currently or previously recommended for treatment of gonorrhea. We examined the potential for delafloxacin to select for resistant mutants in ciprofloxacin-susceptible and ciprofloxacin-resistant N. gonorrhoeae We characterized mutations in the gyrA, gyrB, parC, and parE genes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) by PCR and sequencing and by whole-genome sequencing. The MIC50, MIC90, and MIC ranges of delafloxacin were 0.06 μg/ml, 0.125 μg/ml, and ≤0.001 to 0.25 μg/ml, respectively. The frequency of spontaneous mutation ranged from 10(-7) to <10(-9) The multistep delafloxacin resistance selection of 30 daily passages resulted in stable resistant mutants. There was no obvious cross-resistance to nonfluoroquinolone comparator antimicrobials. A mutant with reduced susceptibility to ciprofloxacin (MIC, 0.25 μg/ml) obtained from the ciprofloxacin-susceptible parental strain had a novel Ser91Tyr alteration in the gyrA gene. We also identified new mutations in the gyrA and/or parC and parE genes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) of two mutant strains with elevated delafloxacin MICs of 1 μg/ml. Although delafloxacin exhibited potent in vitro activity against N. gonorrhoeae isolates and reference strains with diverse antimicrobial resistance profiles and demonstrated a low tendency to select for spontaneous mutants, it is important to establish the correlation between these excellent in vitro data and treatment outcomes through appropriate randomized controlled clinical trials. PMID:26976873

  13. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    PubMed

    Fingerhuth, Stephanie M; Bonhoeffer, Sebastian; Low, Nicola; Althaus, Christian L

    2016-05-01

    The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread. PMID:27196299

  14. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo, Japan.

    PubMed

    Shigemura, Katsumi; Osawa, Kayo; Miura, Makiko; Tanaka, Kazushi; Arakawa, Soichi; Shirakawa, Toshiro; Fujisawa, Masato

    2015-05-01

    Therapeutic options are limited for Neisseria gonorrhoeae infection, especially for oral drugs. The purpose of this study was to investigate the susceptibility of N. gonorrhoeae to oral azithromycin (AZM) and the correlation between AZM resistance-related gene mutations and MIC. We examined the AZM MICs of clinical strains of N. gonorrhoeae, sequenced the peptidyltransferase loop in domain V of 23S rRNA, and investigated the statistical correlation between AZM MIC and the presence and number of the mutations. Among 59 N. gonorrhoeae strains, our statistical data showed that a deletion mutation was seen significantly more often in the higher-MIC group (0.5 μg/ml or higher) (35/37; 94.6%) than in the lower-MIC group (0.25 μg/ml or less) (4/22; 18.2%) (P < 0.0001). However, a mutation of codon 40 (Ala → Asp) in the mtrR gene (helix-turn-helix) was seen significantly more often in the lower-MIC group (12/22; 54.5%) (P < 0.0001). In N. gonorrhoeae multiantigen sequence typing (NG-MAST) analyses, ST4777 was representative of the lower-MIC group and ST1407, ST6798, and ST6800 were representative of the higher-MIC group. NG-MAST type 1407 was detected as the most prevalent type in AZM-resistant or -intermediate strains, as previously described. In conclusion, a deletion mutation in the mtrR promoter region may be a significant indicator for higher MIC (0.5 μg/ml or higher). ST4777 was often seen in the lower-MIC group, and ST1407, ST6798, and ST6800 were characteristic of the higher-MIC group. Further research with a greater number of strains would help elucidate the mechanism of AZM resistance in N. gonorrhoeae infection. PMID:25712352

  15. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae.

    PubMed

    Noto, Jennifer M; Cornelissen, Cynthia Nau

    2008-05-01

    Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB. PMID:18347046

  16. Neisseria gonorrhoeae infection protects human endocervical epithelial cells from apoptosis via expression of host antiapoptotic proteins.

    PubMed

    Follows, S A; Murlidharan, J; Massari, P; Wetzler, L M; Genco, C A

    2009-09-01

    Several microbial pathogens can modulate the host apoptotic response to infection, which may contribute to immune evasion. Various studies have reported that infection with the sexually transmitted disease pathogen Neisseria gonorrhoeae can either inhibit or induce apoptosis. N. gonorrhoeae infection initiates at the mucosal epithelium, and in women, cells from the ectocervix and endocervix are among the first host cells encountered by this pathogen. In this study, we defined the antiapoptotic effect of N. gonorrhoeae infection in human endocervical epithelial cells (End/E6E7 cells). We first established that N. gonorrhoeae strain FA1090B failed to induce cell death in End/E6E7 cells. Subsequently, we demonstrated that stimulation with N. gonorrhoeae protected these cells from staurosporine (STS)-induced apoptosis. Importantly, only End/E6E7 cells incubated with live bacteria and in direct association with N. gonorrhoeae were protected from STS-induced apoptosis, while heat-killed and antibiotic-killed bacteria failed to induce protection. Stimulation of End/E6E7 cells with live N. gonorrhoeae induced NF-kappaB activation and resulted in increased gene expression of the NF-kappaB-regulated antiapoptotic genes bfl-1, cIAP-2, and c-FLIP. Furthermore, cIAP-2 protein levels also increased in End/E6E7 cells incubated with gonococci. Collectively, our results indicate that the antiapoptotic effect of N. gonorrhoeae in human endocervical epithelial cells results from live infection via expression of host antiapoptotic proteins. Securing an intracellular niche through the inhibition of apoptosis may be an important mechanism utilized by N. gonorrhoeae for microbial survival and immune evasion in cervical epithelial cells. PMID:19546192

  17. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission.

    PubMed

    Klotman, Mary E; Rapista, Aprille; Teleshova, Natalia; Micsenyi, Amanda; Jarvis, Gary A; Lu, Wuyuan; Porter, Edith; Chang, Theresa L

    2008-05-01

    Sexually transmitted infections (STIs) increase the likelihood of HIV transmission. Defensins are part of the innate mucosal immune response to STIs and therefore we investigated their role in HIV infection. We found that human defensins 5 and 6 (HD5 and HD6) promoted HIV infection, and this effect was primarily during viral entry. Enhancement was seen with primary viral isolates in primary CD4(+) T cells and the effect was more pronounced with R5 virus compared with X4 virus. HD5 and HD6 promoted HIV reporter viruses pseudotyped with vesicular stomatitis virus and murine leukemia virus envelopes, indicating that defensin-mediated enhancement was not dependent on CD4 and coreceptors. Enhancement of HIV by HD5 and HD6 was influenced by the structure of the peptides, as loss of the intramolecular cysteine bonds was associated with loss of the HIV-enhancing effect. Pro-HD5, the precursor and intracellular form of HD5, also exhibited HIV-enhancing effect. Using a cervicovaginal tissue culture system, we found that expression of HD5 and HD6 was induced in response to Neisseria gonorrhoeae (GC, for gonococcus) infection and that conditioned medium from GC-exposed cervicovaginal epithelial cells with elevated levels of HD5 also enhanced HIV infection. Introduction of small interfering RNAs for HD5 or HD6 abolished the HIV-enhancing effect mediated by GC. Thus, the induction of these defensins in the mucosa in the setting of GC infection could facilitate HIV infection. Furthermore, this study demonstrates the complexity of defensins as innate immune mediators in HIV transmission and warrants further investigation of the mechanism by which defensins modulate HIV infection. PMID:18424739

  18. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions.

    PubMed

    McClure, Ryan; Tjaden, Brian; Genco, Caroline

    2014-01-01

    In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the "sRNAome" of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen. PMID:25221548

  19. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile.

    PubMed

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  20. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    PubMed

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. PMID:22146107

  1. Alpha-2,3-sialyltransferase enhances Neisseria gonorrhoeae survival during experimental murine genital tract infection.

    PubMed

    Wu, Hong; Jerse, Ann E

    2006-07-01

    The addition of host-derived sialic acid to Neisseria gonorrhoeae lipooligosaccharide is hypothesized to be an important mechanism by which gonococci evade host innate defenses. This hypothesis is based primarily on in vitro assays of complement-mediated and phagocytic killing. Here we report that a nonpolar alpha-2,3-sialyltransferase (lst) mutant of N. gonorrhoeae was significantly attenuated in its capacity to colonize the lower genital tract of 17-beta estradiol-treated female BALB/c mice during competitive infection with the wild-type strain. Genetic complementation of the lst mutation restored recovery of the mutant to wild-type levels. Studies with B10.D2-HC(o)H2(d)H(2)-T18c/OSN (C5-deficient) mice showed that attenuation of the lst mutant was not due to increased sensitivity to complement-mediated bacteriolysis, a result that is consistent with recently reported host restrictions in the complement cascade. However, Lst-deficient gonococci were killed more rapidly than sialylated wild-type gonococci following intraperitoneal injection into normal mice, which is consistent with sialylation conferring protection against killing by polymorphonuclear leukocytes (PMNs). As reported for human PMNs, sialylated gonococci were more resistant to killing by murine PMNs, and sialylation led to reduced association with and induction of a weaker respiratory burst in PMNs from estradiol-treated mice. In summary, these studies suggest sialylation confers a survival advantage to N. gonorrhoeae in mice by increasing resistance to PMN killing. This report is the first direct demonstration that alpha-2,3-sialyltransferase contributes to N. gonorrhoeae pathogenesis in an in vivo model. This study also validates the use of experimental murine infection to study certain aspects of gonococcal pathogenesis. PMID:16790783

  2. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914.

    PubMed

    Kern, Gunther; Palmer, Tiffany; Ehmann, David E; Shapiro, Adam B; Andrews, Beth; Basarab, Gregory S; Doig, Peter; Fan, Jun; Gao, Ning; Mills, Scott D; Mueller, John; Sriram, Shubha; Thresher, Jason; Walkup, Grant K

    2015-08-21

    We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467-474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β. PMID:26149691

  3. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease

    PubMed Central

    Hill, Darryl J.; Griffiths, Natalie J.; Borodina, Elena; Virji, Mumtaz

    2010-01-01

    The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through

  4. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells.

    PubMed Central

    Gómez-Duarte, O G; Dehio, M; Guzmán, C A; Chhatwal, G S; Dehio, C; Meyer, T F

    1997-01-01

    Neisseria gonorrhoeae induces local infections in the human genitourinary tract and can disseminate to other organs to cause severe disease. Blood-derived factors present in the genital mucosa have been suggested to facilitate the spread of N. gonorrhoeae in disseminated gonococcal infections. Using gentamicin invasion assays and confocal microscopy, we observed a strong stimulatory effect of fetal calf serum (FCS) on the gonococcal invasion of HeLa cells. FCS-mediated invasion was dependent on the expression of the epithelial cell invasion-associated Opa protein (plasmid-encoded Opa50 or its chromosomal homolog Opa30), while N. gonorrhoeae expressing noninvasive Opa proteins (Opa(51-60)) or no Opa protein (Opa-) was not invasive even in the presence of FCS. Incubation of N. gonorrhoeae MS11 with biotinylated FCS revealed a 78-kDa protein as the prominent protein binding to Opa50- or Opa30-expressing gonococci. This protein was recognized by antibodies against vitronectin (VN) in Western blots. Purified human or bovine VN efficiently bound to Opa50-expressing gonococci, while binding to noninvasive Opa- or Opa52-expressing gonococci was significantly lower. Binding of VN was inhibited by heparin in a concentration-dependent manner, indicating that the heparin binding sites present in VN or Opa50 may play an essential role in this interaction. Based on gentamicin invasion assays and confocal microscopy studies, VN binding was associated with an increased invasion of Opa50- and Opa30-expressing gonococci into HeLa cells. The ability of VN to mediate entry into epithelial cells may constitute an important event in the pathogenesis of local as well as disseminated gonococcal infections. PMID:9284164

  5. DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates

    PubMed Central

    Sater, Mohamad R. Abdul; Lamelas, Araceli; Wang, Guilin; Clark, Tyson A.; Röltgen, Katharina; Mane, Shrikant; Korlach, Jonas; Pluschke, Gerd; Schmid, Christoph D.

    2015-01-01

    The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of

  6. The effectiveness of gentamicin in the treatment of Neisseria gonorrhoeae: a systematic review

    PubMed Central

    2014-01-01

    Background A high level of resistance in Neisseria gonorrhoeae has developed against penicillins, sulphonamides, tetracyclines and quinolones, and recent surveillance data have shown a gradual reduction in sensitivity to current first-line agents with an upward drift in the minimum inhibitory concentration of ceftriaxone. Laboratory sensitivity testing suggests that gentamicin, an aminoglycoside, may be an effective treatment option for gonorrhoea infection when used as a single intramuscular dose. Methods A search of electronic reference databases and grey literature was used to identify randomised trials and well-conducted prospective studies with concurrent controls evaluating single-dose gentamicin against placebo or a comparator regimen in the treatment of uncomplicated gonorrhoea infection in men and women aged 16 years and over. The primary outcome was microbiological cure of N. gonorrhoeae. Results Eight hundred and thirty-nine studies were identified, of which five (1,063 total participants) were included. All five studies administered single-dose gentamicin via intramuscular injection to men with uncomplicated gonococcal urethritis. Three studies were randomised trials, one was quasi-randomised and one was non-randomised but included a comparator arm. Comparator antibiotics included an alternative aminoglycoside or antibiotic used in the syndromic management of male urethritis. Methodology was poorly described in all five included studies. The high risk of bias within studies and clinical heterogeneity between studies meant that it was inappropriate to pool data for meta-analysis. Cure rates of 62% to 98% were reported with gentamicin treatment. The relative risk of cure was comparable between gentamicin and comparator antibiotics. Conclusions The studies identified provide insufficient data to support or refute the efficacy and safety of single-dose intramuscular gentamicin in the treatment of uncomplicated gonorrhoea infection. Additional randomised

  7. Phenotypic and Genotypic Characteristics of Neisseria meningitidis Disease-Causing Strains in Argentina, 2010

    PubMed Central

    Sorhouet-Pereira, Cecilia; Efron, Adriana; Gagetti, Paula; Faccone, Diego; Regueira, Mabel; Corso, Alejandra; Gabastou, Jean-Marc; Ibarz-Pavón, Ana Belén

    2013-01-01

    Phenotypic and genotypic characterization of 133 isolates of Neisseria meningitidis obtained from meningococcal disease cases in Argentina during 2010 were performed by the National Reference Laboratory as part of a project coordinated by the PAHO within the SIREVA II network. Serogroup, serotype, serosubtype and MLST characterization were performed. Minimum Inhibitory Concentration to penicillin, ampicillin, ceftriaxone, rifampin, chloramphenicol, tetracycline and ciprofloxacin were determined and interpreted according to CLSI guidelines. Almost 49% of isolates were W135, and two serotype:serosubtype combinations, W135∶2a:P1.5,2:ST-11 and W135∶2a:P1.2:ST-11 accounted for 78% of all W135 isolates. Serogroup B accounted for 42.1% of isolates, and was both phenotypically and genotypically diverse. Serogroup C isolates represented 5.3% of the dataset, and one isolate belonging to the ST-198 complex was non-groupable. Isolates belonged mainly to the ST-11 complex (48%) and to a lesser extent to the ST-865 (18%), ST-32 (9,8%) and the ST-35 complexes (9%). Intermediate resistance to penicillin and ampicillin was detected in 35.4% and 33.1% of isolates respectively. Two W135∶2a:P1.5,2:ST-11:ST-11 isolates presented resistance to ciprofloxacin associated with a mutation in the QRDR of gyrA gene Thr91-Ile. These data show serogroup W135 was the first cause of disease in Argentina in 2010, and was strongly associated with the W135∶2a:P1.5,2:ST-11 epidemic clone. Serogroup B was the second cause of disease and isolates belonging to this serogroup were phenotypically and genotypically diverse. The presence of isolates with intermediate resistance to penicillin and the presence of fluorquinolone-resistant isolates highlight the necessity and importance of maintaining and strengthening National Surveillance Programs. PMID:23483970

  8. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    PubMed Central

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly. PMID:19767435

  9. Reduced uptake and accumulation of norfloxacin in resistant strains of Neisseria gonorrhoeae isolated in Japan.

    PubMed Central

    Tanaka, M; Fukuda, H; Hirai, K; Hosaka, M; Matsumoto, T; Kumazawa, J

    1994-01-01

    OBJECTIVE--To investigate the alteration of cell permeability toward fluoroquinolones in Neisseria gonorrhoeae, which is a major quinolone-resistance mechanism along with the alteration of DNA gyrase in gram-negative bacteria. The prevalence of fluoroquinolone-resistant N gonorrhoeae strains is rapidly increasing in Japan. MATERIALS AND METHODS--The uptake and accumulation of norfloxacin by gonococcal cells, including six clinical and five World Health Organization (WHO) reference strains, were measured. Of the six clinical strains, two were highly resistant to norfloxacin (MIC 8.0 and 4.0 micrograms/ml), two were moderately resistant (MIC 1.0 and 0.5 microgram/ml), and two were sensitive (MIC 0.063 and 0.004 microgram/ml). All five WHO reference strains were sensitive to norfloxacin (MIC < or = 0.001 to 0.063 microgram/ml). RESULTS--Mean initial norfloxacin uptake in the four resistant strains (104 ng/mg of dry cells) was significantly lower than that in the seven sensitive strains (158 ng/mg of dry cells) (p < 0.05). The mean uptake after 20 minutes was also significantly lower in the four resistant strains (130 ng/mg of dry cells) than in the seven sensitive strains (194 ng/mg of dry cells) (p < 0.05). However, there was no significant difference in mean norfloxacin accumulation after 20 minutes between the four resistant strains (26 ng/mg of dry cells) and the seven sensitive strains (36 ng/mg of dry cells). The accumulation of norfloxacin after 20 minutes was almost zero in two of the four resistant strains, while the remaining two strains accumulated norfloxacin as well as the sensitive strains. CONCLUSIONS--These findings suggest that alteration of bacterial cell permeability is a quinolone-resistance mechanism in N gonorrhoeae isolated in Japan, and that this bacteria may exhibit other mechanisms such as alteration of DNA gyrase. PMID:7959709

  10. Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae.

    PubMed Central

    Schneider, H; Hammack, C A; Apicella, M A; Griffiss, J M

    1988-01-01

    We assessed variation in the expression of lipooligosaccharide (LOS) components and their epitopes within populations of a strain of Neisseria gonorrhoeae by using the monoclonal antibodies (MAbs) O6B4 and 3F11 and immunoenzymatic, immuno-colloidal gold electron microscopic, and sodium dodecyl sulfate-polyacrylamide gel electrophoretic procedures. Wild-type organisms varied in binding of both MAbs. We used the intensity of immunoenzymatic colony blot color to distinguish four binding variants for each MAb: red (R), pink (P), and colorless (nonreactive [N]) and an N back to R (N-R) revertant. R to P to R and R to N to R variation occurred at frequencies of 0.2% and 0.02%, respectively. The electrophoretic LOS profiles and MAb immunoblot patterns of the R, P, and N-R variants were the same as those of the wild type. LOSs of the N variants, in contrast, were of lower Mr, bound neither 3F11 nor O6B4 MAb, and contained as their major component the 3.6-kilodalton LOS that bears the L8LOS epitope of N. meningitidis. Results of immunoelectron microscopic studies were consistent with LOS binding patterns. Large number of colloidal gold particles were deposited about both R and P variants, distally from R organisms, but proximally from P organisms. N variant organisms, like their LOS, bound neither of the MAbs. N-R variant organisms were like the wild type in that they showed much variation in the amounts of MAb they bound. Images PMID:3126149

  11. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae.

    PubMed Central

    Bos, M P; Grunert, F; Belland, R J

    1997-01-01

    Opacity (Opa) protein variation in Neisseria gonorrhoeae is implicated in the pathogenesis of gonorrhea, possibly by mediating adherence and entry of the bacteria into human tissues. One particular Opa protein mediates adherence to epithelial cells through cell surface proteoglycans. Recently, two other eukaryotic cell receptors for Opa proteins have been reported. These receptors are members of a subgroup of the carcinoembryonic (CEA) gene family that express CD66 antigens. CEA family members vary in their distribution in human tissues. In order to understand whether interactions between Opa and CEA-like molecules play any role in pathogenesis, we must investigate which CEA family members are able to serve as Opa receptors and which Opa proteins recognize CEA-like molecules. We therefore studied HeLa cells that were stably transfected with five different members of the CEA family, i.e., CEA, CEA gene family member 1a (CGM1a), CGM6, nonspecific cross-reacting antigen (NCA), and biliary glycoprotein a (BGPa). We infected these transfectants with all possible 11 Opa variants of gonococcal strain MS11 and determined the numbers of bacteria that were bound and internalized. To account for proteoglycan-mediated adherence, infection assays were also performed in the presence of heparin. Our results show that of the 11 Opa variants of MS11, the same 4 recognized CGM1a and NCA. CGM6, however, was not recognized by any Opa variant of MS11. CEA was recognized by at least 9 of 11 Opa variants, and the BGP transfectants specifically bound and internalized 10 of 11 Opa variants and also bound Opa-negative gonococci. Immunofluorescence experiments showed that clustering of CEA-like molecules occurred upon infection of HeLa transfectants with those Opa variants that interacted specifically with the CEA family member. Together these data show that CEA family members are differentially recognized by gonococcal Opa variants, suggesting that this phenomenon may contribute to cell

  12. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile

    PubMed Central

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I.; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  13. Extreme Substrate Promiscuity of the Neisseria Oligosaccharyl Transferase Involved in Protein O-Glycosylation*S⃞

    PubMed Central

    Faridmoayer, Amirreza; Fentabil, Messele A.; Haurat, M. Florencia; Yi, Wen; Woodward, Robert; Wang, Peng George; Feldman, Mario F.

    2008-01-01

    Neisseria meningitidis PglL belongs to a novel family of bacterial oligosaccharyltransferases (OTases) responsible for O-glycosylation of type IV pilins. Although members of this family are widespread among pathogenic bacteria, there is little known about their mechanism. Understanding the O-glycosylation process may uncover potential targets for therapeutic intervention, and can open new avenues for the exploitation of these pathways for biotechnological purposes. In this work, we demonstrate that PglL is able to transfer virtually any glycan from the undecaprenyl pyrophosphate (UndPP) carrier to pilin in engineered Escherichia coli and Salmonella cells. Surprisingly, PglL was also able to interfere with the peptidoglycan biosynthetic machinery and transfer peptidoglycan subunits to pilin. This represents a previously unknown post-translational modification in bacteria. Given the wide range of glycans transferred by PglL, we reasoned that substrate specificity of PglL lies in the lipid carrier. To test this hypothesis we developed an in vitro glycosylation system that employed purified PglL, pilin, and the lipid farnesyl pyrophosphate (FarPP) carrying a pentasaccharide that had been synthesized by successive chemical and enzymatic steps. Although FarPP has different stereochemistry and a significantly shorter aliphatic chain than the natural lipid substrate, the pentasaccharide was still transferred to pilin in our system. We propose that the primary roles of the lipid carrier during O-glycosylation are the translocation of the glycan into the periplasm, and the positioning of the pyrophosphate linker and glycan adjacent to PglL. The unique characteristics of PglL make this enzyme a promising tool for glycoengineering novel glycan-based vaccines and therapeutics. PMID:18930921

  14. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease.

    PubMed

    Baarda, Benjamin I; Sikora, Aleksandra E

    2015-01-01

    Neisseria gonorrhoeae is an exquisitely adapted, strictly human pathogen and the causative agent of the sexually transmitted infection gonorrhea. This ancient human disease remains a serious problem, occurring at high incidence globally and having a major impact on reproductive and neonatal health. N. gonorrhoeae is rapidly evolving into a superbug and no effective vaccine exists to prevent gonococcal infections. Untreated or inadequately treated gonorrhea can lead to severe sequelae, including pelvic inflammatory disease and infertility in women, epididymitis in men, and sight-threatening conjunctivitis in infants born to infected mothers. Therefore, there is an immediate need for accelerated research toward the identification of molecular targets for development of drugs with new mechanisms of action and preventive vaccine(s). Global proteomic approaches are ideally suited to guide these studies. Recent quantitative proteomics (SILAC, iTRAQ, and ICAT) have illuminated the pathways utilized by N. gonorrhoeae to adapt to different lifestyles and micro-ecological niches within the host, while comparative 2D SDS-PAGE analysis has been used to elucidate spectinomycin resistance mechanisms. Further, high-throughput examinations of cell envelopes and naturally released membrane vesicles have unveiled the ubiquitous and differentially expressed proteins between temporally and geographically diverse N. gonorrhoeae isolates. This review will focus on these different approaches, emphasizing the role of proteomics in the search for vaccine candidates. Although our knowledge of N. gonorrhoeae has been expanded, still far less is known about this bacterium than the closely related N. meningitidis, where genomics- and proteomics-driven studies have led to the successful development of vaccines. PMID:26579097

  15. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease

    PubMed Central

    Baarda, Benjamin I.; Sikora, Aleksandra E.

    2015-01-01

    Neisseria gonorrhoeae is an exquisitely adapted, strictly human pathogen and the causative agent of the sexually transmitted infection gonorrhea. This ancient human disease remains a serious problem, occurring at high incidence globally and having a major impact on reproductive and neonatal health. N. gonorrhoeae is rapidly evolving into a superbug and no effective vaccine exists to prevent gonococcal infections. Untreated or inadequately treated gonorrhea can lead to severe sequelae, including pelvic inflammatory disease and infertility in women, epididymitis in men, and sight-threatening conjunctivitis in infants born to infected mothers. Therefore, there is an immediate need for accelerated research toward the identification of molecular targets for development of drugs with new mechanisms of action and preventive vaccine(s). Global proteomic approaches are ideally suited to guide these studies. Recent quantitative proteomics (SILAC, iTRAQ, and ICAT) have illuminated the pathways utilized by N. gonorrhoeae to adapt to different lifestyles and micro-ecological niches within the host, while comparative 2D SDS-PAGE analysis has been used to elucidate spectinomycin resistance mechanisms. Further, high-throughput examinations of cell envelopes and naturally released membrane vesicles have unveiled the ubiquitous and differentially expressed proteins between temporally and geographically diverse N. gonorrhoeae isolates. This review will focus on these different approaches, emphasizing the role of proteomics in the search for vaccine candidates. Although our knowledge of N. gonorrhoeae has been expanded, still far less is known about this bacterium than the closely related N. meningitidis, where genomics- and proteomics-driven studies have led to the successful development of vaccines. PMID:26579097

  16. Cross-reactive polyclonal antibodies to the inner core of lipopolysaccharide from Neisseria meningitidis.

    PubMed

    Andersen, Svein Rune; Guthrie, Terry; Guile, Geoffrey R; Kolberg, Jan; Hou, Sam; Hyland, Lisa; Wong, Simon Y C

    2002-03-01

    Sera from mice immunized with native or detergent-extracted outer membrane vesicles derived from lipopolysaccharide (LPS) mutant 44/76(Mu-4) of Neisseria meningitidis were analyzed for antibodies to LPS. The carbohydrate portion of 44/76(Mu-4) LPS consists of the complete inner core, Glc beta 1-->4[GlcNAc alpha 1-->2Hep alpha 1-->3]Hep alpha 1-->5KDO[4-->2 alpha KDO]. Immunoblot analysis revealed that some sera contained antibodies to wild-type LPS which has a fully extended carbohydrate chain of immunotype L3,7, as well as to the homologous LPS. Sera reacted only weakly to LPS from 44/76(Mu-3), which lacks the terminal glucose of the inner core. No binding to more truncated LPS was observed. Consequently, the cross-reactive epitopes are expressed mainly by the complete inner core. Dephosphorylation of wild-type LPS abolished antibody binding to LPS in all but one serum. Thus, at least two specificities of cross-reactive antibodies exist: one is dependent on phosphoethanolamine groups in LPS, and one is not. Detection of these cross-reactive antibodies strongly supports the notion that epitopes expressed by meningococcal LPS inner core are also accessible to antibodies when the carbohydrate chain is fully extended. Also, these inner core epitopes are sufficiently immunogenic to induce antibody levels detectable in polyclonal antibody responses. Meningococci can escape being killed by antibodies to LPS that bind only to a specific LPS variant, by altering the carbohydrate chain length. Cross-reactive antibodies may prevent such escape. Therefore, inner core LPS structures may be important antigens in future vaccines against meningococcal disease. PMID:11854213

  17. Assessment of Etest as an Alternative to Agar Dilution for Antimicrobial Susceptibility Testing of Neisseria gonorrhoeae

    PubMed Central

    Taylor, Thomas H.; Pettus, Kevin; Trees, David

    2014-01-01

    We studied whether the Etest can be used as an alternative to agar dilution to determine antimicrobial susceptibilities of ceftriaxone, cefixime, and cefpodoxime in Neisseria gonorrhoeae surveillance. One hundred fifteen clinical and laboratory isolates of N. gonorrhoeae were tested following the Clinical Laboratory Improvement Amendments (CLIA)-approved CLSI standard agar dilution method and, separately, by the Etest according to the manufacturer's recommendations. The MICs were determined and compared. Ten laboratory-generated mutants were used to simulate substantially nonsusceptible specimens. The Etest and agar dilution methods were well correlated. Statistical tests produced regression R2 values of 88%, 82%, and 85% and Pearson correlation coefficients of 92%, 91%, and 92% for ceftriaxone, cefixime, and cefpodoxime, respectively. When paired comparisons were made, the two tests were 88.7%, 80%, and 87% within 1 log2 dilution from each other for ceftriaxone, cefixime, and cefpodoxime, respectively. The within-2-log2 agreements were 99.1%, 98.3%, and 94.8% for ceftriaxone, cefixime, and cefpodoxime, respectively. Notwithstanding the good correlations and the within-2-log2 general agreement, the Etest results produced slightly lower MICs than the agar dilution results. In conclusion, we found that the Etest can be effectively used as an alternative to agar dilution testing to determine the susceptibility of N. gonorrhoeae to ceftriaxone, cefixime, and cefpodoxime, although we recommend further research into extremely resistant isolates. For isolates within the typical range of clinical MICs, reexamination of the Etest interpretation of susceptible and nonsusceptible categories would likely allow for successful transition from agar dilution to the Etest. PMID:24554750

  18. Resistance of Neisseria meningitidis to Human Serum Depends on T and B Cell Stimulating Protein B

    PubMed Central

    Müller, Maike G.; Moe, Nina E.; Richards, Phillip Q.

    2015-01-01

    The ability of the human bacterial pathogen Neisseria meningitidis to cause invasive disease depends on survival in the bloodstream via mechanisms to suppress complement activation. In this study, we show that prophage genes coding for T and B cell stimulating protein B (TspB), which is an immunoglobulin-binding protein, are essential for survival of N. meningitidis group B strain H44/76 in normal human serum (NHS). H44/76 carries three genes coding for TspB. Mutants having all tspB genes inactivated did not survive in >5% NHS or IgG-depleted NHS. TspB appeared to inhibit IgM-mediated activation of the classical complement pathway, since survival of the tspB triple knockout was the same as that of the parent strain or a complemented mutant when the classical pathway was inactivated by depleting NHS of C1q and was increased in IgM-depleted NHS. A mutant solely carrying tspB gene nmbh4476_0681 was as resistant as the parent strain, while mutants carrying only nmbh4476_0598 or nmbh4476_1698 were killed in ≥5% NHS. The phenotype associated with TspB is formation of a matrix containing TspB, IgG, and DNA that envelopes aggregates of bacteria. Recombinant proteins corresponding to particular subdomains of TspB were found to have human IgG Fcγ- and/or DNA-binding activity, but only TspB derivatives containing both domains formed large, biofilm-like aggregates when combined with purified IgG and DNA. Recognizing the role of TspB in serum resistance may lead to a better understanding of why strains that carry tspB genes are associated with invasive meningococcal disease. PMID:25583528

  19. Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies.

    PubMed Central

    Forest, K T; Bernstein, S L; Getzoff, E D; So, M; Tribbick, G; Geysen, H M; Deal, C D; Tainer, J A

    1996-01-01

    The relationship between the sequence of Neisseria gonorrhoeae pilin and its quaternary assembly into pilus fibers was studied with a set of site-directed antibody probes and by mapping the specificities of antipilus antisera with peptides. Buried and exposed peptides in assembled pili were identified by competitive immunoassays and immunoelectron microscopy with polyclonal antibodies raised against 11 peptides spanning the pilin sequence. Pili did not compete significantly with pilin subunits for binding to antibodies against residues 13 to 31 (13-31) and 18-36. Pilus fibers competed well with pilin protein subunits for binding to antibodies raised against peptides 37-56, 58-78, 110-120, 115-127, 122-139, and 140-159 and competed weakly for antibodies against residues 79-93 and 94-108. Antibodies to sequence-conserved residues 37-56 and to semiconserved residues 94-108 preferentially bound pilus ends as shown by immunoelectron microscopy. The exposure of pilus regions to the immune system was tested by peptide mapping of antiserum specificities against sets of overlapping peptides representing all possible hexameric or octameric peptides from the N. gonorrhoeae MS11 pilin sequence. The immunogenicity of exposed peptides incorporating semiconserved residues 49-56 and 121-126 was revealed by strong, consistent antigenic reactivity to these regions measured in antipilus sera from rabbits, mice, and human and in sera from human volunteers with gonorrhea. The conservation and variation of antigenic responses among these three species clarify the relevance of immunological studies of other species to the human immune response against pathogens. Overall, our results explain the extreme conservation of the entire N-terminal one-third of the pilin protein by its dominant role in pilus assembly: hydrophobic residues 1-36 are implicated in buried lateral contacts, and polar residues 37-56 are implicated in longitudinal contacts within the pilus fiber. PMID:8550220

  20. Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins.

    PubMed Central

    Knepper, B; Heuer, I; Meyer, T F; van Putten, J P

    1997-01-01

    Experiments in vitro suggest that Neisseria gonorrhoeae surface variation plays a key role in gonococcal pathogenesis by providing the appropriate bacterial phenotypes to go through different stages of the infection. Here we report on the effects of phase and antigen variation of two major gonococcal adhesins, pili and opacity (Opa) outer membrane proteins, on the interaction of the gonococci with human monocytes. Using a set of recombinants of gonococcus strain MS11 that each express 1 of 11 genetically defined Opa proteins or a defined type of pilus, we found that both Opa proteins and pili promote bacterial phagocytosis by monocytes in the absence of serum and that this feature largely depends on the type of protein that is expressed. One of the Opa proteins (Opa[50]) strongly promoted uptake by monocytes but had little effect on the interaction with polymorphonuclear leukocytes under the conditions employed. Similarly, the phagocytosis-promoting effect of the pili was much more pronounced in monocytes than in neutrophils (4-fold versus 22-fold stimulation of uptake, respectively). Only a subpopulation of both types of phagocytes actively ingested bacteria, as has been observed during natural infections. Measurements of luminol-enhanced chemiluminescence demonstrated that phagocytosis of opaque but not piliated gonococci was accompanied by an increase in oxygen-reactive metabolites. These findings demonstrate that the monocyte response towards gonococci is highly dependent on the bacterial phenotype and differs from the neutrophil response. This diversity in bacterial behavior towards various types of human phagocytic cells underlines the biological impact of gonococcal surface variation and may explain previous contradictory results on this subject. PMID:9317017

  1. [Laboratory practices: diagnostics and antibiotics resistance testing of Neisseria gonorrhoeae in Germany].

    PubMed

    Loenenbach, Anna; Dudareva-Vizule, S; Buder, S; Sailer, A; Kohl, P K; Bremer, V

    2015-08-01

    Recent years have seen a world-wide increase in antimicrobial resistance (AMR) in cases of infection with Neisseria gonorrhoeae (NG). NG infection is not notifiable in Germany and there is a lack of information available about the spread and AMR of NG infections. The objective of the study was to provide information on diagnostic methods and AMR testing in cases of NG infections in German laboratories. A cross-sectional survey was undertaken in Germany between June and August 2013 using an online questionnaire. Laboratories performing NG diagnostics were identified and described with regard to the diagnostic methods used, the number of tests performed, the antibiotics tested and the AMR observed, in addition to general laboratory information. In total, 188 of the 521 participating laboratories performed NG diagnostics; these were included in the further statistical analysis. 92.6 % of the 188 laboratories performed culture. A median of 60 (IQR 15-270) samples per quarter (SPQ) were tested, with an overall positivity rate of 4.1 and 6.9 % among men. Most (82.1 %) of the 151 laboratories performing NG culture tested for AMR as well. The most frequently tested antibiotics were ciprofloxacin (94.8 %), penicillin (93.1 %), doxycycline (70.0 %) and ceftriaxone (67.2 %). The most frequently observed AMR ever were those against ciprofloxacin (87.1 %), penicillin (78.3 %), doxycycline (56.6 %) and azithromycin (35.1 %; all percentages refer to laboratories). The laboratories used different standards regarding susceptibility criteria. The emergence and spread of AMR shows that it is crucial to assess and monitor the scope and trends of multidrug-resistant gonorrhea. The data collected on diagnostic methods and AMR testing in cases of NG infections in German laboratories constitute an important basis for future monitoring. PMID:26112875

  2. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity.

    PubMed

    Stork, Michiel; Grijpstra, Jan; Bos, Martine P; Mañas Torres, Carmen; Devos, Nathalie; Poolman, Jan T; Chazin, Walter J; Tommassen, Jan

    2013-10-01

    The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as "nutritional immunity." The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn²⁺ and Mn²⁺ ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth. PMID:24204275

  3. Extragenital Infections Caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A Review of the Literature

    PubMed Central

    Chan, Philip A.; Montgomery, Madeline; Almonte, Alexi; Lonks, John R.; Chapin, Kimberle C.; Kojic, Erna M.; Hardy, Erica J.

    2016-01-01

    In the United States, sexually transmitted diseases due to Chlamydia trachomatis and Neisseria gonorrhoeae continue to be a major public health burden. Screening of extragenital sites including the oropharynx and rectum is an emerging practice based on recent studies highlighting the prevalence of infection at these sites. We reviewed studies reporting the prevalence of extragenital infections in women, men who have sex with men (MSM), and men who have sex only with women (MSW), including distribution by anatomical site. Among women, prevalence was found to be 0.6–35.8% for rectal gonorrhea (median reported prevalence 1.9%), 0–29.6% for pharyngeal gonorrhea (median 2.1%), 2.0–77.3% for rectal chlamydia (median 8.7%), and 0.2–3.2% for pharyngeal chlamydia (median 1.7%). Among MSM, prevalence was found to be 0.2–24.0% for rectal gonorrhea (median 5.9%), 0.5–16.5% for pharyngeal gonorrhea (median 4.6%), 2.1–23.0% for rectal chlamydia (median 8.9%), and 0–3.6% for pharyngeal chlamydia (median 1.7%). Among MSW, the prevalence was found to be 0–5.7% for rectal gonorrhea (median 3.4%), 0.4–15.5% for pharyngeal gonorrhea (median 2.2%), 0–11.8% for rectal chlamydia (median 7.7%), and 0–22.0% for pharyngeal chlamydia (median 1.6%). Extragenital infections are often asymptomatic and found in the absence of reported risk behaviors, such as receptive anal and oral intercourse. We discuss current clinical recommendations and future directions for research. PMID:27366021

  4. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners

    PubMed Central

    Bonhoeffer, Sebastian; Low, Nicola; Althaus, Christian L.

    2016-01-01

    The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y−1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y−1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y−1 in HMW and 3.12 y−1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population’s treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread. PMID:27196299

  5. Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States

    PubMed Central

    Harcourt, Brian H.; Anderson, Raydel D.; Wu, Henry M.; Cohn, Amanda C.; MacNeil, Jessica R.; Taylor, Thomas H.; Wang, Xin; Clark, Thomas A.; Messonnier, Nancy E.; Mayer, Leonard W.

    2015-01-01

    Background. Antimicrobial treatment and chemoprophylaxis of patients and their close contacts is critical to reduce the morbidity and mortality and prevent secondary cases of meningococcal disease. Through the 1990's, the prevalence of antimicrobial resistance to commonly used antimicrobials among Neisseria meningitidis was low in the United States. Susceptibility testing was performed to ascertain whether the proportions of isolates with reduced susceptibility to antimicrobials commonly used for N meningitidis have increased since 2004 in the United States. Methods. Antimicrobial susceptibility testing was performed by broth microdilution on 466 isolates of N meningitidis collected in 2004, 2008, 2010, and 2011 from an active, population-based surveillance system for susceptibility to ceftriaxone, ciprofloxacin, penicillin G, rifampin, and azithromycin. The molecular mechanism of reduced susceptibility was investigated for isolates with intermediate or resistant phenotypes. Results. All isolates were susceptible to ceftriaxone and azithromycin, 10.3% were penicillin G intermediate (range, 8% in 2008–16.7% in 2010), and <1% were ciprofloxacin, rifampin, or penicillin G resistant. Of the penicillin G intermediate or resistant isolates, 63% contained mutations in the penA gene associated with reduced susceptibility to penicillin G. All ciprofloxacin-resistant isolates contained mutations in the gyrA gene associated with reduced susceptibility. Conclusions. Resistance of N meningitidis to antimicrobials used for empirical treatment of meningitis in the United States has not been detected, and resistance to penicillin G and chemoprophylaxis agents remains uncommon. Therapeutic agent recommendations remain valid. Although periodic surveillance is warranted to monitor trends in susceptibility, routine clinical testing may be of little use. PMID:26357666

  6. Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis.

    PubMed

    Lewis, L A; Gray, E; Wang, Y P; Roe, B A; Dyer, D W

    1997-02-01

    We previously identified HpuB, an 85 kDa Fe-repressible protein required for utilization of Fe from, and binding to, haemoglobin and the haemoglobin-haptoglobin complex. The gene for hpuB was cloned from Neisseria meningitidis strain DNM2 and the predicted amino acid sequence indicates that HpuB is an outer membrane receptor belonging to the TonB family of high-affinity transport proteins. A second open reading frame, predicted to encode a 34.8 kDa lipoprotein, was discovered 5' to hpuB, and was designated hpuA. HpuA was identified in a total-membrane-protein preparation by construction of a mutant lacking HpuA. Acylation of HpuA was confirmed by [3H]-palmitic acid labelling of meningococci. Consensus promoter sequences were not apparent 5' to hpuB. The hpuA insertion mutation exerted a polar effect, abolishing expression of hpuB, suggesting that hpuA and hpuB are co-transcribed. The 3.5 kb polycistronic hpuAB mRNA was identified and shown to be transcriptionally repressed by iron. The transcriptional start site was identified 33 nucleotides 5' to the hpuA translational start site, appropriately positioned around consensus promoter and ferric uptake regulator (Fur)-box sequences. The structure of this operon suggests that HpuA-HpuB is a two-component receptor analogous to the bipartite transferrin receptor TbpB-TbpA. PMID:9157245

  7. Oral ciprofloxacin versus ceftriaxone for the treatment of urethritis from resistant Neisseria gonorrhoeae in Zambia.

    PubMed Central

    Bryan, J P; Hira, S K; Brady, W; Luo, N; Mwale, C; Mpoko, G; Krieg, R; Siwiwaliondo, E; Reichart, C; Waters, C

    1990-01-01

    Neisseria gonorrhoeae strains resistant to treatment with penicillin, tetracycline, and/or spectinomycin are increasing in prevalence in many parts of the world. In Zambia, 52% of N. gonorrhoeae isolates produced beta-lactamase in 1986. Few oral regimens have proven effective for treatment of resistant N. gonorrhoeae. We conducted a prospective, double-blind, randomized clinical trial of 250 mg of ciprofloxacin given orally versus 250 mg of ceftriaxone given intramuscularly for treatment of uncomplicated gonococcal urethritis in adult males. Two hundred men were enrolled and treated. The two groups were comparable in age (27.5 years), prevalence of latent syphilis (14 and 10%), and human immunodeficiency virus infection (32 and 38%). Of 165 patients with cultures positive for N. gonorrhoeae who returned for follow-up, ciprofloxacin cured 83 of 83 (100%), including 26 with penicillinase-producing N. gonorrhoeae (PPNG) and 21 with N. gonorrhoeae with chromosomally mediated resistance to multiple antibiotics (CMRNG), and ceftriaxone cured 81 of 82 (98.7%), including 30 with PPNG and 19 with CMRNG. Both treatment regimens were well tolerated. Chlamydia trachomatis in urethral exudate was found by direct fluorescent-antibody microscopic examination or by culture in 10 (5%) participants. All N. gonorrhoeae isolates were inhibited by ceftriaxone at 0.06 micrograms/ml, except one which was inhibited at 0.125 micrograms/ml, while ciprofloxacin inhibited all isolates at 0.03 micrograms/ml. Ciprofloxacin is a safe and effective therapy for uncomplicated gonococcal urethritis, including that caused by PPNG and CMRNG in human immunodeficiency virus-infected men. PMID:2113796

  8. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation

    PubMed Central

    Gault, Joseph; Ferber, Mathias; Machata, Silke; Imhaus, Anne-Flore; Malosse, Christian; Charles-Orszag, Arthur; Millien, Corinne; Bouvier, Guillaume; Bardiaux, Benjamin; Péhau-Arnaudet, Gérard; Klinge, Kelly; Podglajen, Isabelle; Ploy, Marie Cécile; Seifert, H. Steven; Nilges, Michael; Chamot-Rooke, Julia; Duménil, Guillaume

    2015-01-01

    The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. PMID:26367394

  9. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  10. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  11. Development and Evaluation of a Dipstick Diagnostic Test for Neisseria meningitidis Serogroup X

    PubMed Central

    Agnememel, Alain; Traincard, François; Dartevelle, Sylvie; Mulard, Laurence; Mahamane, Ali Elhaji; Oukem-Boyer, Odile Ouwe Missi; Denizon, Mélanie; Kacou-N′douba, Adèle; Dosso, Mireille; Gake, Bouba; Lombart, Jean-Pierre

    2014-01-01

    The emergence of Neisseria meningitidis serogroup X (NmX) in the African meningitis belt has urged the development of diagnostic tools and vaccines for this serogroup, especially following the introduction of a conjugate vaccine against N. meningitidis serogroup A (NmA). We have developed and evaluated a new rapid diagnostic test (RDT) for detecting the capsular polysaccharide (cps) antigen of this emerging serogroup. Whole inactivated NmX bacteria were used to immunize rabbits. Following purification by affinity chromatography, the cpsX-specific IgG antibodies were utilized to develop an NmX-specific immunochromatography dipstick RDT. The test was validated against purified cpsX and meningococcal strains of different serogroups. Its performance was evaluated against that of PCR on a collection of 369 cerebrospinal fluid (CSF) samples obtained from patients living in countries within the meningitis belt (Cameroon, Côte d'Ivoire, and Niger) or in France. The RDT was highly specific for NmX strains. Cutoffs of 105 CFU/ml and 1 ng/ml were observed for the reference NmX strain and purified cpsX, respectively. Sensitivity and specificity were 100% and 94%, respectively. A high agreement between PCR and RDT (Kappa coefficient, 0.98) was observed. The RDT gave a high positive likelihood ratio and a low negative likelihood (0.07), indicating almost 100% probability of declaring disease or not when the test is positive or negative, respectively. This unique NmX-specific test could be added to the available set of RDT for the detection of meningococcal meningitis in Africa as a major tool to reinforce epidemiological surveillance after the introduction of the NmA conjugate vaccine. PMID:25411183

  12. The role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis; A NMR study†

    PubMed Central

    Peng, Dungeng; Ma, Li-Hua; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2012-01-01

    Heme oxygenase, HO, cleaves hemin into biliverdin, iron and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses a crystallographically undetected C-terminal fragment that by solution 1H NMR is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 hours at a rate dependent on substituent size. 2D 1H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR NOESY cross peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate but a dramatic change in the 7-propionate carboxylate 13C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, “liberating” one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed. PMID:22913621

  13. Performance evaluation of the PelvoCheck CT/NG test kit for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae

    PubMed Central

    Meyer, Thomas; Klos, Christian; Kofler, Regina; Kilic, Annett; Hänel, Kristina

    2016-01-01

    Objective Assessment of the performance of the PelvoCheck CT/NG test (Greiner-Bio-One GmbH) to detect Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) in first-void urine (FVU) of females. Design A cross-sectional study to compare the PelvoCheck CT/NG with COBAS TaqMan CT Test V.2.0 (Roche) for the detection of CT and with an in-house porA-based PCR for the detection of NG in FVU specimens. In addition, pools of 5 FVU specimens containing only CT-negative or 1 CT-positive and 4 CT-negative samples were tested. Abbott RealTime CT/NG was used as an additional test to resolve discordant results. Setting Samples sent from six laboratories were tested at the University Medical Center Hamburg. Participants Urine samples were from 1622 female patients attending gynaecological practices for chlamydia screening, another 120 urine samples were from patients pretested for NG at Synlab, Medical Service Center, Weiden GmbH. In addition, 50 urine samples spiked with various concentrations of reference material were used. Results For the detection of CT and NG, the sensitivity and specificity of the PelvoCheck CT/NG test were 98.8% and 100%, and 98.3% and 98.2%, respectively. The data obtained with the PelvoCheck CT/NG for pooled urine specimens resulted in a positive agreement of 90.9% and a negative agreement of 100%. Conclusions The PelvoCheck CT/NG assay is a suitable test method for the detection of CT and NG in female FVU samples, with sensitivity and specificity comparable with other Food and Drug Administration approved CT/NG nucleic acid amplification tests. To the best of our knowledge, this is the first commercial test system validated for the analysis of pooled urine specimens. No false-positive or invalid result was observed in 55 analysed pools. Nevertheless, 5 samples were false negative due to a target concentration below the limit of detection of the PelvoCheck CT/NG test as a consequence of pooling-associated dilution. PMID:26729391

  14. Shared antigenicity and immunogenicity of type 4 pilins expressed by Pseudomonas aeruginosa, Moraxella bovis, Neisseria gonorrhoaea, Dichelobacter nodosus, and Vibrio cholerae.

    PubMed

    Patel, P; Marrs, C F; Mattick, J S; Ruehl, W W; Taylor, R K; Koomey, M

    1991-12-01

    Immunoblotting with polyclonal rabbit antibodies raised against pilins expressed by Pseudomonas aeruginosa, Moraxella bovis, Neisseria gonorrhoeae, Dichelobacter nodosus, and Vibrio cholerae was used to demonstrate that these polypeptides display conserved antigenic and, in most cases, immunogenic determinants. These determinants appear to be localized to the highly homologous amino-terminal domains (residues 1 to 25). PMID:1682267

  15. Complete Genome Sequences of Three Neisseria gonorrhoeae Laboratory Reference Strains, Determined Using PacBio Single-Molecule Real-Time Technology

    PubMed Central

    Trees, David L.; Nicholas, Robert A.

    2015-01-01

    Neisseria gonorrhoeae, the etiological agent that causes the sexually transmitted infection gonorrhea, is a significant public health concern due to the emergence of antimicrobial resistance. We report the complete genome sequences of three reference isolates with varied antimicrobial susceptibility that will aid in elucidating the genetic mechanisms that confer resistance. PMID:26358608

  16. Novel cost-effective quality control approach for the Cepheid Xpert CT/NG assay for the detection of Chlamydia Trachomatis and Neisseria Gonorrhoeae.

    PubMed

    Chan, Maurice; Jiang, Boran; Ng, Siew Yong Lily; Tan, Thean Yen

    2016-06-01

    The Xpert CT/NG is a rapid assay for detection of Neisseria gonorrhoeae and Chlamydia trachomatis. QC materials must be formulated to emulate human specimens, and are prohibitively expensive. A creative, cost-effective QC approach is proposed. The acceptable sample types for the Xpert CT/NG assay were extended to include eye swabs. PMID:27091503

  17. Molecular Epidemiology of Neisseria meningitidis Isolates from an Outbreak of Meningococcal Disease among Men Who Have Sex with Men, Chicago, Illinois, 2003▿

    PubMed Central

    Schmink, Susanna; Watson, John T.; Coulson, Garry B.; Jones, Roderick C.; Diaz, Pamela S.; Mayer, Leonard W.; Wilkins, Patricia P.; Messonnier, Nancy; Gerber, Susan I.; Fischer, Marc

    2007-01-01

    We characterized five Neisseria meningitidis serogroup C isolates from a Chicago outbreak of meningococcal disease that occurred in 2003 among a community of men who have sex with men. Isolates from this outbreak were identical to each other but distinct from the clone that caused a similar outbreak in Canada in 2001. PMID:17728467

  18. Supplementary testing is not required in the cobas 4800 CT/NG test for Neisseria gonorrhoeae weak-positive urogenital samples.

    PubMed

    Bromhead, Collette; Liyanarachchy, Nadika; Mayes, Julia; Upton, Arlo; Balm, Michelle

    2015-01-01

    Weak-positive Neisseria gonorrhoeae nucleic acid amplification test results are difficult to interpret. We show that the frequency of unconfirmed N. gonorrhoeae results from the cobas 4800 test rises exponentially after 38.0 cycles, where the likelihood of an unconfirmed result exceeds 29%. Supplementary testing of such samples should be avoided; instead, treatment should be based on clinical pretest probability. PMID:25392357

  19. Supplementary Testing Is Not Required in the cobas 4800 CT/NG Test for Neisseria gonorrhoeae Weak-Positive Urogenital Samples

    PubMed Central

    Liyanarachchy, Nadika; Mayes, Julia; Upton, Arlo; Balm, Michelle

    2014-01-01

    Weak-positive Neisseria gonorrhoeae nucleic acid amplification test results are difficult to interpret. We show that the frequency of unconfirmed N. gonorrhoeae results from the cobas 4800 test rises exponentially after 38.0 cycles, where the likelihood of an unconfirmed result exceeds 29%. Supplementary testing of such samples should be avoided; instead, treatment should be based on clinical pretest probability. PMID:25392357

  20. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    SciTech Connect

    Nichols, Charles E.; Sainsbury, Sarah; Berrow, Nick S.; Alderton, David; Saunders, Nigel J.; Stammers, David K.; Owens, Raymond J.

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  1. Exploiting chimeric human antibodies to characterize a protective epitope of Neisseria adhesin A, one of the Bexsero vaccine components.

    PubMed

    Bertoldi, Isabella; Faleri, Agnese; Galli, Barbara; Lo Surdo, Paola; Liguori, Alessia; Norais, Nathalie; Santini, Laura; Masignani, Vega; Pizza, Mariagrazia; Giuliani, Marzia Monica

    2016-01-01

    Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown. In order to further investigate its immunogenic properties, we have characterized the murine IgG1 mAb (6E3) that was able to recognize the 2 main antigenic variants of NadA on the surface of MenB strains. The epitope targeted by mAb 6E3 was mapped by hydrogen-deuterium exchange mass spectrometry and shown to be located on the coiled-coil stalk region of NadA (aa 206-249). Although no serum bactericidal activity was observed for murine IgG1 mAb 6E3, functional activity was restored when using chimeric antibodies in which the variable regions of the murine mAb 6E3 were fused to human IgG3 constant regions, thus confirming the protective nature of the mAb 6E3 epitope. The use of chimeric antibody molecules will enable future investigations of complement-mediated antibody functionality independently of the Fc-mediated differences in complement activation. PMID:26304221

  2. Locus NMB0035 codes for a 47-kDa surface-accessible conserved antigen in Neisseria.

    PubMed

    Arenas, Jesús; Abel, Ana; Sánchez, Sandra; Alcalá, Belén; Criado, María T; Ferreirós, Carlos M

    2006-12-01

    A47 kDa neisserial outer-membrane antigenic protein (P47) was purified to homogeneity and used to prepare polyclonal anti-P47 antisera. Protein P47 was identified by MALDI-TOF fingerprinting analysis as the hypothetical lipoprotein NMB0035. Two-dimensional diagonal SDS-PAGE results suggested that, contrary to previous findings, P47 is not strongly associated with other proteins in membrane complexes. Western blotting with the polyclonal monospecific serum showed that linear P47 epitopes were expressed in similar amounts in the 27 Neisseria meningitidis strains tested and, to a lesser extent, in commensal Neisseria, particularly N. lactamica. However, dot-blotting assays with the same serum demonstrated binding variability between meningococcal strains, indicating differences in surface accessibility or steric hindrance by other surface structures. Specific anti-P47 antibodies were bactericidal against the homologous strain but had variable activity against heterologous strains, consistent with the results from dot-blotting experiments. An in-depth study of P47 is necessary to evaluate its potential as a candidate for new vaccine designs. PMID:17236161

  3. Antibodies directed to Neisseria gonorrhoeae impair nerve growth factor-dependent neurite outgrowth in Rat PC12 cells.

    PubMed

    Reuss, B

    2014-03-01

    In children born from mothers with prenatal infections with the Gram-negative bacterium Neisseria gonorrhoeae, schizophrenia risk is increased in later life. Since cortical neuropil formation is frequently impaired during this disease, actions of a rabbit polyclonal antiserum directed to N. gonorrhoeae on neurite outgrowth in nerve growth factor-stimulated PC12 cells were investigated here. It turned out that 10 μg/ml of the antiserum leads indeed to a significant reduction in neurite outgrowth, whereas an antiserum directed to Neisseria meningitidis had no such effect. Furthermore, reduction in neurite outgrowth could be reversed by the neuroleptic drugs haloperidol, clozapine, risperidone, and olanzapine. On the molecular level, the observed effects seem to include the known neuritogenic transcription factors FoxO3a and Stat3, since reduced neurite outgrowth caused by the antiserum was accompanied by a reduced phosphorylation of both factors. In contrast, restitution of neurite outgrowth by neuroleptic drugs revealed no correlation to the phosphorylation state of these factors. The present report gives a first hint that bacterial infections could indeed lead to impaired neuropil formation in vitro; however, the in vivo relevance of this finding for schizophrenia pathogenesis remains to be clarified in the future. PMID:24203572

  4. Antigenicity, cross-reactivity and surface exposure of the Neisseria meningitidis 37 kDa protein (Fbp).

    PubMed

    Gómez, J A; Agra, C; Ferrón, L; Powell, N; Pintor, M; Criado, M T; Ferreirós, C M

    1996-10-01

    The 37 kDa iron-repressible protein, Fbp, was purified from two Neisseria meningitidis strains by metal-affinity chromatography and used to obtain mouse monospecific polyclonal immune sera. Dot-blot, immunoblotting and whole cell ELISA results demonstrate that the Fbp is present in all 16 N. meningitidis and four commensal Neisseria species tested, is highly antigenic in mouse when injected in pure form, and shows intra- and inter-species antigenic homogeneity, anti-Fbp antibodies being fully cross-reactive using the techniques mentioned. We also found that Fbp molecules (or parts of them) are surface exposed, in disagreement with the proposed exclusively periplasmic localization, although anti-Fbp antibodies seem unable to block iron uptake or to induce complement-mediated killing of the meningococci. Taken along with the high immunogenicity of the purified protein and the complete cross-reactivity of the antibodies elicited, this suggests that the protective effect of the purified Fbp must be further studied to evaluate its inclusion in future vaccine trials. PMID:9004443

  5. Genomic Epidemiology and Molecular Resistance Mechanisms of Azithromycin-Resistant Neisseria gonorrhoeae in Canada from 1997 to 2014.

    PubMed

    Demczuk, Walter; Martin, Irene; Peterson, Shelley; Bharat, Amrita; Van Domselaar, Gary; Graham, Morag; Lefebvre, Brigitte; Allen, Vanessa; Hoang, Linda; Tyrrell, Greg; Horsman, Greg; Wylie, John; Haldane, David; Archibald, Chris; Wong, Tom; Unemo, Magnus; Mulvey, Michael R

    2016-05-01

    The emergence of Neisseria gonorrhoeae strains with decreased susceptibility to cephalosporins and azithromycin (AZM) resistance (AZM(r)) represents a public health threat of untreatable gonorrhea infections. Genomic epidemiology through whole-genome sequencing was used to describe the emergence, dissemination, and spread of AZM(r) strains. The genomes of 213 AZM(r) and 23 AZM-susceptible N. gonorrhoeae isolates collected in Canada from 1989 to 2014 were sequenced. Core single nucleotide polymorphism (SNP) phylogenomic analysis resolved 246 isolates into 13 lineages. High-level AZM(r) (MICs ≥ 256 μg/ml) was found in 5 phylogenetically diverse isolates, all of which possessed the A2059G mutation (Escherichia coli numbering) in all four 23S rRNA alleles. One isolate with high-level AZM(r) collected in 2009 concurrently had decreased susceptibility to ceftriaxone (MIC = 0.125 μg/ml). An increase in the number of 23S rRNA alleles with the C2611T mutations (E. coli numbering) conferred low to moderate levels of AZM(r) (MICs = 2 to 4 and 8 to 32 μg/ml, respectively). Low-level AZM(r) was also associated with mtrR promoter mutations, including the -35A deletion and the presence of Neisseria meningitidis-like sequences. Geographic and temporal phylogenetic clustering indicates that emergent AZM(r) strains arise independently and can then rapidly expand clonally in a region through local sexual networks. PMID:26935729

  6. Characterization of the alpha-1,2-N-acetylglucosaminyltransferase of Neisseria gonorrhoeae, a key control point in lipooligosaccharide biosynthesis.

    PubMed

    Wakarchuk, Warren; Schur, Melissa J; St Michael, Frank; Li, Jinjuan; Eichler, Eva; Whitfield, Dennis

    2004-06-01

    The biosynthesis of the lipooligosaccharide (LOS) in Neisseria meningitidis has a control point that regulates the extension of the alpha-chain on heptose (I) of the LOS. The gene that encodes the protein responsible for this control had been identified elsewhere, but the enzyme encoded by the gene was not characterized. We have now shown that this same control mechanism operates in the related species, Neisseria gonorrhoeae, using a gene knockout and subsequent characterization of the LOS species produced. We also cloned and expressed the enzyme from both of these pathogens. Using a synthetic acceptor substrate, we have shown unequivocally that the enzyme is an alpha-1,2-N-acetylglucosaminyltransferase. Experiments with both the core oligosaccharide and the synthetic acceptors suggests that the addition of the alpha-1,2-N-acetylglucosamine moiety on the heptose (II) residue precedes the addition of the ethanolamine phosphate at the O3 position on this heptose (II), and that in the absence of the alpha-1,2-N-acetylglucosamine moiety leads to the addition of an extra ethanolamine phosphate on the heptose (II) residue. Our data do not support the hypothesis that ethanolamine phosphate at O3 of heptose (II) is added and is then required for the addition of the N-acetylglucosamine at O2 by the LgtK enzyme. This enzyme represents a control point in the biosynthesis of the LOS of this pathogen and is a potential target for therapeutic intervention. PMID:15044393

  7. Neisseria gonorrhoeae filamentous phage NgoΦ6 is capable of infecting a variety of Gram-negative bacteria.

    PubMed

    Piekarowicz, Andrzej; Kłyż, Aneta; Majchrzak, Michał; Szczêsna, Ewa; Piechucki, Marcin; Kwiatek, Agnieszka; Maugel, Timothy K; Stein, Daniel C

    2014-01-01

    We constructed a phagemid consisting of the whole genome of the Neisseria gonorrhoeae bacteriophage NgoΦ6 cloned into a pBluescript plasmid derivative lacking the f1 origin of replication (named pBS::Φ6). Escherichia coli cells harboring pBS::Φ6 were able to produce a biologically active phagemid, NgoΦ6fm, capable of infecting, integrating its DNA into the chromosome of, and producing progeny phagemids in, a variety of taxonomically distant Gram-negative bacteria, including E. coli, Haemophilus influenzae, Neisseria sicca, Pseudomonas sp., and Paracoccus methylutens. A derivative of pBS::Φ6 lacking the phage orf7 gene, a positional homolog of filamentous phage proteins that mediate the interaction between the phage and the bacterial pilus, was capable of producing phagemid particles that were able to infect E. coli, Haemophilus influenzae, N. sicca, Pseudomonas sp., and Paracoccus methylutens, indicating that NgoΦ6 infects cells of these species using a mechanism that does not involve the Orf7 gene product and that NgoΦ6 initiates infection through a novel process in these species. We further demonstrate that the establishment of the lysogenic state does not require an active phage integrase. Since phagemid particles were capable of infecting diverse hosts, this indicates that NgoΦ6 is the first broad-host-range filamentous bacteriophage described. PMID:24198404

  8. [Genotypic characteristics of Neisseria meningitidis serogroup W-135 strains isolated as the agent of fatal meningitis in a military hospital].

    PubMed

    Kiliç, Abdullah; Jolley, Keith A; Beşirbellioğlu, Bülent; Koçak, Nafiz; Bedir, Orhan; Eyigün, Can Polat; Başustaoğlu, Ahmet Celal

    2009-07-01

    The aim of this study was to describe the genetic characterization of a total of 6 Neisseria meningitidis serogroup W-135 strains isolated from patients with meningitis and carriers in a military hospital in 2007-2008. Suspected colonies on modified Thayer-Martin medium plates were screened for oxidase reactivity and Gram stain. If gram-negative diplococci were present, a biochemical profile by the API NH system was used for species confirmation. Pulse field gel electrophoresis typing of Nhel-digested DNA was performed by a previously described method. Multi-locus sequence typing (MLST) was performed using the standard primers as listed on the Neisseria MLST website. Three distinct sequence types (STs) were identified: ST-11, ST-2754, ST-3751. One of the clinical isolates was identified as the same sequence type with Hajj isolate (ST-11) and the isolate with ST-2754 was the same as the first Turkish clinical strain isolated in 2003. These data demonstrated that along with ST-11 which is a known Hajj isolate, the ST-2754 strain causing meningococcal disease in Turkey beginning from the year 2003, should be carefully monitored. PMID:19795630

  9. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species

    PubMed Central

    Skaar, Eric P.; Tobiason, Deborah M.; Quick, J.; Judd, Ralph C.; Weissbach, Herbert; Etienne, Frantzy; Brot, Nathan; Seifert, H. Steven

    2002-01-01

    The PilB protein of Neisseria gonorrhoeae has been reported to be involved in the regulation of pilin gene transcription, but it also possesses significant homology to the peptide methionine sulfoxide reductase family of enzymes, specifically MsrA and MsrB from Escherichia coli. MsrA and MsrB in E. coli are able to reduce methionine sulfoxide residues in proteins to methionines. In addition, the gonococcal PilB protein encodes for both MsrA and MsrB activity associated with the repair of oxidative damage to proteins. In this work, we demonstrate that the PilB protein of Neisseria gonorrhoeae is not involved in pilus expression. Additionally, we show that wild-type N. gonorrhoeae produces two forms of this polypeptide, one of which contains a signal sequence and is secreted from the bacterial cytoplasm to the outer membrane; the other lacks a signal sequence and is cytoplasmic. Furthermore, we show that the secreted form of the PilB protein is involved in survival in the presence of oxidative damage. PMID:12096194

  10. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae.

    PubMed Central

    Rudel, T; Facius, D; Barten, R; Scheuerpflug, I; Nonnenmacher, E; Meyer, T F

    1995-01-01

    The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7644525

  11. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori.

    PubMed

    Liechti, George; Goldberg, Joanna B

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  12. Approach to the Discovery, Development, and Evaluation of a Novel Neisseria meningitidis Serogroup B Vaccine.

    PubMed

    Green, Luke R; Eiden, Joseph; Hao, Li; Jones, Tom; Perez, John; McNeil, Lisa K; Jansen, Kathrin U; Anderson, Annaliesa S

    2016-01-01

    In this chapter, we describe a research and development pathway to identify and demonstrate the efficacy of a Neisseria meningitidis non-capsular vaccine, the recently licensed N. meningitidis serogroup B (MnB) vaccine, Trumenba(®). While other approaches have been followed in the identification of a MnB vaccine (Pizza et al. Science 287:1816-1820, 2000), the methods described here reflect the distinctive approach and experiences in discovering and developing Trumenba(®). In contrast to the development and licensure of polysaccharide-conjugate vaccines against meningococcal serotypes A, C, W, and Y, the development of a vaccine to produce broadly protective antibodies against meningococcal serogroup B has proved difficult, due to the antigenic mimicry of the serogroup B polysaccharide capsule, which is composed of polysialic acid structures similar to those expressed on human neuronal cells. Early development efforts for these vaccines failed because the MnB polysaccharide structures resemble autoantigens and thus were poorly immunogenic. The development of an MnB vaccine has therefore focused on non-polysaccharide approaches. It was critical to identify MnB cell surface-exposed antigens capable of inducing a protective response against diverse, circulating strains of invasive MnB to ensure global coverage. Once candidate antigens were identified, it was important to characterize antigenic variation and expression levels, and subsequently to assure that antigens were expressed broadly among diverse clinical isolates. Prior to the initiation of clinical trials in humans, candidate vaccine antigens were tested in functional immunogenicity assays and yielded responses that were correlated with protection from meningococcal disease. These functional immunogenicity assays (serum bactericidal assays using human complement, hSBAs) measure the titer of complement-dependent bactericidal antibodies in serum from immunized test animals using diverse clinical MnB isolates as

  13. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine.

    PubMed

    Donnelly, J J; Deck, R R; Liu, M A

    1990-11-01

    Polysaccharide-protein conjugate vaccines made with different carriers vary in their ability to elicit antipolysaccharide IgG antibody responses in young infants and an adult mouse model, suggesting that the carrier proteins used in the conjugate vaccines differ in their ability to act as carriers, or that additional mechanisms of immunogenicity play a role. A conjugate vaccine of Haemophilus influenzae PRP coupled to the outer membrane protein complex (OMPC) of Neisseria meningitidis serogroup B is immunogenic in children as young as 2 mo of age and is immunogenic in infant rhesus monkeys, an animal model for infant humans. In the present study, PRP-OMPC was found to induce efficient IgM to IgG switching of anti-PRP serum antibody in adult mice, whereas PRP conjugated to two other protein carriers did not. Thus the PRP-OMPC conjugate was examined in order to determine why PRP coupled to OMPC was so immunogenic, even more immunogenic than conjugates made with other carrier proteins. The OMPC carrier differs from the other protein carriers in that the proteins are present in a liposomal form containing lipids (including LPS) derived from the outer membrane of N. meningitidis. We studied the OMPC to see whether the different components or the nature of the OMPC carrier could contribute to its enhanced immunogenicity. Specifically we evaluated the OMPC for both classic Th cell carrier activity and adjuvanticity, and the LPS component of OMPC for systemic polyclonal B cell activation. Carrier recognition of the OMPC moiety of PRP-OMPC was demonstrated. In addition the PRP-OMPC conjugate vaccine was observed to have adjuvant properties for both T cell-dependent and T cell-independent Ag in the absence of LPS-induced systemic polyclonal B cell activation. These observations suggest that in addition to functioning as a classic protein carrier whereby the proteins in OMPC provide Th cell epitopes, the OMPC also has adjuvant activity that distinguishes it from other protein

  14. Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress.

    PubMed

    Chen, C Y; Morse, S A

    1999-10-01

    The iron-storage protein bacterioferritin (Bfr) from Neisseria gonorrhoeae strain F62 was identified in cell-free extracts and subsequently purified by column chromatography. Gonococcal Bfr had an estimated molecular mass of 400 kDa by gel filtration; however, analysis by SDS-PAGE revealed that it was composed of 18 kDa (BfrA) and 22 kDa (BfrB) subunits. DNA encoding BfrB was amplified by PCR using degenerate primers derived from the N-terminal amino acid sequence of BfrB and from a C-terminal amino acid sequence of Escherichia coli Bfr. The DNA sequence of bfrA was subsequently obtained by genome walking using single-specific-primer PCR. The two Bfr genes were located in tandem with an intervening gap of 27 bp. A potential Fur-binding sequence (12 of 19 bp identical to the consensus neisserial fur sequence) was located within the 5' flanking region of bfrA in front of a putative -35 hexamer. The homology between the DNA sequences of bfrA and bfrB was 55.7%; the deduced amino acid sequences of BfrA (154 residues) and BfrB (157 residues) showed 39.7% identity, and showed 41.3% and 56.1% identity, respectively, to E. coli Bfr. Expression of recombinant BfrA and BfrB in E. coli strain DH5alpha was detected on Western blots probed with polyclonal anti-E. coli Bfr antiserum. Most Bfrs are homopolymers with identical subunits; however, the evidence presented here suggests that gonococcal Bfr was composed of two similar but not identical subunits, both of which appear to be required for the formation of a functional Bfr. A Bfr-deficient mutant was constructed by inserting the omega fragment into the BfrB gene. The growth of the BfrB-deficient mutant in complex medium was reduced under iron-limited conditions. The BfrB-deficient mutant was also more sensitive to killing by H2O2 and paraquat than the isogenic parent strain. These results demonstrate that gonococcal Bfr plays an important role in iron storage and protection from iron-mediated oxidative stress. PMID:10537219

  15. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis.

    PubMed

    Ala' Aldeen, D A; Westphal, A H; De Kok, A; Weston, V; Atta, M S; Baldwin, T J; Bartley, J; Borriello, S P

    1996-12-01

    A lambdaZap-II expression library of Neisseria meningitidis was screened with a rabbit polyclonal antiserum (R-70) raised against c. 70-kDa proteins purified from outer membrane vesicles by elution from preparative SDS-polyacrylamide gels. Selected clones were isolated, further purified, and their recombinant pBluescript SKII plasmids were excised. The cloned DNA insert was sequenced from positive clones and analysed. Four open reading frames (ORFs) were identified, three of which showed a high degree of homology with the pyruvate dehydrogenase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase complex (PDHC) of a number of prokaryotic and eukaryotic species. Sequence analysis indicated that the meningococcal E2p (Men-E2p) contains two N-terminal lipoyl domains, an E1/E3 binding domain and a catalytic domain. The domains are separated by hinge regions rich in alanine, proline and charged residues. Another lipoyl domain with high sequence similarity to the Men-E2p lipoyl domain was found at the N-terminal of the E3 component. A further ORF, coding for a 16.5-kDa protein, was found between the ORFs encoding the E2p and E3 components. The identity and functional characteristics of the expressed and purified heterologous Men-E2p were confirmed as dihydrolipoyl acetyltransferase by immunological and biochemical assays. N-terminal amino-acid analysis confirmed the sequence of the DNA-derived mature protein. Purified Men-E2p reacted with monospecific antisera raised against the whole E2p molecule and against the lipoyl domain of the Azotobacter vinelandii E2p. Conversely, rabbit antiserum raised against Men-E2p reacted with protein extracts of A. vinelandii, Escherichia coli and N. gonorrhoeae and with the lipoyl and catalytic domains of E2p obtained by limited proteolysis. In contrast, the original R-70 antiserum reacted almost exclusively with the lipoyl domain, indicating the strong immunogenicity

  16. Azithromycin resistance is coevolving with reduced susceptibility to cephalosporins in Neisseria gonorrhoeae in Ontario, Canada.

    PubMed

    Allen, Vanessa G; Seah, Christine; Martin, Irene; Melano, Roberto G

    2014-05-01

    Azithromycin (AZM) is routinely recommended as a component of dual therapy for gonorrhea in combination with third-generation cephalosporins (3GC). In this study, we examined the prevalence of AZM-resistant (AZM(r)) Neisseria gonorrhoeae from July 2010 to February 2013, assessed the rate of concurrent cephalosporin resistance under the current treatment recommendations, and analyzed the clonal distribution of AZM(r) isolates in Ontario, Canada. Nineteen AZM(r) clinical isolates (one per patient; MIC, ≥2 μg/ml) were included in the study. Susceptibility profiles of these isolates to 11 antibiotics, molecular typing, characterization of macrolide resistance mechanisms, and penicillin-binding protein 2 (PBP2) patterns were determined for all the isolates. Two groups were defined based on AZM(r) level; group A isolates displayed high-level resistance (MIC, ≥2,048 μg/ml) due to mutations (A2143G) in the four copies of the 23S rRNA rrl gene, and group B isolates had moderate resistance to AZM (MICs, 2 to 8 μg/ml, C2599T mutation in the rrl gene), with a subgroup belonging to sequence type 3158 (ST3158) (n = 8), which also showed reduced susceptibility to 3GC (MICs, 0.12 to 0.25 μg/ml, PBP2 pattern XXXIV). This AZM(r) phenotype was not observed in previous provincial surveillance in 2008 (the ST3158 clone was found, with AZM MICs of 0.25 to 0.5 μg/ml associated with mtrR mutations). We hypothesized that the AZM mutant prevention concentration (MPC) in the ST3158 subpopulation we found in 2008 was higher than the MPC in wild-type isolates (AZM MIC, ≤0.031 μg/ml), increasing the chances of additional selection of AZM(r) mutations. Full AZM resistance is now emerging in this clone together with reduced susceptibility to 3GC, threatening the future efficacy of these antibiotics as therapeutic options for treatment of gonorrhea. PMID:24514092

  17. Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge.

    PubMed

    Unemo, Magnus

    2015-01-01

    Neisseria gonorrhoeae has developed antimicrobial resistance (AMR) to all drugs previously and currently recommended for empirical monotherapy of gonorrhoea. In vitro resistance, including high-level, to the last option ceftriaxone and sporadic failures to treat pharyngeal gonorrhoea with ceftriaxone have emerged. In response, empirical dual antimicrobial therapy (ceftriaxone 250-1000 mg plus azithromycin 1-2 g) has been introduced in several particularly high-income regions or countries. These treatment regimens appear currently effective and should be considered in all settings where local quality assured AMR data do not support other therapeutic options. However, the dual antimicrobial regimens, implemented in limited geographic regions, will not entirely prevent resistance emergence and, unfortunately, most likely it is only a matter of when, and not if, treatment failures with also these dual antimicrobial regimens will emerge. Accordingly, novel affordable antimicrobials for monotherapy or at least inclusion in new dual treatment regimens, which might need to be considered for all newly developed antimicrobials, are essential. Several of the recently developed antimicrobials deserve increased attention for potential future treatment of gonorrhoea. In vitro activity studies examining collections of geographically, temporally and genetically diverse gonococcal isolates, including multidrug-resistant strains particularly with resistance to ceftriaxone and azithromycin, are important. Furthermore, understanding of effects and biological fitness of current and emerging (in vitro induced/selected and in vivo emerged) genetic resistance mechanisms for these antimicrobials, prediction of resistance emergence, time-kill curve analysis to evaluate antibacterial activity, appropriate mice experiments, and correlates between genetic and phenotypic laboratory parameters, and clinical treatment outcomes, would also be valuable. Subsequently, appropriately designed

  18. Patterns of structural and sequence variation within isotype lineages of the Neisseria meningitidis transferrin receptor system

    PubMed Central

    Adamiak, Paul; Calmettes, Charles; Moraes, Trevor F; Schryvers, Anthony B

    2015-01-01

    Neisseria meningitidis inhabits the human upper respiratory tract and is an important cause of sepsis and meningitis. A surface receptor comprised of transferrin-binding proteins A and B (TbpA and TbpB), is responsible for acquiring iron from host transferrin. Sequence and immunological diversity divides TbpBs into two distinct lineages; isotype I and isotype II. Two representative isotype I and II strains, B16B6 and M982, differ in their dependence on TbpB for in vitro growth on exogenous transferrin. The crystal structure of TbpB and a structural model for TbpA from the representative isotype I N. meningitidis strain B16B6 were obtained. The structures were integrated with a comprehensive analysis of the sequence diversity of these proteins to probe for potential functional differences. A distinct isotype I TbpA was identified that co-varied with TbpB and lacked sequence in the region for the loop 3 α-helix that is proposed to be involved in iron removal from transferrin. The tightly associated isotype I TbpBs had a distinct anchor peptide region, a distinct, smaller linker region between the lobes and lacked the large loops in the isotype II C-lobe. Sequences of the intact TbpB, the TbpB N-lobe, the TbpB C-lobe, and TbpA were subjected to phylogenetic analyses. The phylogenetic clustering of TbpA and the TbpB C-lobe were similar with two main branches comprising the isotype 1 and isotype 2 TbpBs, possibly suggesting an association between TbpA and the TbpB C-lobe. The intact TbpB and TbpB N-lobe had 4 main branches, one consisting of the isotype 1 TbpBs. One isotype 2 TbpB cluster appeared to consist of isotype 1 N-lobe sequences and isotype 2 C-lobe sequences, indicating the swapping of N-lobes and C-lobes. Our findings should inform future studies on the interaction between TbpB and TbpA and the process of iron acquisition. PMID:25800619

  19. Costs of Neisseria meningitidis Group A Disease and Economic Impact of Vaccination in Burkina Faso

    PubMed Central

    Colombini, Anaïs; Trotter, Caroline; Madrid, Yvette; Karachaliou, Andromachi; Preziosi, Marie-Pierre

    2015-01-01

    Background. Five years since the successful introduction of MenAfriVac in a mass vaccination campaign targeting 1- to 29-year-olds in Burkina Faso, consideration must be given to the optimal strategies for sustaining population protection. This study aims to estimate the economic impact of a range of vaccination strategies in Burkina Faso. Methods. We performed a cost-of-illness study, comparing different vaccination scenarios in terms of costs to both households and health systems over a 26-year time horizon. These scenarios are (1) reactive vaccination campaign (baseline comparator); (2) preventive vaccination campaign; (3) routine immunization at 9 months; and (4) a combination of routine and an initial catchup campaign of children under 5. Costs were estimated from a literature review, which included unpublished programmatic documents and peer-reviewed publications. The future disease burden for each vaccination strategy was predicted using a dynamic transmission model of group A Neisseria meningitidis. Results. From 2010 to 2014, the total costs associated with the preventive campaign targeting 1- to 29-year-olds with MenAfriVac were similar to the estimated costs of the reactive vaccination strategy (approximately 10 million US dollars [USD]). Between 2015 and 2035, routine immunization with or without a catch-up campaign of 1- to 4-year-olds is cost saving compared with the reactive strategy, both with and without discounting costs and cases. Most of the savings are accrued from lower costs of case management and household costs resulting from a lower burden of disease. After the initial investment in the preventive strategy, 1 USD invested in the routine strategy saves an additional 1.3 USD compared to the reactive strategy. Conclusions. Prevention strategies using MenAfriVac will be significantly cost saving in Burkina Faso, both for the health system and for households, compared with the reactive strategy. This will protect households from

  20. Surveillance for Neisseria meningitidis Disease Activity and Transmission Using Information Technology

    PubMed Central

    Ahmed, S. Sohail; Oviedo-Orta, Ernesto; Mekaru, Sumiko R.; Freifeld, Clark C.; Tougas, Gervais; Brownstein, John S.

    2015-01-01

    Background While formal reporting, surveillance, and response structures remain essential to protecting public health, a new generation of freely accessible, online, and real-time informatics tools for disease tracking are expanding the ability to raise earlier public awareness of emerging disease threats. The rationale for this study is to test the hypothesis that the HealthMap informatics tools can complement epidemiological data captured by traditional surveillance monitoring systems for meningitis due to Neisseria meningitides (N. meningitides) by highlighting severe transmissible disease activity and outbreaks in the United States. Methods Annual analyses of N. meningitides disease alerts captured by HealthMap were compared to epidemiological data captured by the Centers for Disease Control’s Active Bacterial Core surveillance (ABCs) for N. meningitides. Morbidity and mortality case reports were measured annually from 2010 to 2013 (HealthMap) and 2005 to 2012 (ABCs). Findings HealthMap N. meningitides monitoring captured 80-90% of alerts as diagnosed N. meningitides, 5-20% of alerts as suspected cases, and 5-10% of alerts as related news articles. HealthMap disease alert activity for emerging disease threats related to N. meningitides were in agreement with patterns identified historically using traditional surveillance systems. HealthMap’s strength lies in its ability to provide a cumulative “snapshot” of weak signals that allows for rapid dissemination of knowledge and earlier public awareness of potential outbreak status while formal testing and confirmation for specific serotypes is ongoing by public health authorities. Conclusions The underreporting of disease cases in internet-based data streaming makes inadequate any comparison to epidemiological trends illustrated by the more comprehensive ABCs network published by the Centers for Disease Control. However, the expected delays in compiling confirmatory reports by traditional surveillance systems

  1. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation

    PubMed Central

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than

  2. Characterization of a Novel Antisense RNA in the Major Pilin Locus of Neisseria meningitidis Influencing Antigenic Variation

    PubMed Central

    Tan, Felicia Y. Y.; Wörmann, Mirka E.; Tang, Christoph M.

    2015-01-01

    ABSTRACT Expression of type four pili (Tfp) is essential for virulence in Neisseria meningitidis. Pili mediate adhesion, bacterial aggregation, and DNA uptake. In N. meningitidis, the major pilin subunit is encoded by the pilE gene. In some strains, PilE is subject to phase and antigenic variation, which can alter Tfp properties and together offer a possible mechanism of immune escape. Pilin expression and antigenic variation can be modulated in response to environmental cues; however, the precise mechanisms of such regulation remain unclear. We identified a promoter in the pilE locus, 3′ of the pilE coding sequence, on the antisense (AS) strand which is conserved in meningococci. We show that this promoter directs transcription of an AS RNA that is expressed during specific growth phases and in response to salt stress. Furthermore, we demonstrate that the transcript encompasses sequences complementary to the entire pilE coding sequence and 5′ untranslated region. AS RNAs can regulate the gene on the sense strand by altering transcript stability or translation. However, by using Northern blotting, quantitative reverse transcription-PCR (RT-PCR), and Western blotting, we found no significant AS RNA-dependent changes in pilE transcript or protein level. Instead, our data indicate that the AS RNA influences pilin antigenic variation. This work provides further insights into the complex regulation of pilin expression and variation in pathogenic Neisseria. IMPORTANCE Pathogenic Neisseria spp. express type four pili (Tfp) which are important for adhesion, aggregation and transformation. Some strains of N. meningitidis are able to vary the sequence of the major subunit (PilE) of the Tfp. The mechanisms underlying this variation are not fully defined, but the process requires several noncoding elements that are found adjacent to the pilE gene. In this work, we identified a cis-encoded RNA antisense to pilE in N. meningitidis. By using Northern blotting and RT

  3. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    SciTech Connect

    Ren, Jingshan; Nettleship, Joanne E.; Sainsbury, Sarah; Saunders, Nigel J.; Owens, Raymond J.

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  4. Analysis of antibodies in local and disseminated Neisseria gonorrhoeae infections by means of gel electrophoresis-derived ELISA.

    PubMed

    Hadfield, S G; Glynn, A A

    1982-10-01

    Major antigens in Neisseria gonorrhoeae were identified by surface labelling the organisms with 125I and electrophoresing extracts in polyacrylamide with sodium dodecyl sulphate. Horizontal slices of the gels were cut out and tested in individual wells against patients' sera using ELISA. Serum from local gonococcal infections reacted with Protein II and, probably, lipopolysaccharide, but not with Protein I in deoxycholate (DOC) extracts and gave no reaction with Triton X-100 extracts. Serum from disseminated gonococcal infections reacted with Protein I in the DOC extract and with pili and a number of undefined possibly cytoplasmic membrane antigens in the Triton X-100 extract. The significance of the results and the potential of the method are discussed. PMID:6811421

  5. Building a web-based tool to support clinical decisions in the control of Chlamydia trachomatis and Neisseria gonorrhoeae infections.

    PubMed

    Zhao, Kun; Qiu, Fasheng; Chen, Guantao

    2013-12-20

    Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) are the agents of two common, sexually transmitted diseases afflicting women in the United States (http://www.cdc.gov). We designed a novel web-based application that offers simple recommendations to help optimize medical outcomes with CT and GC prevention and control programs. This application takes population groups, prevalence rates, parameters for available screening assays and treatment regimens (costs, sensitivity, and specificity), as well as budget limits as inputs. Its output suggests optimal screening and treatment strategies for selected at-risk groups, commensurate with the clinic's budget allocation. Development of this tool illustrates how a clinical informatics application based on rigorous mathematics might have a significant impact on real-world clinical issues. PMID:24564848

  6. Involvement of Neisseria meningitidis Lipoprotein GNA2091 in the Assembly of a Subset of Outer Membrane Proteins

    PubMed Central

    Bos, Martine P.; Grijpstra, Jan; Tommassen-van Boxtel, Ria; Tommassen, Jan

    2014-01-01

    GNA2091 of Neisseria meningitidis is a lipoprotein of unknown function that is included in the novel 4CMenB vaccine. Here, we investigated the biological function and the subcellular localization of the protein. We demonstrate that GNA2091 functions in the assembly of outer membrane proteins (OMPs) because its absence resulted in the accumulation of misassembled OMPs. Cell fractionation and protease accessibility experiments showed that the protein is localized at the periplasmic side of the outer membrane. Pulldown experiments revealed that it is not stably associated with the β-barrel assembly machinery, the previously identified complex for OMP assembly. Thus, GNA2091 constitutes a novel outer membrane-based lipoprotein required for OMP assembly. Furthermore, its location at the inner side of the outer membrane indicates that protective immunity elicited by this antigen cannot be due to bactericidal or opsonic activity of antibodies. PMID:24755216

  7. [Induction of antimeningitis immunity by synthetic peptides. II. Immunoactive synthetic fragments of OpaB protein from Neisseria meningitidis].

    PubMed

    Koroev, D O; Vol'pina, O M; Zhmak, M N; Kupriianova, M A; Nesmeianov, V A; Alliluev, A P; Kotel'nikova, O V; Ivanov, V T

    2001-01-01

    Mice of various lines were immunized by 11 synthetic peptides that correspond to the sequences of fragments of the OpaB protein from the outer membrane of Neisseria meningitidis involving the known human T-helper epitopes and all the potential mouse T-helper epitopes calculated for the protein. The mice were immunized with the free peptides without their conjugation with a protein carrier. Most of the peptides were found to induce in mice the production of antipeptide antibodies. The mice protection against the experimental infection by a virulent strain of N. meningitidis of the B serotype was studied, and two peptides were shown to exert the most pronounced protective effect. PMID:11255637

  8. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein.

    PubMed

    Turner, David P J; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2002-08-01

    Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein. PMID:12117956

  9. The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae.

    PubMed

    Kandler, Justin L; Holley, Concerta L; Reimche, Jennifer L; Dhulipala, Vijaya; Balthazar, Jacqueline T; Muszyński, Artur; Carlson, Russell W; Shafer, William M

    2016-08-01

    During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity. PMID:27216061

  10. Infection of human fallopian tube epithelial cells with Neisseria gonorrhoeae protects cells from tumor necrosis factor alpha-induced apoptosis.

    PubMed

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E; Christodoulides, Myron; Velasquez, Luis

    2006-06-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-alpha). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-alpha was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-alpha antibodies; and (iii) the addition of exogenous TNF-alpha induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-alpha-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-alpha-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  11. The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species

    PubMed Central

    Davies, John K.; Harrison, Paul F.; Lin, Ya-Hsun; Bartley, Stephanie; Khoo, Chen Ai; Seemann, Torsten; Ryan, Catherine S.; Kahler, Charlene M.; Hill, Stuart A.

    2014-01-01

    Antigenic variation occurs in a broad range of species. This process resembles gene conversion in that variant DNA is unidirectionally transferred from partial gene copies (or silent loci) into an expression locus. Previous studies of antigenic variation have involved the amplification and sequencing of individual genes from hundreds of colonies. Using the pilE gene from Neisseria gonorrhoeae we have demonstrated that it is possible to use PCR amplification, followed by high-throughput DNA sequencing and a novel assembly process, to detect individual antigenic variation events. The ability to detect these events was much greater than has previously been possible. In N. gonorrhoeae most silent loci contain multiple partial gene copies. Here we show that there is a bias towards using the copy at the 3′ end of the silent loci (copy 1) as the donor sequence. The pilE gene of N. gonorrhoeae and some strains of Neisseria meningitidis encode class I pilin, but strains of N. meningitidis from clonal complexes 8 and 11 encode a class II pilin. We have confirmed that the class II pili of meningococcal strain FAM18 (clonal complex 11) are non-variable, and this is also true for the class II pili of strain NMB from clonal complex 8. In addition when a gene encoding class I pilin was moved into the meningococcal strain NMB background there was no evidence of antigenic variation. Finally we investigated several members of the opa gene family of N. gonorrhoeae, where it has been suggested that limited variation occurs. Variation was detected in the opaK gene that is located close to pilE, but not at the opaJ gene located elsewhere on the genome. The approach described here promises to dramatically improve studies of the extent and nature of antigenic variation systems in a variety of species. PMID:24466206

  12. Mutation of the Conserved Calcium-Binding Motif in Neisseria gonorrhoeae PilC1 Impacts Adhesion but Not Piliation

    PubMed Central

    Cheng, Yuan; Johnson, Michael D. L.; Burillo-Kirch, Christine; Mocny, Jeffrey C.; Anderson, James E.; Garrett, Christopher K.; Redinbo, Matthew R.

    2013-01-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we produced recombinant full-length PilC1 and a PilC1 C-terminal domain fragment. We show that, while alterations of the calcium-binding motif disrupted the ability of PilC1 to bind calcium, they did not grossly affect the secondary structure of the protein. Furthermore, we demonstrate that both full-length wild-type PilC1 and full-length calcium-binding-deficient PilC1 inhibited gonococcal adherence to cultured human cervical epithelial cells, unlike the truncated PilC1 C-terminal domain. Similar to PilC1 in K. kingae, but in contrast to the calcium-binding mutant of P. aeruginosa PilY1, an equivalent mutation in N. gonorrhoeae PilC1 produced normal amounts of pili. However, the N. gonorrhoeae PilC1 calcium-binding mutant still had partial defects in gonococcal adhesion to ME180 cells and genetic transformation, which are both essential virulence factors in this human pathogen. Thus, we conclude that calcium binding to PilC1 plays a critical role in pilus function in N. gonorrhoeae. PMID:24002068

  13. ¹H, ¹³C and ¹⁵N resonance assignment of the soluble form of the lipid-modified Azurin from Neisseria gonorrhoeae.

    PubMed

    Nóbrega, Cláudia S; Matzapetakis, Manolis; Pauleta, Sofia R

    2013-10-01

    Lipid-modified azurin (Laz) from Neisseria gonorrhoeae is a type 1 copper protein proposed to be the electron donor to several enzymes involved in the resistance mechanism to reactive oxygen and nitrogen species. Here we report the backbone and side-chain resonance assignment of Laz in the reduced form, which has been complete at 97%. The predicted secondary structure indicates that this protein belongs to the azurin subfamily of type 1 copper proteins. PMID:23070845

  14. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae.

    PubMed

    Gawthorne, Jayde A; Beatson, Scott A; Srikhanta, Yogitha N; Fox, Kate L; Jennings, Michael P

    2012-01-01

    Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles. PMID:22457715

  15. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus

    PubMed Central

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; Tainer, John A.

    2015-01-01

    ABSTRACT Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against

  16. Conservation and antigenic cross-reactivity of the transferrin-binding proteins of Haemophilus influenzae, Actinobacillus pleuropneumoniae and Neisseria meningitidis.

    PubMed

    Holland, J; Parsons, T R; Hasan, A A; Cook, S M; Stevenson, P; Griffiths, E; Williams, P

    1996-12-01

    Haemophilus influenzae acquires iron from the iron-transporting glycoprotein transferrin via a receptor-mediated process. This involves two outer-membrane transferrin-binding proteins (Tbps) termed Tbp1 and Tbp2 which show considerable preference for the human form of transferrin. Since the Tbps are attracting considerable attention as potential vaccine components, we used transferrin affinity chromatography to examine their conservation amongst 28 H. influenzae type b strains belonging to different outer-membrane-protein subtypes as well as six non-typable strains. Whole cells of all type b and non-typable strains examined bound human transferrin; whilst most strains possessed a Tbp1 of approximately 105 kDa, the molecular mass of Tbp2 varied from 79 to 94 kDa. Antisera raised against affinity-purified native H. influenzae Tbp1/Tbp2 receptor complex cross-reacted on Western blots with the respective Tbps of all the Haemophilus strains examined. When used to probe Neisseria meningitidis Tbps, sera from each of four mice immunized with the Haemophilus Tbp1/2 complex recognized the 68 kDa Tbp2 of N. meningitidis strain B16B6 but not the 78 kDa Tbp2 of N. meningitidis strain 70942. Serum from one mouse also reacted weakly with Tbp1 of strain B16B6. Apart from a weak reaction with the Tbp2 of a serotype 5 strain, this mouse antiserum failed to recognize the Tbps of the porcine pathogen A. pleuropneumoniae. However, a monospecific polyclonal antiserum raised against the denatured Tbp2 of Neisseria meningitidis B16B6 recognized the Tbps of all Haemophilus and Actinobacillus strains examined. Since H. influenzae forms part of the natural flora of the upper respiratory tract, human sera were screened for the presence of antibodies to the Tbps. Sera from healthy adults contained antibodies which recognized both Tbp1 and Tbp2 from H. influenzae but not N. meningitidis. Convalescent sera from meningococcal meningitis patients contained antibodies which, on Western blots

  17. Structural, functional and immunogenic insights on Cu,Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    DOE PAGESBeta

    Pratt, Ashley J.; DiDonato, Michael; Shin, David S.; Cabelli, Diane E.; Bruns, Cami K.; Belzer, Carol A.; Gorringe, Andrew R.; Langford, Paul R.; Tabatabai, Louisa B.; Kroll, J. Simon; et al

    2015-10-12

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen, general pathogenicity factors and therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomicmore » details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes and suggest general targets for anti-bacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors or vaccines against these harmful pathogens. IMPORTANCE By protecting microbes against reactive oxygen

  18. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer.

    PubMed

    Namadurai, Sivakumar; Jain, Deepti; Kulkarni, Dhananjay S; Tabib, Chaitanya R; Friedhoff, Peter; Rao, Desirazu N; Nair, Deepak T

    2010-01-01

    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage. PMID:21060849

  19. Vaccine Potential and Diversity of the Putative Cell Binding Factor (CBF, NMB0345/NEIS1825) Protein of Neisseria meningitidis.

    PubMed

    Humbert, María Victoria; Hung, Miao-Chiu; Phillips, Renee; Akoto, Charlene; Hill, Alison; Tan, Wei-Ming; Heckels, John Edward; Christodoulides, Myron

    2016-01-01

    The cbf gene from Neisseria meningitidis strain MC58 encoding the putative Cell Binding Factor (CBF, NMB0345/NEIS1825) protein was cloned into the pRSETA system and a ~36-kDa recombinant (r)CBF protein expressed in Escherichia coli and purified by metal affinity chromatography. High titres of rCBF antibodies were induced in mice following immunization with rCBF-saline, rCBF-Al(OH)3, rCBF-Liposomes or rCBF-Zwittergent (Zw) 3-14 micelles, both with and without incorporated monophosphoryl lipid A (MPLA) adjuvant. Anti-rCBF sera reacted in western blots of meningococcal lysates with a single protein band of molecular mass ~29.5 kDa, indicative of mature CBF protein, but did not react with a lysate of a Δnmb0345 mutant (CBF-), demonstrating specificity of the murine immune responses. CBF protein was produced by all strains of meningococci studied thus far and the protein was present on the surface of MC58 (CBF+) bacteria, but absent on Δnmb0345 mutant (CBF-) bacteria, as judged by FACS reactivity of anti-rCBF sera. Analysis of the NEIS1825 amino acid sequences from 6644 N. meningitidis isolates with defined Alleles in the pubmlst.org/Neisseria database showed that there were 141 ST types represented and there were 136 different allelic loci encoding 49 non-redundant protein sequences. Only 6/6644 (<0.1%) of N. meningitidis isolates lacked the nmb0345 gene. Amongst serogroup B isolates worldwide, ~68% and ~20% expressed CBF encoded by Allele 1 and 18 respectively, with the proteins sharing >99% amino acid identity. Murine antisera to rCBF in Zw 3-14 micelles + MPLA induced significant serum bactericidal activity (SBA) against homologous Allele 1 and heterologous Allele 18 strains, using both baby rabbit serum complement and human serum complement (h)SBA assays, but did not kill strains expressing heterologous protein encoded by Alelle 2 or 3. Furthermore, variable bactericidal activity was induced by murine antisera against different meningococcal strains in the h

  20. Vaccine Potential and Diversity of the Putative Cell Binding Factor (CBF, NMB0345/NEIS1825) Protein of Neisseria meningitidis

    PubMed Central

    Akoto, Charlene; Hill, Alison; Tan, Wei-Ming; Heckels, John Edward; Christodoulides, Myron

    2016-01-01

    The cbf gene from Neisseria meningitidis strain MC58 encoding the putative Cell Binding Factor (CBF, NMB0345/NEIS1825) protein was cloned into the pRSETA system and a ~36-kDa recombinant (r)CBF protein expressed in Escherichia coli and purified by metal affinity chromatography. High titres of rCBF antibodies were induced in mice following immunization with rCBF-saline, rCBF-Al(OH)3, rCBF-Liposomes or rCBF-Zwittergent (Zw) 3–14 micelles, both with and without incorporated monophosphoryl lipid A (MPLA) adjuvant. Anti-rCBF sera reacted in western blots of meningococcal lysates with a single protein band of molecular mass ~29.5 kDa, indicative of mature CBF protein, but did not react with a lysate of a Δnmb0345 mutant (CBF-), demonstrating specificity of the murine immune responses. CBF protein was produced by all strains of meningococci studied thus far and the protein was present on the surface of MC58 (CBF+) bacteria, but absent on Δnmb0345 mutant (CBF-) bacteria, as judged by FACS reactivity of anti-rCBF sera. Analysis of the NEIS1825 amino acid sequences from 6644 N. meningitidis isolates with defined Alleles in the pubmlst.org/Neisseria database showed that there were 141 ST types represented and there were 136 different allelic loci encoding 49 non-redundant protein sequences. Only 6/6644 (<0.1%) of N. meningitidis isolates lacked the nmb0345 gene. Amongst serogroup B isolates worldwide, ~68% and ~20% expressed CBF encoded by Allele 1 and 18 respectively, with the proteins sharing >99% amino acid identity. Murine antisera to rCBF in Zw 3–14 micelles + MPLA induced significant serum bactericidal activity (SBA) against homologous Allele 1 and heterologous Allele 18 strains, using both baby rabbit serum complement and human serum complement (h)SBA assays, but did not kill strains expressing heterologous protein encoded by Alelle 2 or 3. Furthermore, variable bactericidal activity was induced by murine antisera against different meningococcal strains in the h