Science.gov

Sample records for mercury hydrides

  1. Mercury

    MedlinePlus

    ... button batteries. Mercury salts may be used in skin creams and ointments. It's also used in many industries. Mercury in the air settles into water. It can pass through the food chain and build up in ...

  2. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, ... colorless, odorless gas. It also combines with other elements to form powders or crystals. Mercury is in ...

  3. Hydriding process

    DOEpatents

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  4. Mercury

    MedlinePlus

    ... be found in: Batteries Chemistry labs Some disinfectants Folk remedies Red cinnabar mineral Organic mercury can be ... heart tracing Fluids through a vein (by IV) Medicine to treat symptoms The type of exposure will ...

  5. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  6. [Cloud Point extraction for determination of mercury in Chinese herbal medicine by hydride generation atomic fluorescence spectrometry with optimization using Box-Behnken design].

    PubMed

    Wang, Mei; Li, Shan; Zhou, Jian-dong; Xu, Ying; Long, Jun-biao; Yang, Bing-yi

    2014-08-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Hg in Chinese herbal medicine samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Hg2+ was reacted with dithizone to form hydrophobic chelate under the condition of pH. Using Triton X-114, as surfactant, chelate was quantitatively extracted into small volume of the surfactant-rich phase by heating the solution in a water bath for 15 min and centrifuging. Four variables including pH, dithizone concentration, Triton X-114 concentration and equilibrium temperature (T) showed the significant effect on extraction efficiency of total Hg evaluated by single-factor experiment, and Box-Behnken design and response surface method- ology were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum extraction efficiency. The results showed that the binomial was used to fit the response to experimental levels of each variable. ALL linear, quadratic terms of four variables, and interactions between pH and Trion X-114, pH and di- thizone affected the response value(extraction efficiency) significantly at 5% level. The optimum extraction conditions were as follows: pH 5.1, Triton X-114 concentration of 1.16 g x L(-1), dithizone concentration of 4.87 mol x L(-1), and T 58.2 degrees C, the predicted value of fluorescence was 4528.74 under the optimum conditions, and the experimental value had only 2.1% difference with it. Under the conditions, fluorescence was linear to mercury concentration in the range of 1-5 microg x L(-1). The limit of detection obtained was 0.01247 microg x L(-1) with the relative standard deviations (R.S.D.) for six replicate determinations of 1.30%. The proposed method was successfully applied to determination of Hg in morindae Radix, Andrographitis and dried tangerine samples with the recoveries of 95.0%-100.0%. Apparently Box-Behnken design combined with

  7. [Cloud Point extraction for determination of mercury in Chinese herbal medicine by hydride generation atomic fluorescence spectrometry with optimization using Box-Behnken design].

    PubMed

    Wang, Mei; Li, Shan; Zhou, Jian-dong; Xu, Ying; Long, Jun-biao; Yang, Bing-yi

    2014-08-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Hg in Chinese herbal medicine samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Hg2+ was reacted with dithizone to form hydrophobic chelate under the condition of pH. Using Triton X-114, as surfactant, chelate was quantitatively extracted into small volume of the surfactant-rich phase by heating the solution in a water bath for 15 min and centrifuging. Four variables including pH, dithizone concentration, Triton X-114 concentration and equilibrium temperature (T) showed the significant effect on extraction efficiency of total Hg evaluated by single-factor experiment, and Box-Behnken design and response surface method- ology were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum extraction efficiency. The results showed that the binomial was used to fit the response to experimental levels of each variable. ALL linear, quadratic terms of four variables, and interactions between pH and Trion X-114, pH and di- thizone affected the response value(extraction efficiency) significantly at 5% level. The optimum extraction conditions were as follows: pH 5.1, Triton X-114 concentration of 1.16 g x L(-1), dithizone concentration of 4.87 mol x L(-1), and T 58.2 degrees C, the predicted value of fluorescence was 4528.74 under the optimum conditions, and the experimental value had only 2.1% difference with it. Under the conditions, fluorescence was linear to mercury concentration in the range of 1-5 microg x L(-1). The limit of detection obtained was 0.01247 microg x L(-1) with the relative standard deviations (R.S.D.) for six replicate determinations of 1.30%. The proposed method was successfully applied to determination of Hg in morindae Radix, Andrographitis and dried tangerine samples with the recoveries of 95.0%-100.0%. Apparently Box-Behnken design combined with

  8. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  9. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  10. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  11. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  12. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  13. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  14. Hydride precipitation in titanium

    SciTech Connect

    Numakura, H.; Kowia, M.

    1984-10-01

    The crystal structure and morphology of hydride (deuteride) precipitates are investigated on ..cap alpha..-titanium specimens containing 1-3 at.% H or D by transmission electron microscopy. The hydride is found to have a face-centered tetragonal structure (c/a = 1.09) with an ordered arrangement of hydrogen, being isomorphous to ..gamma..-zirconium hydride. Two types of precipitation mode are observed with the habit planes (0110) and near (0225).

  15. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  16. Metal hydride heat pump

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1983-12-27

    A metal hydride heat pump is disclosed comprising a first and a second heat medium receptacle having heat media flowing therein and a plurality of closed vessels each containing a hydrogen gas atmosphere and divided into a first chamber having a first metal hydride filled therein and a second chamber having a second metal hydride filled therein. The first and second chambers of each closed vessel are made to communicate with each other so that hydrogen gas passes from one chamber to the other but the metal hydrides do not, and a group of the first chambers of the closed vessels being located within the first heat medium receptacle and a group of the second chambers of the closed vessels being located within the second heat medium receptacle, whereby heat exchange is carried out between the heat media in the first and second heat medium receptacles and the first and second metal hydrides through the external walls of the closed vessels.

  17. Nickel Hydride Complexes.

    PubMed

    Eberhardt, Nathan A; Guan, Hairong

    2016-08-10

    Nickel hydride complexes, defined herein as any molecules bearing a nickel hydrogen bond, are crucial intermediates in numerous nickel-catalyzed reactions. Some of them are also synthetic models of nickel-containing enzymes such as [NiFe]-hydrogenase. The overall objective of this review is to provide a comprehensive overview of this specific type of hydride complexes, which has been studied extensively in recent years. This review begins with the significance and a very brief history of nickel hydride complexes, followed by various methods and spectroscopic or crystallographic tools used to synthesize and characterize these complexes. Also discussed are stoichiometric reactions involving nickel hydride complexes and how some of these reactions are developed into catalytic processes. PMID:27437790

  18. Lightweight hydride storage materials

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  19. Millimeter-Wave Spectroscopy of Ethylmercury Hydride

    NASA Astrophysics Data System (ADS)

    Goubet, M.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2012-06-01

    The first millimeter-wave rotational spectrum of an organomercury compound, ethylmercury hydride (CH_3CH_2HgH), has been recorded using the Lille fast-scan spectrometer in the frequency range 120 -- 180 GHz. The spectroscopic study is complemented by quantum chemical calculations taking into account relativistic effects on the mercury atom. The very good agreement between theoretical and experimental molecular parameters validates the chosen ab initio method, in particular its capability to predict the accurate values of the quartic centrifugal distortion constants related to this type of compound. Estimations of the nuclear quadrupole coupling constants are not as predictive as the structural parameters but good enough to satisfy the spectroscopic needs. In addition, the orientation of the H--Hg--C bonds axis deduced from the experimental nuclear quadrupole coupling constants compares well with the corresponding ab initio value. From the good agreement between experimental and theoretical results, together with the observation of the six most abundant isotopes of mercury, ethylmercury hydride is unambiguously identified and its calculated equilibrium geometry is confirmed. Alekseev, E.A. et al. Radio Physics and Radio Astronomy 3 (2012) 78.

  20. Metal hydride heat pump system

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1985-06-18

    A metal hydride heat pump system has a plurality of operating units, the metal hydride heat exchange medium of each operating unit be a combination of a first metal hydride having a lower equilibrium dissociation pressure at the operating temperature and a second metal hydride having a higher equilibrium dissociation pressure at the opening temperature and the metal hydrides being such that hydrogen can flow freely between the two metal hydrides, wherein the equilibrium dissociation pressure characteristics of one or both of the first and second metal hydrides in a given operating unit differ from those of one or both of the first and second metal hydrides in at least one other operating unit.

  1. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  2. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  3. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  4. Superstoichiometric hydride of zirconium

    SciTech Connect

    Kupryazhkin, A.Ya.; Shchepetkin, A.A.; Zabolotskaya, E.V.; Pletnev, R.N.; Alyamovskii, S.I.; Kitaev, G.A.

    1987-12-01

    Superstoichiometric hydrides of zirconium have been obtained all the way up to the composition ZrH/sub 2.4/ by additional hydrogenation of ZrH/sub 2/ as a result of redistribution of hydrogen atoms between t- and o-positions. In the preparation of the hydrides the authors used zirconium iodide with an impurity content no greater than 10/sup -2/ to 10/sup -2/ mole %; the hydrogen and helium used in this work had a minimum purity of 99.95%. The content of hydrogen in the specimens was determined by a volumetric method. The x-ray diffraction analysis was performed in a DRON-2.0 unit (CuK/sub ..cap alpha../ radiation). PMR spectra were recorded in a broad-line spectrometer in the temperature interval 150-450 K.

  5. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  6. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  7. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  8. 17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING SYSTEM WAS PART OF THE FAST ENRICHED URANIUM RECOVERY PROCESS. (11/11/59) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  9. Uranium thorium hydride nuclear fuel

    SciTech Connect

    Simnad, M.T.

    1985-01-15

    A nuclear fuel includes uranium dispersed within a thorium hydride matrix. The uranium may be in the form of particles including fissile and non-fissile isotopes. Various hydrogen to thorium ratios may be included in the matrix. The matrix with the fissile dispersion may be used as a complete fuel for a metal hydride reactor or may be combined with other fuels.

  10. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  11. Mercury content in low cost skin lightening cream products.

    PubMed

    Naser, J; Kirm, I

    2012-04-01

    Skin lightening creams were randomly collected from local markets in Sultanate of Oman for analysis of mercury (II) content. All the products collected were of low cost imported materials from different countries. Cream samples were digested in nitric acid and hydrogen peroxide at elevated temperature using a microwave digester. The mercury content was measured using Flow Injection Atomic Spectroscopy (FIAS)-Mercury Hydride System. Out of forty cream samples analyzed, about one fourth of the samples contained higher levels of mercury which is more than the maximum mercury content of 1 microg/g permitted by the Food and Drug Administration regulation. The mercury level in the analyzed samples is found to be in the range from 0.02 to 25.7 microg/g. Among the analyzed skin lightening cream samples half of the materials did not have any detectable mercury content. PMID:24749377

  12. Development of metal hydride composites

    SciTech Connect

    Congdon, J.W.

    1992-12-01

    Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydride granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.

  13. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  14. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  15. Metallurgy of rechargeable hydrides

    SciTech Connect

    Rudman, P.S.; Sandrock, G.D.

    1982-01-01

    Thermodynamic principles of metal-hydrogen (M-H) systems are reviewed, and the theory and practice of M-H alloys are detailed. Pseudobinary systems, phase transformations, and metastability are briefly discussed. The LaNi5-H system is used to examine plateau slope and hysteresis in M-H alloy formation, and the rules of simple averaging and reversed stability are assessed with respect to their usefulness in predicting the behavior of such systems. The crystal structure of metal hydrides is addressed, including AB, AB2, and AB5 structure. Finally, the use of ternary substitutional alloying in controlling the thermodynamic properties of M-H systems is discussed, illustrating the substitution of copper for nickel in LaN5 and the dependence of the equilibrium pressure on the unit cell volume of various CaCu5 type compounds.

  16. Hydride development for hydrogen storage

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C.; Sandrock, G.

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  17. Complex Hydrides for Hydrogen Storage

    SciTech Connect

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  18. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  19. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  20. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  1. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  2. Bulk Hydrides and Delayed Hydride Cracking in Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Tulk, Eric F.

    Zirconium alloys are susceptible to engineering problems associated with the uptake of hydrogen throughout their design lifetime in nuclear reactors. Understanding of hydrogen embrittlement associated with the precipitation of brittle hydride phases and a sub-critical crack growth mechanism known as Delayed Hydride Cracking (DHC) is required to provide the engineering justifications for safe reactor operation. The nature of bulk zirconium hydrides at low concentrations (< 100 wt. ppm) is subject to several contradictory descriptions in the literature associated with the stability and metastability of gamma-phase zirconium hydride. Due to the differing volume expansions (12-17%) and crystallography between gamma and delta hydride phases, it is suggested that the matrix yield strength may have an effect on the phase stability. The present work indicated that although yield strength can shift the phase stability, other factors such as microstructure and phase distribution can be as or more important. This suggests that small material differences are the reason for the literature discrepancies. DHC is characterised by the repeated precipitation, growth, fracture of brittle hydride phases and subsequent crack arrest in the ductile metal. DHC growth is associated primarily the ability of hydrogen to diffuse under a stress induced chemical potential towards a stress raiser. Knowledge of the factors controlling DHC are paramount in being able to appropriately describe DHC for engineering purposes. Most studies characterise DHC upon cooling to the test temperature. DHC upon heating has not been extensively studied and the mechanism by which it occurs is somewhat controversial in the literature. This work shows that previous thermo-mechanical processing of hydrided zirconium can have a significant effect on the dissolution behaviour of the bulk hydride upon heating. DHC tests with gamma-quenched, furnace cooled-delta and reoriented bulk hydrides upon heating and DHC upon

  3. Complex and liquid hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-04-01

    The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

  4. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  5. Method of producing a chemical hydride

    DOEpatents

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  6. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  7. Characteristics and Applications of Metal Hydrides

    NASA Technical Reports Server (NTRS)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  8. REMOVAL OF MERCURY FROM COAL-DERIVED SYNTHESIS GAS

    SciTech Connect

    Tom Barton

    2006-03-01

    The reduction of mercury emission from fossil fuel applications is an increasing priority for the US power industry due to regulatory pressure. While mercury removal during combustion is well studied, mercury removal in gasification is less so. The increasing application of coal gasification in future plant designs supplies the incentive for more study of mercury removal gasification processes. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. Absorption of elemental mercury at high temperature has not been shown to be effective. The carbon is best injected downstream where the temperature has moderated and an independent collector can be established. Experiments have been conducted at 400 F to compare mercury absorption on activated carbon as received and ''super'' activated carbon. The ''super'' activated carbon was prepared by soaking the carbon in 6M nitric acid followed by neutralization and washing. Each absorption experiment has been run for 16 hours of exposure time to the gasifier product stream. The carbon samples were tested for mercury absorption by ICP hydride generation. The two carbon samples which had been washed in nitric acid then exposed to the gasifier slipstream showed higher concentrations of mercury even at this elevated absorption temperature when compared to the as received activated carbon.

  9. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption. PMID:19420657

  10. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  11. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  12. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  13. Metal hydride composition and method of making

    DOEpatents

    Congdon, James W.

    1995-01-01

    A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.

  14. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  15. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  16. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  17. Use of reversible hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  18. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  19. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  20. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen. PMID:27483171

  1. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  2. Fundamental experiments on hydride reorientation in zircaloy

    NASA Astrophysics Data System (ADS)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  3. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  4. Submillimeter Spectroscopy of Hydride Molecules

    NASA Astrophysics Data System (ADS)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  5. Direct synthesis of catalyzed hydride compounds

    DOEpatents

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  6. Zirconium hydride containing explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  7. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  8. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  9. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    PubMed

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+). PMID:26949917

  10. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  11. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  12. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  13. Liquid suspensions of reversible metal hydrides

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  14. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  15. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  17. MERCURY IN TREE RINGS

    EPA Science Inventory

    Contamination caused by release of mercury into the environment is a growing concern. This release occurs due to a variety of anthropogenic activities and natural sources. After release, mercury undergoes complicated chemical transformations. The inorganic forms of mercury releas...

  18. Method of forming metal hydride films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  19. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  20. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGESBeta

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  1. Red and blue shifted hydridic bonds.

    PubMed

    Jabłoński, Mirosław

    2014-09-15

    By performing MP2/aug-cc-pVTZ ab initio calculations for a large set of dimer systems possessing a R-H hydridic bond involved in diverse types of intermolecular interactions (dihydrogen bonds, hydride halogen bonds, hydride hydrogen bonds, and charge-assisted hydride hydrogen bonds), we show that this is rather an elongation than a shortening that a hydride bond undergoes on interaction. Contrary to what might have been expected on the basis of studies in uniform electric field, this elongation is accompanied by a blue instead of red shift of the R-H stretching vibration frequency. We propose that the "additional" elongation of the R-H hydridic bond results from the significant charge outflow from the sigma bonding orbital of R-H that weakens this bond. The more standard red shift obtained for stronger complexes is explained by means of the Hermansson's formula and the particularly strong electric field produced by the H-acceptor molecule. PMID:25043253

  2. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  3. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  4. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  5. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  6. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  7. Computational Study of Metal Hydride Destabilization

    NASA Astrophysics Data System (ADS)

    Johnson, Karl

    2006-03-01

    The safe and efficient on-board storage of hydrogen in fuel cell vehicles is one of the major road-blocks for utilization of hydrogen in transportation. This talk will illustrate the use quantum molecular modeling techniques for investigating atomic- level details of hydrogen storage in new materials. Metal hydrides of period 2 and 3 materials have high volumetric and gravimetric hydrogen storage capacities. However, these materials typically have very high heats of reaction, meaning that high temperatures are required to dissociate the hydrides. Likewise, hydrogenation reactions evolve very large quantities of energy, making thermal management during refueling a impractical. Recent experimental work has focused on chemical destabilization of metal hydrides as a means of decreasing the heats of reaction. We have carried out quantum mechanical calculations, using the electronic density functional theory (DFT) formalism, for various metal hydride systems. The heats of reaction for over 300 different reactions have been computed. We have compared our calculations with experimental and tabulated data where available and find reasonable agreement. Our calculations demonstrate the utility of DFT for screening reactions and for identifying promising materials for further computational and experimental studies. We have also studied the hydration of Mg2Si, a destabilized hydride of MgH2. Experiments have failed to hydrogenate this material in the laboratory under high pressures of H2. We examine adsorption of H2 and dissociation on the Mg2Si(110) surface to see if kinetic limitations are responsible for the failure to observe hydrogenation of this material.

  8. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  9. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  10. Determination of mercury by furnace atomic nonthermal excitation spectrometry

    NASA Astrophysics Data System (ADS)

    Dittrich, K.; Franz, T.; Wennrich, R.

    1994-12-01

    The determination of Hg using different variants of the Furnace Atomic Nonthermal Excitation Spectrometry (FANES) is described. In the direct analysis of micro volumes of solutions, the results could be improved by working with chemical modifiers for the stabilization of Hg during the thermal pretreatment. The best results were obtained using Ir and Pd as modifiers, with absolute detection limits of 4 and 12 pg, respectively. The determination of mercury in sample volumes up to 10 ml could be achieved by coupling a cold vapour generation system and an amalgam attachment to the FANES source. A detection limit of 22 ng/l was obtained with this technique. The best results were obtained by using the cold vapour generation technique and in situ enrichment of Hg onto the modified inner surface of the graphite tube of the FANES source. Using Ir for permanent impregnation of the tube a detection limit of 0.0009 μ;g/l was found. The influence of hydride forming elements on the determination of mercury by the technique of vapour generation and in situ enrichment was studied. A reduction of the concentration of NaBH 4 to 0.002% m/v made it possible to determine traces of mercury in presence of a high excess of hydride forming elements without any depression of the Hg emission intensity. The results were validated using standard reference materials.

  11. 1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO

  12. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  13. New Jersey mercury regulations

    SciTech Connect

    Elias, D.F.; Corbin, W.E.

    1996-12-31

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damage growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.

  14. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  15. Ionic hydrogenations of hindered olefins at low temperature. Hydride transfer reactions of transition metal hydrides

    SciTech Connect

    Bullock, R.M.; Song, J.S. )

    1994-09-21

    Sterically hindered olefins can be hydrogenated at -50[degree]C in dichloromethane using triflic acid (CF[sub 3]SO[sub 3]H) and a hydride donor. Mechanistic studies indicate that these reactions proceed by hydride transfer to the carbenium ion that is formed by protonation of the olefin. Olefins that form tertiary carbenium ions upon protonation are hydrogenated in high yields (90-100%). Styrenes generally produce lower yields of hydrogenated products (50-60%). Suitable hydride donors include HSiE[sub 3] and several transition metal carbonyl hydrides HW(CO)[sub 3]Cp, HW(CO)[sub 3]Cp[sup +], HMo-(CO)[sub 3]Cp, HMn(CO)[sub 5], HRe(CO)[sub 3], and HO[sub 3](CO)[sub 1]Cp*; Cp = [eta][sup 5]-C[sub 3]H[sub 5+], Cp* = [eta][sup 5]-C[sub 5]Me[sub 5]. A characteristic that is required for transition metal hydrides to be effective is that the cationic dihydrides (or dihydrogen complexes) that result from their protonation must have sufficient acidity to transfer a proton to the olefin, as well as sufficient thermal stability to avoid significant decomposition on the time scale of the hydrogenation reaction. Metal hydrides that fall due to insufficient stability of their protonated forms include HMo(CO)[sub 2](PPH[sub 3])Cp, HMo(CO)[sub 3]Cp*, and HFe(CO)[sub 2]Cp*. 62 refs., 2 tabs.

  16. Understanding the Origins of Nucleophilic Hydride Reactivity of a Sodium Hydride-Iodide Composite.

    PubMed

    Hong, Zonghan; Ong, Derek Yiren; Muduli, Subas Kumar; Too, Pei Chui; Chan, Guo Hao; Tnay, Ya Lin; Chiba, Shunsuke; Nishiyama, Yusuke; Hirao, Hajime; Soo, Han Sen

    2016-05-17

    Sodium hydride (NaH) has been commonly used as a Brønsted base in chemical syntheses, while it has rarely been employed to add hydride (H(-) ) to unsaturated electrophiles. We previously developed a procedure to activate NaH through the addition of a soluble iodide source and found that the new NaH-NaI composite can effect even stereoselective nucleophilic hydride reductions of nitriles, imines, and carbonyl compounds. In this work, we report that mixing NaH with NaI or LiI in tetrahydrofuran (THF) as a solvent provides a new inorganic composite, which consists of NaI interspersed with activated NaH, as revealed by powder X-ray diffraction, and both solid-state NMR and X-ray photoelectron spectroscopies. DFT calculations imply that this remarkably simple inorganic composite, which is comprised of NaH and NaI, gains nucleophilic hydridic character similar to covalent hydrides, resulting in unprecedented and unique hydride donor chemical reactivity. PMID:27038135

  17. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  18. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  19. Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition

    SciTech Connect

    Yan, Yong; Plummer, Lee K; Ray, Holly B; Cook, Tyler S; Bilheux, Hassina Z

    2014-01-01

    Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

  20. Thermal cycle limits for tritium hydride beds

    SciTech Connect

    Klein, J.E.

    1992-12-31

    During revision of the Tritium Facility Technical Standards, a thermal cycle limit was added to the {open_quotes}Hydride Vessels{close_quotes} Technical Standard. A limit of 1,000 cycles was added since the metallurgical effect of repeated thermal cycling of the stainless steel hydride beds was not known. Procedures would require modifications to record the number of thermal cycles a bed has experienced during its life-time. The calculations in this report show that the operations of the hydride beds in the Tritium Facilities can experience at least 10,000 thermal cycles. Maximum temperature differences across the walls of the hydride beds were calculated to determine the cycle limits. The calculated temperature differentials were less than 50% of the temperature differentials which would require a 10,000 cycle limit. 10,000 cycles is equivalent to cycling the bed over nine times per day for the next three years or five times per day for the next five years. If the expected number of bed cycles for the beds are to be less than 10,000 cycles, the number of thermal cycles for the beds do not need to be recorded or logged. Not logging or tracking the number of thermal cycles for the beds will greatly reduce the administrative burden of operating these vessels. These results are based ultimately on the pressure drop of nitrogen through the hydride bed cooling coils which is controlled by the liquid nitrogen dewer`s 22 psig relief valve. This 22 psi differential for flow and the conservative assumptions made in the calculations gave maximum temperature differentials less than 50 percent of the values allowed for the 10,000 cycle limit. Changes which would increase the liquid nitrogen supply pressure for the beds would need to be reviewed to verify that the conclusions of this report were to remain valid.

  1. Thermal cycle limits for tritium hydride beds

    SciTech Connect

    Klein, J.E.

    1992-01-01

    During revision of the Tritium Facility Technical Standards, a thermal cycle limit was added to the [open quotes]Hydride Vessels[close quotes] Technical Standard. A limit of 1,000 cycles was added since the metallurgical effect of repeated thermal cycling of the stainless steel hydride beds was not known. Procedures would require modifications to record the number of thermal cycles a bed has experienced during its life-time. The calculations in this report show that the operations of the hydride beds in the Tritium Facilities can experience at least 10,000 thermal cycles. Maximum temperature differences across the walls of the hydride beds were calculated to determine the cycle limits. The calculated temperature differentials were less than 50% of the temperature differentials which would require a 10,000 cycle limit. 10,000 cycles is equivalent to cycling the bed over nine times per day for the next three years or five times per day for the next five years. If the expected number of bed cycles for the beds are to be less than 10,000 cycles, the number of thermal cycles for the beds do not need to be recorded or logged. Not logging or tracking the number of thermal cycles for the beds will greatly reduce the administrative burden of operating these vessels. These results are based ultimately on the pressure drop of nitrogen through the hydride bed cooling coils which is controlled by the liquid nitrogen dewer's 22 psig relief valve. This 22 psi differential for flow and the conservative assumptions made in the calculations gave maximum temperature differentials less than 50 percent of the values allowed for the 10,000 cycle limit. Changes which would increase the liquid nitrogen supply pressure for the beds would need to be reviewed to verify that the conclusions of this report were to remain valid.

  2. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  3. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  4. MERCURY IN THE ENVIRONMENT

    EPA Science Inventory

    Mercury is released from a variety of sources and exhibits a complicated chemistry. According to the Mercury Study Report to Congress, mercury fluxes and budgets in water, soil, and other media have increased by a factor of two to five over pre-industrial levels. The primary expo...

  5. Microstructural study of hydride formation in Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R. N.; Dey, G. K.; Banerjee, S.

    2003-11-01

    Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β-phase has been carried out in this study. The specimens were hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ-hydride in slow cooled specimens and formation of γ-hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ-hydride was found to be the following: (0 0 0 1) α∥( 1¯ 1 1¯) δ and [1 1 2¯ 0] α∥[1 1 0] δ. The orientation relationship between the α matrix and the γ-hydride was of the following type: (0 0 0 1) α∥(0 0 1) γ and [1 2¯ 1 0] α∥[1 1¯ 0] γ. The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β-phase particles in the α matrix on the growth of the hydride plates has been investigated.

  6. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  7. The influence of prior deformation on hydride precipitation in zircolay

    SciTech Connect

    Perovic, V.; Leger, M. . Metallurgical Research Dept.); Weatherly, G.C. ); MacEwen, S.R. )

    1992-02-01

    This paper reports on precipitation of hydrides that has been studied in samples of Zircaloy subjected to prior tensile or compressive deformation before charging with hydrogen. The mean residual stress pattern in the alloys prior to charging was assessed by neutron diffraction techniques and provided a rough guide as to the preferred site of hydride nucleation. Heterogeneous hydride nucleation at grain boundaries or twin boundaries was commonly found in samples subjected to 4% prior deformation, while transgranular hydrides were most frequently observed after a prior 1/2% compressive deformation or an annealing. The local stress state at grain boundary facets or twins is thought to be the deciding factor in determining where hydrides nucleate and how hydride stacks form.

  8. Numerical study of a magnesium hydride tank

    NASA Astrophysics Data System (ADS)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  9. Flow in a metal hydride chromatographic column

    SciTech Connect

    Nichols, G.S.

    1990-01-01

    The flow of hydrogen isotopes in a metal hydride chromatographic column is calculated by a one-dimensional finite difference method. The Ergun equation is used to define the gas flow; and equilibrium pressure isotherms are used to define the column holdup. Solid phase loadings are shown to move as a wave front on absorption, but remain more uniform on desorption. 3 refs., 4 figs.

  10. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  11. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  12. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    SciTech Connect

    K. McCoy

    2000-12-12

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.

  13. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... PDF - 781KB] En Español [PDF - 6.6MB] What did ATSDR find? For children, most elemental mercury exposures ... that exposed children to elemental mercury. The report did not include a review of mercury exposures from ...

  14. Mercury Calibration System

    SciTech Connect

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  15. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species. PMID:25427244

  16. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  17. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-01-01

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  18. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-12-31

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  19. Storing hydrogen in the form of light alloy hydrides

    NASA Technical Reports Server (NTRS)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  20. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  1. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  2. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  3. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  4. Mercury: The World Closest to the Sun.

    ERIC Educational Resources Information Center

    Cordell, Bruce M.

    1984-01-01

    Discusses various topics related to the geology of Mercury including the origin of Mercury's magnetism, Mercury's motions, volcanism, scarps, and Mercury's violent birth and early life. Includes a table comparing Mercury's orbital and physical data to that of earth's. (JN)

  5. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Lazzarini, A.; Srabionyan, V. V.; Vitillo, J. G.; Piovano, A.; Groppo, E.; Bugaev, L. A.; Soldatov, A. V.; Dmitriev, V. P.; Pellegrini, R.; van Bokhoven, J. A.; Lamberti, C.

    2016-05-01

    In the current work we present a detailed analysis of the hydride phase formation in industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy (EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from - 10 to 50 °C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical fitting of the near-edge region of the absorption spectra (XANES) and compared with volumetric measurements.

  6. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  7. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  8. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  9. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  10. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  11. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  12. Metal Hydrides for High-Temperature Power Generation

    DOE PAGESBeta

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  13. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  14. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  15. High energy density battery based on complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  16. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  17. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  18. A novel plating process for microencapsulating metal hydrides

    SciTech Connect

    Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W.

    1996-08-01

    One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

  19. Electrochemical characteristics of encapsulated metal-hydride-alloy electrodes

    SciTech Connect

    Zhu, W.H.; Zhang, D.J.; Ke, J.J.

    1996-06-01

    Metal hydride electrodes with copper-encapsulated alloys and non-coated alloys were fabricated using suitable conductive and binding agents. The charge-discharge characteristics of three kinds of hydride electrodes were comparatively investigated. The encapsulated alloy electrode is remarkably superior to the non-coated LaNi{sub 5}-based one, discharging at a high rate and exhibiting a smaller capacity decay at the stage of cycle tests. The hydride alloy quality of hydride electrodes can be effectively determined by measuring rate capability. The results of vented cell experiments confirm that the capacity decay of non-coated alloy electrodes in sealed cells is not due to the oxidation of oxygen from the nickel hydroxide positive electrodes. The relationship between the equilibrium potential of hydride electrode and the equilibrium hydrogen pressure has been deduced by a succinct thermodynamic method, without consideration of the unknown activity of water and fugacity coefficient of hydrogen.

  20. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  1. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, William A.; Olsen, Clayton E.

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  2. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  3. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  4. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  5. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  6. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    SciTech Connect

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  7. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  8. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  9. Mercury in the environment

    ScienceCinema

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  10. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  11. Atmospheric Deposition of Mercury

    EPA Science Inventory

    With the advent of the industrial era, the amount of mercury entering the global environment increased dramatically. Releases of mercury in its elemental form from gold mines and chlor-alkali plants, as sulfides such as mercaptans and agricultural chemicals, and as volatile emiss...

  12. Mercury in the environment

    SciTech Connect

    Idaho National Laboratory - Mike Abbott

    2008-08-06

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  13. Mercury and Pregnancy

    MedlinePlus

    ... made when mercury in the air gets into water. The mercury in the air comes from natural sources (such as volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in your body by ...

  14. Mercury On Deck

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The crew of the U.S.S. Kearsarge spell out the words 'Mercury 9' on the ship's flight deck while on the way to the recovery area where astronaut Gordon Cooper is expected to splash down in his 'Faith 7' Mercury space capsule.

  15. MERCURY RESEARCH STRATEGY

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA's) Office of Research and Development (ORD) is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001 2005 time frame. ORD will use it to ...

  16. Blood Mercury Level

    EPA Science Inventory

    This indicator describes the presence of mercury in the blood of segments of the U.S. population from 1999 to 2008. Mercury can cause developmental and neurological problems, especially in children. This indicator shows how exposure to this environmental contaminant has change...

  17. Getting rid of mercury

    SciTech Connect

    Reisch, M.S.

    2008-11-24

    Anticipating a US rule on mercury removal from coal flue gas, technology providers jockey for position. By 2013, if the federal rule imposing regulation of mercury emissions which have begun or are about to begin in 20 eastern states goes nationwide, mercury control will be big business. For the near term, utilities are adopting activated carbon to control mercury emissions. McIlvaine Co. projects the US market for activated carbon will jump from 10 million lb in 2010 to 350 million by 2013. Norit and Calgon Carbon are already increasing production of activated carbon (mainly from coal) and ADA Environmental Solutions (ADA-ES) is building a new plant. Albermarle is developing a process to treat activated carbon with bromine; Corning has developed a sulfur impregnated activated carbon filtration brick. New catalysts are being developed to improve the oxidation of mercury for removal from flue gas. 2 photos.

  18. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  19. MERCURY MULTI-YEAR PLAN

    EPA Science Inventory

    A 1997 EPA Mercury Study Report to Congress discussed the magnitude of mercury emissions in the United States, and concluded that a plausible link exists between human activities that release mercury from industrial and combustion sources in the United States and methyl mercury c...

  20. Regeneration of Aluminum Hydride Using Trimethylamine

    SciTech Connect

    D Lacina; J Reilly; Y Celebi; J Wegrzyn; J Johnson; J Graetz

    2011-12-31

    Aluminum hydride is an attractive reducing agent and energy storage compound possessing a low decomposition temperature and a high gravimetric and volumetric hydrogen density. However, it is thermodynamically unstable at room temperature and requires extremely high pressures to form the hydride from aluminum and hydrogen gas. Here, we describe an alternate method of synthesizing AlH{sub 3} using Ti-catalyzed Al powder, H{sub 2}, and trimethylamine (TMA) to form an alane adduct. The formation of trimethylamine alane occurs at modest hydrogen pressures ({approx}100 bar), forming the 2:1 bis complex (2 trimethylamine/AlH{sub 3}). Along with the hydrogenation product, mono (1:1) and bis (2:1) standards of TMA-AlH{sub 3} were prepared and characterized using X-ray diffraction and Raman spectroscopy. X-ray absorption spectroscopy of the reaction products showed that the Ti catalyst remains with the unreacted Al powder after hydrogenation and is not present in the alane adduct. We also demonstrate that TMA can be transaminated with triethylamine to form triethylamine alane, which can easily be separated to recover AlH{sub 3}.

  1. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  2. Pressure-stabilized superconductive yttrium hydrides

    PubMed Central

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming

    2015-01-01

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular “H2” in YH4 and hexagonal “H6” unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84–95 K and 251–264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3. PMID:25942452

  3. Surface passivation of metal hydrides for applications

    SciTech Connect

    Suda, S.; Li, Z.P.; Sun, Y.M.; Liu, B.H.; Gao, X.P.

    1998-12-31

    Properties and characteristics of hydriding alloys are strongly dependent on surface compositions and morphologies. For instance, oxides such as La{sub 2}O{sub 3} on AB{sub 5} alloys and ZrO{sub 2} on AB{sub 2}, AB, and body-centered-cubic (BCC) alloys act as the barriers for the conversion of molecular and ionic hydrogen to atomic hydrogen at the surface, thus reducing the kinetics in both the gas-solid and electrochemical reactions. Alloy surfaces chemically treated by an aqueous F-ion containing solution have been developed to solve such problems. F-treated surfaces exhibit significantly improved characteristics in regard to the hydrogen uptakes and the protection against impurities and electrolyte solution. In addition, highly conductive metallic Ni layers can be formed on the surface of the alloy particles by the fluorination. The authors report the properties and characteristics of fluorinated hydriding alloys, mainly of a typical AB{sub 2} Laves phase material which represents the difficult activation characteristics and poor long-term durability during electrochemical charge/discharge cycles.

  4. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-01

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)]. PMID:22040085

  5. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans

  6. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX₃ Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. Scott; DuBois, Daniel L.

    2011-10-31

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H₂ gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)₂ (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX₃ compounds having a hydride affinity (HA) greater than or equal to the HA of BEt₃. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)₂ and [HNi(dmpe)₂]+, to form B–H bonds. The hydride donor abilities (ΔGH °) of HCo(dmpe)₂ and [HNi(dmpe)₂]+ were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX₃ compounds. The collective data guided our selection of BX₃ compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)₂ was observed to transfer H to BX₃ compounds with X = H, OC₆F₅, and SPh. The reaction with B(SPh)₃ is accompanied by the formation of dmpe-(BH₃)₂ and dmpe-(BH₂(SPh))₂ products that follow from a reduction of multiple B–SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)₂ and B(SPh)₃ in the presence of triethylamine result in the formation of Et₃N–BH₂SPh and Et₃N–BH₃ with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)₂]+ with B(SPh)₃ under analogous conditions give Et₃N–BH₂SPh as the final product along with the nickel–thiolate complex [Ni(dmpe)₂(SPh)]+. The synthesis and characterization of HCo(dedpe)₂ (dedpe = Et₂PCH₂CH₂PPh₂) from H₂ and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)₂Co(dedpe)₂][BF₄].

  7. A study of hydriding kinetics of metal hydrides using a physically based model

    NASA Astrophysics Data System (ADS)

    Voskuilen, Tyler G.

    The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the

  8. A self-induced stress model for simulating hydride formation at flaws

    SciTech Connect

    Metzger, D.R.; Sauve, R.G.

    1996-12-01

    Formation of hydride at stress concentrations occurs in some materials as part of a stable cracking mechanism called delayed hydride cracking (DHC). As hydrogen combines with matrix material to become hydride, transformation strain is accommodated by local redistribution of stress. Since stress gradients drive hydrogen diffusion, this self-induced stress alters the conditions for subsequent hydride growth, and conditions required to fracture the hydrided material. A numerical model, using the finite element method, has been developed which couples the effect of stress driven hydrogen diffusion, and stress due to applied loads and hydride formation. Strong nonlinearities in this problem are solved effectively by a unique adaptation of the dynamic relaxation method. The simulation provides the volume fraction distribution of hydride, and the corresponding stress distribution. Application of the model to hydride formation at sharp and blunt flaws predicts hydride distribution shapes that are in good agreement with hydrides observed in experiments.

  9. Mercury Metadata Toolset

    Energy Science and Technology Software Center (ESTSC)

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additionalmore » metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  10. Mercury's Dynamic Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  11. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  12. Mercury Metadata Toolset

    SciTech Connect

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.

  13. The development of metal hydrides using as concentrating solar thermal storage materials

    NASA Astrophysics Data System (ADS)

    Qu, Xuanhui; Li, Yang; Li, Ping; Wan, Qi; Zhai, Fuqiang

    2015-12-01

    Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.

  14. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-01

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available. PMID:25413985

  15. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  16. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations. PMID:27450956

  17. Structural Characterization of Metal Hydrides for Energy Applications

    NASA Astrophysics Data System (ADS)

    George, Lyci

    Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or

  18. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  19. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  20. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  1. Missions to Mercury

    NASA Astrophysics Data System (ADS)

    Grard, Réjean; Laakso, Harry; Svedhem, Håkan

    2002-10-01

    Mercury is a poorly known planet. It is difficult to observe from Earth and to explore with spacecraft, due to its proximity to the Sun. Only the NASA probe Mariner 10 caught a few glimpses of Mercury during three flybys, more than 27 years ago. Still, this planet is an interesting and important object because it belongs, like our own Earth, to the family of the terrestrial planets. After reviewing what we know about Mercury and recapitulating the major findings of Mariner 10, we present the two missions, Messenger and BepiColombo, which will perform the first systematic exploration of this forgotten planet in 2009 and 2014, respectively.

  2. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0

  3. Synthesis and some reactions of dibutyltin (S)- and (R)-camphorsulfonyl hydrides.

    PubMed

    Kinart, Wojciech J; Kinart, Cezary M; Kozak, Monika; Kinart, Andrzej; Sendecki, Marcin; Matczak, Piotr

    2009-08-01

    The synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)-camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1-phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl(2)*4H(2)O or ZnCl(2) to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature. PMID:19531015

  4. Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China

    SciTech Connect

    Ni, Wenqing; Chen, Yaowen; Huang, Yue; Wang, Xiaoling; Zhang, Gairong; Luo, Jiayi; Wu, Kusheng

    2014-01-15

    Objective: Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. Methods: A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteers were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Results: Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18–3.98 μg/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12–1.63 μg/g). We also observed a higher over-limit ratio (>1 μg/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (β=0.299, P<0.001), and frequency of shellfish intake (β=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (β=−0.190, P=0.015) and whether house also served as e-waste workshop (β=−0.278, P=0.001). Conclusions: This study investigated human mercury exposure

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  11. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  12. Novel Hydride Transfer Catalysis for Carbohydrate Conversions

    SciTech Connect

    Holladay, John E.; Brown, Heather M.; Appel, Aaron M.; Zhang, Z. Conrad

    2008-04-03

    5-Hydroxymethylfurfural (HMF), an important versatile sugar derivative has been synthesized from glucose using catalytic amounts of CrCl2 in 1-ethyl-3-methylimidizolium chloride. Glycerol and glyceraldehyde were tested as sugar model compounds. Glycerol is unreactive and does not interfere with glucose conversion. Glyceraldehyde is reactive and does interfere with glucose conversion in competitive experiments. MnCl2 or FeCl2 catalyze dehydration of glyceraldehyde dimer to form compound I, a cyclic hemiacetal with an exocyclic double bond. Upon aqueous work-up I forms pyruvaldehyde. CrCl2 or VCl3 further catalyze a hydride transfer of I to form lactide. Upon aqueous work-up lactide is converted to lactic acid.

  13. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  14. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  15. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  16. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  17. Mercury's Caloris Basin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Mercury: Computer Photomosaic of the Caloris Basin

    The largest basin on Mercury (1300 km or 800 miles across) was named Caloris (Greek for 'hot') because it is one of the two areas on the planet that face the Sun at perihelion.

    The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet.

    The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission.

    The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  18. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to

  19. Mercury CEM Calibration

    SciTech Connect

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  20. Mercury iodide crystal growth

    NASA Technical Reports Server (NTRS)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  1. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  2. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  3. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  4. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  5. Bipolar Nickel-Metal Hydride Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  6. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  7. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  8. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  9. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  10. Development of a metal hydride electrode waste treatment process

    SciTech Connect

    Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

    1999-12-01

    Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

  11. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  12. Solid-state gadolinium{endash}magnesium hydride optical switch

    SciTech Connect

    Armitage, R.; Rubin, M.; Richardson, T.; OBrien, N.; Chen, Y.

    1999-09-01

    The optical switching properties of gadolinium{endash}magnesium hydride have been demonstrated in a solid-state electrochromic device. With positive polarization of the hydride electrode, the visible reflectance approaches 35{percent} with virtually zero transmission, while with negative polarization, the visible transmission exceeds 25{percent} at 650 nm. The switching is reversible, with intermediate optical properties between the transparent and reflecting states. {copyright} {ital 1999 American Institute of Physics.}

  13. Method of selective reduction of halodisilanes with alkyltin hydrides

    DOEpatents

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  14. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  15. Tellurium Hydrides at High Pressures: High-Temperature Superconductors.

    PubMed

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-T_{c} superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H_{4}Te, H_{5}Te_{2}, and HTe_{3}, which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H_{4}Te and H_{5}Te_{2} phases are primarily ionic and contain exotic quasimolecular H_{2} and linear H_{3} units, respectively. Their high-T_{c} (e.g., 104 K for H_{4}Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions. PMID:26894729

  16. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  17. Tellurium Hydrides at High Pressures: High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-Tc superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H4Te , H5Te2 , and HTe3 , which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H4Te and H5Te2 phases are primarily ionic and contain exotic quasimolecular H2 and linear H3 units, respectively. Their high-Tc (e.g., 104 K for H4Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions.

  18. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  19. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  20. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  1. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  2. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhihua; Hao, Mingjun; Guo, Xianghua; Tang, Guoyi; Shi, San-Qiang

    2015-04-01

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr-H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  3. Biogeochemistry: Better living through mercury

    NASA Astrophysics Data System (ADS)

    Schaefer, Jeffra K.

    2016-02-01

    Mercury is a toxic element with no known biological function. Laboratory studies demonstrate that mercury can be beneficial to microbial growth by acting as an electron acceptor during photosynthesis.

  4. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  5. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  6. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  7. MERCURY IN MARINE LIFE DATABASE

    EPA Science Inventory

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  8. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  9. Sensing Mercury for Biomedical and Environmental Monitoring

    PubMed Central

    Selid, Paul D.; Xu, Hanying; Collins, E. Michael; Face-Collins, Marla Striped; Zhao, Julia Xiaojun

    2009-01-01

    Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury. PMID:22346707

  10. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  11. Reactions of NO with nitrogen hydrides x

    NASA Astrophysics Data System (ADS)

    Mebel, A. M.; Lin, M. C.

    In this review, we consider the reactions of NO ( x 1,2) with the nitrogen x hydrides NH, NH and NH . The reactions are relevant to the post-combustion, non-catalytic reduction of NO with NH in the thermal de-NO process and with x x HNCO in the rapid reduction of NO as well as to the thermal decomposition of x some high-energy materials, including ammonium dinitramide. The practical importance has motivated considerable theoretical interest in these reactions. We review numerous ab - initio molecular orbital studies of potential energy surfaces for NO NH and theoretical calculations of their kinetic parameters, such as x y thermal rate constants and branching ratios of various products. The most advanced theoretical calculations are carried out using the Gaussian-2 family of methods which provides the chemical accuracy (within 2 kcal mol ) for the energetics and molecular parameters of the reactants, products, intermediates and transition states. We present a detailed comparison of the theoretical results with available experimental data. We show that the reactions of NO with NH and NH x are very fast because they occur without a barrier and lead to the formation of multiple products which include radicals and stable molecules. The reactions of NO with NH , taking place by the H abstraction to form NH and HNO , are slow x x but still relevant to the NH de-NO system, because of their fast reverse processes x which have not yet been measured experimentally.

  12. Permeation rates for RTF metal hydride vessels

    SciTech Connect

    Klein, J.E.

    1992-05-21

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 {times} 10{sup {minus}3} {mu}Ci/cc. To reduce tritium activity in the NH and CS, a stripper or ``getter`` bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks.

  13. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  14. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  15. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  16. Follow that mercury!

    SciTech Connect

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  17. The magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1976-01-01

    Data on Mercury's magnetosphere and on the plasma, planetomagnetic, and energetic particle environment of the planet obtained in three encounters (Mariner 10 flybys) are compared, and tasks for future research are outlined. The Mercury bow shock and magnetopause are much closer to the planet than the earth counterparts are to the earth. The magnetotail with embedded plasma sheet-field reversal region, global deflection of the solar wind by an intrinsic dipolar magnetic field, variations in solar wind momentum flux, and absence of such features as ionosphere, plasmasphere, and radiation belts, are described. Energetic electrons are accelerated in the magnetotail, however, and the interplanetary magnetic field variations distort Mercury's magnetosphere to produce a southward field associated with substorm-like disturbances.

  18. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  19. Control of mercury pollution.

    PubMed

    Noyes, O R; Hamdy, M K; Muse, L A

    1976-01-01

    When a 203Ng(NO3)2 solution was kept at 25 degrees C in glass or polypropylene containers, 50 and 80% of original radioactivity was adsorbed to the containers' walls after 1 and 4 days, respectively. However, no loss in radioactivity was observed if the solution was supplemented with HgCl as carrier (100 mug Hg2+/ml) and stored in either container for 13 days. When 203Hg2+ was dissolved in glucose basal salt broth with added carrier, levels of 203Hg2+ in solution (kept in glass) decreased to 80 and 70% of original after 1 and 5 days and decreased even more if stored in polypropylene (60 and 40% of original activity after 1 and 4 days, respectively). In the absence of carrier, decreases of 203Hg2+ activities in media stored in either container were more pronounced due to chemisorption (but) not diffusion. The following factors affecting the removal of mercurials from aqueous solution stored in glass were examined: type and concentration of adsorbent (fiber glass and rubber powder); pH; pretreatment of the rubber; and the form of mercury used. Rubber was equally effective in the adsorption of organic and inorganic mercury. The pH of the aqueous 203Hg2+ solution was not a critical factor in the rate of adsorption of mercury by the rubber. In addition, the effect of soaking the rubber in water for 18 hr did not show any statistical difference when compared with nontreated rubber. It can be concluded that rubber is a very effective adsorbent of mercury and, thus, can be used as a simple method for control of mercury pollution. PMID:1549

  20. Mosaic Postcards from Mercury

    NASA Astrophysics Data System (ADS)

    Hallau, K. G.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hirshon, B.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach Team

    2010-12-01

    On its journey to become the first spacecraft to orbit Mercury, NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has followed a trajectory that included three flybys of the innermost planet. During the flybys, images captured by the Mercury Dual Imaging System revealed parts of the planet’s surface never before seen at close range, as well as high-resolution views of craters, crater rays, scarps, faults, and volcanic vents and flows. To help students and teachers better understand this revealing new look at Mercury, the MESSENGER Education and Public Outreach team will share these high-resolution images of Mercury's surface throughout the upcoming Year of the Solar System. By means of an intriguing format that mimics methods used by the MESSENGER team, a series of images printed at large postcard size will each highlight a small "slice" of Mercury, such as a crater or fault. The individual cards can then be pieced together, puzzle-style, on a poster-sized grid to reveal a larger mosaic view of the planet. Each card contains engaging text, the URL for an accompanying website, and coordinates for that region of the planet, helping students understand scientific concepts related to and revealed by MESSENGER's journey. The first set of cards will feature scarps, volcanic plains, the topography of a crater and the composition of its interior units, rayed craters, nested craters, and a deposit produced by explosive volcanic eruptions. Cards will be available for free on the accompanying website, distributed by MESSENGER Educator Fellows, or handed out at meetings, conferences, and workshops.

  1. Mercury binding on activated carbon

    SciTech Connect

    Bihter Padak; Michael Brunetti; Amanda Lewis; Jennifer Wilcox

    2006-11-15

    Density functional theory has been employed for the modeling of activated carbon (AC) using a fused-benzene ring cluster approach. Oxygen functional groups have been investigated for their promotion of effective elemental mercury binding on AC surface sites. Lactone and carbonyl functional groups yield the highest mercury binding energies. Further, the addition of halogen atoms has been considered to the modeled surface, and has been found to increase the AC's mercury adsorption capacity. The mercury binding energies increase with the addition of the following halogen atoms, F {gt} Cl {gt} Br {gt} I, with the fluorine addition being the most promising halogen for increasing mercury adsorption.

  2. Mercury CEM Calibration

    SciTech Connect

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  3. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    NASA Astrophysics Data System (ADS)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  4. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  5. Multidimensional simulations of hydrides during fuel rod lifecycle

    NASA Astrophysics Data System (ADS)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  6. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  7. The effect of stress state on zirconium hydride reorientation

    NASA Astrophysics Data System (ADS)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  8. Compressibility of Mercury's dayside magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Wan, W. X.; Wei, Y.; Slavin, J. A.; Raines, J. M.; Rong, Z. J.; Chai, L. H.; Han, X. H.

    2015-12-01

    The Mercury is experiencing significant variations of solar wind forcing along its large eccentric orbit. With 12 Mercury years of data from Mercury Surface, Space ENvironment, GEochemistry, and Ranging, we demonstrate that Mercury's distance from the Sun has a great effect on the size of the dayside magnetosphere that is much larger than the temporal variations. The mean solar wind standoff distance was found to be about 0.27 Mercury radii (RM) closer to the Mercury at perihelion than at aphelion. At perihelion the subsolar magnetopause can be compressed below 1.2 RM of ~2.5% of the time. The relationship between the average magnetopause standoff distance and heliocentric distance suggests that on average the effects of the erosion process appears to counter balance those of induction in Mercury's interior at perihelion. However, at aphelion, where solar wind pressure is lower and Alfvénic Mach number is higher, the effects of induction appear dominant.

  9. Mercury and mercury compounds toxicology. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  10. Mercury and mercury compounds toxicology. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)