Science.gov

Sample records for mercury loaded solid

  1. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base

  2. Mercury emissions from municipal solid waste combustors

    SciTech Connect

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  3. Ecosystem Responses to Changed Atmospheric Mercury Load: Results from Seven Years of Mercury Loading to Lake 658

    NASA Astrophysics Data System (ADS)

    Gilmour, C.; Harris, R.; Kelly, C.; Rudd, J.; Amyot, M.; Hurley, J.; Babiarz, C.; Paterson, M.; Blanchfield, P.; Beaty, K.; Sandilands, K.; Hintelmann, H.; Krabbenhoft, D.; Tate, M.; Lindberg, S.; Southworth, G.; St. Louis, V.; Graydon, J.

    2009-05-01

    The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we are conducting the METAALICUS study, a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Loading began in 2001 and ended in 2007. In this paper we will present mercury and methylmercury budgets for the study lake for the entire 7 year loading period. Overall, we increased the total Hg load to L658 and its watershed by roughly a factor of 3. However, we only increased the Hg load the lake itself by about 2X, since, during the seven years of addition, almost none of the Hg spike deposited to the watershed was transported all the way to the lake. Spike Hg concentrations in lake water rose each year during the open-water loading period and declined rapidly each winter. Methylmercury production in the lake responded rapidly to changes in mercury load during the first year of addition. After about 3 years, the increase in MeHg in lake water and in surface sediments slowed, suggesting that MeHg production was approaching a new level, or different rate, in response to the increased Hg load. We will discuss major input and loss terms for newly deposited Hg, the timing and proportionality of response, the timing and locations of MeHg production within the lake.

  4. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    SciTech Connect

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilization of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.

  5. Mercury embrittlement of Cu-Al alloys under cyclic loading

    NASA Technical Reports Server (NTRS)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  6. MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  7. Sources and sinks of filtered total mercury and concentrations of total mercury of solids and of filtered methylmercury, Sinclair Inlet, Kitsap County, Washington, 2007-10

    USGS Publications Warehouse

    Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.

    2012-01-01

    The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and

  8. Mercury loads into the sea associated with extreme flood.

    PubMed

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Jędruch, Agnieszka; Saniewski, Michał; Falkowska, Lucyna

    2014-08-01

    Floods are an important factor determining riverine pollution loads, including toxic mercury (Hg). The impact of the Vistula River flood in 2010, which was the biggest one recorded in 160 years and its influence on marine environment was studied. Mercury concentration was analyzed in river and sea water, suspended matter, phytoplankton and sea surface sediment. Flood and gulf water contained several times higher concentration of Hg (exceeded reference values safe for aquatic organisms) than before or after the flood. In 2010 the Vistula introduced into the Baltic ca. 1576 kg of Hg, of which 75% can be attributed to the flood water. Increase of water temperature, decrease of oxygen content contended increasing of dissolved mercury concentration, which was transported far into the Baltic. This phenomenon led to an increase of Hg concentration in phytoplankton and during many months in surface sediments. It is a potential threat to marine organisms. PMID:24816201

  9. Consequences of a solid inner core on Mercury's spin configuration

    NASA Astrophysics Data System (ADS)

    Peale, Stanton J.; Margot, Jean-Luc; Hauck, Steven A.; Solomon, Sean C.

    2016-01-01

    The pressure torque by a liquid core that drove Mercury to the nominal Cassini state of rotation is dominated by the torque from the solid inner core. The gravitational torque exerted on Mercury's mantle from an asymmetric solid inner core increases the equilibrium obliquity of the mantle spin axis. Since the observed obliquity of the mantle must be compatible with the presence of a solid inner core, the moment of inertia inferred from the occupancy of the Cassini state must be reduced to compensate the torque from the inner core and bring Mercury's spin axis to the observed position. The unknown size and shape of the inner core means that the moment of inertia is more uncertain than previously inferred.

  10. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000

    USGS Publications Warehouse

    Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.

    2010-01-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.

  11. Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS)

    NASA Astrophysics Data System (ADS)

    Lai, Soon-Onn; Holsen, Thomas M.; Han, Young-Ji; Hopke, Philip P.; Yi, Seung-Muk; Blanchard, Pierrette; Pagano, James J.; Milligan, Michael

    Atmospheric mercury (Hg) loadings to Lake Ontario were estimated using data measured at two land-based sites: Sterling, NY and Point Petre, Ont., as part of the Lake Ontario air deposition study (LOADS) between April 2002 and March 2003. These loadings were compared with those estimated using intensive data measured onboard the R/V Lake Guardian in April 2002, September 2002, and July 2003 (each approximately one week). Measured concentrations and modeled mass transfer coefficients of elemental mercury (Hg 0), reactive gaseous mercury (RGM) and particulate mercury (Hg (p)) in air and total Hg in precipitation were incorporated into a total deposition model including wet deposition, air-water gas exchange and particle dry deposition. Urban/rural Hg concentration ratios were assumed based on literature values. Assuming that 10% of the lake was influenced by urban areas, the annual net Hg atmospheric loadings of wet deposition, net air-water gas exchange of Hg 0 (deposition=300 kg yr -1 and emission=410 kg yr -1) and RGM, and Hg (p) dry deposition to Lake Ontario were estimated to be 170, -110, 68, and 20 kg, respectively, resulting in a net loading of 150 kg yr -1. Net Hg loadings were largest in the fall (46 kg) and smallest in the summer (20 kg). Hg 0, wet, RGM and Hg (p) deposition contributed 55%, 30%, 12%, and 3.6% of the total Hg deposition, respectively. The net loading was found to be most sensitive to the assumed urban/rural concentration ratios, wind speed, DGM concentration and Hg 0 transfer velocity. An increase in the influence of urban areas from 0% to 30% resulted in a 90% increase in the total loading demonstrating the complexity and non-linearity of the atmospheric deposition of mercury to Lake Ontario and the importance of quantifying the urban footprint.

  12. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  13. Effect of an Ellipsoidal Solid Inner Core on Mercury's Obliquity

    NASA Astrophysics Data System (ADS)

    Peale, S. J.; Margot, J. L.; Hauck, S. A., II; Solomon, S. C.

    2014-12-01

    The gravitational torque on Mercury's solid mantle from a solid inner core displaces the spin axis from the Cassini state when the second-degree shapes of the mantle and inner core are misaligned. Dissipation brings the spins of the inner core, outer fluid core, and mantle to stationary equilibrium positions in the frame of the precessing orbit, where such misalignment is sustained. The equilibrium spin axes of the mantle, fluid core, and inner core all lie in the plane determined by the orbit normal and the Laplace plane normal and precess with the orbit. The fluid and inner core spins have ˜4sim 4 arcmin higher obliquities than the mantle spin, which is itself displaced from the Cassini state toward higher obliquity by an angle that exceeds the 5 arcsec uncertainty in the observed spin axis position if a hydrostatic inner core size exceeds ˜0.35sim 0.35 Mercury radii. The equilibrium mantle obliquity increases with the inner core size. Rather than placing an upper bound on the inner core size, this result means that the determination of the obliquity of the Cassini state and the determination of C/MR2C/MR^2 therefrom are incomplete, where C,M,andRC, M, and R are Mercury's polar moment of inertia, mass and radius respectively. The dependence of the mantle obliquity on the inner core size and shape as well as C/MR2C/MR^2 and the second degree coefficients in the expansion of Mercury's gravitational field J2andC22J_2 and C_{22} means our determination of C/MR2=0.346C/MR^2=0.346 from only the latter three parameters is more uncertain than previously estimated, since the inner core size and shape remain unknown. The precise value of C/MR2C/MR^2 is a crucial constraint on Mercury's internal structure.

  14. Solid-loaded flows: applications in technology

    SciTech Connect

    Molerus, O.

    1983-01-01

    The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from their derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.

  15. A tool for assessing mercury loadings from restored tidal systems

    USGS Publications Warehouse

    Fleck, J.A.; Bergamaschi, B.A.; Downing, B.D.; Lionberger, M.A.; Schoellhamer, D.H.; Boss, E.; Stephenson, M.

    2006-01-01

    Accurately quantifying net loads in tidal systems is difficult owing to the high variability in constituent concentrations over the vastly different time scales present in these systems. Perhaps most difficult is the measurement of fluxed over the tidal time scale. On this scale, the net export of the constituent is orders of magnitude less than the bulk exchange in either direction because of the vast quantities of water that are exchanged. Therefore, numerous measurements are required in a brief amount of time to accurately quantify constituent fluxes between a tidal wetland and its surrounding waters. These complications with sampling are exacerbated for mercury species because of the difficulties is to develop surrogates that may be measured in situ and which may be used for interpolating and extrapolating from discrete measurements over a number of tidal cycles and a range of conditions.  

  16. Eco-geochemical peculiarities of mercury content in solid residue of snow in the industrial enterprises impacted areas of Tomsk

    NASA Astrophysics Data System (ADS)

    Filimonenko, E. A.; Lyapina, E. E.; Talovskaya, A. V.; Parygina, I. A.

    2014-11-01

    Snow, as short-term consignation Wednesday, has several properties that lead to its widespread use in ecologicalgeochemical and geological research. By studying the chemical composition of the dust fallout you can indirectly assess the condition of atmospheric air.1-2. Determining the content of mercury in snow cover, you can define its contribution for the longest period of the year in our region, with the most intensive use of various types of fuel (coal, gas, firewood), that puts a strain on urban ecosystems in terms of ecology.3-4. In addition, snow cleans the atmosphere of mercury, but it accumulates in the snow, and during the spring melting of snow hits the ground and rivers, polluting them. Part of the mercury back into the atmosphere. It should also be note the special nature of the circulation of air masses over the city in winter, creating a heat CAP, which contributes to air pollution of the city. 5-6-7. The high load areas of industrial impact were detected during the eco-geochemical investigations of mercury load index in the impacted areas of enterprises of Tomsk. It was found out, that aerosol particles of industrial emissions in Tomsk contain mercury. The contamination transfer character of mercury sources and occurrence modes of pollutants in snow solid residue were detected during the researches of industrial impact.

  17. Forest harvest contribution to Boreal freshwater methyl mercury load

    NASA Astrophysics Data System (ADS)

    Kronberg, Rose-Marie; Drott, Andreas; Jiskra, Martin; Wiederhold, Jan G.; Björn, Erik; Skyllberg, Ulf

    2016-06-01

    Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80 year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg pools increased seven times (p = 0.006) in the organic topsoil 2 years after clear-cutting. In undulating terrain, situated above the postglacial marine limit (ML) of the ancient Baltic Sea, the mass ratio between flux-weighted MeHg and dissolved organic carbon (MeHg/DOC) in stream runoff increased 1.8 times (p < 0.004) as a consequence of forest harvest. When recalculated to 100% clear-cutting of the watershed, the annual MeHg stream export increased 3.8 times (p = 0.047). Below the ML, where the terrain was flatter, neither the MeHg/DOC ratio nor the annual export of MeHg differed between REFs and CCs, likely because of the larger contribution of MeHg exported from peaty soils and small wetlands. The most robust measure, MeHg/DOC, was used to calculate MeHg loadings to Boreal headwaters. If the forest harvest effect lasts 10 years, clear-cutting increases MeHg runoff by 12-20% in Sweden and 2% in the Boreal zone as a whole. In Sweden, having intensely managed forests, 37% and 56% of MeHg are exported from peatlands and forest soils, respectively, and forest clear-cutting is adding another 6.6%. In the Boreal zone as a whole peatlands and forests soils contribute with 53% and 46%, respectively, and clear-cutting is estimated to add another 1.0%. An expected rapid increase in Boreal forest harvest and disturbance urge for inclusion of land use effects in mercury biogeochemical cycling models at different scales.

  18. Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores

    EPA Science Inventory

    Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...

  19. Nutrient and Mercury Concentrations and Loads in Tahoe Basin Snowpack

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Obrist, D.; Schumer, R.

    2013-12-01

    Approximately seventy percent of Lake Tahoe Basin precipitation falls as snow during the winter and spring. During snowpack storage, chemicals that accumulate throughout the season through wet and dry deposition are subject to transformations and emissions that affect the end-of-season chemical load in runoff and infiltrating groundwater. This study describes dynamics of nitrogen (N), phosphorus (P), and mercury (Hg) concentrations and loads in Tahoe Basin snowpack to fill a gap in the watershed's nutrient and pollutant mass balance. Bi-weekly snowpack cores and storm-based surface samples were collected at seven sites along two elevation gradients in the Tahoe Basin during the 2012 and 2013 snow years. Snowpack N content is controlled largely by deposition of nitrate (NO3-) and total ammonia nitrogen (TAN: NH3 + NH4+). NO3- deposition is linked with snow accumulation and snowpack concentrations are consistent throughout the sampling seasons. NO3- snowpack concentrations have no discernible spatial pattern and are likely driven by NOx emissions from out-of-basin sources. Unlike NO3-, TAN deposition is associated with dry deposition and concentrations increase towards the end of winter. This late season influx of TAN is likely connected with increased vertical mixing of the boundary layer and the onset of agricultural activity in the San Joaquin Valley. P deposition is strongly correlated with both longitude and elevation. These spatial patterns of P loading are consistent with particulate-bound dry deposition, originating mainly from in-basin urban sources. Lastly, Hg deposition shows little spatial or temporal variability throughout the Basin. This pattern is consistent with out-of-basin sourcing, likely from global background atmospheric concentrations. Hg speciation shows a post-depositional shift from dissolved to particulate phase as the dominant form. This shift is consistent photochemical induced gaseous emission of dissolved Hg and preferential retention of

  20. Mercury air-borne emissions from 5 municipal solid waste landfills in Guiyang and Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Z. G.; Feng, X.; Li, P.; Liang, L.; Tang, S. L.; Wang, S. F.; Fu, X. W.; Qiu, G. L.; Shang, L. H.

    2010-01-01

    A detailed study on atmospheric mercury emissions from municipal solid waste (MSW) landfills in China is necessary to understand mercury behavior in this source category, simply because China disposes of bulk MSW by landfilling and a large quantity of mercury enters into landfills. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in landfill gas (LFG) were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate fundamentally affected the magnitude of mercury emissions, resulting in the highest emission rate (as high as 57 651 ng Hg m-2 h-1) at the working face and in un-covered waste areas, and the lowest measured at soil covers and vegetation areas (less than 20 ng Hg m-2 h-1). Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total gaseous mercury (TGM) in LFG varied from 2.0 to 1406.0 ng m-3, monomethyl mercury (MMHg) and dimethyl mercury (DMHg) in LFG averaged at 1.93 and 9.21 ng m-3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3285 g yr-1, with the highest from the working face, then soil covering, and finally the vent pipes.

  1. Sustained release Curcumin loaded Solid Lipid Nanoparticles

    PubMed Central

    Jourghanian, Parisa; Ghaffari, Solmaz; Ardjmand, Mehdi; Haghighat, Setareh; Mohammadnejad, Mahdieh

    2016-01-01

    Purpose: curcumin is poorly water soluble drug with low bioavailability. Use of lipid systems in lipophilic substances increases solubility and bioavailability of poorly soluble drugs. The aim of this study was to prepare curcumin loaded Solid Lipid Nanoparticles (SLNs) with high loading efficiency, small particle size and prolonged release profile with enhanced antibacterial efficacy. Methods: to synthesize stable SLNs, freeze- Drying was done using mannitol as cryoprotectant. Cholesterol was used as carrier because of good tolerability and biocompatibility. SLNs were prepared using high pressure homogenization method. Results: optimized SLNs had 112 and 163 nm particle size before and after freeze drying, respectively. The prepared SLNs had 71% loading efficiency. 90% of loaded curcumin was released after 48 hours. Morphologic study for formulation was done by taking SEM pictures of curcumin SLNs. Results show the spherical shape of curcumin SLNs. DSC studies were performed to determine prolonged release mechanism. Antimicrobial studies were done to compare the antimicrobial efficacy of curcumin SLNs with free curcumin. DSC studies showed probability of formation of hydrogen bonds between cholesterol and curcumin which resulted in prolonged release of curcumin. Lipid structure of cholesterol could cause enhanced permeability in studied bacteria to increase antibacterial characteristics of curcumin. Conclusion: the designed curcumin SLNs could be candidate for formulation of different dosage forms or cosmeceutical products. PMID:27123413

  2. Can a solid FeS layer help explain Mercury's unique magnetic field?

    NASA Astrophysics Data System (ADS)

    Vilim, R.; Stanley, S.

    2014-12-01

    The origin of Mercury's weak magnetic field and displaced magnetic equator remains poorly understood. While the field is likely generated by a planetary dynamo in the iron core of Mercury, producing a weak dipolar magnetic field with a displaced magnetic equator has proven to be a challenge for dynamo modelers. Recent gravity measurements from the MESSENGER probe allow for a solid, dense layer at the base of Mercury's mantle. The authors of this study have suggested that this could be a solid layer of FeS. This solid FeS could reduce the observed field strength due to the electromagnetic skin effect. It may also affect the character of the dynamo by coupling to the fluid flow via the Lorenz force. We use a numerical dynamo model with an electrically conducting, solid mantle layer to determine whether this solid layer can help produce the strength and morphology of Mercury's magnetic field.

  3. PRESENTED MAY 10, 2005, MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  4. Total mercury loadings in sediment from gold mining and conservation areas in Guyana.

    PubMed

    Howard, Joniqua; Trotz, Maya A; Thomas, Ken; Omisca, Erlande; Chiu, Hong Ting; Halfhide, Trina; Akiwumi, Fenda; Michael, Ryan; Stuart, Amy L

    2011-08-01

    The Low Carbon Development Strategy proposed in June 2009 by the government of Guyana in response to the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries program has triggered evaluation of forest-related activities, thereby acting as a catalyst for improvements in Guyana's small- to medium-scale gold mining industry. This has also shed light on areas committed to conservation, something that has also been handled by Non Governmental Organizations. This paper compares water quality and mercury concentrations in sediment from four main areas in Guyana, two that are heavily mined for gold using mercury amalgamation methods (Arakaka and Mahdia) and two that are considered conservation areas (Iwokrama and Konashen). Fifty-three sediment and soil mercury loadings ranged from 29 to 1,200 ng/g and averaged 215 ± 187 ng/g for all sites with similar averages in conservation and mining areas. Sediment loadings are within the range seen in French Guiana and Suriname, but conservation area samples had higher loadings than the corresponding uncontaminated baselines. Type of ore and location in the mining process seemed to influence mercury loadings. Mercury sediment loadings were slightly positively correlated with pH (correlation coefficient = 0.2; p value < 0.001) whereas no significant correlations were found with dissolved oxygen or turbidity. PMID:21076999

  5. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    SciTech Connect

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  6. A comparison of devices using thermal desorption for mercury speciation in solids.

    PubMed

    Rumayor, M; Lopez-Anton, M A; Díaz-Somoano, M; Maroto-Valer, M M; Richard, J-H; Biester, H; Martínez-Tarazona, M R

    2016-04-01

    The goal of this work is to emphasize the reliability of the thermal desorption technique in identifying mercury species. The analysis of mercury species in solids is essential for assessing the risk of disposal or re-use of mercury-contaminated materials. This study evaluates the accuracy and reliability of thermal desorption as a technique for identifying mercury species by means of different thermo-desorption devices. For this purpose, mercury species present in samples related with coal utilization processes were identified. Three devices were compared for analyzing samples free of carbon or with a low carbon content (fly ashes, gypsums and soils), and a new equipment was developed to analyze samples with a high carbon content (coal). In spite of the fact that the first three devices employ different experimental conditions (i.e., heating rate, gas flow and carrier gas), the mercury species identified in the samples were comparable in all cases. The need for new equipment for mercury speciation in materials containing carbon was a consequence of interferences produced from the pyrolysis products of the organic matter. The new device consists of two furnaces and two gas inlets to allow thermal oxidation of organic pyrolysis products and the identification of mercury species in carbonaceous samples. This new approach offers the application of thermal desorption to mercury speciation in all types of materials contaminated with mercury. PMID:26838408

  7. The removal of mercury from solid mixed waste using chemical leaching processes

    SciTech Connect

    Gates, D.D.; Chao, K.K.; Cameron, P.A.

    1995-07-01

    The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I{sub 2} solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I{sub 2} leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I{sub 2}, NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass.

  8. [Mercury pollution investigation in predominant plants surrounding Shenzhen Qingshuihe municipal solid waste incineration plant].

    PubMed

    Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Wang, Jun-Jian; Hong, Yuan; Zhao, Kang-Sai; Zeng, Hui

    2009-09-15

    In order to investigate the effects of mercury emission from municipal solid waste incineration (MSWI) on the surrounding plants and soils, the mercury concentrations were examined in the plant samples including leaves and stems and the soil samples around Shenzhen Qingshuihe MSWI Plant. Results show that, these plants are significantly polluted by mercury, the mercury concentrations of the plant leaves are 0.030 9-0.246 7 mg x kg(-1), with the mean value 0.094 8 mg x kg(-1), among the local prominent plants, the mercury concentrations in the leaves are in the order of: Acacia confuse > Litsea rotundifolia > Acacia mangium > Acacia auriculaeformis > Schima superb > Ilex asprella. The mercury concentrations of the plant stems are 0.007 4-0.119 6 mg x kg(-1), with the mean value 0.041 7 mg x kg(-1). For the same plant, the mercury concentration in its leaf correlates positively with that in its stem, but presents little correlation with that in the soil where it grows. Under the direction of the dominant wind, the concentration of smoke diffusion is often influenced by the distance from the stack and the difference of terrain. The mercury concentrations of the plant leaves and stems vary almost in accordance with spatial heterogeneity patterns of smoke diffusion. These results demonstrate that the interaction of the smoke and plant leaves play the leading role in the mercury exchange between plants and environment. PMID:19927841

  9. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L.; Nittler, Larry R.; Raines, Jim M.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Starr, Richard D.; Travnicek, Pavel M.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.

  10. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Nittler, Larry R.; Raines, Jim M.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Starr, Richard D.; Travnicek, Pavel M.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  11. MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail.

    PubMed

    Slavin, James A; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel M; Zurbuchen, Thomas H

    2010-08-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of approximately 10 and typical durations are approximately 1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of substorms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines the substorm time scale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby. PMID:20647422

  12. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic.

    PubMed

    Skov, Henrik; Christensen, Jesper H; Goodsite, Michael E; Heidam, Niels Z; Jensen, Bjarne; Wåhlin, Peter; Geernaert, Gerald

    2004-04-15

    calculations were performed with and without AMDEs. For the area north of the Polar Circle, the mercury deposition increases from 89 tons/year for calculations without an AMDE to 208 tons/year with the AMDE. The 208 tons/year represent an upper limit for the mercury load to the Artic. PMID:15116843

  13. Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy

    SciTech Connect

    Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

    1999-10-19

    We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

  14. Mercury

    MedlinePlus

    ... button batteries. Mercury salts may be used in skin creams and ointments. It's also used in many industries. Mercury in the air settles into water. It can pass through the food chain and build up in ...

  15. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, ... colorless, odorless gas. It also combines with other elements to form powders or crystals. Mercury is in ...

  16. Spatial and temporal trends of mercury loadings to Michigan inland lakes

    SciTech Connect

    Matthew J. Parsons; David T. Long; Sharon S. Yohn; John P. Giesy

    2007-08-15

    Several studies of chronologies of mercury (Hg) in inland lake sediments have demonstrated that Hg accumulation decreased in recent decades. However, episodic mercury accumulation events were recorded in some of these lakes, but not investigated in detail. Recent decreases had been attributed to the reduction of regional Hg consumption and secondary removal during process waste treatment. In addition to regional sources, local sources, including watershed disturbance, might significantly contribute to Hg loading. Here, mercury chronologies of Hg loadings based on dated sediment cores are presented for 26 inland Michigan lakes. Although spatial trends of anthropogenic inventories suggest a regional pattern dominated by human activities, sub-regional to local scale sources are also found to be significant. Temporal trends show episodic Hg accumulation events superimposed on a more general, long-term trend. Episodic increases common to lakes suggest a common source or processes common to lakes. Episodic increases unique to a lake indicate a more local scale source. Similar Hg profiles from lakes that are geographically proximal provide evidence for sub-regional to regional scale sources. Local sources and pathways for mercury to inland lakes need to be more fully understood to effectively reduce Hg loading to the environment. 48 refs., 7 figs.

  17. [Distribution and assessment of mercury in the ambient soil of a municipal solid waste incinerator].

    PubMed

    Xie, Hui-Ting; Zhang, Cheng-Zhong; Xu, Feng; Li, Hai-Feng; Tian, Zhen-Yu; Tang, Chen; Liu, Wen-Bin

    2014-04-01

    The emission of mercury (Hg) from the municipal solid waste incineration has inspired widespread attention, especially regarding to the deposition of Hg in the surrounding soil, which is issued to be the potential negative factor of ambient environment and human health. This study mainly focused on the distributions of Hg in the ambient soil of a municipal solid waste incinerator located in North China. The pollution of the mercury and its risks to the local environment and human health were assessed. Results showed that Hg levels were in the range of 0.015-0.25 mg x kg(-1), with an average (0.088 +/- 0.064) mg x kg(-1). The concentrations of Hg in the soil were obviously influenced by wind direction and they were relatively higher in the northwest (downwind) comparing with that in the southeast (upwind). The Kriging interpolation method was adopted to create a contour map, which intuitively displayed a spatial mercury distribution in the soil. The regions with a higher Hg concentration are mainly distributed in the north northwest, the north northeast and the west southwest of the municipal solid waste incinerator. According to the evaluation results of single factor pollution index and geoaccumulation Index, some ambient soil samples were polluted by the mercury emission from the municipal solid waste incinerator; however, the results of the health risk assessment showed that the mercury in the soil had not pose a health hazard to the local population. PMID:24946613

  18. Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass.

    PubMed

    Zhang, Jian; Hou, Weiliang; Bao, Jie

    2016-01-01

    The review summarized the types, the geometry, and the design principle of pretreatment reactors at high solid loading of lignocellulose material. Among the reactors used, the explosion reactors and the helical stirring reactors are to be considered as the practical form for high solids loading pretreatment operation; the comminution reactors and the extruder reactors are difficult to be used as an independent unit, but possible to be used in the combined form with other types of reactors. The principles of the pretreatment reactor design at high solid loading were discussed and several basic principles for the design were proposed. This review provided useful information for choosing the reactor types and designing the geometry of pretreatment operation at the high solids loading. PMID:25757450

  19. MESSENGER Observations of Extreme Magnetic Tail Loading and Unloading During its Third Flyby of Mercury: Substorms?

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury on September 29, 2009, a variable interplanetary magnetic field produced a series of several minute enhancements of the tail magnetic field hy factors of approx. 2 to 3.5. The magnetic field flaring during these intervals indicates that they result from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30% of the magnetic flux emanating from Mercury, and may have reached 100% for the largest event. In this case the dayside magnetic shielding is reduced and solar wind flux impacting the surface may be greatly enhanced. Despite the intensity of these events and their similarity to terrestrial substorm magnetic flux dynamics, no energetic charged particles with energies greater than 36 keV were observed.

  20. Emissions of air-borne mercury from five municipal solid waste landfills in Guiyang and Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Z.-G.; Feng, X.; Li, P.; Liang, L.; Tang, S.-L.; Wang, S.-F.; Fu, X.-W.; Qiu, G.-L.; Shang, L.-H.

    2010-04-01

    China disposes of bulk Municipal Solid Waste (MSW) by landfilling, resulting in a large quantity of mercury that enters landfills through waste. A detailed study on atmospheric mercury emissions from MSW landfills in China is necessary to understand mercury behavior from this source. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in Landfill Gas (LFG) were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate increased the magnitude of mercury emissions, with the highest emission rate measured at the working face and in uncovered waste areas, and the lowest measured near soil covers and vegetated areas. Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total Gaseous Mercury (TGM) in LFG varied from 2.0 to 1406.0 ng m-3, Monomethyl Mercury (MMHg) and Dimethyl Mercury (DMHg) in LFG averaged at 1.93 and 9.21 ng m-3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3300 g yr-1, with the highest from the working face, then soil covering, and finally the vent pipes.

  1. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    USGS Publications Warehouse

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189

  2. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    SciTech Connect

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  3. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  4. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry

    PubMed Central

    Zelinková, Hana; Červenka, Rostislav; Komárek, Josef

    2012-01-01

    Tetramethylene dithiocarbamate (TMDTC), diethyldithiocarbamate (DEDTC), and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS). These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK) extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L−1 TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants. PMID:22654606

  5. Stabilizing agents for calibration in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry.

    PubMed

    Zelinková, Hana; Červenka, Rostislav; Komárek, Josef

    2012-01-01

    Tetramethylene dithiocarbamate (TMDTC), diethyldithiocarbamate (DEDTC), and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS). These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK) extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L(-1) TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants. PMID:22654606

  6. Mercury

    MedlinePlus

    ... be found in: Batteries Chemistry labs Some disinfectants Folk remedies Red cinnabar mineral Organic mercury can be ... heart tracing Fluids through a vein (by IV) Medicine to treat symptoms The type of exposure will ...

  7. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    SciTech Connect

    1999-03-01

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  8. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  9. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.

    PubMed

    Lee, Sung-Woo; Lowry, Gregory V; Hsu-Kim, Heileen

    2016-02-01

    Mercury (Hg) is present in a variety of solid wastes including industrial wastes, household products, consumer electronics, and medical wastes, some of which can be disposed in conventional landfills. The presence of this neurotoxic metal in landfills is a concern due to the potential for it to leach or volatilize from the landfill and impact local ecosystems. The objective of this review is to describe general practices for the disposal of mercury-bearing solid wastes, summarize previous studies on the release of mercury from landfills, and delineate the expected transformations of Hg within landfill environments that would influence transport of Hg via landfill gas and leachate. A few studies have documented the emissions of Hg as landfill gas, primarily as gaseous elemental Hg(0) and smaller amounts as methylated Hg species. Much less is known regarding the release of Hg in leachate. Landfill conditions are unique from other subsurface environments in that they can contain water with very high conductivity and organic carbon concentration. Landfills also experience large changes in redox potential (and the associated microbial community) that greatly influence Hg speciation, transformations, and mobilization potential. Generally, Hg is not likely to persist in large quantities as dissolved species, since Hg(0) tends to evolve in the gas phase and divalent Hg(ii) sorbs strongly to particulate phases including organic carbon and sulfides. However, Hg(ii) has the potential to associate with or form colloidal particles that can be mobilized in porous media under high organic carbon conditions. Moreover, the anaerobic conditions within landfills can foster the growth of microorganisms that produced monomethyl- and dimethyl-Hg species, the forms of mercury with high potential for bioaccumulation. Much advancement has recently been made in the mercury biogeochemistry research field, and this study seeks to incorporate these findings for landfill settings. PMID:26745831

  10. New solid-phase-nanoscavenger for the analytical enrichment of mercury from water.

    PubMed

    Khdary, Nezar H; Howard, Alan G

    2011-07-21

    A nanoscavenger of mercaptopropyl-modified silica microparticles has been developed for the determination of trace levels of mercury(II) in water. The synthesis of silica microparticles nanoscavengers is carried out by modification of pre-formed silica particles with mercaptopropyltrimethoxysilane or by incorporating the thiol modification agent during the growth of the silica particles. The silica nanoscavengers were characterized by SEM, TGA, particle analyzer, IR and the parameters influencing the extraction and recovery phases of the preconcentration process were performed by AAS. The results show that careful choice of particle size and surface characteristics produce a new mercapto-silica-nanoscavenger that disperses in water as a quasi-stable sol. This permits the facile recovery of the mercury-loaded nanoscavenger particles. No agitation is required during the mercury extraction as the dispersion is maintained by Brownian motion and slow gravitational sedimentation. The technique overcomes a number of problems, such as cross-contamination and decreases in mercury concentration during sample transportation to the laboratory. Recovery achieved reaches >97 ± 4% over a wide range of preconcentration factors. At a preconcentration factor of 50 the limit of detection (3σ) was 0.19 ng mL(-1). The method is environmentally friendly as only 300 mg of mercapto-nanoscavenger is used, no organic solvent is required for the extraction and the experiment is performed without the need for manual or mechanical agitation. PMID:21655605

  11. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. PMID:20713298

  12. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  13. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  14. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-05-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1-x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1-x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1-x Cd x Te etch rate. It is also observed that the exposed Hg1-x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1-x Cd x Te etch rate. Further, the exposed Hg1-x Cd x Te area is shown to affect the etch rate of the Hg1-x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1-x Cd x Te are listed, herein.

  15. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA

    USGS Publications Warehouse

    David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.

    2009-01-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.

  16. Calculating mercury loading to the tidal Hudson River, New York, using rating curve and surrogate methodologies

    USGS Publications Warehouse

    Wall, G.R.; Ingleston, H.H.; Litten, S.

    2005-01-01

    Total mercury (THg) load in rivers is often calculated from a site-specific "rating-curve" based on the relation between THg concentration and river discharge along with a continuous record of river discharge. However, there is no physical explanation as to why river discharge should consistently predict THg or any other suspended analyte. THg loads calculated by the rating-curve method were compared with those calculated by a "continuous surrogate concentration" (CSC) method in which a relation between THg concentration and suspended-sediment concentration (SSC) is constructed; THg loads then can be calculated from the continuous record of SSC and river discharge. The rating-curve and CSC methods, respectively, indicated annual THg loads of 46.4 and 75.1 kg for the Mohawk River, and 52.9 and 33.1 kg for the upper Hudson River. Differences between the results of the two methods are attributed to the inability of the rating-curve method to adequately characterize atypical high flows such as an ice-dam release, or to account for hysteresis, which typically degrades the strength of the relation between stream discharge and concentration of material in suspension. ?? Springer 2005.

  17. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.

    PubMed

    Chen, Laiguo; Liu, Ming; Fan, Ruifang; Ma, Shexia; Xu, Zhencheng; Ren, Mingzhong; He, Qiusheng

    2013-03-01

    The potential for Hg release during municipal solid waste incineration (MSWI) is attracting increased attention due to high volume of municipal waste being treated by incineration in China. Emission amounts have been estimated using emission factors developed for other countries. To fine tune our emission estimate total mercury (THg) and mercury speciation were measured using isokinetic sampling in eight plants, of which six used grate furnace combustor (GFC) and two circulation fluidized bed combustors (CFBCs). Results showed that average THg concentration (19.5 ± 13.6 μg/Nm) in flue gas at the facilities that used CFBC was significantly lower than that at those using GFC (51.4 ± 28.3 μg/Nm, p=0.002). Gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM, Hg), and particulate mercury (Hg) represented 95.5 ± 3.8%, 4.1 ± 3.9% and 0.4 ± 0.3% in GFC, and 63.8 ± 8.6%, 33.6 ± 10.5% and 2.6 ± 1.9% in CFBC, respectively. The measured average THg emission factor for the 8 MSWI plants was 208 ± 130 mg/t in the Pearl River Delta (PRD) region, with 217 ± 158 mg/t and 188 ± 17.7 mg/t were from GFC and CFBC, respectively. Using the average emission factor the estimated total mercury emissions from MSWI were 4.67 ± 2.91 t in China, and 770 ± 65.5 kg in the PRD region in 2010. Of these, 4240 ± 210 kg, 408 ± 231 kg and 14.8 ± 14.1 kg, and 688 ± 37 kg, 78.9 ± 40.6 kg and 3.2 ± 3.0 kg were GOM, Hg, and Hg, respectively. Mercury emissions will continue to increase as the amounts of MSW being incinerated increases. PMID:23410861

  18. Implications of Dynamic Loading and Changing Climate on Mercury Bioaccumulation in a Planktivorous Fish (Orthodon microlepidotus)

    NASA Astrophysics Data System (ADS)

    Carroll, R. W. H.; Flickinger, A.; Warwick, J. J.; Schumer, R.

    2015-12-01

    A bioenergetic and mercury (Hg) mass balance (BioHg) model is developed for the Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in northern California and Nevada. Attention focuses on the Lahontan Reservoir in northern Nevada, which receives a strong temporally varying load of dissolved methylmercury (DMeHg) from the Carson River. Hg loads are the result of contaminated bank erosion during high flows and diffusion from bottom sediments during low flows. Coupling of dynamic reservoir loading with periods of maximum plankton growth and maximum fish consumption rates are required to explain the largest body burdens observed in the planktivore. In contrast, the large body burdens cannot be achieved using average water column concentrations. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. These are used to drive a fully dynamic Hg transport model to assess changes in contaminant loading to the reservoir and implications on planktivorous bioaccumulation. Model results suggest the future loads of DMeHg entering the Lahontan Reservoir will decrease most significantly in the spring and summer due to channel width increases and depth decreases in the Carson River which reduce bank erosion over the century. The modeled concentrations of DMeHg in the reservoir are expected to increase during the summer due to a decrease in reservoir volume affecting the concentrations more than the decrease in loads, and the model results show that bioaccumulation levels may increase in the upstream sections of the reservoir while maintaining contamination levels above the federal action limit for human consumption in the lower reservoir.

  19. Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury

    SciTech Connect

    Orth, C., LLNL

    1998-02-23

    We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

  20. Removal of mercury from solids using the potassium iodide/iodine leaching process

    SciTech Connect

    Klasson, K.T.; Koran, L.J. Jr.; Gates, D.D.; Cameron, P.A.

    1997-12-01

    Potassium iodide (KI) and iodine (I{sub 2}) leaching solutions have been evaluated for use in a process for removing mercury from contaminated mixed waste solids. Most of the experimental work was completed using surrogate waste. During the last quarter of fiscal year 1995, this process was evaluated using an actual mixed waste (storm sewer sediment from the Oak Ridge Y-12 Site). The mercury content of the storm sewer sediment was measured and determined to be approximately 35,000 mg/kg. A solution consisting of 0.2 M I{sub 2} and 0.4 M KI proved to be the most effective leachant used in the experiments when applied for 2 to 4 h at ambient temperature. Over 98% of the mercury was removed from the storm sewer sediment using this solution. Iodine recovery and recycle of the leaching agent were also accomplished successfully. Mathematical model was used to predict the amount of secondary waste in the process. Both surrogate waste and actual waste were used to study the fate of radionuclides (uranium) in the leaching process.

  1. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    USGS Publications Warehouse

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Predicted incremental loads were cascaded down through the reach network, with loads accumulating from reach to reach. For most stream reaches, the entire incremental load of dissolved solids delivered to the reach was transport

  2. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources.

    PubMed

    Domagalski, Joseph; Majewski, Michael S; Alpers, Charles N; Eckley, Chris S; Eagles-Smith, Collin A; Schenk, Liam; Wherry, Susan

    2016-10-15

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg. PMID:27015962

  3. Modeling Watershed Mercury Response to Atmospheric Loadings: Response Time and Challenges

    EPA Science Inventory

    The relationship between sources of mercury to watersheds and its fate in surface waters is invariably complex. Large scale monitoring studies, such as the METAALICUS project, have advanced current understanding of the links between atmospheric deposition of mercury and accumulat...

  4. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  5. DIRECT MERCURY ANALYSIS IN ENVIRONMENTAL SOLIDS BY ICPMS WITH ON-LINE SAMPLE ASHING AND MERCURY PRE-CONCENTRATION USING THE DIRECT MERCURY ANALYZER

    EPA Science Inventory



    A Direct Mercury Analyzer based on sample combustion and mercury concentration by gold amalgamation, followed by atomic absorption determination, was interfaced with a quadrupole and a magnet sector ICPMS. In this paper, we discuss design and operating parameters and eval...

  6. Formulation and evaluation of verapamil hydrochloride loaded solid lipid microparticles.

    PubMed

    Pilaniya, U; Pilaniya, K; Chandrawanshi, H K; Gupta, N; Rajput, M S

    2011-01-01

    The present study aimed to produce verapamil hydrochloride-loaded solid lipid microparticles (SLM) by the w/o/w emulsion solvent evaporation technique, using diethyl ether as solvent phase, glyceryl monostearate as biodegradable polymer and Span 60 as surfactant. SLM of spherical shape were prepared by simple dilution of the emulsion with water. To increase the lipid load the process was conducted at 50 degrees C, and in order to reach sub-micron size, a high-shear homogenizer was used. The encapsulation efficiency of prepared SLM reached 74.29 +/- 0.76%. Particle size (98.55 +/- 1.42 microm), surface morphology (spherical) and drug loading efficiency (18.57 +/- 1.25% w/w) were investigated. And optimization of drug polymer ratio (3:1), nature and concentration of emulsion stabilizer in the external aqueous (0.1%), phase viscosity of external aqueous phase (0.5%), volume of external aqueous phase and stirring rate (1000 rpm) were detected. Analysis of microsphere content after processing showed that verapamil did not undergo any chemical modification within the micro-particles. The in-vitro release of verapamil from the microparticles was very low and an initial burst effect of 17% of the dose was observed. The slow release may help to avoid a high frequency of administration. The prepared solid lipid microparticles appear to have interesting perspectives as delivery systems for the oral administration of verapamil hydrochloride with improved half-life, improved bioavailability, and minimized local and systemic gastrointestinal disturbances of the drug. PMID:21391431

  7. Solid freeform fabrication of highly loaded composite materials

    NASA Astrophysics Data System (ADS)

    Souvignier, Chad William

    Composites are known for their unique blend of modulus, strength, and toughness. This study focuses on two types of composites; organic-inorganic hybrids and the mineralization of highly swollen polymer gels. Both of these composite systems mimic the biological process of composite formation, known as biomineralization. Biomineralization allows for the control of the precipitating phase through an interaction with the organic matrix. This allows higher volume fractions of inorganic material than can be achieved by many traditional processing techniques. Solid freeform fabrication is a processing method that builds materials by the sequential addition of thin layers. As long as the material can easily be converted from a liquid to a solid, it should be amenable for this processing technique. Freeform fabrication has three distinctions from traditional processing techniques that may enable the formation of composite materials with improved mechanical properties. These are the sequential addition of layers, which allows a layer by layer influence of chemistry, the ability to form complex geometries, and finally, extrusion freeform fabrication has been shown to align fibers due to the extrusion of the slurry through a needle. Cracking and shrinkage still play a major role in forming solid parts. The use of an open mesh structure in combination with proper materials selection allowed the formation of highly loaded composite materials without cracking. The modulus values of these materials ranged from 0.1 GPa to 6.0 GPa. The mechanical properties of these materials were modeled.

  8. Nonlinear wave propagation in constrained solids subjected to thermal loads

    NASA Astrophysics Data System (ADS)

    Nucera, Claudio; Lanza di Scalea, Francesco

    2014-01-01

    The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.

  9. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    NASA Astrophysics Data System (ADS)

    Qin, Deyuan; Gao, Feng; Zhang, Zhaohui; Zhao, Liqian; Liu, Jixin; Ye, Jianping; Li, Junwei; Zheng, Fengxi

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C18 SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L- 1 and 0.08 ng L- 1 with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples.

  10. Comparison of Mercury Mass Loading in Streams to Wet and Dry Atmospheric Deposition in Watersheds of the Western US: Evidence for Non-Atmospheric Mercury Sources

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.

    2015-12-01

    Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.

  11. Concentrations and estimated loads of nutrients, mercury, and polychlorinated biphenyls in selected tributaries to Lake Michigan, 2005-6

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2010-01-01

    The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.

  12. Heat Loads at High Temperature Protection Diodes for a Mercury Mission

    NASA Astrophysics Data System (ADS)

    Reul, S.; Zimmermann, W.; Strobl, G. F. X.; La Roche, G.; Baur, C.

    2008-09-01

    In the frame of the BepiColombo project (see Fig. 1) the solar generators have to withstand the environment near Mercury. Thus all components must withstand an solar irradiation of 10 solar constants or 13.67 kW/m2;. Due to manoeuvres it can happen, that e.g. solar cells will be shadowed or all cell interconnections can fail. To prevent the solar cells from operating in reverse a high temperature protection shunt diode is foreseen for each GaInP/GaInAs/Ge solar cell. This paper reports about first computations of the temperature distributions for different load cases with useful assumptions for the generator structure, sizes/shapes, etc. Also the main temperature influencing parameter and some useful consequences for a high temperature design of a solar generator and Si-diodes will be discussed. The work is part of the ESA contract 19739/06/NL/JD. The Si-diode layout is proposed by AZUR SPACE solar power, Heilbronn.

  13. Protocol to Reconstruct Historical Contaminant Loading to Large Lakes: The Lake Michigan Sediment Record of Mercury

    EPA Science Inventory

    Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...

  14. Methylation and Release of Mercury From the Solid Phase. What Comes First?

    NASA Astrophysics Data System (ADS)

    Regnell, O.

    2004-05-01

    It is a well-known fact that methylation leads to a dramatic increase in the bioavailability of mercury (Hg). All recent observations support the notion that Hg methylation is almost exclusively an anaerobic process. According to the reigning paradigm, methylation of Hg takes place in the cytoplasm of anaerobic bacteria, notably sulfate-reducing bacteria. It is believed that certain forms of inorganic divalent Hg (Hg(II)), can readily diffuse across the cell membrane. In addition, a recent study suggested that active uptake may occur when Hg is bound to low weight organic molecules. In the cytoplasm, cobalamin-dependent biochemical pathways, designed to methylate substrates other than Hg(II), are held responsible for the methylation of Hg(II). However, recent results from studies in a Swedish wetland (within the project "Svartsjoprojektet", aiming at understanding Hg dynamics in a Hg-polluted river-lake system) have led us to question whether Hg methylation does occur exclusively within cells. A provocative interpretation of our results is that methylation preceded the release of Hg from the solid phase, e.g. that Hg(II) sorbed to solid surfaces was methylated and subsequently released as methyl Hg to the sulfidic water. I will discuss this possibility in light of existing evidence that Hg methylation is an intra cellular process.

  15. Crack instability of ferroelectric solids under alternative electric loading

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Sen; Wang, He-Ling; Pei, Yong-Mao; Wei, Yu-Jie; Liu, Bin; Fang, Dai-Ning

    2015-08-01

    The low fracture toughness of the widely used piezoelectric and ferroelectric materials in technological applications raises a big concern about their durability and safety. Up to now, the mechanisms of electric-field induced fatigue crack growth in those materials are not fully understood. Here we report experimental observations that alternative electric loading at high frequency or large amplitude gives rise to dramatic temperature rise at the crack tip of a ferroelectric solid. The temperature rise subsequently lowers the energy barrier of materials for domain switch in the vicinity of the crack tip, increases the stress intensity factor and leads to unstable crack propagation finally. In contrast, at low frequency or small amplitude, crack tip temperature increases mildly and saturates quickly, no crack growth is observed. Together with our theoretical analysis on the non-linear heat transfer at the crack tip, we constructed a safe operating area curve with respect to the frequency and amplitude of the electric field, and validated the safety map by experiments. The revealed mechanisms about how electro-thermal-mechanical coupling influences fracture can be directly used to guide the design and safety assessment of piezoelectric and ferroelectric devices.

  16. Quantifying Nutrient and Mercury Concentrations and Loads in Lake Tahoe Snowpack

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Obrist, D.; Schumer, R.

    2012-12-01

    Recent climate models predict a large decrease in Sierra Nevada snowpack over the next fifty years as a result of climate change. This decrease will not only affect the hydrologic balance but also change inputs of nutrients and pollutants through atmospheric deposition. In the Lake Tahoe basin, winter precipitation dominates and snowfall provides approximately 70 percent of the annual water input. From the first snowfall until the end of melting, snowpack acts as a temporary storage for atmospheric deposition that accumulates throughout winter and spring. Through melt and runoff processes, these nutrients and pollutants can enter the aquatic ecosystem where they can have detrimental effects on lake clarity and health. Most previous studies in this basin have focused on direct atmospheric deposition loads to the lake surface, and little temporal and spatial information is available on the dynamics of atmospheric deposition in the basin's snowpack. We here present nitrogen (N), phosphorus (P), and mercury (Hg) concentrations and pool sizes in snowpack along two elevational transects in the Tahoe Basin from January to April of 2012. Total N and P concentrations in the snowpack ranged from 0.07 mg/L to 0.38 mg/L and 0.003 mg/L to 0.109 mg/L, respectively. P concentrations showed strong increases from the west-side to the east-side of the basin which we attribute to local (e.g., urban or road-dust), in-basin sources that are distributed along the dominant west-wind patterns. N species, on the other hand, generally showed little spatial trends, indicating that its sources were more diffuse and possibly from out-of- basin. Hg concentrations ranged from 0.81 ppt to 6.25 ppt and showed similar spatial patterns as N. Hg, however, also showed significant snowpack concentration decreases during storm-free periods which we attribute to gaseous losses of Hg back to the atmosphere from photochemical reduction. These emissions are further supported by lower Hg concentrations in

  17. DIRECT MERCURY ANALYSIS IN ENVIRONMENTAL SOLIDS BY ICPMS WITH ON-LINE SAMPLE ASHING AND MERCURY PRECONCENTRATION USING A DIRECT MERCURY ANALYZER

    EPA Science Inventory

    Mercury is a persistent, mobile, and highly toxic pollutant. It's biogeochemistry is probably the most complex of any metal. For these reasons, the U.S. Environmental Protection Agency (EPA), through its Office of Research and Development (ORD), has developed a comprehensive res...

  18. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-01

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere. PMID:26024429

  19. Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions

    SciTech Connect

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  20. DMPS (DIMAVAL) as a challenge test to assess the mercury and arsenic body/kidney load in humans and as a treatment of mercury toxicity

    SciTech Connect

    Aposhian, H.V.; Maiorino, R.M.; Aposhian, M.M.; Hurlbut, K.M.

    1996-12-31

    Mercury is an element which, with its compounds, is hazardous and is found in hazardous wastes. In Order to develop suitable diagnostic and therapeutic agents for mercury exposure, we have sought alternative test systems. We have used the chelating agent 2,3-dimercaptopropane-1-sulfonate (DMPS, DIMAVAL{reg_sign}) for estimating the body burden of mercury in normal humans and in dental personnel in a developing country, and for detoxifying humans with mercurous chloride exposure. Use of the DMPS-mercury challenge test has shown that two-thirds of the mercury excreted in the urine of volunteers with dental amalgams appears to be derived from the mercury vapor released from their amalgams. The DMPS challenge test (300 mg, by mouth, after an 11 hr fast) was useful for monitoring dental personnel for mercury vapor exposure. The DMPS challenge test was given to 11 factory workers who make a skin lotion that contains mercurous chloride, 8 users of the skin lotion, and 9 controls. The increases in urinary Hg resulting from the DMPS challenge were 45, 87, and 38-fold, respectively. The results demonstrate that in humans exposed to mercurous chloride, the DMPS-mercury challenge test is of value for a more realistic estimation of mobilizable Hg. DMPS should be considered for use to determine mercury body burdens and to treat humans exposed to mercury and its compounds via exposure to hazardous wastes. 42 refs., 2 figs., 5 tabs.

  1. Heat loading limits for solid transuranic wastes storage

    SciTech Connect

    Spatz, T.L.

    1993-07-01

    Heat loading limits have been established for four storage configurations of TRU wastes. The calculations were performed assuming the worst case scenario whereby all the heat generated within a drum was generated within one ``cut`` and that this cut was located in the very center of the drum. Poly-boxes containing one HEPA filter were assumed to have a uniform heat generation throughout the filter. The maximum allowable temperatures were based on the materials in the containers. A comparison between the drum center temperature for a uniform heat load distribution and for the center temperature when the heat load is confined to one cut in the center of the drum is also illustrated. This comparison showed that the heat load of a particular drum can be more than doubled by distributing the sources of heat uniformly throughout the container.

  2. Insentropic compression of solid using pulsed magnetic loading

    SciTech Connect

    HALL,CLINT A.; ASAY,JAMES R.; STYGAR,WILLIAM A.; SPIELMAN,RICK B.; ROSENTHAL,STEPHEN E.; KNUDSON,MARCUS D.; REISMAN,D.; TOOR,A.; CAUBLE,R.; HAYES,D.B.

    2000-04-18

    Shock loading techniques are often used to determine material response along a specific pressure loading curve referred to as the Hugoniot. However, many technological and scientific applications require accurate determination of dynamic material response that is off-Hugoniot, covering large regions of the equation-of-state surface. Unloading measurements from the shocked state provide off-Hugoniot information, but experimental techniques for measuring compressive off-Hugoniot response have been limited. A new pulsed magnetic loading technique is presented which provides previously unavailable information on isentropic loading of materials to pressures of several hundred kbar. This smoothly increasing pressure loading provides a good approximation to the high-pressure material isentrope centered at ambient conditions. The approach uses high current densities to create ramped magnetic loading to a few hundred kbar over time intervals of 100--200 ns. The method has successfully determined the isentropic mechanical response of copper to about 200 kbar and has been used to evaluate the kinetics of the alpha-epsilon phase transition occurring in iron at 130 kbar. With refinements in progress, the method shows promise for performing isentropic compression experiments to multi-Mbar pressures.

  3. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, U.S.A.

    PubMed

    David, Nicole; McKee, Lester J; Black, Frank J; Flegal, A Russell; Conaway, Christopher H; Schoellhamer, David H; Ganju, Neil K

    2009-10-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, U.S.A., via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n=78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 +/- 22 kg (n=5) in water year (WY) 2002 to 470 +/- 170 kg (n=25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. PMID:19499967

  4. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes.

    PubMed

    Yan, Yi-Dong; Sung, Jun Ho; Kim, Kun Kook; Kim, Dong Wuk; Kim, Jong Oh; Lee, Beom-Jin; Yong, Chul Soon; Choi, Han-Gon

    2012-01-17

    With the aim of developing a novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes, various valsartan-loaded solid dispersions were prepared with water, hydroxypropyl methylcellulose (HPMC) and sodium lauryl sulphate (SLS). Effects of the weight ratios of SLS/HPMC and carrier/drug on both the aqueous solubility of valsartan and the drug-release profiles of solid dispersions were investigated. The physicochemical properties of solid dispersions were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The bioavailability of the solid dispersions in rats was evaluated compared to valsartan powder and a commercial product (Diovan). Unlike the conventional solid dispersion system, the valsartan-loaded solid dispersion had a relatively rough surface and did not change the crystalline form of the drug. It was suggested that the solid dispersions were formed by attaching hydrophilic carriers to the surface of the drug, thus changing from a hydrophobic to a hydrophilic form without changing the crystalline form. The drug-loaded solid dispersion composed of valsartan/HPMC/SLS at a weight ratio of 3/1.5/0.75 improved the drug solubility by about 43-fold. It gave a higher AUC, C(max) and shorter T(max) compared to valsartan powder and the commercial product. The solid dispersion improved the bioavailability of the drug in rats by about 2.2 and 1.7-fold in comparison with valsartan powder and the commercial product, respectively. Thus, the valsartan-loaded solid dispersion would be useful for delivering poorly water-soluble valsartan with enhanced bioavailability and no crystalline changes. PMID:22085435

  5. Dissolved-solids loads discharged from irrigated areas near Manila, Utah, May 2007-October 2012, and relation of loads to selected variables

    USGS Publications Warehouse

    Thiros, Susan A.; Gerner, Steven J.

    2015-01-01

    Irrigation improvements began to be implemented in 2007 to reduce dissolved-solids loads discharged from the MWSP area. The theoretical annual net dissolved-solids load where the cumulative NRCS calculated dissolved-solids load reduction is added to the net MWSP dissolved-solids load is what would be expected if there was no irrigation improvement in the area associated with the MWSP. The theoretical data points lie very near the baseline representing the pre-MWSP dissolved-solids load to canal streamflow relation. The proximity of the theoretical data points to the baseline shows that the NRCS calculations of reduction in dissolved-solids load are generally supported by the data collected during this study.

  6. TRICKLING FILTER/SOLIDS CONTACT PERFORMANCE WITH ROCK FILTERS AT HIGH ORGANIC LOADINGS

    EPA Science Inventory

    The performance of the trickling filter/solids contact (TF/SC) process at high organic loadings was studied at the Morro Bay-Cayucos treatment plant. The average secondary effluent TSS increased only slightly (from 13 mg/L to 15 mg/L) when the filter BOD5 loading was doubled from...

  7. The Molecular Bacterial Load Assay Replaces Solid Culture for Measuring Early Bactericidal Response to Antituberculosis Treatment

    PubMed Central

    Mtafya, Bariki; Phillips, Patrick P. J.; Hoelscher, Michael; Ntinginya, Elias N.; Kohlenberg, Anke; Rachow, Andrea; Rojas-Ponce, Gabriel; McHugh, Timothy D.; Heinrich, Norbert

    2014-01-01

    We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form. PMID:24871215

  8. High strain rate loading of polymeric foams and solid plastics

    NASA Astrophysics Data System (ADS)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  9. Modeling and experimental validation on pressure drop in a reverse-flow cyclone separator at high inlet solid loading

    NASA Astrophysics Data System (ADS)

    Wu, Xuezhi; Liu, Jie; Xu, Xiang; Xiao, Yunhan

    2011-08-01

    High inlet solid loading is one of the most important features of cyclone separators in high density circulating fluidized beds (CFB). In this work, the effect of high solid loading on pressure drop in a reverse-flow cyclone was experimentally studied. The particles used were sand and γ-Al2O3. An extended range of inlet solid loadings ( M), up to 30 kg of solids/ kg of air was tested at different inlet air velocities ( V in=16˜24 m/s), well beyond the solid loading range reported before. The experiments showed that, in the tested range of solid loadings, the cyclone pressure drop decreased dramatically with increasing solid loading when M<7.5 kg/kg and then almost remained constant. A new semi-empirical model for predicting cyclone pressure drop was also developed. The calculated and experimental results showed good agreement for particle free flow and particle laden flow.

  10. Mercury speciation analysis in sea water by solid phase microextraction?gas chromatography?inductively coupled plasma mass spectrometry using ethyl and propyl derivatization. Matrix effects evaluation

    NASA Astrophysics Data System (ADS)

    Bravo-Sánchez, Luis R.; Ruiz Encinar, Jorge; Fidalgo Martínez, José I.; Sanz-Medel, Alfredo

    2004-01-01

    An approach to the speciation analysis of mercury in sea-water samples at sub-ppt levels by means of the hyphenation of solid phase microextraction to gas chromatography-inductively coupled plasma mass spectrometry was developed. Blank values turned out to be the limiting factor for lower detection limits of inorganic mercury. Thus, all the reagents were thoroughly cleaned using laboratory made microcolumns packed with 8-hydroxyquinoline on TSK gel. Sodium tetrapropylborate (NaBPr 4) synthesized for the purpose of derivatization of the mercury species resulted in better analytical performances of the method, probably due to lower mercury contamination, than commercial sodium tetraethylborate (NaBEt 4). Detection limits down to a few picogram per liter for both mercury and methylmercury were obtained using NaBPr 4. The high salt content of sea-water samples was responsible for strong matrix effects, which were overcome by using standards additions to the samples. The validation of the methodology was carried out by direct comparison of the results for inorganic mercury with those obtained using a flow injection system followed by preconcentration/trapping of the species and its detection by atomic absorption spectrometry. The proposed method was applied to the determination of mercury and methylmercury in coastal sea-water samples from Gijón (Asturias, Spain) and results obtained are discussed in the light of the butyltin levels previously determined in the same area.

  11. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated. PMID:15363516

  12. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy)

    USGS Publications Warehouse

    Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.

    2014-01-01

    Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.

  13. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry.

    PubMed

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin

    2016-03-01

    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques. PMID:26828416

  14. Space shuttle solid rocket booster water entry cavity collapse loads

    NASA Technical Reports Server (NTRS)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  15. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h. PMID:25403026

  16. Mercury loading and methylmercury production and cycling in high-altitude lakes from the Western United States

    USGS Publications Warehouse

    Krabbenhoft, David P.; Olson, Mark L.; DeWild, John F.; Clow, David W.; Striegl, Rob; Dornblaser, Mark M.; Van Metre, Peter C.

    2002-01-01

    Studies worldwide have shown that mercury (Hg) is a ubiquitous contaminant, reaching even the most remote environments such as high-altitude lakes via atmospheric pathways. However, very few studies have been conducted to assess Hg contamination levels of these systems. We sampled 90 mid-latitude, high-altitude lakes from seven national parks in the western United States during a four-week period in September 1999. In addition to the synoptic survey, routine monitoring and experimental studies were conducted at one of the lakes (Mills Lake) to quantify MeHg fluxrates and important process rates such as photo-demethylation. Results show that overall, high-altitude lakes have low total mercury (HgT) and methylmercury (MeHg) levels (1.07 and 0.05 ng L-1, respectively), but a very good correlation of Hg to MeHg (r2= 0.82) suggests inorganic Hg(II) loading is a primary controlling factor of MeHg levels in dilute mountain lakes. Positive correlations were also observed for dissolved organic carbon (DOC) and both Hg and MeHg, although to a much lesser degree. Levels of MeHg were similar among the seven national parks, with the exception of Glacier National Park where lowerconcentrations were observed (0.02 ng L-1), and appear to be related to naturally elevated pH values there. Measured rates ofMeHg photo-degradation at Mills Lake were quite fast, and this process was of equal importance to sedimentation and stream flow for removing MeHg. Enhanced rates of photo-demethylation are likely an important reason why high-altitude lakes, with typically high water clarity and sunlight exposure, are low in MeHg.

  17. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and

  18. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  19. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer

  20. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles.

    PubMed

    Jee, Jun-Pil; Lim, Soo-Jeong; Park, Jeong-Sook; Kim, Chong-Kook

    2006-06-01

    Loading of drugs into the solid matrix of solid lipid nanoparticles (SLNs) can be one of effective means to protect them against chemical degradation. In this study, the SLNs for all-trans retinol (AR) were formulated to improve the stability of AR, whose chemical instability has been a limiting factor in its clinical use. First of all, the physicochemical properties of AR-loaded SLNs, including mean particle diameter and zeta potential, were modulated by changing the total amount of surfactant mixture and the mixing ratio of eggPC and Tween 80 as surfactant mixture. The AR-loaded SLNs formulation was irradiated with a 60-W bulb to investigate the photostability. The extent of photodegradation was measured by high-performance liquid chromatography. The mean particle diameter and zeta potential of the smallest SLNs were 96 nm and -28 mV, respectively. The loading of AR in optimized SLNs formulations rather decelerated the degradation of AR, compared with AR solution dissolved in methanol. Our subsequent study showed that the co-loading of antioxidants greatly enhanced the stability of AR loaded in SLNs, compared with those loaded in SLNs without antioxidant. The photostability at 12 h of AR in SLNs was enhanced folds (43% approximately) higher than that in methanol solution (about 11%). Furthermore, the protecting effect of antioxidants was greatly dependent on the type of antioxidant. Taken together, AR could be effectively stabilized by being loaded in SLNs together with an antioxidant BHT-BHA. PMID:16527470

  1. Adsorption of sodium polyacrylate in high solids loading calcium carbonate slurries.

    PubMed

    Taylor, Joshua J; Sigmund, Wolfgang M

    2010-01-15

    The adsorption of sodium polyacrylate (NaPAA) in slurries with up to 75 wt.% calcium carbonate was investigated with the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and adsorption of probe molecules. Analysis of the IR spectra demonstrated that the carboxylate groups of NaPAA adsorbed onto ground calcium carbonate (GCC) in three different modes. These modes were shown to be dependent on the solids loading and age of the slurry. Further investigation lead to the determination of the chelating ability of NaPAA at high solids loading. PMID:19875128

  2. User's manual for estimation of dissolved-solids concentrations and loads in surface water

    USGS Publications Warehouse

    Liebermann, T.D.; Middelburg, R.F.; Irvine, S.A.

    1987-01-01

    Dissolved solids in surface water are an important indicator of overall water quality. Ordinarily, dissolved-solids concentrations and loads are estimated by indirect methods that are based on periodic chemical analyses. Three computer programs , FLAGIT, DVCOND, and SLOAD, were developed to provide a consistent and accurate method of estimating dissolved-solids concentrations and loads. FLAGIT retrieves daily values of specific conductance and discharge and periodic water quality analyses from the U.S. Geologic Survey 's National Water Data Storage and Retrieval System data base, deletes incomplete data, and flags possible data errors. DVCOND fills in missing daily values of specific conductance, when appropriate, by linear interpolation. Using water quality data, SLOAD computes 3 yr moving regressions of dissolved-solids loads as a function of specific conductance and discharge. SLOAD then applies the regression coefficients to the daily values data to estimate daily dissolved-solids loads that are summed by month and by year. Separate regressions are used to estimate the mass fractions of six major ions. The theoretical basis and underlying assumptions of the procedures are presented, with documentation of the programs and their use. (USGS)

  3. Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet.

    PubMed

    Cho, Jung Hyun; Kim, Yong-Il; Kim, Dong-Wuk; Yousaf, Abid Mehmood; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2014-04-11

    The goal of this research was to develop a novel prolonged release tablet bioequivalent to the commercial sustained release capsule. A number of tacrolimus-loaded fast-dissolving solid dispersions containing various amounts of DOSS were prepared using the spray drying technique. Their solubility, dissolution and pharmacokinetics in rats were studied. DOSS increased drug solubility and dissolution in the solid dispersions. Compared with the drug powder, the solubility, dissolution and bioavailability of tacrolimus with the fast-dissolving solid dispersion containing tacrolimus/HP-β-CD/DOSS in the weight ratio of 5:40:4 were boosted by approximately 700-, 30- and 2-fold, respectively. Several tablet formulations were accomplished with this solid dispersion in combination with various ratios of HPMC/ethylcellulose. The release behaviour and pharmacokinetic studies in beagle dogs were assessed compared with the commercial prolonged release capsule. A decrease in HPMC/ethylcellulose ratios reduced the dissolution of tacrolimus from the tablets. Particularly, the tacrolimus-loaded prolonged release tablet consisting of fast-dissolving tacrolimus solid dispersion, HPMC, ethylcellulose and talc at the weight ratio of 20:66:112:2 exhibited a dissolution profile similar to that produced by the commercial prolonged release capsule. Furthermore, there were no significant differences in the AUC, Cmax, Tmax and MRT values between them in beagle dogs. Consequently, this tacrolimus-loaded prolonged release tablet might be bioequivalent to the tacrolimus-loaded commercial capsule. PMID:24388864

  4. Open focused microwave-assisted sample preparation for rapid total and mercury species determination in environmental solid samples.

    PubMed

    Tseng, C M; Garraud, H; Amouroux, D; Donard, O F; de Diego, A

    1998-01-01

    This paper describes rapid, simple microwave-assisted leaching/ digestion procedures for total and mercury species determination in sediment samples and biomaterials. An open focused microwave system allowed the sample preparation time to be dramatically reduced to only 24 min when a power of 40-80 W was applied. Quantitative leaching of methylmercury from sediments by HNO(3) solution and complete dissolution of biomaterials by an alkaline solution, such as 25% TMAH solution, were obtained. Methylmercury compounds were kept intact without decomposition or losses by evaporation. Quantitative recoveries of total mercury were achieved with a two-step microwave attack using a combination of HNO(3) and H(2)0(2) solutions as extractant. The whole pretreatment procedure only takes 15 min, which can be further shortened by an automated robust operation with an open focused system. These analytical procedures were validated by the analysis of environmental certified reference materials. The results confirm that the open focused microwave technique is a promising tool for solid sample preparation in analytical and environmental chemistry. PMID:18924826

  5. Loads analysis and testing of flight configuration solid rocket motor outer boot ring segments

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    1990-01-01

    The loads testing on in-house-fabricated flight configuration Solid Rocket Motor (SRM) outer boot ring segments. The tests determined the bending strength and bending stiffness of these beams and showed that they compared well with the hand analysis. The bending stiffness test results compared very well with the finite element data.

  6. Sugar loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...

  7. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharific...

  8. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.

    PubMed

    Liu, Yanhua; Chen, Lihong; Zhou, Chengming; Yang, Jianhong; Hou, Yanhui; Wang, Wenping

    2016-01-01

    Oxymatrine (OM) can be metabolized to matrine in gastrointestinal ileocecal valve after oral administration, which affects pharmacological activity and reduce bioavailability of OM. A type of multiple-unit alginate-chitosan (Alg-Cs) floating beads was prepared by the ionotropic gelation method for gastroretention delivery of OM. A solid dispersion technique was applied and incorporated into beads to enhance the OM encapsulation efficiency (EE) and sustain the drug release. The surface morphology and internal hollow structure of beads were evaluated using optical microscopy and scanning electron microscopy (SEM). The developed Alg-Cs beads were spherical in shape with hollow internal structure and had particle size of 3.49 ± 0.09 mm and 1.33 ± 0.09 mm for wet and dried beads. Over 84% of the optimized OM solid dispersion-loaded Alg-Cs beads were able to continuously float over the simulated gastric fluid for 12 h in vitro. The OM solid dispersion-loaded Alg-Cs beads showed drug EE of 67.07%, which was much higher than that of beads loading with pure OM. Compared with the immediate release of OM capsules and pure OM-loaded beads, the release of OM from solid dispersion-loaded Alg-Cs beads was in a sustained-release manner for 12 h. Prolonged gastric retention time of over 8.5 h was achieved for OM solid dispersion-loaded Alg-Cs floating beads in healthy rabbit in in vivo floating ability evaluated by X-ray imaging. The developed Alg-Cs beads loading with OM solid dispersion displayed excellent performance features characterized by excellent gastric floating ability, high drug EE and sustained-release pattern. The study illustrated the potential use of Alg-Cs floating beads combined with the solid dispersion technique for prolonging gastric retention and sustaining release of OM, which could provide a promising drug delivery system for gastric-specific delivery of OM for bioavailability enhancement. PMID:26422447

  9. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  10. Characterizing shallow secondary clarifier performance where conventional flux theory over-estimates allowable solids loading rate.

    PubMed

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    2016-01-01

    The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so. PMID:27438236

  11. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    NASA Astrophysics Data System (ADS)

    da Silva, Alessandra Furtado; Welz, Bernhard; Curtius, Adilson J.

    2002-12-01

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l -1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg -1 were satisfactory for a routine procedure.

  12. [Study on the solid sorbent tube for capturing mercury in the workplace air and determination by cold vapor atomic absorption spectrometry].

    PubMed

    Huang, Zhen-Nong; Sun, Yi; Ruan, Xiao-Lin; Wu, Bang-Hua; Zhang, Ai-Hua; Huang, Jun-Yi; Huang, Yan-Ling; Huang, Han-Lin

    2014-05-01

    A new KMnO4-MnO2 solid multisorbent tube for capturing mercury in workplace air was developed. Experimental conditions for solid multisorbent tube, efficiency of sampling, desorption efficiency and stability were studied. Mercury and its compounds in air were captured by solid KMnO4-MnO2 sorbent filled tube and desorbed with 0. 90 mol L-1 sulfuric acid solution. Mercury and its compounds were quantitatively analyzed according to the method of GBZ/T 160. 14-2004 cold vapor atomic absorption spectrometry. The linear range of the proposed method was 0. 000 2-0. 015 0 mg L-1 with r=0. 999 1, the average efficiency of sampling was 99. 9%-100. 0% in the concentration range of 0. 001-2. 820 mg m-3 , and the breakthrough capacity was more than 505.4 microg for 300 mg KMnO4-MnO2 solid multisorbent, the average recovery rate was 96. 4% approximately103. 8%, the intra-day and inter-day precision was 3. 0% approximately 3. 3% and 3. 5% approximately 5. 2% respectively, the limit of detection was 0. 0013 mg m-3 (7. 5 L of air ) and 0. 000 6 mg m-3 (96 L of air), after sampling, and the solid multisorbent tube could be kept at least 30 d at room temperature without significant loss. The present method was simple and suitable for capturing mercury and its compounds in the workplace air and ambient air. The solid multisorbent tube was useful for personal sampling and time weighted average sampling. PMID:25095449

  13. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  14. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity. PMID:9110471

  15. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings

    PubMed Central

    2009-01-01

    Background Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results We identified roller bottle reactors (RBRs) as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings. PMID:19889202

  16. A comparison of load estimates using total suspended solids and suspended-sediment concentration data

    USGS Publications Warehouse

    Glysson, G.D.; Gray, J.R.; Schwarz, G.E.

    2001-01-01

    This paper presents the results to-date from a continuing investigation into the differences between total suspended solids (TSS) and suspended-sediment concentration (SSC) data and the ramifications of using each type of data to estimate sediment loads. It compares estimates of annual suspended-sediment loads that were made using regression equations developed from paired TSS and SSC data, to annual loads computed by the U.S. Geological Survey (USGS) using traditional techniques and SSC data. Load estimates were compared for 10 stations where sufficient TSS and SSC paired data were available to develop sediment-transport curves for the same time period that daily suspended-sediment records were available. Results of these analyses indicate that as the time frame over which the estimates were made increases, the overall errors associated with the estimates decreases with respect to loads computed using traditional USGS techniques. Using SSC data to compute loads tends to produce estimates closer to those computed by traditional techniques than those computed from TSS data. Loads computed from TSS data tend to be negatively biased with respect to those computed by traditional USGS techniques.

  17. Preparation and pharmaceutical evaluation of new tacrolimus-loaded solid self-emulsifying drug delivery system.

    PubMed

    Seo, Youn Gee; Kim, Dong-Wuk; Cho, Kwan Hyung; Yousaf, Abid Mehmood; Kim, Dong Shik; Kim, Jeong Hoon; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-02-01

    The purpose of this study was to develop a novel tacrolimus-loaded solid self-emulsifying drug delivery system (SEDDS) using Labrafac as an oil phase. The ternary phase diagram was plotted with Labrafac, Labrasol and Lauroglycol used as an oil, surfactant and co-surfactant, respectively. The liquid SEDDS formulated with Labrasol, Lauroglycol and Labrafac (70:15:15, volume ratio) furnished the smallest emulsion globule size. The solid SEDDS was obtained by spray-drying the liquid mixture containing the liquid SEDDS with 5 % tacrolimus and silicon dioxide. Furthermore, dissolution of tacrolimus from the solid SEDDS and pharmacokinetics in rats was studied compared to the commercial product. The solid SEDDS produced relatively larger emulsion globule size than that exhibited by the corresponding liquid SEDDS. However, this size variation was not significantly different. The solid SEDDS with approximately 280 nm emulsion droplet size improved the dissolution of the drug compared to drug power and the commercial product. It resulted in significantly higher plasma concentration, AUC and Cmax, and shorter Tmax values than did the commercial product (p < 0.05). The enormously enhanced oral bioavailability of tacrolimus in rats was attributed to relatively faster absorption due to accelerated dissolution of the drug from the solid SEDDS. Therefore, this novel solid SEDDS prepared with Labrafac as an oil phase is an excellent way to achieve better bioavailability of tacrolimus given via the oral route. PMID:25134927

  18. Pressure makes mercury a transition metal: a first-principles study of HgF4 solid phases

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Lin, Haiqing; Ma, Yanming; Miao, Maosheng

    2012-02-01

    Mercury is considered as a post-transition metal, because its d shell is filled and does not involve in forming chemical bonds. Yet, because the large relativistic effect pushes up the outmost d level, there is a high expectation that Hg can be stabilized in a higher oxidation state. The HgF4 molecule has been predicted by calculations, and an evidence of such molecule is shown by IR absorption recently. However, there is neither computation nor experiment report on possible high oxidation state of Hg in solid. By using first-principles density functional theory and a structure-searching method, we studied the structural change of a solid system of Hg and F under pressures from 0 to 300 GPa. We found that at lower pressure, the stable structure consists of HgF2 and F2 molecules. At about 25 GPa, the system undergoes a structural change and forms HgF4 planar molecules featuring d8 configuration. The calculations show that the d orbitals of Hg involve in chemical bonding, which is the signature of a transition metal.

  19. A Topology of On/Off Marx Modulator with Protection of Load and Solid State Switches

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2007-03-05

    This article discusses a proposal for an ultra fast feedback response that will protect the load and solid state switches of the ON/OFF Marx type modulators. The feedback guards main elements of a modulator against possible arcs in the load, particularly arcs inside of the electron guns. The chief concept behind the proposed response system is an employment of a fraction of the output modulator power as a controlling and guarding pulse during the delivery time. The time constant of the proposed feedback loop lies in the nanosecond range. Peculiarities of proposed topology are discussed.

  20. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  1. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis.

    PubMed

    Ye, Jiesheng; Wang, Qun; Zhou, Xuefeng; Zhang, Na

    2008-03-20

    This work systematically studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with actarit, a poor water soluble anti-rheumatic drug. The goal of this study was to design passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects such as nephrotoxicity and gastrointestinal disorders commonly associated with oral formulations of actarit. Based on the optimized results of single-factor and orthogonal design, actarit-loaded SLNs were prepared by a modified solvent diffusion-evaporation method. The formulated SLNs were found to be relatively uniform in size (241+/-23 nm) with a negative zeta potential (-17.14+/-1.6 mV). The average drug entrapment efficiency and loading were (50.87+/-0.25)% and (8.48+/-0.14)%, respectively. The actarit-loaded SLNs exhibited a longer mean retention time in vivo (t(1/2(beta)), 9.373 h; MRT, 13.53 h) compared with the actarit 50% propylene glycol solution (t(1/2(ke)), 0.917 h; MRT, 1.323 h) after intravenous injection to New Zealand rabbits. The area under curve of plasma concentration-time (AUC) of actarit-loaded SLNs was 1.88 times greater than that of the actarit in 50% propylene glycol solution. The overall targeting efficiency (TE(C)) of the actarit-loaded SLNs was enhanced from 6.31% to 16.29% in spleen while the renal distribution of actarit was significantly reduced as compared to that of the actarit solution after intravenous administration to mice. These results indicated that injectable actarit-loaded solid lipid nanoparticles were promising passive targeting therapeutic agents for rheumatoid arthritis. PMID:18054182

  2. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  3. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    SciTech Connect

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.

    2009-01-01

    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  4. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading

    NASA Astrophysics Data System (ADS)

    Huang, S.; Xia, K.; Zheng, H.

    2013-09-01

    Dynamic failure of brittle materials is a fundamental physical problem that has significantly impacts to many science and engineering disciplines. As the first and the most important step towards the full understanding of this problem, one has to observe dynamic damage accumulation in brittle solids. In this work, we proposed a methodology to do that and demonstrated it by studying the dynamic compressive damage evolution of a granitic rock loaded with a modified split Hopkinson pressure bar system. To ensure consistency of the experimental results, we used cylindrical rock samples fabricated from the same rock core and subjected them to identical incident loading pulse. Using a special soft recovery technique, we stopped the dynamic loading on the samples at different strain levels, ranging from 0.3% to 1.4%. Therefore, we were able to recover intact samples loaded all the way to the post-peak deformation stage. The recovered samples were subsequently examined with X-ray micro-CT scanning machine. Three dimensional microcrack network induced by the dynamic loading was observed and the evolution of microcracks as a function of the dynamic loading strain was obtained.

  5. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    SciTech Connect

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  6. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon.

    PubMed

    Kroon, Frederieke J; Kuhnert, Petra M; Henderson, Brent L; Wilkinson, Scott N; Kinsey-Henderson, Anne; Abbott, Brett; Brodie, Jon E; Turner, Ryan D R

    2012-01-01

    Degradation of coastal ecosystems in the Great Barrier Reef (GBR) lagoon, Australia, has been linked with increased land-based runoff of suspended solids, nutrients and pesticides since European settlement. This study estimated the increase in river loads for all 35 GBR basins, using the best available estimates of pre-European and current loads derived from catchment modelling and monitoring. The mean-annual load to the GBR lagoon for (i) total suspended solids has increased by 5.5 times to 17,000ktonnes/year, (ii) total nitrogen by 5.7 times to 80,000tonnes/year, (iii) total phosphorus by 8.9 times to 16,000tonnes/year, and (iv) PSII herbicides is 30,000kg/year. The increases in river loads differ across the 10 pollutants and 35 basins examined, reflecting differences in surface runoff, urbanisation, deforestation, agricultural practices, mining and retention by reservoirs. These estimates will facilitate target setting for water quality and desired ecosystem states, and enable prioritisation of critical sources for management. PMID:22154273

  7. Surface-adsorbed reverse micelle-loaded solid self-nanoemulsifying drug delivery system of talinolol.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2016-03-01

    The aim of present investigation was to develop surface-adsorbed reverse-micelle-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) of talinolol in order to enhance its in vitro dissolution rate, which in turn enhance the bioavailability. SNEDDS were prepared using aqueous phase titration method. Thermodynamically stable formulations were characterized in terms of droplet size, viscosity, % transmittance, drug content and surface morphology. Low cost acid-treated coffee husk was used as an effective biosorbent for preparation of solid SNEDDS. Developed SNEDDS were subjected to in vitro drug release/dissolution studies. In vitro drug release studies showed 99.6% release of talinolol from optimized solid SNEDDS TS3 after 120 min of study. The results of solubility studies showed 4849.5-folds enhancement in solubility of talinolol from optimized SNEDDS as compared to its aqueous solubility. PMID:25318634

  8. 750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury.

    PubMed

    Scheid, Martin; Markert, Frank; Walz, Jochen; Wang, Jiayu; Kirchner, Martin; Hänsch, Theodor W

    2007-04-15

    A high-power continuous-wave coherent light source at 253.7 nm is described. It is based on a solid-state Yb:YAG disk laser with two successive frequency doubling stages and is capable of generating stable output powers of up to 750 mW. Spectroscopy of the 6 (1)S(0)-6 (3)P(1) transition of mercury has been demonstrated. PMID:17375166

  9. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation

    PubMed Central

    Yang, Kwan Yeol; Hwang, Du Hyeong; Yousaf, Abid Mehmood; Kim, Dong Wuk; Shin, Young-Jun; Bae, Ok-Nam; Kim, Yong-II; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2013-01-01

    Background The purpose of this study was to develop a novel silymarin-loaded solid nanoparticle system with enhanced oral bioavailability and an ability to provide excellent hepatic protection for poorly water-soluble drugs using Shirasu porous glass (SPG) membrane emulsification and a spray-drying technique. Methods A silymarin-loaded liquid nanoemulsion was formulated by applying the SPG membrane emulsification technique. This was further converted into solid state nanosized particles by the spray-drying technique. The physicochemical characteristics of these nanoparticles were determined by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Their dissolution, bioavailability, and hepatoprotective activity in rats were assessed by comparison with a commercially available silymarin-loaded product. Results Formulation of a silymarin-loaded nanoemulsion, comprising silymarin, castor oil, polyvinylpyrrolidone, Transcutol HP, Tween 80, and water at a weight ratio of 5/3/3/1.25/1.25/100 was accomplished using an SPG membrane emulsification technique at an agitator speed of 700 rpm, a feed pressure of 15 kPa, and a continuous phase temperature of 25°C. This resulted in generation of comparatively uniform emulsion globules with a narrow size distribution. Moreover, the silymarin-loaded solid nanoparticles, containing silymarin/castor oil/polyvinylpyrrolidone/Transcutol HP/Tween 80 at a weight ratio of 5/3/3/1.25/1.25, improved about 1,300-fold drug solubility and retained a mean size of about 210 nm. Silymarin was located in unaltered crystalline form in the nanoparticles. The drug dissolved rapidly from the nanoparticles, reaching nearly 80% within 15 minutes, indicating three-fold better dissolution than that of the commercial product. Further, the nanoparticles showed a considerably shorter time to peak concentration, a greater area under the concentration-time curve, and a higher maximum concentration of silymarin compared

  10. Variability of solid load in the proglacial Fagge River, Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Weber, Martin; Faust, Matthias; Morche, David

    2016-04-01

    Glaciers can strongly affect sediment dynamics in high-mountain basins. They receive clastic material from rock walls by gravitational processes of various magnitudes (rock slides to rockfalls) or by subglacial erosion and transport sediments downvalley like a conveyor belt. At the glacier tongue the meltwater with its accompanying river load enters the proglacial system. Fine material is moving in suspension leading to turbid meltwater. The coarse fraction of the meltwater load is rolling or sliding as bedload on the proglacial channel bed. As glaciers are vulnerable to and thus indicators of climate change the sediment transfer systems in Alpine glacier basins will respond as well. Since the end of the Little Ice Age (LIA) around 1850 glacier in the European Alps have been melting down and their front lines have been retreating. Where the glacier ice is gone large amounts unconsolidated sediments are deposited (moraines, glaciofluvial deposits) and can easily be reworked during subsequent rain storms or snowmelt. As a consequence it is of great concern whether more solid load (higher sediment availability) or less solid load (trapping effect of proglacial lakes) is transported in proglacial rivers in the near future. Due to glacier retreat the amount of unconsolidated, sparsely vegetated sediments, which are prone to rapid remobilization, is increasing. Because more of these sediments are available for fluvial sediment transport, it is generally assumed that glacier retreat leads to an increase in sediment discharge from proglacial zones. The main objective of this study is to present a budget of the fluvial sediment transport within the proglacial Fagge River for the observation period 2012 - 2014. This quantification of solid sediment transport is needed for further investigations on the way to a holistic sediment budget for the whole glaciated catchment of the Gepatschferner in Tyrol/Austria.

  11. Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters.

    PubMed

    Huber, Jessica; Heimbürger, Lars-Eric; Sonke, Jeroen E; Ziller, Sebastian; Lindén, Mika; Leopold, Kerstin

    2015-11-01

    We propose a novel analytical method for mercury (Hg) trace determination based on direct Hg preconcentration from aqueous solution onto a gold nanoparticle-decorated silica monolith (AuNP@SiO2). Detection of Hg is performed after thermal desorption by means of atomic fluorescence spectrometry. This new methodology benefits from reagent-free, time- and cost-saving procedure, due to most efficient solid-phase adsorbent and results in high sensitive quantification. The excellent analytical performance of the whole procedure is demonstrated by a limit of detection as low as 1.31 ng L(-1) for only one-min accumulation duration. A good reproducibility with standard deviations ≤5.4% is given. The feasibility of the approach in natural waters was confirmed by a recovery experiment in spiked seawater with a recovery rate of 101%. Moreover, the presented method was validated through reference analysis of a submarine groundwater discharge sample by cold vapor-atomic fluorescence spectrometry resulting in a very good agreement of the found values. Hence the novel method is a very promising new tool for low-level Hg monitoring in natural waters providing easy-handling on-site preconcentration, reagent-free stabilization as well as reagent-free, highly sensitive detection. PMID:26460188

  12. Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake.

    PubMed

    Gbondo-Tugbawa, Solomon S; McAlear, Joseph A; Driscoll, Charles T; Sharpe, Charles W

    2010-05-01

    Concerns over the fate and bioaccumulation of mercury (Hg) inputs to Onondaga Lake, a hypereutrophic lake in central New York, prompted an investigation into the concentrations and fluxes of Hg discharge from the Onondaga County Metropolitan Wastewater Treatment Plant (METRO WWTP). Discharge of methyl Hg (MeHg) is of concern because it is the form of Hg that readily bioaccumulates along the aquatic food chain. This study incorporated clean protocols for sampling and Hg analysis to evaluate: seasonal patterns in the concentrations of total Hg (THg) and MeHg in the WWTP unit processes; the production of MeHg within the unit processes of the WWTP; the overall fate of THg and MeHg within the WWTP; and the relative impact of the Hg discharged from the WWTP to Onondaga Lake. Concentrations of THg (range: 80-860 ng/L) and MeHg (0.7-17 ng/L) in raw sewage were highly variable, with higher concentrations observed in the summer months. The dynamics of THg though the WWTP were correlated with total suspended solids (TSS). As a result, the majority of the THg removal (55%) occurred during primary treatment. Overall, about 92% of the THg entering the plant was removed as sludge, with volatilization likely a minor component of the overall Hg budget. The transformation of MeHg through the plant differed from THg in that MeHg was not correlated with TSS, and displayed strong seasonal differences between winter (November to April) and summer (May-October) months. During the summer months, substantial net methylation occurred in the activated sludge secondary treatment, resulting in higher MeHg concentrations in secondary effluent. Net demethylation was the dominant mechanism during tertiary treatment, resulting in removal of substantial MeHg from the secondary effluent. The overall MeHg removal efficiency through the plant was about 70% with more efficient removal during summer months. Sediment trap collections made below the epilimnion of Onondaga Lake indicated average deposition

  13. Amsacrine analog-loaded solid lipid nanoparticle to resolve insolubility for injection delivery: characterization and pharmacokinetics

    PubMed Central

    Fang, Yi-Ping; Chuang, Chih-Hung; Wu, Pao-Chu; Huang, Yaw-Bin; Tzeng, Cherng-Chyi; Chen, Yeh-Long; Liu, Ya-Ting; Tsai, Yi-Hung; Tsai, Ming-Jun

    2016-01-01

    Amsacrine analog is a novel chemotherapeutic agent that provides potentially broad antitumor activity when compared to traditional amsacrine. However, the major limitation of amsacrine analog is that it is highly lipophilic, making it nonconductive to intravenous administration. The aim of this study was to utilize solid lipid nanoparticles (SLN) to resolve the delivery problem and to investigate the biodistribution of amsacrine analog-loaded SLN. Physicochemical characterizations of SLN, including particle size, zeta potential, entrapment efficiency, and stability, were evaluated. In vitro release behavior was also measured by the dialysis method. In vivo pharmacokinetics and biodistribution behavior of amsacrine analog were investigated and incorporated with a non invasion in vivo imaging system to confirm the localization of SLN. The results showed that amsacrine analog-loaded SLN was 36.7 nm in particle size, 0.37 in polydispersity index, and 34.5±0.047 mV in zeta potential. More than 99% of amsacrine analog was successfully entrapped in the SLN. There were no significant differences in the physicochemical properties after storage at room temperature (25°C) for 1 month. Amsacrine analog-loaded SLN maintained good stability. An in vitro release study showed that amsacrine analog-loaded SLN sustained a release pattern and followed the zero equation. An in vivo pharmacokinetics study showed that amsacrine analog was rapidly distributed from the central compartment to the tissue compartments after intravenous delivery of amsacrine analog-loaded SLN. The biodistribution behavior demonstrated that amsacrine analog mainly accumulated in the lungs. Noninvasion in vivo imaging system images also confirmed that the drug distribution was predominantly localized in the lungs when IR-780-loaded SLN was used. PMID:27019595

  14. Problems of Solid-Phase Synthesis in Cylindrical Ampoules under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Zelepugin, S. A.; Ivanova, O. V.; Yunoshev, A. S.; Zelepugin, A. S.

    2016-04-01

    The peculiarities of solid-phase synthesis are studied experimentally and numerically in the aluminum-fluoroplastic and aluminum-sulfur mixtures in cylindrical ampoules under explosive loading. The experimental results show that the use of a mixture capable of ultrafast exothermic reactions leads to the destruction of a cylindrical ampoule under explosive loading. When the transient shock wave is reflected from the bottom lid of the ampoule as a compression wave, there is a sharp increase in pressure in the lower part of the ampoule, which is accompanied by the increase in rate of the chemical reaction. The high rate of heat release during the chemical reaction in the lower part of the ampoule causes the formation of a gas phase, which leads to a further increase in pressure and destruction of the ampoule.

  15. Origin of compression-induced failure in brittle solids under shock loading

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Li, Y.; Liu, Q. C.; Zhou, X. M.; Liu, L. W.; Liu, C. L.; Zhu, M. H.; Luo, S. N.

    2015-10-01

    The origin of compression-induced failure in brittle solids has been a subject of debate. Using in situ, high-speed, strain field mapping of a representative material, polymethylmethacrylate, we reveal that shock loading leads to heterogeneity in a compressive strain field, which in turn gives rise to localized lateral tension and shear through Poisson's effects, and, subsequently, localized microdamage. A failure wave nucleates from the impact surface and its propagation into the microdamage zone is self-sustained, triggering interior failure. Its velocity increases with increasing shock strength and eventually approaches the shock velocity. The seemingly puzzling phenomena observed in previous experiments, including incubation time, failure wave velocity variations, and surface roughness effects, can all be explained consistently with the nucleation and growth of the microdamage, and the effects of loading strength and preexisting defects.

  16. Estimation of loading density of underground well repositories for solid high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Malkovsky, V. I.; Pek, A. A.

    2007-06-01

    The convective transfer of radionuclides by subsurface water from a geological repository of solidified high-level radioactive wastes (HLW) is considered. The repository is a cluster of wells of large diameter with HLW disposed of in the lower portions of the wells. The safe distance between wells as a function of rock properties and parameters of well loading with wastes has been estimated from mathematical modeling. A maximum permissible concentration of radionuclides in subsurface water near the ground surface above the repository is regarded as a necessary condition of safety. The estimates obtained show that well repositories allow for a higher density of solid HLW disposal than shaft storage facilities. Advantages and disadvantages of both types of storage facilities are considered in order to estimate the prospects for their use for underground disposal of solid HLW.

  17. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery.

    PubMed

    Korkm, Emrah; Gokce, Evren H; Ozer, Ozgen

    2013-12-01

    Coenzyme Q10 (Q10) loaded solid lipid nanoparticles (SLN) were prepared by the high speed homogenization method and incorporated into Carbopol 974P hydrogels. Compritol 888 ATO (C888) was employed as the lipid base; Poloxamer 188 (P188) and Tween 80 (Tw80) were used as surfactant and co-surfactant. Optimum particle size with narrow distribution was obtained as 152.2 nm for blank and 142.4 nm for Q10 loaded SLNs. The overall charge of loaded SLNs was -13.7 ± 1.3 mV. Q10 entrapment efficiency was 89 % and the production yield was 94 %. Transmission electron microscopy analysis provided evidence of colloidal size, spherical shape while differential scanning calorimetry analysis confirmed recrystallization of the lipid after the preparation of SLNs. Trolox equivalent antioxidant capacity (TEAC) analysis has shown that antioxidant potential of Q10 can be protected in SLNs. Rheological characteristics demonstrated that the SLN incorporating gels were shear thinning and the mechanical strength of the gels was suitable for topical application. Diffusion studies from rat abdominal skin revealed that the delivery of Q10 was doubled in SLN incorporating gels, approximately 40 μg cm-2, in comparison with gels prepared with only Q10 (not incorporated in SLNs). As a result, it can be stated that Q10-SLN loaded gels can be successful delivery systems for carrying Q10 efficiently into the skin without losing its antioxidant properties. PMID:24451076

  18. Space Shuttle solid rocket booster initial water impact loads and dynamics - Analysis, tests, and flight experience

    NASA Technical Reports Server (NTRS)

    Kross, D. A.; Kiefling, L. A.; Murphy, N. C.; Rawls, E. A.

    1983-01-01

    A series of scale model tests, finite element dynamic response analyses and full scale segment tests have been performed for purposes of developing design criteria for the initial water impact loading conditions applied to the internal stiffener rings located in the aft skirt portion of the Space Shuttle Solid Rocket Booster (SRB). In addition, flight experience has yielded information relative to structural reinforcement requirements. This paper discusses the test and analysis methods and summarizes significant results. It is noted that, although scale model test data are valuable for identifying trends, they have shortcomings concerning definition of full scale design loads criteria. Also, the frequently used static equivalent loads definition approach is not applicable for this type impact loading condition applied to an aft skirt type structure. Various types of ring structural fixes, including the addition of selected types of foam, are presented as well as associated full scale segment test results. Depending on the type and contour shape of the foam, reductions on applied pressures and peak measured strains over 50 percent are noted.

  19. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGESBeta

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  20. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    SciTech Connect

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  1. Time series Of suspended-solids concentration, salinity, temperature, and total mercury concentration in San Francisco Bay during water year 1996

    USGS Publications Warehouse

    Schoellhamer, David H.

    1998-01-01

    Many physical processes affect how constituents within San Francisco Bay vary. Processes and their associated time scales include turbulence (seconds), semidiurnal and diurnal tides (hours), the spring-neap tidal cycle (days), freshwater flow (weeks), seasonal winds (months), ecological and climatic changes (years), and geologic changes (thousands of years). The effect and relative importance of physical processes on the Bay can be determined from continuous time series of suspended-solids concentration (SSC), salinity, and water temperature. SSC time series and Regional Monitoring Program (RMP) waterquality data can be used to calculate time series of some trace-element concentrations (Schoellhamer, 1997). The purpose of this chapter is to qualitatively describe time series of SSC, salinity, water temperature, and mercury during water year 1996 (October 1995 through September 1996). In addition, a calculated time series of mercury will be used to evaluate the accuracy of using instantaneous water samples to evaluate a 4-day average water-quality objective.

  2. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  3. Effect of organic loading rate during anaerobic digestion of municipal solid waste.

    PubMed

    Dhar, Hiya; Kumar, Pradeep; Kumar, Sunil; Mukherjee, Somnath; Vaidya, Atul N

    2016-10-01

    The effect of chemical oxygen demand (COD) and volatile solids (VS) on subsequent methane (CH4) production during anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) was studied in a laboratory-scale digester. The experiment was performed in 2L anaerobic digester under different experimental conditions using different input mass co-digested with inoculum and organic loading rate (OLR) for 27days at 38±2°C. Three digesters (digesters 1, 2 and 3) were operated at initial loading of 5.1, 10.4 and 15.2g/L CODS per batch which were reduced to 77.9% and 84.2%, respectively. Cumulative biogas productions were 9.3, 10.7 and 17.7L in which CH4 yields were 84.3, 101.0 and 168.4mL/gVS removal in digesters 1, 2, and 3, respectively. The observed COD removal was found to be influenced on variation in CH4 production. Co-efficient of determination (R(2)) was 0.67 and 0.74 in digesters 1 and 2, respectively. PMID:26733440

  4. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  5. On the verification of binding modes of p-dimethylaminobenzaldehyde thiosemicarbazone with mercury(II). The solid state studies

    NASA Astrophysics Data System (ADS)

    Trzesowska-Kruszynska, Agata

    2014-08-01

    Two coordination compounds of p-dimethylaminobenzaldehyde thiosemicarbazone, fluorescent chemosensor, have been synthesised from the mercury(II) nitrate and mercury(II) chloride, and subsequently characterised by IR spectroscopy, thermal analysis, as well as single crystal X-ray diffraction technique. The inorganic anion has a distinct influence on binding mode of thiosemicarbazone ligand to Hg(II) ion. In both compounds the metal to ligand stoichiometry is 1:2 and the organic ligands coordinate to Hg ion in the neutral thione form, but they differ in a ligand binding mode and the conformation of the ligand. The crystal packing of mercury(II) nitrate complex with thiosemicarbazone is controlled by the mercury chelate ring-phenylene ring π···π stacking interactions.

  6. Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.

    1987-01-01

    The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.

  7. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles.

    PubMed

    Oliveira, Mariana S; Mussi, Samuel V; Gomes, Dawidson A; Yoshida, Maria Irene; Frezard, Frederic; Carregal, Virgínia M; Ferreira, Lucas A M

    2016-04-01

    This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopheryl succinate (TS), a succinic acid ester of α-tocopherol that exhibits anticancer actions, evaluating the influence of TS on drug encapsulation efficiency. The SLN were characterized for size, zeta potential, entrapment efficiency (EE), and drug release. Studies of in vitro anticancer activity were also conducted. The EE was significantly improved from 30 ± 1% to 96 ± 2% for SLN without and with TS at 0.4%, respectively. In contrast, a reduction in particle size from 298 ± 1 to 79 ± 1 nm was observed for SLN without and with TS respectively. The doxorubicin release data show that SLN provide a controlled drug release. The in vitro studies showed higher cytotoxicity for doxorubicin-TS-loaded SLN than for free doxorubicin in breast cancer cells. These findings suggest that TS-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer. PMID:26764108

  8. Co-loading of a photostabilizer with the sunscreen agent, butyl methoxydibenzoylmethane in solid lipid microparticles.

    PubMed

    Scalia, Santo; Mezzena, Matteo

    2009-02-01

    The sunscreen agent, butyl methoxydibenzoylmethane (BMDBM), one of the most widely used UV-A filter, undergoes decomposition under sunlight exposure, which is a limiting factor on its overall performance. To reduce the sunscreen photodegradation, this study investigates the incorporation into solid lipid microparticles (SLMs) of BMDBM together with the photostabilizer, 4-methylbenzylidene camphor (MBC). The microparticles were produced by the melt dispersion technique using various lipid materials (tristearin, glyceryl behenate, and stearic acid) and hydrogenated phosphatidylcholine as the surfactant. The highest retention capacity for BMDBM and MBC was achieved with tristearin microparticles. These SLMs were characterized by scanning electron microscopy and powder X-ray diffraction analyses. The BMDBM and MBC loading was 10.4 and 10.1%, respectively. The efficacy of the SLMs was evaluated after their introduction in a conventional cream (oil-in-water emulsion). The light-induced decomposition of BMDBM was decreased by encapsulation into the SLMs (the extent of degradation was 33.8 +/- 5.5% for unencapsulated BMDBM/MBC and 25.3 +/- 4.2% for BMDBM-loaded microparticles in conjunction with free MBC). Moreover, the co-loading of the MBC stabilizer in the SLMs produced a further reduction of the photodegradation of the UV-A filter (the BMDBM loss was 16.9 +/- 5.9%) compared with the microparticles containing BMDBM without MBC. Therefore, incorporation in lipid microparticles of BMDBM together with the MBC photostabilizer is more effective in enhancing the UV-A filter photostability than the SLMs loaded with BMDBM alone. PMID:18785040

  9. Theoretical study of β-HMX decomposition mechanism of the solid phase under shock loadings

    NASA Astrophysics Data System (ADS)

    Ji, Guangfu; Ge, Nina; Chen, Xiangrong

    2015-06-01

    Study material properties under extreme conditions is a fundamental problem in the field of condensed matter physics. The decomposition mechanisms of energetic materials under the shock wave become a hot topic in recent years. In this paper, molecular dynamics simulations combined with multi-scale shock technology (MSST) are used to study the decomposition mechanism, shock sensitivity and electronic structure of β-HMX. First, the decomposition mechanism of β-HMX perfect crystal were studied at different shock speeds. We found that when the shock wave at a speed 8 km / s is loaded, the decomposition reaction start at N-NO2 bond breakage; when the shock wave at a speed of 10 km / s and 11 km / s is loaded, the the first decomposition reaction is CH bond breaking, and accompanied by the formation of five-membered ring and transfer of hydrogen ions. The simulation results also show that when the shock wave velocity is increased, the higher the pressure generated in the high-pressure N-NO2 bond cleavage was inhibited significantly. Secondly, the impact of its initial chemical reaction process along different crystal axis directions were studied, the results showed that along the a-axis and c-axis shock sensitivity is higher, and along the b-axis sensitivity is lower. We believe that the system of all sensitivity of direction is due to the rotation of the friction between the slip plane of crystals and molecules. Finally, we discussed the solid phase β-HMX electronic properties change under the shock wave loadings. We found that in the 11 km/s under the impact load, when the pressure reaches 130 GPa, zero bandgap is reached.

  10. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization.

    PubMed

    Hazzah, Heba A; Farid, Ragwa M; Nasra, Maha M A; El-Massik, Magda A; Abdallah, Ossama Y

    2015-08-15

    This study aimed to prepare and evaluate mucoadhesive sponges as dosage forms for delivering solid lipid nanoparticles. For this purpose curcumin (Cur) was formulated as solid nanoparticles (SLN) using Gelucire 50/13, and polaxomer 407. The prepared CurSLN dispersion was thickened with different mucoadhesive polymers. Different concentrations of glycerol, and mannitol of range (0.25-20%), and (0-1%), respectively were also examined. The formed gel was poured into oblong molds and freeze dried to form mucoadhesive sponge to be applied to the buccal mucosa. The prepared sponges were evaluated for their, in-vivo residence time, in-vitro and in-vivo drug release, and hydration capacity. Surface morphology for the different sponges were examined using SEM. TEM was also carried out for sponge fragments previously dispersed into water. Infrared spectroscopy was conducted to investigate interaction between used ingredients. The results showed that the CurSLN loaded HPMC, and Polycarbophil sponges showed 4, and 15 h in-vivo residence time, respectively, providing a considerable amount of curcumin into saliva. The incorporation of glycerol and mannitol at concentration of 1% provided elegant and flexible sponges. The SEM showed that the deposition of CurSLN differed according to the type of polymer used. TEM confirmed the integrity of liberated CurSLN from sponges. IR spectra showed an interaction between HPMC and poloxamer 407, which affected its behavior as a gelling agent. The obtained results provide an efficient approach for delivering solid lipid nanoparticles in a solid dosage form keeping the nanoparticle characters and integrity. PMID:26189427

  11. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung.

    PubMed

    Athawale, Rajani B; Jain, Darshana S; Singh, Kamlinder K; Gude, Rajiv P

    2014-03-01

    Poor solubility of etoposide and associated poor bioavailability of the drug was circumvented by developing solid lipid nanocarrier system. The objective of the research work was to prepare etoposide loaded solid lipid nanoparticles (SLN) for improved efficacy and therapy of metastasized cancers. Entrapment of drug into nanoparticulate system modifies the pharmacokinetic and biodistribution profile of the drug with improved therapeutic efficacy. Solid lipid nanoparticles of various triglycerides were prepared using hot homogenization technique. Further, the process and formulation parameters viz. homogenization cycle and pressure, type of lipid were optimized. Developed nanoparticles were characterised for particle size, in vitro dissolution studies, DSC thermogram, surface morphology and cytotoxicity assay. Pharmacokinetic and biodistribution study were performed to assess the distribution of the drug in vivo. Modulation of the therapeutic activity of the drug was studied by performing antimetastatic activity on a B16F10 melanoma mouse model. The obtained results exhibited suitability of trimysristin for fabrication of nanoparticles. Characterisation of nanoparticles depicted formation of homogenous, spherical particles entrapping approximately 50% of the drug. The results for the performed MTT assay suggested that the developed nanoparticles exhibited cytotoxicity in a time- and concentration-dependent fashion. These findings concord with the results of the in vitro dissolution profile. Pharmacokinetic parameters demonstrated increase in area under curve (AUC), t1/2 and mean residence time (MRT) for drug in plasma. Further there is enhancement in the ratio of the drug that reaches to the highly perfused organs (upon encapsulation into solid lipid nanoparticles). Generally, cancer cells metastasized through the blood or lymphatic system. Accumulation of the drug in the highly perfused organ suggests suitability of the developed nanoparticles for targeting

  12. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability

    PubMed Central

    Ibrahim, Waheed M; AlOmrani, Abdullah H; B Yassin, Alaa Eldeen

    2014-01-01

    Background Solid lipid nanoparticles (SLN), novel drug delivery carriers, can be utilized in enhancing both intestinal permeability and dissolution of poorly absorbed drugs. The aim of this work was to enhance the intestinal permeability of sulpiride by loading into SLN. Methods A unique ultrasonic melt-emulsification method with minimum stress conditions was used for the preparation of SLN. The mixture of the drug and the melted lipids was simply dispersed in an aqueous solution of a surfactant at a temperature that was 10°C higher than the melting points of the lipids using probe sonication, and was then simultaneously dispersed in cold water. Several formulation parameters were optimized, including the drug-to-lipid ratio, and the types of lipids and surfactants used. The produced SLN were evaluated for their particle size and shape, surface charge, entrapment efficiency, crystallinity of the drug and lipids, and the drug release profile. The rat everted sac intestine model was utilized to evaluate the change in intestinal permeability of sulpiride by loading into SLN. Results The method adopted allowed successful preparation of SLN with a monodispersed particle size of 147.8–298.8 nm. Both scanning electron microscopic and atomic force microscopic images showed uniform spherical particles and confirmed the sizes determined by the light scattering technique. Combination of triglycerides with stearic acid resulted in a marked increase in zeta potential, entrapment efficiency, and drug loading; however, the particle size was increased. The type of surfactant used was critical for particle size, charge, drug loading, and entrapment efficiency. Generally, the in vitro release profile demonstrated by all formulations showed the common biphasic mode with a varying degree of burst release. The everted sac model showed markedly enhanced sulpiride permeability in the case of the SLN-loaded formulation. The in situ results showed a very good correlation with the in

  13. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025. PMID:25996815

  14. Improved tumor targeting and antitumor activity of camptothecin loaded solid lipid nanoparticles by preinjection of blank solid lipid nanoparticles.

    PubMed

    Jang, Dong-Jin; Moon, Cheol; Oh, Euichaul

    2016-05-01

    This study aimed to enhance the in vivo antitumor effects of camptothecin (CPT), a strong antitumor agent whose delivery is limited by poor aqueous solubility and instability of the active lactone form. CPT was loaded into sterically stabilized, solid lipid nanoparticles (CPT-SLNs) formulated for intravenous administration. The influence of preinjected blank SLNs on the tumor targeting, pharmacokinetics and antitumor activity of CPT-SLNs was investigated. The CPT-SLNs composed of trilaurin-based lipid matrix containing poloxamer188 and pegylated phospholipid as stabilizers were prepared by hot homogenization method and evaluated for in vitro characteristics and in vivo performance. The CPT-SLNs showed an in vitro long-term sustained release pattern and effectively protected the CPT lactone form from hydrolysis under physiological conditions. Notable tumor targeting and tumor growth inhibition were observed after intravenous administration of CPT-SLNs to mice with subcutaneous transplants of CT26 carcinoma cells. In pharmacokinetic studies in rats, CPT-SLNs markedly elevated plasma CPT level and prolonged blood circulation compared to free CPT. Nonetheless, high uptake of CPT-SLNs by reticuloendothelial system (RES)-rich tissues resulted in limited tumor targeting of CPT-SLNs and plasma CPT levels. Preinjection of blank SLNs before administration of CPT-SLNs to tumor-bearing mice substantially reduced the accumulation of CPT-SLNs in RES organs. This led to significantly enhanced tumor targeting, improved pharmacokinetic parameters and increased antitumor efficacy of CPT-SLNs. These results suggested that the in vivo antitumor effects of CPT-SLNs could be further enhanced by preinjection of blank SLNs. Therefore, CPT-SLNs with preinjected blank SLNs could be a potential approach for stable and effective CPT-based cancer therapy. PMID:27133053

  15. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-01

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. PMID:26076597

  16. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with syringopicroside.

    PubMed

    Zhang, Xiwu; Lü, Shaowa; Han, Jihong; Sun, Shuang; Wang, Limin; Li, Yongji

    2011-06-01

    A solvent emulsification evaporation method was employed to prepare solid lipid nanoparticles (SLN) loaded with syringopicroside. The conventional broad-spectrum antibacterial and antiviral drug syringopicroside was incorporated into SLN to improve drug targeting. The SYR-SLNs were spherical and uniform in transmission electron microscopy (TEM). The mean particle size and potential were 180.31 +/- 10 nm, and -41.9 +/- 10.3 mV, respectively. Also, a sephadex column chromatography was adopted to investigate the encapsulation efficiency (EE %) of the SLN. This method is based on the principle of molecular sieve effect, and the EE% of the optimal formulation was 42.35 %. Drug-loading capacity was 5.33 %. The in vitro release profile revealed that syringopicroside was released from SLN efficiently and completely in normal saline (NS) compared with other release media. A HPLC method was established for in vivo assay of syringopicroside. A tissue distribution study was conducted in rats after iv administration of 15 mg/kg SYR-SLN and syringopicroside NS, and it was found that SYR-SLN has improved delivery to the liver compared with any other organizations. These results indicated that solvent emulsification evaporation is a simple, easy, available and effective method for preparing SYR-SLN. PMID:21699077

  17. Vitamin B12-loaded solid lipid nanoparticles as a drug carrier in cancer therapy.

    PubMed

    Genç, Lütfi; Kutlu, H Mehtap; Güney, Gamze

    2015-05-01

    Nanostructure-mediated drug delivery, a key technology for the realization of nanomedicine, has the potential to improve drug bioavailability, ameliorate release deviation of drug molecules and enable precision drug targeting. Due to their multifunctional properties, solid lipid nanoparticles (SLNs) have received great attention of scientists to find a solution to cancer. Vitamin supplements may contribute to a reduction in the risk of cancer. Vitamin B12 has several characteristics that make it an attractive entity for cancer treatment and possible therapeutic applications. The aim of this study was to produce B12-loaded SLNs (B12-SLNs) and determine the cytotoxic effects of B12-SLNs on H-Ras 5RP7 and NIH/3T3 control cell line. Results obtained by MTT assay, transmission electron and confocal microscopy showed that B12-loaded SLNs are more effective than free vitamin B12 on cancer cells. In addition, characterization studies indicate that while the average diameter of the B12 was about 650 nm, B12-SLNs were about 200 nm and the drug release efficiency of vit. B12 by means of SLNs increased up to 3 h. These observations point to the fact that B12-SLNs could be used as carrier systems due to the therapeutic effects on cancer. PMID:24344935

  18. Solid lipid nanoparticles loaded with lipoyl-memantine codrug: preparation and characterization.

    PubMed

    Laserra, Sara; Basit, Abdul; Sozio, Piera; Marinelli, Lisa; Fornasari, Erika; Cacciatore, Ivana; Ciulla, Michele; Türkez, Hasan; Geyikoglu, Fatime; Di Stefano, Antonio

    2015-05-15

    Solid lipid nanoparticles (SLNs) are considered very attractive drug-delivery systems (DDS) able to enhance the efficacy of some therapeutic agents in several pathologies difficult to treat in a conventional way. Starting from these evidences, this study describes the preparation, physicochemical characterization, release, and in vitro cytotoxicity of stealth SLNs as innovative approach to improve solubility and absorption through the gastrointestinal tract of lipoyl-memantine (LA-MEM), a potential anti-Alzheimer codrug. Physico-chemical properties of LA-MEM loaded SLNs have been intensively investigated. Differential scanning calorimetry (DSC) was used to clarify the state and crystalline structure of the formulation. The results obtained from particles size analysis, polydispersity (PDI), and zeta potential measurements allowed the identification of the optimized formulation, which was characterized by a drug-lipid ratio 1:5, an average intensity diameter of 170nm, a PDI of 0.072, a zeta potential of -33.8mV, and an entrapment efficiency of 88%. Moreover, in vitro stability and release studies in both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), and preliminary in vitro cytotoxicity studies revealed that LA-MEM loaded SLNs could represent potential candidate for an in vivo investigation as DDS for the brain since it resulted devoid of citotoxicity and able to release the free codrug. PMID:25747452

  19. Laser-ablated loading of solid target through foams of overcritical density

    NASA Astrophysics Data System (ADS)

    De Angelis, R.; Consoli, F.; Gus'kov, S. Yu.; Rupasov, A. A.; Andreoli, P.; Cristofari, G.; Di Giorgio, G.

    2015-07-01

    The main objective of the work is to study the conversion of the laser pulse energy into the energy of the hydrodynamic motion of matter in a solid target following the initial absorption of laser radiation in a layer of porous material. Results of experiments on plane massive aluminum targets, coated with a layer of porous plastic with density greater than the critical density of the plasma created, are presented. Experiments were carried out on the laser installation ABC of the Research Center ENEA-Frascati; the targets were irradiated by a beam of the fundamental harmonic of Nd-laser radiation with an energy of about 50 kJ, intensity of 1013 W/cm2, and 3 ns duration. The experimental method consisted in measuring the volume of the craters created on the aluminum surface behind various thicknesses and densities of the porous absorber of laser radiation. On the basis of these measurements and of an advanced analytical model, quantitative conclusions are made on how the efficiency of laser energy transfer to the solid part of the target (laser-ablated loading) depends on thickness and density of the porous absorber.

  20. Laser-ablated loading of solid target through foams of overcritical density

    SciTech Connect

    De Angelis, R. Consoli, F.; Andreoli, P.; Cristofari, G.; Di Giorgio, G.; Gus'kov, S. Yu.; Rupasov, A. A.

    2015-07-15

    The main objective of the work is to study the conversion of the laser pulse energy into the energy of the hydrodynamic motion of matter in a solid target following the initial absorption of laser radiation in a layer of porous material. Results of experiments on plane massive aluminum targets, coated with a layer of porous plastic with density greater than the critical density of the plasma created, are presented. Experiments were carried out on the laser installation ABC of the Research Center ENEA-Frascati; the targets were irradiated by a beam of the fundamental harmonic of Nd-laser radiation with an energy of about 50 kJ, intensity of 10{sup 13 }W/cm{sup 2}, and 3 ns duration. The experimental method consisted in measuring the volume of the craters created on the aluminum surface behind various thicknesses and densities of the porous absorber of laser radiation. On the basis of these measurements and of an advanced analytical model, quantitative conclusions are made on how the efficiency of laser energy transfer to the solid part of the target (laser-ablated loading) depends on thickness and density of the porous absorber.

  1. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery.

    PubMed

    Monterrubio, Carles; Pascual-Pasto, Guillem; Cano, Francisco; Vila-Ubach, Monica; Manzanares, Alejandro; Schaiquevich, Paula; Tornero, Jose A; Sosnik, Alejandro; Mora, Jaume; Carcaboso, Angel M

    2016-02-01

    In addition to surgery, local tumor control in pediatric oncology requires new treatments as an alternative to radiotherapy. SN-38 is an anticancer drug with proved activity against several pediatric solid tumors including neuroblastoma, rhabdomyosarcoma and Ewing sarcoma. Taking advantage of the extremely low aqueous solubility of SN-38, we have developed a novel drug delivery system (DDS) consisting of matrices made of poly(lactic acid) electrospun polymer nanofibers loaded with SN-38 microcrystals for local release in difficult-to-treat pediatric solid tumors. To model the clinical scenario, we conducted extensive preclinical experiments to characterize the biodistribution of the released SN-38 using microdialysis sampling in vivo. We observed that the drug achieves high concentrations in the virtual space of the surgical bed and penetrates a maximum distance of 2 mm within the tumor bulk. Subsequently, we developed a model of subtotal tumor resection in clinically relevant pediatric patient-derived xenografts and used such models to provide evidence of the activity of the SN-38 DDS to inhibit tumor regrowth. We propose that this novel DDS could represent a potential future strategy to avoid harmful radiation therapy as a primary tumor control together with surgery. PMID:26695118

  2. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles.

    PubMed

    Omwoyo, Wesley Nyaigoti; Ogutu, Bernhards; Oloo, Florence; Swai, Hulda; Kalombo, Lonji; Melariri, Paula; Mahanga, Geoffrey Maroa; Gathirwa, Jeremiah Waweru

    2014-01-01

    Primaquine (PQ) is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs) (PQ-SLNs) as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w) double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from -6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence of drug in drug-loaded nanoparticles along with disappearance of decomposition exotherms, suggesting increased physical stability of drug in prepared formulations. Negligible changes in characteristic peaks of drug in Fourier transform infrared spectra indicated absence of any interaction among the various components entrapped in the nanoparticle formulation. The nanoformulated PQ was 20% more effective as compared with conventional oral dose when tested in Plasmodium berghei-infected Swiss albino mice. This study demonstrated an efficient method of forming a nanomedicine delivery system for antimalarial drugs. PMID:25143734

  3. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design.

    PubMed

    Wang, Fengzhen; Chen, Li; Jiang, Sunmin; He, Jun; Zhang, Xiumei; Peng, Jin; Xu, Qunwei; Li, Rui

    2014-09-01

    The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C). PMID:24611687

  4. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles

    PubMed Central

    Omwoyo, Wesley Nyaigoti; Ogutu, Bernhards; Oloo, Florence; Swai, Hulda; Kalombo, Lonji; Melariri, Paula; Mahanga, Geoffrey Maroa; Gathirwa, Jeremiah Waweru

    2014-01-01

    Primaquine (PQ) is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs) (PQ-SLNs) as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w) double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from −6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence of drug in drug-loaded nanoparticles along with disappearance of decomposition exotherms, suggesting increased physical stability of drug in prepared formulations. Negligible changes in characteristic peaks of drug in Fourier transform infrared spectra indicated absence of any interaction among the various components entrapped in the nanoparticle formulation. The nanoformulated PQ was 20% more effective as compared with conventional oral dose when tested in Plasmodium berghei-infected Swiss albino mice. This study demonstrated an efficient method of forming a nanomedicine delivery system for antimalarial drugs. PMID:25143734

  5. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection.

    PubMed

    Hu, Qiufen; Yang, Guangyu; Zhao, Yiyun; Yin, Jiayuan

    2003-03-01

    A new method for the simultaneous determination of seven heavy metal ions in water by solid-phase extraction and reversed-phase high-performance liquid chromatography (RP-HPLC) was developed. The copper, nickel, cobalt, silver, lead, cadmium, and mercury ions were pre-column derivatized with tetra( m-aminophenyl)porphyrin (T m-APP) to form colored chelates. The metal-T m-APP chelates in 100 mL of sample were preconcentrated to 1 mL by solid-phase extraction with a C(18 )cartridge; an enrichment factor of 100 was achieved. The chelates were separated on a Waters Xterra()RP(18) column by gradient elution with methanol (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) and acetone (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) as mobile phase at a flow rate of 1.0 mL min(-1) and detected with a photodiode array detector. The detection limits of copper, cobalt, nickel, silver, lead, cadmium, and mercury are 2, 2, 3, 4, 3, 3, and 3 ng L(-1), respectively, in the original sample. The method was also applied to the determination of these metals in water with good results. PMID:12664186

  6. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    SciTech Connect

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  7. Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Ebbers, C A; Kanz, K; Nakano, H; Orth, C D; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2000-09-19

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length.

  8. MERCURY REACTIONS IN THE PRESENCE OF CHLORINE SPECIES: HOMOGENOUS GAS PHASE AND HETEROGENOUS GAS-SOLID PHASE

    EPA Science Inventory

    The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...

  9. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading.

    PubMed

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2016-02-01

    Simultaneous saccharification and co-fermentation (SSCF) of steam exploded corn stover (SECS) was investigated at 5-25% solid loadings compared with other conversion processes. SECS was washed with a 15-fold excess of deionized water to remove inhibitors of hydrolysis and fermentation. The concentration, yield, and productivity of ethanol was 34.3g/L, 90.0%, 2.61g/L/h in the co-fermentation of 60g/L glucose and 10g/L xylose by Saccharomyces cerevisiae IPE003. Ethanol concentration and productivity increased with increasing solid loading while ethanol yield decreased in all conversion processes of SECS. Glucan and xylan conversion was 82.0% and 82.1% in SSCF at 20% solid loading, respectively, while the concentration, yield and productivity of ethanol was 60.8g/L, 75.3% and 0.63g/L/h. The feeding strategy of SECS addition within 24h improved the SSCF performance. Therefore, SSCF increased ethanol productivity and was an effective conversion process for ethanol production at high solid loading. PMID:26615497

  10. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    Mercury (Hg) contamination of the aquatic food webs across the Great Lakes remains a significant environmental issue. However, our ability to prescribe corrective actions has been significantly hampered by a scarcity of data, particularly for methylmercury (MeHg) the most toxic and bioaccumulative form of mercury in freshwater ecosystems. As part of the Great Lakes Restoration Initiative initiated in 2010, a joint effort was undertaken by the U.S. Geological Survey (USGS) and U.S. Environmental Protection Agency (USEPA) to improve our understanding of total Hg and MeHg concentrations and distributions in the Great Lakes. Since 2010, sampling surveys have been conducted at about 15-20 stations twice annually (April and August) at 15-20 stations per lake to collect data from both cold and warm water conditions. All sampling was conducted using trace-metal free protocols using a sampling rosette equipped with 12 Teflon-lined Niskin. Water samples were collected at predetermined depths: mid-epilimnion, mid-thermocline, deep chlorophyll layer, mid-hypolimnion, and about 2 meters above the bottom. Seston samples were collected from the top 20 meters using plankton nets, while bottom sediments and benthos samples were acquired using a ponar sampler. Water, biota, and sediment samples were all analyzed for Hg and MeHg concentration at the USGS Mercury Research Laboratory in Middleton, Wisconsin. Several important trends are apparent from the water column samples. First, most stations reveal a strong top-to-bottom declining trend total Hg concentration, underscoring the importance of atmospheric deposition to the Great Lakes. Methylmercury profiles, show maximal concentrations at the thermocline or deep chlorophyll layer, suggesting in situ water-column MeHg production. Calculations suggest this in-lake MeHg source is similar in magnitude to tributary loading of MeHg, which heretofore was thought to be the dominant MeHg source. Aqueous total Hg results also suggest that

  11. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

    PubMed

    Zariwala, M Gulrez; Elsaid, Naba; Jackson, Timothy L; Corral López, Francisco; Farnaud, Sebastien; Somavarapu, Satyanarayana; Renshaw, Derek

    2013-11-18

    Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery. PMID:24012860

  12. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery.

    PubMed

    Bikkad, Mahesh L; Nathani, Ajaz H; Mandlik, Satish K; Shrotriya, Shilpa N; Ranpise, Nisharani S

    2014-06-01

    The clinical use of halobetasol propionate (HP) is related to some adverse effects like irritation, pruritus and stinging. The purpose of this work was to construct HP-loaded solid lipid nanoparticles (HP-SLN) formulation with skin targeting to minimizing the adverse side effects and providing a controlled release. HP-SLN were prepared by solvent injection method and formula was optimized by the application of 3(2) factorial design. The nanoparticulate dispersion was evaluated for particle size and entrapment efficiency (EE). Optimized batch was characterized for differential scanning calorimetry (DSC), scanning electron microscopy, X-ray diffraction study and finally incorporated into polymeric gels of carbopol for convenient application. The nanoparticulate gels were evaluated comparatively with the commercial product with respect to ex-vivo skin permeation and deposition study on human cadaver skins and finally skin irritation study. HP-SLN showed average size between 200 nm and 84-94% EE. DSC studies revealed no drug-excipient incompatibility and amorphous dispersed of HP in SLN. Ex vivo study of HP-SLN loaded gel exhibited prolonged drug release up to 12 h where as in vitro drug deposition and skin irritation studies showed that HP-SLN formulation can avoid the systemic uptake, better accumulative uptake of the drug and nonirritant to the skin compared to marketed formulation. These results indicate that the studied HP-SLN formulation represent a promising carrier for topical delivery of HP, having controlled drug release, and potential of skin targeting with no skin irritation. PMID:24131382

  13. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Dudhipala, Narendar; Veerabrahma, Kishan

    2016-01-01

    Candesartan cilexetil (CC) is used in the treatment of hypertension and heart failure. It has poor aqueous solubility and low oral bioavailability. In this work, CC loaded solid lipid nanoparticles (CC-SLNs) were developed to improve the oral bioavailability. Components of the SLNs include either of trimyristin/tripalmitin/tristearin, and surfactants (Poloxamer 188 and egg lecithin E80). The CC loaded nanoparticles were prepared by hot homogenization followed by ultrasonication method. The physicochemical properties, morphology of CC-SLNs were characterized, the pharmacokinetic and pharmacodynamic behaviour of CC-SLNs were evaluated in rats. Stable CC-SLNs having a mean particle size of 180-220 nm with entrapment efficiency varying in between 91-96% were developed. The physical stability of optimized formulation was studied at refrigerated and room temperature for 3 months. Further, freeze drying was tried for improving the physical stability. DSC and XRD analyses indicated that the drug incorporated into SLN was in amorphous form but not in crystalline state. The SLN-morphology was found to be nearly spherical by electron microscopic studies. Pharmacokinetic results indicated that the oral bioavailability of CC was improved over 2.75-fold after incorporation into SLNs. Pharmacodynamic study of SLNs in hypertensive rats showed a decrease in systolic blood pressure for 48 h, while suspension showed a decrease in systolic blood pressure for only 2 h. Taken together, these effects are due to enhanced bioavailability coupled with sustained action of CC in SLN formulation. Thus, the results conclusively demonstrated the role of CC-SLNs for a significant enhancement in oral bioavailability along with improved pharmacodynamic effect. PMID:24865287

  14. Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study.

    PubMed

    Chen, Ruie; Wang, Shengpeng; Zhang, Jinming; Chen, Meiwan; Wang, Yitao

    2015-01-01

    Aloe-emodin (AE) is a promising anti-tumor candidate for its significant activity against various tumors such as lung cancer, hepatic cancer, breast cancer and so on. Nevertheless, AE is clinically limited due to its poor water solubility and low bioavailability. This study was designed to prepare AE-loaded solid lipid nanoparticles (AE-SLNs) in an attempt to improve the anti-cancer efficacy of AE. The AE-SLNs were prepared with optimized prescription using high pressure homogenization (HPH) technique. Ultimately, the AE-SLNs showed stable particle size at 88.9 ± 5.2 nm, ideal drug entrapment efficiency (EE) of 97.71 ± 0.5% and good stability with regard to zeta-potential as high as -42.8 mV. The in vitro release profiles revealed that AE achieved sustained release by loading into SLNs. Moreover, AE-SLNs showed significantly higher in vitro cytotoxicity against human breast cancer MCF-7 cells and human hepatoma HepG2 cells as compared to the AE solution, while they showed no significant toxicity on human mammary epithelial MCF-10A cells. Hoechst 33342 staining and Annexin V/PI double staining indicated that AE-SLNs induced higher apoptotic rates in MCF-7 cells. Further study elucidated that the improved anti-cancer efficacy may be attributed to the increased cellular uptake of AE. Based on these findings, we believe that the development of AE-SLNs is an effective way for improving the anti-cancer efficacy of AE. PMID:24512431

  15. Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid.

    PubMed

    Campos, Débora A; Madureira, Ana Raquel; Gomes, Ana Maria; Sarmento, Bruno; Pintado, Maria Manuela

    2014-03-01

    During the last decade there has been a growing interest in the formulation of new food and nutraceutical products containing compounds with antioxidant activity. Unfortunately, due to their structure, certain compounds such as polyphenols, in particular rosmarinic acid (RA) are not stable and may interact easily with matrices in which they are incorporated. To overcome such limitations, the formulation of loaded polyphenols nanoparticles can offer an efficient solution to protect such compounds. Based on this rationale, the aim of this study was to prepare solid lipid nanoparticles (SLNs) loaded with RA using a hot melt ultrasonication method, where Witepsol H15 was used as lipid and Polysorbate 80 (Tween 80) as surfactant, following a 3(2) fractional factorial design, resulting in the use of 3 different percentages of surfactant (viz. 1, 2 and 3%, v/v) and lipid (0.5, 1.0 and 1.5%, w/v). The stability of the nanoparticles systems were tested during 28 d in aqueous solution stored at refrigeration temperature (ca. 5 °C), tracking the mean particle size of different formulations by photon correlation spectroscopy. To confirm RA entrapment, thermal analyses of the nanoparticles by DSC and FTIR were performed. The association efficiencies percentages (AE%) were determined using HPLC to quantitatively assess the RA in supernatants. Results showed that Witepsol H15 produced nanoparticles with initial mean diameters between 270 and 1000 nm, yet over time, a slight increase occurred, but without occurrence of aggregation. The AE% showed a high percentage of encapsulation (ca. 99%), which reveals low polyphenol releases from SLNs throughout storage time. In general, results showed a successful production of SLNs with properties that can be used to food applications. PMID:24413308

  16. Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles

    PubMed Central

    Nazemiyeh, Elham; Eskandani, Morteza; Sheikhloie, Hossein; Nazemiyeh, Hossein

    2016-01-01

    Purpose: Lycopene belongs to the carotenoids that shows good pharmacological properties including antioxidant, anti-inflammatory and anticancer. However, as a result of very low aqueous solubility, it has a limited systemic absorption, following oral administration. Methods: Here, we prepared a stable lycopene-loaded solid lipid nanoparticles using Precirol® ATO5, Compritol 888 ATO and myristic acid by hot homogenization method with some modification. The size and morphological characteristics of nanoparticles were evaluated using Scanning Electron Microscopy (SEM). Moreover, zeta potential and dispersity index (DI) were measured using zeta sizer. In addition, encapsulation efficiency (EE%), drug loading (DL) and cumulative drug release were quantified. Results: The results showed that the size and DI of particles was generally smaller in the case of SLNs prepared with precirol when compared to SLNs prepared with compritol. Scanning electron microscopy (SEM) and particle size analyses showed spherical SLNs (125 ± 3.89 nm), monodispersed distribution, and zeta potential of −10.06 ± 0.08 mV. High EE (98.4 ± 0.5 %) and DL (44.8 ± 0.46 mg/g) were achieved in the case of nanoparticles prepared by precirol. The stability study of the lycopene-SLNs in aqueous medium (4 °C) was showed that after 2 months there is no significant differences seen in size and DI compared with the fresh formulation. Conclusion: Conclusively, in this investigation we prepared a stable lycopene-SLNs with good physicochemical characteristic which candidate it for the future in vivo trials in nutraceutical industries. PMID:27478786

  17. Characterization and evaluation of metformin-loaded solid lipid nanoparticles for celluar and mitochondrial uptake.

    PubMed

    Xu, Qiang; Zhu, Tao; Yi, Chaoli; Shen, Qi

    2016-01-01

    Considered a popular drug for diabetes in recent years, metformin was determined to have a moderate anti-tumor effect, particularly in breast cancer. In this study, the anticancer mechanism of metformin was verified by preparing solid lipid nanoparticles (SLNs) and chitosan-modified solid lipid nanoparticles (CSLNs) containing metformin and then estimating the potential of these SLNs for uptake in cells and mitochondria. Metformin-SLNs were prepared using an emulsification and low-temperature solidification method. The mean particle size, zeta potential, entrapment efficiency, and loading efficiency of metformin-SLNs and metformin chitosan-modified SLNs were 102.3 ± 4.16 and 200.1 ± 17.69 nm, -21.25 ± 4.89 and 50.6 ± 4.09 mv, 26.25 ± 2.59% and 33.6 ± 2.21%, and 1.74 ± 0.16% and 1.46 ± 0.10%, respectively. TEM images showed that both the nanoparticles had spherical morphologies with no aggregation. Results of cellular and mitochondrial uptake showed that the metformin-SLNs were easier to uptake in cells and mitochondria than the pure drug group (that was the control group without SLN structure modification). The findings of this research provide a basis for conducting further studies on the anticancer mechanism of metformin. PMID:26288997

  18. Regional Scale Photochemical Model Evaluation of Total Mercury Wet Deposition and Speciated Ambient Mercury

    EPA Science Inventory

    Methylmercury is a known neurotoxin with deleterious health effects on humans and wildlife. Atmospheric deposition is the largest source of mercury loading to most terrestrial and aquatic ecosystems. Regional scale air quality models are needed to quantify mercury deposition resu...

  19. Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury.

    PubMed

    Portugal, Lindomar A; Laglera, Luis M; Anthemidis, Aristidis N; Ferreira, Sérgio L C; Miró, Manuel

    2013-06-15

    A dedicated pressure-driven mesofluidic platform incorporating on-chip sample clean-up and analyte preconcentration is herein reported for expedient determination of trace level concentrations of waterborne inorganic mercury. Capitalizing upon the Lab-on-a-Valve (LOV) concept, the mesofluidic device integrates on-chip micro-solid phase extraction (μSPE) in automatic disposable mode followed by chemical vapor generation and gas-liquid separation prior to in-line atomic fluorescence spectrometric detection. In contrast to prevailing chelating sorbents for Hg(II), bare poly(divinylbenzene-N-vinylpyrrolidone) copolymer sorptive beads were resorted to efficient uptake of Hg(II) in hydrochloric acid milieu (pH=2.3) without the need for metal derivatization nor pH adjustment of prior acidified water samples for preservation to near-neutral conditions. Experimental variables influencing the sorptive uptake and retrieval of target species and the evolvement of elemental mercury within the miniaturized integrated reaction chamber/gas-liquid separator were investigated in detail. Using merely <10 mg of sorbent, the limits of detection and quantification at the 3s(blank) and 10s(blank) levels, respectively, for a sample volume of 3 mL were 12 and 42 ng L(-1) Hg(II) with a dynamic range extending up to 5.0 μg L(-1). The proposed mesofluidic platform copes with the requirements of regulatory bodies (US-EPA, WHO, EU-Commission) for drinking water quality and surface waters that endorse maximum allowed concentrations of mercury spanning from 0.07 to 6.0 μg L(-1). Demonstrated with the analysis of aqueous samples of varying matrix complexity, the LOV approach afforded reliable results with relative recoveries of 86-107% and intermediate precision down to 9% in the renewable μSPE format. PMID:23618176

  20. Preparation and in vivo evaluation of a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system.

    PubMed

    Kim, Min-Soo; Ha, Eun-Sol; Choo, Gwang-Ho; Baek, In-Hwan

    2015-01-01

    The purpose of this study was to prepare a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system (SMEDDS) using hydrophilic additives with high oral bioavailability, and to determine if there was a correlation between the in vitro dissolution data and the in vivo pharmacokinetic parameters of this delivery system in rats. A dutasteride-loaded solid-supersaturatable SMEDDS was generated by adsorption of liquid SMEDDS onto Aerosil 200 colloidal silica using a spray drying process. The dissolution and oral absorption of dutasteride from solid SMEDDS significantly increased after the addition of hydroxypropylmethyl cellulose (HPMC) or Soluplus. Solid SMEDDS/Aerosil 200/Soluplus microparticles had higher oral bioavailability with 6.8- and 5.0-fold higher peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) values, respectively, than that of the equivalent physical mixture. A linear correlation between in vitro dissolution efficiency and in vivo pharmacokinetic parameters was demonstrated for both AUC and Cmax values. Therefore, the preparation of a solid-supersaturatable SMEDDS with HPMC or Soluplus could be a promising formulation strategy to develop novel solid dosage forms of dutasteride. PMID:25984604

  1. Preparation and in Vivo Evaluation of a Dutasteride-Loaded Solid-Supersaturatable Self-Microemulsifying Drug Delivery System

    PubMed Central

    Kim, Min-Soo; Ha, Eun-Sol; Choo, Gwang-Ho; Baek, In-Hwan

    2015-01-01

    The purpose of this study was to prepare a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system (SMEDDS) using hydrophilic additives with high oral bioavailability, and to determine if there was a correlation between the in vitro dissolution data and the in vivo pharmacokinetic parameters of this delivery system in rats. A dutasteride-loaded solid-supersaturatable SMEDDS was generated by adsorption of liquid SMEDDS onto Aerosil 200 colloidal silica using a spray drying process. The dissolution and oral absorption of dutasteride from solid SMEDDS significantly increased after the addition of hydroxypropylmethyl cellulose (HPMC) or Soluplus. Solid SMEDDS/Aerosil 200/Soluplus microparticles had higher oral bioavailability with 6.8- and 5.0-fold higher peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) values, respectively, than that of the equivalent physical mixture. A linear correlation between in vitro dissolution efficiency and in vivo pharmacokinetic parameters was demonstrated for both AUC and Cmax values. Therefore, the preparation of a solid-supersaturatable SMEDDS with HPMC or Soluplus could be a promising formulation strategy to develop novel solid dosage forms of dutasteride. PMID:25984604

  2. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies.

    PubMed

    Gaspar, Diana P; Faria, Vasco; Gonçalves, Lídia M D; Taboada, Pablo; Remuñán-López, Carmen; Almeida, António J

    2016-01-30

    Systemic administration of antitubercular drugs can be complicated by off-target toxicity to cells and tissues that are not infected by Mycobacterium tuberculosis . Delivery of antitubercular drugs via nanoparticles directly to the infected cells has the potential to maximize efficacy and minimize toxicity. The present work demonstrates the potential of solid lipid nanoparticles (SLN) as a delivery platform for rifabutin (RFB). Two different RFB-containing SLN formulations were produced using glyceryl dibehenate or glyceryl tristearate as lipid components. Full characterization was performed in terms of particle size, encapsulation and loading efficiency, morphology by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies. Physical stability was evaluated when formulations were stored at 5 ± 3°C and in the freeze-dried form. Formulations were stable throughout lyophilization without significant variations on physicochemical properties and RFB losses. The SLN showed to be able to endure harsh temperature conditions as demonstrated by dynamic light scattering (DLS). Release studies revealed that RFB was almost completely released from SLN. In vitro studies with THP1 cells differentiated in macrophages showing a nanoparticle uptake of 46 ± 3% and 26 ± 9% for glyceryl dibehenate and glyceryl tristearate SLN, respectively. Cell viability studies using relevant lung cell lines (A549 and Calu-3) revealed low cytotoxicity for the SLN, suggesting these could be new potential vehicles for pulmonary delivery of antitubercular drugs. PMID:26656946

  3. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension.

    PubMed

    Wang, Ting; Chen, Xiaojin; Lu, Mengmeng; Li, Xihe; Zhou, WenZhong

    2015-12-01

    A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo. The results showed that the mean diameter, polydispersity index and zeta potential of the nanoparticles were 253 ± 3 nm, 0.409 ± 0.022 and 47.5 ± 0.21 mV, respectively. In vitro release profile showed the FFC-SLN suspension had sustained release effect. The minimum inhibition concentration values of the FFC-SLN suspension were 6 and 3 µg/mL against Staphylococcus aureus and Escherichia coli respectively, compared with 3.5 and 2 µg/mL of native florfenicol. The suspension was relatively stable at 4°C and less stable at room temperature during 9 months storage. Although the nanoparticle carriers exhibited cytotoxicity in cell cultures, the LD50 of the lyophilised dry power of the suspension was higher than 5 g/kg body weight. Mortality protection against E. coli lethal infection in mice showed that the nanoparticle suspension had much better efficacy (6/10) than native drug (1/10). These results indicate that FFC-SLN suspension could be a promising formulation in veterinary medicine. PMID:26647811

  4. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.

    PubMed

    Geetha, T; Kapila, Meenakshi; Prakash, Om; Deol, Parneet Kaur; Kakkar, Vandita; Kaur, Indu Pal

    2015-02-01

    Abstract Role of reactive oxygen species (ROS) in skin carcinogenesis is well documented. Natural molecules, like sesamol, with marked antioxidant potential can be useful in combating skin cancers. In vitro antiproliferative (using MTT assay) and DNA fragmentation studies in HL 60 cell lines, confirmed the apoptotic nature of sesamol. However, it showed a significant flux across the mice skin upon topical application, such that its local availability in skin is limited. Former is attributed mainly to its properties like small size, low molecular weight (138.28), and a sufficient lipid and water solubility (log P 1.29; solubility 38.8 mg/ml). To achieve its maximum epicutaneous delivery, packaging it into a suitable carrier system is thus indicated. Sesamol-loaded solid lipid nanoparticles (S-SLN) were thus prepared with particle size of 127.9 nm (PI: 0.256) and entrapment efficiency of 88.21%. Topical application of S-SLN in a cream base indicated significant retention in the skin with minimal flux across skin as confirmed by the in-vivo skin retention and ex-vivo skin permeation studies. In vivo anticancer studies performed on TPA-induced and benzo(a)pyrene initiated tumour production (ROS mediated) in mouse epidermis showed the normalization (in histology studies) of skin cancers post their induction, upon treatment with S-SLN. PMID:25268273

  5. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies

    NASA Astrophysics Data System (ADS)

    Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Solazzi, Ilaria; Giordano, Susanna Marzia Adele; Gigliotti, Casimiro Luca; Riganti, Chiara; Dianzani, Chiara

    2015-06-01

    Glioblastoma, the most common primary brain tumor in adults, has an inauspicious prognosis, given that overcoming the blood-brain barrier is the major obstacle to the pharmacological treatment of brain tumors. As neoangiogenesis plays a key role in glioblastoma growth, the US Food and Drug Administration approved bevacizumab (BVZ), an antivascular endothelial growth factor antibody for the treatment of recurrent glioblastoma in patients whose the initial therapy has failed. In this experimental work, BVZ was entrapped in solid lipid nanoparticles (SLNs) prepared by the fatty-acid coacervation technique, thanks to the formation of a hydrophobic ion pair. BVZ activity, which was evaluated by means of four different in vitro tests on HUVEC cells, increased by 100- to 200-fold when delivered in SLNs. Moreover, SLNs can enhance the permeation of fluorescently labelled BVZ through an hCMEC/D3 cell monolayer—an in vitro model of the blood brain barrier. These results are promising, even if further in vivo studies are required to evaluate the effective potential of BVZ-loaded SLNs in glioblastoma treatment.

  6. Indomethacin-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Development, Characterization, and In Vitro Evaluation

    PubMed Central

    Hippalgaonkar, Ketan; Adelli, Goutham R.; Hippalgaonkar, Kanchan; Repka, Michael A.

    2013-01-01

    Abstract Purpose The goal of this study was to develop and characterize indomethacin-loaded solid lipid nanoparticles (IN-SLNs; 0.1% w/v) for ocular delivery. Methods Various lipids, homogenization pressures/cycles, Tween 80 fraction in the mixture of surfactants (Poloxamer 188 and Tween 80; total surfactant concentration at 1% w/v), and pH were investigated in the preparation of the IN-SLNs. Compritol® 888 ATO was selected as the lipid phase for the IN-SLNs, as indomethacin exhibited a highest distribution coefficient and solubility in this phase. Results Homogenization at 15,000 psi for 6 cycles resulted in the smallest particle size. Increase in the Poloxamer 188 fraction resulted in decrease in the entrapment efficiency (EE). The mean particle size, polydispersity index, zeta-potential, and EE of the optimized formulation were 140 nm, 0.16, −21 mV, and 72.0%, respectively. IN-SLNs were physically stable post-sterilization and on storage for a period of 1 month (last timepoint tested). A dramatic increase in the chemical stability and in vitro corneal permeability of indomethacin was observed with the IN-SLN formulation in comparison to the indomethacin solution- (0.1% w/v) and indomethacin hydroxypropyl-beta-cyclodextrin-based formulations (0.1% w/v). Conclusion Results from this study suggest that topical IN-SLNs could significantly improve ocular bioavailability of indomethacin. PMID:23421502

  7. SINGLE-LABORATORY EVALUATION AND MODIFICATION OF U.S. EPA (ENVIRONMENTAL PROTECTION AGENCY) METHODS 7470 AND 7471 FOR THE DETERMINATION OF MERCURY IN AQUEOUS AND SOLID HAZARDOUS WASTES (JOURNAL VERSION)

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (U.S. EPA) protocols for mercury determinations in aqueous and solid waste samples (SW-846 Methods 7470 and 7471) using recirculating cold-vapor atomic absorption spectrometry (CV-AAS) have been evaluated. The U.S. EPA protocols ha...

  8. TOTAL SOLIDS AND SUSPENDED SEDIMENT LOADS IN COASTAL PLAIN STREAMFLOW - A DERIVED DISTRIBUTION TO TOTAL DAILY LOADS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality of streams, lakes, or other water bodies may be degraded by excessive amounts of dissolved or suspended solids in surface runoff or base flows. The rate of transport of dissolved and suspended material in runoff depends upon geology, soils, vegetative cover, topography, and agricultur...

  9. Determination of mercury in real water samples using in situ derivatization followed by sol-gel-solid-phase microextraction with gas chromatography-flame ionization detection.

    PubMed

    Sarafraz-Yazdi, Ali; Fatehyan, Elham; Amiri, Amirhassan

    2014-01-01

    An in situ derivatization and solid-phase microextraction (SPME) method based on sol-gel technology coupled with gas chromatography-flame ionization detection was proposed for the determination of mercury [Hg(ΙΙ)] at ultra-trace levels in water samples. The analytical procedure involves aqueous-phase derivatization of Hg(ΙΙ) with phenylboronic acid in a sample vial and subsequent extraction with a sol-gel fiber coating. In this study, poly(ethylene glycol), modified with a coating fiber of multi-walled carbon nanotubes was used for the determination of mercury. The pH of the feed solution was kept at 5 with acetic acid-sodium acetate buffer solution. The optimized conditions are as follows: derivatization time, 10 min; extraction time, 60 min; extraction temperature, 40°C; stirring rate, 1,000 rpm; sample volume, 5 mL. Under the optimal conditions, a detection limit of the method [signal-to-noise ratio (S/N) = 3] were obtained at 0.001 ng/mL and a limit of quantification (S/N = 10) were obtained at 0.005 ng/mL. Also, the relative standard deviations were obtained for one fiber (repeatability) (n = 5) and between fibers or batch to batch (n = 3) (reproducibility). The developed method was successfully applied to real water samples. PMID:23277157

  10. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  11. Bioethanol production from pretreated Melaleuca leucadendron shedding bark--simultaneous saccharification and fermentation at high solid loading.

    PubMed

    Ahmed, Ibrahim Nasser; Nguyen, Phuong Lan Tran; Huynh, Lien Huong; Ismadji, Suryadi; Ju, Yi-Hsu

    2013-05-01

    Bioethanol production from the shedding bark of Melaleuca leucadendron (Paper-bark Tree, PBT) was studied using subcritical water (SCW) pretreatment at various severities (So). High ethanol production was attained by implementing a factorial design on three parameters (So, solid loading and enzyme loading) in simultaneous saccharification and fermentation (SSF) mode. Ethanol concentration of 63.2 g L(-1) corresponding to ethanol yield of 80.9% were achieved from pretreated biomass (So=2.37) at 0.25 g mL(-1) solid and 16 FPU g(-1) glucan enzyme loadings. Similarly at 0.15 g mL(-1) solid loadings both high ethanol concentration (43.7 g L(-1)) and high ethanol yield (91.25%) were achieved. Regression analysis of experimental results shows that all process parameters had significant role on maximum ethanol production, glucose solubility, ethanol yield and ethanol volumetric productivity. SSF of SCW treated PBT biomass is economically feasible for production of bioethanol. PMID:23570711

  12. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Enayatullah, Mohammad; Appleby, A. John

    1989-01-01

    High power density fuel cell systems for defense and civilian applications are being developed. Taking into consideration the main causes for efficiency losses (activation, mass transport and ohmic overpotentials) the only fuel cell systems capable of achieving high power densities are the ones with alkaline and solid polymer electrolyte. High power densities (0.8 W/sq cm at 0.8 V and 1 A/sq cm with H2 and O2 as reactants), were already used in NASA's Apollo and Space Shuttle flights as auxiliary power sources. Even higher power densities (4 W/sq cm - i.e., 8 A sq cm at 0.5 V) were reported by the USAF/International Fuel Cells in advanced versions of the alkaline system. High power densities (approximately 1 watt/sq cm) in solid polymer electrolyte fuel cells with ten times lower platinum loading in the electrodes (i.e., 0.4 mg/sq cm) were attained. It is now possible to reach a cell potential of 0.620 V at a current density of 2 A/sq cm and at a temperature of 95 C and pressure of 4/5 atm with H2/O2 as reactants. The slope of the linear region of the potential-current density plot for this case is 0.15 ohm-sq cm. With H2/air as reactants and under the same operating conditions, mass transport limitations are encountered at current densities above 1.4 A/sq cm. Thus, the cell potential at 1 A/sq cm with H2/air as reactants is less than that with H2/O2 as reactants by 40 mV, which is the expected value based on electrode kinetics of the oxygen reduction reaction, and at 2 A/sq cm with H2/air as reactant is less than the corresponding value with H2/O2 as reactants by 250 mV, which is due to the considerably greater mass transport limitations in the former case.

  13. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples. PMID:24148384

  14. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  15. Mercury contamination study for flight system safety

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  16. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles.

    PubMed

    Kelidari, H R; Saeedi, M; Akbari, J; Morteza-Semnani, K; Gill, P; Valizadeh, H; Nokhodchi, A

    2015-04-01

    The aim of the current investigation was to prepare and evaluate the potential use of solid lipid nanoparticles for the dermal delivery of spironolactone (SP). The spironolactone loaded SLN (SP-SLN) was prepared by emulsion-solvent evaporation method followed by ultrasonication. The properties of obtained SLNs were characterized by photon correlation spectroscopy (PCS), scanning tunneling microscopy (STM) and differential scanning calorimetry. FT-IR was also used to investigate any interaction between SP and excipients in the molecular level during the preparation of SLNs. The performance of the formulations was investigated in terms of drug release, skin permeation and also the retention of drug by the skin. The SP-SLNs presented spherical shape with the mean diameter, zeta potential and entrapment efficiency of 88.9 nm, -23.9 mV and 59.86%, respectively. DSC study showed that SP alone encapsulated in SLNs was in the amorphous form. FT-IR analysis revealed that there were hydrogen bond interactions between the SP alone and SLN components. The dissolution results revealed that the drug release from SP-SLNs was at least 4.9 times faster than original SP within the first 30 min. The cumulative amount of SP penetrated through rat skin from SP-SLNs was almost twofold that of the SP alone in 24h after the administration. In vitro permeation studies indicated that SP-SLN may be a promising vector for use in the topical treatment. It can be concluded that SLNs provide good skin permeation for SP and may be a promising carrier for topical delivery of spironolactone offering the biphasic release pattern that might be interesting for topical application resulting in an effective treatment for skin disorders such as acne. PMID:25797482

  17. Direct solid-support sample loading for fast cataluminescence determination of acetone in human plasma.

    PubMed

    Yang, Ping; Lau, Choiwan; Liu, Xia; Lu, Jianzhong

    2007-11-15

    In the current manuscript we describe the development of a novel cataluminescence (CTL) sensor coupled with ionic liquids (ILs)-based headspace solid-phase microextraction (HS-SPME) technologies for the quantification of human plasma acetone levels associated with diabetic disease ex vivo. The unique properties of ILs, such as their nonvolatile and nonflammable nature, coupled with their high thermal stability allow ILs to be conveniently adopted as pseudosolid carriers for direct loading of acetone into a CTL sensor without matrix interference. Acetone from diabetic patient plasma and plasma samples spiked with acetone along with methanol, ethanol, and formaldehyde was conveniently and rapidly extracted and enriched in 3 microL of IL and then rapidly quantified by our CTL sensor. The presence of plasma alone or spiked plasma containing methanol, ethanol, or formaldehyde did not interfere with acetone measurements. HS-SPME-CTL provides higher enrichment efficiency than headspace single-drop microextraction-based CTL (HS-SDME-CTL) methods, possibly due to that the thin film formed in HS-SPME instead of the single IL drop in HS-SDME increases the exchange area for extracted acetone. The enrichment efficiency by HS-SPME-CTL was almost 80-fold higher than that with direct injection using the same volume of aqueous samples and more than 6-fold higher than that using HS-SDME-CTL. Considering that ILs can be easily prepared from inexpensive materials and tuned by the combination of different anions and cations for the extraction of specific analytes from various solvent media, this proposed technology raises an exciting possibility by employing HS-SPME-CTL for the fast determination of specific targets in many fields. PMID:17939643

  18. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles.

    PubMed

    Xue, Mei; Yang, Ming-xing; Zhang, Wei; Li, Xiu-min; Gao, De-hong; Ou, Zhi-min; Li, Zhi-peng; Liu, Su-huan; Li, Xue-jun; Yang, Shu-yu

    2013-01-01

    The high aqueous solubility, poor permeability, and absorption of berberine (BBR) result in its low plasma level after oral administration, which greatly limits its clinical application. BBR solid lipid nanoparticles (SLNs) were prepared to achieve improved bioavailability and prolonged effect. Developed SLNs showed homogeneous spherical shapes, small size (76.8 nm), zeta potential (7.87 mV), encapsulation efficiency (58%), and drug loading (4.2%). The power of X-ray diffraction combined with (1)H nuclear magnetic resonance spectroscopy was employed to analyze chemical functional groups and the microstructure of BBR-SLNs, and indicated that the drug was wrapped in a lipid carrier. Single dose (50 mg/kg) oral pharmacokinetic studies in rats showed significant improvement (P<0.05) in the peak plasma concentration, area under the curve, and variance of mean residence time of BBR-SLNs when compared to BBR alone (P<0.05), suggesting improved bioavailability. Furthermore, oral administration of both BBR and BBR-SLNs significantly suppressed body weight gain, fasting blood glucose levels, and homeostasis assessment of insulin resistance, and ameliorated impaired glucose tolerance and insulin tolerance in db/db diabetic mice. BBR-SLNs at high dose (100 mg/kg) showed more potent effects when compared to an equivalent dose of BBR. Morphologic analysis demonstrated that BBR-SLNs potentially promoted islet function and protected the islet from regeneration. In conclusion, our study demonstrates that by entrapping BBR into SLNs the absorption of BBR and its anti-diabetic action were effectively enhanced. PMID:24353417

  19. Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure

    PubMed Central

    Gao, Gang; Liu, Ya; Zhou, Chang-Hua; Jiang, Ping; Sun, Jian-Jun

    2015-01-01

    Background: Antioxidants and the duration of treatment after noise exposure on hearing recovery are important. We investigated the protective effects of an antioxidant substance, edaravone, and its slow-release dosage form, edaravone solid lipid nanoparticles (SLNs), in steady noise-exposed guinea pigs. Methods: SLNs loaded with edaravone were produced by an ultrasound technique. Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1st day of noise exposure. Guinea pigs were exposed to 110 dB sound pressure level (SPL) noise, centered at 0.25–4.0 kHz, for 4 days at 2 h/d. After noise exposure, the guinea pigs underwent auditory brainstem response (ABR) threshold measurements, reactive oxygen species (ROS) were detected in their cochleas with electron spin resonance (ESR), and outer hair cells (OHCs) were counted with silvernitrate (AgNO3) staining at 1, 4, and 6 days. Results: The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%. Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea. Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment, especially in the edaravone SLN intratympanic injection group. Conclusions: Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL). PMID:25591563

  20. Airborne emissions of mercury from municipal solid waste. I: new measurements from six operating landfills in Florida.

    PubMed

    Lindberg, Steve E; Southworth, George R; Bogle, Mary Anna; Biasing, T J; Owens, Jim; Roy, Kelly; Zhang, Hong; Kuiken, Todd; Price, Jack; Reinhart, Debra; Sfeir, Hala

    2005-07-01

    Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses. PMID:16111125

  1. Activation of the Mercury Laser: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Bibeau, C; Beach, R J; Chanteloup, J C; Ebbers, C A; Kanz, K; Nakano, H; Payne, S A; Powell, H T; Schaffers, K I; Seppala, L; Skulina, K; Smith, L K; Sutton, S B; Zapata, L E

    2001-03-07

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated high energy density physics research. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. This laser is an angularly multiplexed 4-pass gas-cooled amplifier system based on image relaying to minimize wavefront distortion and optical damage risk at the 10 Hz operating point. The efficiency requirements are fulfilled using diode laser pumping of ytterbium doped strontium fluorapatite crystals.

  2. Spatially Referenced Statistical Assessment of Dissolved-Solids Load Sources and Transport in Streams of the Upper Colorado River Basin

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.; Spangler, Lawrence E.

    2009-01-01

    The Upper Colorado River Basin (UCRB) discharges more than 6 million tons of dissolved solids annually, about 40 to 45 percent of which are attributed to agricultural activities. The U.S. Department of the Interior estimates economic damages related to salinity in excess of $330 million annually in the Colorado River Basin. Salinity in the UCRB, as measured by dissolved-solids load and concentration, has been studied extensively during the past century. Over this period, a solid conceptual understanding of the sources and transport mechanisms of dissolved solids in the basin has been developed. This conceptual understanding was incorporated into the U.S. Geological Survey Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model to examine statistically the dissolved-solids supply and transport within the UCRB. Geologic and agricultural sources of dissolved solids in the UCRB were defined and represented in the model. On the basis of climatic and hydrologic conditions along with data availability, water year 1991 was selected for examination with SPARROW. Dissolved-solids loads for 218 monitoring sites were used to calibrate a dissolved-solids SPARROW model for the UCRB. The calibrated model generally captures the transport mechanisms that deliver dissolved solids to streams of the UCRB as evidenced by R2 and yield R2 values of 0.98 and 0.71, respectively. Model prediction error is approximated at 51 percent. Model results indicate that of the seven geologic source groups, the high-yield sedimentary Mesozoic rocks have the largest yield of dissolved solids, about 41.9 tons per square mile (tons/mi2). Irrigated sedimentary-clastic Mesozoic lands have an estimated yield of 1,180 tons/mi2, and irrigated sedimentary-clastic Tertiary lands have an estimated yield of 662 tons/mi2. Coefficients estimated for the seven landscape transport characteristics seem to agree well with the conceptual understanding of the role they play in the

  3. Mercury mass balance in Lake Michigan--the knowns and unknowns

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  4. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  5. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  6. A straightforward wet-chemistry method for the determination of solid and gaseous mercury fractions in Backlight Cold Cathode Fluorescence Lamps.

    PubMed

    Figi, Renato; Nagel, Oliver; Hagendorfer, Harald

    2012-10-15

    Backlight Cold Cathode Fluorescence Lamps (B-CCFLs) are already applied in many electronic consumer products such as LCD screens, flat screen TVs, and laptop monitors. In consequence, an increase of such products entering the waste streams can be expected in the near future. As a result of the mercury (Hg) employed in such lamps, the development of recycling techniques to create a best practical environmental option for appropriate end-of-life strategies are necessary. For this purpose the knowledge about speciation in terms of solid and gaseous state of Hg in such lamps is inevitable. However, analytical techniques to discriminate solid and gaseous Hg require a special setup, not available in most routine laboratories. Thus a straightforward and cost efficient analytical technique is of need. In this work we describe sample preparation procedures and analysis techniques, which only require equipment already available in most routine laboratories. The volatile fraction is extracted with a KMnO(4) solution utilizing a novel approach, taking the advantage that the B-CCFL glass tubes have a negative pressure. Thus the extraction solution is directly sucked into the tube where the volatile Hg-fraction is immediately extracted. Subsequently, the solid fraction is dissolved via microwave assisted pressure acid digestion after cryo-milling. Analysis for both fractions took place employing a cold vapor atomic absorption system. To prove the new method is fit for purpose, spiking experiments and analysis of reference materials (when available) was performed with recoveries being between 90% and 110%. First results obtained for a stack of lamps from an used LCD-TV display reveal that solid Hg fractions in all lamps show a variation of 20% between samples whereas the gaseous Hg content can vary up to 600%. PMID:23141320

  7. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  8. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    PubMed

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone. PMID:24926600

  9. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    PubMed Central

    Ji, Peng; Yu, Tong; Liu, Ying; Jiang, Jie; Xu, Jie; Zhao, Ying; Hao, Yanna; Qiu, Yang; Zhao, Wenming; Wu, Chao

    2016-01-01

    Naringenin (NRG), a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs) to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE) was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle size of 98 nm, a polydispersity index of 0.258, a zeta potential of −31.4 mV, a total drug content of 9.76 mg, an EE of 79.11%, and a cumulative drug release of 80% in 48 hours with a sustained profile. In addition, 5% mannitol (w

  10. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.

    PubMed

    Ji, Peng; Yu, Tong; Liu, Ying; Jiang, Jie; Xu, Jie; Zhao, Ying; Hao, Yanna; Qiu, Yang; Zhao, Wenming; Wu, Chao

    2016-01-01

    Naringenin (NRG), a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs) to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE) was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle size of 98 nm, a polydispersity index of 0.258, a zeta potential of -31.4 mV, a total drug content of 9.76 mg, an EE of 79.11%, and a cumulative drug release of 80% in 48 hours with a sustained profile. In addition, 5% mannitol (w

  11. Activation of theMercury Laser System: A Diode-Pumped Solid-State Laser Driver for Inertial Fusion

    SciTech Connect

    Bayramian, A J; Beach, R J; Bibeau, C; Ebbers, C A; Freitas, B L; Kanz, V K; Payne, S A; Schaffers, K I; Skulina, K M; Smith, L K; Tassano, J B

    2001-09-10

    Initial measurements are reported for the Mercury laser system, a scalable driver for rep-rated inertial fusion energy. The performance goals include 10% electrical efficiency at 10 Hz and 100 J with a 2-10 ns pulse length. We report on the first Yb:S-FAP crystals grown to sufficient size for fabricating full size (4 x 6 cm) amplifier slabs. The first of four 160 kW (peak power) diode arrays and pump delivery systems were completed and tested with the following results: 5.5% power droop over a 0.75 ms pulse, 3.95 nm spectral linewidth, far field divergence of 14.0 mrad and 149.5 mrad in the microlensed and unmicrolensed directions respectively, and 83% optical-to-optical transfer efficiency through the pump delivery system.

  12. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  13. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  14. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples.

    PubMed

    Ma, Shishuai; He, Man; Chen, Beibei; Deng, Wenchao; Zheng, Qi; Hu, Bin

    2016-01-01

    In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples. PMID:26695239

  15. Metal ion-assisted drug-loading model for novel delivery system of cisplatin solid lipid nanoparticles with improving loading efficiency and sustained release.

    PubMed

    Yang, Caiqin; Lv, Jie; Lv, Tao; Pan, Yahui; Han, Yazhu; Zhao, Sha; Wang, Jing

    2016-05-01

    Metal ion-assisted drug loading model, in which metal ion was used to modify the microstructure of lipid layer, has been developed to improve drug loading efficiency of solid lipid nanoparticles (SLNs). The microstructure and properties of metal ion-assisted cisplatin-loading SLNs were investigated by infra-red spectroscopy, fluorescence spectroscopy and zetasizer. The reactions of hydrogenated soybean lecithin with Zn(2+), Cu(2+), Mn(2+ )and Mg(2+ )have been detected; the mechanism for higher drug encapsulation efficiency (EE) has been investigated. In metal ion introduction SLNs, the compact degree of the lipid molecules was increased due to the electrostatic interaction between metal ions and phospholipid acyl and choline polarity groups, which result in increasing of drug EE. Meanwhile, these electrostatic interactions slowed the releasing rate of encapsulated drug. The study of cytotoxic activity in vitro indicated that the cell cytotoxicity of metal ions introduction SLNs depended on both cell uptake of SLNs and drug releasing from SLNs. PMID:27113257

  16. Global and regional contributions to total mercury concentrations in Lake Michigan water

    EPA Science Inventory

    A calibrated mercury component mass balance model, LM2-Mercury, was applied to Lake Michigan to predict mercury concentrations in the lake under different mercury loadings, mercury air concentrations, and management scenarios. Although post-audit data are few, model predictions (...

  17. MODELING MERCURY FATE IN SEVEN GEORGIA WATERSHEDS

    EPA Science Inventory

    Field and modeling studies were conducted in support of total maximum daily loads (TMDLs)for mercury in six south Georgia rivers and the Savannah River. Mercury is introduced to these rivers primarily by atmospheric deposition, with minor point source loadings. To produce mercu...

  18. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance.

    PubMed

    Ezzati Nazhad Dolatabadi, Jafar; Hamishehkar, Hamed; Valizadeh, Hadi

    2015-01-01

    Alendronate sodium is a bisphosphonate drug used for the treatment of osteoporosis and acts as a specific inhibitor of osteoclast-mediated bone resorption. Inhalable solid lipid nanoparticles (SLNs) of the alendronate were successfully designed and developed by spray-dried and co-spray dried inhalable mannitol from aqueous solution. Emulsification technique using a simple homogenization method was used for preparation of SLNs. In vitro deposition of the aerosolized drug was studied using a Next Generation Impactor at 60 L/min following the methodology described in the European and United States Pharmacopeias. The Carr's Index, Hausner ratio and angle of repose were calculated as suitable criteria for estimation of the flow behavior of solids. Scanning electron microscopy showed spherical particle morphology of the respirable particles. The proposed spray-dried nanoparticulate-on-microparticles dry powders displayed good aerosol dispersion performance as dry powder inhalers with high values in emitted dose, fine particle fraction and mass median aerodynamic diameter. These results indicate that this novel inhalable spray-dried nanoparticulate-on-microparticles aerosol platform has great potential in systemic delivery of the drug. PMID:25220930

  19. Modelling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant

    NASA Astrophysics Data System (ADS)

    Chan, S. H.; Ho, H. K.; Tian, Y.

    This paper presents the work on part-load operation of a power generation system composed of a solid oxide fuel cell and a gas turbine (SOFC-GT) which operate on natural gas. The system consists of an internal reforming SOFC (IRSOFC) stack, an external combustor, two turbines, two compressors, two recuperators and one heat-recovery steam generator (HRSG). Based on experience in different levels of modelling of the fuel cell, fuel cell stack and integrated system and the inherent characteristics of a IRSOFC-GT hybrid power plant, a practical approach for simplifying part-load operation of the system is proposed. Simulation results show that an IRSOFC-GT hybrid system could achieve a net electrical efficiency and system efficiency (including waste heat recovery for steam generation) of greater than 60 and 80%, respectively, under full-load operation. Due to the complexity of the interaction of the components and safety requirements, the part-load performance of a IRSOFC-GT hybrid power plant is poorer than that under full-load operation.

  20. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches

    PubMed Central

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103

  1. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches.

    PubMed

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103

  2. Analysis of annual dissolved-solids loading from selected natural and irrigated catchments in the Upper Colorado River Basin, 1974-2003

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.

    2012-01-01

    Dissolved-solids loading from 17 natural catchments and 14 irrigated catchments in the Upper Colorado River Basin was examined for the period from 1974 through 2003. In general, dissolved-solids loading increased and decreased concurrently in natural and irrigated catchments but at different magnitudes. Annually, the magnitude of loading in natural catchments changed about 10 percent more, on average, than in irrigated catchments. Measures of variability, or spread, indicate that natural catchments had 35 percent greater annual variability in loading than irrigated catchments. Precipitation and dissolved-solids loads were positively correlated in natural catchments, and a weak positive correlation was determined for irrigated catchments. A weak negative correlation between temperature and dissolved-solids load was determined for both natural and irrigated catchments. In irrigated catchments, the dissolved-solids load response to an above-average precipitation period from 1982 through 1987 generally lagged behind that in the natural catchments. On average, irrigated catchments with reservoir storage had the largest normalized maximum annual loads during the wet period.

  3. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    SciTech Connect

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  4. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology.

    PubMed

    Liu, Dongfei; Chen, Li; Jiang, Sunmin; Zhu, Shuning; Qian, Yong; Wang, Fengzhen; Li, Rui; Xu, Qunwei

    2014-03-01

    To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs. PMID:24236407

  5. Work-in-progress presented at the Army symposium on solid mechanics, 1980, designing for extremes: Environment, loading, and structural behavior

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Work-in-Progress was presented at the Army Symposium on solid Mechanics, 1980. Designing for Extremes: Environment, Loading, and Structural Behavior, held at Bass River (Cape Cod), Massachusetts, 29 September through 2 October 1980 were presented.

  6. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  7. Studies on thio-substituted polyurethane foam (T-PUF) as a new efficient separation medium for the removal of inorganic/organic mercury from industrial effluents and solid wastes.

    PubMed

    Anjaneyulu, Y; Marayya, R; Rao, T H

    1993-01-01

    Novel thio-substituted flexible polyurethane foam (T-PUF) was synthesised by addition polymerisation of mercaptan with the precursors of an open-cell polyurethane foam, which can be used as a highly selective sorbent for inorganic and organic mercury from complex matrices. The percentage extraction of inorganic mercury was studied at different flow-rates, over a wide pH range at different concentrations ranging from 1 ppm, to 100 ppm. The break-through capacity and total capacity of unmodified and thio-foams were determined for inorganic and organic mercurials. The absorption efficiency of thio-foam was far superior to other sorbent media, such as activated carbon, polymeric ion-exchange resins and reagent-loaded polyurethane foams. It was observed that even at the 1000 ppm level, divalent ions like Cu, Mg, Ca, Zn do not appreciably influence the per cent extraction of inorganic mercury at the 10 ppm level. These matrix levels are the most concentrated ones which are likely to occur, both in local sewage and effluent waters. Further, the efficiency of this foam was sufficiently high at 10-100 ppm levels of Hg, even from 5-10 litres of effluent volumes using 50 g of thio-foam packed into different columns in series. Thio-foams were found to possess excellent abilities to remove and recover mercury even at low levels from industrial effluents and brine mud of chlor-alkali industry after pre-acid extraction. This makes it a highly efficient sorbent for possible application in effluent treatment. Model schemes for the removal and recovery of mercury from industrial effluents and municipal sewage (100-1000 litre) by a dynamic method are proposed and the costs incurred in a full-scale application method are indicated to show that the use of thio-foam could be commercially attractive. PMID:15091891

  8. Some aspects of the damage kinetics at static loading of a heterogeneous solid under the conditions of constrained deformation

    NASA Astrophysics Data System (ADS)

    Leksovskii, A. M.; Baskin, B. L.; Yakushev, P. N.

    2015-12-01

    The damaging kinetics of a composite system subjected to static loading, which simulates an inhomogeneous body with microductility, and of D16T-B(43%) composite simulating a quasi-brittle solid is analyzed with the acoustic emission method. By using laser interferometry, it is shown on a model sample that mesocracking may cause a short-term change in the plastic strain rate, which two or more orders of magnitude exceeds the change in the creep rate during the usual supramolecular structure reconfiguration. Whether the object will remain functional or acquire damage of the next scale after being subjected to such local "impact" loading depends on the ability of its immediate environment to absorb released energy.

  9. The effects of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM).

    PubMed

    Zhang, Lijuan; Liu, Lei; Qian, Yu; Chen, Yun

    2008-06-01

    The effects of cryoprotectants on the diameter and the entrapment efficiency of ibuprofen-loaded solid lipid microparticles (SLM) during the freeze-drying process were investigated extensively. The SLM were prepared by the emulsion-congealing technique in which a glycerol behenate was used as the lipid matrix for the SLM and a soybean lecithin/bile salt used as the stabilizer. Also, trehalose, glucose, mannitol, and sucrose were chosen as the cryoprotectants. Trehalose and glucose proved to be the most effective in preventing particles aggregation and in inhibiting leakage from drug-loaded particles during the SLM freeze-drying process. The most suitable concentrations were proved to be 15% and 5% (wt), respectively. PMID:18280121

  10. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers.

    PubMed

    El-Salamouni, Noha S; Farid, Ragwa M; El-Kamel, Amal H; El-Gamal, Safaa S

    2015-12-30

    Nanoparticulate delivery systems have recently been under consideration for topical ophthalmic drug delivery. Brimonidine base-loaded solid lipid nanoparticles and nanostructured lipid carrier formulations were prepared using glyceryl monostearate as solid lipid and were evaluated for their physical stability following sterilization by autoclaving at 121°C for 15min. The objective of this work was to evaluate the effect of autoclaving on the physical appearance, particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology of the prepared formulations, compared to non-autoclaved ones. Results showed that, autoclaving at 121°C for 15min allowed the production of physically stable formulations in nanometric range, below 500nm suitable for ophthalmic application. Moreover, the autoclaved samples appeared to be superior to non-autoclaved ones, due to their increased zeta potential values, indicating a better physical stability. As well as, increased amount of brimonidine base entrapped in the tested formulations. PMID:26498372

  11. [Geochemical cycling of mercury in the sediment of Hongfeng Reservior].

    PubMed

    He, Tian-Rong; Feng, Xin-Bin; Guo, Yan-Na; Meng, Bo; Li, Zhong-Gen; Qiu, Guang-Le; Liang, Lian

    2008-07-01

    Spatial and temporal distributions of total and methyl mercury and controlling factors were investigated based on cold vapor atomic fluorescence detection. Total mercury levels in the whole sediments are (0.392 +/- 0.070) microg/g, without significant variations between different seasons, but generally increase toward the sediment-water interface. Total mercury levels are higher compared to data reported in other uncontaminated reservoirs and Wujiangdu Reservoir. This indicates there are mercury contaminations in Hongfeng Reservoir. Methyl mercury concentrations are highest in spring, without significant variations in other seasons. The peak values of methyl mercury typically appear in the upper 8 cm of the sediment profiles which are also the zones of sulfate-reducing bacteria activities. The seasonal variation and maximum peak value distributions of methyl mercury in sediment are mainly controlled by seasonally migration of oxic/anoxic boundary layer. Total mercury concentrations in the pore water and partition coefficients for THg in solid phase and water phase are mainly controlled by temperature or redox potential. Total mercury concentrations in the pore water have no relationship with total mercury concentrations in solid phase. However, the methyl mercury concentrations in the pore water have a strong relationship with those in solid phase (r = 0.70, p < 0.001). The methyl mercury concentrations in solid phase and pore water are controlled by solid/water partition coefficient, as well as methyl mercury production. PMID:18828352

  12. Effects of shock loading on a solid-solution strengthened superalloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Gray, George T.

    1994-07-01

    Ni-based HAYNES(R) 230tm ALLOY has been studied to determine the effect of shock loading on the post-shock quasistatic and dynamic mechanical response, and microstructural evolution. The compression properties of this material was studied in both the as-received and shock-loaded conditions at strain rates from 10-3/s to 3000/s, and 77 and 293K. Damage evolution was documented via TEM, and correlated with the observed mechanical response. Changes in the deformation mechanisms and second phase distributions resulting from the shock pre-straining and subsequent testing are correlated with changes in the strain hardening behavior of the materials. Comparison of these results with shock loading results on pure Ni revealed distinct differences in strengthening and defect storage mechanisms.

  13. Effects of shock loading on a solid-solution strengthened superalloy

    SciTech Connect

    Vecchio, K.S. ); Gray, G.T. III )

    1994-07-10

    Ni-based HAYNES[sup (R)] 230[sup TM] ALLOY has been studied to determine the effect of shock loading on the post-shock quasistatic and dynamic mechanical response, and microstructural evolution. The compression properties of this material was studied in both the as-received and shock-loaded conditions at strain rates from 10[sup [minus]3]/s to 3000/s, and 77 and 293K. Damage evolution was documented via TEM, and correlated with the observed mechanical response. Changes in the deformation mechanisms and second phase distributions resulting from the shock pre-straining and subsequent testing are correlated with changes in the strain hardening behavior of the materials. Comparison of these results with shock loading results on pure Ni revealed distinct differences in strengthening and defect storage mechanisms. [copyright] 1994 American Institute of Physics

  14. Effects of shock loading on a solid-solution strengthened superalloy

    SciTech Connect

    Vecchio, K.S.; Gray, G.T. III

    1993-08-01

    Ni-based HAYNES{reg_sign} 23O{trademark} ALLOY has been studied to determine the effect of shock loading on post-shock quasistatic and dynamic mechanical response, and microstructural evolution. Compression properties of this material was studied in both the as-received and shock-loaded conditions at strain rates from 10{sup {minus}3}/s to 3000/s, and 77 and 293K. Damage evolution was documented via TEM and correlated with observed mechanical response. Changes in deformation mechanisms and second phase distributions resulting from shock pre-straining and subsequent testing are correlated with changes in strain hardening behavior. Comparison of these results with shock loading results on pure Ni revealed distinct differences in strengthening and defect storage mechanisms.

  15. TMI-2 RCS activity and solids loading from aggressive defueling techniques

    SciTech Connect

    Baston, V.F.; Hofstetter, K.J.

    1987-01-01

    One of the tasks performed in support of defueling operations has involved mechanical degradation of resolidified material (core crust layer) utilizing the core drilling equipment. Prior to actual drilling operations, an engineering estimate was made for the anticipated increase in radioactivity and particulate loading to the Three Mile Island Unit 2 (TMI-2) reactor coolant system (RCS). Predictions for RCS activity and particulate loading increases were important to evaluate the cleanup requirements for the defueling water cleanup system to minimize both the dose rates for defueling personnel and water turbidity.

  16. Gross crack initiation and propagation in brittle thin solid and annular disks subjected to impact loading

    SciTech Connect

    Johnson, W.; Bai, Y.L.; Ghosh, S.K.

    1984-04-01

    This paper derives from a study of grinding wheel break-up behavior due to impact. The impact fracture characteristics of circular disks of plaster of Paris with a concentric central hole were studied experimentally for three types of loading: (a) when the disks were suspended freely and loaded intensely at one point on their circumference by an explosive detonator; (b) when the disks were allowed to fall under gravity from a certain height on to a rigid base; and (c) when a disk, resting on a rigid base, was struck by a flat ended rigid body which was dropped on to it from a certain height. Quasi-static flattening tests on the disks were also carried out. The paper describes a theoretical investigation into the stress analysis of disks under impact, classifies the relevant damage sustained by them and attempts to unify the ''gross'' impact fracture patterns which arise in different modes of dynamic loading. The extent of local flattening of the quasi-statically loaded disks before fracture, is also reported. Good correlation between the theory and experimental results is obtained, especially for rings of diameter ratio (D /SUB i/ /D/sub 0/) of around 0.5.

  17. Dynamic compression of solid HMX-based explosives under ramp wave loading

    NASA Astrophysics Data System (ADS)

    Wang, G. J.; Cai, J. T.; Zhang, H. P.; Zhao, F.; Tan, F. L.; Wu, G.

    2012-11-01

    By means of the new techniques of magnetically driven quasi-isentropic compression based on compact capacitor bank facility CQ-1.5 developed by us, the dynamic compression of two mixed HMX-based plastic bonded explosives (PBX) explosives is researched under ramp wave loading. A pressure of 5-8 GPa over 600-800 ns is realized on explosive samples by optimizing loading electrodes and controlling charging voltages of CQ-1.5. And loading strain rates vary from 105 1/s to 106 1/s along the thickness of explosive samples. For experiments, the particle velocities of interface between explosive samples with different thicknesses and LiF windows are measured to determine material response by a displacement interferometry technique of Doppler pins system (DPS), and the experimental compression isentropes of researched explosives are obtained using the data processing method of backward integration and Lagrangian analysis for quasi-isentropic compression experiments, which are in agreement with the theoretical isentropes based on Mie-Grüneisen equation of state (EOS) and the results by Baer. For simulations, one-dimensional hydrodynamics code SSS is used to analyze the dynamic process, and the calculated results of particle velocity of interfaces are consistent with the experimental ones. Finally, one of the explosive constituents, the binder fluoride rubber F2311, is also investigated using this technique, and some properties under ramp wave loading are gained.

  18. Micropellet-loaded rods with dose-independent sustained release properties for individual dosing via the Solid Dosage Pen.

    PubMed

    Laukamp, Eva Julia; Knop, Klaus; Thommes, Markus; Breitkreutz, Joerg

    2016-02-29

    Individual dosing of medicines is relevant for paediatrics, geriatrics and personalised medicine. The Solid Dosage Pen (SDP) allows for individual dosing by cutting monolithic, tablet-like drug carriers of pre-defined heights. The aim of the present study was to develop micropellet-loaded rods (MPLRs) with dose-independent sustained release properties for individual dosing via the Solid Dosage Pen. Therefore, micropellets were successfully layered with carbamazepine and coated with polyvinyl acetate (PVAc) and PVAc/polyvinyl alcohol-polyethylene glycol (PVA-PEG). The tensile strength of the sustained release micropellets (300-450 μm) was more than two times higher (12.6-17.1 MPa) than pressures occurring during ram-extrusion of the MPLRs (below 5.8 MPa). Due to relative crystallinities above 93% for PVAc and PVA-PEG a low solubility of the coating films within the PEG-matrix was observed. The sustained release micropellets were successfully incorporated into MPLRs. Drug release properties of the pellets maintained after embedding into the matrix. Hence, the MPLRs provided dose-independent prolonged drug liberation which was not achieved for drug-loaded rods before. The MPLRs permitted the application of the SDP with a precise drug delivery from individually cut single doses. Storage stability was proven for MPLRs containing PVAc/PVA-PEG coated pellets. In conclusion, the MPLRs combined the advantages of multiparticulate dosage forms with the SDP as a device for individual dosing. PMID:26757149

  19. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. PMID:25772420

  20. Anaerobic co-digestion of solid waste: Effect of increasing organic loading rates and characterization of the solubilised organic matter.

    PubMed

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Steyer, Jean Philippe; Lugardon, Aurelien; Delgenes, Jean Philippe

    2013-02-01

    The impact of stepwise increase in OLR (up to 7.5kgVS/m(3)d) on methane production, reactor performance and solubilised organic matter production in a high-loading reactor were investigated. A reference reactor operated at low OLR (<2.0kgVS/m(3)d) was used solely to observe the methane potential of the feed substrate. Specific methane yield was 0.33lCH(4)/gVS at the lowest OLR and dropped by about 20% at the maximum OLR, while volumetric methane production increased from 0.35 to 1.38m(3)CH(4)/m(3)d. At higher loadings, solids hydrolysis was affected, with consequent transfer of poorly-degraded organic material into the drain solids. Biodegradability and size-fractionation of the solubilised COD were characterized to evaluate the possibility of a second stage liquid reactor. Only 18% of the organics were truly soluble (<1kD). The rest were in colloidal and very fine particulate form which originated from grass and cow manure and were non-biodegradable. PMID:23334011

  1. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    PubMed

    Xie, Tian; Taylor, Lynne S

    2016-03-01

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition. PMID:26791934

  2. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles.

    PubMed

    Garanti, Tanem; Stasik, Aneta; Burrow, Andrea Julie; Alhnan, Mohamed A; Wan, Ka-Wai

    2016-03-16

    Asiatic acid (AA), a pentacyclic triterpene found in Centella Asiatica, has shown neuroprotective and anti-cancer activity against glioma. However, owing to its poor aqueous solubility, effective delivery and absorption across biological barriers, in particular the blood brain barrier (BBB), are challenging. Solid lipid nanoparticles (SLNs) have shown a promising potential as a drug delivery system to carry lipophilic drugs across the BBB, a major obstacle in brain cancer therapy. Nevertheless, limited information is available about the cytotoxic mechanisms of nano-lipidic carriers with AA on normal and glioma cells. This study assessed the anti-cancer efficacy of AA-loaded SLNs against glioblastoma and their cellular uptake mechanism in comparison with SVG P12 (human foetal glial) cells. SLNs were systematically investigated for three different solid lipids; glyceryl monostearate (MS), glyceryl distearate (DS) and glyceryl tristearate (TS). The non-drug containing MS-SLNs (E-MS-SLNs) did not show any apparent toxicity towards normal SVG P12 cells, whilst the AA-loaded MS-SLNs (AA-MS-SLNs) displayed a more favourable drug release profile and higher cytotoxicity towards U87 MG cells. Therefore, MS-SLNs were chosen for further in vitro studies. Cytotoxicity studies of SLNs (± AA) were performed using MTT assay where AA-SLNs showed significantly higher cytotoxicity towards U87 MG cells than SVG P12 normal cells, as confirmed by flow cell cytometry. Cellular uptake of SLNs also appeared to be preferentially facilitated by energy-dependent endocytosis as evidenced by fluorescence imaging and flow cell cytometry. Using the Annexin V-PI double staining technique, it was found that these AA-MS-SLNs displayed concentration-dependent apoptotic activity on glioma cells, which further confirms the potential of exploiting these AA-loaded MS-SLNs for brain cancer therapy. PMID:26775062

  3. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation.

    PubMed

    Kim, Dong Shik; Choi, Jong Seo; Kim, Dong Wuk; Kim, Kyeong Soo; Seo, Youn Gee; Cho, Kwan Hyung; Kim, Jong Oh; Yong, Chul Soon; Youn, Yu Seok; Lim, Soo-Jeong; Jin, Sung Giu; Choi, Han-Gon

    2016-09-10

    The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration. PMID:27397868

  4. Influence of land use and climate on the load of suspended solids in catchments of Andean rivers.

    PubMed

    Pizarro, J; Vergara, P M; Morales, J L; Rodríguez, J A; Vila, I

    2014-02-01

    Understanding the interaction between anthropogenic land use and the rainfall pattern can be crucial to predict changes in total suspended solids (TSS) in streams and rivers. We assessed the effects of land use and annual rainfall on the TSS load of 19 southern Chilean catchments. The results indicated that the concentration of TSS increased in catchments with a rainy regime and greater annual precipitation. TSS load also increased as the surface of open areas increased at the catchment scale and decreased with increasing cover of glaciers and perennial snow. However, we did not find support for models with interaction terms between climate and land use. Results suggest that a regional decrease in annual rainfall accompanied by an increase in the altitude of the zero isotherms, as predicted by climate models, should have multiple effects on TSS. In particular, increased TSS load can be expected from a contraction of glaciers and perennial snow areas as well as the intensification of new crops and urban expansion. PMID:24046240

  5. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration.

    PubMed

    Shah, Mansi K; Madan, Parshotam; Lin, Senshang

    2014-06-01

    Carvedilol-loaded solid lipid nanoparticles (SLNs) were prepared using solubility parameter (δ) to select the lipid, and hot homogenization to fabricate SLNs. The effect of concentration of Compritol 888 ATO (COMP) and Poloxamer 188 (P-188) on the particle size of blank SLNs was studied using the design of experiments. Further narrow concentration range of COMP and P-188 was selected and carvedilol-loaded SLNs were prepared to obtain an optimized formulation which was lyophilized (L-SLNs), transformed into enteric compression-coated tablet and evaluated for drug release, X-ray diffraction and cellular uptake mechanism. COMP was chosen as lipid due to its least value of Δδ with carvedilol. The optimized formulation (7.5% COMP, 5.0% P-188 and 1.11% carvedilol) had 161 nm particle size and 94.8% entrapment efficiency. The enteric-coated carvedilol-loaded SLNs tablet protected carvedilol from acidic environment and similar prolonged release profiles were obtained from L-SLNs, core tablet and enteric-coated tablet. Absence of crystalline carvedilol XRD peak indicated the presence of amorphous carvedilol in SLNs. Higher carvedilol uptake from SLNs compared to drug solution in the Caco-2 cell line exhibited a potential prolonged drug release. Moreover, upon cellular uptake, SLNs could then enter the lymphatic system which will avoid first pass metabolism and hence higher oral bioavailability. PMID:23697916

  6. Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles.

    PubMed

    Grillone, Agostina; Riva, Eugenio Redolfi; Mondini, Alessio; Forte, Claudia; Calucci, Lucia; Innocenti, Claudia; de Julian Fernandez, Cesar; Cappello, Valentina; Gemmi, Mauro; Moscato, Stefania; Ronca, Francesca; Sacco, Rodolfo; Mattoli, Virgilio; Ciofani, Gianni

    2015-08-01

    Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the disease site with the help of a remote magnetic field, thus enabling cancer treatment while limiting negative effects on healthy tissues. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles by a hot homogenization technique using cetyl palmitate as lipid matrix. The obtained nanoparticles (Sor-Mag-SLNs) have a sorafenib loading efficiency of about 90% and are found to be very stable in an aqueous environment. Plain Mag-SLNs exhibit good cytocompatibility, whereas an antiproliferative effect against tumor cells (human hepatocarcinoma HepG2) is observed for drug-loaded Sor-Mag-SLNs. The obtained results show that it is possible to prepare stable Sor-Mag-SLNs able to inhibit cancer cell proliferation through the sorafenib cytotoxic action, and to enhance/localize this effect in a desired area thanks to a magnetically driven accumulation of the drug. Moreover, the relaxivity properties observed in water suspensions hold promise for Sor-Mag-SLN tracking through clinical magnetic resonance imaging. PMID:26039933

  7. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability. PMID:25609917

  8. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    PubMed Central

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability. PMID:25609917

  9. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    PubMed Central

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  10. Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography

    NASA Astrophysics Data System (ADS)

    James, Peter B.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.

    2015-02-01

    To explore the mechanisms of support of surface topography on Mercury, we have determined the admittances and correlations of topography and gravity in Mercury's northern hemisphere from measurements obtained by NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. These admittances and correlations can be interpreted in the context of a number of theoretical scenarios, including flexural loading and dynamic flow. We find that long-wavelength (spherical harmonic degree l < 15) surface topography on Mercury is primarily supported through a combination of crustal thickness variations and deep mass anomalies. The deep mass anomalies may be interpreted either as lateral variations in mantle density or as relief on compositional interfaces. Domical topographic swells are associated with high admittances and are compensated at 300-400 km depth in the lower reaches of Mercury's mantle. Quasi-linear topographic rises are primarily associated with shallow crustal compensation and are weakly correlated with positive mass anomalies in the mantle. The center of the Caloris basin features some of the thinnest crust on the planet, and the basin is underlain by a large negative mass anomaly. We also explore models of dynamic flow in the presence of compositional stratification above the liquid core. If there is substantial compositional stratification in Mercury's solid outer shell, relaxation of perturbed compositional interfaces may be capable of creating and sustaining long-wavelength topography.