Science.gov

Sample records for mercury planet

  1. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  2. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  3. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  4. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  5. Venus and Mercury as Planets

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  6. Exploring Mercury. The iron planet

    NASA Astrophysics Data System (ADS)

    Strom, Robert G.; Sprague, Ann L.

    How did Mercury get such an enormous iron core? Why is its tectonic framework so different from any other planet or satellite? What is its crystal composition? Why is the crust so depleted in iron when the interior is so rich in that element? What are the polar deposits? Where do the elements in the exosphere come from? Mercury is a planet shrouded in mystery. Only 45 percent of its surface has been seen in any detail, and that was from the Mariner 10 flyby in 1974. Yet what is known only makes the planet more fascinating. New Earth-based observations have shed light on surface and exosphere compositions, and re-evaluations of the Mariner 10 data, using modern image processing techniques, show evidence for volcanic flow fronts, pyroclastics and other volcanic phenomena not seen before. This ground-breaking book not only chronicles what has been discovered, but looks ahead to what has yet to emerge. An accompanying CD contains all the best Mariner 10 images, including the data for each image, photomosaics and maps.

  7. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  8. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  9. Theory of Rotation for the Planet Mercury.

    PubMed

    Liu, H S; O'keefe, J A

    1965-12-24

    The theory of the rotation of the planet Mercury is developed in terms of the motion of a rigid system in an inverse-square field. It is possible for Mercury to rotate with a period exactly two-thirds of the period of revolution; there is a libration with a period of 25 years. PMID:17768871

  10. Mercury: Exploration of a Planet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  11. Physical properties of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  12. Rotation of the planet mercury.

    PubMed

    Jefferys, W H

    1966-04-01

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications. PMID:17741632

  13. Sputtering of sodium on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  14. Earth-type planets (Mercury, Venus, and Mars)

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  15. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  16. Mercury Mapper: First Look at the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Hirshon, B.

    2012-12-01

    Until very recently little has been known about the planet Mercury, despite its relative proximity to Earth. Mercury is difficult to observe from Earth, because it is so small and so close to the sun, and only one spacecraft had visited the planet: Mariner 10, in the mid 1970s. But now, the MESSENGER spacecraft is in orbit around Mercury, sending back high-resolution images of virtually the entire planetary surface. This provides a rare opportunity for public engagement in the exploration of a new world—a chance for non-scientists to help scientists locate, measure and describe terrain never before seen. Mercury Mapper, designed by CosmoQuest, will provide the training and toolkit needed to accomplish the task. Using thousands of images selected by the MESSENGER science team, Mercury Mapper will guide citizen scientists through the process of finding, categorizing and measuring key topographic features of interest to researchers. Mercury Mapper users will in many cases be the first people to examine these features. In this session, members of the MESSENGER Education and Public Outreach team along with CosmoQuest designers involved in developing Mercury Mapper will share the many considerations and tradeoffs involved in creating a fun environment for engaging the public while also serving the interests of scientists performing original research.; ;

  17. Surface history of Mercury - Implications for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  18. Reference surfaces of the planet Mercury from MESSENGER

    NASA Astrophysics Data System (ADS)

    Karimi, Roohollah; Ardalan, Alireza A.; Farahani, Soheil Vasheghani

    2016-01-01

    The aim of this work is to study the reference surfaces of the planet Mercury obtained by the MESSENGER mission in order to provide a geodetic reference system (GRS) for the planet. The reference surfaces under consideration are the geoid and the reference ellipsoid. The reference ellipsoid is a triaxial planetocentric equipotential ellipsoid that best fits the geoid. To determine the reference surfaces, two methods are presented. In this line, the shape of the planet is sampled by expanding the global shape model (GSM) GTMES_125V03_SHA only up to the degree strength of the global gravity model (GGM) GGMES_50V06_SHA. The spatial resolution of the sampling points is selected based on the degree strength and the latitude of the location. According to our preferred method, we estimate the values for the semi-major equatorial axis, semi-minor equatorial axis, and polar axis of the reference ellipsoid equal to 2, 439, 422 ± 368m , 2, 439, 304 ± 368m , and 2, 439, 178 ± 368m , respectively. Moreover, we estimate the geoid potential value equal to 9, 032, 044 ± 1361m2 /s2 . The three axes of the reference ellipsoid give the polar and equatorial flattenings equal to (100 ± 213) ×10-6 and (48 ± 213) ×10-6 , respectively. However, we show that the best-fitting ellipsoid gives the polar and equatorial flattenings equal to (896 ± 213) ×10-6 and (426 ± 213) ×10-6 , respectively. The best-fitting ellipsoid is a triaxial ellipsoid that fits the shape of Mercury in a least-squares sense. The significant discrepancy observed between the flattenings of the two ellipsoids is a consequence of Mercury's geophysical characteristics together with its non-hydrostatic equilibrium. The results provided in the present work prove adequate for defining a promised GRS for the planet Mercury.

  19. Planet Mercury Conference, Tucson, AZ, Aug. 6-9, 1986, Proceedings

    SciTech Connect

    Not Available

    1987-09-01

    The present conference discusses the mass, gravity field, and ephemeris of the planet Mercury, the vulcanoid hypothesis for the chronology of Mercury's geological and geophysical evolution, the Mercurian crater-filling classes that constrain the intercrater plains material emplacement process, and the wavelength and longitude dependence of Mercury polarization. Also discussed are an analysis of the Mariner 10 color radio map of Mercury, Mercury's magnetosphere, exosphere, and surface, the dynamics of electrons and heavy ions in the Mercury magnetosphere, electron measurements and substorm time scales in the Mercury and earth magnetospheres, Mercury's sodium variations with solar radiation pressure, and appulses and occultations of SAO stars by Mercury in the 1987-1995 period.

  20. Intrinsic Magnetic Fields of the Planets: Mercury to Neptune

    NASA Astrophysics Data System (ADS)

    Ness, Norman F.

    1994-11-01

    In the past three decades, studies of the magnetic fields of Earth's Moon and all the planets, except for Pluto, have been conducted by spacecraft of the U.S.A. and of Venus and Mars by the former U.S.S.R. Among the terrestrial planets, only Mercury (Mariner 10: 1974 and 1975) is globally magnetized while the Moon and Venus are unmagnetized. The situation at Mars is still unclear, but if any global field exists, it is quite small. In 1979, Pioneer 11 discovered a magnetic field and radiation belt at Saturn, further elaborated on by Voyagers 1 (1980) and 2 (1981). Pioneers 10 (1974) and 11 (1975) and Voyagers 1 (1979) and 2 (1979) examined in detail the magnetic field of Jupiter, which had been inferred initially and studied remotely due to its non-thermal radio emissions in the late 1950s. Jupiter's magnetic field is much stronger than Earth's and distinctly non-dipolar close to the planet. Saturn has a much weaker field than Jupiter, and it is surprisingly axisymmetric (to degree n = 3) with respect to its rotation axis. The Voyager fly-bys of Uranus and Neptune in 1986 and 1989 discovered global magnetic fields and trapped energetic particle radiation belts. Both Uranus and Neptune display remarkably similar magnetic fields (quite different from Jupiter, Saturn and Earth). In an astrophysical sense, Uranus and Neptune are described as oblique rotators because of the large angular offset of their magnetic axes from their rotation axes (59 degrees and 47 degrees). Additionally, their magnetic `centres' are displaced by substantial fractions of a planetary radius (0.31 RU and 0.55 RN). This paper summarizes our present knowledge of the quantitative characteristics of the magnetic fields of these planets.

  1. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1976-01-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure.

  2. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    PubMed

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. PMID:12185675

  3. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    NASA Technical Reports Server (NTRS)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  4. Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael

    2008-01-01

    Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.

  5. Rotation of mercury: theoretical analysis of the dynamics of a rigid ellipsoidal planet.

    PubMed

    Laslett, L J; Sessler, A M

    1966-03-18

    The second-order nonlinear differential equation for the rotation of Mercury implies locked-in motion when the period is within the range where e is the eccentricity and T is the period of Mercury's orbit, the time t is measured from perihelion, and lambda is a measure of the planet's disiortion. For values near 2T/3, the instantaneous period oscillates about 2T/3 with period (21lambdae/2)T. PMID:17817300

  6. Radio-interferometric imaging of the subsurface emissions from the planet Mercury

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; Zeilik, M.; Gisler, G. R.; Borovsky, J. E.; Baker, D. N.

    1987-01-01

    The distribution of total and polarized intensities from Mercury's subsurface layers have been mapped using VLA observations. The first detection of a hot pole along the Hermean equator is reported and modeled as black-body reradiation from preferential diurnal heating. These observations appear to rule out any internal sources of heat within Mercury. Polarized emission from the limb of the planet is also found, and is understood in terms of the dielectric properties of the Hermean surface.

  7. Observations at the planet Mercury by the plasma electron experiment - Mariner 10

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1977-01-01

    Two nightside encounters with Mercury's magnetosphere by Mariner 10 revealed bow shock and magnetosheath signatures in the plasma electron data that are entirely consistent with the geometry expected for an interaction between a planet-centered magnetic dipole and the solar wind. The geometrically determined distance between the planet's center and the solar wind stagnation point is 1.4 plus or minus 0.1 R sub M. Both diffuse and sharp shock crossings were observed on the two magnetosphere encounters.

  8. IAU nomenclature for albedo features on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  9. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  10. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  11. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Thermal models of Mercury. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Recent and more complex thermal models of Mercury and the terrestrial planets are discussed or noted. These models isolate a particular aspect of the planet's thermal history in an attempt to understand that parameter. Among these topics are thermal conductivity, convection, radiogenic sources of heat, other heat sources, and the problem of the molten core and regenerative dynamo.

  12. Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie A.; Price, Ellen

    2015-12-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.

  13. Mercury: Informing Remote Sensing through Petrology in the Absence of Samples from the Innermost Planet

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Nittler, L. R.; Stockstill-Cahill, K.; Blewett, D. T.

    2012-12-01

    Remote sensing missions and petrologic studies are complementary methods of understanding airless planetary bodies. For bodies with both orbital missions and samples available for laboratory study, missions provide global chemical, mineralogical, and geologic data sets and context for samples, whereas samples often provide complementary petrogenetic histories in a chronological framework. In contrast, although the wealth of orbital data from MESSENGER is not complemented by samples from Mercury, petrologic and experimental studies remain essential to understanding the innermost planet. Prior to MESSENGER, most models centered on high-temperature events and formation under highly reducing conditions to explain Mercury's high metal to silicate ratio. These models predicted enrichment in refractory elements and depletion in volatile elements. The inference of formation at highly reducing conditions is supported by MESSENGER results. The low FeO concentration in the crust, implied low FeO contents of the mantle, apparent efficient partitioning of iron into the core, and evidence for Ca- and/or Mg-sulfides from X-Ray Spectrometer data are all consistent with reducing conditions. In contrast, the suggestion that Mercury is highly volatile-depleted has been refuted. Direct evidence for a relatively volatile-rich planet come from Na, K, and S abundances measured on the surface with MESSENGER's XRS and Gamma-Ray Spectrometer and the presence of neutral and ionized Na, K, and S species in the exosphere. Indirect evidence for volatile-rich compositions include the suggestion of volcanic vents with associated mantling pyroclastic deposits, hollows inferred to form by geologically recent volatile loss, and an inferred interior structure that includes a solid iron sulfide layer at the top of Mercury's fluid core. Petrologic and experimental studies of meteorites have played a key role in deciphering orbital data from MESSENGER. Partial melts from an enstatite chondrite

  14. Dating tectonic structures on Mercury: new clues to understand the planet's thermal evolution

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Marchi, Simone; Fassett, Caleb I.; Di Achille, Gaetano; Cremonese, Gabriele

    2014-05-01

    The global tectonic scenario of Mercury is dominated by contractional features mainly represented by lobate scarps and related to planetary cooling (Watters et al., 1998, Geology, 26, 991-994). Topography of lobate scarps on Mercury: New constraints on the planet's contraction. These structures are the expression of surface-breaking thrust faults and are linear or arcuate features widely distributed on Mercury. Since they display a broad distribution of orientations, lobate scarps are thought to be related to a global contractional strain. The MESSENGER MDIS camera (with a wide-angle and a narrow-angle channels), acquired images of new regions of the Mercury surface that allowed us to detect several new lobate scarps especially where the illumination geometry is more favorable for structural analysis. Among them a 2000-km long thrust system, located between 80° and 100°E of longitude, has been detected. This system consists of several lobate scarps all exhibiting a N-S orientation and a westward vergence. Due to its considerable extension, this feature can give clues to the stress field affecting the surface in a wide sector of the planet. Dating these features and comparing the results with independent age determinations, and structural and stratigraphic evidences might concur to further constrain the age of tectonic deformation on Mercury and possibly increase our knowledge on the thermal evolution of the planet. The dating of the system was performed with different methods. Indeed, traditional stratigraphic study was accompanied by crater counts of geological units overlapping the thrust and the buffered crater counting technique, allowing us to determine an absolute model age determination for the tectonic feature. The employment of these different methods gave consistent results suggesting that thrust activity ended between 3.7-3.8 Ga, with Neukum Production Function (NPF), and 3.5-3.7 Ga, with Model Production Function (MPF), respectively.

  15. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    PubMed

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since. PMID:21960624

  16. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  17. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  18. Mercury's place among the terrestrial planets: Summary on what can be measured from ground

    NASA Astrophysics Data System (ADS)

    Warell, J.

    Close-range measurements during the multiple flybys of Mariner 10 past Mercury in 1974-1975 provided us with the bulk of information currently available on its physical properties. Understanding of its geology and evolution took a quantum leap, yet numerous questions were left unanswered and new questions were opened up regarding processes that shaped its appearance as observed today. Two main shortages in the Mariner 10 data set with respect to this understanding pertains to Mercury's crust: imaging coverage was less than half of its surface, and spectrometers for compositional determinations were unavailable. Since then, and particularly during the past decade or two, ground-based studies have provided a wealth of new information that aid in understanding the chemical and microphysical properties of its regolith. These include spectroscopy, imaging, photometry and polarimetry at visual, near infrared, thermal infrared and radar wavelengths. Modeling of these data sets, laboratory studies, and comparative planetological interpretations of its remotely-sensed properties to those of the Moon and other atmosphereless bodies in the inner solar system, has clarified many issues and revealed unexpected facets of this extreme end-member planet. These include the discovery of volatiles at the planet's poles, new atomic species in the exosphere, the realisation of the apparent similaries of the Mariner 10 and poorly known hemispheres, confirmation that the surface mineralogy is likely heterogeneous and dominated by intermediate feldspars with minor low-iron pyroxenes, very iron-poor and very strongly matured. Due to Mercury's location close to the Sun, the large mass of exogenically contributed chondritic and volatile-rich material since the solidification of its crust, may be of greater importance for the interpretation of the surface and bulk properties than those of any other body, and accentuates that this planet in many ways is drastically different from the

  19. The role of impact structures in localizing explosive volcanism on a contracting planet: Mercury

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Rothery, D. A.; Conway, S. J.; Anand, M.

    2015-10-01

    A long history of global contraction on Mercury is attested to by thousands of ridges and scarps, thought to be the surface expression of thrust faults[1]. The resulting compressive crustal stress presents an obstacle to surface volcanism on the planet, inhibiting magma ascent from depth. Nevertheless, volcanic vents and deposits indicate that explosive volcanism persisted on the planet until as recently as 1 Ga[2]. The common localization of this volcanism within impact craters and inwards of the rims of large impact basins [3]indicates that impact structures play a role in allowing volcanic eruption on this contracting body.By making a comparison with explosive volcanism within impact craters on the Moon, we investigate how ascending magma and impact structures interact on a local scale to facilitate such eruptions on Mercury. Additionally, in light of the surprisingly low number of large impact basins on Mercury[4], we investigate whether the detection of clusters of sites of explosive volcanism can provide evidence for the location of ancient impact basins that are no longer detectable morphologically.

  20. Dating thrust systems on Mercury: new clues on the thermal evolution of the planet

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Ferrari, Sabrina; Zagato, Nicola

    2016-04-01

    The global tectonic scenario of Mercury is dominated by contractional features mainly represented by lobate scarps. These structures are the expression of surface-breaking thrust faults and are linear or arcuate features widely distributed on Mercury. Since they display a broad distribution of orientations, lobate scarps are thought to be related to a global contractional strain, associated to planetary cooling (Watters et al., 1998, Geology, 26, 991-994). The age determination of these features will contribute to better constrain whether limits could be placed on when the contraction occurred. For these reasons we dated two thrust systems, located in different regions of Mercury. The first system is located at the edge between Kuiper and Beethoven quadrangle (latitude 9°20'N-23°42'S and longitude 72°73'-59°52'W). These 1500-long thrust system is constituted by several lobate scarps with a NNE-SSW orientation. The second thrust system considered in this work is the Enterprise Rupes, a 820 km-long scarp system that cuts the Rembrandt basin. We dated the activity of these systems through the buffered crater counting technique, which is used to derive absolute model ages of linear landforms (e.g. Fassett and Head, 2008, Icarus, 198, 37-56; Giacomini, et al, 2015, GSL, 401, 291-311). The results gave comparable ages for the two systems and suggest that the activity along major rupes all around planet Mercury have most probably begun before 3.5 Ga. This will give us new clues to better understanding the thermal evolution of the planet.

  1. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  2. Flood volcanism on a contracting planet: Insights from Mercury and the Moon

    NASA Astrophysics Data System (ADS)

    Klimczak, C.; Byrne, P. K.; Solomon, S. C.

    2013-12-01

    Tectonic and volcanic processes on one-plate planets are closely tied to the thermal evolution of their interiors. Thermal history models for both the Moon and Mercury predict that after an initial heating phase, the interiors of these bodies began to cool. Such an evolution may have been accompanied by an initial period of planetary expansion, but much of the thermal history was marked by sustained global contraction. A global state of expansion generates a stress state characterized by horizontal extension within the brittle portion of the lithosphere, allowing for upward propagation of magma-filled dikes and widespread volcanic flooding. Global contraction, in contrast, imposes a horizontally compressive stress state on the lithosphere, under which magma ascent through vertical conduits is suppressed and widespread thrust faulting is favored. Both the Moon and Mercury host populations of thrust-fault-related landforms that are interpreted to have accommodated shortening induced by global contraction, but each body also shows evidence for widespread flood volcanism. On the Moon, gravitational signatures suggestive of ancient, buried dikes; large expanses of lunar mare deposits of volcanic origin; and a widely distributed population of extensional graben generally predate the formation of thrust-fault-related landforms that accommodated surface strains due to global contraction. For Mercury, geological evidence suggests that the great number of large thrust faults that accommodated the planet's decrease in planetary radius (~5-7 km) began to form prior to the cessation of the last major episode of volcanic flooding. Such a temporal overlap of flood volcanism and large-scale thrust faulting poses a challenge. Magmatism in a lithosphere dominated by global contraction should be limited to sill intrusions near the depth of the brittle-ductile transition, so widespread volcanism should be precluded. Localized volcanic flooding might nonetheless be triggered by large

  3. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Areal measurement of Mercury's first quadrant. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Various linear and areal measurements of Mercury's first quadrant which were used in geological map preparation, map analysis, and statistical surveys of crater densities are discussed. Accuracy of each method rests on the determination of the scale of the photograph, i.e., the conversion factor between distances on the planet (in km) and distances on the photograph (in cm). Measurement errors arise due to uncertainty in Mercury's radius, poor resolution, poor coverage, high Sun angle illumination in the limb regions, planetary curvature, limited precision in measuring instruments, and inaccuracies in the printed map scales. Estimates are given for these errors.

  4. Exploring the Solar System: Ice Hunters, Mercury Zoo, and Planet Investigators

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Lehan, C.; Conti, A.; Deustua, S.; Mutchler, M.; Wong, M.; Higgins, J.; Buie, M. W.; Spencer, J.; Robbins, S.; Chapman, C.; Hirshon, R.; Lerner, T.

    2011-10-01

    A new suite of citizen science software, "Community Science Builder" (CSB) has been created to facilitate exploration and annotation of space images. First launched as the backbone of "Ice Hunters," this software is designed to facilitate planetary science that requires images to be annotated by users. Initial features include: marking objects with a set of predefined markers and an administration dashboard for expert review of incoming annotations. Beginning with the release of "Planet Investigators" and "Mercury Zoo" in late 2011, CSB will also allow moving objects to be matched between frames, linear features to be traced, and interesting features to be annotated with flags and comments. In this paper we discuss upcoming projects, and the software's features and flexibility for generating science.

  5. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Thermal histories of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    To determine a planet's thermal history, a wide range of data is necessary. These data include remote sensing results, photogeologic evidence, magnetic field and remanent magnetization data, composition and ages of samples, and physical parameters of the planet and its orbit. Few of these data form unambiguous constraints for thermal models of Mercury. Igneous Chronology as the time history of the differentiation and igneous activity, is defined. Igneous Chronology is used here in the sense of the apparent igneous or relative chronology of geologic events, such as plains formation (through whatever mechanism) relative to the crater production and tectonic history (lineament and scarp formation).

  6. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Raymond, Sean N.; Leconte, Jeremy; Hersant, Franck; Correia, Alexandre C. M.

    2015-11-01

    A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the MercuryN-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems. It uses a standard equilibrium tidal model, the constant time lag model. Besides, the evolution of the radius of several host bodies has been implemented (brown dwarfs, M-dwarfs of mass 0.1 M⊙, Sun-like stars, Jupiter). We validate the new code by comparing its output for one-planet systems to the secular equations results. We find that this code does respect the conservation of total angular momentum. We applied this new tool to the planetary system Kepler-62. We find that tides influence the stability of the system in some cases. We also show that while the four inner planets of the systems are likely to have slow rotation rates and small obliquities, the fifth planet could have a fast rotation rate and a high obliquity. This means that the two habitable zone planets of this system, Kepler-62e ad f are likely to have very different climate features, and this of course would influence their potential at hosting surface liquid water. The code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A116

  7. PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES

    SciTech Connect

    Wurm, Gerhard; Trieloff, Mario; Rauer, Heike

    2013-05-20

    Mercury's high uncompressed mass density suggests that the planet is largely composed of iron, either bound within metal (mainly Fe-Ni) or iron sulfide. Recent results from the MESSENGER mission to Mercury imply a low temperature history of the planet which questions the standard formation models of impact mantle stripping or evaporation to explain the high metal content. Like Mercury, the two smallest extrasolar rocky planets with mass and size determination, CoRoT-7b and Kepler-10b, were found to be of high density. As they orbit close to their host stars, this indicates that iron-rich inner planets might not be a nuisance of the solar system but be part of a general scheme of planet formation. From undifferentiated chondrites, it is also known that the metal to silicate ratio is highly variable, which must be ascribed to preplanetary fractionation processes. Due to this fractionation, most chondritic parent bodies-most of them originated in the asteroid belt-are depleted in iron relative to average solar system abundances. The astrophysical processes leading to metal silicate fractionation in the solar nebula are essentially unknown. Here, we consider photophoretic forces. As these forces particularly act on irradiated solids, they might play a significant role in the composition of planetesimals forming at the inner edge of protoplanetary disks. Photophoresis can separate high thermal conductivity materials (iron) from lower thermal conductivity solids (silicate). We suggest that the silicates are preferentially pushed into the optically thick disk. Subsequent planetesimal formation at the edge moving outward leads to metal-rich planetesimals close to the star and metal depleted planetesimals farther out in the nebula.

  8. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution: Introduction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.

  9. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Discussion of the nature, origin and role of the intercrater plains of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.

  10. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Chronology of surface history of Mercury. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Phases in the history of the planet Mercury include: (1) condensation and accretion; (2) heating; (3) planetary expansion during heavy bombardment; (4) tidal spin-down and lineament formation; (5) P5 plains emplacement; (6) P4 plains emplacement; (7) peak planetary volume in P3 period; (8) scarp formation; (9) Caloris Basin formation, late class 3; (10) scarp formation and P2 plains formation; (11) smooth plains formation in and around large basins; (12) late or local tectonic stress; and (13) quiescent class 1 period. Although the cooling and contraction of the lithosphere are complete, the core remains molten as an active dynamo, producing the magnetic fields detected by Mariner 10. Plains produced since core formation (P3 to P-1) should record its magnetic activity. Cratering during the Class 2 and Class 1 periods is probably not enough to distribute ballistic materials and homogenize any color differences.

  11. The extreme ultraviolet albedos of the planet Mercury and of the moon

    NASA Technical Reports Server (NTRS)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  12. Mercury

    MedlinePlus

    ... button batteries. Mercury salts may be used in skin creams and ointments. It's also used in many industries. Mercury in the air settles into water. It can pass through the food chain and build up in ...

  13. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, ... colorless, odorless gas. It also combines with other elements to form powders or crystals. Mercury is in ...

  14. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Alternative thermal histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Interpretations supporting a differentiated, once active Mercury are listed. Alternative scenarios of the planet's thermal history involve: different distributions of accreted materials, including uranium and thorium-rich materials; variations of early melting; and different modes of plains and scarp formation. Arguments are advanced which strongly favor plains formation by volcanism, lack of a primordial surface, and possible identification of remnant tensional features. Studies of remotely sensed data which strongly suggest a modestly homogeneous surface of silicates imply core separation. Reasons for accepting or rejecting various hypotheses for thermal histories of the planet are mentioned.

  15. The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; Westrenen, W.

    2015-11-01

    This paper presents an analysis of present-day interior configuration models for Mercury considering cores of Fe-S or Fe-Si alloy, the latter possibly covered by a solid FeS layer, in light of the improved limit of planetary contraction of 7 km derived from MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations of surface landforms. Density profiles, generated by a Monte Carlo approach, are constrained by Mercury's mass, polar moment of inertia (C), fraction of polar moment corresponding to its outer solid shell (Cm/C), and observed planetary contraction. Results show that the outer liquid core boundary is constrained to 1985-2090 km in radius, where large radii correspond to high Si and S core contents and high mantle densities or the presence of an FeS layer at the top of the outer core. The bulk core S and Si contents are within 2.8-8.9 wt % and above 8.5 wt %, respectively, where an increase of light element core content correlates positively with mantle density and core size. The size of the inner core is constrained by the observed planetary contraction to below 1454 or 1543 km in radius for bulk cores rich in S (near 8.9 wt %) or Si (near 25 wt %), respectively. For cores poor in light elements, inner cores up to 1690 km in radius remain consistent with the observed planetary contraction. Finally, we show that solid FeS at outer core conditions, previously argued to float on liquid Fe-S, may be denser than the residual liquid. This implies that a separate mechanism may be required to maintain an FeS layer at the suggested location.

  16. Mercury

    MedlinePlus

    ... be found in: Batteries Chemistry labs Some disinfectants Folk remedies Red cinnabar mineral Organic mercury can be ... heart tracing Fluids through a vein (by IV) Medicine to treat symptoms The type of exposure will ...

  17. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    NASA Technical Reports Server (NTRS)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  18. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  19. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  20. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  1. A Measurement of the Shape of the Solar Disk: The Solar Quadrupole Moment, the Solar Octopole Moment, and the Advance of Perihelion of the Planet Mercury

    NASA Astrophysics Data System (ADS)

    Lydon, T. J.; Sofia, S.

    1996-01-01

    The Solar Disk Sextant experiment has measured the solar angular diameter for a variety of solar latitudes. Combined with solar surface angular rotation data, the solar quadrupole moment J2 and the solar octopole moment J4 have been derived first by assuming constant internal angular rotation on cylinders and then by assuming constant internal angular rotation on cones. We have derived values of 1.8×10-7 for J2 and 9.8×10-7 for J4. We conclude with a discussion of errors and address the prediction of general relativity for the rate of advance of perihelion of the planet Mercury.

  2. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic mapping of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The geologic framework of the intercrater plains on Mercury and the Moon as determined through geologic mapping is presented. The strategies used in such mapping are discussed first. Then, because the degree of crater degradation is applied to both mapping and crater statistics, the correlation of degradation classification of lunar and Mercurian craters is thoroughly addressed. Different imaging systems can potentially affect this classification, and are therefore also discussed. The techniques used in mapping Mercury are discussed in Section 2, followed by presentation of the Geologic Map of Mercury in Section 3. Material units, structures, and relevant albedo and color data are discussed therein. Preliminary conclusions regarding plains' origins are given there. The last section presents the mapping analyses of the lunar intercrater plains, including tentative conclusions of their origin.

  3. Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet's formation and evolution

    NASA Astrophysics Data System (ADS)

    Evans, Larry G.; Peplowski, Patrick N.; McCubbin, Francis M.; McCoy, Timothy J.; Nittler, Larry R.; Zolotov, Mikhail Yu.; Ebel, Denton S.; Lawrence, David J.; Starr, Richard D.; Weider, Shoshana Z.; Solomon, Sean C.

    2015-09-01

    Orbital measurements obtained by the MESSENGER Gamma-Ray Spectrometer have been analyzed to determine the surface abundance of chlorine in Mercury's northern hemisphere. The derived Cl/Si mass ratio is 0.0057 ± 0.001, which for an assumed Si abundance of 24.6 wt% corresponds to 0.14 ± 0.03 wt% Cl. The abundance of Cl is a factor of 2.9 ± 1.3 higher in the north polar region (>80°N) than at latitudes 0-60°N, a latitudinal variation similar to that observed for Na. Our reported Cl abundances are consistent with measured bulk concentrations of neutron-absorbing elements on Mercury, particularly those observed at high northern latitudes. The Cl/K ratio on Mercury is chondritic, indicating a limited impact history akin to that of Mars, which accreted rapidly. Hypotheses for the origin of Mercury's high metal-to-silicate ratio must be able to reproduce Mercury's observed elemental abundances, including Cl. Chlorine is also an important magmatic volatile, and its elevated abundance in the northern polar region of Mercury indicates that it could have played a role in the production, ascent, and eruption of flood volcanic material in this region. We have identified several candidate primary mineralogical hosts for Cl on Mercury, including the halide minerals lawrencite (FeCl2), sylvite (KCl), and halite (NaCl), as well as Cl-bearing alkali sulfides. Amphiboles, micas, apatite, and aqueously deposited halides, in contrast, may be ruled out as mineralogical hosts of Cl on Mercury.

  4. Missions to Mercury

    NASA Astrophysics Data System (ADS)

    Grard, Réjean; Laakso, Harry; Svedhem, Håkan

    2002-10-01

    Mercury is a poorly known planet. It is difficult to observe from Earth and to explore with spacecraft, due to its proximity to the Sun. Only the NASA probe Mariner 10 caught a few glimpses of Mercury during three flybys, more than 27 years ago. Still, this planet is an interesting and important object because it belongs, like our own Earth, to the family of the terrestrial planets. After reviewing what we know about Mercury and recapitulating the major findings of Mariner 10, we present the two missions, Messenger and BepiColombo, which will perform the first systematic exploration of this forgotten planet in 2009 and 2014, respectively.

  5. A measurement of the shape of the solar disk: The solar quadrupole moment, the solar octopole moment, and the advance of perihelion of the planet mercury

    SciTech Connect

    Lydon, T.J.; Sofia, S.

    1996-01-01

    The Solar Disk Sextant experiment has measured the solar angular diameter for a variety of solar latitudes. Combined with solar surface angular rotation data, the solar quadrupole moment {ital J}{sub 2} and the solar octopole moment {ital J}{sub 4} have been derived first by assuming constant internal angular rotation on cylinders and then by assuming constant internal angular rotation on cones. We have derived values of 1.8{times}10{sup {minus}7} for {ital J}{sub 2} and 9.8{times}10{sup {minus}7} for {ital J}{sub 4}. We conclude with a discussion of errors and address the prediction of general relativity for the rate of advance of perihelion of the planet Mercury. {copyright} {ital 1996 The American Physical Society.}

  6. The Planet Mercury Surface Spectroscopy and Analysis from the Kuiper Airborne Observatory and Analysis and Modeling to Determine Surface Composition

    NASA Technical Reports Server (NTRS)

    Sprague, Ann

    1997-01-01

    We had two successful flights to observe Mercury from the Kuiper Airborne Observatory (KAO) using High-efficiency Infrared Faint-Object Grating Spectrograph (HIFOGS). Flights were May 8, 1995 (eastern elongation) and July 6, 1995 (western elongation) For the observations one half of the primary mirror was covered to prevent sunlight from entering the telescope. All equipment and the airplane and its crew performed well. These flights were historical firsts for the KAO and for spectroscopy of Mercury in that it was the first time any spectroscopic observations of Mercury from above the Earth's atmosphere had been made. It was the first time the KAO had been used to @bserve an object less than 30 degrees from the Sun. Upon completion of the basic data reduction it became obvious that extensive modeling and analysis would be required to understand the data. It took three years of a graduate student's time and part time the PI to do the thermal modeling and the spectroscopic analysis. This resulted in a lengthy publication. A copy of this publication is attached and has all the data obtained in both KAO flights and the results clearly presented. Notable results are: (1) The observations found an as yet unexplained 5 micron emission enhancement that we think may be a real characteristic of Mercury's surface but could have an instrumental cause; (2) Ground-based measurements or an emission maximum at 7.7 microns were corroborated. The chemical composition of Mercury's surface must be feldspathic in order to explain spectra features found in the data obtained during the KAO flights.

  7. The internal structure of the planets Mercury, Venus, Mars and Jupiter according to the Savic-Kasanin theory

    NASA Astrophysics Data System (ADS)

    Savic, P.

    The internal structure of Mercury, Venus, Mars, and Jupiter is considered in the framework of the Savic-Kasanin theory of the behavior of materials under high pressure. The main hypothesis underlying the theory is based on the deformation of the electron shells by the dislocation and ejection of electrons from atoms in a given material. This theory is discussed in relation to the spontaneous effect of gravitation and cooling on atoms in the material of a celestial body.

  8. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  9. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-01

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby. PMID:18599778

  10. Planets' magnetic environments

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1989-02-01

    The magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and comets and the heliomagnetosphere are examined. The orientations of the planetary spin and magnetic axes, the size of the magnetospheres, and the magnetic properties and the radio emissions of the planets are compared. Results from spacecraft studies of the planets are included. Plans for the Voyager 2 mission and its expected study of the Neptune magnetosphere are considered.

  11. Nonrelativistic Contribution to Mercury's Perihelion Precession.

    ERIC Educational Resources Information Center

    Price, Michael P.; Rush, William F.

    1979-01-01

    Presents a calculation of the precession of the perihelion of Mercury due to the perturbations from the outer planets. The time-average effect of each planet is calculated by replacing that planet with a ring of linear mass density equal to the mass of the planet divided by the circumference of its orbit. (Author/GA)

  12. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  13. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  14. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  15. Unlocking the Secrets of Mercury

    NASA Video Gallery

    Of all the rocky planets, Mercury is the smallest and densest, the one with the oldest surface, and the one with the largest daily surface temperature variations. It is also the least explored! Joi...

  16. Mercury's Caloris Basin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Mercury: Computer Photomosaic of the Caloris Basin

    The largest basin on Mercury (1300 km or 800 miles across) was named Caloris (Greek for 'hot') because it is one of the two areas on the planet that face the Sun at perihelion.

    The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet.

    The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission.

    The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  17. MESSENGER: Exploring the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2011-12-01

    One of Earth's closest planetary neighbors, Mercury remained comparatively unexplored for the more than three decades that followed the three flybys of the innermost planet by the Mariner 10 spacecraft in 1974-75. Mariner 10 imaged 45% of Mercury's surface at about 1 km/pixel average resolution, confirmed Mercury's anomalously high bulk density and implied large fractional core size, discovered Mercury's internal magnetic field, documented that H and He are present in the planet's tenuous exosphere, and made the first exploration of Mercury's magnetosphere and solar wind environment. Ground-based astronomers later reported Na, K, and Ca in Mercury's exosphere; the presence of deposits in the floors of polar craters having radar characteristics best matched by water ice; and strong evidence from the planet's forced libration amplitude that Mercury has a fluid outer core. Spacecraft exploration of Mercury resumed with the selection for flight, under NASA's Discovery Program, of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. Launched in 2004, MESSENGER flew by the innermost planet three times in 2008-2009 en route to becoming the first spacecraft to orbit Mercury in March of this year. MESSENGER's first chemical remote sensing measurements of Mercury's surface indicate that the planet's bulk silicate fraction differs from those of the other inner planets, with a low-Fe surface composition intermediate between basalts and ultramafic rocks and best matched among terrestrial rocks by komatiites. Moreover, surface materials are richer in the volatile constituents S and K than predicted by most planetary formation models. Global image mosaics and targeted high-resolution images (to resolutions of 10 m/pixel) reveal that Mercury experienced globally extensive volcanism, including large expanses of plains emplaced as flood lavas and widespread examples of pyroclastic deposits likely emplaced during explosive eruptions of volatile

  18. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  19. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.

  20. Innermost Planets of the Solar System

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The appearance and characteristics of Mercury and Venus as evening and morning stars are discussed. Inferior and superior conjunction are defined. The motions, phases, and planetary dynamics of the two planets are compared with those of the earth and moon.

  1. Magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1975-01-01

    A model magnetosphere of Mercury using Mariner 10 data is presented. Diagrams of the bow shock wave and magnetopause are shown. The analysis of Mariner 10 data indicates that the magnetic field of the planet is intrinsic. The magnetic tail and secondary magnetic fields, and the influence of the solar wind are also discussed.

  2. The magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1976-01-01

    Data on Mercury's magnetosphere and on the plasma, planetomagnetic, and energetic particle environment of the planet obtained in three encounters (Mariner 10 flybys) are compared, and tasks for future research are outlined. The Mercury bow shock and magnetopause are much closer to the planet than the earth counterparts are to the earth. The magnetotail with embedded plasma sheet-field reversal region, global deflection of the solar wind by an intrinsic dipolar magnetic field, variations in solar wind momentum flux, and absence of such features as ionosphere, plasmasphere, and radiation belts, are described. Energetic electrons are accelerated in the magnetotail, however, and the interplanetary magnetic field variations distort Mercury's magnetosphere to produce a southward field associated with substorm-like disturbances.

  3. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  4. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  5. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2007-10-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  6. Do Other Planets Have Summer?

    ERIC Educational Resources Information Center

    Nelson, George

    2005-01-01

    It's important to keep two things in mind when thinking about the cause of the seasons: (1) Earth and all the other planets except Pluto and Mercury move around the Sun in almost perfect circles, getting neither closer nor farther away from the Sun during the year; and (2) Earth's rotation axis is tilted with respect to the plane of its orbit…

  7. History of the mass of Mercury

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1980-01-01

    This paper discusses the calculation of the masses of planets, as a means to construct reliable tables for their positions. Emphasis is placed on the four inner planets and the moon, with additional consideration given to the history of the masses of Jupiter and Saturn. A smooth curve can be drawn with the logarithm of the masses of the earth, Venus, Mars, and the moon, but the point for Mercury lies substantially off the curve. An investigation of the material content, surface examination, and planet radius for the planets leads to a reexamination of the history of the value for the mass of Mercury.

  8. Mercury's Dynamic Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  9. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  10. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  11. Mosaic Postcards from Mercury

    NASA Astrophysics Data System (ADS)

    Hallau, K. G.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hirshon, B.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach Team

    2010-12-01

    On its journey to become the first spacecraft to orbit Mercury, NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has followed a trajectory that included three flybys of the innermost planet. During the flybys, images captured by the Mercury Dual Imaging System revealed parts of the planet’s surface never before seen at close range, as well as high-resolution views of craters, crater rays, scarps, faults, and volcanic vents and flows. To help students and teachers better understand this revealing new look at Mercury, the MESSENGER Education and Public Outreach team will share these high-resolution images of Mercury's surface throughout the upcoming Year of the Solar System. By means of an intriguing format that mimics methods used by the MESSENGER team, a series of images printed at large postcard size will each highlight a small "slice" of Mercury, such as a crater or fault. The individual cards can then be pieced together, puzzle-style, on a poster-sized grid to reveal a larger mosaic view of the planet. Each card contains engaging text, the URL for an accompanying website, and coordinates for that region of the planet, helping students understand scientific concepts related to and revealed by MESSENGER's journey. The first set of cards will feature scarps, volcanic plains, the topography of a crater and the composition of its interior units, rayed craters, nested craters, and a deposit produced by explosive volcanic eruptions. Cards will be available for free on the accompanying website, distributed by MESSENGER Educator Fellows, or handed out at meetings, conferences, and workshops.

  12. Momument at Pad 14 honoring Project Mercury

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Momument at Pad 14 honoring Project Mercury. The Arabic number 7 represents the seven original astronauts. The other figure is the astronomical symbol of the Planet Mercury. In background is the Gemini 12 Agena Target Docking Vehicle atop its Atlas launch vehicle at Cape Kennedy, Florida.

  13. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  14. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  15. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  16. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl A.

    In this dissertation I examine the properties and origins of the most energetic component of Mercury's atmosphere and how it couples to the planet's magnetosphere and space environment. Mercury' s atmosphere consists of particles liberated from its surface that follow ballistic, collisionless trajectories under the influence of gravity and solar radiation pressure. This tenuous atmosphere can be classified as an exosphere where the exobase boundary is the planet's surface. To explain how this exosphere is sustained, a number of theories have been presented: (1) thermal evaporation from the hot surface; (2) photo-desorption of surface materials by UV solar radiation; (3) sputtering by plasma surface interactions; and (4) vaporization of the surface by micro-meteorite impacts. Using a 3-dimensional numerical model, I determine the role each source has in populating the exosphere. New observations of Mercury's escaping atmosphere are presented using novel imaging techniques in which sodium acts as a tracer to identify atmospheric sources. I discuss the implications of these measurements for our understanding of the physical processes at work in the exosphere, and provide a foundation for modeling such processes. For the first time, this work quantifies the variability in the loss of Mercury's sodium as a seasonal effect. My observations show that atmospheric escape can, at times, exceed 1024 Na atoms/s, nearly twice the highest rate previously reported. By forward modeling Mercury' s atmospheric escape, I place new constraints on the source properties and eliminate the prevailing theory that the escaping tail is sputtered from the surface by solar wind ions. The MESSENGER spacecraft has recently discovered that sodium is distributed unevenly over the surface and that the magnetosphere is offset from the planet's center. Using the first model to include these effects, I demonstrate the magnetosphere's influence upon exospheric sources by simulating asymmetries observed

  17. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  18. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    obtain new and accurate data about dynamics and structure of this planet (Anselmi et al., 2001). There are also some evaluations of moments of inertia Mercury and its core: C/(mR^2)=0.35, C_m /C=0.5± 0.07, (Peal, 1996). Here C and C_m are the moments of inertia of the full Mercury and of its core, m and R is a mass and a mean radius of Mercury. Based on two methods, we consider the rotation of Mercury in the gravitational field of the Sun. First method of perturbation has been effectively applied to the construction of a rotational theory of the Earth for its models as two or three layer celestial body moving in gravitational fields of the Moon, Sun and planets in wide set of papers ranging in 1999-2001 years of Ferrandiz J.M. and Getino J.(2001). Some generalization of this Hamiltonian formalism on the case of cavity (core) with arbitrary dynamical and geometrical oblateness has been obtained in a paper (Barkin, Ferrandiz, 2001). Another method is an analytical method of construction of the resonant rotational motion of synchronous satellites and Mercury, considered as non-spherical rigid bodies. This method has been applied earlier to construction of an analytical theory of rotation of the Moon considered as rigid non-spherical body (Barkin, 1989). Here we modified these methods to apply them to the study of the resonant rotation of a two-layer Mercury. By this we use very effective for the application of perturbation methods and dynamical geometrical illustration of canonical equations in Andoyer and Poincare variables. Main resonant properties of Mercury motion were been described first as generalized Cassini's laws (Colombo, 1966). But Colombo and some anothers scientists (Peal, 1969; Beletskii, 1972; Ward, 1975 and oth.) considered Mercury as rigid non-spherical body sometimes taking into account tidal deformation. Here we have been obtained and formulated these laws and their generalization for a two-layer model of Mercury. On the next step we have evaluated

  19. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury. PMID:23426260

  20. Space plasma physics research progress 1987-1990 - Mars, Venus, and Mercury

    SciTech Connect

    Luhmann, J.G. )

    1991-01-01

    Theoretical and observational studies of space plasma physics at the inner planets, Mars, Venus, and Mercury are reviewed. Emphasis is placed on the solar wind interactions and aeronomy (upper neutral atmospheres and ionospheres) of these planets. 206 refs.

  1. Extreme Planets

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

    All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

    Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

  2. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  3. Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Anderson, Brian J.; Burger, Matthew H.; Bradley, E. Todd; Mouawad, Nelly; Solomon, Sean C.; Izenberg, Noam R.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,

  4. Mercury's complex exosphere: results from MESSENGER's third flyby.

    PubMed

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere. PMID:20647427

  5. Outer Planets

    NASA Video Gallery

    Did you know that through NASA’s various satellite missions we have learned more about these planetary bodies in recent years than we knew collectively since we started to study our planets? Throu...

  6. Origin and composition of Mercury

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1988-01-01

    The predictions of the expected range of composition of Mercury at the time of its formation made on the basis of a suite of condensation-accretion models of Mercury spanning a range of condensation temperature and accretion sampling functions appropriate to Mercury are examined. It is concluded that these compositonal models can, if modified to take into account the nonselective loss of most of the silicate component of the planet during accretion, provide compositional predictions for the Weidenschilling (1978, 1980) mechanism for the accretion of a metal-rich Mercury. The silicate portion would, in this case, contain 3.6 to 4.5 percent alumina, roughly 1 percent of alkali oxides, and between 0.5 and 6 percent FeO.

  7. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  8. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  9. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1977-01-01

    The thermal evolutions of the Moon, Mars, Venus, and Mercury were calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical, and geophysical data were used to constrain both the present day temperature and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history.

  10. The Effect of Material Properties on Dynamo Generation in Planets

    NASA Astrophysics Data System (ADS)

    Vilim, Ryan

    2015-10-01

    In this thesis I use a three dimensional numerical dynamo model to explore the effect of novel material properties and core states on magnetic field generation in the planet Mercury, and in rocky extra-solar planets. In the first part of this work I focus on the recent evidence of pressure induced metallisation in materials which commonly comprise planetary mantles. In this scenario the materials which make up the lower mantle of a planet conduct electricity with a conductivity similar to that of iron. I show that a metallised mantle changes the way in which magnetic field is generated by providing a new source of magnetic shear between the fluid outer core and the solid mantle. I then show that this has the effect of making planetary magnetic fields more difficult to observe from Earth. The second and third parts of this work focus on the planet Mercury. First, I incorporate recent evidence of buoyancy sources mid-way through Mercury's liquid core (known as "snow zones") to show that they can explain the weak observed magnetic field of Mercury. In a second project on Mercury I test whether recent evidence of a dense solid layer at the top of Mercury's core, attributed to a solid, electrically conducting layer of FeS, could help explain Mercury's weak magnetic field. I find that the addition of this layer causes the dynamo to generate a strong, dipolar magnetic field, which does not match the observations made by the MESSENGER spacecraft.

  11. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  12. Design and Performance Measurement of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.

    2004-01-01

    We report the design and test results of the Mercury Laser Altimeter on MESSENGER mission to be launched in May 2004. The altimeter will provide planet surface topography measurements via laser pulse time of flight.

  13. Plane Mercury librations

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2009-04-01

    Introduction. In 1988 I. Kholin [1] has developed a precision method of determination of parameters of rotation of planets on complex radar-tracking observations on two radio telescopes making base and definitely carried on surface of the Earth. His American colleagues for the period approximately in 4 with small year have executed a series of radar-tracking measurements on a method and I. Kholin's program [2] and have obtained for the specified period 21 values of angular velocity of rotation of this planet [3]. With the help of numerical integration of the equations of rotary motion on the found values they managed to determine with high accuracy the basic dynamic parameter in the theory of Mercury librations (B - A)•Cm = (2.03± 0.12) × 10-4 and the corresponding to it the value of amplitude of the basic librations35"8 ± 2"1. These results have served as convincing arguments for the benefit of the Peale's assumption, that a core of Mercury is liquid, or in partially molten [4]. Authors also managed to obtain for the first time parameters of resonant librations in a longitude which opening from radar observations was predicted earlier [5]. Its amplitude makes about 300", the period is equal approximately to 12 years. In the paper [6] parameters of the perturbed rotational motion have been determined with the help of the analytical theory and with formal using of results of mentioned work [3] on determination of 21 values of angular velocity of Mercury. In result the estimations of amplitudes of forced librations of first five harmonics with the periods: 87.97 d, 43.99 d, 29.33 d, 21.99 d and 17.59 d have been obtained. The appropriate amplitudes make values:34"05 ± 1"27, 3"59 ± 0"13, 0"354 ± 0"013, 0"072 ± 0"003 and 0"016 ± 0"001. The amplitude and the period of free librations of Mercury in a longitude are determined: 290"9 ± 67"0 and 12.37 ± 0.23 yr, consequently. The phase of this variation has made28401 ± 1402. In the paper we construct the similar

  14. Microlensing Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    The theory and practice of microlensing planet searches is developed in a systematic way, from an elementary treatment of the deflection of light by a massive body to a thorough discussion of the most recent results. The main concepts of planetary microlensing, including microlensing events, finite-source effects, and microlens parallax, are first introduced within the simpler context of point-lens events. These ideas are then applied to binary (and hence planetary) lenses and are integrated with concepts specific to binaries, including caustic topologies, orbital motion, and degeneracies, with an emphasis on analytic understanding. The most important results from microlensing planet searches are then reviewed, with emphasis both on understanding the historical process of discovery and the means by which scientific conclusions were drawn from light-curve analysis. Finally, the future prospects of microlensing planets searches are critically evaluated. Citations to original works provide the reader with multiple entry points into the literature.

  15. BepiColombo: Exploring Mercury

    NASA Astrophysics Data System (ADS)

    Geelen, K.; Novara, M.; Fugger, S.; Benkhoff, J.

    2014-04-01

    BepiColombo is an interdisciplinary mission to explore Mercury, the planet closest to the sun, carried out jointly between the European Space Agency and the Japanese Aerospace Exploration Agency. The mission consists of two orbiters dedicated to the detailed study of the planet and of its magnetosphere, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The MPO is ESA's scientific contribution to the mission and comprises 11 science instruments. It is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit with a period of approximately 2.3 hours, a periapsis of 480 km and an apoapsis of 1500 km, providing excellent spatial resolution over the entire planet surface. The interplanetary transfer is performed by an Electric Propulsion Module, which is jettisoned when Mercury is reached. It will set off in July 2016 on a journey to the smallest and least explored terrestrial planet in our Solar System. When it arrives at Mercury in January 2024, it will endure temperatures in excess of 350 °C and gather data during its 1 year nominal mission, with a possible 1-year extension. The difficulty of reaching, surviving and operating in the harsh environment of a planet so close to the sun, makes BepiColombo one of the most challenging planetary projects undertaken by ESA so far. A range of major challenges need to be overcome to enable the mission including the electric propulsion system, development of a new Multi-Layer Insulation able to withstand the high temperatures, an original solar panel design, stringent pointing requirements to be maintained in extreme conditions varying from a solar flux of 10 solar constants to eclipse conditions etc. The scientific payload of both spacecraft will provide the detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. The scientific objectives focus on a global characterization of Mercury through the

  16. Mariner 10 mercury encounter.

    PubMed

    Dunne, J A

    1974-07-12

    Mariner 10's closet approach to Mercury on 29 March 1974 occurred on the dark side of the planet at a range of approximately 700 kilometers. The spacecraft trajectory passed through the shadows of both the sun and Earth. Experiments conducted included magnetic fields, plasma and charged particle studies of the solar wind interaction region, television photography, extreme ultraviolet spectroscopy of the atmosphere, the detection of infrared thermal radiation from the surface, and a dual-frequency radio occultation in search of an ionosphere. PMID:17810505

  17. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  18. Mercury: the dark-side temperature.

    PubMed

    Murdock, T L; Ney, E P

    1970-10-30

    The planet Mercury was observed before, during, and after the inferior conjunctions of 29 September 1969 and 9 May 1970 at wavelengths of 3.75, 4.75, 8.6, and 12 microns. The average dark-side temperature is 111 degrees +/- 3 degrees K. The thermal inertia of the surface required to fit this temperature is close to that for the moon and indicates that Mercury and the moon have very similar top surface layers. PMID:17799708

  19. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  20. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  1. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2008-09-01

    Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed

  2. Optical system design and integration of the mercury laser altimeter.

    PubMed

    Ramos-Lzquierdo, Luis; Scott, V Stanley; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-03-20

    The Mercury Laser Altimeter (MLA), developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography by laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented. PMID:15813279

  3. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  4. Recent geologic activity on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; Strom, R. G.; Blewett, D. T.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Chabot, N. L.; Banks, M. E.; Chapman, C. R.

    2011-12-01

    Since the MESSENGER spacecraft was inserted into orbit about Mercury in March 2011, global and targeted high-resolution image data sets have been acquired. These images support the conclusion that internal geological activity on Mercury did not end early in planetary history, as had generally been previously thought, but continued to geologically recent times. Three lines of evidence point to recent geological activity on Mercury. (1) There are smooth plains with surface areas up to 1.5×105 km2 that postdate young (morphological class 1) craters, indicating probable Kuiperian-aged volcanism. No volcanic vents, fissures, or flow fronts have been identified on these plains, suggesting that they are products of low-viscosity lavas, consistent with komatiite-like compositions of large areas on Mercury indicated by MESSENGER X-Ray Spectrometer observations. (2) Young lobate scarps transect class 1 craters as large as 30 km in diameter, indicating comparably recent crustal contraction. (3) A number of fresh-appearing, high-reflectance, irregularly shaped and rimless shallow depressions interpreted as pyroclastic vents have few superposed craters, suggesting that they have been recently active. Growing evidence from geological and geochemical observations indicates that Mercury's interior contains a higher abundance of volatile materials than was previously appreciated. Together these findings support the inference that Mercury experienced relatively recent volcanism and tectonic deformation, and the possibility that the planet is geologically active today cannot be discounted.

  5. MESSENGER'S First and Second Flybys of Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2009-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only approximately 1000 km above the surface. An overview of the MESSENGER mission and its January 14th and October 6th, 2008 close flybys of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER will be discussed with an emphasis on the magnetic field and charged particle measurements.

  6. The Plasma Environment at Mercury

    NASA Technical Reports Server (NTRS)

    Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos; Sprague, Anne L.; McNutt, Ralph L., Jr.

    2011-01-01

    Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.

  7. Effective resonant stability of Mercury

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Sansottera, Marco; Lemaitre, Anne

    2016-04-01

    Mercury is the unique known planet that is situated in a 3:2 spin-orbit resonance nowadays. Observations and models converge to the same conclusion: the planet is presently deeply trapped in the resonance and situated at the Cassini state 1, or very close to it. We investigate the complete non-linear stability of this equilibrium, with respect to several physical parameters, in the framework of Birkhoff normal form and Nekhoroshev stability theory. We use the same approach adopted for the 1:1 spin-orbit case, published in Sansottera et al. (2014), with a peculiar attention to the role of Mercury's non negligible eccentricity. The selected parameters are the polar moment of inertia, the Mercury's inclination and eccentricity and the precession rates of the perihelion and node. Our study produces a bound to both the latitudinal and longitudinal librations (of 0.1 radians) for a long but finite time (greatly exceeding the age of the solar system). This is the so-called effective stability time. Our conclusion is that Mercury, placed inside the 3:2 spin-orbit resonance, occupies a very stable position in the space of these physical parameters, but not the most stable possible one.

  8. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Remote sensing and physical data and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Imagery data from Mariner 10 and Lunar Orbiter IV form the major base of observations analyzed. But a variety of other information aids in constraining the composition and structure of the Moon and Mercury, and in particular, provides input to the problem of the nature and origin of their intercrater plains. This information for Mercury is remotely sensed from Earth or from the Mariner 10 spacecraft. Lunar data includes, of course, ground truth information from the Apollo landing sites. Since neither intercrater region was sampled, lunar and Mercurian data are similar in type and limitations. Constraints on surface and interior composition and structure are reviewed.

  9. Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.

    PubMed

    Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T

    2008-07-01

    In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight. PMID:18599768

  10. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2004-12-01

    The terrestrial planets are generally thought to have formed via the collisional accumulation of rocky bodies. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably prohibitively large spin angular momentum acquired as a planet grows. To date, studies of the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001, Canup 2004). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision but by all of the major collisional encounters in a planet's history (Agnor, Canup & Levison 1999). As demonstrated by our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for the subsequent collision. We are studying collisional dynamics and outcomes common to the late stage of terrestrial planet formation. We use smooth particle hydrodynamics model collisions in an effort to identify the range of impact dynamics that allow for accretion (i.e. mass growth instead of mass loss). In our initial study we found that for dynamical environments typical of most late stage accretion models, about half of all collisions between equal mass planetary embryos do not result in accumulation into a larger embryo (Agnor & Asphaug 2004). We will

  11. Extrasolar Planets and Prospects for Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Fischer, Debra A.

    2004-06-01

    Examination of ˜2000 sun--like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ˜200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05--5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News &summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth--mass planets remain undetectable, but space--based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade. The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter--mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth--mass planets. These observations and the theory of planet formation suggests that single sun--like stars commonly harbor earth--sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non--circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter--like planets may reside at 5--10 AU from stars, not easily detectable at present. The sun--like star 55 Cancri harbors a planet of 4--10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward. To date, 10 multiple--planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are ``hierarchical'', consisting

  12. The study Earth-like planets using spacecraft

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2014-10-01

    The Solar system consists of the Sun, large (classical), dwarf, small planets and their satellites, comets, meteoroids, small meteoritic particles and dust grains. The eight classical planets are divided into terrestrial planets (Mercury, Venus, Earth, Mars) and giant planets (Jupiter, Saturn, Uranus, Neptune). The main components of the Earth-like planets atmospheres are nitrogen and carbon dioxide. The formation of the terrestrial planets' traced in some detail, calculated the distance between the planets, their mass, orbital period around the Sun, the inclination of the axis satisfactorily agree with observational data. Terrestrial planets have much in common: small size and weight, the average density is several times greater than the density of water, slow rotation around its axis, few satellites or lack thereof, hard surface and so on. There are volcanoes on Venus, Earth and Mars, and in the surface layers of all four planets more or less traces of tectonic activity (mountain building processes) and intense meteorite bombardment as one of the main factors of the Mars and Mercury surface formation. On Earth meteor crater almost completely obliterated by tectonic and erosional processes while they survived much better on Venus.

  13. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  14. Mariner Venus Mercury, 1973. [close flyby investigation of mercury after Venus-flyby, and observation of Kohoutek comet

    NASA Technical Reports Server (NTRS)

    Wilson, J. H.

    1973-01-01

    The Mariner Venus Mercury 1973 unmanned mission is discussed, which is designed to conduct a close flyby investigation of the planet Mercury after using the gravity-turn technique in a Venus flyby. Its scientific purposes include photographic, thermal, and spectral surveys, radio occulation, and charged particle/magnetic measurements at each planet, observation of solar-system fields and particles from 1.0 a.u. down to 0.4 a.u., and comparative planetary surveys between the Earth, the Moon, Venus, and Mercury. It is also intended to observe Kohoutek's comet. The trajectory permits establishment of a solar orbit in phase with Mercury's, permitting repeated encounters with that planet.

  15. Mercury: infrared evidence for nonsynchronous rotation.

    PubMed

    Soter, S L

    1966-09-01

    An infrared observation of the dark side of Mercury made by Pettit and Nicholson in 1923 led them to suggest that the planet rotates nonsynchronously. Their early measurements, if taken at face value, would imply a brightness temperature of about 180 degrees K for the dark side. The asymmetry of the infrared phase curve is further interpreted as suggesting direct rotation. PMID:17737592

  16. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  17. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  18. Geodesy at Mercury with MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  19. The Cambridge photographic atlas of the planets

    NASA Technical Reports Server (NTRS)

    Briggs, G.; Taylor, F.

    1982-01-01

    The origin of the solar systems is considered along with the formation of the planets, the evolution of the planets, the surfaces of solid planets, and the atmosphere of the planets. A description is provided of the various planets of the solar system. It is pointed out that Mercury was little known until March 1974 when the Mariner 10 spacecraft made the first of its three flybys of that body. In the case of Venus, the Pioneer mission to Venus by NASA in 1978 provided a breakthrough concerning a knowledge of the solid body hidden beneath the clouds. The characteristics of the planet earth are discussed together with information about the moon. A shaded relief map of Mars illustrates the geographic features of this planet. The map was produced with the aid of Mariner 9 photographs. Maps of the Jovian system based on photographs provided by space missions are also presented, and the Saturnian system is discussed, taking into account major satellites and rings of Saturn.

  20. Mercury radar imaging: evidence for polar ice.

    PubMed

    Slade, M A; Butler, B J; Muhleman, D O

    1992-10-23

    The first unambiguous full-disk radar mapping of Mercury at 3.5-centimeter wavelength, with the Goldstone 70-meter antenna transmitting and 26 antennas of the Very Large Array receiving, has provided evidence for the presence of polar ice. The radar experiments, conducted on 8 and 23 August 1991, were designed to image the half of Mercury not photographed by Mariner 10. The orbital geometry allowed viewing beyond the north pole of Mercury; a highly reflective region was clearly visible on the north pole during both experiments. This polar region has areas in which the circular polarization ratio (pt) was 1.0 to 1.4; values < approximately 0.1 are typical for terrestrial planets. Such high values of have hitherto been observed in radar observations only from icy regions of Mars and icy outer planet satellites. PMID:17748898

  1. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  2. Mercury - A post-Mariner 10 assessment

    NASA Technical Reports Server (NTRS)

    Storm, R. G.

    1979-01-01

    The paper reviews the analyses of the imagery since the Mariner 10 flight, and considers the implications for the surface evolution of the terrestrial planets. Mercury is probably differentiated into a large iron-rich core and a thin silicate mantle. It differs from the moon by having (1) large areas of old intercrater plains, (2) a wide-spread distribution of lobate scarps, and (3) a similar albedo between young smooth plains and the older mercurian highlands. The origin of Mercury's plains and lobate scarps is discussed, and it is concluded that the crater diameter density distribution on the moon, Mars, and Mercury indicates that all the terrestrial planets experienced intense bombardment early in their histories, and that the objects responsible for this bombardment probably belonged to the same population(s).

  3. Messenger Observations of Mercury's Bow Shock and Magnetopause

    NASA Technical Reports Server (NTRS)

    Slavin J. A.; Acuna, M. H.; Anderson, B. J.; Benna, M.; Gloeckler, G.; Krimigis, S. M.; Raines, M.; Schriver, D.; Travnicek, P.; Zurbuchen, T. H.

    2008-01-01

    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury.

  4. Chemical composition of Earth, Venus, and Mercury.

    PubMed

    Morgan, J W; Anders, E

    1980-12-01

    Model compositions of Earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, Tl/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. Review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets. PMID:16592930

  5. Chemical composition of Earth, Venus, and Mercury

    PubMed Central

    Morgan, John W.; Anders, Edward

    1980-01-01

    Model compositions of Earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, Tl/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. Review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets. Images PMID:16592930

  6. Chemical composition of earth, Venus, and Mercury

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Anders, E.

    1980-01-01

    Model compositions of the earth, Venus, and Mercury are calculated from the premise that planets and chondrites underwent four identical fractionation processes in the solar nebula. Because elements of similar properties stay together in these processes, five constraints suffice to define the composition of a planet: mass of the core, abundance of U, and the ratios K/U, TI/U, and FeO/(FeO + MgO). Complete abundance tables, and normative mineralogies, are given for all three planets. A review of available data shows only a few gross trends for the inner planets: FeO decreases with heliocentric distance, whereas volatiles are depleted and refractories are enriched in the smaller planets.

  7. Magnetic fields of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1993-01-01

    The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

  8. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  9. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Estimated thickness of ejecta deposits compared to to crater rim heights. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The area of the continuous ejecta deposits on mercury was calculated to vary from 2.24 to 0.64 times the crater's area for those of diameter 40 km to 300 km. Because crater boundaries on the geologic map include the detectable continuous ejecta blanket, plains exterior to these deposits must consist of farther-flung ejecta (of that or other craters), or volcanic deposits flooding the intervening areas. Ejecta models are explored.

  10. Exploring Planet Sizes

    NASA Video Gallery

    This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

  11. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  12. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-07-10

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

  13. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  14. Imaging During MESSENGER's Second Flyby of Mercury

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team

    2008-12-01

    During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an

  15. Thermal evolution of Mercury as constrained by MESSENGER observations

    NASA Astrophysics Data System (ADS)

    Michel, Nathalie C.; Hauck, Steven A.; Solomon, Sean C.; Phillips, Roger J.; Roberts, James H.; Zuber, Maria T.

    2013-05-01

    observations of Mercury by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provide new constraints on that planet's thermal and interior evolution. Specifically, MESSENGER observations have constrained the rate of radiogenic heat production via measurement of uranium, thorium, and potassium at the surface, and identified a range of surface compositions consistent with high-temperature, high-degree partial melts of the mantle. Additionally, MESSENGER data have placed new limits on the spatial and temporal variation in volcanic and tectonic activity and enabled determination that the planet's core is larger than previously estimated. Because Mercury's mantle layer is also thinner than previously thought, this result gives greater likelihood to the possibility that mantle convection is marginally supercritical or even that the mantle is not convecting. We simulate mantle convection and magma generation within Mercury's mantle under two-dimensional axisymmetry and a broad range of conditions to understand the implications of MESSENGER observations for the thermal evolution of the planet. These models demonstrate that mantle convection can persist in such a thin mantle for a substantial portion of Mercury's history, and often to the present, as long as the mantle is thicker than ~300 km. We also find that magma generation in Mercury's convecting mantle is capable of producing widespread magmas by large-degree partial melting, consistent with MESSENGER observations of the planet's surface chemistry and geology.

  16. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  17. Bepi-Colombo Mission to Mercury

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hajime; Maejima, Hironori

    2012-07-01

    BepiColombo has been defined as the ESA-JAXA joint mission to Mercury with the aim to understand the process of planetary formation and evolution in the hottest part of the proto-planetary nebula as well as to understand similarities and differences between the magnetospheres of the Mercury and the Earth. The baseline mission consists of two spacecraft: the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The two orbiters will be launched together on one Ariane5. JAXA is responsible for development and operation of MMO while ESA is responsible for development and operation of MPO and Mercury Transfer Module (MTM), launch, cruise phase operation, and Mercury orbit insertion. The main objectives of MPO are to study planet Mercury and planetary formation in the inner solar system. For this purpose, MPO is desgined as a 3-axis stabilized spacecraft and will be placed in a 400 km x 1500 km polar orbit. While the main objectives of MMO are to study Mercury's magnetic field and plasma environment around Mercury. For this purpose, MMO is designed as a spin-stabilized spacecraft and will be placed in a same orbital plane as MPO but has a 400 km x 12000 km. The orbital period of MMO and MPO is designed as 4:1 to achieve cross calibration and cooperative observations. System Critical Design Review (CDR) of MMO has been completed in November 2011 and System CDR for whole BepiColombo mission is scheduled in July 2012. Electrical Interface Check (EIC)/ Mechanical Interface Check (MIC) of MMO FM has been completed in January 2012. MMO Mechanical Test Model is transported to ESA/ESTEC to join Mercury Cruise System (MCS) level Mechianical Test which will be held in this year.

  18. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  19. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  20. First MESSENGER orbital observations of Mercury's librations

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Peale, Stanton J.; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2015-10-01

    We have coregistered laser altimeter profiles from 3 years of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbital observations with stereo digital terrain models to infer the rotation parameters for the planet Mercury. In particular, we provide the first observations of Mercury's librations from orbit. We have also confirmed available estimates for the orientation of the spin axis and the mean rotation rate of the planet. We find a large libration amplitude of 38.9 ± 1.3 arc sec and an obliquity of the spin axis of 2.029 ± 0.085 arc min, results confirming that Mercury possesses a liquid outer core. The mean rotation rate is observed to be (6.13851804 ± 9.4 × 10-7)°/d (a spin period of 58.6460768 days ± 0.78 s), significantly higher than the expected resonant rotation rate. As a possible explanation we suggest that Mercury is undergoing long-period librational motion, related to planetary perturbations of its orbit.

  1. Mercury's resonant rotation from secular orbital elements

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Hussmann, Hauke

    2015-11-01

    We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet's measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury's interior structure. In particular, we derive a mean orbital period of (87.96934962 ± 0.00000037) days and (assuming a perfect resonance) a spin rate of (6.138506839± 0.000000028)°/day. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101-135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury's rotation.

  2. Dating tectonic structures on Mercury

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Marchi, Simone; Cremonese, Gabriele

    2013-04-01

    Mercury is a planet dominated by contractional features at a global scale, represented mainly by lobate scarps. These structures are the expression of surface-breaking thrust faults and are linear or arcuate features widely distributed on Mercury. Since they display a broad distribution of orientations their origin is hypothesized to be related to a global contraction. By summing of the crustal shortening associated to scarps, a decreasing of the planet radius of about 1-2 km (Strom et al., 1975, JGR, 80, 2478-2507) or more (Di Achille et al., 2012, Icarus, 221, 456-460) was calculated. This process was hypothesized to occur at the edge of the Late Heavy Bombardment (≥3.8 Ga ago) (Strom et al., 1975, JGR, 80, 2478-2507; Watters and Nimmo, 2010, in Planetary tectonics, 15-80). The Messenger cameras (MDIS WAC and NAC), acquired images of new regions of the Mercury surface that allowed us to detect several new lobate scarps especially where the illumination geometry is more favorable for structural analysis (Di Achille et al., 2012, Icarus, 221, 456-460). Among these a 350 km-long thrust has been detected crossing a peak ring basin (about 186 km of diameter), located at 3°87' N and 87°17'E. The region encircled within the inner ring of the basin is covered by a smooth plain with evidence of a sin-deformational emplacement. This allowed us to give an age constrain of the tectonic structure. Indeed our preliminary crater count dates the smooth plain at 3.7-3.6 Ga fixing a straight upper limit to the contractional deformation in this sector of the planet.

  3. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. Questions about Mercury's role in comparative planetary geophysics

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Weidenschilling, S. J.; Davis, D. R.; Greenberg, R.; Leake, M. A.

    1985-01-01

    Problems which have arisen in formulating a mutually consistent picture of Mercury's evolution are outlined. It appears that one or more of the following widely adopted assumptions are wrong about Mercury: (1) its original composition at least approximately resulted from equilibrium condensation; (2) its magnetic field arises from a still-active dynamo; (3) its thermal evolution should have yielded early core formation followed by cooling and a global contraction approaching 20 km in the planet's radius; (4) Mercury's surface is basaltic and the intercrater plains are of volcanic origin. It is suggested that Mercury's role in comparative planetology be reevaluated in the context of an alternative timescale based on the possibility that Mercury was subjected to a continuing source of cratering projectiles over recent aeons, which have not impacted the other terrestrial planets. Although such vulcanoids have not yet been discovered, the evolution of Mercury's orbit due to secular perturbations could well have led to a prolonged period of sweeping out any intra-Mercurian planetesimals that were originally present. Mercury's surface could be younger than previously believed, which explains why Mercury's core is still molten.

  5. Mercury: surface composition from the reflection spectrum.

    PubMed

    McCord, T B; Adams, J B

    1972-11-17

    The reflection spectrum for the integral disk of the planet Mercury was measured and was found to have a constant positive slope from 0.32 to 1.05 micrometers, except for absorption features in the infrared. The reflectivity curve matches closely the curve for the lunar upland and mare regions. Thus, the surface of Mercury is probably covered with a lunar-like soil rich in dark glasses of high iron and titanium content. Pyroxene is probably the dominant mafic mineral. PMID:17798540

  6. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, G. E.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1974-01-01

    The morphology and optical properties of the surface of Mercury resemble that of the moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  7. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, E. G.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1977-01-01

    The morphology and optical properties of the surface of Mercury resemble those of the Moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  8. Dating tectonic structures on Mercury

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Massironi, M.; Marchi, S.; Cremonese, G.

    2012-09-01

    Mercury surface appears to be interested by several tectonic structures, the most interesting ones being numerous lobate scarps formed mainly thanks to planet cooling and contraction. The Messenger cameras (MDIS WAC and NAC) allowed us to map several structures not previously detected. Among these a 250 km-long thrust has been detected crossing a peak ring basin. The region encircled within the inner ring of the basin is covered by a smooth plain with evidence of a sin-deformational emplacement. Dating this smooth plain with crater counting technique allowed us to give an age constrain of the tectonic structure.

  9. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; Sprague, Ann L.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Feldman, William C.; Lawrence, David J.; Ho, George C.; Vilas, Faith; Pieters, Carle M.; McClintock, William E.; Helbert, Jorn

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  10. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  11. MERCURY IN TREE RINGS

    EPA Science Inventory

    Contamination caused by release of mercury into the environment is a growing concern. This release occurs due to a variety of anthropogenic activities and natural sources. After release, mercury undergoes complicated chemical transformations. The inorganic forms of mercury releas...

  12. The Mercury exosphere after MESSENGER

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary; McClintock, William; Vervack, Ronald; Merkel, Aimee; Burger, Matthew; Cassidy, Timothy; Sarantos, Menelaos

    2016-07-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft observed sodium, calcium and magnesium emisison in Mercury's exosphere on a near-daily basis for >16 Mercury years. The MASCS observations showed that calcium in Mercury's exosphere is persistently concentrated in the dawn hemisphere and is of extreme temperature (>50,000 K). The column abundance varies seasonally, and is extremely repeatable each Mercury year. In addition, the calcium exhibits a persistent maximum not at perihelion but 20° after perihelion, an enhancement that was shown to be coincident with the probable intersection of Mercury's orbit with a dust stream originating at Comet Encke. Any mechanism producing the Mercurian Ca exosphere must explain the facts that the Ca is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Energization of the Ca atoms was suggested to originate through dissociation of Ca-bearing molecules ejected by meteoritic impacts. Magnesium was also observed on a daily basis throughout the MESSENGER orbital phase. Mg has its own spatial and temporal pattern, peaking at mid-morning instead of early morning like Ca, and exhibiting a warm thermal profile, about 5000 K, unlike the extreme temperature of Ca which is an order of magnitude hotter. Although Mercury's sodium exosphere has been observed from the ground for many decades, the MASCS observations showed that, like calcium, the sodium exosphere is dominated by seasonal variations, not sporadic variations. However a conundrum exists as to why ground-based observations show highly variable high-latitude variations that eluded the MASCS. The origin of a persistent south polar enhancement has not been explained. The more volatile element, Na, is again colder, about 1200 K, but not thermally accommodated to the surface temperature. A

  13. Mercury's Core Molten, Radar Study Shows

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Scientists using a high-precision planetary radar technique for the first time have discovered that the innermost planet Mercury probably has a molten core, resolving a mystery of more than three decades. The discovery, which used the National Science Foundation's Robert C. Byrd Green Bank Telescope in West Virginia and Arecibo Observatory in Puerto Rico, and NASA/Jet Propulsion Laboratory antennas in California, is an important step toward a better understanding of how planets form and evolve. Planetary Radar High-precision planetary radar technique sent signal to Mercury, received reflection. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for high-resolution file (447 KB) "For a long time it was thought we'd have to land spacecraft on Mercury to learn if its core is solid or molten. Now we've answered that question using ground-based telescopes," said Jean-Luc Margot, of Cornell University, leader of the research team, which published its results in the May 4 issue of the journal Science. Mercury is one of the least-understood of the planets in our Solar System. Its distance from the Sun is just over one-third that of the Earth, and it contains a mass just 5½ percent that of Earth. Only about half of Mercury's surface has been photographed by a spacecraft, Mariner 10, back in 1974. Mariner 10 also discovered that Mercury has a weak magnetic field, about one percent as strong as Earth's. That discovery spurred a scientific debate about the planet's core. Scientists normally expect a rocky planet's magnetic field to be caused by an electromagnetic dynamo in a molten core. However, Mercury is so small that most scientists expected its core to have cooled and solidified long ago. Those scientists speculated that the magnetic field seen today may have been "frozen" into the planet when the core cooled. "Whether the core is molten or solid today depends greatly on the chemical composition of the core. That chemical composition can provide important clues about the

  14. Mercury's interior from MESSENGER geodetic measurements

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed more than 4 years of operations in orbit about Mercury. One of the main mission goals was the determination of the interior structure of Mercury enabled by geodetic observations of the topography, gravity field, rotation, and tides by the Mercury Laser Altimeter (MLA) and radio science system. MLA acquired over 25 million individual measurements of Mercury's shape that are mostly limited to the northern hemisphere because of MESSENGER's eccentric orbit. However, the lack of laser altimetry in the southern hemisphere has been partly compensated by ˜400 occultations of spacecraft radio signals. X-band radio tracking data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2. The combination of altimetry and radio measurements provides a powerful tool for the investigation of Mercury's orientation and tides, which enable a better understanding of the interior structure of the planet. The MLA measurements have been assembled into a digital elevation model (DEM) of the northern hemisphere. We then used individual altimetric measurements from the spacecraft for orbit determination, together with the radio tracking, over a continuous span of time using a batch least-squares filter. All observations were combined to recover directly the gravity field coefficients, obliquity, librations, and tides by minimizing the discrepancies between the computed observables and actual measurements. We will present the estimated 100×100 gravity field model, the obliquity, the Love number k2, and, for the first time, the tidal phase lag φ and the amplitude of the longitudinal libration from radio and altimetry data. The k2 phase provides information on Mercury's dissipation and mantle viscosity and allows a determination of the Q factor. A refinement of

  15. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  16. The X-Ray Spectrometer for Mercury MESSENGER

    NASA Technical Reports Server (NTRS)

    Starr, R. D.; Ho, G. C.; Schlemm, C.; Gold, R. E.; Goldsten, J. O.; Boynton, W. V.; Trombka, J. I.

    2001-01-01

    Mercury is the closest planet to the Sun and because it is so close, it is difficult to study from Earth-based observatories. Its proximity to the Sun has also limited the number of spacecraft to visit this tiny planet to just one, Mariner 10, which flew by Mercury twice in 1974 and once in 1975. Mariner 10 provided a wealth of new information about Mercury, yet much still remains unknown about Mercury's geologic history and the processes that led to its formation. The origin of Mercury's metal-rich composition is just one area of investigation awaiting more and improved data to sort between competing hypotheses. Mercury plays an important role in comparative planetology, and many of the processes that were important during its formation are relevant to the Earth's early history. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) is a Discovery mission that has been designed to fly by and orbit Mercury. It will launch in March 2004, flyby Mercury in 2007 and 2008 and enter an elliptical orbit in April 2009. During the one-year orbital phase, a suite of instruments on board the MESSENGER spacecraft will study the exosphere, magnetosphere, surface, and interior of Mercury. One of these instruments will be an X-Ray Spectrometer (XRS) that will measure surface elemental abundances. Remote X-ray spectroscopy has been accomplished before on the Apollo 15 and 16 missions, and more recently on NEAR Shoemaker. The MESSENGER XRS will measure characteristic X-ray emissions induced in the surface of Mercury by the incident solar flux. The Ka lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected with spatial resolution on the order of 40 km when counting statistics are not a limiting factor. These measurements can be used to obtain quantitative information on elemental composition.

  17. Large longitude libration of Mercury reveals a molten core.

    PubMed

    Margot, J L; Peale, S J; Jurgens, R F; Slade, M A; Holin, I V

    2007-05-01

    Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 +/- 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 +/- 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten. PMID:17478713

  18. Asymmetries in the dust flux at Mercury

    NASA Astrophysics Data System (ADS)

    Borin, P.; Cremonese, G.; Bruno, M.; Marzari, F.

    2016-01-01

    The planet Mercury has an extended and tenuous exosphere made up of atoms that are ejected from the surface by energetic processes, including hypervelocity micrometeoritic impacts, photon-stimulated desorption by UV radiation, and ion sputtering. Meteoroid impacts of particles smaller than 1 cm, which are important for replenishing the exosphere daily, are not well-studied. We present a systematic investigation of spatial asymmetries in the impactor rate of micrometeoroids over Mercury's surface as a function of planetary true anomaly (TAA). Since the orbit of Mercury is quite eccentric a seasonal variation of the impact rate is to be expected. We find that the source peaks near the planetary equator for most TAA. Contrary to previous assumptions, we find the source to be non-uniform in local time. Only certain regions of Mercury are exposed to dust as a result of the orbital elements of Mercury and of the Main Belt particles (inclination less than 20°). Our results offer important constraints on transport models used for interpreting measurements of this exosphere, but also inform studies of space weathering of Mercury's surface.

  19. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  20. Magnesium-rich Basalts on Mercury

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  1. Global tectonics of Mercury and the moon

    NASA Technical Reports Server (NTRS)

    Cordell, B. M.; Strom, R. G.

    1977-01-01

    Lobate scarps on Mercury have been studied to determine the nature of the surface stress history and implications for the planet's early tectonic history. Morphologic and transection relations indicate that most Mercurian scarps are tectonic in nature and are due to compressive stresses in the surface layer. The azimuthal distribution of lobate-scarp trends is compatible with an early predominantly compressive global stress field due to thermal shrinkage of the planet. Superposition relations indicate that the contractive phase was largely a pre-Caloris process. The effects of stresses due to planetary despinning were either negligible, predate the scarps, or were largely obscured by cratering or volcanism. The tectonic history of Mercury as recorded in the lobate scarps is different from that which caused the system of lineaments on the moon.

  2. Mercury's Surface: Preliminary Description and Interpretation from Mariner 10 Pictures.

    PubMed

    Murray, B C; Belton, M J; Danielson, G E; Davies, M E; Gault, D E; Hapke, B; O'leary, B; Strom, R G; Suomi, V; Trask, N

    1974-07-12

    The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals. PMID:17810511

  3. Discovery of sodium in the atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Potter, A.; Morgan, T.

    1985-08-01

    The spectrum of Mercury at the Fraunhofer sodium D lines shows strong emission features that are attributed to resonant scattering of sunlight from sodium vapor in the atmosphere of the planet. The total column abundance of sodium was estimated to be 8.1×1011 atoms per square centimeter, which corresponds to a surface density at the subsolar point of about 1.5×105 atoms per cubic centimeter. The most abundant atmospheric species found by the Mariner 10 mission to Mercury was helium, with a surface density of 4.5×103 atoms per cubic centimeter. It now appears that sodium vapor is a major constituent of Mercury's atmosphere.

  4. Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures

    USGS Publications Warehouse

    Murray, B.C.; Belton, M.J.S.; Edward, Danielson G.; Davies, M.E.; Gault, D.E.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.

    1974-01-01

    The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.

  5. (abstract) Hermes Global Orbiter: Mission to Mercury

    NASA Technical Reports Server (NTRS)

    Horn, L.; Nelson, R.; Weiss, J.; Smythe, W.; Evans, M.; Gatz, E.; Kuo, S.; Lane, A.; Linick, S.; Lopes-Gautier, R.; Manatt, K.; Martin, W.; Morris, R.; Ocampo, A.; Spradlin, G.; Wallis, B.; Yen, C.; Danielson, G.; Garvin, J.; Guest, J.; Hapke, B.; McClintock, W.; Simmons, K.; Russell, C.; Cruz, M.

    1993-01-01

    The Hermes Global Orbiter is a proposed Discovery-class mission. Hermes will be launched aboard a Delta II rocket in 1999 and will be placed in an elliptical polar orbit about Mercury. Remote sensing measurements of the planet's surface, atmosphere, and magnetosphere will be performed. Key mission goals include mapping the entire surface at 1 km resolution, characterizing the surface composition, texture and topography, searching for water ice at the poles, characterizing the atmosphere, and constraining the interior structure.

  6. Maintaining the NA atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Morgan, T. H.

    1993-02-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  7. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  8. Peeking at the Planets.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2002-01-01

    Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

  9. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  10. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  11. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; Strom, Robert G.; Xiao, Zhiyong; Zuber, Maria T.

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  12. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  13. CME impact on Mercury's sputtered exospheric environment

    NASA Astrophysics Data System (ADS)

    Pfleger, M.; Lichtenegger, H. I. M.; Lammer, H.; Mura, A.; Wurz, P.; Martin-Fernandez, J. A.

    2013-09-01

    Solar wind and magnetospheric plasma precipitation onto the surface of Mercury triggers the formation of exospheric particle populations by sputtering processes. Numerical modeling of Mercury's magnetosphere has shown that the weak intrinsic magnetic field of the planet is sufficient to prevent the equatorial regions from being impacted by solar wind ions during moderate solar wind conditions. However, intense fluxes of protons are expected to hit the auroral regions, giving rise to the release of surface elements at high latitudes by ion sputtering. During high solar wind dynamic pressure conditions in the case of CME events, the solar wind protons will have access to Mercury's entire dayside surface, which may result in a considerable filling of the exosphere by sputtered surface material.

  14. Mercury's global evolution: New views from MESSENGER

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Byrne, P. K.; Denevi, B. W.; Grott, M.; McCoy, T.; Stanley, S.

    2015-12-01

    MESSENGER's exploration of Mercury has revealed the planet's rich and dynamic history and provided new constraints on the processes that control its internal evolution. Mercury's surface records evidence of an extensive geological history. This evidence includes resurfacing by impacts and volcanism prior to the end of the late heavy bombardment (LHB) and a subsequent rapid waning of effusive volcanism. Volcanism is an important indicator of the history of melt production. Thousands of globally distributed, contractional tectonic landforms collectively have accommodated a decrease in Mercury's radius of 5-7 km since the end of the LHB. Such contraction results from planetary cooling and crystallization within Mercury's metallic core. Measurements of surface chemistry have provided constraints on internal radiogenic heat production necessary to understand more fully Mercury's thermal evolution. Elemental abundances also reveal that Mercury is strongly chemically reduced, suggesting that the core's iron is alloyed with silicon as well as sulfur, which constrains the dynamics and crystallization of the metallic core. Magnetometer observations show that Mercury's dynamo-generated, dominantly dipolar field is displaced ~500 km northward along the rotation axis. Low-altitude magnetic field observations late in the mission led to the discovery of crustal magnetization in Mercury's ancient crust, dating to at least 3.7 Ga, which places a new constraint on the timing of the dynamo. Monte Carlo parameterized mantle convection models, constrained by these observations, indicate that for global contraction of 7 km or less, mantle convection persists to the present ~40% of the time, with the likelihood of modern convection decreasing with less global contraction. Slow present cooling in these models indicates that dynamo generation is strongly influenced by both a static layer at the top of the core and convective motions within the core driven by compositional buoyancy.

  15. Theory of Secular Chaos and Mercury's Orbit

    NASA Astrophysics Data System (ADS)

    Lithwick, Yoram; Wu, Yanqin

    2011-09-01

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the "map of the mean momenta"), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ~25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  16. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  17. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  18. Mariner 10 observations of Mercury

    NASA Technical Reports Server (NTRS)

    Dunne, J. A.

    1976-01-01

    The paper reviews Mariner 10 observations of Mercury during the three encounters in March 1974 in a darkside passage at an altitude of 703 km, in September 1974 in a brightside passage at southern latitudes at a distance of some 50,000 km, and in March 1975 in another darkside passage at midnorthern latitudes at a closest approach distance of about 327 km. Evidence for the chemical differentiation of Mercury is found in the morphology and distribution of the smooth plains. The concept of chemical differentiation is shown to be consistent with the observation of global compression in that the crustal shortening observed could readily be explained by a phase change in a large metal-rich core. Extreme ultraviolet observations set an upper limit to the atmosphere at around one trillionth bar, with positive identification of a tenous (10 to the minus 15th bar) He atmosphere. An unexpected finding during the first encounter was the existence of a planet-related magnetic field. The third encounter yielded unequivocal evidence that the field is of internal origin, providing an independent line of evidence that Mercury possesses a large metal-rich core.

  19. Kepler's missing planets

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2013-08-01

    We investigate the distributions of the orbital period ratios of adjacent planets in high-multiplicity Kepler systems (four or more planets) and low-multiplicity systems (two planets). Modelling the low-multiplicity sample as essentially equivalent to the high-multiplicity sample, but with unobserved intermediate planets, we find some evidence for an excess of planet pairs between the 2:1 and 3:1 mean-motion resonances in the low-multiplicity sample. This possible excess may be the result of strong dynamical interactions near these or other resonances or it may be a byproduct of other evolutionary events or processes such as planetary collisions. Three-planet systems show a significant excess of planets near the 2:1 mean-motion resonance that is not as prominent in either of the other samples. This observation may imply a correlation between strong dynamical interactions and observed planet number - perhaps a relationship between resonance pairs and the inclinations or orbital periods of additional planets. The period ratio distributions can also be used to identify targets to search for missing planets in the each of the samples, the presence or absence of which would have strong implications for planet formation and dynamical evolution models.

  20. Planet Demographics from Transits

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    2015-08-01

    From the demographics of planets detected by the Kepler mission, we have learned that there exists approximately one planet per star for planets larger than Earth orbiting inside of 1 AU. We have also learned the relative occurrence of these planets as a function of their orbital periods, sizes, and host star masses and metallicities. In this talk I will review the key statistical findings that the planet size distribution peaks in the range 1-3 times Earth-size, the orbital period distribution is characterized by a power-law cut off at short periods, small planets are more prevalent around small stars, and that approximately 20% of Sun-like stars hosts a planet 1-2 times Earth-size in a habitable zone. Looking forward, I will describe analysis of photometry from the K2 mission that is yielding initial planet discoveries and offering the opportunity to measure planet occurrence in widely separated regions of the galaxy. Finally, I will also discuss recent techniques to discover transiting planets in space-based photometry and to infer planet population properties from the ensemble of detected and non-detected transit signals.

  1. The SARG Planet Search

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Gratton, R.; Endl, M.; Fiorenzano, A. F. Martinez; Barbieri, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Bonavita, M.

    The search for planets in multiple systems allows to improve our knowledge of planet formation and evolution. On one hand, the frequency of planets in binary systems has a strong effect on the global frequency of planets, as more than half of solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On the other hand, the properties of planets in binaries, and their differences with the properties of the planets orbiting single stars, would shed light on the effects caused by the presence of the companion stars. Indeed, the first analysis of the properties of planets in binaries showed the occurrence of some differences with respect to those orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).

  2. Solar wind interaction with the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Milillo, Anna; Radioti, Aikaterini

    2015-09-01

    This issue entitled "Solar wind interaction with the terrestrial planets" follows the recurrent session PS5.1 (Planetary Plasma Physics and Interactions in the Solar System) held at the European Geophysical Union conference. The EGU session hosts original studies on all aspects of planetary plasma physics and interactions in the Solar System. This issue more specifically includes studies presented at several international meetings during the recent years on the physics of magnetospheres, ionospheres, auroras, and also the surface-plasma or atmosphere-plasma interactions, at inner planets such as Mercury, Earth (and Moon), Mars and Venus. The following papers, in fact, cover all of these aspects, and are based on a variety of techniques: space and ground-based observations, numerical modeling and even laboratory measurements.

  3. Wrinkle ridge assemblages on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.

    1988-01-01

    The morphological and dimensional similarities of the structures within the wrinkle ridge assemblages observed on terrestrial planets are investigated, including structures that occur in mare basalts on the moon and in smooth plains on Mars and Mercury. These structures can be classified as either arches or ridges on the basis of morphology, and ridges can be subdivided onto first-, second-, and third-order ridges on the basis of dimensions. Using ridge structures on the Columbia Plateau (U.S.) as analogs, a basis for a structural interpretation of the wrinkle ridge assemblages on the terrestrial planets is established. It is shown that the anticlinal ridges of the Columbia Plateau are appropriate analogs to the first-order ridges, supporting tectonic interpretations for the ridges.

  4. Mercury's Dynamic Magnetosphere: What Have We Learned from MESSENGER?

    NASA Astrophysics Data System (ADS)

    Slavin, James A.

    2016-04-01

    Mercury's magnetosphere is created by the solar wind interaction with its dipolar, spin-axis aligned, northward offset intrinsic magnetic field. Structurally it resembles that of the Earth in many respects, but the magnetic field intensities and plasma densities are all higher at Mercury due to conditions in the inner solar system. Magnetospheric plasma at Mercury appears to be primarily of solar wind origin, i.e. H+ and He++, but with 10% Na+ derived from the exosphere. Solar wind sputtering and other processes promote neutrals from the regolith into the exosphere where they may be ionized and incorporated into the magnetospheric plasma population. At this point in time, about one year after MESSENGER's impact and one year prior to BepiColombo's launch, we review MESSENGER's observations of magnetospheric dynamics and structure. In doing so we will provide our best answers to the following six questions: Question #1: How do magnetosheath conditions at Mercury differ from what is found at the other planets? Question #2: How do conditions in Mercury's magnetosheath contribute to the dynamic nature of Mercury's magnetosphere? How does magnetopause reconnection at Mercury differ from what is seen at Earth? Are flux transfer events (FTEs) a major driver of magnetospheric convection at Mercury? Question #3: Does reconnection ever erode the dayside magnetosphere to the point where the subsolar region of the surface is exposed to direct solar wind impact? To what extent do induction currents driven in Mercury's interior limit the solar wind flux to the surface? Do FTEs contribute significantly to the solar wind flux reaching the surface? Question #4: What effects do heavy planetary ions have on Mercury's magnetosphere? Question #5: Does Mercury's magnetotail store and dissipate magnetic energy in a manner analogous to substorms at Earth? How is the process affected by the lack of an ionosphere and the expected high electrical resistivity of the crust? Question #6: How

  5. Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga

    NASA Astrophysics Data System (ADS)

    Byrne, Paul K.; Ostrach, Lillian R.; Fassett, Caleb I.; Chapman, Clark R.; Denevi, Brett W.; Evans, Alexander J.; Klimczak, Christian; Banks, Maria E.; Head, James W.; Solomon, Sean C.

    2016-07-01

    Crater size-frequency analyses have shown that the largest volcanic plains deposits on Mercury were emplaced around 3.7 Ga, as determined with recent model production function chronologies for impact crater formation on that planet. To test the hypothesis that all major smooth plains on Mercury were emplaced by about that time, we determined crater size-frequency distributions for the nine next-largest deposits, which we interpret also as volcanic. Our crater density measurements are consistent with those of the largest areas of smooth plains on the planet. Model ages based on recent crater production rate estimates for Mercury imply that the main phase of plains volcanism on Mercury had ended by ~3.5 Ga, with only small-scale volcanism enduring beyond that time. Cessation of widespread effusive volcanism is attributable to interior cooling and contraction of the innermost planet.

  6. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  7. On the mechanism of the magnetic dynamo of the planets

    NASA Technical Reports Server (NTRS)

    Dolginov, S. S.

    1977-01-01

    Results of testing the effectiveness of the theory of precessional dynamos in the generation of the magnetic fields of the planets are presented. It is shown that the magnetic state of Earth and of the planets Mars, Jupiter, and Venus can be satisfactorily described by the formula H(i) = H(3) V(i)/V(3) T(3)/T(i) omega(i)/omega(3) sin(alpha 1)/sin(alpha 2) where H, V, T, omega and alpha are the dipole fields, volumes of liquid cores, periods of rotation, rates of precession, and angles between precession vector and angular rotation, respectively, for the planets and earth. The v(i) corresponds to known models of the internal structure. It is shown that the magnetic state of Mercury satisfies this formula if the dynamic flattening of the planet f = .000057-.000083.

  8. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  9. Interaction of solar wind with Mercury and its magnetic field. [as observed by Mariner 10 space probe

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1976-01-01

    A brief review is presented of magnetic field and solar wind electron observations by Mariner 10 spacecraft. The intrinsic magnetic field of the planet Mercury and the implications of such a field for the planetary interior are also discussed.

  10. Exploring the planets with spacecraft - Accomplishments to date

    NASA Technical Reports Server (NTRS)

    Rea, D. G.

    1974-01-01

    A summary of knowledge gained about Venus, Mars, Jupiter, and Mercury via spacecraft. Mariner and Venera probes returned data on Venus' size, atmospheric structure and composition, temperature profiles, and magnetic field. Knowledge of the clouds is still primitive. Mars and Mariner probes (especially Mariner 9) expanded knowledge of the Martian surface, atmospheric structure and dynamics, and magnetic field. Mars is now viewed as a very active planet, with the possibility of life not immediately ruled out. Pioneer 10 returned data on Jovian temperature profiles and magnetic field, Galilean satellite masses, and Io's atmosphere. Mariner 10 added to knowledge of Mercury's surface, magnetic field, atmosphere, and activity.

  11. Near Global Mosaic of Mercury

    NASA Astrophysics Data System (ADS)

    Becker, K. J.; Robinson, M. S.; Becker, T. L.; Weller, L. A.; Turner, S.; Nguyen, L.; Selby, C.; Denevi, B. W.; Murchie, S. L.; McNutt, R. L.; Solomon, S. C.

    2009-12-01

    In 2008 the MESSENGER spacecraft made two close flybys (M1 and M2) of Mercury and imaged about 74% of the planet at a resolution of 1 km per pixel, and at higher resolution for smaller portions of the planet. The Mariner 10 spacecraft imaged about 42% of Mercury’s surface more than 30 years ago. Combining image data collected by the two missions yields coverage of about 83% of Mercury’s surface. MESSENGER will perform its third and final flyby of Mercury (M3) on 29 September 2009. This will yield approximately 86% coverage of Mercury, leaving only the north and south polar regions yet to be imaged by MESSENGER after orbit insertion in March 2011. A new global mosaic of Mercury was constructed using 325 images containing 3566 control points (8110 measures) from M1 and 225 images containing 1465 control points (3506 measures) from M2. The M3 flyby is shifted in subsolar longitude only by 4° from M2, so the added coverage is very small. However, this small slice of Mercury fills a gore in the mosaic between the M1 and M2 data and allows a complete cartographic tie around the equator. We will run a new bundle block adjustment with the additional images acquired from M3. This new edition of the MESSENGER Mercury Dual Imaging System (MDIS) Narrow Angle Camera (NAC) global mosaic of Mercury includes many improvements since the M2 flyby in October 2008. A new distortion model for the NAC camera greatly improves the image-to-image registration. Optical distortion correction is independent of pointing error correction, and both are required for a mosaic of high quality. The new distortion model alone reduced residual pointing errors for both flybys significantly; residual pixel error improved from 0.71 average (3.7 max) to 0.13 average (1.7 max) for M1 and from 0.72 average (4.8 max.) to 0.17 average (3.5 max) for M2. Analysis quantifying pivot motor position has led to development of a new model that improves accuracy of the pivot platform attitude. This model improves

  12. The brightness temperature of Mercury at 150 and 240 GHz

    NASA Astrophysics Data System (ADS)

    Sabbatini, L.; Pizzo, L.; Dall'Oglio, G.

    2011-10-01

    During the Italian Antarctic Expedition 2004/2005 we observed Mercury at 150 and 240 GHz. The observations have been carried out by means of the 2.6 m OASI telescope. By using the responsivity of our detectors, obtained from Venus, the brightness temperature of the planet was derived.

  13. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury. PMID:15813276

  14. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Philips, Roger J.; Prockter, Louise M.; Slavin, James A.; Zuber, M. T.; Finnegan, Eric J.; Grant, David G.

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  15. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Slavin, James A.

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90%coverage and at least 250 m average resolution, a global color image mosaic at better than 90%coverage and at least 1 km average resolution, and global stereo imaging at better than 80%coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles

  16. MESSENGER at Mercury: Early orbital operations

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Phillips, Roger J.; Prockter, Louise M.; Slavin, James A.; Zuber, Maria T.; Finnegan, Eric J.; Grant, David G.; MESSENGER Team

    2014-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  17. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    NASA Technical Reports Server (NTRS)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  18. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets. PMID:19407194

  19. Elevated mercury concentrations in humans of Madre de Dios, Peru.

    PubMed

    Ashe, Katy

    2012-01-01

    The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population. PMID:22438911

  20. Making Mercury's Core with Light Elements

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  1. Water in the terrestrial planets and the moon

    SciTech Connect

    Liu, L.G.

    1988-04-01

    Current thermal models for the terrestrial planets, with the exception of Mercury, point to the probability of a partial melting zone's presence in the mantles of both Venus and Mars, but not in that of the earth; this is attested by the fact that plate tectonics is not apparent on Mars and Venus. In addition, the CO/sub 2/-dominated atmospheres of Venus and Mars may indicate that a large-scale hydrosphere has never (or only very briefly) existed on these planets. Most of the free H/sub 2/O above the water line of Venus and Mars is probably still trapped inside mantle melts. 37 references.

  2. MESSENGER observations of suprathermal electrons in Mercury's magnetosphere

    NASA Astrophysics Data System (ADS)

    Ho, George C.; Starr, Richard D.; Krimigis, Stamatios M.; Vandegriff, Jon D.; Baker, Daniel N.; Gold, Robert E.; Anderson, Brian J.; Korth, Haje; Schriver, David; McNutt, Ralph L.; Solomon, Sean C.

    2016-01-01

    The X-Ray Spectrometer (XRS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft regularly detected fluorescent X-rays near Mercury induced by low-energy (1-10 keV) or suprathermal electrons. We devised an algorithm to select these events from XRS records between April 2011 and March 2015 on the basis of their duration, location, and spectral slope. We identified 3102 events during 3900 orbits around Mercury, sampling all Mercury longitudes multiple times over the 4 year period. These suprathermal electrons were present near the planet at all local times, but the majority were on the nightside of the planet, and a dawn-dusk asymmetry is seen in the data. When the event locations are plotted in a coordinate system based on a simplified magnetic field model, several distinct clusters of events are evident. We infer that all are signatures of accelerated electrons that were injected from Mercury's tail region to form a quasi-trapped electron population at Mercury.

  3. Addendum to: The brightness temperature of Mercury at 150 and 240 GHz. The brightness temperature of Mars at millimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Sabbatini, L.; Pizzo, L.; Dall'Oglio, G.

    2012-12-01

    We present new measurements of Mars at 1.25 and 2mm of wavelength, in addition to the previous ones performed on Mercury and already published in our paper "The brightness temperature of Mercury at 150 and 240GHz". A brief description of the observational strategy is given, and brightness temperature of the planet is reported.

  4. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  5. New Jersey mercury regulations

    SciTech Connect

    Elias, D.F.; Corbin, W.E.

    1996-12-31

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damage growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.

  6. European astronomers observe first evaporating planet

    NASA Astrophysics Data System (ADS)

    2003-03-01

    planet’s upper atmosphere under the searing heat from the star. "The atmosphere is heated, the hydrogen escapes the planet's gravitational pull and is pushed away by the starlight, fanning out in a large tail behind the planet - like that of a comet," says Alain Lecavelier des Etangs, of the Institut d’Astrophysique de Paris. Astronomers estimate the amount of hydrogen gas escaping from HD 209458b to be at least 10 000 tonnes per second, but possibly much more. The planet may therefore already have lost quite a lot of its mass. HD 209458b belongs to a type of extrasolar planet known as ‘hot Jupiters’. These planets orbit precariously close to their stars. They are giant gaseous planets that must have formed in the cold outer reaches of the star system and then spiralled into their close orbits. This new discovery might help explain why ‘hot Jupiters’ so often orbit a few million kilometres from their parent stars. They are not usually found much closer than 7 million kilometres, the distance in the case of HD 209458b. Currently, the closest is 5.7 million kilometres. Hot Jupiters have orbits as brief as 3 days, but no less. Perhaps the evaporation of the atmosphere plays a role in setting an inner boundary for orbits of hot Jupiters. Notes for editors HD 209458b has a diameter 1.3 times that of Jupiter, and two-thirds the mass. Its orbit is one-eighth the size of Mercury's orbit around the Sun. The parent star is similar to our Sun and lies 150 light-years from Earth. It is visible with binoculars as a seventh magnitude star in the constellation of Pegasus. In 1999, this star suddenly entered the astronomical Hall of Fame when the extrasolar planet HD 209458b passed in front of it and partly eclipsed it. This was the first confirmed transiting extrasolar planet ever discovered. In 2001, Hubble detected the element sodium in the lower part of HD 209458b’s atmosphere, the first signature of an atmosphere on any extrasolar planet. The team is composed of A

  7. March of the Planets

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2007-01-01

    The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

  8. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  9. Name That Planet!

    ERIC Educational Resources Information Center

    Beck, Judy; Rust, Cindy

    2002-01-01

    Presents an activity in which students in groups explore one planet in the solar system and present their findings to the whole class. Focuses on the planet's location in the solar system, geological features, rate of revolutions, and calendar year. (YDS)

  10. Planets in Transit V Passages of Discovery

    NASA Astrophysics Data System (ADS)

    Castellano, T. P.

    2003-05-01

    Eclipses of the Sun have long influenced culture, history, and science. The analogous but much more subtle phenomena of a transit of the Sun by Mercury was first predicted by Johannes Kepler. Soon, predictions of transits of Venus inspired bold expeditions to better understand the scale of our solar system. These passages of discovery sometimes succeeded scientifically but always captured the public imagination and played an unexpected role in history. The possibility of detecting planets outside the solar system by the transit method was first outlined by Otto Struve in 1952. Early inquiries usually assumed that extrasolar planetary systems would have a distribution of planetary radii and orbital sizes like the solar system. The detection of transits from the ground in such systems would be daunting. The recent, unexpected discovery of a class of extrasolar planets (by the radial velocity technique) with orbital periods less than a week and masses near to the planet Jupiter has resulted in a resurgence of interest in the transit method. These so called "hot Jupiters", can produce transits that are likely enough, frequent enough, the transit method. These so called "hot Jupiters", can produce transits that are likely enough, frequent enough, and deep enough that ground-based transit searches can be successful. In November 1999, a planet orbiting the star HD 209458 was found to transit, and many measurements of the transit have since been made that challenge formation and evolution theories. Numerous ground based searches for transits are now underway. Several planned high precision space-based missions designed to detect transits of earth-sized planets, also have the potential to detect transits of hundreds of "hot Jupiters". These efforts and the upcoming transit of the Sun by Venus on June 8, 2004 present an opportunity for transits to once again capture the public imagination and perhaps play a role in history.

  11. Laser altimeter observations from MESSENGER's first Mercury flyby.

    PubMed

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-01

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales. PMID:18599773

  12. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  13. Mercury's weak magnetic field: A result of magnetospheric feedback?

    NASA Astrophysics Data System (ADS)

    Gómez-Pérez, Natalia; Solomon, Sean C.

    2010-10-01

    The internal magnetic field of Mercury is anomalously weak compared with the fields of other solar system dynamos. Here we investigate the effect that magnetospheric currents may have on the internal dynamo process. Although strong dipolar dynamos are not markedly affected by such magnetospheric currents, a dynamo in a weak-dipole state can be stabilized in such a configuration by magnetospheric feedback. We suggest that Mercury's core dynamo was stabilized in a weak-field state early in Mercury's history, when the solar wind was much stronger than today, and has been maintained in that state to the present by magnetospheric feedback. A prediction of this scenario is that secular variation should occur more rapidly for Mercury's internal field than would be expected for some other models for the planet's weak field.

  14. Formation of giant planets

    NASA Astrophysics Data System (ADS)

    Magni, G.; Coradini, A.

    2003-04-01

    In this presentation we address the problem of the formation of giant planets and their regular satellites. We study in particular the problem of formation of the Jupiter System comparing the results of the model with the present characteristics of the system, in order to identify what are those better represented by our approach. In fact here, using a 3-D hydro-dynamical code, we study the modalities of gas accretion onto a solid core, believed to be the seed from which Jupiter started. To do that we have modelled three main regions: the central planet, a turbulent accretion disk surrounding it and an extended region from which the gas is collected. In the extended region we treat the gas as a frictionless fluid. Our main goal is to identify what are the characteristics of the planet during its growth and the physical parameters affecting its growth at the expenses of the nebular gas present in the feeding zone. Moreover we want to understand what are the thermodynamical parameters characterizing the gas captured by the planet and swirling around it. Finally, we check if a disk can be formed in prograde rotation around the planet and if this disk can survive the final phases of the planet formation. Due to the interaction between the accreting planet and the disk it has been necessary to develop a complete model of the Jupiter’s structure. In fact the radiation emitted by the growing planet heats up the surrounding gas. In turn the planet’s thermodynamic structure depend on the mass accretion rate onto it. When the accretion is rapid, shock waves in the gas are formed close to the planet. This region cannot be safely treated by a numerical code; for this reason we have developed a semi-analytically model of a a turbulent accretion disk to be considered as transition between the planet and the surrounding disk.

  15. The Soviet-American Conference on Cosmochemistry of the Moon and Planets, Part 1

    NASA Technical Reports Server (NTRS)

    Pomeroy, J. H. (Editor); Hubbard, N. J. (Editor)

    1977-01-01

    The basic goal of the conference was consideration of the origin of the planets of the solar system, based on the physical and chemical data obtained by study of the material of the moon and planets. Papers at the conference were presented in the following sessions: (1) Differentiation of the material of the moon and planets; (2) The thermal history of the moon; (3) Lunar gravitation and magnetism; (4) Chronology of the moon, planets, and meteorites; (5) The role of exogenic factors in the formation of the lunar surface; (6) Cosmochemical hypotheses about the origin and evolution of the moon and planets; and (7) New data about the planets Mercury, Venus, Mars, and Jupiter.

  16. Changing Perspectives on Mercury and the Moon

    NASA Astrophysics Data System (ADS)

    Denevi, Brett W.

    2015-11-01

    Airless, cratered, and not so different in size, the Moon and Mercury form a natural pair in the inner Solar System. For decades after the 1974 and 1975 Mariner 10 flybys of Mercury, with little compositional information, no concrete evidence for volcanism, and images of less than half of the planet, it was thought that Mercury’s surface may be similar to the lunar highlands: an ancient anorthositic flotation crust subsequently shaped mainly by impact cratering. However, observations from the recently completed MESSENGER mission to Mercury have upended our view of the innermost planet, revealing, for example, a crust that may be rich in graphite and that has been extensively resurfaced by volcanic activity, and geologic activity that may continue today to produce enigmatic “hollows” - a crust very different from that of the Moon. Meanwhile, the Moon has undergone its own revolution, as data from recent spacecraft such as the Lunar Reconnaissance Orbiter reveal sites of silicic volcanism indicative of complex differentiation in the mantle, tectonic activity that may be ongoing, recent volcanic activity that alters the paradigm that volcanism died on the Moon over a billion years ago, and evidence that the early chronology of the inner Solar System may not be as well known as once thought. As our views of these two bodies evolve, a new understanding of their differences informs our knowledge of the variety of processes and styles of planetary evolution, and their similarities point to commonalities among all airless bodies.

  17. Bottom-up Crystallization of Mercury's Core

    NASA Astrophysics Data System (ADS)

    Edgington, A.; Vocadlo, L.; Stixrude, L. P.; Wood, I. G.

    2014-12-01

    Knowledge of the composition, structure and physical properties of the materials in a planet's interior is fundamental to understanding the evolution of the planet, and the environment from which it formed. Using ab-initio molecular dynamics we have studied the equation of state and thermodynamic properties of pure liquid iron at the conditions of Mercury's deep interior. This work has paid particular attention to the effects of magnetism on the simulations, as changes in the magnetic moments of the atoms may affect the physical properties of iron. Initial results suggest a very gradual high to low spin transition in pure liquid iron, which is expected to remain predominantly in the high spin state throughout the conditions of Mercury's core. We have determined thermodynamic properties such as the thermal expansion, Grüneisen parameter and constant volume specific heat directly from the calculations, such that we have also determined the adiabatic temperature gradient of pure liquid iron. This has been found to be lower than published melting curves [1,2] of iron suggesting bottom up crystallization in Mercury's core. References: [1] Williams et al. (1987) Science, 10.1126/science.236.4798.181 [2] Alfè et al. (1999) Nature, 401: 462-464, 10.1038/46758

  18. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  19. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  20. MERCURY IN THE ENVIRONMENT

    EPA Science Inventory

    Mercury is released from a variety of sources and exhibits a complicated chemistry. According to the Mercury Study Report to Congress, mercury fluxes and budgets in water, soil, and other media have increased by a factor of two to five over pre-industrial levels. The primary expo...

  1. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. PMID:25953822

  2. Mercury's rotational state from combined MESSENGER laser altimeter and image data

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  3. Polygonal Craters on Dwarf-Planet Ceres

    NASA Astrophysics Data System (ADS)

    Otto, K. A.; Jaumann, R.; Krohn, K.; Buczkowski, D. L.; von der Gathen, I.; Kersten, E.; Mest, S. C.; Preusker, F.; Roatsch, T.; Schenk, P. M.; Schröder, S.; Schulzeck, F.; Scully, J. E. C.; Stepahn, K.; Wagner, R.; Williams, D. A.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    With approximately 950 km diameter and a mass of #1/3 of the total mass of the asteroid belt, (1) Ceres is the largest and most massive object in the Main Asteroid Belt. As an intact proto-planet, Ceres is key to understanding the origin and evolution of the terrestrialplanets [1]. In particular, the role of water during planet formation is of interest, because the differentiated dwarf-planet is thought to possess a water rich mantle overlying a rocky core [2]. The Dawn space craft arrived at Ceres in March this year after completing its mission at (4) Vesta. At Ceres, the on-board Framing Camera (FC) collected image data which revealed a large variety of impact crater morphologies including polygonal craters (Figure 1). Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material. Simple polygonal craters develop during the excavation stage when the excavation flow propagates faster along preexisting fractures [3, 5]. Complex polygonal craters adopt their shape during the modification stage when slumping along fractures is favoured [3]. Polygonal craters are known from a variety of planetary bodies including Earth [e.g. 4], the Moon [e.g. 5], Mars [e.g. 6], Mercury [e.g. 7], Venus [e.g. 8] and outer Solar System icy satellites [e.g. 9].

  4. Tectonic evolution of the terrestrial planets.

    PubMed

    Head, J W; Solomon, S C

    1981-07-01

    The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style. PMID:17741171

  5. Hazards to Planet Formation

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2001-05-01

    The Orion Nebula provides a remarkable window on the first few million years in the lives of typical young stars and planetary systems. HST has demonstrated that most young stars in the Nebula are surrounded by circumstellar disks (the so-called `proplyds'). While these observations show that planet forming environments may be common, they also demonstrate that Orion's disks are being destroyed by intense UV radiation fields. `Gravel' sufficiently large to resist photo-erosion (meter scale solids or ices) may lock-up sufficient material to eventually build rocky planets. Indeed, there is evidence for large solids in some proplyds. But, the hydrogen and helium needed for the formation of giant planets will be removed. To form in Orion-like environments, giant planets must be assembled promptly prior to UV exposure. Even rocky planets may not form if the photoionized disk corona causes surviving large particles in the disk to spiral into the central star. Thus, nearby massive stars pose severe hazards to planet formation. Star counts indicate that most stars form in Orion-like environments. Only about 10% of young stars are born in shielded environments such as the Taurus or L1641 clouds where disks may escape photo-erosion. In dark clouds, the majority of stars (> 80%) form in non-hierarchal multiple star systems where close encounters with sibling stars can destroy disks and eject young planets. Thus, most stars may never develop planetary systems. These considerations indicate that extra-Solar planets may be rare, contrary to the popular view. These conclusions are consistent with the recent discoveries of extra-Solar planets around a few percent of single stars.

  6. The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; al., e

    2006-05-02

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10{sup -7} to 10{sup -8}, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  7. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Palmer, David; Doyon, Rene; Gavel, Don; Larkin, James; Oppenheimer, Ben; Saddlemyer, Leslie; Wallace, J. Kent; Bauman, Brian; Evans, Julia; Erikson, Darren; Morzinski, Katie; Phillion, Donald; Poyneer, Lisa; Sivaramakrishnan, Anand; Soummer, Remi; Thibault, Simon; Veran, Jean-Pierre

    2006-06-01

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10 -7 to 10 -8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  8. Planet formation and searches

    NASA Astrophysics Data System (ADS)

    Montgomery, Ryan Michael

    2009-08-01

    This thesis explores the possibilities for discovery of terrestrial-mass planets in the habitable zones of their host stars. Towards this aim, we present the results of three projects and discuss another two preliminary studies of further explorations. In so doing, we explore a fairly comprehensive range of possibilities regarding the formation and detection of terrestrial- mass planets in the habitable zone. We first study the potential for terrestrial planets to form in situ in and around the habitable zones of M-dwarf stars. We proceed to explore the feasibility of searches for these planets using the transit method via Monte- Carlo simulations. We find that M-dwarfs pose an interesting challenge for study: being inherently dim, widely spread on the sky, and photometrically variable. We present results of simulated ground-based transit search campaigns as well as simulated searches from a modest satellite mission. Our second project is a straightforward extension of the previous study: a collaborative effort to search for transit signals around the nearest M-dwarf: Proxima Centauri. We describe our observations as well as the Monte-Carlo analysis used to place constraints on the possible planetary radii and periods. Our third project is a search for transiting extra-solar Jovian planets using the Rossiter-McLaughlin effect. We search through the private Keck radial- velocity datasets for undiscovered Rossiter-McLaughlin signals. We present our results in the form of both strong null-result datasets as well as potential transiting systems. We then briefly analyze these larger Jovian planets for potential to harbor potentially habitable terrestrial satellites. Our final preliminary analysis looks into the potential for the Large Synoptic Survey Telescope to detect transiting Neptune-mass planets orbiting M-dwarfs which could then lead to terrestrial-mass planet detections. The sum of these efforts is a comprehensive investigation into the likelihood and

  9. Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hahn, Joseph M.

    2015-01-01

    Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.

  10. The physical characteristics of surface Earth-like planets, dwarf and small (asteroids) planets, and their companions, according to distance studies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2014-01-01

    The history of exploration and cosmogony of Solar System bodies, the current state of the planetary cosmogony, the process of formation planets and their satellites; the features of the internal structure of terrestrial planets and of the Moon, magnetic fields of the terrestrial planets, satellites and asteroids; the general question of forming of diffusely reflected radiation of rough surfaces, lighting conditions, the parameters of reflected radiation fields (photometric, polarization and thermal properties), radar observations was considered. Given the main results of the study of the Moon, Earth-like planets (Mars, Mercury, Venus) dwarf and small (asteroids) planets Publication is targeted for teachers of higher educational institutions, students and graduate students and specialists who specialize in the study of physical methods, experimental physics and solar system bodies