Sample records for mercury target systems

  1. Mercury Handling for the Target System for a Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Mcdonald, K; Kirk, H.

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less

  2. Conceptual studies for a mercury target circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less

  3. Mercury target R&D for the Oak Ridge spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.R.; DiStefano, J.; Farrell, K.

    1996-06-01

    The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of themore » challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.« less

  4. Optical diagnostics of mercury jet for an intense proton target.

    PubMed

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  5. Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Wendel, Mark W; Felde, David K

    2010-01-01

    Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incidentmore » proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.« less

  6. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  7. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  8. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  9. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  10. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  11. [Amalgam. IV. Metabolism of mercury].

    PubMed

    Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P

    1993-04-01

    After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.

  12. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  13. Optimization study on structural analyses for the J-PARC mercury target vessel

    NASA Astrophysics Data System (ADS)

    Guan, Wenhai; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Takada, Hiroshi; Futakawa, Masatoshi

    2018-06-01

    The spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC) mercury target vessel is used for various materials science studies, work is underway to achieve stable operation at 1 MW. This is very important for enhancing the structural integrity and durability of the target vessel, which is being developed for 1 MW operation. In the present study, to reduce thermal stress and relax stress concentrations more effectively in the existing target vessel in J-PARC, an optimization approach called the Taguchi method (TM) is applied to thermo-mechanical analysis. The ribs and their relative parameters, as well as the thickness of the mercury vessel and shrouds, were selected as important design parameters for this investigation. According to the analytical results of 18 model types designed using the TM, the optimal design was determined. It is characterized by discrete ribs and a thicker vessel wall than the current design. The maximum thermal stresses in the mercury vessel and the outer shroud were reduced by 14% and 15%, respectively. Furthermore, it was indicated that variations in rib width, left/right rib intervals, and shroud thickness could influence the maximum thermal stress performance. It is therefore concluded that the TM was useful for optimizing the structure of the target vessel and to reduce the thermal stress in a small number of calculation cases.

  14. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  15. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  16. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less

  17. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns ofmore » mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.« less

  18. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  19. Mercury contamination study for flight system safety

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  20. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MWmore » and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.« less

  1. Data quality through a web-based QA/QC system: implementation for atmospheric mercury data from the global mercury observation system.

    PubMed

    D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola

    2015-08-01

    The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.

  2. Transformation of mercury speciation through the SCR system in power plants.

    PubMed

    Yang, Hong-min; Pan, Wei-ping

    2007-01-01

    Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.

  3. Biosequence Similarity Search on the Mercury System

    PubMed Central

    Krishnamurthy, Praveen; Buhler, Jeremy; Chamberlain, Roger; Franklin, Mark; Gyang, Kwame; Jacob, Arpith; Lancaster, Joseph

    2007-01-01

    Biosequence similarity search is an important application in modern molecular biology. Search algorithms aim to identify sets of sequences whose extensional similarity suggests a common evolutionary origin or function. The most widely used similarity search tool for biosequences is BLAST, a program designed to compare query sequences to a database. Here, we present the design of BLASTN, the version of BLAST that searches DNA sequences, on the Mercury system, an architecture that supports high-volume, high-throughput data movement off a data store and into reconfigurable hardware. An important component of application deployment on the Mercury system is the functional decomposition of the application onto both the reconfigurable hardware and the traditional processor. Both the Mercury BLASTN application design and its performance analysis are described. PMID:18846267

  4. Mercury- Distributed Metadata Management, Data Discovery and Access System

    NASA Astrophysics Data System (ADS)

    Palanisamy, Giri; Wilson, Bruce E.; Devarakonda, Ranjeet; Green, James M.

    2007-12-01

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source and ORNL- developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports various metadata standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115 (under development). Mercury provides a single portal to information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury supports various projects including: ORNL DAAC, NBII, DADDI, LBA, NARSTO, CDIAC, OCEAN, I3N, IAI, ESIP and ARM. The new Mercury system is based on a Service Oriented Architecture and supports various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. This system also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.

  5. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS

    EPA Science Inventory

    CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...

  6. Happy Little Crater on Mercury

    NASA Image and Video Library

    2017-12-08

    It looks like even the craters on Mercury have heard of Bob Ross! The central peaks of this complex crater have formed in such a way that it resembles a smiling face. This image is oriented so north is toward the bottom. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Federal Data Repository Research: Recent Developments in Mercury Search System Architecture

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.

    2015-12-01

    New data intensive project initiatives needs new generation data system architecture. This presentation will discuss the recent developments in Mercury System [1] including adoption, challenges, and future efforts to handle such data intensive projects. Mercury is a combination of three main tools (i) Data/Metadata registration Tool (Online Metadata Editor): The new Online Metadata Editor (OME) is a web-based tool to help document the scientific data in a well-structured, popular scientific metadata formats. (ii) Search and Visualization Tool: Provides a single portal to information contained in disparate data management systems. It facilitates distributed metadata management, data discovery, and various visuzalization capabilities. (iii) Data Citation Tool: In collaboration with Department of Energy's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service. Mercury is a open source system, developed and managed at Oak Ridge National Laboratory and is currently being funded by three federal agencies, including NASA, USGS and DOE. It provides access to millions of bio-geo-chemical and ecological data; 30,000 scientists use it each month. Some recent data intensive projects that are using Mercury tool: USGS Science Data Catalog (http://data.usgs.gov/), Next-Generation Ecosystem Experiments (http://ngee-arctic.ornl.gov/), Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/), Oak Ridge National Laboratory - Distributed Active Archive Center (http://daac.ornl.gov), SoilSCAPE (http://mercury.ornl.gov/soilscape). References: [1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  8. MESSENGER View of Mercury's Caloris Basin

    NASA Image and Video Library

    2017-12-08

    NASA image acquired October 28, 2011 This stunning, and as of yet unnamed, crater lies within the Caloris basin. Its floor provides another example of the beautiful "hollows" found on Mercury and has an etched appearance similar to that found in the crater Tyagaraja. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. An integrated systems-based approach to mercury research and technology development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Brooks, Scott C; Mathews, Teresa J

    A 3-year strategic planning process was undertaken in Oak Ridge, Tennessee, to develop a research and technology development approach that can help guide mercury remediation in East Fork Poplar Creek (EFPC). Mercury remediation is a high priority for the US Department of Energy s (DOE s) Oak Ridge Office of Environmental Management because of large historical losses of mercury to the environment at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the stream environment, the success of conventional options for mercury remediation in the downstream sectionsmore » of EFPC is uncertain. The overall Oak Ridge mercury remediation strategy focuses on mercury treatment actions at Y-12 in the short-term and research and technology development to evaluate longer-term solutions in the downstream environment. The technology development strategy is consistent with a phased, adaptive management paradigm and DOE s Technology Readiness Level guidelines. That is, early evaluation includes literature review, site characterization, and small-scale studies of a broad number of potential technologies. As more information is gathered, technologies that may have the most promise and potential remediation benefit will be chosen for more extensive and larger-scale pilot testing before being considered for remedial implementation. Field and laboratory research in EFPC is providing an improved level of understanding of mercury transport and fate processes in EFPC that will inform the development of site-specific remedial technologies. Technology development has centered on developing strategies that can mitigate the primary factors affecting mercury risks in the stream: (1) the amount of inorganic mercury available to the stream system, (2) the conversion of inorganic mercury to methylmercury, and (3) the bioaccumulation of methylmercury through the food web. Given the downstream complexities and

  10. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  11. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems

    USGS Publications Warehouse

    Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.

    2011-01-01

    Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., <4 nmol Hg (mg DOM)−1) by combining solid phase extraction using C18 resin with extended X-ray absorption fine structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg–1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form

  12. Project Mercury - Monument

    NASA Image and Video Library

    1966-11-11

    S66-59963 (9 Nov. 1966) --- Monument at Pad 14 honoring Project Mercury. The Arabic number seven represents the seven original astronauts. The other figure is the astronomical symbol of the Planet Mercury. In background is the Gemini-12 Agena Target Docking Vehicle atop its Atlas launch vehicle at Cape Kennedy, Florida. Photo credit: NASA

  13. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  14. Field-Aligned Current Systems at Mercury

    NASA Astrophysics Data System (ADS)

    Heyner, Daniel; Exner, Willi

    2017-04-01

    Mercury exhibits a very dynamic magnetosphere, which is partially due to strong dayside reconnection and fast magnetospheric convection. It has been shown that dayside reconnection occurs even on low magnetic shear angles across the magnetopause. This drives quasi-steady region 1 field-aligned currents (FAC) that are observable in in-situ MESSENGER data. Here, the structure of the Hermean FAC-system is discussed and compared to the terrestrial counterpart. Due to the lack of a significant ionosphere at Mercury, it has to be examined how much of the poloidal FAC is reflected back to the magnetosphere, closed via toroidal currents in the planetary interior or via Pedersen currents in the tenuous exosphere. This investigation gives insights into the planetary conductivity structure as well as the exospheric plasma densities. Furthermore, it will be examined how much the only partially developed ring current at Mercury produces possible region 2 FAC signatures. We conclude with requirements to simulations that are needed to forecast the FAC structure on the southern hemisphere that will be closely studied with the upcoming BepiColombo mission.

  15. 117.6-kilobit telemetry from Mercury in-flight system analysis

    NASA Technical Reports Server (NTRS)

    Evanchuk, V. L.

    1974-01-01

    This paper discusses very specifically the mode of the Mariner Venus/Mercury 1973 (MVM'73) telecommunications system in the interplexed dual channel 117.6 kilobits per second (kbps) and 2.45 kbps telemetry. This mode, originally designed for only Venus encounter, was also used at Mercury despite significantly less performance margin. Detailed analysis and careful measurement of system performance before and during flight operations allowed critical operational decisions, which made maximum use of the system capabilities.

  16. Global Mercury Observatory System (GMOS): measurements of atmospheric mercury in Celestun, Yucatan, Mexico during 2012.

    PubMed

    Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio

    2016-09-01

    Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.

  17. Mercury study report to Congress. Volume 5. Health effects of mercury and mercury compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett-Sipple, B.; Swartout, J.; Schoeny, R.

    1997-12-01

    This volume summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. Reference doses are calculated for inorganic and methylmercury; a reference concentrations for inhaled elemental mercury is provided. A quantitative analysis of factors contributing to variability and uncertainty inmore » the methylmercury RfD is provided in an appendix. Interactions and sensitive populations are described. the draft volume assesses ongoing research and research needs to reduce uncertainty surrounding adverse human health consequences of methylmercury exposure.« less

  18. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  19. Using Wet-FGD systems for mercury removal.

    PubMed

    Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G

    2005-09-01

    A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.

  20. Role for apolipoprotein E in neurodegeneration and mercury intoxication.

    PubMed

    Arrifano, Gabriela de Paula Fonseca; de Oliveira, Marcus Augusto; Souza-Monteiro, Jose Rogerio; Paraense, Ricardo Oliveira; Ribeiro-Dos-Santos, Andrea; Vieira, Jose Richardo Dos Santos; Silva, Artur Luis da Costa; Macchi, Barbarella de Matos; do Nascimento, Jose Luiz Martins; Burbano, Rommel Mario Rodriguez; Crespo-Lopez, Maria Elena

    2018-01-01

    Mercury intoxication is a serious public health problem and a worldwide concern. The Minamata Convention on Mercury has been signed by 128 countries and endorsed by the World Health Organization with the recommendation of promoting the management of epidemiological information. The Central Nervous System is the main target organ for mercury. Symptoms of intoxication include altered motor coordination, visual and tactile dysfunction and paralysis, caused by neurodegeneration with a key role for oxidative damage. Recently, some studies have demonstrated a correlation between mercury intoxication and isoforms of apolipoprotein E (ApoE). In this review, epidemiological data and hypotheses about the possible molecular mechanisms underlying the association between ApoE and mercury intoxication are assessed. Based on the evidence and the neuropathological changes that the presence of ApoE4 and mercury neurotoxicity have in common, we propose a convergent action of both factors. ApoE4 seems to potentiate the damage caused by mercury. Increased knowledge of this interaction using epidemiological and pre-clinical studies is essential to improve prevention strategies to adequately manage intoxicated patients.

  1. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury.

    PubMed

    Branco, Vasco; Coppo, Lucia; Solá, Susana; Lu, Jun; Rodrigues, Cecília M P; Holmgren, Arne; Carvalho, Cristina

    2017-10-01

    Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg 2+ ), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells

  2. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felde, David K.; Crye, Jason Michael; Wendel, Mark W.

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  3. Partitioning of mercury in aqueous biphasic systems and on ABEC resins.

    PubMed

    Rogers, R D; Griffin, S T

    1998-06-26

    Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl- mercury will adsorb to the resin from (NH4)2SO4 solutions with retention following the same order. The onset of mercury extraction or adsorption is different for the three extractants, occurring at the lowest extractant concentration for I-, followed by Br-, and then Cl-. Fluoride does not extract mercury. Extraction or adsorption of mercury is improved at the lowest halide concentrations in the presence of sulfuric acid. The addition of sulfuric acid to (NH4)2SO4 solution results in ABEC retention of mercury even in the absence of halide extractant.

  4. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires.

    PubMed

    Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan

    2016-05-01

    Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  6. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90%coverage and at least 250 m average resolution, a global color image mosaic at better than 90%coverage and at least 1 km average resolution, and global stereo imaging at better than 80%coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles

  7. Mercury sorbent delivery system for flue gas

    DOEpatents

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  8. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  9. Mercury study report to Congress. Volume 4. Health effects of mercury and mercury compounds. Sab review draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeny, R.

    1996-06-01

    This volume of the draft Mercury Study Report to Congress summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. PBPK models are described, but not applied in risk assessment. Reference doses are calculated for inorganic and methylmercury; a referencemore » concentration for inhaled elemental mercury is provided. A quantitiative analysis of factors contributing to variability and uncertainty in the methylmercury RfD is provided in an appendix. Interations and sensitive populations are described.« less

  10. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase asmore » much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.« less

  11. Manual for the Construction of a Mercury Capture System for Use in Gold Shops

    EPA Pesticide Factsheets

    Download a manual for the construction of a mercury capture system for use in gold shops with detailed information for constructing a device to capture mercury aerosol particles emitted from gold shops that process gold dore’, a gold-mercury amalgam.

  12. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  13. A fluidized bed desorption system for recycling mercury from contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harriss, C.; Baum, D.L. Jr.; Read, W.L.

    1995-12-31

    The land disposal restrictions effective for wastes containing mercury have created a need for technologies that can meet the best demonstrated available technologies (BDAT) treatment standards. In the past, technologies for mercury were in short supply. In addition to the already existing short supply, the natural gas industry has begun to remediate the numerous metering sites that have been contaminated with mercury from manometers installed along their pipelines. To meet the need for a mercury technology, Philip Environmental Services Corporation (Philip) evaluated and tested two different technologies capable of recovering mercury from contaminated soil. Philip initially performed some tests usingmore » gravitational methods followed by pilot-scale testing using a fluidized bed desorber. As a result of the testing, Philip constructed a full-scale fluidized bed system which can recover mercury from contaminated soil and debris. The name of Philip`s technology is the Solvating Vapor Pressure Process (SVPP). The main purpose of this paper is to discuss the results of the SVPP pilot testing and describe the process.« less

  14. Advances in understanding the renal transport and toxicity of mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalups, R.K.; Lash, L.H.

    1994-01-01

    As a result of industrialization and changes in the environment during the twentieth century, humans and animals are exposed to numerous chemical forms of mercury, including elemental mercury vapor (Hg[sup 0]), inorganic mercurous (Hg[sup +]) and mercuric (Hg[sup 2+]) compounds, and organic mercuric (R-Hg[sup +] or R-Hg-R; where R represents any organic ligand) compounds. The risk of exposure and subsequent intoxication is of increasing concern because of the steadily increasing deposition of mercury in the environment (Fitzgerald Clarkson, 1991). All forms of mercury have nephrotoxic effects, although disposition and toxicity of mercury in tissues can vary depending on the chemicalmore » form of mercury. For example, the initial toxic effects of both elemental mercury and organic forms of mercury are observed in the nervous system. This is due to their lipophilicity, which allows them to cross the blood-brain barrier. At later times, hepatotoxicity and nephrotoxicity can develop. With inorganic mercurous or mercuric salts, the most prominent effect is nephrotoxicity. Until recently, little was known about the mechanisms involved in the nephropathy induced by mercury. The purpose of this article is to review recent data on the intrarenal accumulation and disposition, nephrotoxicity, and target site specificity of mercury, and factors that modify or alter renal injury induced by mercury. 170 refs., 7 figs.« less

  15. Mineralogical Associations of Mercury in FGD Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, William Lee; Schroeder, Karl; Beatty, Candace L. Kairies

    2012-06-21

    The natural mode of retention of mercury in flue gas desulfurization gypsum used in wallboard manufacturing has been investigated using a series of phase-targeted reagents. Results indicate that mercury was associated with two distinct phases.

  16. Demonstration of Mer-Cure Technology for Enhanced Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Marion; Dave O'Neill; Kevin Taugher

    2008-06-01

    Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target ofmore » $$60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $$0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.« less

  17. The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.

    2005-12-01

    The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.

  18. Method and apparatus for monitoring the flow of mercury in a system

    DOEpatents

    Grossman, Mark W.

    1987-01-01

    An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

  19. Method and apparatus for monitoring the flow of mercury in a system

    DOEpatents

    Grossman, M.W.

    1987-12-15

    An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

  20. Mercury Exposure and Heart Diseases

    PubMed Central

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  1. Mercury Exposure and Heart Diseases.

    PubMed

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  2. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.

    2016-10-01

    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  3. Environmental Mercury and Its Toxic Effects

    PubMed Central

    Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris

    2014-01-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  4. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  5. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    PubMed

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Mercury poisoning in wildlife

    USGS Publications Warehouse

    Heinz, G.H.; Fairbrother, Anne; Locke, Louis N.; Hoff, Gerald L.

    1996-01-01

    Mercury is an intriguing contaminant because it has complex chemical properties, a wide range of harmful effects, and an infinite persistence in the environment. Die-offs of wildlife due to mercury have occurred in many countries, especially before mercury seed dressings were banned. Today, most mercury problems are associated with aquatic environments. Methylmercury, the most toxic chemical form, attacks many organ systems, but damage to the central nervous system is most severe. Harmful wet-weight concentrations of mercury, as methylmercury, in the tissues of adult birds and mammals range from about 8-30 ppm in the brain, 20-60 ppm in liver, 20-60 ppm in kidney, and 15-30 ppm in muscle. Young animals may be more sensitive.

  7. Space food systems - Mercury through Apollo.

    NASA Technical Reports Server (NTRS)

    Roth, N. G.; Smith, M. C.

    1972-01-01

    Major achievements which characterized the development of food systems used by American astronauts in manned space flight are reviewed throughout a period spanning the Mercury, Gemini, and Apollo programs up to and including the Apollo 11 lunar landing mission. Lists of food types are accompanied by information on packaging, storage, preparation, consumption, and quality of particular products. Experience gained from development efforts for the Manned Orbiting Laboratory Program is also discussed.

  8. Unified Science Information Model for SoilSCAPE using the Mercury Metadata Search System

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Lu, Kefa; Palanisamy, Giri; Cook, Robert; Santhana Vannan, Suresh; Moghaddam, Mahta Clewley, Dan; Silva, Agnelo; Akbar, Ruzbeh

    2013-12-01

    SoilSCAPE (Soil moisture Sensing Controller And oPtimal Estimator) introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective is to enable a guided and adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of spaceborne soil moisture sensors such as the Soil Moisture Active Passive (SMAP) mission. This work is being carried out at the University of Michigan, the Massachusetts Institute of Technology, University of Southern California, and Oak Ridge National Laboratory. At Oak Ridge National Laboratory we are using Mercury metadata search system [1] for building a Unified Information System for the SoilSCAPE project. This unified portal primarily comprises three key pieces: Distributed Search/Discovery; Data Collections and Integration; and Data Dissemination. Mercury, a Federally funded software for metadata harvesting, indexing, and searching would be used for this module. Soil moisture data sources identified as part of this activity such as SoilSCAPE and FLUXNET (in-situ sensors), AirMOSS (airborne retrieval), SMAP (spaceborne retrieval), and are being indexed and maintained by Mercury. Mercury would be the central repository of data sources for cal/val for soil moisture studies and would provide a mechanism to identify additional data sources. Relevant metadata from existing inventories such as ORNL DAAC, USGS Clearinghouse, ARM, NASA ECHO, GCMD etc. would be brought in to this soil-moisture data search/discovery module. The SoilSCAPE [2] metadata records will also be published in broader metadata repositories such as GCMD, data.gov. Mercury can be configured to provide a single portal to soil moisture information contained in disparate data management systems located anywhere on the Internet. Mercury is able to extract, metadata systematically from HTML pages or XML files using a variety of

  9. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  10. A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening.

    PubMed

    Qing, Zhihe; Zhu, Lixuan; Li, Xiaoxuan; Yang, Sheng; Zou, Zhen; Guo, Jingru; Cao, Zhong; Yang, Ronghua

    2017-10-17

    As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg 2+ ) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg 2+ detection was carried out based on EBCB and Hg 2+ -mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.

  11. Public health consequences of mercury spills: Hazardous Substances Emergency Events Surveillance system, 1993-1998.

    PubMed Central

    Zeitz, Perri; Orr, Maureen F; Kaye, Wendy E

    2002-01-01

    We analyzed data from states that participated in the Hazardous Substances Emergency Events Surveillance (HSEES) system maintained by the Agency for Toxic Substances and Disease Registry to describe the public health consequences of mercury releases. From 1993 through 1998, HSEES captured 406 events in which mercury was the only substance released. Schools and universities, private residences, and health care facilities were the most frequent locations involved in mercury events, and human error was the contributing factor for most of the releases. Fourteen persons experienced adverse health effects as a result of the releases. An additional 31 persons had documented elevated levels of mercury in the blood. No fatalities resulted. Evacuations were ordered in 90 (22%) of the events, and the length of evacuation ranged from 1 hr to 46 days. Mercury spills have a significant public health impact and economic burden. Some actions that could potentially lessen the consequences of mercury spills are to switch to mercury-free alternatives, train people in the safe handling and disposal of mercury, and keep mercury securely stored when it is necessary to have it on hand. PMID:11836139

  12. The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America

    NASA Astrophysics Data System (ADS)

    Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R.

    2013-04-01

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America - the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many scientists and policy makers for a robust database of measurements to improve model development, assess policies and programs, and improve estimates of mercury dry deposition. Many different agencies and groups support the network, including federal, state, tribal, and international governments, academic institutions, and private companies. AMNet has added two high elevation sites outside of continental North America in Hawaii and Taiwan because of new partnerships forged within NADP. Network sites measure concentrations of atmospheric mercury fractions using automated, continuous mercury speciation systems. The procedures that NADP developed for field operations, data management, and quality assurance ensure that the network makes scientifically valid and consistent measurements. AMNet reports concentrations of hourly gaseous elemental mercury (GEM), two-hour gaseous oxidized mercury (GOM), and two-hour particulate-bound mercury less than 2.5 microns in size (PBM2.5). As of January 2012, over 450 000 valid observations are available from 30 stations. The AMNet also collects ancillary meteorological data and information on land-use and vegetation, when available. We present atmospheric mercury data comparisons by time (3 yr) at 22 unique site locations. Highlighted are contrasting values for site locations across the network: urban versus rural, coastal versus high-elevation and the range of maximum observations. The data presented should catalyze the formation of many scientific questions that may be answered through further in-depth analysis and modeling studies of the AMNet database. All data and methods are publically available through an online database on the NADP website (target

  13. The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America

    NASA Astrophysics Data System (ADS)

    Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R.

    2013-11-01

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric-mercury-monitoring sites based in North America - the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many scientists and policy makers for a robust database of measurements to improve model development, assess policies and programs, and improve estimates of mercury dry deposition. Many different agencies and groups support the network, including federal, state, tribal, and international governments, academic institutions, and private companies. AMNet has added two high-elevation sites outside of continental North America in Hawaii and Taiwan because of new partnerships forged within NADP. Network sites measure concentrations of atmospheric mercury fractions using automated, continuous mercury speciation systems. The procedures that NADP developed for field operations, data management, and quality assurance ensure that the network makes scientifically valid and consistent measurements. AMNet reports concentrations of hourly gaseous elemental mercury (GEM), two-hour gaseous oxidized mercury (GOM), and two-hour particulate-bound mercury less than 2.5 microns in size (PBM2.5). As of January 2012, over 450 000 valid observations are available from 30 stations. AMNet also collects ancillary meteorological data and information on land use and vegetation, when available. We present atmospheric mercury data comparisons by time (3 yr) at 21 individual sites and instruments. Highlighted are contrasting values for site locations across the network: urban versus rural, coastal versus high elevation and the range of maximum observations. The data presented should catalyze the formation of many scientific questions that may be answered through further in-depth analysis and modeling studies of the AMNet database. All data and methods are publically available through an online database on the NADP website (

  14. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  15. Momument at Pad 14 honoring Project Mercury

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Momument at Pad 14 honoring Project Mercury. The Arabic number 7 represents the seven original astronauts. The other figure is the astronomical symbol of the Planet Mercury. In background is the Gemini 12 Agena Target Docking Vehicle atop its Atlas launch vehicle at Cape Kennedy, Florida.

  16. Inorganic mercury poisoning associated with skin-lightening cosmetic products.

    PubMed

    Chan, Thomas Y K

    2011-12-01

    elevated urine mercury concentrations. Prevention from further exposure is the first step. Cream users and their close contacts should be evaluated for evidence of mercury exposure, the presence of target organ damage and the need for chelation treatment. Laboratory evaluation of affected subjects should include a complete blood count, serum electrolytes, liver and renal function tests, urinalysis, urine and blood mercury concentrations. Since blood mercury concentrations tend to return to normal within days of exposure, blood samples are useful primarily in short-term, higher-level exposures. Estimation of the urine mercury concentration is the best marker of exposure to inorganic mercury and indicator of body burden. A 24-hour urine for measurement of mercury excretion is preferred; a spot urine mercury concentration should be corrected for creatinine output. Chelation therapy is indicated in patients with features of mercury poisoning and elevated blood and/or urine mercury concentrations. Unithiol (2,3-dimercapto-1-propanesulfonic acid, DMPS) is the preferred antidote though succimer (dimercaptosuccinic acid, DMSA) has also been employed. The use of mercury in cosmetic products should be strictly prohibited. The public should be warned not to use such products as their use can result in systemic absorption and accumulation of mercury causing renal, gastrointestinal and CNS toxicity.

  17. Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Lehmann, Christopher M.B.

    2008-01-01

    The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.

  18. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  19. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.

    PubMed

    Jiang, Xinya; Wang, Huijun; Wang, Haijun; Yuan, Ruo; Chai, Yaqin

    2016-09-20

    In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.

  20. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  1. Sublimation Formation on Mercury

    NASA Image and Video Library

    2017-12-08

    Located in the crater Eminescu, this high-resolution image shows part of the mountainous peak ring, as well as an example of the extensive formation of hollows located within the crater. Hollows maintain an air of mystery in the realm of planetary science. Though the exact formation mechanism is unknown, most scientists agree sublimation of volatiles holds the answer. This image highlights the prevalence of these hollows on and around the peak ring, as well as captures the beauty of such enigmatic formations. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. MESSENGER Departs Mercury

    NASA Image and Video Library

    2008-01-30

    After NASA MESSENGER spacecraft completed its successful flyby of Mercury, the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS, took these images of the receding planet. This is a frame from an animation.

  3. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  4. Global Sources and Pathways of Mercury in the Context of Human Health.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Pacyna, Elisabeth G; Pirrone, Nicola; Thorne, Rebecca J

    2017-01-22

    This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.

  5. Global Sources and Pathways of Mercury in the Context of Human Health

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Pacyna, Elisabeth G.; Pirrone, Nicola; Thorne, Rebecca J.

    2017-01-01

    This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects. PMID:28117743

  6. Automated Calibration of Atmospheric Oxidized Mercury Measurements.

    PubMed

    Lyman, Seth; Jones, Colleen; O'Neil, Trevor; Allen, Tanner; Miller, Matthieu; Gustin, Mae Sexauer; Pierce, Ashley M; Luke, Winston; Ren, Xinrong; Kelley, Paul

    2016-12-06

    The atmosphere is an important reservoir for mercury pollution, and understanding of oxidation processes is essential to elucidating the fate of atmospheric mercury. Several recent studies have shown that a low bias exists in a widely applied method for atmospheric oxidized mercury measurements. We developed an automated, permeation tube-based calibrator for elemental and oxidized mercury, and we integrated this calibrator with atmospheric mercury instrumentation (Tekran 2537/1130/1135 speciation systems) in Reno, Nevada and at Mauna Loa Observatory, Hawaii, U.S.A. While the calibrator has limitations, it was able to routinely inject stable amounts of HgCl 2 and HgBr 2 into atmospheric mercury measurement systems over periods of several months. In Reno, recovery of injected mercury compounds as gaseous oxidized mercury (as opposed to elemental mercury) decreased with increasing specific humidity, as has been shown in other studies, although this trend was not observed at Mauna Loa, likely due to differences in atmospheric chemistry at the two locations. Recovery of injected mercury compounds as oxidized mercury was greater in Mauna Loa than in Reno, and greater still for a cation-exchange membrane-based measurement system. These results show that routine calibration of atmospheric oxidized mercury measurements is both feasible and necessary.

  7. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  8. Particle production of a graphite target system for the intensity frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particlemore » production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.« less

  9. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  10. The Mercury-Redstone Program

    NASA Technical Reports Server (NTRS)

    Hammack, Jerome B.; Heberlig, Jack C.

    1961-01-01

    The Mercury-Redstone program is reviewed as to its intended mission and its main results. The progressive results of unmanned, animal, and manned flights of this over-all Project Mercury ballistic training program are presented. A technical description of the major spacecraft systems is presented with some analysis of flight performance. Performance of the spacecraft with and without pilot input is discussed. The influence of the astronaut as an operating link in the over-all system is presented, and relative difficulties of manned versus unmanned flight are briefly commented upon. The program provided information on man as an integral part of a space flight system, demonstrating that man can assume a primary role in space as he does in other realms of flight. The Mercury-Redstone program demonstrated that the Mercury spacecraft was capable of manned space flight, and succeeded in partially qualifying the spacecraft for orbital flight.

  11. Migration And Entrapment Of Mercury In The Subsurface

    NASA Astrophysics Data System (ADS)

    M, D.; Nambi, I. M.

    2009-12-01

    Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause

  12. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to

  13. Mercury Project

    NASA Image and Video Library

    1961-01-31

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  14. Mercury Project

    NASA Image and Video Library

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  15. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  16. The MVM imaging system and its spacecraft interactions. [Mariner Venus/Mercury TV system performance

    NASA Technical Reports Server (NTRS)

    Vescelus, F. E.

    1975-01-01

    The present work describes the main considerations and steps taken in determining the functional design of the imaging system of the Mariner Venus/Mercury (MVM) spacecraft and gives examples of some of the interactions between the spacecraft and the imaging instrument during the design and testing phases. Stringent cost and scheduling constraints dictated the use of the previous Mariner 9 dual-camera TV system. The TV parameters laid the groundwork for the imaging definition. Based on the flyby distances from Venus and Mercury and the goal of surface resolution better than 500 meters per sample pair, calculation was performed on focal length, format size, planetary coverage, and data rates. Some problems encountered in initial mechanical operation and as a result of spacecraft drift during the mission are also discussed.

  17. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; hide

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  18. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  19. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  20. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  1. The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria.

    PubMed

    Asztalos, Emese; Sipka, Gábor; Kis, Mariann; Trotta, Massimo; Maróti, Péter

    2012-06-01

    The sensitivity of intact cells of purple photosynthetic bacterium Rhodobacter sphaeroides wild type to low level (<100 μM) of mercury (Hg²⁺) contamination was evaluated by absorption and fluorescence spectroscopies of the bacteriochlorophyll-protein complexes. All assays related to the function of the reaction center (RC) protein (induction of the bacteriochlorophyll fluorescence, delayed fluorescence and light-induced oxidation and reduction of the bacteriochlorophyll dimer and energization of the photosynthetic membrane) showed prompt and later effects of the mercury ions. The damage expressed by decrease of the magnitude and changes of rates of the electron transfer kinetics followed complex (spatial and temporal) pattern according to the different Hg²⁺ sensitivities of the electron transport (donor/acceptor) sites including the reduced bound and free cytochrome c₂ and the primary reduced quinone. In contrast to the RC, the light harvesting system and the bc₁ complex demonstrated much higher resistance against the mercury pollution. The 850 and 875 nm components of the peripheral and core complexes were particularly insensitive to the mercury(II) ions. The concentration of the photoactive RCs and the connectivity of the photosynthetic units decreased upon mercury treatment. The degree of inhibition of the photosynthetic apparatus was always higher when the cells were kept in the light than in the dark indicating the importance of metabolism in active transport of the mercury ions from outside to the intracytoplasmic membrane. Any of the tests applied in this study can be used for detection of changes in photosynthetic bacteria at the early stages of the action of toxicants.

  2. Analysis of Halogen-Mercury Reactions in Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paula Buitrago; Geoffrey Silcox; Constance Senior

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury

  3. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    PubMed

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  4. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    PubMed Central

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  5. Mercury as the Unaccreted Projectile: Thermal Consequences

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Gabriel, Travis; Jackson, Alan; Perera, Viranga

    2017-10-01

    Mercury retained substantial volatiles during its formation, in far greater proportion than the Moon, despite losing ~2/3 of its rocky mantle. Its volatile-rich geochemistry would contraindicate a giant impact because it would drive away the volatiles, as in the hypothesis for the Moon. However, the thermal consequences of Mercury formation vary considerably between the two giant impact scenarios, ‘direct hit’ (DH; Benz et al. 1989) and ‘hit and run’ (HR; Asphaug and Reufer 2014). Each begins with a differentiated chondritic proto-Mercury (PM) a bit larger than Mars. In DH, PM gets eroded by a very energetic impactor half its mass, at ~6-7 times the escape velocity. To remove half of PM’s mantle, the post-impact target gets completely shock-vaporized and is sheared apart into space. The bound remnant in DH would experience a comparable deposition of shock enthalpy, as in Moon formation, and would expand into a much larger volume of heliocentric space, leading to a dry planet. The bound remnant will go on to re-accrete much of the silicate mantle that it just lost, another challenge for DH. In HR, PM is the projectile that slams into a terrestrial planet twice its size (proto-Venus or proto-Earth). For typical impact angle and speed, a typical outcome is to ‘bounce”. But for HR to explain Mercury, PM must avoid accretion every time it encounters the target, until it is scattered or migrates away (or is accreted, in which case there is no Mercury), leading to multi-HR scenarios. Tides are intense in HR because the projectile grazes the target core; gravity does most of the work of mantle stripping. Shocks play a secondary role. Whereas in DH the impactor blasts the target inside-out, in HR the runner emerges relatively unshocked, and undispersed except for losing the gravitationally-unbound material. HR is a mechanism for collecting low-shocked remnants, because the intensely shocked material ends up bound to the target or escaping to heliocentric space

  6. Mercury: the forgotten planet.

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    1997-11-01

    Mercury is the neglected child of the planetary system. Only one spacecraft has every ventured near it, whereas scores have probed the moon, Venus and Mars. The scant facts available show this strange, blazingly hot planet is full of surprises: its anomalous density and magnetic field suggest that Mercury may be where to seek clues to the origin of the solar system.

  7. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  8. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  9. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  10. Mercury Emission Measurement at a CFB Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were

  11. The Tectonics of Mercury: The View from Orbit

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Byrne, P. K.; Klimczak, C.; Enns, A. C.; Banks, M. E.; Walsh, L. S.; Ernst, C. M.; Robinson, M. S.; Gillis-Davis, J. J.; Solomon, S. C.; Strom, R. G.; Gwinner, K.

    2011-12-01

    Flybys of Mercury by the Mariner 10 and MESSENGER spacecraft revealed a broad distribution of contractional tectonic landforms, including lobate scarps, high-relief ridges, and wrinkle ridges. Among these, lobate scarps were seen as the dominant features and have been interpreted as having formed as a result of global contraction in response to interior cooling. Extensional troughs and graben, where identified, were generally confined to intermediate- to large-scale impact basins. However, the true global spatial distribution of tectonic landforms remained poorly defined because the flyby observations were limited in coverage and spatial resolution, and many flyby images were obtained under lighting geometries far from ideal for the detection and identification of morphologic features. With the successful insertion of MESSENGER into orbit in March 2011, we are exploiting the opportunity to characterize the tectonics of Mercury in unprecedented detail using images at high resolution and optimum lighting, together with topographic data obtained from Mercury Laser Altimeter (MLA) profiles and stereo imaging. We are digitizing all of Mercury's major tectonic landforms in a standard geographic information system format from controlled global monochrome mosaics (mean resolution 250 m/px), complemented by high-resolution targeted images (up to ~10 m/px), obtained by the Mercury Dual Imaging System (MDIS) cameras. On the basis of an explicit set of diagnostic criteria, we are mapping wrinkle ridges, high-relief ridges, lobate scarps, and extensional troughs and graben in separate shapefiles and cataloguing the segment endpoint positions, length, and orientation for each landform. The versatility of digital mapping facilitates the merging of this tectonic information with other MESSENGER-derived map products, e.g., volcanic units, surface color, geochemical variations, topography, and gravity. Results of this mapping work to date include the identification of extensional

  12. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  13. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  14. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine.

    PubMed

    Gibb, Herman Jones; Kozlov, Kostj; Buckley, Jessie Poulin; Centeno, Jose; Jurgenson, Vera; Kolker, Allan; Conko, Kathryn; Landa, Edward; Panov, Boris; Panov, Yuri; Xu, Hanna

    2008-08-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 microg/g-Cr (urine), 2.58 microg/L (blood), 3.95 microg/g (hair), and 1.16 microg/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility.

  15. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine

    USGS Publications Warehouse

    Gibb, H.J.; Kozlov, K.; Buckley, J.P.; Centeno, J.; Jurgenson, V.; Kolker, A.; Conko, K.; Landa, E.; Panov, B.; Panov, Y.; Xu, H.

    2008-01-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 ??g/g-Cr (urine), 2.58 ??g/L (blood), 3.95 ??g/g (hair), and 1.16 ??g/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility. Copyright ?? 2008 JOEH, LLC.

  16. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  17. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.

    PubMed

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-18

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.

  18. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.

    PubMed

    Boaventura, G R; Barbosa, A C; East, G A

    1997-01-01

    A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

  19. The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal.

    PubMed

    Mackey, Tim K; Contreras, John T; Liang, Bryan A

    2014-02-15

    In October 2013, a new international binding treaty instrument called the Minamata Convention on Mercury opened for signature in Minamata City, Japan, the site of arguably the worst public health and environmental disaster involving mercury contamination. The treaty aims to curb the significant health and environmental impacts of mercury pollution and includes provisions addressing the mining, export and import, storage, and waste management of products containing mercury. Importantly, a provision heavily negotiated in the treaty addresses the use of dental fillings using mercury amalgam, an issue that has been subject to decades of global controversy. Though use of dental amalgam is widespread and has benefits, concerns have been raised regarding the potential for human health risk and environmental damage from emissions and improper waste management. While the Minamata Convention attempts to address these issues by calling for a voluntary phase-down of dental amalgam use and commitment to other measures, it falls short by failing to require binding and measurable targets to achieve these goals. In response, the international community should begin exploring ways to strengthen the implementation of the dental amalgam treaty provisions by establishing binding phase-down targets and milestones as well as exploring financing mechanisms to support treaty measures. Through strengthening of the Convention, stakeholders can ensure equitable access to global oral health treatment while also promoting responsible environmental stewardship. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Terminator View of Mercury

    NASA Image and Video Library

    2014-07-02

    Date acquired: May 05, 2014 Today's color image features both Mercury's terminator and limb. The terminator is the striking separation of night and day on Mercury. It is seen in this image with the change from dark, on the left of the image, to light. Mercury's limb is also captured, as we can see the edge between sunlit Mercury and space. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael D. Durham

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmentalmore » Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some

  2. How Tiny Collisions Shape Mercury

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  3. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  4. Human exposure and health effects of inorganic and elemental mercury.

    PubMed

    Park, Jung-Duck; Zheng, Wei

    2012-11-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

  5. From Orbit, Looking toward Mercury's Horizon

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 MESSENGER acquired this image of Mercury's horizon as the spacecraft was moving northward along the first orbit during which MDIS was turned on. Bright rays from Hokusai can be seen running north to south in the image. MDIS frequently acquired images that contained Mercury's horizon during the mission's three Mercury flybys. (Visit these links to see examples of horizon images from Mercury flyby 1, Mercury flyby 2, and Mercury flyby 3.) However, now that MESSENGER is in orbit about Mercury, views of Mercury's horizon in the images will be much less common. The field of view for MDIS will generally be filled with Mercury's surface as the instrument maps out the planet's geology in high resolution, stereo, and color. Occasionally, in order to obtain images of a certain portion of Mercury's surface, the horizon will also be visible. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  6. Low-Cost Options for Moderate Levels of Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Sjostrom

    2006-03-31

    On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progressmore » to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.« less

  7. Long-term changes in fish mercury levels in the historically impacted English-Wabigoon River system (Canada).

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Arhonditsis, George B; Fletcher, Rachael; Jackson, Donald A

    2012-09-01

    The English-Wabigoon River system in Northwestern Ontario, Canada, was one of the most heavily mercury-contaminated waterways in the world due to historical discharges in the 1960s from a chlor-alkali plant. This study examines long-term (1970-2010) monitoring data to assess temporal trends in mercury contamination in Walleye, Northern Pike and Lake Whitefish, three species important for sport and subsistence fishing in this region, using dynamic linear modeling and piecewise regression. For all lakes and species, there is a significant decline (36-94%) in mercury concentrations through time; however, there is evidence that this decline is either slowing down or levelling off. Concentrations in the English-Wabigoon fish are elevated, and may still present a potential health risk to humans consuming fish from this system. Various biotic and abiotic factors are examined as possible explanations to slowing rates of decline in mercury concentrations observed in the mid-1980s.

  8. Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.

    PubMed

    Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T

    2008-07-04

    In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

  9. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  10. Modeling Mercury in Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with variousmore » proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.« less

  11. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  12. Fish consumption and hair mercury levels in women of childbearing age, Martin County, Florida.

    PubMed

    Nair, Anil; Jordan, Melissa; Watkins, Sharon; Washam, Robert; DuClos, Chris; Jones, Serena; Palcic, Jason; Pawlowicz, Marek; Blackmore, Carina

    2014-12-01

    The health effects of mercury in humans are mostly on the developing nervous system. Pregnant women and women who are breastfeeding must be targeted in order to decrease mercury exposure to the populations at highest risk-infants, unborn fetuses, and young children. This purpose of this study is to understand the demographics of fish-consumption patterns among women of childbearing age (including pregnant women) in Martin County, Florida, and to analyze the associations of mercury levels in participants' hair with socio-demographic variables in order to better design prevention messages and campaigns. Mercury concentrations in hair samples of 408 women ages 18-49 were assessed. Data on demographic factors, pregnancy status, fish consumption, and awareness of fish advisories were collected during personal interviews. Data were analyzed using descriptive statistics and multivariate logistic regression. The geometric and arithmetic means of hair mercury concentration were 0.371 and 0.676 µg/g of hair. One-fourth of the respondents had a concentration ≥1 µg/g of hair. Consuming a higher number of fish meals per month, consumption of commercially purchased or locally caught fish higher in mercury, White race and income ≥$75,000 were positively associated with the likelihood of having higher hair mercury levels. This study confirms the existence of a higher overall mean hair mercury level and a higher percentage of women with ≥1 µg/g hair mercury level than those reported at the national level and in other regional studies. This suggests the need for region-specific fish consumption advisories to minimize mercury exposure in humans.

  13. Automated dynamic hollow fiber liquid-liquid-liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples.

    PubMed

    Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin

    2015-10-09

    A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. System Safety in Early Manned Space Program: A Case Study of NASA and Project Mercury

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.; Pitts, Donald

    2005-01-01

    This case study provides a review of National Aeronautics and Space Administration s (NASA's) involvement in system safety during research and evolution from air breathing to exo-atmospheric capable flight systems culminating in the successful Project Mercury. Although NASA has been philosophically committed to the principals of system safety, this case study points out that budget and manpower constraints-as well as a variety of internal and external pressures can jeopardize even a well-designed system safety program. This study begins with a review of the evolution and early years of NASA's rise as a project lead agency and ends with the lessons learned from Project Mercury.

  15. Materials technology programs in support of a mercury Rankine space power system

    NASA Technical Reports Server (NTRS)

    Stone, P. L.

    1973-01-01

    A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.

  16. Microbial mercury methylation in Antarctic sea ice.

    PubMed

    Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W

    2016-08-01

    Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.

  17. Influence of limestone characteristics on mercury re-emission in WFGD systems.

    PubMed

    Ochoa-González, Raquel; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2013-03-19

    This work evaluates the influence of the effect of the properties of limestones on their reactivity and the re-emission of mercury under typical wet scrubber conditions. The influence of the composition, particle size, and porosity of limestones on their reactivity and the effect of sorbent concentration, pH, redox potential, and the sulphite and iron content of the slurry on Hg(0) re-emission was assessed. A small particle size, a high porosity and a low magnesium content increased the high reactivity of the limestones. Moreover, it was found that the higher the reactivity of the sample the greater the amount of mercury captured in the scrubber. Although sulphite ions did not cause the re-emission of mercury from the suspensions of the gypsums, the limestones enriched in iron increased Hg(0) re-emission under low oxygen conditions. It was observed that the low pH values of the gypsum suspensions favored the cocapture of mercury because Fe(2+) formation was avoided. The partitioning of the mercury in the byproducts of the scrubber depended on the impurities of the limestones rather than on their particle size. No leaching of mercury from the gypsum samples occurred suggesting that mercury was either tightly bound to the impurities of the limestone or was transformed into insoluble mercury species.

  18. Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River basin and surrounding areas, Nevada. Chapter C.

    USGS Publications Warehouse

    Gray, John E.; Stillings, Lisa L.

    2003-01-01

    Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.

  19. Color Image of Mercury from NASA's MESSENGER Satellite

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 3, 2011 Dominici crater, the very bright crater to the top of this image, exhibits bright rays and contains hollows. This crater lies upon the peak ring of Homer Basin, a very degraded peak ring basin that has been filled by volcanism. This image contains several examples of craters that have excavated materials from depth that are spectrally distinct from the surface volcanic layers, providing windows into the subsurface. MESSENGER scientists are estimating the approximate depths of these spectrally distinct materials by applying knowledge of how impacts excavate material during the cratering process. The 1000, 750, and 430 nm bands of the Wide Angle Camera are displayed in red, green, and blue, respectively. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System

  20. On the Edge of Mercury

    NASA Image and Video Library

    2015-02-04

    In this image, Mercury's horizon cuts a striking edge against the stark blackness of space. On the right, sunlight harshly brings the landscape into relief while on the left, the surface is shrouded in the darkness of night. This image was acquired as part of MDIS's limb imaging campaign. Once per week, MDIS captures images of Mercury's limb, with an emphasis on imaging the southern hemisphere limb. These limb images provide information about Mercury's shape and complement measurements of topography made by the Mercury Laser Altimeter (MLA) of Mercury's northern hemisphere. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. In the mission's more than three years of orbital operations, MESSENGER has acquired over 250,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Assessment of Mercury in Fish Tissue from Select Lakes of Northeastern Oregon

    EPA Science Inventory

    A fish tissue study was conducted in five northeastern Oregon reservoirs to evaluate mercury concentrations in an area where elevated atmospheric mercury deposition had been predicted by a national EPA model, but where tissue data were sparse. The study targeted resident predator...

  2. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  3. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  4. Mercury

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Mercury has been used by humans for over 2,000 years and was associated with premature deaths of cinnabar (mercuric sulfide) miners as early as 700 B.C. More recent human poisonings have been related to agricultural and industrial uses of mercury. One of the best documented of these cases occurred in the 1950s in Minamata Bay, Japan, when mercury was discharged into the environment and accumulated in fish and shellfish used as human food. In addition to human poisonings, mercury poisoning or toxicosis has been identified in many other species.Mercury is sometimes used to recover gold from stream sediments, and it may pose hazards to wildlife if it is released to the environment during ore recovery. Fungicidal treatment of seeds with mercury was common in the 1950s and 1960s, but this agricultural practice has been largely halted in the Northern Hemisphere.

  5. Planet Mercury

    NASA Image and Video Library

    1999-06-12

    The first image of Mercury acquired by NASA's Mariner 10 in 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage. http://photojournal.jpl.nasa.gov/catalog/PIA00437

  6. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  7. Mercury: Exploration of a Planet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  8. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  9. Conductometric Sensors for Detection of Elemental Mercury Vapor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.

    2008-01-01

    Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.

  10. Mariner Venus-Mercury 1973 project. Volume 2: Extended mission-Mercury 2 and 3 encounters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Mariner Venus/Mercury 1973 mission operations Extended Mission is described. The activities are summarized from shortly after Mercury I through the end of mission. The operational activities are reported by Mission Operations Systems functions providing a brief summary from each discipline. Based on these experiences recommendations for future projects are made.

  11. MESSENGER Reveals Mercury in New Detail

    NASA Image and Video Library

    2008-01-16

    As NASA MESSENGER approached Mercury on January 14, 2008, the spacecraft Narrow-Angle Camera on the Mercury Dual Imaging System MDIS instrument captured this view of the planet rugged, cratered landscape illuminated obliquely by the Sun.

  12. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  13. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  14. Full System Operations of Mercury: A Diode Pumped Solid-State Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibeau, C.; Bayramian, A.J.; Armstrong, P.

    Operation of the Mercury laser with two amplifiers has yielded 30 Joules at 1 Hz and 12 Joules at 10 Hz with over 8x10{sup 4} shots on the system. Static distortions in the Yb:S-FAP amplifiers were corrected by a magneto-rheological finishing technique.

  15. Full System Operations of Mercury; A Diode-Pumped Solid-State Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayramian, A J; Armstrong, P; Beach, R J

    Operation of the Mercury laser with two amplifiers activated has yielded 30 Joules at 1 Hz and 12 Joules at 10 Hz and over 8 x 10{sup 4} shots on the system. Static distortions in the Yb:S-FAP amplifiers were corrected by magneto rheological finishing technique.

  16. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2017-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In references 1 through 9, a broad range of technological innovations are described and analyzed. Figures 1 depicts program planning for future human missions throughout the solar system which included lunar launched nuclear rockets, and future human settlements on the Moon. Figures 2 and 3 present the results for human Mercury missions, including LEO departure masses and round trip Mercury lander masses. Using in-situ resources, the missions become less burdensome to the LEO launch infrastructure. In one example using Mercury derived hydrogen, the LEO mass of the human Mercury missions can be reduced from 2,800 MT to 1,140 MT (Ref. 15). Additional analyses of staging options for human Mercury missions will be presented. Figures 4 shows an option for thermal control for long term in-space cryogenic storage and Figure 5 depicts the potentially deleterious elements emanating from Mercury that must be addressed, respectively. Updated analyses based on the visions presented will be presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear electric propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Human bases at Mercury may have to be resupplied from resources from regolith and water resources in permanently shadowed craters at its northern pole.

  17. Initial Demonstration of Mercury Wavefront Correction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Z M

    2006-02-01

    High average power operation of the Mercury Laser induces dynamic aberrations to the laser beam wavefront. Analysis of recent data indicates that up to 4 waves of low order aberration (mainly focus error or power, with spatial resolution < 0.5 cm{sup -1}) could be expected at each pass. Because of the magnitude of the wavefront error, the logical position is to place a deformable mirror (DM) at the M11 position, where the DM will correct the beam between passes 1 & 2 and 3 & 4. Currently, there are only two established commercial vendors offering complete adaptive optic (AO) systemsmore » that can accommodate the Mercury beam size (45 x 75 mm) which are compatible with high damage threshold coatings. Xinetics (MA, USA) offers a complete AO system along with a Shack-Hartmann wavefront sensor. The Xinetics DM is based on lead magnesium niobate (PMN) technology. A number of US aerospace firms as well as NIF use Xinetics PMN technology for their DMs. Phasics (Paris, France) offers a complete AO solution with its proprietary SID-4, a four-way shearing interferometric wavefront sensor capable of high resolution (over 100 x 100 sampling points). The Phasics system includes a bimorph deformable mirror from Night-n-Opt (Moscow, Russia) that uses lead zirconate titanate (PZT) technology. Various high power laser laboratories around the world such as LULI (France), HELEN (UK), and GEKKO (Japan) are using the PZT-based bimorph DM in their system. While both DM technologies are equivalent and have been deployed in high-energy laser systems, the PZT based bimorph DM offers two distinct features that makes it more attractive for high average power laser systems. The bimorph DM uses two layers of PZT actuators with the outer layer acting as power correctors, capable of correcting up to 20 waves of power. The Xinetics DM offers a maximum stroke of 4 waves. In addition, Night-N-Opt has also designed a water-cooled DM with a silicon based substrate (as opposed to a glass substrate

  18. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    PubMed Central

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  19. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    PubMed

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  20. Ridges and Cliffs on Mercury Surface

    NASA Image and Video Library

    2008-01-20

    A complex history of geological evolution is recorded in this frame from the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS instrument, taken during NASA MESSENGER close flyby of Mercury on January 14, 2008.

  1. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    direct entry through the northern and southern cusps. Although Mariner 10 did not return plasma composition measurements, the Hermean magnetosphere should be ideal for measuring the manner and rate of solar wind plasma entry due to the lack of strong internal atmospheric sources. Finally, the solar wind conditions experienced by Mercury as it orbits the Sun at 0.31 to 0.47 AU are quite different from those typically encountered by the Earth. This may allow for new understanding of the external factors affecting the transfer of mass, momentum and energy from the solar wind to planetary magnetospheres. This article provides a brief overview of what is now known about Mercury's magnetosphere and why it is a priority target for future planetary missions.

  2. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  3. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  4. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  7. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  8. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  9. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  10. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  11. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  12. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer

  13. Timing of activity of two fault systems on Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.

    2015-10-01

    Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.

  14. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2008-09-01

    Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed

  15. Relation of Mercury to Other Chemical Constituents in Ground Water in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain, and Mechanisms for Mobilization of Mercury from Sediments to Ground Water

    USGS Publications Warehouse

    Barringer, Julia L.; MacLeod, Cecilia L.

    2001-01-01

    Water from 265 domestic wells that tap the unconfined Kirkwood-Cohansey aquifer system in the Coastal Plain of New Jersey contained concentrations of mercury that are equal to or exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 2 ug/L (micrograms per liter). The wells range in depth from 50 to 200 feet, and are located in 32 discrete, mostly residential, areas that were developed primarily on former agricultural land during the 1950?s through the 1970?s. Concentrations in two other areas exceeded 1 ug/L. Naturally occurring mercury concentrations in ground water from the Kirkwood-Cohansey aquifer system typically are less than 0.01 ug/L, but concentrations in water from some wells were as much as 42 ug/L. No evidence currently exists that conclusively links known point sources such as landfills, industrial operations, or commercial enterprises to most of the elevated concentrations of mercury in ground water in the residential areas. Possible sources of the mercury include pesticides and atmospheric deposition. Analysis of water from wells in 6 of the 34 areas for other constituents indicates that nitrate concentrations also commonly are elevated above background levels (which typically are undetectable at 0.01 milligrams per liter), and exceed the MCL of 10 milligrams per liter in some samples. Several volatile organic compounds (VOCs), including chloroform, also have been measured in water from wells at many of the 34 sites. Analytical results for water samples collected at several depths from boreholes at 2 of the 34 sites indicate elevated concentrations of calcium, magnesium, barium, strontium, nitrate, and chloride, which may be related to both agricultural chemical applications and septic-system effluent. Determinations of tritium and helium concentrations indicate that water containing elevated concentrations of mercury recharged the aquifer between 9.4 and 79 years ago, which includes the period during which many of the 34

  16. Potassium permanganate for mercury vapor environmental control

    NASA Technical Reports Server (NTRS)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  17. Mercury accumulation by lower trophic-level organisms in lentic systems within the Guadalupe River watershed, California

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële

    2005-01-01

    The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides

  18. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery wasmore » examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result

  19. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods.more » A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.« less

  20. Search for Feo and Pyroxene on MERCURY?S Surface

    NASA Astrophysics Data System (ADS)

    Sprague, Ann L.; Emery, Joshua P.

    Results from spectral observations of Mercury's surface in the wavelength range 0.8 to 5.5 micrometers will be reported. The data were obtained at the NASA Infrared Telescope Facility on Mauna Kea Hawaii. We used SpeX a long slit imaging system developed at the IRTF for high resolving power spatially resolved spectroscopy throughout the solar system. We aligned the spectral slit with Mercury's geographic longitude and systematically moved it across the Earth-facing disk to obtain multiple disk-resolved spectral images. The entire data set provides spatial coverage of the Earth-facing disk limited only by atmospheric turbulence and the diffraction limit for each wavelength. We used SpeX in two spectral regions in the R 2000 mode. In the first case between 0.8 and 2.5 micrometer to search for the 0.9 to 1.0 micrometer reflectance absorption feature caused by the Fe2+ electronic transfer in FeO. We also measured the 4.5 to 5.5 micrometer flux from Mercury. This is a region of diagnostic features caused by the presence of volume scattering in pyroxene and olivine. These data will be compared to previous observations that showed an anomalous emission feature at 5.5 micrometer and to others that exhibited a feature closely resembling that from pyroxene.

  1. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.« less

  2. Updated Absolute Age Estimates for the Tolstoj and Caloris Basins, Mercury

    NASA Astrophysics Data System (ADS)

    Ernst, C. M.; Denevi, B. W.; Ostrach, L. R.

    2016-12-01

    Time-stratigraphic systems are developed to provide a framework to derive the relative ages of terrains across a given planet, estimate their absolute ages, and aid cross-planet comparisons. Mercury's time-stratigraphic system was modeled after that of the Moon, with five systems defined on the basis of geologic mapping using Mariner 10 images. From oldest to youngest, Mercury's time-stratigraphic system contains the pre-Tolstojan, Tolstojan, Calorian, Mansurian, and Kuiperian systems. The formations of the Tolstoj and Caloris basins mark the start of the Tolstojan and Calorian systems, respectively. The Mansurian and Kuiperian systems are defined by the type craters for which they are named. The completion of MESSENGER's global image dataset marks an appropriate time to re-assess the time-stratigraphic system of the innermost planet. Recent work suggests the Mansurian and Kuiperian systems may have begun as recently as 1.7 Ga and 280 Ma, respectively (Banks et al., 2016). We used MESSENGER data to re-evaluate the relative and absolute ages of the Tolstoj and Caloris basins in to complete the reassessment of Mercury's time-stratigraphic system. We redefine basin rim units for Tolstoj and Caloris determine the crater size-frequency distribution for craters larger than 10 km in diameter. Two models for crater production are used to derive absolute ages from the crater counts: Marchi et al., 2009 (M) using a main belt asteroid-like impactor size-frequency distribution, hard rock crater scaling relations, target strength of 2e7 dyne/cm2, and target and projectile densities of 3.4 g/cm3 and 2.6 g/cm3; and Le Feuvre and Wieczorek 2011 (L&W) using non-porous scaling relations. We find N(20) values (the number of craters ≥ 20 km in diameter per million square km) for the Caloris rim of 37 ± 7 and for the Tolstoj rim of 93 ± 15. We derived model ages of 3.9 Ga (M) and 3.7 Ga (L&W) for Tolstoj and 3.7 Ga (M) and 3.1 Ga (L&W) for Caloris. Analysis to refine the ages using

  3. Mariner Venus Mercury, 1973. [close flyby investigation of mercury after Venus-flyby, and observation of Kohoutek comet

    NASA Technical Reports Server (NTRS)

    Wilson, J. H.

    1973-01-01

    The Mariner Venus Mercury 1973 unmanned mission is discussed, which is designed to conduct a close flyby investigation of the planet Mercury after using the gravity-turn technique in a Venus flyby. Its scientific purposes include photographic, thermal, and spectral surveys, radio occulation, and charged particle/magnetic measurements at each planet, observation of solar-system fields and particles from 1.0 a.u. down to 0.4 a.u., and comparative planetary surveys between the Earth, the Moon, Venus, and Mercury. It is also intended to observe Kohoutek's comet. The trajectory permits establishment of a solar orbit in phase with Mercury's, permitting repeated encounters with that planet.

  4. Evaluation of mercury in the liquid waste processing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  5. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  6. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  7. The role of groundwater transport in aquatic mercury cycling

    USGS Publications Warehouse

    Krabbenhoft, David P.; Babiarz, Christopher L.

    1992-01-01

    Mercury, which is transported globally by atmospheric pathways to remote aquatic environments, is a ubiquitous contaminant at very low (nanograms Hg per liter) aqueous concentrations. Until recently, however, analytical and sampling techniques were not available for freshwater systems to quantify the actual levels of mercury concentrations without introducing significant contamination artifacts. Four different sampling strategies were used to evaluate ground water flow as a mercury source and transport mechanism within aquatic systems. The sampling strategies employ ultraclean techniques to determine mercury concentrations in groundwater and pore water near Pallette Lake, Wisconsin. Ambient groundwater concentrations are about 2–4 ng Hg L−1, whereas pore waters near the sediment/water interface average about 12 ng Hg L−1, emphasizing the importance of biogeochemical processes near the interface. Overall, the groundwater system removes about twice as much mercury (1.5 g yr−1) as it contributes (0.7 g yr−1) to Pallette Lake. About three fourths of the groundwater mercury load is recycled, thought to be derived from the water column.

  8. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  9. Current and future levels of mercury atmospheric pollution on a global scale

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  10. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    PubMed

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  11. Target Assembly to Check Boresight Alignment of Active Sensors

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael

    2011-01-01

    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.

  12. Neuropsychological Effects of Long Term Low Dose Mercury Exposure in Dentists.

    DTIC Science & Technology

    1985-06-01

    An 14 Supplies: Stationery, postage, computer supplies * (paper and printer ribbons), reproduction support and office * supplies ( for example stapler ...established the relationship between mercury exposure and behavior (Camerino, 1981). The fact this study used industrial workers as the target population...Biomedical Introduction, John Wiley and Sons, 1977, New York. Buchwald, H., Exposure of Dental Workers to Mercury, American Industrial Hyoiene Association

  13. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  14. Mercury poisoning

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... chap 98. Theobald JL, Mycyk MB. Iron and heavy metals. In: Walls RM, Hockberger RS, Gausche-Hill M, ...

  15. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    PubMed

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  16. Mercury recovery using a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harriss, C.; Baum, D.L. Jr.

    1996-12-31

    Philip Environmental Services Corporation`s (Philip`s) innovative fluidized bed thermal desorption system recovers mercury from contaminated soil. Referred to as the Thermal Recycling System, Philip has constructed a mobile thermal desorption system that has a processing rate up to five tons per hour. The system includes a continuous-feed system, all radiant heat, inert gas atmosphere, hot gas filter, two-stage cooling, and a water treatment system. Based on treatability studies, the processed soil can meet cleanup objectives as low as two milligrams per kilogram and passes the mercury toxicity characteristic leaching procedure test. 4 refs., 2 figs., 1 tab.

  17. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer

  18. EDITORIAL: Mercury-free discharges for lighting

    NASA Astrophysics Data System (ADS)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this

  19. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  20. Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Pommier, A.

    2017-12-01

    Transfers of mass, heat, and electric currents between a silicate mantle and an underlying metallic core characterize the Core-Mantle Boundary (CMB) region of terrestrial planets. In particular, constraining the structure and chemistry of the CMB region of Mercury is crucial to understand its thermal state and unique magnetic activity. To probe the physical and chemical processes of the Hermean CMB, we conducted an electrical study of metal-olivine systems at pressure, temperature, and chemistry conditions relevant to the mantle and CMB region of Mercury. Electrical measurements were performed at 5-7 GPa and up to 1675ºC during heating and cooling in the multi-anvil apparatus using impedance spectroscopy. Samples are made of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si systems) and one polycrystalline olivine (Fo90) layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the one of the metal phase at similar conditions. In some experiments, a conductivity jump is observed at a temperature corresponding to the melting temperature of the metal phase. This conductivity increase cannot be explained by the electrical properties of liquid metal as metal is less conductive with increasing temperature. We observe that both the metal:olivine ratio and the change in metal phase geometry during heating best explain the bulk conductivity. By combining our electrical results, textural analyses of the samples and previous experimental and numerical works, we propose an electrical profile of the deep interior of Mercury. Comparison of our model with existing conductivity estimates of Mercury's lowermost mantle and CMB from magnetic field observations and thermodynamic calculations supports the hypothesis of a layered CMB-outermost core structure in present-day Mercury.

  1. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  2. Enhanced Color Mercury Map

    NASA Image and Video Library

    2017-12-08

    This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. This specific color combination places the second principle component in the red channel, the first principle component in the green channel, and the ratio of the 430 nm/1000 nm filters in the blue channel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean Bustard; Charles Lindsey; Paul Brignac

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal

  4. AN ELECTROCHEMICAL SYSTEM FOR REMOVING AND RECOVERING ELEMENTAL MERCURY FROM FLUE-STACK GASES

    EPA Science Inventory

    the impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in heightened interest in the development of advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Altho...

  5. Dynamic behavior of the mercury damper

    NASA Technical Reports Server (NTRS)

    Crout, P. D.; Newkirk, H. L.

    1971-01-01

    The dynamic behavior of the mercury nutation damper is investigated. Particular attention is paid to the eccentric annular mercury configuration, which is the final continuous ring phase that occurs in the operation of all mercury dampers. In this phase, damping is poorest, and the system is closely linear. During the investigation, the hydrodynamic problem is treated as three dimensional, and extensive use is made of a variational principle of least-viscous frictional power loss. A variational principle of least-constraint is also used to advantage. Formulas for calculating the behavior of the mercury damper are obtained. Some confirmatory experiments were performed with transparent ring channels on a laboratory gyroscope. Selected movie frames taken during wobble damping are shown along with the results of film measurements.

  6. A thin, dense crust for Mercury

    NASA Astrophysics Data System (ADS)

    Sori, Michael M.

    2018-05-01

    Crustal thickness is a crucial geophysical parameter in understanding the geology and geochemistry of terrestrial planets. Recent development of mathematical techniques suggests that previous studies based on assumptions of isostasy overestimated crustal thickness on some of the solid bodies of the solar system, leading to a need to revisit those analyses. Here, I apply these techniques to Mercury. Using MESSENGER-derived elemental abundances, I calculate a map of grain density (average 2974 ± 89 kg/m3) which shows that Pratt isostasy is unlikely to be a major compensation mechanism of Mercury's topography. Assuming Airy isostasy, I find the best fit value for Mercury's mean crustal thickness is 26 ± 11 km, 25% lower than the most recently reported and previously thinnest number. Several geological implications follow from this relatively low value for crustal thickness, including showing that the largest impacts very likely excavated mantle material onto Mercury's surface. The new results also show that Mercury and the Moon have a similar proportion of their rocky silicates composing their crusts, and thus Mercury is not uniquely efficient at crustal production amongst terrestrial bodies. Higher resolution topography and gravity data, especially for the southern hemisphere, will be necessary to refine Mercury's crustal parameters further.

  7. Mercury Toolset for Spatiotemporal Metadata

    NASA Technical Reports Server (NTRS)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  8. Mercury Toolset for Spatiotemporal Metadata

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  9. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  10. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  11. Future observations of and missions to Mercury

    NASA Technical Reports Server (NTRS)

    Stern, Alan S.; Vilas, Faith

    1988-01-01

    Key scientific objectives of Mercury explorations are discussed, and the methods by which remote observations of Mercury can be carried out from earth and from space are examined. Attention is also given to the scientific rationale and technical concepts for missions to Mercury. It is pointed out that multiple Venus-Mercury encounter trajectories exist which, through successive gravity assists, reduce mission performance requirements to levels deliverable by available systems, such as Titan-Centaur, Atlas-Centaur, and Shuttle/TOS. It is shown that a single launch in July of 1994, using a Titan-Centaur combination, could place a 1477-kg payload into orbit around Meercury. The components of a Mercury-orbiter payload designed to study surface geology and geochemistry, atmospheric composition and structure, the local particle and fields environment, and solid-body rotation dynamics are listed.

  12. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  13. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  14. Complex history of the Rembrandt basin and scarp system, Mercury

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Massironi, M.; Klimczak, C.; Byrne, P. K.; Cremonese, G.; Solomon, S. C.

    2012-09-01

    During its second and third flybys, the MESSENGER spacecraft [1] imaged the wellpreserved Rembrandt basin in Mercury's southern hemisphere. With a diameter of 715 km, Rembrandt is the second largest impact structure recognized on Mercury after the 1550-km-diameter Caloris basin. Rembrandt is also one of the youngest major basins [2] and formed near the end of the Late Heavy Bombardment (~3.8 Ga). Much of the basin interior has been resurfaced by smooth, high-reflectance units interpreted to be of volcanic origin [3]. These units host sets of contractional and extensional landforms generally oriented in directions radial or concentric to the basin, similar to those observed within the Caloris basin [4-6]; these structures are probably products of multiple episodes of deformation [2,7,8]. Of particular note in the Rembrandt area is a 1,000-km-long reverse fault system [9] that cuts the basin at its western rim and bends eastward toward the north, tapering into the impact material. On the basis of its shape, the structure has previously been characterized as a lobate scarp. Its formation and localization have been attributed to the global contraction of Mercury [2]. From MESSENGER flyby and orbital images, we have identified previously unrecognized kinematic indicators of strike-slip motion along the Rembrandt scarp, together with evidence of interaction between the scarp orientation and the concentric basin-related structural pattern described above. Here we show through cross-cutting relationships and scarp morphology that the development of the Rembrandt scarp was strongly influenced by tectonics related to basin formation and evolution.

  15. False Color View of Mercury

    NASA Image and Video Library

    2017-12-08

    This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. To watch a movie of this colorful view of Mercury as a spinning globe go here: www.flickr.com/photos/gsfc/8497927473 Young crater rays, extending radially from fresh impact craters, appear light blue or white. Medium- and dark-blue areas are a geologic unit of Mercury's crust known as the "low-reflectance material", thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. The giant Caloris basin is the large circular tan feature located just to the upper right of center of the image. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  16. Analysis of a Neutronic Experiment on a Simulated Mercury Spallation Neutron Target Assembly Bombarded by Giga-Electron-Volt Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi

    2005-05-15

    A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less

  17. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection.more » Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of

  18. A 3 Year-Old Male Child Ingested Approximately 750 Grams of Elemental Mercury.

    PubMed

    Uysalol, Metin; Parlakgül, Güneş; Yılmaz, Yasin; Çıtak, Agop; Uzel, Nedret

    2016-07-01

    The oral ingestion of elemental mercury is unlikely to cause systemic toxicity, as it is poorly absorbed through the gastrointestinal system. However, abnormal gastrointestinal function or anatomy may allow elemental mercury into the bloodstream and the peritoneal space. Systemic effects of massive oral intake of mercury have rarely been reported. In this paper, we are presenting the highest single oral intake of elemental mercury by a child aged 3 years. A Libyan boy aged 3 years ingested approximately 750 grams of elemental mercury and was still asymptomatic. The patient had no existing disease or abnormal gastrointestinal function or anatomy. The physical examination was normal. His serum mercury level was 91 µg/L (normal: <5 µg/L), and he showed no clinical manifestations. Exposure to mercury in children through different circumstances remains a likely occurrence.

  19. Libration and obliquity of Mercury from the BepiColombo radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V.

    2008-12-01

    Mercury is the most enigmatic among the terrestrial planets, but the space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the 88-day forced libration, the obliquity and the degree-two coefficients of the gravity field of Mercury. Of those quantities, the libration is the most difficult to measure and will hence be a limiting factor We report here on aspects of the observational strategy to determine the libration amplitude and obliquity, taking into account the space and ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission. We simulated these measurements in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet, as a function of the amount of measurements made, the number of different targets considered and their locations on the surface of the planet. From this study, we determine criteria for the distribution and number of target positions to maximize the accuracy on the orientation and rotation determination, from which the obliquity and libration are extracted. We take into account the errors arising from the relative positions of the spacecraft, Mercury and the Earth. We consider various error sources such as the solar thermal influence on the spacecraft bus and the Earth based tracking constraint near solar conjunctions of Mercury. The accuracy on the retrieved parameters is then interpreted in terms of accuracy on the constraints on the interior structure of the planet. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will be sufficient to constrain Mercury interior structure models, if the orbiter

  20. Project Mercury; Little Joe

    NASA Image and Video Library

    1959-07-30

    Assembling the Little Joe capsules. The capsules were manufactured in-house by Langley technicians. Three capsules are shown here in various stages of assembly. The escape tower and rocket motors shown on the completed capsule would be removed before shipping and finally assembly for launching at Wallops Island. Joseph Shortal wrote (vol. 3, p. 32): Design of the Little Joe capsules began at Langley before McDonnell started on the design of the Mercury capsule and was, therefore, a separate design. Although it was not designed to carry a man, it did have to carry a monkey. It had to meet the weight and center of gravity requirements of Mercury and withstand the same aerodynamic loads during the exit trajectory. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. Project Mercury: Little Joe: Boilerplate Mercury spacecraft undergo fabrication at the shops of the Langley Research Center. They will launched atop Little Joe rockets to test the spacecraft recovery systems. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition. L59-4947 Technicians prepare a Little Joe launch vehicle prototype for the Mercury space program, 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 76, by James Schultz

  1. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  2. Smooth Plains in Mercury's North

    NASA Image and Video Library

    2017-12-08

    NASA acquired: March 29, 2011 As the MESSENGER spacecraft passed low over Mercury's north polar region, MDIS used its pivot to capture this image, showing terrain that had not been previously seen by spacecraft. The newly imaged surface is located in Mercury's north polar region, to the north of the bright, rayed crater Hokusai. Looking from the bottom of the image toward the top is looking southward, just as MDIS was doing when this image was acquired. This newly seen terrain shows craters with long shadows, as expected at this high northern latitude. Understanding the interiors of the craters in Mercury's polar regions and any ices they may contain is one of the main science goals of the MESSENGER mission. The long shadows also accentuate the topography of the surface, which includes a number of ridges that resemble those seen on the expansive smooth plains imaged during Mercury flyby 3. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  3. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  4. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    NASA Technical Reports Server (NTRS)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  5. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  6. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  7. Serum biochemical markers of central nerve system damage in children with acute elemental mercury intoxicatıon.

    PubMed

    Yılmaz, F M; Yılmaz, H; Tutkun, E; Uysal, S; Carman, K B; Dılber, C; Ercan, M

    2014-01-01

    Acute mercury intoxication among children can occur through unintentional exposure, and neurotoxicity is one of the main findings in acute exposures. In this study, we aimed to study the central nerve system markers, namely neuron-specific enolase (NSE), S100B, and glutamate receptor (GRIA 1) levels and discuss the mechanisms of central nerve system damage and whether these parameters could be used as markers of acute elemental mercury intoxication neurotoxicity. This is a case-control study which includes 169 children with acute elemental mercury intoxication, who were exposed to mercury in the school laboratory from a broken jar, and 45 sex- and age-matched controls without mercury exposure. Patient group were divided into three subgroups according to the neurological examination performed during the admission. Neuropathy Group included the children with neurological symptoms including peripheral neuropathy and decreased muscle strength (n = 39) (with or without dilated pupils). Dilated Pupil Group included the children who had mid-dilated/dilated pupils (n = 52). Asymptomatic Exposure Group included the children who did not have any neurological symptoms (n = 78). Serum NSE, S100B, GRIA 1, blood, and urine mercury levels were determined. NSE, S100B, GRIA 1, and blood mercury levels were significantly higher in exposed group than the nonexposed subjects (Median values NSE 22.4 ng/mL, 17.2 ng/mL; S100B 0.09 ng/mL, 0.08 ng/mL; GRIA 1 70.6 pg/mL, 54.1 pg/mL, and blood mercury 15.2 μg/L, 0.23 μg/L for exposed and nonexposed groups, respectively). GRIA 1 levels found to differ between exposed and nonexposed groups and it has also been found to be increased in the subgroups with positive neurological findings compared to that in neurological finding negative groups. S100B levels were found to be increased in exposed and having neurological symptom groups. There was not a significant difference between exposed-not having neurological symptom patients and control group

  8. MPF model ages of the Rembrandt basin and scarp system, Mercury.

    NASA Astrophysics Data System (ADS)

    Ferrari, Sabrina; Massironi, Matteo; Marchi, Simone; Byrne, Paul K.; Klimczak, Christian; Cremonese, Gabriele

    2013-04-01

    The 715-km-diameter Rembrandt basin is the largest well-preserved impact feature of the southern hemisphere of Mercury [1] (Fig. 1), and was imaged for the first time during the second flyby of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [2]. Much of the basin interior is covered by smooth, high-reflectance plains interpreted to be of volcanic origin [1-3] that host sets of contractional and extensional tectonic structures. Notably, Rembrandt basin and its smooth plains are cross-cut by a 1,000-km-long reverse fault system [1-5] that trends ~E-W, bending toward the north within the basin. The individual faults of this system accommodated crustal shortening that resulted from global contraction as Mercury's interior cooled [1]. The current shape of the reverse fault system may have been influenced by the formation of the Rembrandt basin [5]. The emplacement of the interior smooth plains predates both the basin-related tectonism and the final development of the giant scarp, which is suggestive of either short-lived volcanic activity immediately after basin formation or a later volcanic phase set against prolonged tectonic activity. In order to quantify the duration of volcanic and tectonic activity in and around Rembrandt basin, we determined the crater count-derived ages of the involved terrains by means of the Model Production Function (MPF) chronology of Mercury [6-8], which is rely on the knowledge of the impactors flux on the planet. Crater chronology allowed us to constrain the Rembrandt basin formation to the early Calorian period and a widespread resurfacing up to 3.5 Ga ago. The volcanic activity affected both the basin and its surroundings, but ended prior to some basin-related and regional faulting. Hence, if the giant scarp begun to develop even before the basin formation (as suggested by its length-displacement profile across the basin itself, [5]) the regional tectonic activity along this structure might have

  9. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut L. Gordon Cooper, Jr., one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-9 mission, boosted by the Mercury-Atlas launch vehicle, was the last flight of the Mercury Project. The Faith 7 spacecraft orbited the Earth 22 times in 1-1/2 days.

  10. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The Little Joe launch vehicle for the LJ1 mission on the launch pad at the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury cupsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  11. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    PubMed

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  12. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  13. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less

  14. Petrology and Geochemistry of Mercury

    NASA Astrophysics Data System (ADS)

    Weider, Shoshana Z.

    2018-04-01

    Although having knowledge of a terrestrial planet's chemistry is fundamental to understanding the origin and composition of its rocks, until recently, the geochemistry of Mercury—the Solar System's innermost planet—was largely unconstrained. Without the availability of geological specimens from Mercury, studying the planet's surface and bulk composition relies on remote sensing techniques. Moreover, Mercury's proximity to the Sun makes it difficult to study with Earth/space-based telescopes, or with planetary probes. Indeed, to date, only NASA's Mariner 10 and MESSENGER missions have been sent to Mercury. The former made three "flyby" encounters of Mercury between 1974 and 1975, but did not carry any instrument to make geochemical or mineralogical measurements of the surface. Until the MESSENGER flyby and orbital campaigns (2008–2015), therefore, knowledge of Mercury's chemical composition was severely limited and consisted of only a few facts. For example, it has long been known that Mercury has the highest uncompressed density of all the terrestrial planets (and thus a disproportionately large iron core). In addition, Earth-based spectral reflectance observations indicated a dark surface, largely devoid of iron within silicate minerals. To improve understanding of Mercury's geochemistry, the MESSENGER payload included a suite of geochemical sensing instruments: namely the X-Ray Spectrometer, Gamma-Ray Spectrometer, and Neutron Spectrometer. Indeed, the datasets obtained from these instruments (as well as from other complementary instruments) during MESSENGER's 3.5-year orbital mission allow a much more complete picture of Mercury's geochemistry to be drawn, and quantitative abundance estimates for several major rock-forming elements in Mercury's crust are now available. Overall, the MESSENGER data reveal a surface that is rich in Mg, but poor in Al and Ca, compared with typical terrestrial and lunar crustal materials. Mercury's surface also contains high

  15. Cases of acute mercury poisoning by mercury vapor exposure during the demolition of a fluorescent lamp factory.

    PubMed

    Do, Sang Yoon; Lee, Chul Gab; Kim, Jae Yoon; Moon, Young Hoon; Kim, Min Sung; Bae, In Ho; Song, Han Soo

    2017-01-01

    In 2015, workers dismantling a fluorescent lamp factory in Korea were affected by mercury poisoning from exposure to mercury vapor. Eighteen out of the 21 workers who participated in the demolition project presented with symptoms of poisoning and, of these, 10 had persistent symptoms even at 18 months after the initial exposure to mercury vapor. Early symptoms of 18 workers included a general skin rash, pruritus, myalgia, sleep disturbance, and cough and sputum production. Following alleviation of these initial symptoms, late symptoms, such as easy fatigue, insomnia, bad dreams, and anxiety disorder, began to manifest in 10 out of 18 patients. Seven workers underwent psychiatric care owing to sleep disturbance, anxiety disorder, and depression, and three workers underwent dermatologic treatment for hyperpigmentation, erythematous skin eruption, and chloracne-like skin lesions. Furthermore, three workers developed a coarse jerky movement, two had swan neck deformity of the fingers, and two received care at an anesthesiology clinic for paresthesia, such as burning sensation, cold sensation, and pain. Two workers underwent urologic treatment for dysfunction of the urologic system and impotence. However, symptomatic treatment did not result in satisfactory relief of these symptoms. Awareness of the perils of mercury and prevention of mercury exposure are critical for preventing health hazards caused by mercury vapor. Chelation therapy should be performed promptly following mercury poisoning to minimize damage.

  16. Airborne mercury species at the Råö background monitoring site in Sweden: distribution of mercury as an effect of long-range transport

    NASA Astrophysics Data System (ADS)

    Wängberg, Ingvar; Nerentorp Mastromonaco, Michelle G.; Munthe, John; Gårdfeldt, Katarina

    2016-10-01

    Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.

  17. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  18. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  19. False Color View of Mercury

    NASA Image and Video Library

    2017-12-08

    This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. Young crater rays, extending radially from fresh impact craters, appear light blue or white. Medium- and dark-blue areas are a geologic unit of Mercury's crust known as the "low-reflectance material", thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. The crater in the upper right whose rays stretch across the planet is Hokusai. To watch a movie of this colorful view of Mercury as a spinning globe go here: www.flickr.com/photos/gsfc/8497927473 Young crater rays, extending radially from fresh impact craters, appear light blue or white. Medium- and dark-blue areas are a geologic unit of Mercury's crust known as the "low-reflectance material", thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. The giant Caloris basin is the large circular tan feature located just to the upper right of center of the image. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of

  20. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will bemore » reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.« less

  1. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  2. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  3. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure maymore » be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.« less

  4. An Assessment of the Potential Effects of Aquifer Storage and Recovery on Mercury Cycling in South Florida

    USGS Publications Warehouse

    Krabbenhoft, David P.; Aiken, George R.; Anderson, Mary P.

    2007-01-01

    Mercury contamination in the environment is a global concern, especially in areas with abundant wetlands, such as south Florida. As the causal factors of this concern improve, scientists find that many factors that do not necessarily affect mercury concentrations, such as flooding and drying cycles, or changes to carbon and sulfate loading, can profoundly affect net mercury toxicity. Especially important are ecological factors that alter the conversion of mercury to methylmercury, which is the most bioaccumulative and toxic form of mercury in the environment. Resource managers, therefore, need to be aware of possible deleterious affects to mercury toxicity that could result from land and water management decisions. Several aspects of the Comprehensive Everglades Restoration Plan (CERP), including the planned Aquifer Storage and Recovery (ASR) program, have the potential to affect the abundance of methylmercury. In response to these concerns, the U.S. Geological Survey and U.S. Army Corps of Engineers collaborated on a study to evaluate how the proposed ASR program may affect mercury cycling and toxicity. This project was conducted as an initial assessment of the possible effects of the CERP ASR program on mercury in the south Florida environment. A twofold approach was employed: field sampling and controlled laboratory benchmark experiments. The field sampling survey collected ground-water samples from the Floridan and surficial aquifer systems for the ASR program to determine existing levels of mercury and methylmercury. Laboratory experiments, on the other hand, were designed to determine how the injected surface water would interact with the aquifer during storage periods. Overall, very low levels of mercury and methylmercury (mean values of 0.41 and 0.07 nanograms per liter, respectively) were observed in ground-water samples collected from the Floridan and surficial aquifer systems. These results indicate that 'recovered water' from the CERP ASR program would

  5. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Occhipinti, J.; Shah, H.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  6. Evaluation of mercury in liquid waste processing facilities - Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Occhipinti, J. E.; Shah, H.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  7. Modeling Mercury

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Killen, R. M.; M, N.; Sarantos, M.; Crider, D. H.; Vervak, R. J.

    2009-04-01

    Mercury has a tenuous exosphere created by the combined effects of solar radiation and micrometeoroid bombardment on the surface and the interaction of the solar wind with Mercury's magnetic field and surface. Observations of this exosphere provide essential data necessary for understanding the composition and evolution of Mercury's surface, as well as the interaction between Mercury's magnetosphere with the solar wind. The sodium component of the exosphere has been well observed from the ground (see review by Killen et al., 2007). These observations have revealed a highly variable and inhomogeneous exosphere with emission often peaking in the polar regions. Radiation acceleration drives exospheric escape producing a sodium tail pointing away from the sun which has been detected up to 1400 Mercury radii from the planet (Potter et al. 2002; Baumgardner et al. 2008). Calcium has also been observed in Mercury's exosphere showing a distribution distinct from sodium, although also variable (Killen et al. 2005). During the first two encounters with Mercury by MESSENGER, observations of the exosphere were made by the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Sodium and calcium emission were detected during both flybys, and magnesium was detected for the first time in Mercury's exosphere during the second flyby. The spatial distributions of these species showed significant, unexpected differences which suggest differences in the mechanisms responsible for releasing them from the surface. We present a Monte-Carlo model of sodium, magnesium, and calcium in Mercury's exosphere. The important source mechanisms for ejecting these species from the surface are sputtering by solar wind ions, photon-stimulated desorption, and micrometeoroid impact vaporization. Thermal desorption on the dayside does not supply enough energy to significantly populate the exosphere, although it does play a role in

  8. Mercury Project

    NASA Image and Video Library

    1960-01-21

    The launch of the Little Joe booster for the LJ1B mission on the launch pad from the wallops Flight Facility, Wallops Island, Virginia, on January 21, 1960. This mission achieved the suborbital Mercury capsule test, testing of the escape system, and biomedical tests by using a monkey, named Miss Sam.

  9. Indicators: Sediment Mercury

    EPA Pesticide Factsheets

    Sediment mercury is mercury that has become embedded into the bottom substrates of aquatic ecosystems. Mercury is a common pollutant of aquatic ecosystems and it can have a substantial impact on both human and wildlife health.

  10. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    PubMed

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  11. PATHOLOIGCAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS ( FALCO SPARVERIUS)

    EPA Science Inventory

    Methyl mercury in aquatic food webs poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the environment, ...

  12. Urinary mercury in people living near point sources of mercury emissions.

    PubMed

    Barregard, Lars; Horvat, Milena; Mazzolai, Barbara; Sällsten, Gerd; Gibicar, Darija; Fajon, Vesna; Dibona, Sergio; Munthe, John; Wängberg, Ingvar; Haeger Eugensson, Marie

    2006-09-01

    As part of the European Mercury Emissions from Chlor Alkali Plants (EMECAP) project, we tested the hypothesis that contamination of ambient air with mercury around chlor alkali plants using mercury cells would increase the internal dose of mercury in people living close to the plants. Mercury in urine (U-Hg) was determined in 225 individuals living near a Swedish or an Italian chlor alkali plant, and in 256 age- and sex-matched individuals from two reference areas. Other factors possibly affecting mercury exposure were examined. Emissions and concentrations of total gaseous mercury (TGM) around the plants were measured and modeled. No increase in U-Hg could be demonstrated in the populations living close to the plants. This was the case also when the comparison was restricted to subjects with no dental amalgam and low fish consumption. The emissions of mercury to air doubled the background level, but contributed only about 2 ng/m(3) to long-term averages in the residential areas. The median U-Hg levels in subjects with dental amalgam were 1.2 microg/g creatinine (micro/gC) in Italy and 0.6 microg/gC in Sweden. In individuals without dental amalgam, the medians were 0.9 microg/gC and 0.2 microg/gC, respectively. The number of amalgam fillings, as well as chewing, fish consumption, and female sex were associated with higher U-Hg. The difference between the countries is probably due to higher fish consumption in Italy, demethylated methyl mercury (MeHg) being partly excreted in urine. Post hoc power calculations showed that if the background mercury exposure is low it may be possible to demonstrate an increase in U-Hg of as little as about 10 ng/m(3) as a contribution to ambient mercury from a point source.

  13. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    PubMed

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Searching for the Source of Salt Marsh Buried Mercury.

    NASA Astrophysics Data System (ADS)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  15. Mercury recycling in the United States in 2000

    USGS Publications Warehouse

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    mercury is estimated because it is a low-volume commodity and its production, use, and disposal is difficult to track. The prices and volumes of each category of mercury-containing material may change dramatically from year to year. For example, the average price of mercury was approximately $150 per flask from 2000 until 2003 and then rose sharply to $650 per flask in fall 2004 and approximately $850 per flask in spring 2005. Since 1927, the common unit for measuring and pricing mercury has been the flask in order to conform to the system used at Almaden, Spain (Meyers, 1951). One flask weighs 34.5 kilograms, and 29 flasks of mercury are contained in a metric ton. In the United States, the chlorine-caustic soda industry, which is the leading end-user of elemental mercury, recycles most of its mercury in-plant as home scrap. Annual purchases of replacement mercury by the chlorine-caustic soda industry indicate that some mercury may be lost through evaporation to the environment, put into a landfill as industrial waste, or trapped within pipes in the plant. Impending closure of domestic and foreign mercury-cell chlorine-caustic soda plants and the shift to nonmercury technology for chlorine-caustic soda production could ultimately result in a significant volume of elemental mercury for recycling, sale, or storage. Globally, mercury is widely used in artisanal, or small-scale, gold mining. Most of that mercury is lost to the environment and is not recycled. The recycling rate for mercury was not available owing to insufficient data in 2000, and the efficiency of mercury recycling was estimated to be 62 percent.

  16. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  17. Mercury Transport Modeling of the Carson River System, Nevada: An Investigation of Total and Dissolved Species and Associated Uncertainty

    NASA Astrophysics Data System (ADS)

    Carroll, R. W.; Warwick, J. J.

    2009-12-01

    Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.

  18. Theory of Rotation for the Planet Mercury.

    PubMed

    Liu, H S; O'keefe, J A

    1965-12-24

    The theory of the rotation of the planet Mercury is developed in terms of the motion of a rigid system in an inverse-square field. It is possible for Mercury to rotate with a period exactly two-thirds of the period of revolution; there is a libration with a period of 25 years.

  19. The Texarkana mercury incident.

    PubMed

    Lowry, L K; Rountree, P P; Levin, J L; Collins, S; Anger, W K

    1999-10-01

    In November 1997, 2 teenagers allegedly removed a large amount of metallic mercury from an abandoned sign plant and distributed the material among friends. One teenager developed symptoms and admitted playing with mercury to his physician. His blood mercury was elevated. In February 1998, faculty from the University of Texas Health Center at Tyler conducted an investigation that included in-depth evaluations on 10 patients with urine mercury concentrations up to 100 micrograms/L. Exposure pathways and timelines were reconstructed from records assembled by the Arkansas State Health Department epidemiologist. Mercury contamination was found among teenagers, children, and adults who came in contact with the metal. Biomarkers of exposure documented reduction in mercury concentrations after these persons were removed from their homes and sources of mercury. Neurobehavioral assessment, including assessment of tremor, failed to establish a relationship between mercury exposure and performance.

  20. The distribution and sea-air transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.

    PubMed

    Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing

    2013-09-01

    The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.

  1. PATHOLOGICAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS (FALCO SPARVERIIUS)

    EPA Science Inventory

    Methyl mercury in the aquatic food web poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both the aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the enviro...

  2. Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure

    PubMed Central

    Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.

    2014-01-01

    Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902

  3. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  4. Mechanisms involved in the transport of mercuric ions in target tissues

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  5. Mercury Project

    NASA Image and Video Library

    1961-01-01

    Ham, a three-year-old chimpanzee, in the spacesuit he would wear for the second Mercury- Redstone (MR-2) suborbital test flight in January, 1961. NASA used chimpanzees and other primates to test the Mercury capsule before launching the fisrt American astronaut, Alan Shepard, in May 1961. The Mercury capsule rode atop a modified Redstone rocket, developed by Dr. Wernher von Braun and the German Rocket Team in Huntsville, Alabama.

  6. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  7. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  8. NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse

    NASA Image and Video Library

    2017-12-08

    Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Five Hundred Years of Mercury Exposure and Adaptation

    PubMed Central

    Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto

    2012-01-01

    Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P < 0.001). Thus, evidence of mercury's toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. PMID:22910643

  10. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  11. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution.

    PubMed

    Cordy, Paul; Veiga, Marcello M; Salih, Ibrahim; Al-Saadi, Sari; Console, Stephanie; Garcia, Oseas; Mesa, Luis Alberto; Velásquez-López, Patricio C; Roeser, Monika

    2011-12-01

    The artisanal gold mining sector in Colombia has 200,000 miners officially producing 30tonnes Au/a. In the Northeast of the Department of Antioquia, there are 17 mining towns and between 15,000 and 30,000 artisanal gold miners. Guerrillas and paramilitary activities in the rural areas of Antioquia pushed miners to bring their gold ores to the towns to be processed in Processing Centers or entables. These Centers operate in the urban areas amalgamating the whole ore, i.e. without previous concentration, and later burn gold amalgam without any filtering/condensing system. Based on mercury mass balance in 15 entables, 50% of the mercury added to small ball mills (cocos) is lost: 46% with tailings and 4% when amalgam is burned. In just 5 cities of Antioquia, with a total of 150,000 inhabitants: Segovia, Remedios, Zaragoza, El Bagre, and Nechí, there are 323 entables producing 10-20tonnes Au/a. Considering the average levels of mercury consumption estimated by mass balance and interviews of entables owners, the mercury consumed (and lost) in these 5 municipalities must be around 93tonnes/a. Urban air mercury levels range from 300ng Hg/m(3) (background) to 1million ng Hg/m(3) (inside gold shops) with 10,000ng Hg/m(3) being common in residential areas. The WHO limit for public exposure is 1000ng/m(3). The total mercury release/emissions to the Colombian environment can be as high as 150tonnes/a giving this country the shameful first position as the world's largest mercury polluter per capita from artisanal gold mining. One necessary government intervention is to cut the supply of mercury to the entables. In 2009, eleven companies in Colombia legally imported 130tonnes of metallic mercury, much of it flowing to artisanal gold mines. Entables must be removed from urban centers and technical assistance is badly needed to improve their technology and reduce emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  13. Water Ice on Mercury

    NASA Image and Video Library

    2015-04-16

    This orthographic projection view from NASA MESSENGER spacecraft provides a look at Mercury north polar region. The yellow regions in many of the craters mark locations that show evidence for water ice, as detected by Earth-based radar observations from Arecibo Observatory in Puerto Rico. MESSENGER has collected compelling new evidence that the deposits are indeed water ice, including imaging within the permanently shaded interiors of some of the craters, such as Prokofiev and Fuller. Instrument: Mercury Dual Imaging System (MDIS) Arecibo Radar Image: In yellow (Harmon et al., 2011, Icarus 211, 37-50) http://photojournal.jpl.nasa.gov/catalog/PIA19411

  14. Mercury Sodium Tail

    NASA Image and Video Library

    2015-04-16

    This image from NASA MESSENGER spacecraft is stitched together from thousands of observations made over the past 4 years by the MASCS/UVVS instrument, which measures sunlight scattered off of Mercury tenuous atmosphere. Scattered sunlight gives the sodium a bright orange glow. This scattering process also gives sodium atoms a push - this "radiation pressure" is strong enough, during parts of Mercury's year, to strip the atmosphere and give Mercury a long glowing tail. Someone standing on Mercury's nightside at the right time of year would see a faint orange similar to a city sky illuminated by sodium lamps! Instrument: Mercury Atmospheric and Surface Composition Spectrometer (MASCS)/Ultraviolet and Visible Spectrometer (UVVS) http://photojournal.jpl.nasa.gov/catalog/PIA19418

  15. Mercury Project

    NASA Image and Video Library

    1959-01-01

    Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.

  16. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  17. Signs and symptoms of mercury-exposed gold miners.

    PubMed

    Bose-O'Reilly, Stephan; Bernaudat, Ludovic; Siebert, Uwe; Roider, Gabriele; Nowak, Dennis; Drasch, Gustav

    2017-03-30

    areas. The mercury exposure needs to be urgently reduced. Health care systems need to be prepared for this emerging problem of chronic mercury intoxication among exposed people. Int J Occup Med Environ Health 2017;30(2):249-269. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  19. A regional high resolution model of the marine mercury cycle.

    NASA Astrophysics Data System (ADS)

    Bieser, J.; Daewel, U.; Schrum, C.

    2017-12-01

    One of the main sources for mercury intoxication is the uptake of methylmercury from sea food. However, only little is known about the dynamics of methylmercury in the marine environment and its accumulation along the food chain. To further our understanding of the pathways from anthropogenic emissions of elemental mercury to the bio-accumulation of methylmercury in fish we developed the first regional Eulerian three dimensional multi-media chemistry transport model (MECOSMO) that includes atmosphere, ocean, and ecosystem. The marine part of the model includes a complete representation of the marine ecosystem ranging from phytoplankton up to higher trophic levels, including fish. We used the MECOSMO model to reconstruct mercury concentrations in water and biota in the North- and Baltic Sea for the past 60 years. Based on our model we examined the natural short and longterm variability of the system as well as long term trends in the distribution and amount of methylmercury in water and fish. Based on our findings we show how models can be utilized to develop future measurement strategies for marine mercury. Finally, the presented modelling system can be used to project the impact of future perturbations in the system (i.e.: emission reductions, climate change, nutrient control) on the mercury accumulation in sea food. Thereby, supporting the implementation of the Minamata Convention on Mercury on a regional scale by enabling us to estimate the impact of emission reductions on the marine mercury cycle.

  20. Investigating Atmospheric Mercury with the U.S. Geological Survey Mobile Mercury Laboratory

    USGS Publications Warehouse

    Kolker, Allan

    2007-01-01

    Atmospheric mercury is thought to be an important source of mercury present in fish, resulting in numerous local, statewide, tribal, and province-wide fish consumption advisories in the United States and Canada (U.S. Environmental Protection Agency, 2007a). To understand how mercury occurs in the atmosphere and its potential to be transferred from the atmosphere to the biosphere, the U.S. Geological Survey (USGS) has been investigating sources and forms of atmospheric mercury, especially in locations where the amount of mercury deposited from precipitation is above average.

  1. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  2. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  3. Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

    EPA Pesticide Factsheets

    Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

  4. Biodegradation of Phenylmercuric Acetate by Mercury-Resistant Bacteria

    PubMed Central

    Nelson, J. D.; Blair, W.; Brinckman, F. E.; Colwell, R. R.; Iverson, W. P.

    1973-01-01

    Selected cultures of mercury-resistant bacteria degrade the fungicide-slimicide phenylmercuric acetate. By means of a closed system incorporating a flameless atomic absorption spectrophotometer and a vapor phase chromatograph, it was demonstrated that elemental mercury vapor and benzene were products of phenylmercuric acetate degradation. PMID:4584577

  5. Protecting the Public From Mercury Exposure: Success Through Microexchange Events

    PubMed Central

    Shoemaker, Paul A.; Ghaemghami, Jalal

    2003-01-01

    Mercury is a growing environmental threat that can cause serious health problems and birth defects. Household thermometers are high-risk sources of mercury because most people lack the knowledge to properly dispose of one when it is broken. The Boston Public Health Commission’s Environmental Health Office, with local and national partners, created the Boston Mercury Thermometer Exchange Program to address this hazard. Large central exchanges are successful, but multiple smaller targeted “microexchanges” can be another effective way to reach the general public and specific vulnerable subpopulations such as the elderly, the homebound disabled, or recent immigrants. By conducting exchanges in community health centers and public housing developments for the elderly and disabled, and by working through home health care providers, the program collected 4477 thermometers. PMID:14652320

  6. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less

  7. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  8. Exposure to mercury in the mine of Almadén

    PubMed Central

    Gómez, Montserrat García; Klink, José Diego Caballero; Boffetta, Paolo; Español, Santiago; Sällsten, Gerd; Quintana, Javier Gómez

    2007-01-01

    Objectives To describe the process for obtaining mercury and the historical exposure of Almadén miners to mercury. Methods Information on every workplace and historical data on production, technological changes in the productive process and biological and environmental values of mercury was collected. A job‐exposure matrix was built with these values and the exposure to inorganic mercury was estimated quantitatively as μg/l of urine mercury. A cumulative exposure index was calculated for every worker by adding the estimates for every year in the different workplaces. Results In the mine, the highest exposures occurred during drilling, with values up to 2.26 mg/m3 in air, 2194 μg/l in urine and 374 μg/l in blood. Furnace operation and cleaning were the tasks with the highest values in metallurgy, peaking up to 3.37 mg/m3. The filling of bottles with mercury by free fall gave values within a range of 1.13–2.43 mg/m3 in air; these values dropped to 0.32–0.83 mg/m3 after introducing a new ventilation system. The toxicity effects of high doses of inorganic mercury on the central nervous and urinary systems have been known for decades. Conclusions The exposure of the workers in Almadén mines to mercury has been very high. The extremely high content cinnabar ore of the mine explains the increased concentrations of mercury in air at the work places. This, together with inadequate working conditions, explains the high mercury levels found in blood and urine during the study period. PMID:17227836

  9. Distribution of mercury in the environment at Almaden, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrand, S.G.; Huckabee, J.W.; Diaz, F.S.

    1980-10-01

    An ecological survey of the concentration and distribution of mercury in terrestrial and aquatic systems near the mercury mine at Almaden, Spain, was initiated in 1974. Field studies were completed in 1977, and chemical analyses were completed in 1979. Sample collection at Almaden followed a trophic-level approach in which certain compartments were sampled at a given instant in time (fall 1974, fall 1975, spring 1976, fall 1976, spring 1977). Mean total mercury concentration in terrestrial plants (8 taxa combined) ranged from >100 ..mu..g/g within 0.5 km of the mine to 1 ..mu..g/g 20 km distant from the mine. Different plantmore » species had different affinities for mercury, but moss species usually had higher total mercury concentration than vascular plants. Woody plants were lower in mercury concentration than forbs. Total mercury concentration in muscle, brain, kidney, and liver tissue from mice was highest at a station near the stream receiving liquid effluent from the mine (mean total mercury at this station ranging from 0.18 ..mu..g/g in muscle to 4.74 ..mu..g/g in kidney). Approximately 15 to 30% of total mercury in mouse tissue was in the methylated form. Total mercury concentration in muscle tissue from house sparrows varied inversely with distance from the mine, with highest concentrations exceeding 0.1 ..mu..g/g. Approximately 1 to 4% of total mercury in sparrow muscle was in the methylated form.« less

  10. Geochemistry of selected mercury mine-tailings in the Parkfield Mercury District, California

    USGS Publications Warehouse

    Rytuba, James J.; Kotlyar, Boris B.; Wilkerson, Gregg; Olson, Jerry

    2001-01-01

    The Parkfield mercury district is located in the southern part of the California Coast Range mercury mineral belt and contains three silica-carbonate-type mercury deposits that have had significant mercury production. Mercury was first produced in the district in 1873, but the main period of production occurred from 1915-1922. Total production from the district is about 5,000 flasks of mercury (a flask equals 76 pounds of mercury) with most production coming from the Patriquin mine (1,875 flasks), and somewhat less from the King (1,600 flasks) and Dawson (1,470 flasks) mines. Several other small prospects and mines occur in the district but only minor production has come from them. In 1969, Phelan Sulphur Company carried out mineral exploration at the King mine and announced the discovery of 55,000 tons of mercury ore with an average grade of 5.2 pounds per ton. The King mine is located on federal land administered by the U.S. Bureau of Land Management. Several other parcels of federal land are present adjacent to other mines and prospects in the Parkfield district. An environmental assessment of mine sites on and adjacent to federal land was carried out to determine the amount of mercury and other trace metals present in mine wastes and in sediments from streams impacted by past mining.

  11. Retention of mercury by salmon

    USGS Publications Warehouse

    Amend, Donald F.

    1970-01-01

    Consuming fish that have been exposed repeatedly to mercury derivatives is a potential public health hazard because fish can accumulate and retain mercury in their tissues (Rucker, 1968). Concern has been expressed in the United States because mercurials have been used extensively in industry and as prophylactic and therapeutic agents in fish hatcheries. Rucker and Amend (1969) showed that yearling rainbow trout (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) exposed to mercurials accumulated excessive amounts of mercury in many tissues. Further, Rucker and Amend (1969) concluded that wild fish that ate mercury-contaminated fish also could contain high mercury levels. Although mercury was eliminated from most tissues within several months, substantial levels remained in the kidney for more than 33 weeks after the last exposure. Since high levels of mercury can be retained in the kidney for an undetermined time, it is possible that returning adult salmon exposed to mercurials as juveniles could constitute a potential hazard to public health. The purpose of this study was to determine whether such fish contained high residual levels of mercury.

  12. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    PubMed

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  13. The effects of chronic oral methyl mercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies.

    PubMed

    Fowler, B A; Brown, H W; Lucier, G W; Krigman, M R

    1975-03-01

    This report describes morphometric and biochemical changes in the renal lysosome system of rats exposed to 3, 5, or 10 p.p.m. concentrations of methyl mercury hydroxide in their drinking water for 4 weeks. Increased numbers of dense, granular lysosomes, previously found to contain mercury, were observed in tubule cells of rats receiving the 3 and 5 p.p.m. dose levels but not those of the 10 p.p.m. group. Tubule cells from animals given the 10 p.p;m. dose level displayed proteinaceous vacuoles with dense crystalloid structures, apical cytoplasmic extrusion, and cellular degeneration; Mitochondrial swelling within tubule cells of treated animals showed a marked dose-response relationship. Renal microsomal activity levels of ss-glucuronidase were strongly inhibited by methyl mercury hydroxide exposure at all dose levels, whereas the activity levels of acid phosphatase were unchanged. Lysosomal beta-glucuronidase was also inhibited by methyl mercury hydroxide exposure, whereas lysosomal acid phosphatase showed approximately a 2-fold increase in activity. The results are discussed in relation to the role of lysosomes in mediating the nephrotoxic effects of methyl mercury and other toxic trace metals.

  14. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less

  15. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  16. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  17. Mission provides new findings about Mercury

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-06-01

    Mercury once was considered by even some planetary scientists as “an example, to use a phrase coined by a very famous scientist, as ‘one of the burnt-out cinders of the solar system.’ And it is anything but that,” Sean Solomon, who is principal investigator of NASA's Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft, said at a 16 June briefing at NASA headquarters in Washington, D. C. Scientists at the briefing announced significant new findings about the planet's chemical composition, topography, magnetic field, and other features. MESSENGER has now logged more than 1 Mercurian year (about 88 Earth days) as the first satellite in orbit around the closest planet to the Sun, and new understandings are being gleaned from the spacecraft's imaging system, which has already taken more than 20,000 images of Mercury. In addition, the laser altimeter has operated more than 2 million times from orbit thus far, and other instruments are also gathering extensive data about the planet.

  18. Mercury distribution characteristics in primary manganese smelting plants.

    PubMed

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-08-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.

  19. The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.-H.; Auster, H.-U.; Heyner, D.; Okrafka, K.; Carr, C.; Berghofer, G.; Anderson, B. J.; Balogh, A.; Baumjohann, W.; Cargill, P.; Christensen, U.; Delva, M.; Dougherty, M.; Fornaçon, K.-H.; Horbury, T. S.; Lucek, E. A.; Magnes, W.; Mandea, M.; Matsuoka, A.; Matsushima, M.; Motschmann, U.; Nakamura, R.; Narita, Y.; O'Brien, H.; Richter, I.; Schwingenschuh, K.; Shibuya, H.; Slavin, J. A.; Sotin, C.; Stoll, B.; Tsunakawa, H.; Vennerstrom, S.; Vogt, J.; Zhang, T.

    2010-01-01

    The magnetometer (MAG) on the Mercury Planetary Orbiter (MPO) of the joint European-Japanese BepiColombo mission to planet Mercury is a low-noise, tri-axial, dual-sensor, digital fluxgate instrument with its sensors mounted on a 2.8-m-long boom. The primary MPO/MAG science objectives are to determine the spatial and temporal structure of the magnetic field in the Hermean system, in particular the structure and origin of the intrinsic magnetic field of Mercury. MPO/MAG has a dynamic measurement range of ±2000nT with a resolution of 2 pT during operation along the near-polar orbit of the MPO spacecraft around Mercury. MPO/MAG is designed to provide measurements with rates between 0.5 and 128 vectors/s. In cooperation with its sister magnetometer instrument, MMO/MGF on board the BepiColombo Mercury Magnetospheric Orbiter (MMO), MPO/MAG will be able to distinguish between temporal and spatial magnetic field variations in the magnetically closely coupled Hermean system.

  20. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    . Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (<3 milligrams per kilogram). In contrast, data from the November 2011 study indicated that the concentrations of filtered total mercury in the well located in the central fill area had tidally influenced concentrations of up to 500 nanograms per liter and elevated concentrations of total mercury of solids (29–41 milligrams per kilogram). This suggests that releases from this area, which has not been previously studied in detail, may be substantial. Previous measurements of total mercury of suspended solids in the dry dock discharges revealed high concentration of total mercury when suspended-solids concentrations were low. However, this result could have been owing to bias from sequential sampling during changing suspended‑solids concentrations. Sampling of two dry dock systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex

  1. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  3. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of

  4. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria

  5. CRYOGENIC TRAPPING OF OXIDIZED MERCURY SPECIES FROM COMBUSTION FLUE GAS. (R827649)

    EPA Science Inventory

    To further understand the speciation and partitioning of mercury species in combustion systems, it is necessary to be able to identify and quantitate the various forms of oxidized mercury. Currently accepted methods for speciating mercury (Ontario Hydro Method, EPA Method 29, ...

  6. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    PubMed

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CAPTURE OF MERCURY IN COMBUSTION SYSTEMS BY IN SITU-GENERATED TITANIA PARTICLES WITH UV IRRADIATION

    EPA Science Inventory

    In-situ-generated sorbent titania particles with ultraviolet (UV) irradiation have been shown to be effective in capture of mercury in combustor exhausts. Results of experiments conducted with the (1) sorbent precursor only, (2) mercury only, (3) mercury and UV irradiation, and (...

  8. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  9. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  10. Unveiling Mercury's Mysteries with BepiColombo - an ESA/JAXA Mission to Explore the Innermost Planet of our Solar System

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2017-12-01

    NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In addition, the BepiColombo mission will provide a rare opportunity to collect multi-point measurements in a planetary environment. This will be particularly important at Mercury because of short temporal and spatial scales in the Mercury's environment. The foreseen orbits of the MPO and MMO will allow close encounters of the two spacecrafts throughout the mission. The MPO scientific payload comprises eleven instruments/instrument packages; The MMO comprises 5 instruments/instrument packages to the the study of the environment. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The BepiColombo mission will complement and follow up the work of NASA's MESSENGER mission by

  11. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; hide

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  12. A whole new Mercury: MESSENGER reveals a dynamic planet at the last frontier of the inner solar system

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Hauck, , Steven A.

    2016-11-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.

  13. Studying the energy variation in the powered Swing-By in the Sun-Mercury system

    NASA Astrophysics Data System (ADS)

    Ferreira, A. F. S.; Prado, A. F. B. A.; Winter, O. C.; Santos, D. P. S.

    2017-10-01

    A maneuver where a spacecraft passes close to Mercury and uses the gravity of this body combined with an impulse applied at the periapsis, with different magnitudes and directions, is presented. The main objective of this maneuver is the fuel economy in space missions. Using this maneuver, it is possible to insert the spacecraft into an orbit captured around the Sun or Mercury. Trajectories escaping the Solar System are also obtained and mapped. Maps of the spacecraft energy variation relative to the Sun and the types of orbits resulting from the maneuver are presented, based in numerical integrations. The results show that applying the impulse out of the direction of motion can optimize the maneuver due to the effect of the combination of the impulse and the gravity.

  14. Contribution of Shellfish Consumption to Lower Mercury Health Risk for Residents in Northern Jiaozhou Bay, China.

    PubMed

    Zhang, Lei; Zhang, Lei

    2015-01-01

    Fish and marine mammal consumption are an important pathway for human exposure to mercury. The low mercury content in shellfish poses a low mercury health risk to people who consume shellfish. The objectives of this study are to detect mercury concentrations in different species of shellfish and to calculate the mercury health risk from shellfish consumption among traditional residents near northern Jiaozhou Bay. A total of 356 shellfish samples, which comprised 7 species from 5 different places in northern Jiaozhou Bay, were collected from April to June in 2012. The average mercury content in the collected shellfish ranged from 0.024 mg·kg(-1) to 0.452 mg·kg(-1). A total of 44 shellfish samples (12.36%) had mercury levels exceeding the national pollution-free aquatic products limit (0.3 mg·kg(-1)). Generally, the viscus had the highest mercury content among all parts of the shellfish. A positive correlation between mercury content and total weight/edible part weight was found in most species of the collected shellfish. The results showed that shellfish consumption resulted in the lower risk of mercury exposure to residents based on the calculation of daily intake (DI) and target hazard quotient (THQ).

  15. Impact of wildfire on levels of mercury in forested watershed systems - Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Woodruff, Laurel G.; Sandheinrich, Mark B.; Brigham, Mark E.; Cannon, William F.

    2009-01-01

    Atmospheric deposition of mercury to remote lakes in mid-continental and eastern North America has increased approximately threefold since the mid-1800s (Swain and others, 1992; Fitzgerald and others, 1998; Engstrom and others, 2007). As a result, concerns for human and wildlife health related to mercury contamination have become widespread. Despite an apparent recent decline in atmospheric deposition of mercury in many areas of the Upper Midwest (Engstrom and Swain, 1997; Engstrom and others, 2007), lakes in which fish contain levels of mercury deemed unacceptable for human consumption and possibly unacceptable for fish-consuming wildlife are being detected with increasing frequency. In northern Minnesota, Voyageurs National Park (VNP) (fig. 1) protects a series of southern boreal lakes and wetlands situated on bedrock of the Precambrian Canadian Shield. Mercury contamination has become a significant resource issue within VNP as high concentrations of mercury in loons, bald eagle eaglets, grebes, northern pike, and other species of wildlife and fish have been found. The two most mercury-contaminated lakes in Minnesota, measured as methylmercury in northern pike (Esox lucius), are in VNP. Recent multidisciplinary U.S. Geological Survey (USGS) research demonstrated that the bulk of the mercury in lake waters, soils, and fish in VNP results from atmospheric deposition (Wiener and others, 2006). The study by Wiener and others (2006) showed that the spatial distribution of mercury in watershed soils, lake waters, and age-1 yellow perch (Perca flavescens) within the Park was highly variable. The majority of factors correlated for this earlier study suggested that mercury concentrations in lake waters and age-1 yellow perch reflected the influence of ecosystem processes that affected within-lake microbial production and abundance of methylmercury (Wiener and others, 2006), while the distribution of mercury in watershed soils seemed to be partially dependent on forest

  16. Characteristics and distributions of atmospheric mercury ...

    EPA Pesticide Factsheets

    Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m−3 and the lowest 6.1 ± 3.9 ng·m−3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m−3 and the minimum average 55.9 pg·m−3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m−3 was measured at GPP, and the lowest level of 20.5 pg·m−3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM. Mercury (Hg) is a persistent hazardous pollutant with adverse effects on human health and wildlife due mainly to bioaccumulation and biomagnification in aquatic food webs (Lindqvist et al. 1991; Schroeder and Munt

  17. Reducing Mercury Pollution from Artisanal and Small-Scale Gold Mining

    EPA Pesticide Factsheets

    To reduce airborne mercury emissions from these Gold Shops, EPA and the Argonne National Laboratory (ANL) have partnered to design a low cost, easily constructible technology called the Gold Shop Mercury Capture System (MCS).

  18. MESSENGER's first Mercury flyby: A summary of scientific observations

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; McNutt, Ralph L.; Boynton, William V.; Evans, Larry G.; Head, James W.; Krimigis, Stamatios M.; Murchie, Scott; Phillips, Roger J.; Slavin, James A.; Zuber, Maria T.

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, will be the first probe to orbit the planet Mercury in March 2011. Launched in August 2004, MESSENGER successfully completed the first of three flybys of Mercury in January 2008. The Mercury Dual Imaging System acquired an 11-color mosaic of part of the hemisphere not seen by Mariner 10, including the entire Caloris basin; several large monochrome mosaics at a range of resolutions; a series of color frames designed for photometric analysis; and inbound and outbound movies. The Mercury Atmospheric and Surface Composition Spectrometer obtained the first high-resolution spectral reflectance measurements (at ultraviolet to near-infrared wavelengths) of surface composition, conducted limb scans of exospheric species, and mapped the composition and structure of the tail region. The Magnetometer measured Mercury's internal field at low latitudes and documented the major plasma boundaries of Mercury's magnetosphere. The Energetic Particle and Plasma Spectrometer made the first measurements of low-energy ions in Mercury's magnetosphere. The Mercury Laser Altimeter carried out the first space altimetric profile of the planet. Other instruments in the payload provided baseline measurements that will aid in the interpretation of data from the mission orbital phase. Together, the MESSENGER flyby observations have begun to advance our understanding of the innermost planet.

  19. Mercury Detection with Gold Nanoparticles: Investigating Fundamental Phenomena and Expanding Applications

    NASA Astrophysics Data System (ADS)

    Crosby, Jeffrey Scott

    Mercury is a pollutant of grave concern with well documented neurological and developmental health impacts. Better sensing methodology would improve detection and control of mercury and thus reduce its health burden. Gold nanoparticles provide a sensing medium with potential advantages in sensitivity, selectivity, robustness, and cost over established techniques. Mercury readily adsorbs onto the surface of the gold changing the localized surface plasmon resonance which is measured as a shift in the peak optical absorbance wavelength. This shift is dependent on the mercury concentration and predictable with classical electromagnetism. This work investigates some of the fundamental relationships driving sensor response. The effects of mass transfer and surface kinetics on mercury/gold nanoparticle adsorption are determined with analytical models and experimental results based on impinging flow geometry. To decouple mass transfer and surface kinetics adsorption, electrical analogy models are constructed and fit to the experimental data. The models can account for variations in flow conditions and surface coatings on the nanoparticles. These models are generalizable to other systems. Results from these fundamental investigations are used to improve and extend sensor performance. The time response or collection efficiency is optimized depending on system requirements. Using the knowledge gained, the applicability of gold nanoparticle mercury sensors is extended to a fiber optic based system and aqueous detection. Nanorods deposited on the surface of a fiber optic cable have a linear response with concentration and are able to detect mercury down to 1.0 mug/m3. The modification of an established oxidation/reduction scheme for use with the sensor allows for the detection of ionic and organic mercury from water samples which ordinarily would not be reactive with gold nanoparticles. The aqueous sensor was able to detect mercury below the EPA's drinking water limit.

  20. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    NASA Technical Reports Server (NTRS)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  1. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida Strain

    PubMed Central

    von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W.-D.; Wagner-Döbler, I.

    1999-01-01

    A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater. PMID:10583977

  2. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  3. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance

    PubMed Central

    Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.

    2016-01-01

    Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745

  4. [Functional state of vision system under chronic mercury intoxication].

    PubMed

    Iablonskaia, D A; Mishchenko, T S; Lakhman, O L; Rukavishnikov, V S; Malyshev, V V

    2010-01-01

    Examination of chronic mercury intoxication patients in distant (post-contact) period revealed marked vision disorders and inhibited neuro-conductivity--inhibited neuronal structures of retina and optic nerve.

  5. Levels of mercury and pathological changes in patients with organomercury poisoning

    PubMed Central

    Al-Saleem, T.

    1976-01-01

    Autopsies were carried out on 4 adults who died during the outbreak of mercury poisoning in Iraq and on 4 infants who were exposed to organomercury in utero. Mercury levels in tissues and in some body fluids were determined. The high levels of mercury in the central nervous system and the marked neuronal degeneration are noted. PMID:1086172

  6. Assessment of Gaseous Oxidized Mercury Measurement Accuracy at an Atmospheric Mercury Network (AMNet) Site

    NASA Astrophysics Data System (ADS)

    Luke, W. T.

    2016-12-01

    Recent laboratory and field research has documented and explored the biases and inaccuracies of the measurement of gaseous oxidized mercury (GOM) compounds using KCl-coated denuders. We report on the development of a simple, automated GOM calibration source and its deployment at NOAA/Air Resources Laboratory's Atmospheric Mercury Network (AMNet) site at the Mauna Loa Observatory (MLO) on the island of Hawaii. NOAA/ARL has developed a permeation-tube based calibration source with an extremely simple flow path that minimizes surface adsorptive effects and losses. The source was used to inject HgBr2 into one of two side-by-side Tekran® mercury speciation systems at MLO to characterize GOM measurement accuracy under a variety of atmospheric conditions. Due to its unique topography and meteorology, MLO experiences katabatic (upslope/downslope) mesoscale flow superimposed on the synoptic trade wind circulation of the tropics. Water vapor, ozone, and other trace atmospheric constituents often display pronounced diurnal variations at the site, which frequently encounters air characteristic of the middle free troposphere at night, and of the tropical marine boundary layer during the day. Results presented here will assist in the better understanding of the biases underlying GOM measurements in global mercury monitoring networks and may allow the development of correction factors for ambient data.

  7. POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY

    EPA Science Inventory

    The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...

  8. Mercury: Reusable software application for Metadata Management, Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.

    2009-12-01

    Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury is itself a reusable toolset for metadata, with current use in 12 different projects. Mercury also supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects To balance these common and project-specific needs, Mercury’s architecture includes three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of configuration files. The harvested files are then passed to the Indexing system, where each of the fields in these structured metadata records are indexed properly, so that the query engine can perform

  9. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    ... up in tiny cracks and spaces in your house. • • Mercury can vaporize (evaporate) into the air in your house. The vapor cannot be seen or smelled. • • Mercury ... up in tiny cracks and spaces in your house. • • Can vaporize (evaporate) into the air in your ...

  10. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.

    PubMed

    Chen, Chuanmin; Liu, Songtao; Gao, Yang; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg(2+) to Hg(0) and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg(0) reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl(-) concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg(0) reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg(0) reemission rates decreased as the O2 concentration of flue gas and Cl(-) concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl(-) concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems.

  11. Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry

    PubMed Central

    Liu, Songtao; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg2+ to Hg0 and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg0 reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl− concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg0 reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg0 reemission rates decreased as the O2 concentration of flue gas and Cl− concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl− concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems. PMID:24737981

  12. Biomarkers of mercury exposure in two eastern Ukraine cities

    USGS Publications Warehouse

    Gibb, H.; Haver, C.; Kozlov, K.; Centeno, J.A.; Jurgenson, V.; Kolker, A.; Conko, K.M.; Landa, E.R.; Xu, H.

    2011-01-01

    This study evaluates biomarkers of mercury exposure among residents of Horlivka, a city in eastern Ukraine located in an area with geologic and industrial sources of environmental mercury, and residents of Artemivsk, a nearby comparison city outside the mercury-enriched area. Samples of urine, blood, hair, and nails were collected from study participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in mines. Median biomarker mercury concentrations in Artemivsk were 0.26 ??g/g-Cr (urine), 0.92 ??g/L (blood), 0.42 ??g/g (hair), 0.11 ??g/g (toenails), and 0.09 ??g/g (fingernails); median concentrations in Horlivka were 0.15 ??g/g-Cr (urine), 1.01 ??g/L (blood), 0.14 ??g/g (hair), 0.31 ??g/g (toenails), and 0.31 ??g/g (fingernails). Biomarkers of mercury exposure for study participants from Horlivka and Artemivsk are low in comparison with occupationally exposed workers at a mercury recycling facility in Horlivka and in comparison with exposures known to be associated with clinical effects. Blood and urinary mercury did not suggest a higher mercury exposure among Horlivka residents as compared with Artemivsk; however, three individuals living in the immediate vicinity of the mercury mines had elevated blood and urinary mercury, relative to overall results for either city. For a limited number of residents from Horlivka (N = 7) and Artemivsk (N = 4), environmental samples (vacuum cleaner dust, dust wipes, soil) were collected from their residences. Mercury concentrations in vacuum cleaner dust and soil were good predictors of blood and urinary mercury. Copyright ?? 2011 JOEH, LLC.

  13. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  14. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    USGS Publications Warehouse

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  15. Multi-decadal Dynamics of Mercury in a Complex Ecosystem

    NASA Astrophysics Data System (ADS)

    Levin, L.

    2016-12-01

    A suite of air quality and watershed models was applied to track the ecosystem contributions of mercury (Hg), as well as arsenic (As), and selenium (Se) from local and global sources to the San Juan River basin in the Four Corners region of the American Southwest. Long-term changes in surface water and fish tissue mercury concentrations were also simulated, out to the year 2074.Atmospheric mercury was modeled using a nested, spatial-scale modeling system comprising GEOS-Chem (global scale) and CMAQ-APT (national and regional) models. Four emission scenarios were modeled, including two growth scenarios for Asian mercury emissions. Results showed that the average mercury deposition over the San Juan basin was 21 µg/m2-y. Source contributions to mercury deposition range from 2% to 9% of total deposition prior to post-2016 U.S. controls for air toxics regulatory compliance. Most of the contributions to mercury deposition in the basin are from non-U.S. sources. Watershed simulations showed power plant contributions to fish tissue mercury never exceeded 0.035% during the 85-year model simulation period, even with the long-term growth in fish tissue mercury over that period. Local coal-fired power plants contributed relatively small fractions to mercury deposition (less than 4%) in the basin; background and non-U.S. anthropogenic sources dominated. Fish-tissue mercury levels are projected to increase through 2074 due to growth projections for non-U.S. emission sources. The most important contributor to methylmercury in the lower reaches of the watershed was advection of MeHg produced in situ at upstream headwater locations.

  16. Methods for Measuring Specific Rates of Mercury Methylation and Degradation and Their Use in Determining Factors Controlling Net Rates of Mercury Methylation

    PubMed Central

    Ramlal, Patricia S.; Rudd, John W. M.; Hecky, Robert E.

    1986-01-01

    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14C end products of 14CH3HgI demethylation. This method was used in conjunction with a 203Hg2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding. PMID:16346959

  17. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    NASA Astrophysics Data System (ADS)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http

  18. Thief process for the removal of mercury from flue gas

    DOEpatents

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  19. MESSENGER: The Discovery Mission to Mercury

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Solomon, S. C.; Gold, R. E.; Domingue, D. L.

    2004-12-01

    NASA's MErcury, Surface, Space ENvironment, GEochenistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, has begun its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: What planetary formational processes led to Mercury's high metal/silicate ratio? What is the geological history of Mercury? What are the nature and origin of Mercury's magnetic field? What are the structure and state of Mercury's core? What are the radar-reflective materials at Mercury's poles? What are the important volatile species and their sources and sinks on and near Mercury? Planet formational hypotheses will be tested by measuring the surface abundances of major elements by X-ray and gamma-ray spectrometry. The geological history will be determined from high-resolution color imaging of the heavily cratered highlands, intercrater plains, and smooth plains. MESSENGER will provide detailed views of both the Caloris basin and its antipodal terrain. Topographic, mineralogical, and elemental abundance data will be used to seek evidence of volcanic features and units. Measurement of Mercury's magnetic field and its interaction with the solar wind will distinguish the intrinsic dipole and quadrupole components while separating these from the current systems driven by solar-wind-induced convection. The structure of the internal field will put constraints on dynamo models. Such models will also be constrained by measuring Mercury's libration to determine the extent of a fluid outer core. Both water ice and sulfur have been postulated as major constituents of the high-radar-backscatter polar deposits. MESSENGER will combine gamma-ray and neutron spectrometry of the surface with ultraviolet spectrometry and in situ particle measurements to detect both neutral and charged species originating from the surface. Such measurements will address the

  20. Mercury contamination of aquatic ecosystems

    USGS Publications Warehouse

    Krabbenhoft, David P.; Rickert, David A.

    1995-01-01

    Mercury has been well known as an environmental pollutant for several decades. As early as the 1950's it was established that emissions of mercury to the environment could have serious effects on human health. These early studies demonstrated that fish and other wildlife from various ecosystems commonly attain mercury levels of toxicological concern when directly affected by mercury-containing emissions from human-related activities. Human health concerns arise when fish and wildlife from these ecosystems are consumed by humans. During the past decade, a new trend has emerged with regard to mercury pollution. Investigations initiated in the late 1980's in the northern-tier states of the U.S., Canada, and Nordic countries found that fish, mainly from nutrient-poor lakes and often in very remote areas, commonly have high levels of mercury. More recent fish sampling surveys in other regions of the U.S. have shown widespread mercury contamination in streams, wet-lands, reservoirs, and lakes. To date, 33 states have issued fish consumption advisories because of mercury contamination. These continental to global scale occurrences of mercury contamination cannot be linked to individual emissions of mercury, but instead are due to widespread air pollution. When scientists measure mercury levels in air and surface water, however, the observed levels are extraordinarily low. In fact, scientists have to take extreme precautions to avoid direct contact with water samples or sample containers, to avert sample contamination (Fig 3). Herein lies an apparent discrepancy: Why do fish from some remote areas have elevated mercury concentrations, when contamination levels in the environment are so low?

  1. Thirty-five year review of a mercury monitoring service for Scottish dental practices.

    PubMed

    Duncan, A; O'Reilly, D Stj; McDonald, E B; Watkins, T R; Taylor, M

    2011-02-12

    To review a long-standing mercury monitoring service offered to staff in dental practices in Scotland. During the first 20 years of the service, dentists and their staff were contacted by letter and invited to participate. Respondents were asked to collect samples of head hair, pubic hair, fingernail and toenail for analysis of mercury. After 1995, head hair samples were collected initially and further samples were only measured if head hair mercury was elevated. At the start of this scheme many staff, including administrative staff, had systemic exposure to mercury (defined as increased mercury in all four samples). Incidents of exposure have decreased over the 35 years and are now very rare. Male staff were found to have higher mercury concentrations than female staff and dentists tended to have higher concentrations than other staff. Staff working in dental practices more than five years old had small but discernable increases in head hair mercury concentration. In recent years the use of reusable capsules such as Dentomats has been associated with a slight but statistically significant increase in head hair mercury concentrations when compared to the use of encapsulated amalgam systems. Staff wearing open-toed footwear had significantly higher toenail mercury concentrations compared to those who wore shoes. Exposure of staff to mercury in Scottish dental practices is currently now very low. This is probably as a result of increased awareness to the toxicity of mercury and improved methods of preparing amalgam. It may be possible to reduce exposure further, although probably only slightly, by upgrading practices and using encapsulated mercury amalgam.

  2. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  3. Health and environmental impact of mercury: Past and present experience

    NASA Astrophysics Data System (ADS)

    Rivera, A. T. F.; Cortes-Maramba, N. P.; Akagi, H.

    2003-05-01

    Mercury exists in various forms including metallic mercury, inorganie and organic mercury compounds. Research studies show that contamination brought about by natural and man-made activities is clearly a growing problem today. In 1956, the first recognized poisoning outbreaks occurred. Minamata Disease is a disorder of the central nervous system caused by the consumption of fish and shellfish contaminated with methylmercury. Clinical manifestation differs from inorganic mercury poisoning in which the kidneys and the renal system are damaged. The toxidrome consists of sensory disorders in the distal portion of the four extremities, cerebral ataxia, bilateral concentric constriction of the visual field. central disorder of ocular movement, central hearing impairment and disequilibrium. Fetal type Minamata Disease bom of mothers being exposed to methylmercury during pregnancy resulted in conditions similar to those associated with “infantile cerebral palsy" were also documented. Measures to control environmental pollution were implemented such as the environmental restoration project, compensation and relief of victims as part of the health and environmental management undertaken by the government. At present, global research studies are focusing on long-term and low-dose inorganic and methyl mercury exposure; and developmental neurobehavioral toxicity including relevant environmental factors influencing mercury transformations, mass balances and partitioning in ecosystems.

  4. Mariner Venus-Mercury 1973 Project. Volume 1: Venus and Mercury 1 Encounters

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The primary mission report includes the Venus encounter and the first Mercury encounter. Plans and activities undertaken to successfully achieve the mission objectives are described. Operational activities are identified by mission operation system functions, providing a brief summary of each discipline. Spacecraft performance is summarized by subsystems.

  5. A review of dioxins/furans and methyl mercury in fish from the Penobscot river, located near Lincoln, Maine.

    PubMed

    Williams, Robert L; Cseh, Larry

    2007-04-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) was requested to review the analytical results of tissue samples from fish caught in the Penobscot river in Maine, calculate fish consumption limits and provide a public health opinion regarding the health implications associated with eating the contaminated fish. Fish consumption limits were calculated to provide guidance on the amount of fish that a person may eat monthly that would probably not pose a public health threat. Earlier, in 1987, the Maine Bureau of Health (BOH) issued a fish consumption advisory for portions of the Penobscot river to protect the public from exposures to dioxins/furans and methyl mercury-contaminated fish. From 1988 to 2003 the state of Maine conducted fish surveys at four locations along the Penobscot river to monitor the levels of dioxins/furans and methyl mercury contamination. In 2005, ATSDR reviewed the sampling results for two fish species (i.e., bottom feeders and predators) collected from the Penobscot river that revealed various levels of dioxins/furans and methyl mercury. The United States Environmental Protection Agency's (US EPA) guidance for evaluating potential health threats associated with contaminated fish recommends that a minimum of two target species be sampled including one predatory and one bottom feeding species. Target species are chosen to meet the following criteria: (1) known to accumulate high concentrations of target contaminants in their tissues; (2) normally populate the freshwater system being studied; (3) are routinely caught and consumed by anglers; (4) nonmigratory; (5) pollutant-tolerant; (6) easily identified; (7) abundant and easy to collect and (8) of sufficient size to provide adequate tissue samples for analyses of contaminants (US EPA, 2000). The analytical results of these fish tissue samples appear to indicate that toxic equivalency quotients concentrations of dioxins/furans have slightly decreased since 1988. In contrast, fish

  6. Transits of Venus and Mercury: Exoplanet Analogs in Our Solar System

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2012-05-01

    Since Johannes Kepler's predictions of transits of Mercury and Venus in 1631, and observations by Jeremiah Horrocks and William Crabtree of the 1639 transit of Venus, only 5 other transits of Venus have been observed: in 1761 and 1769, 1874 and 1882, and 2004. Expeditions were sent all over the world for the 18th and 19th century transits to follow the methods of Halley and others to determine the Astronomical Unit, giving the size and scale of the solar system, arguably the most important problem in astronomy for centuries. I will discuss how the infamous black-drop effect bedeviled astronomers in that quest for an accurate A.U., and how Glenn Schneider and I explained the effect through satellite observations of transits of Mercury, showing that it was not simply caused by the Cytherean atmosphere. During the 2004 transit, we worked with Richard Willson of ACRIMsat to detect the 0.1% drop in the Total Solar Irradiance, showing the effect of solar limb darkening, positioning such observations of transits of Venus and of Mercury as analogs to exoplanet transits. Our observations of the atmosphere of Venus with NASA's Transition Region and Coronal Explorer in 2004 led us to plan extensive observations of Venus's atmosphere and other phenomena during the June 5, 2012, transit of Venus, the last to be visible from Earth until 2117. We will have used NASA's Solar Dynamics Observatory, Hinode, ACRIMsat, and other spacecraft, and ground-based solar telescopes at Sacramento Peak, Kitt Peak, Big Bear, and Haleakala to observe the transit; I hope to give preliminary reports on these observations during this talk. Further, I will discuss the plans of Ehrenreich and colleagues for Hubble observations of this transit and our hopes of detecting transits of Venus and Earth as seen from Jupiter and Saturn over the next few years.

  7. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  8. The mercury levels in crustaceans and cephalopods from Peninsular Malaysia.

    PubMed

    Ahmad, Nurul Izzah; Noh, Mohd Fairulnizal Mohd; Mahiyuddin, Wan Rozita Wan; Jaafar, Hamdan; Ishak, Ismail; Azmi, Wan Nurul Farah Wan; Veloo, Yuvaneswary; Mokhtar, Fazlin Anis

    2015-09-01

    This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P > 0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide.

  9. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    PubMed

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  10. Mercury control in 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, S.; Durham, M.; Bustard, J.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbonmore » facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.« less

  11. CATALYTIC EFFECTS OF CARBON SORBENTS FOR MERCURY CAPTURE. (R827649C001)

    EPA Science Inventory

    Activated carbon sorbents have the potential to be an effective means of mercury control in combustion systems. Reactions of activated carbons in flow systems with mercury and gas stream components were investigated to determine the types of chemical interactions that occur on...

  12. Librations and obliquity of Mercury from the BepiColombo laser altimetry, radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V. M.

    2010-12-01

    Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the

  13. Field Demonstration of Enhanced Sorbent Injection for Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin Kang; Robert Schrecengost

    2009-01-07

    Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target ofmore » $$60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $$60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all

  14. BepiColombo: Exploring Mercury

    NASA Astrophysics Data System (ADS)

    Geelen, K.; Novara, M.; Fugger, S.; Benkhoff, J.

    2014-04-01

    BepiColombo is an interdisciplinary mission to explore Mercury, the planet closest to the sun, carried out jointly between the European Space Agency and the Japanese Aerospace Exploration Agency. The mission consists of two orbiters dedicated to the detailed study of the planet and of its magnetosphere, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The MPO is ESA's scientific contribution to the mission and comprises 11 science instruments. It is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit with a period of approximately 2.3 hours, a periapsis of 480 km and an apoapsis of 1500 km, providing excellent spatial resolution over the entire planet surface. The interplanetary transfer is performed by an Electric Propulsion Module, which is jettisoned when Mercury is reached. It will set off in July 2016 on a journey to the smallest and least explored terrestrial planet in our Solar System. When it arrives at Mercury in January 2024, it will endure temperatures in excess of 350 °C and gather data during its 1 year nominal mission, with a possible 1-year extension. The difficulty of reaching, surviving and operating in the harsh environment of a planet so close to the sun, makes BepiColombo one of the most challenging planetary projects undertaken by ESA so far. A range of major challenges need to be overcome to enable the mission including the electric propulsion system, development of a new Multi-Layer Insulation able to withstand the high temperatures, an original solar panel design, stringent pointing requirements to be maintained in extreme conditions varying from a solar flux of 10 solar constants to eclipse conditions etc. The scientific payload of both spacecraft will provide the detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. The scientific objectives focus on a global characterization of Mercury through the

  15. Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.

    Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.

    The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).

    The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  16. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  17. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE PAGES

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.; ...

    2015-09-15

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  18. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio

    2013-07-01

    magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less

  19. THE IMPORTANCE OF EMISSIONS SPECIATION TO THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF MERCURY

    EPA Science Inventory

    The atmospheric pathway of the global mercury cycle is believed to be the main source of mercury contamination to aquatic eco-systems throughout the United States and in most other nations where direct disposal of mercury to water has been largely eliminated. Although the spatia...

  20. Assessment of mercury in the Savannah River Site environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city ofmore » Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.« less

  1. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  2. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut Virgil I. "Gus" Grissom, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MR-4 mission, boosted by the Mercury-Redstone vehicle, made the second marned suborbital flight. The capsule, Liberty Bell 7, sank into the sea after the splashdown.

  3. Mercury Project

    NASA Image and Video Library

    1963-09-09

    Astronaut Alan B. Shepard, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The Freedom 7 spacecraft boosted by Mercury-Redstone vehicle for the MR-3 mission made the first marned suborbital flight and Astronaut Shepard became the first American in space.

  4. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  5. Investigation of a mercury speciation technique for flue gas desulfurization materials.

    PubMed

    Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R

    2009-08-01

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.

  6. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  7. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  8. Mercury speciation in piscivorous fish from mining-impacted reservoirs

    USGS Publications Warehouse

    Kuwabara, J.S.; Arai, Y.; Topping, B.R.; Pickering, I.J.; George, G.N.

    2007-01-01

    Guadalupe Reservoir (GUA), California, and Lahontan Reservoir (LAH), Nevada, U.S. are both affected either directly or indirectly by the legacy of gold and silver mining in the Sierra Nevada during the nineteenth century. Analysis of total mercury in fish from these lentic systems consistently indicate elevated concentrations (>1 ??g??g-1 wet weight; hereinafter, all concentrations are reported as wet weight unless indicated otherwise) well above the U.S. Environmenal Protection Agency's human consumption advisory level for fish (<0.3 ??g??g-1). Replicate X-ray absorption near edge structure (XANES) analyses on largemouth bass and hybrid striped bass from GUA and LAH were performed to determine predominant chemical species of mercury accumulated by these high-trophic-level piscivores that are exposed to elevated mercury through trophic transfer in mining-impacted lentic systems. Despite distinct differences in mercury source, the proximity of the source, and concentrations of complexing ligands, results of XANES analysis clearly indicated that mercury accumulated in these individual fish from the two reservoirs were dominated by methylmercury cysteine complexes. These findings are consistent with results from commercial fish species inhabiting marine environments which are presumed to include differing mercury sources (e.g., atmospheric, hydrothermal, or benthic). The dominance of methylmercury cysteine complexes in muscle tissues of fish obtained from such contrasting environments and exposure conditions suggests that a generic toxicological model for the consumption of fish could be applicable over a wide range of ecologic settings. ?? 2007 American Chemical Society.

  9. Tracking and Data System Support for the Mariner Venus/Mercury 1973 Project

    NASA Technical Reports Server (NTRS)

    Davis, E. K.; Traxler, M. R.

    1977-01-01

    The Tracking and Data System, which provided outstanding support to the Mariner Venus/Mercury 1973 project during the period from January 1970 through March 1975 are chronologically described. In the Tracking and Data System organizations, plans, processes, and technical configurations, which were developed and employed to facilitate achievement of mission objectives, are described. In the Deep Space Network position of the tracking and data system, a number of special actions were taken to greatly increase the scientific data return and to assist the project in coping with in-flight problems. The benefits of such actions were high; however, there was also a significant increase in risk as a function of the experimental equipment and procedures required.

  10. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    USGS Publications Warehouse

    Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B.; Franzreb, Kathleen E.; Simons, Theodore R.

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ 15N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g−1 (range 0.01–3.74 μg g−1). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g−1. Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000–2,000 m). Relative trophic position, calculated from δ 15N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g−1 increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition.

  11. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  12. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    NASA Astrophysics Data System (ADS)

    Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-06-01

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  13. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessica Sanderson; Gary M. Blythe; Mandi Richardson

    2006-12-01

    This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capturemore » of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was

  14. Preservation of samples for dissolved mercury

    USGS Publications Warehouse

    Hamlin, S.N.

    1989-01-01

    Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a

  15. Impact of mercury from the Canadian boreal forest widfires to New England

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Talbot, R. W.

    2010-12-01

    Canadian Boreal forest fires release significant amounts of mercury and constitute several air quality episodes every year in New England, especially during summer. With continuous monitoring of mercury in two New England sites in both rural and elevated area from 2004 to date, several events of the wildfire transport was screened out using ensembles of backward trajectories to ensure the air parcels sampled spent substantial residence time within the box of burned area defined by the the Fire Information for Resource Management System(FIRMS) MODIS hotspot/fires data. Other biomass burning tracers, (such as HCN), were also used as criteria if they are were available during the events period. The mercury to CO ratios during the events were calculated as the input to the Sparse Matrix Operator Kernel Emissions System (SMOKE) model to simulate the high and low ranges of mercury emissions frorm the burned area. We are now using the Community Multiscale Air Quality Modeling System (CMAQ) to study the impact of the mercury emission from the Canadian boreal forest wildfires to the New England region in more details.

  16. Mercury Project

    NASA Image and Video Library

    1961-03-24

    The Mercury-Redstone Booster Development vehicle (MR-BD) lifts off from Cape Canaveral March 24, 1961. This test flight evaluated changes incorporated in the booster designed to reduce vehicle oscillations and vibrations. The Mercury-Redstone launch vehicle was developed by Dr. Wernher von Braun and the rocket team in Huntsville, Alabama.

  17. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut Walter M. "Wally" Schirra, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-8 (Mercury-Atlas) mission with Sigma 7 spacecraft was the third marned orbital flight by the United States, and made the six orbits in 9-1/4 hours.

  18. Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Pommier, Anne

    2017-12-01

    We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.

  19. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements.

  20. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  1. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites.

    PubMed

    Khwaja, Mahmood A; Abbasi, Maryam Shabbir

    2014-01-01

    Mercury (Hg), also known as quick silver, is an essential constituent of dental amalgam. It is a toxic substance of global concern. Children are more at risk from mercury poisoning which affects their neurological development and brain. In the past, a number of studies at dental sites in many countries have been carried out and reported. The present report briefly describes and discusses our recent investigations carried out at 34 dental sites (teaching institutions, hospitals and private clinics) in Pakistan. It is evident from the data that at many sites the indoor mercury vapor levels exceed far above the permissible limit recommended for safe physical and mental health. At these sites, public in general and the medical, paramedical staff and vulnerable population in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. To minimize such risk, some of the recommendations are, best in-house environmental practices for occupational health and safety, mercury contaminated waste reduction at source, mercury specific legislation and ratification of Minamata convention on mercury by Pakistan and other world governments at the earliest time possible.

  2. [Mercury (and...) through the centuries].

    PubMed

    Kłys, Małgorzata

    2010-01-01

    Mercury has a long history, fascinating in its many aspects. Through the centuries--from ancient times to the present day--the metal in its various forms, also known under the name "quicksilver", accompanied the man and was used for diversified purposes. Today, mercury is employed in manufacturing thermometers, barometers, vacuum pumps and explosives. It is also used in silver and gold mining processes. Mercury compounds play a significant role in dentistry, pharmaceutical industry and crop protection. The contemporary use of mercury markedly decreases, but historically speaking, the archives abound in materials that document facts and events occurring over generations and the immense intellectual effort aiming at discovering the true properties and mechanisms of mercury activity. Mercury toxicity, manifested in destruction of biological membranes and binding of the element with proteins, what disturbs biochemical processes occurring in the body, was discovered only after many centuries of the metal exerting its effect on the lives of individuals and communities. For centuries, mercury was present in the work of alchemists, who searched for the universal essence or quintessence and the so-called philosopher's stone. In the early modern era, between the 16th and 19th centuries, mercury was used to manufacture mirrors. Mercury compounds were employed as a medication against syphilis, which plagued mankind for more than four hundred years--from the Middle Ages till mid 20th century, when the discovery of penicillin became the turning point. This extremely toxic therapy resulted in much suffering, individual tragedies, chronic poisonings leading to fatalities and dramatic sudden deaths. In the last fifty years, there even occurred attempts of mentally imbalanced individuals at injecting themselves with metallic mercury, also as a performance-enhancing drug. Instances of mass mercury poisoning occurred many times in the past in consequence of eating food products

  3. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland

  4. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessica Sanderson

    2007-12-31

    This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercurymore » in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an

  5. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.

  6. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  7. Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces

    USGS Publications Warehouse

    Gustin, M.S.; Lindberg, S.; Marsik, F.; Casimir, A.; Ebinghaus, R.; Edwards, G.; Hubble-Fitzgerald, C.; Kemp, R.; Kock, H.; Leonard, T.; London, J.; Majewski, M.; Montecinos, C.; Owens, J.; Pilote, M.; Poissant, L.; Rasmussen, P.; Schaedlich, F.; Schneeberger, D.; Schroeder, W.; Sommar, J.; Turner, R.; Vette, A.; Wallschlaeger, D.; Xiao, Z.; Zhang, H.

    1999-01-01

    Diffuse anthropogenic and naturally mercury-enriched areas represent long-lived sources of elemental mercury to the atmosphere. The Nevada Study and Tests of the Release of Mercury From Soils (STORMS) project focused on the measurement of mercury emissions from a naturally enriched area. During the project, concurrent measurements of mercury fluxes from naturally mercury-enriched substrate were made September 1-4, 1997, using four micrometeorological methods and seven field flux chambers. Ambient air mercury concentrations ranged from 2 to nearly 200 ng m-3 indicating that the field site is a source of atmospheric mercury. The mean daytime mercury fluxes, during conditions of no precipitation, measured with field chambers were 50 to 360 ng m-2 h-1, and with the micrometeorological methods were 230 to 600 ng m-2 h-1. This wide range in mercury emission rates reflects differences in method experimental designs and local source strengths. Mercury fluxes measured by many field chambers were significantly different (p < 0.05) but linearly correlated. This indicates that field chambers responded similarly to environmental conditions, but differences in experimental design and site heterogeneity had a significant influence on the magnitude of mercury fluxes. Data developed during the field study demonstrated that field flux chambers are ideal for assessment of the physicochemical processes driving mercury flux and development of an understanding of the magnitude of the influence of individual factors on flux. In general, mean mercury fluxes measured with micrometeorological methods during daytime periods were nearly 3 times higher than mean fluxes measured with field flux chambers. Micrometeorological methods allow for derivation of a representative mercury flux occurring from an unconstrained system and provide an assessment of the actual magnitude and variability of fluxes occurring from an area. Copyright 1999 by the American Geophysical Union.

  8. A Dynamic Model of Mercury's Magnetospheric Magnetic Field

    PubMed Central

    Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.

    2017-01-01

    Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560

  9. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  10. A comprehensive study of Mercury and MESSENGER orbit determination

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.

    2016-10-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass

  11. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    PubMed

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  12. NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles

    NASA Image and Video Library

    2017-12-08

    New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. These findings are presented in three papers published online today in Science Express. Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles. The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images. MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis. To read

  13. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall

  14. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Changes in tissue glutathione and mercury concentrations in rats following mercuric chloride injection through the hepatic portal vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chey, Sin Wun; Keong, Wong Ming; Min, Sin Yoke

    The kidney is known as a primary target organ for mercury deposition. However, it is also known as an important organ for the elimination of the absorbed mercury. Tanaka and her collaborators showed that inorganic mercury when injected through caudal vein is transported to the kidney as mercury-GSH complex. If that is so, liver which contains the highest level of tissue GSH than any other organs in normal animals would appear to be a prime site for the complexion of mercury ions with GSH before they are released and transported to the kidney. In view of this, it is ofmore » interest to establish the interrelative changes of the amounts of GSH and mercury in between liver and kidney at the earlier time intervals after a direct injection of a low dosage of mercuric chloride (HgCl{sub 2}) into the hepatic portal vein.« less

  16. Mercury, Vaccines, and Autism

    PubMed Central

    Baker, Jeffrey P.

    2008-01-01

    The controversy regarding the once widely used mercury-containing preservative thimerosal in childhood vaccines has raised many historical questions that have not been adequately explored. Why was this preservative incorporated in the first place? Was there any real evidence that it caused harm? And how did thimerosal become linked in the public mind to the “autism epidemic”? I examine the origins of the thimerosal controversy and their legacy for the debate that has followed. More specifically, I explore the parallel histories of three factors that converged to create the crisis: vaccine preservatives, mercury poisoning, and autism. An understanding of this history provides important lessons for physicians and policymakers seeking to preserve the public’s trust in the nation’s vaccine system. PMID:18172138

  17. Mercury in Your Environment

    EPA Pesticide Factsheets

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  18. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Bottenheim, J.; Cole, A.; Ebinghaus, R.; Lawson, G.; Leaitch, W. R.

    2014-03-01

    Ten years of atmospheric mercury speciation data and 14 years of mercury in snow data from Alert, Nunavut, Canada, are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentration of both PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pgm-3 and RGM is 23.9 pgm-3, from March to June, in comparison to the annual median concentrations of 11.3 and 3.2 pgm-3 for PHg and RGM, respectively. In each of the ten years of sampling, the concentration of PHg increases steadily from January through March and is higher than the concentration of RGM. This pattern begins to change in April when the levels of PHg peak and RGM begin to increase. In May, the high PHg and low RGM concentration regime observed in the early spring undergoes a transition to a regime with higher RGM and much lower PHg concentrations. The higher RGM concentration continues into June. The transition is driven by the atmospheric conditions of air temperature and particle availability. Firstly, a high ratio of the concentrations of PHg to RGM is reported at low temperatures which suggests that oxidized gaseous mercury partitions to available particles to form PHg. Prior to the transition, the median air temperature is -24.8 °C and after the transition the median air temperature is -5.8 °C. Secondly, the high PHg concentrations occur in the spring when high particle concentrations are present. The high particle concentrations are principally due to Arctic haze and sea salts. In the snow, the concentrations of mercury peak in May for all years. Springtime deposition of total mercury to the snow at Alert peaks in May when atmospheric conditions favour higher levels of RGM. Therefore, the conditions in the

  19. Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.

    2009-01-01

    The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.

  20. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Apparatus for control of mercury

    DOEpatents

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  2. Estimation of vegetative mercury emissions in China.

    PubMed

    Quan, Jiannong; Zhang, Xiaoshan; Shim, Shang Gyoo

    2008-01-01

    Vegetative mercury emissions were estimated within the framework of Biogenic Emission Inventory System (BEIS3 V3.11). In this estimation, the 19 categories of U.S. Geological Survey landcover data were incorporated to generate the vegetation-specific mercury emissions in a 81-km Lambert Conformal model grid covering the total Chinese continent. The surface temperature and cloud-corrected solar radiation from a Mesoscale Meteorological model (MM5) were retrieved and used for calculating the diurnal variation. The implemented emission factors were either evaluated from the measured mercury flux data for forest, agriculture and water, or assumed for other land fields without available flux data. Annual simulations using the MM5 data were performed to investigate the seasonal emission variation. From the sensitivity analysis using two sets of emission factors, the vegetative mercury emissions in China domain were estimated to range from a lower limit of 79 x 10(3) kg/year to an upper limit of 177 x 10(3) kg/year. The modeled vegetative emissions were mainly generated from the eastern and southern China. Using the estimated data, it is shown that mercury emissions from vegetation are comparable to that from anthropogenic sources during summer. However, the vegetative emissions decrease greatly during winter, leaving anthropogenic sources as the major sources of emission.

  3. Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries.

    PubMed

    Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin

    2016-12-01

    Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to

  4. Investigation of a mercury speciation technique for flue gas desulfurization materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.Y.; Cho K.; Cheng L.

    2009-08-15

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidatesmore » of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.« less

  5. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  6. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  7. Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum.

    PubMed

    Boatti, Lara; Rapallo, Fabio; Viarengo, Aldo; Marsano, Francesco

    2017-02-01

    Governmental agencies (www.epa.gov/mercury) and the scientific community have reported on the high toxicity due to mercury. Indeed, exposure to mercury can cause severe injury to the central nervous system and kidney in humans. Beyond its recognized toxicity, little is known regarding the molecular mechanisms involved in the actions of this heavy metal. Mercury has been also observed to form insoluble fibrous protein aggregates in the cell nucleus. We used D. discoideum to evaluate micronuclei formation and, since mercury is able to induce oxidative stress that could bring to protein aggregation, we assessed nuclear protein carbonylation by Western Blot. We observed a significant increase in micronuclei formation and 14 carbonylated proteins were identified. Moreover, we used isotope-coded protein label (ICPL) and mass spectrometry analysis of proteins obtained by lysis of purified nuclei, before of tryptic digestion to quantify nuclear proteins affected by mercury. In particular, we examined the effects of mercury that associate a classical genotoxic assay to proteomic effects into the nucleus. The data present direct evidences for mercury genotoxicity, nuclear protein carbonylation, quantitative change in core histones, and the involvement of pseudouridine synthase in mercury toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 417-425, 2017. © 2016 Wiley Periodicals, Inc.

  8. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  9. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  10. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    PubMed Central

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  11. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  12. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.

    PubMed

    He, Y K; Sun, J G; Feng, X Z; Czakó, M; Márton, L

    2001-09-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 microM, and some of them (10-20% ) could germinate on media containing as much as 350 microM HgCl2, while the control plants were fully inhibited or died on 50 microM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).

  13. Did 26Al and impact-induced heating differentiate Mercury?

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2017-02-01

    Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short-lived nuclide, 26Al, as the major heat source along with the impact-induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial 1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe-Ni-FeS) core of radius 2000 km and a silicate mantle thickness of 400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact-induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe-Ni-FeS contents to 71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury-like exoplanets and the planetary embryos of Venus and Earth.

  14. Endoscopic management of massive mercury ingestion

    PubMed Central

    Zag, Levente; Berkes, Gábor; Takács, Irma F; Szepes, Attila; Szabó, István

    2017-01-01

    Abstract Rationale: Ingestion of a massive amount of metallic mercury was thought to be harmless until the last century. After that, in a number of cases, mercury ingestion has been associated with appendicitis, impaired liver function, memory deficits, aspiration leading to pneumonitis and acute renal failure. Treatment includes gastric lavage, giving laxatives and chelating agents, but rapid removal of metallic mercury with gastroscopy has not been used. Patient concerns: An 18-year-old man was admitted to our emergency department after drinking 1000 g of metallic mercury as a suicide attempt. Diagnosis: Except from mild umbilical tenderness, he had no other symptoms. Radiography showed a metallic density in the area of the stomach. Intervention: Gastroscopy was performed to remove the mercury. One large pool and several small droplets of mercury were removed from the stomach. Outcomes: Blood and urine mercury levels of the patient remained low during hospitalization. No symptoms of mercury intoxication developed during the follow-up period. Lessons: Massive mercury ingestion may cause several symptoms, which can be prevented with prompt treatment. We used endoscopy to remove the mercury, which shortened the exposure time and minimized the risk of aspiration. This is the first case where endoscopy was used for the management of mercury ingestion. PMID:28562544

  15. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  16. Understanding atmospheric mercury speciation and mercury in snow over time at Alert, Canada

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Bottenheim, J.; Cole, A.; Ebinghaus, R.; Lawson, G.; Leaitch, W. R.

    2013-06-01

    Ten years of atmospheric mercury speciation data and 14 yr of mercury in snow data from Alert, Nunavut, Canada are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentrations of PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pg m-3 and RGM is 23.9 pg m-3 from March to June in comparison to the annual median concentrations of 11.3 and 3.2 -3 for PHg and RGM, respectively. In each of the ten years of sampling, PHg increases steadily from January through March and is higher than RGM. This pattern begins to change in April with very high levels of PHg and increasing RGM. In May, RGM transitions to be significantly higher than PHg and continues into June whereas PHg sharply drops down. The transition is thought to be driven by a combination of air temperature and particle availability. Firstly, the ratio of PHg to RGM is favoured by low temperatures suggesting that oxidized mercury may partition to available particles to form PHg. Prior to the transition, the median air temperature is -24.8 °C and after the transition the median air temperature is -5.8 °C. Secondly, high aerosol levels in the spring are a strong driver for the high PHg concentrations. In February through April, partitioning of oxidized mercury to produce PHg was favoured by increased concentrations of particles that are principally the result of Arctic Haze and some sea salts. In the snow, the concentrations of mercury peak in May for all years. The highest deposition of mercury to the snow in the spring at Alert is during and after the transition of PHg to RGM in the atmosphere.

  17. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry.

    PubMed

    Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F

    2017-03-01

    Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  19. Simulating mercury and methyl mercury stream concentrations at multiple scales in a wetland influenced coastal plain watershed (McTier Creek, SC, USA)

    Treesearch

    Chris Knightes; G.M. Davis; H.E. Golden; P.A. Conrads; P.M. Bradley; C.A. Journey

    2016-01-01

    Mercury (Hg) is the toxicant responsible for the most fish advisories across the United States, with 1.1 million river miles under advisory. The processes governing fate, transport, and transformation of mercury in streams and rivers are not well understood, in large part, because these systems are intimately linked with their surrounding watersheds and are often...

  20. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  1. Goldstone Solar System Radar (GSSR)

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1991-01-01

    The primary objective of the Goldstone Solar System Radar is the investigation of solar system bodies by means of Earth-based radar. Targets of primary interest include the Galilean moons, Saturn's rings and moons, and Earth-approaching asteroids and comets. Planets are also of interest, particularly Mercury and the planets to which NASA has not yet planned spacecraft visits. Based on a history of solid achievement, including the definition of the Astronomical Unit, imaging and topography of Mars, Venus, and Mercury, and contributions to the general theory of relativity, the program will continue to support flight project requirements and its primary objectives. The individual target objectives are presented, and information on the following topics are presented in tabular form: Deep Space Network support, compatibility tests, telemetry, command, and tracking support responsibility.

  2. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    NASA Astrophysics Data System (ADS)

    Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola

    2017-06-01

    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  3. EMMMA: A web-based system for environmental mercury mapping, modeling, and analysis

    USGS Publications Warehouse

    Hearn,, Paul P.; Wente, Stephen P.; Donato, David I.; Aguinaldo, John J.

    2006-01-01

    tissue, atmospheric emissions and deposition, stream sediments, soils, and coal) and mercuryrelated data (mine locations); 2) Interactively view and access predictions of the National Descriptive Model of Mercury in Fish (NDMMF) at 4,976 sites and 6,829 sampling events (events are unique combinations of site and sampling date) across the United States; and 3) Use interactive mapping and graphing capabilities to visualize spatial and temporal trends and study relationships between mercury and other variables.

  4. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    NASA Astrophysics Data System (ADS)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced

  5. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media.

    PubMed

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg 0 , and PCE for comparison, were determined using P c (S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19cm and 12.51cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg 0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg 0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg 0 entry heads (10.45 and 15.74cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury

  6. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  7. Current approaches of the management of mercury poisoning: need of the hour

    PubMed Central

    2014-01-01

    Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360

  8. Fatigue properties of type 316LN stainless steel in air and mercury

    NASA Astrophysics Data System (ADS)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  9. Robust Control for the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Rosenberg, Jacob S.

    2006-01-01

    Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.

  10. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  11. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    Mercury has been identified as an important contaminant in the Delta, based on elevated concentrations of methylmercury (a toxic, organic form that readily bioaccumulates) in fish and wildlife. There are health risks associated with human exposure to methylmercury by consumption of sport fish, particularly top predators such as bass species. Original mercury sources were upstream tributaries where historical mining of mercury in the Coast Ranges and gold in the Sierra Nevada and Klamath-Trinity Mountains caused contamination of water and sediment on a regional scale. Remediation of abandoned mine sites may reduce local sources in these watersheds, but much of the mercury contamination occurs in sediments stored in the riverbeds, floodplains, and the Bay- Delta, where scouring of Gold-Rush-era sediment represents an ongoing source.Conversion of inorganic mercury to toxic methylmercury occurs in anaerobic environments including some wetlands. Wetland restoration managers must be cognizant of potential effects on mercury cycling so that the problem is not exacerbated. Recent research suggests that wettingdrying cycles can contribute to mercury methylation. For example, high marshes (inundated only during the highest tides for several days per month) tend to have higher methylmercury concentrations in water, sediment, and biota compared with low marshes, which do not dry out completely during the tidal cycle. Seasonally inundated flood plains are another environment experiencing wetting and drying where methylmercury concentrations are typically elevated. Stream restoration efforts using gravel injection or other reworking of coarse sediment in most watersheds of the Central Valley involve tailings from historical gold mining that are likely to contain elevated mercury in associated fines. Habitat restoration projects, particularly those involving wetlands, may cause increases in methylmercury exposure in the watershed. This possibility should be evaluated.The DRERIP

  12. Smooth plains on Mercury. A comparison with Vesta.

    NASA Astrophysics Data System (ADS)

    Zambon, F.; Capaccioni, F.; Carli, C.; De Sanctis, M. C.; Filacchione, G.; Giacomini, L.

    Mercury, the closest planet to the Sun, has been visited by the MESSENGER spacecraft \\citet{solomon2007}. After 3 years of orbit around Mercury a global coverage of the surface has been done revealing that ∼27% of Mercury's surface is covered by smooth plains \\citet{denevi2013}. Large part of Mercury's smooth plain (SP) seems to have volcanic origin. Different composition has been observed, most of the SP have a magnesian alkali-basalt-like composition, while some of them have been interpreted as ultramafic. A further 2% of smooth plains have been identified as Odin-type plains and represent the knobby and hummocky plains surrounding the Caloris basin \\citet{denevi2013}. Application of classification methods \\citet{adams2006} applied to color image data of the MESSENGER wide angle camera (MDIS-WAC) \\citet{MDIS} and a spectral analysis of the spec- trometer data (MASCS-VIRS) \\citet{MASCS} are useful to highlight the differences in composition of the smooth planes. A compa rison between Mercury's SP and those of other solar system bodies, such as Vesta \\citet{desanctis2012}, reveals useful to obtain information on the origin and the evolution of this bodies.

  13. Wildfires threaten mercury stocks in northern soils

    USGS Publications Warehouse

    Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L.

    2006-01-01

    With climate change rapidly affecting northern forests and wetlands, mercury reserves once protected in cold, wet soils are being exposed to burning, likely triggering large releases of mercury to the atmosphere. We quantify organic soil mercury stocks and burn areas across western, boreal Canada for use in fire emission models that explore controls of burn area, consumption severity, and fuel loading on atmospheric mercury emissions. Though renowned as hotspots for the accumulation of mercury and its transformation to the toxic methylmercury, boreal wetlands might soon transition to hotspots for atmospheric mercury emissions. Estimates of circumboreal mercury emissions from this study are 15-fold greater than estimates that do not account for mercury stored in peat soils. Ongoing and projected increases in boreal wildfire activity due to climate change will increase atmospheric mercury emissions, contributing to the anthropogenic alteration of the global mercury cycle and exacerbating mercury toxicities for northern food chains. Copyright 2006 by the American Geophysical Union.

  14. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    PubMed

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold

  15. Mercury Project

    NASA Image and Video Library

    1963-05-16

    The recovery operation of the Faith 7 spacecraft after the completion of the 1-1/2 day orbital flight (MA-9 mission) with Astronaut Gordon Cooper. Navy frogmen attach the flotation collar to the spacecraft. The MA-9 mission was the last flight of the Mercury Project and launched on May 15, 1963 boosted by The Mercury-Atlas launch vehicle.

  16. Mercury Project

    NASA Image and Video Library

    1962-02-20

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  17. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  18. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  19. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  20. Mercury speciation, fluxes, and fate in the volcanically acidified fluids of Copahue volcano, Argentina

    NASA Astrophysics Data System (ADS)

    Kading, T.; Varekamp, J. C.; Andersson, M.; Balcom, P.; Mason, R. P.

    2010-12-01

    The behavior of mercury in volcanic acid springs and acidified rivers is poorly known, despite the potential impact this vector of contamination has on local surface and ground water quality. Mercury was measured in a volcanically acidified river system (pH<1 - 3), the Rio Agrio in the Neuquen province of Argentina, which discharges into a large glacial lake (Lake Caviahue, pH 2.2-3.0). The Hg concentration ranged from 2 - 600 pM throughout the fluvial system. Mercury in the hot, hyperacidic source fluids was dominated by dissolved ionic species, with only 2% of total mercury as dissolved elemental mercury, and 11% being particulate bound. The Hg flux from the volcano, determined from river water flux measurements and Hg concentrations, was modest and varied between the 3/2008 and 3/2009 sampling campaigns resp. from 0.7 to 1.1 moles/year. The Hg:S ratio of the acid fluids was ~10-8, several orders of magnitude lower than that typically found in volcanic plumes and fumaroles. The small Hg flux and low Hg:S values suggest that the system is either inherently Hg-poor or has lost Hg through vapor loss deeper in the hydrothermal system. Support for the latter comes from high Hg concentrations in geothermal vents and mudpots on the flank of the mountain (24 - 55 ppm Hg). Mercury concentrations decreased conservatively downstream in the river as based on Hg/Cl and Hg/SO4. Non-conservative depletion occurs in the less acidic Lake Caviahue, suggesting that mercury is removed from the water column by sorption to organic matter or other phases. Mercury analyses of a short lake sediment core confirm this (Hg = 0.01 to 0.70 ppm). No evidence was found for preferential uptake of mercury by jarosite, schwertmannite, or goethite, although the latter two phases precipitate in the most distal and Hg-depleted section of the fluvial system.

  1. Scaling dependence and synchronization of forced mercury beating heart systems

    NASA Astrophysics Data System (ADS)

    Biswas, Animesh; Das, Dibyendu; Parmananda, P.

    2017-04-01

    We perform experiments on a nonautonomous Mercury beating heart system, which is forced to pulsate using an external square wave potential. At suitable frequencies and volumes, the drop exhibits pulsation with polygonal shapes having n corners. We find the scaling dependence of the forcing frequency νn on the volume V of the drop and establish the relationship νn∝n/√{V } . It is shown that the geometrical shape of substrate is important for obtaining closer match to these scaling relationships. Furthermore, we study synchronization of two nonidentical drops driven by the same frequency and establish that synchrony happens when the relationship n2/n1=√{V2/V1 } is satisfied.

  2. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessica Marshall Sanderson

    2006-06-01

    This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method

  3. The fate and management of high mercury-containing lamps from high technology industry.

    PubMed

    Chang, T C; You, S J; Yu, B S; Kong, H W

    2007-03-22

    This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.

  4. Total mercury in infant food, occurrence and exposure assessment in Portugal.

    PubMed

    Martins, Carla; Vasco, Elsa; Paixão, Eleonora; Alvito, Paula

    2013-01-01

    Commercial infant food labelled as from organic and conventional origin (n = 87) was analysed for total mercury content using a direct mercury analyser (DMA). Median contents of mercury were 0.50, 0.50 and 0.40 μg kg⁻¹ for processed cereal-based food, infant formulae and baby foods, respectively, with a maximum value of 19.56 μg kg⁻¹ in a baby food containing fish. Processed cereal-based food samples showed statistically significant differences for mercury content between organic and conventional analysed products. Consumption of commercial infant food analysed did not pose a risk to infants when the provisionally tolerable weekly intake (PTWI) for food other than fish and shellfish was considered. By the contrary, a risk to some infants could not be excluded when using the PTWI for fish and shellfish. This is the first study reporting contents of total mercury in commercial infant food from both farming systems and the first on exposure assessment of children to mercury in Portugal.

  5. A Christmas Crater from Mercury

    NASA Image and Video Library

    2017-12-08

    Release Date: December 21, 2011 The crater at the center of this image is named Dickens, after Charles Dickens, the English novelist who lived from 1812 to 1870. Among Dickens' famous works is A Christmas Carol, the story of Bob Cratchit, his family, and horrible boss Mr. Scrooge. Scientists studying Mercury might consider the Mariner 10 mission to be Christmas Past, MESSENGER to be Christmas Present, and the European Bepi-Colombo mission to be Christmas Yet To Come. This image was acquired as part of MDIS's high-resolution surface morphology base map. The surface morphology base map will cover more than 90% of Mercury's surface with an average resolution of 250 meters/pixel (0.16 miles/pixel or 820 feet/pixel). Images acquired for the surface morphology base map typically have off-vertical Sun angles (i.e., high incidence angles) and visible shadows so as to reveal clearly the topographic form of geologic features. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Mercury: The World Closest to the Sun.

    ERIC Educational Resources Information Center

    Cordell, Bruce M.

    1984-01-01

    Discusses various topics related to the geology of Mercury including the origin of Mercury's magnetism, Mercury's motions, volcanism, scarps, and Mercury's violent birth and early life. Includes a table comparing Mercury's orbital and physical data to that of earth's. (JN)

  7. Application of ring tectonic theory to Mercury and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1981-01-01

    It is pointed out that multiringed structures, by their presence or absence, provide a powerful tool for deciphering the thermal histories of the solid planets. The theory of ring tectonics considered by Melosh and McKinnon (1978) and Melosh et al. (1980) establishes the framework of that undertaking. The present investigation has the objective to apply this conceptualization in detail to the multiringed basins on Mercury, taking into account also a brief review concerning the current state of understanding of ring tectonics on the moon, Mars, earth, Ganymede, and Callisto. The small, icy satellites of Saturn are also discussed. The mechanics of multiple ring formation are related to the collapse of the transient basin cavity when the excavation depth and lithosphere thickness are comparable. Attention is given to the Caloris Basin on Mercury, the peak ring basins on Mercury, and the Argyre Basin on Mars.

  8. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  9. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000.

    PubMed Central

    Mahaffey, Kathryn R; Clickner, Robert P; Bodurow, Catherine C

    2004-01-01

    Blood organic mercury (i.e., methyl mercury) concentrations among 1,709 women who were participants in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000 (1999-2000 NHANES) were 0.6 microg/L at the 50th percentile and ranged from concentrations that were nondetectable (5th percentile) to 6.7 microg/L (95th percentile). Blood organic/methyl mercury reflects methyl mercury intake from fish and shellfish as determined from a methyl mercury exposure parameter based on 24-hr dietary recall, 30-day food frequency, and mean concentrations of mercury in the fish/shellfish species reported as consumed (multiple correlation coefficient > 0.5). Blood organic/methyl mercury concentrations were lowest among Mexican Americans and highest among participants who designated themselves in the Other racial/ethnic category, which includes Asians, Native Americans, and Pacific Islanders. Blood organic/methyl mercury concentrations were ~1.5 times higher among women 30-49 years of age than among women 16-29 years of age. Blood mercury (BHg) concentrations were seven times higher among women who reported eating nine or more fish and/or shellfish meals within the past 30 days than among women who reported no fish and/or shellfish consumption in the past 30 days. Blood organic/methyl mercury concentrations greater than or equal to 5.8 microg/L were lowest among Mexican Americans (2.0%) and highest among examinees in the Other racial/ethnic category (21.7%). Based on the distribution of BHg concentrations among the adult female participants in 1999-2000 NHANES and the number of U.S. births in 2000, > 300,000 newborns each year in the United States may have been exposed in utero to methyl mercury concentrations higher than those considered to be without increased risk of adverse neurodevelopmental effects associated with methyl mercury exposure. PMID:15064162

  10. Mineral resource of the month: mercury

    USGS Publications Warehouse

    Brooks, William E.

    2006-01-01

    The ore of mercury, cinnabar, is soft and dark red, and native mercury is one of a few metals that is liquid at room temperatures. Cinnabar from Almaden, Spain, the world’s oldest producing mercury mine, was used during Roman times, and the chemical symbol for mercury (Hg) is from "hydrargyrum," from the Greek word meaning liquid silver. Cinnabar and mercury are associated with some hydrothermal mineral deposits and occur in fine-grained or sedimentary and volcanic rocks near hot springs or volcanic centers. Mercury may be recovered as a byproduct of processing copper, gold, lead-zinc or silver.

  11. Applicability of two mobile analysers for mercury in urine in small-scale gold mining areas.

    PubMed

    Baeuml, Jennifer; Bose-O'Reilly, Stephan; Lettmeier, Beate; Maydl, Alexandra; Messerer, Katalin; Roider, Gabriele; Drasch, Gustav; Siebert, Uwe

    2011-12-01

    Mercury is still used in developing countries to extract gold from the ore in small-scale gold mining areas. This is a major health hazard for people living in mining areas. The concentration of mercury in urine was analysed in different mining areas in Zimbabwe, Indonesia and Tanzania. First the urine samples were analysed by CV-AAS (cold vapour atomic absorption spectrometry) during the field projects with a mobile mercury analyser (Lumex(®) or Seefelder(®)) and secondly, in a laboratory with a stationary CV-AAS mercury analyser (PerkinElmer(®)). Caused by the different systems (reduction agent either SnCl(2) (Lumex(®) or Seefelder(®))) or NaBH(4) (PerkinElmer(®)), with the mobile analysers only the inorganic mercury was obtained and with the stationary system the total mercury concentration was measured. The aims of the study were whether the results obtained in field with the mobile equipments can be compared with the stationary reference method in the laboratory and allow the application of these mobile analysers in screening studies on concerned populations to select those, who are exposed to critical mercury levels. Overall, the concentrations obtained with the two mobile systems were approximately 25% lower than determined with the stationary system. Nevertheless, both mobile systems seem to be very useful for screening of volunteers in field. Moreover, regional staff may be trained on such analysers to perform screening tests by themselves. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Diana; Douglas, Steven G.

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success ofmore » these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1

  13. A Mass Balance for Mercury in the San Francisco Bay Area

    PubMed Central

    MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

    2008-01-01

    We develop and illustrate a general regional multi-species model that describes the fate and transport of mercury in three forms, elemental, divalent, and methylated, in a generic regional environment including air, soil, vegetation, water and sediment. The objectives of the model are to describes the fate of the three forms of mercury in the environment and determine the dominant physical sinks that remove mercury from the system. Chemical transformations between the three groups of mercury species are modeled by assuming constant ratios of species concentrations in individual environmental media. We illustrate and evaluate the model with an application to describe the fate and transport of mercury in the San Francisco Bay Area of California. The model successfully rationalizes the identified sources with observed concentrations of total mercury and methyl mercury in the San Francisco Bay Estuary. The mass balance provided by the model indicates that continental and global background sources control mercury concentrations in the atmosphere but loadings to water in the San Francisco Bay estuary are dominated by runoff from the Central Valley catchment and re-mobilization of contaminated sediments deposited during past mining activities. The model suggests that the response time of mercury concentrations in the San Francisco Bay estuary to changes in loadings is long, of the order of 50 years. PMID:16190232

  14. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  15. Mercury accumulation and loss in mallard eggs

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2004-01-01

    Female mallards (Anas platyrhynchos) were fed diets containing 5, 10, or 20 ppm mercury as methylmercury chloride. One egg was collected from each bird before the start of the mercury diets and 15 eggs were collected from each bird while it was being fed mercury. The mercury diets were then replaced by uncontaminated diets, and each female was allowed to lay 29 more eggs. Mercury levels in eggs rose to about 7,18, and 35 ppm wet-weight in females fed 5,10, or 20 ppm mercury, respectively. Mercury levels fell to about 0.16,0.80, and 1.7 ppm in the last egg laid by birds that had earlier been fed 5, 10, or 20 ppm mercury, respectively. Higher concentrations of mercury were found in egg albumen than in yolk, and between 95 and 100% of the mercury in the eggs was in the form of methylmercury.

  16. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  17. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  18. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)

    USGS Publications Warehouse

    Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.

    2004-01-01

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.

  19. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  20. Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghim, Young Sung; Oh, Hyun Sun; Kim, Jin Young

    Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of 66 ng/m2-day wasmore » about twice as large as the dry deposition flux of 32 ng/m2-day, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.« less

  1. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non

  2. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    PubMed

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  3. Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem.

    PubMed

    Zižek, Suzana; Milačič, Radmila; Kovač, Nives; Jaćimović, Radojko; Toman, Mihael J; Horvat, Milena

    2011-10-01

    Mercury presents a potential risk to the environment and humans, especially in its methylated form. It is among the highest priority environmental pollutants. River Idrijca (Slovenia) is highly contaminated with mercury due to past mercury mining. The aim of this work was to investigate whether the periphyton community in rivers such as Idrijca is a suitable indicator of Hg pollution and of changes in mercury methylation and could serve as an early warning system of increased input of MeHg in the food chain. Periphyton is the only site of primary production in temperate torrential rivers such as Idrijca and is therefore an important link in the food chain. It is also a potential site of Hg accumulation and its introduction to higher trophic levels. Our aim was to assess the response of the periphyton to seasonal and spatial variations in mercury levels and to evaluate its potential as an early warning system of changes in mercury reactivity and mobilization The results indicate that periphyton in a torrential river is too complex and unpredictable to be used as a sole indicator of mercury concentrations and changes in the river. Nevertheless, it can complement environmental measurements due to its importance in the riverine food web. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  5. Fate and aqueous transport of mercury in light of the Clean Air Mercury Rule for coal-fired electric power plants

    NASA Astrophysics Data System (ADS)

    Arzuman, Anry

    Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm

  6. Mercury Research Strategy

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA's) Office of Research and Development (ORD) is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001 2005 time frame. ORD will use it to ...

  7. Exploring Mercury Tail

    NASA Image and Video Library

    2008-08-26

    As the MESSENGER spacecraft approached Mercury, the UVVS field of view was scanned across the planet's exospheric "tail," which is produced by the solar wind pushing Mercury's exosphere (the planet's extremely thin atmosphere) outward. This figure, recently published in Science magazine, shows a map of the distribution of sodium atoms as they stream away from the planet (see PIA10396); red and yellow colors represent a higher abundance of sodium than darker shades of blue and purple, as shown in the colored scale bar, which gives the brightness intensity in units of kiloRayleighs. The escaping atoms eventually form a comet-like tail that extends in the direction opposite that of the Sun for many planetary radii. The small squares outlined in black correspond to individual measurements that were used to create the full map. These measurements are the highest-spatial-resolution observations ever made of Mercury's tail. In less than six weeks, on October 6, 2008, similar measurements will be made during MESSENGER's second flyby of Mercury. Comparing the measurements from the two flybys will provide an unprecedented look at how Mercury's dynamic exosphere and tail vary with time. Date Acquired: January 14, 2008. http://photojournal.jpl.nasa.gov/catalog/PIA11076

  8. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future. © The Author(s) 2015.

  9. Space-Weathering on Mercury: Inferences Based on Comparison of MESSENGER Spectral Data and Experimental Space Weathering Data

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, J. J.; Blewett, D. T.; Lawrence, D. J.; Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Domingue, D. L.

    2009-12-01

    Production and accumulation of submicroscopic metallic iron (SMFe) is a principal mechanism by which surfaces of airless silicate bodies in the Solar System, exposed to the space weathering environment, experience spectral modification. Micrometeorite impact vaporization and solar-wind sputtering produce coatings of vapor-deposited SMFe. Both processes can be more intense on Mercury and, as a result, more efficient at creating melt and vapor. In addition, Ostwald ripening may cause SMFe particles to grow larger due to the high surface temperatures on Mercury (as great as 450°C). Spectral effects on the ultraviolet-visible-near-infrared continuum change with the amount and size of SMFe present. Thus, the physical properties and abundance of iron in Mercury’s regolith can be understood by comparing spectral data from controlled space-weathering experiments with spectra from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Knowledge of SMFe size and abundance may provide information on the space weathering conditions under which it was produced or subsequently modified. Reflectance spectra of laboratory-produced samples with varying SMFe grain sizes (average grain sizes of 8, 15, 35, and 40 nm) and iron compositions (from 0.005 to 3.8 wt% Fe as SMFe) are compared with MASCS disk-integrated reflectance from the first flyby of Mercury and will be compared with observations of spectral end members targeted for the third flyby. We compare spectra from 300 nm to 1400 nm wavelength, scaled to 1 at 700 nm, from the laboratory and MASCS. This comparison between laboratory and remote-sensing spectra reveals an excellent match with observations of Mercury for samples with an average iron metal grain size of 8 nm and 1.65 wt% FeO and 15 nm and 0.13 wt% Fe. These average grain sizes of the SMFe component are larger than the average grain size determined for lunar soil samples using transmission electron microscopy (3 nm in rims and 10-15 nm in

  10. [Bibliographical study of the toxicity of organic mercury compounds].

    PubMed

    Ishihara, Nobuo

    2011-09-01

    The aim of this study is to correct the misunderstanding that the toxicity of organic mercury compounds is unknown at the time of the outbreak of Minamata disease (May 1, 1956). Two case reports of organic mercury (methylmercury) intoxication were published already in 1865 and 1866. The conversion of inorganic mercury added in acetoaldehyde synthesis was already pointed out in 1921. In 1930 several cases of organic mercury poisoning among workers engaged in acetoaldehyde production were reported. Many reports on not only in occupational exposure but a oral exposure via the ingestion of flour made from grains treated with organic mercurials were available at the time of the outbreak of Minamata disease (May 1, 1956). These reports pointed out the toxic effects of organic mercury on the central nervous system, and indicated cleary that the causal substance of Minamata disease must be the organic mercury compounds (methylmercury) from the Chisso plant. The identification of methylmercury as the causal substance by the authority was presented in 1968 when acetoaldehyde production in the Chisso plant was closed. Most of these reports except that of (Hunter et al.) were not referred to in the study of Minamata disease . Inadequate referencing should be pointed out. Several reports indicated that the causal substance of Minamata disease must be methylmercury from the Chisso Plant. However, most of these reports were not referred to during the study of Minamata disease. Inadequate referencing of literatures should be pointed out.

  11. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    PubMed

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from

  12. Investigating Mercury's South Polar Deposits with High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Shread, E. E.; Chabot, N. L.

    2018-05-01

    High-resolution images acquired by MESSENGER's Mercury Dual Imaging System were used to investigate the illumination conditions of Mercury's south polar deposits and to map the areas of permanent shadow in the region to compare with radar imaging.

  13. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    United States Postal Service Vice President of Finance Steve Masse, left, and NASA Mercury Astronaut Scott Carpenter, unveil two USPS stamps to commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  14. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-01

    A mercury resistant bacterial strain SE2 was isolated from contaminated soil. The 16s rRNA gene sequencing confirms the strain as Sphingopyxis belongs to the Sphingomonadaceae family of the α-Proteobacteria group. The isolate showed high resistance to mercury with estimated concentrations of Hg that caused 50% reduction in growth (EC 50 ) of 5.97 and 6.22mg/L and minimum inhibitory concentrations (MICs) of 32.19 and 34.95mg/L in minimal and rich media, respectively. The qualitative detection of volatilized mercury and the presence of mercuric reductase enzyme proved that the strain SE2 can potentially remediate mercury. ICP-QQQ-MS analysis of the remaining mercury in experimental broths indicated that a maximum of 44% mercury was volatilized within 6hr by live SE2 culture. Furthermore a small quantity (23%) of mercury was accumulated in live cell pellets. While no volatilization was caused by dead cells, sorption of mercury was confirmed. The mercuric reductase gene merA was amplified and sequenced. Homology was observed among the amino acid sequences of mercuric reductase enzyme of different organisms from α-Proteobacteria and ascomycota groups. Copyright © 2016. Published by Elsevier B.V.

  15. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and

  16. NASA News Conference on Mercury's Polar Regions

    NASA Image and Video Library

    2017-12-08

    Tune in to NASA's News Conference today, November 29, 2012, at 2 p.m. EST for new findings about Mercury's polar regions. www.nasa.gov/multimedia/nasatv/index.html Due to its nearly vertical spin axis, Mercury's north pole is never fully sunlit. If it were, it might look something like this image, which is an orthographic projection of a global mosaic. The dark area towards the center of the image contains the north pole. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. PATHWAYS OF MERCURY EVASION FROM CONTAMINATED WETLANDS: A GLOBALLY IMPORTANT SOURCE OF ATMOSPHERIC MERCURY?

    EPA Science Inventory

    Mercury (Hg) is a globally occurring pollutant that bioaccumulates and persists in the environment. The global Hg cycle is highly dependant on air/water exchange, as it is one of the primary pathways to deliver Hg to the atmosphere. Although open water systems appear to be net...

  18. MERCURY IN MARINE LIFE DATABASE

    EPA Science Inventory

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  19. Diagnosing congenital syphilis using Hutchinson's method: Differentiating between syphilitic, mercurial, and syphilitic-mercurial dental defects.

    PubMed

    Ioannou, Stella; Sassani, Sadaf; Henneberg, Maciej; Henneberg, Renata J

    2016-04-01

    This study focuses on the dental abnormalities observed by Sir Jonathan Hutchinson, Henry Moon and Alfred Fournier in patients with congenital syphilis and in those treated with mercury, in order to define alterations in dental morphology attributable to each of these causes. These definitions are applied to reported paleopathological cases, exploring various etiologies behind the defects, in order to aid in the diagnosis of congenital syphilis. Original works were examined for descriptions of dental abnormalities in congenital syphilis and in mercurial treatments. These descriptions were compared with dentitions of paleopathological cases (n = 4) demonstrating abnormalities attributed to congenital syphilis. Distinct morphological differences were recognized between congenital syphilitic teeth and teeth affected by mercury. Mercury produces a pronounced deficiency in enamel of incisors, canines and first permanent molars that become rugged and pitted, and of dirty grey honeycombed appearance. Mercury-induced dental changes are evident in three out of four cases studied here. In one case, only syphilitic changes were present. Dental changes in congenital syphilis range from no visible signs to those beyond the classical models of Hutchinson, Moon and Fournier. Treatment of neonates and infants with mercury produces additional changes. Signs of disease and treatment with mercury on teeth may occur together; permanent incisors, first molars and canines, are typically affected, premolars and second/third molars are usually spared. Signs of treatment with mercury might be the only evidence of the occurrence of the disease as mercury was rarely used to treat other diseases. © 2015 Wiley Periodicals, Inc.

  20. Mercury Project

    NASA Image and Video Library

    1961-05-05

    Dr. von Braun addresses a crowd celebrating in front of the Madison County Alabama Courthouse following the successful launch of Astronaut Alan Shepard (America's first astronaut in space) into space on a Mercury-Redstone Launch Vehicle, Freedom 7. Shepard's Mercury Spacecraft, was launched from Cape Canaveral. He reached a speed of 5200 mph. His flight lasted 15-1/2 minutes. May 5, 1961 (Photo: Courtesy of Huntsville/Madison County Public Library)

  1. Implications of climate variability for monitoring the effectiveness of global mercury policy

    NASA Astrophysics Data System (ADS)

    Giang, A.; Monier, E.; Couzo, E. A.; Pike-thackray, C.; Selin, N. E.

    2016-12-01

    We investigate how climate variability affects ability to detect policy-related anthropogenic changes in mercury emissions in wet deposition monitoring data using earth system and atmospheric chemistry modeling. The Minamata Convention, a multilateral environmental agreement that aims to protect human health and the environment from anthropogenic emissions and releases of mercury, includes provisions for monitoring treaty effectiveness. Because meteorology can affect mercury chemistry and transport, internal variability is an important contributor to uncertainty in how effective policy may be in reducing the amount of mercury entering ecosystems through wet deposition. We simulate mercury chemistry using the GEOS-Chem global transport model to assess the influence of meteorology in the context of other uncertainties in mercury cycling and policy. In these simulations, we find that interannual variability in meteorology may be a dominant contributor to the spatial pattern and magnitude of historical regional wet deposition trends. To further assess the influence of climate variability in the GEOS-Chem mercury simulation, we use a 5-member ensemble of meteorological fields from the MIT Integrated Global System Model under present and future climate. Each member involves randomly initialized 20 year simulations centered around 2000 and 2050 (under a no-policy and a climate stabilization scenario). Building on previous efforts to understand climate-air quality interactions for ground-level O3 and particulate matter, we estimate from the ensemble the range of trends in mercury wet deposition given natural variability, and, to extend our previous results on regions that are sensitive to near-source vs. remote anthropogenic signals, we identify geographic regions where mercury wet deposition is most sensitive to this variability. We discuss how an improved understanding of natural variability can inform the Conference of Parties on monitoring strategy and policy ambition.

  2. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  3. An Earth-sized exoplanet with a Mercury-like composition

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  4. KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  5. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  6. Mercury Information Clearinghouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEAmore » quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  7. Mercury levels of marine fish commonly consumed in Peninsular Malaysia.

    PubMed

    Ahmad, Nurul Izzah; Noh, Mohd Fairulnizal Mohd; Mahiyuddin, Wan Rozita Wan; Jaafar, Hamdan; Ishak, Ismail; Azmi, Wan Nurul Farah Wan; Veloo, Yuvaneswary; Hairi, Mohd Hairulhisam

    2015-03-01

    This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p < 0.001) in demersal fish (the range was from 0.173 to 2.537 mg/kg in dried weight) compared to pelagic fish (which ranged from 0.055 to 2.137 mg/kg in dried weight). The mercury concentrations were also higher in carnivorous fish especially in the species with more predatory feeding habits. Besides, the family group of Latidae (0.537 ± 0.267 mg/kg in dried weight), Dasyatidae (0.492 ± 0.740 mg/kg in dried weight), and Lutjanidae (0.465 ± 0.566 mg/kg in dried weight) showed significantly (p < 0.001) higher mercury levels compared to other groups. Fish collected from Port Klang (0.563 ± 0.509 mg/kg in dry weight), Kuala Besar (0.521 ± 0.415 mg/kg in dry weight), and Pandan (0.380 ± 0.481 mg/kg in dry weight) were significantly higher (p = 0.014) in mercury concentrations when compared to fish from other sampling locations. Total mercury levels were significantly higher (p < 0.002) in bigger fish (body length >20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.

  8. Transits in our Solar System for educational activities: Mercury Transit 2016 and Total Solar Eclipse 2017

    NASA Astrophysics Data System (ADS)

    Pérez-Ayúcar, M.; Breitfelner, M.

    2017-09-01

    Solar transits are rare astronomical event of profound historical importance and with an enormous potential to engage nowadays students and general public into Planetary Sciences and Space. Mercury transits occur only about every 13-14 times per century. Total solar eclipses occur around 18 months apart somewhere on Earth, but they recur only every 3-4 centuries on the same location. Although its historic scientific importance (examples, to measure the distances in the solar system, to observe the solar corona) has diminished since humanity roams our solar system with robotic spacecrafts, transits remain a spectacular astronomical event that is used very effectively to engage general public and students to Science and Space in general. The educational project CESAR (Cooperation through Education in Science and Astronomy Research) has been covering since 2012 such events (Venus transit 2012, live Sun transmissions, solar eclipses, ISS transits ...). We report the outstanding outcome of the two public educational and outreach events since last year: the May 2016 Mercury Transit, and the recent August 2017 Total Eclipse. And the follow up activities expected for future transits.

  9. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  10. MERCURY CONTROL TECHNOLOGY--A REVIEW

    EPA Science Inventory

    The U.S. Environmental Protection Agency has promulgated the Clean Air Mercury Rule (CAMR) to permanently cap and reduce mercury emissions in the U.S. This rule makes the U.S. the first country in the world to regulate mercury emissions from coal-fired power plants. The first p...

  11. Google Mercury: The Launch of a New Planet

    NASA Astrophysics Data System (ADS)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach Epo Team

    2010-12-01

    The NASA MESSENGER mission’s Education and Public Outreach (EPO) Team, in cooperation with Google, Inc., has launched Google Mercury, an immersive new environment on the Google Earth platform. Google Mercury features hundreds of surface features, most of them newly revealed by the three flybys of the innermost planet by the MESSENGER spacecraft. As with Google Earth, Google Mercury is available on line at no cost. This presentation will demonstrate how our team worked with Google staff, features we incorporated, how games can be developed within the Google Earth platform, and how others can add tours, games, and other educational features. Finally, we will detail new enhancements to be added once MESSENGER enters into orbit about Mercury in March 2011 and begins sending back compelling images and other global data sets on a daily basis. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI). Screen shot of Google Mercury as a work in progress

  12. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor.

    PubMed

    Aposhian, H Vasken; Morgan, Daniel L; Queen, H L Sam; Maiorino, Richard M; Aposhian, Mary M

    2003-01-01

    Some medical practitioners prescribe GSH and vitamin C alone or in combination with DMPS or DMSA for patients with mercury exposure that is primarily due to the mercury vapor emitted by dental amalgams. This study tested the hypothesis that GSH, vitamin C, or lipoic acid alone or in combination with DMPS or DMSA would decrease brain mercury. Young rats were exposed to elemental mercury by individual nose cone, at the rate of 4.0 mg mercury per m3 air for 2 h per day for 7 consecutive days. After a 7-day equilibrium period, DMPS, DMSA, GSH, vitamin C, lipoic acid alone, or in combination was administered for 7 days and the brain and kidneys of the animals removed and analyzed for mercury by cold vapor atomic absorption. None of these regimens reduced the mercury content of the brain. Although DMPS or DMSA was effective in reducing kidney mercury concentrations, GSH, vitamin C, lipoic acid alone, or in combination were not. One must conclude that the palliative effect, if any, of GSH, vitamin C, or lipoic acid for treatment of mercury toxicity due to mercury vapor exposure does not involve mercury mobilization from the brain and kidney.

  13. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  14. Assessment of the Cardiac Autonomic Nervous System in Mercury-Exposed Individuals via Post-Exercise Heart Rate Recovery.

    PubMed

    Yilmaz, Omer Hinc; Karakulak, Ugur Nadir; Tutkun, Engin; Bal, Ceylan; Gunduzoz, Meside; Ercan Onay, Emine; Ayturk, Mehmet; Tek Ozturk, Mujgan; Alaguney, Mehmet Erdem

    The aim of this study was to assess exercise heart rate recovery (HRR) indices in mercury-exposed individuals when evaluating their cardiac autonomic function. Twenty-eight mercury-exposed individuals and 28 healthy controls were enrolled. All the subjects underwent exercise testing and transthoracic echocardiography. The HRR indices were calculated by subtracting the first- (HRR1), second- (HRR2) and third-minute (HRR3) heart rates from the maximal heart rate. The two groups were evaluated in terms of exercise test parameters, especially HRR, and a correlation analysis was performed between blood, 24-hour urine and hair mercury levels and the test parameters. The mercury-exposed and control groups were similar in age (37.2 ± 6.6 vs. 36.9 ± 9.0 years), had an identical gender distribution (16 females and 12 males) and similar left ventricular ejection fractions (65.5 ± 3.1 vs. 65.4 ± 3.1%). The mean HRR1 [25.6 ± 6.5 vs. 30.3 ± 8.2 beats per min (bpm); p = 0.009], HRR2 (43.5 ± 5.3 vs. 47.8 ± 5.5 bpm; p = 0.010) and HRR3 (56.8 ± 5.1 vs. 59.4 ± 6.3 bpm; p = 0.016) values were significantly lower in the mercury-exposed group than in the healthy controls. However, there were no significant correlations between blood, urine and hair mercury levels and exercise test parameters. Mercury-exposed individuals had lower HRR indices than normal subjects. In these individuals, mercury exposure measurements did not show correlations with the exercise test parameters, but age did show a negative correlation with these parameters. Therefore, cardiac autonomic functions might be involved in cases of mercury exposure. © 2016 S. Karger AG, Basel.

  15. Virtual atmospheric mercury emission network in China.

    PubMed

    Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong

    2014-01-01

    Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.

  16. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  18. Mercury Poisoning Linked to Skin Products

    MedlinePlus

    ... products, injunctions, and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. The danger isn’t just to people who use mercury- ...

  19. Minamata Convention on Mercury

    EPA Pesticide Factsheets

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  20. The three modern faces of mercury.

    PubMed Central

    Clarkson, Thomas W

    2002-01-01

    The three modern "faces" of mercury are our perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines. In this article I review human exposure to and the toxicology of each of these three species of mercury. Mechanisms of action are discussed where possible. Key gaps in our current knowledge are identified from the points of view both of risk assessment and of mechanisms of action. PMID:11834460