Science.gov

Sample records for mesencephalic free-floating tissue

  1. Combined in situ Hybridization/Immunohistochemistry (ISH/IH) on Free-floating Vibratome Tissue Sections

    PubMed Central

    Lopez, Manuel E.

    2016-01-01

    In situ hybridization and immunostaining are common techniques for localizing gene expression, the mRNA and protein respectively, within tissues. Both techniques can be applied to tissue sections to achieve similar goals, but in some cases, it is necessary to use them together. For example, complement C1q is a secreted protein complex that can target the innate immune response during inflammation. Complement has been found to be elevated early and before severe neurodegeneration in several disease models. Thus, complement may serve as an important marker for disease progression and may contribute to the pathology under certain conditions. Since complement is a secreted complex, immunostaining for C1q does not necessarily reveal where compliment is produced. In situ hybridization for complement components, C1q a, b, or c mRNA, is ideal to mark complement producing cells in tissue. In situ hybridization can be coupled with cell-type-specific immunostaining for accurate identification of the cell types involved. Protein localization and mRNA localization together can reveal details as to the relationship between complement producing and complement target cells within disease tissues. Here we outline the steps for combined in situ hybridization and immunostaining on the same tissue section. The protocol outlined here has been designed for detection of complement C1q in neurons and microglia in the mouse brain. Provided here are two approaches for combined ISH/IH. In the 1st example, in situ hybridization of C1q mRNA is performed together with fluorescent detection of Purkinje neuron cell bodies using Calbindin-D28K antibody. In the 2nd example, C1q mRNA in situ is performed together with 3,3’-diaminobenzidine (DAB) detection of microglia using CD68 antibody. Please note that modifications to the protocol may be needed for the use of distinct probes and antibodies, as well as alternate tissue-processing methods that are not specified herein. For appropriate examples

  2. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  3. The lazaroid U-83836E improves the survival of rat embryonic mesencephalic tissue stored at 4 degrees C and subsequently used for cultures or intracerebral transplantation.

    PubMed

    Grasbon-Frodl, E M; Nakao, N; Brundin, P

    1996-01-01

    We assessed the effects of addition of the lazaroid U-83836E to a preservation medium on the survival of rat dopamine neurons stored before culturing or intracerebral transplantation. Embryonic ventral mesencephalic tissue was preserved at 4 degrees C for 8 days with or without the addition of 0.3 mu M of U-83836E to a chemically defined "hibernation" medium. Freshly dissected mesencephalic tissue was used in control groups. For culture experiments, the mesencephalic tissue was dissociated and grown in serum-containing medium. Following 24-48 h in vitro, the number of dopamine neurons in cultures derived from tissue hibernated without the lazaroid was 40% of fresh control, compared with 67% of control in cultures prepared from tissue stored in the presence of U-83836E. When mesencephalic tissue was transplanted to the dopamine-depleted striatum of hemiparkinsonian rats following 8 days storage at 4 degrees C in a medium without U-83836E, the mean number of surviving dopamine neurons in the grafts was significantly reduced to 40% of control. In contrast, grafts of tissue which had been hibernated in U-83836E-containing medium contained as many dopamine neurons as transplants of freshly dissected tissue. High yields of surviving grafted dopamine neurons were correlated to a significantly faster onset of functional recovery of amphetamine-induced motor asymmetry. We conclude that the storage period for rat mesencephalic tissue can be prolonged up to 8 days when using lazaroid-supplemented hibernation medium. As lazaroids have undergone clinical safety testing, the application of lazaroids for tissue storage in clinical transplantation trials can be envisaged. PMID:9138743

  4. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    NASA Astrophysics Data System (ADS)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  5. Phytoremediation of perchlorate by free floating macrophytes.

    PubMed

    Bhaskaran, Krishnakumar; Vijaya Nadaraja, Anupama; Tumbath, Soumya; Babu Shah, Liji; Gangadharan Puthiya Veetil, Prajeesh

    2013-09-15

    Phytoremediation of perchlorate by free floating macrophytes (Eichornia, Pistia, Salvinia and Lemna) was evaluated in this study. Among the plants tested, Pistia showed 63.8 ± 4% (w/v) removal of 5 mg/L level perchlorate in 7 days, whereas the removal was absent in other plants. Phyto-accumulation (18.2%) and rhizo-degradation (45.68%) were identified as the mechanisms involved in perchlorate removal in Pistia. Whole plant extraction yielded 45.4 μg perchlorate/g dry weight biomass in 7 days period. High intensity of light and presence of nitrate negatively affected perchlorate removal by Pistia. An enrichment of Pistia root homogenate exhibited faster reduction of perchlorate where 100mg/L of the compound was reduced completely in 48 h under anoxic condition. A novel perchlorate reducing bacterium, isolated from Pistia root homogenate enrichment was identified as Acinetobacter sp. NIIST (Genbank JX467695). PMID:23872336

  6. Free-floating dual-arm robots for space assembly

    NASA Technical Reports Server (NTRS)

    Agrawal, Sunil Kumar; Chen, M. Y.

    1994-01-01

    Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.

  7. Free-floating collagen fibers in interstitial mycosis fungoides.

    PubMed

    Ferrara, Gerardo; Crisman, Giuliana; Zalaudek, Iris; Argenziano, Giuseppe; Stefanato, Catherine M

    2010-06-01

    We present a case of interstitial mycosis fungoides showing pseudodovascular clefts with "free-floating" collagen fibers surrounded by neoplastic T lymphocytes. Such a finding further expands the histopathologic spectrum of mycosis fungoides and could be taken into account in its differential diagnosis from granuloma annulare, inflammatory morphea, and interstitial granulomatous drug reaction. PMID:20145533

  8. Using K2 To Find Free-floating Planets

    NASA Astrophysics Data System (ADS)

    Henderson, Calen

    2015-12-01

    K2's Campaign 9 (K2C9) will conduct a several square-degree microlensing survey toward the Galactic bulge to detect exoplanets simultaneously from the ground and from space. The ˜0.5 AU baseline between K2 and the Earth during C9 will facilitate satellite parallax measurements for hundreds of microlensing events, some with planetary signatures, allowing for the determination of the mass of and distance to the lens systems. For short timescale events, with durations of ˜1 day, a determination of the parallax will identify that the cause is in fact a very low-mass object, i.e., a free-floating planet. Subsquent high-resolution NIR photometric follow-up can then distinguish between a planet that is widely separated from but gravitationally bound to a host star and one that is truly free-floating.

  9. Using K2 to Find Free-floating Planets

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.

    2016-01-01

    In 2011, Sumi et al. announced the discovery of an excess of short-timescale microlensing events, which they inferred to be caused by a population of unbound planetary-mass objects. Their result implies that these free-floating planet candidates may constitute an overwhelming fraction of the mass budget for planet formation. K2's Campaign 9 (K2C9) will conduct a ~4 square-degree microlensing survey toward the Galactic bulge and is our first and potentially only opportunity to perform a synoptic survey to measure the masses of a substantial number of short-timescale events. The ˜0.5 AU baseline between K2 and the Earth during C9 will facilitate satellite parallax measurements for short-timescale events, with durations of ˜1 day, which will identify that the cause of the event is in fact a very low-mass object, i.e., a free-floating planet candidate. By taking near-infrared (NIR) photometry during the event and comparing to high-resolution NIR photometry after the event is over, we can then distinguish between a planet that is widely separated from but gravitationally bound to a host star and one that is truly free-floating. Here we overview this procedure, describe the resources available to accomplish it, and detail the expected yields.

  10. Microlensing by Kuiper, Oort, and Free-Floating Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2016-08-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event.At present, the search for such hosts is restricted to within the ``confusion limit'' of θ_\\confus ˜ 0.25'' but future WFIRST (Wide Field Infrared Survey Telescope) observations will allow one to probe beyond this confusion limit as well.

  11. Investigating the free-floating planet mass by Euclid observations

    NASA Astrophysics Data System (ADS)

    Hamolli, Lindita; Hafizi, Mimoza; De Paolis, Francesco; Nucita, Achille A.

    2016-08-01

    The detection of anomalies in gravitational microlensing events is nowadays one of the main goals among the microlensing community. In the case of single-lens events, these anomalies can be caused by the finite source effects, that is when the source disk size is not negligible, and by the Earth rotation around the Sun (the so-called parallax effect). The finite source and parallax effects may help to define the mass of the lens, uniquely. Free-floating planets (FFPs) are extremely dim objects, and gravitational microlensing provides at present the exclusive method to investigate these bodies. In this work, making use of a synthetic population algorithm, we study the possibility of detecting the finite source and parallax effects in simulated microlensing events caused by FFPs towards the Galactic bulge, taking into consideration the capabilities of the space-based Euclid telescope. We find a significant efficiency for detecting the parallax effect in microlensing events with detectable finite source effect, that turns out to be about 51 % for mass function index α_{PL} = 1.3.

  12. Free-floating planets from core accretion theory: microlensing predictions

    NASA Astrophysics Data System (ADS)

    Ma, Sizheng; Mao, Shude; Ida, Shigeru; Zhu, Wei; Lin, Douglas N. C.

    2016-09-01

    We calculate the microlensing event rate and typical time-scales for the free-floating planet (FFP) population that is predicted by the core accretion theory of planet formation. The event rate is found to be ˜1.8 × 10-3 of that for the stellar population. While the stellar microlensing event time-scale peaks at around 20 d, the median time-scale for FFP events (˜0.1 d) is much shorter. Our values for the event rate and the median time-scale are significantly smaller than those required to explain the Sumi et al. result, by factors of ˜13 and ˜16, respectively. The inclusion of planets at wide separations does not change the results significantly. This discrepancy may be too significant for standard versions of both the core accretion theory and the gravitational instability model to explain satisfactorily. Therefore, either a modification to the planet formation theory is required or other explanations to the excess of short-time-scale microlensing events are needed. Our predictions can be tested by ongoing microlensing experiment such as Korean Microlensing Telescope Network, and by future satellite missions such as WFIRST and Euclid.

  13. Analysis of a Near-Free-Floating Vibration Isolation Platform

    NASA Astrophysics Data System (ADS)

    Regehr, M.

    2015-02-01

    Pointing control for deep-space lasercom is expected to be challenging because, for the apertures and wavelengths contemplated (of order 20 cm and 1 micrometer, respectively), the width of the beam transmitting data to Earth will be of order a few microradians. To address this challenge, JPL and others have been developing a vibration isolation system in which the lasercom telescope is nearly free-floating next to the spacecraft, being physically connected to the spacecraft only by a set of flexible wires and fibers referred to as an umbilical. The telescope's position relative to the spacecraft is sensed by noncontact sensors and the telescope is controlled by noncontact (voice coil) actuators. The telescope pointing error, relative to Earth, is also sensed by a pointing detector in the telescope, which images an Earth-based laser beacon. The telescope moves in six degrees of freedom, of which two (pitch and yaw) are the pointing of the telescope, and are of principal importance. This article describes a controller for controlling the telescope, and a simplified method of analyzing the closed-loop behavior of the system. Several mechanisms for cross-coupling between the degrees of freedom are present, including off-diagonal elements in the umbilical spring constant matrix, and the telescope having significant products of inertia; as a result, the dynamics of the closed-loop system are described by a full 6 by 6 transfer matrix. Approximations that take into account only one or two cross-coupling mechanisms at a time, however, and which result in block-diagonal models for the system, provide excellent agreement with the full model. These approximations provide insight useful for designing the controller, and numerical models indicate that a controller designed using these approximations provides performance that meets pointing requirements.

  14. Free-Floating Iris Cyst in a Patient with Recurrent Iritis

    PubMed Central

    Teong, Joanne M.Y.; Adler, Paul A.; Fuzzard, Dujon R.W.

    2015-01-01

    Purpose We describe an unusual clinical finding of a free-floating iris cyst in a patient with recurrent iritis. Method The clinical finding of a free-floating iris cyst was recorded using slit-lamp photography. Results A 39-year-old male with a 5-year history of recurrent right iritis was found to have a small mobile iris cyst within his right anterior chamber, first identified 3 years ago. The patient did not experience any discomfort or visual symptoms resulting from the cyst. Conclusion Surgical removal is not indicated for asymptomatic non-progressive free-floating iris cysts. The significance of a free-floating iris cyst in the setting of recurrent iritis remains unknown. PMID:26120316

  15. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures.

    PubMed

    Grabinski, Tessa M; Kneynsberg, Andrew; Manfredsson, Fredric P; Kanaan, Nicholas M

    2015-01-01

    In situ hybridization (ISH) is an extremely useful tool for localizing gene expression and changes in expression to specific cell populations in tissue samples across numerous research fields. Typically, a research group will put forth significant effort to design, generate, validate and then utilize in situ probes in thin or ultrathin paraffin embedded tissue sections. While combining ISH and IHC is an established technique, the combination of RNAscope ISH, a commercially available ISH assay with single transcript sensitivity, and IHC in thick free-floating tissue sections has not been described. Here, we provide a protocol that combines RNAscope ISH with IHC in thick free-floating tissue sections from the brain and allows simultaneous co-localization of genes and proteins in individual cells. This approach works well with a number of ISH probes (e.g. small proline-rich repeat 1a, βIII-tubulin, tau, and β-actin) and IHC antibody stains (e.g. tyrosine hydroxylase, βIII-tubulin, NeuN, and glial fibrillary acidic protein) in rat brain sections. In addition, we provide examples of combining ISH-IHC dual staining in primary neuron cultures and double-ISH labeling in thick free-floating tissue sections from the brain. Finally, we highlight the ability of RNAscope to detect ectopic DNA in neurons transduced with viral vectors. RNAscope ISH is a commercially available technology that utilizes a branched or "tree" in situ method to obtain ultrasensitive, single transcript detection. Immunohistochemistry is a tried and true method for identifying specific protein in cell populations. The combination of a sensitive and versatile oligonucleotide detection method with an established and versatile protein assay is a significant advancement in studies using free-floating tissue sections. PMID:25794171

  16. Chemokine-Mediated Migration of Mesencephalic Neural Crest Cells

    PubMed Central

    Rezzoug, Francine; Seelan, Ratnam S.; Bhattacherjee, Vasker; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, “transwell” assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo “bead implantation” assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo. PMID:22015108

  17. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.

    PubMed

    Rai, Prabhat Kumar

    2008-01-01

    The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution. PMID:19260224

  18. Free-Floating Iris Pigmented Epithelial Cyst in the Anterior Chamber

    PubMed Central

    Rotsos, Tryfon; Bagikos, Georgios; Christou, Spyridon; Symeonidis, Chrysanthos; Papadaki, Thekla; Papaeuthimiou, Ioannis; Miltsakakis, Dimitrios

    2016-01-01

    An unusual case of a free-floating peripheral pigmented cyst in the anterior chamber is presented. A 30-year-old Caucasian male presented reporting a visual defect on his right eye in prone position over the past year. Slit-lamp examination revealed a small pigmented free-floating peripheral iris cyst at the 6 o'clock position in the anterior chamber. Ultrasound biomicroscopy revealed an unfixed epithelial pigmented cyst with an extremely thin wall and no internal reflectivity. Due to the lack of severity of visual disturbance of the patient, no surgical treatment was indicated. The patient is to be followed up annually and advised to return immediately in case of pain or any visual symptoms. Free-floating iris cysts in the anterior chamber are uncommon and remain stable in the majority of cases. Management includes only regular observation until any complications arise. PMID:26904334

  19. Free-Floating Iris Pigmented Epithelial Cyst in the Anterior Chamber.

    PubMed

    Rotsos, Tryfon; Bagikos, Georgios; Christou, Spyridon; Symeonidis, Chrysanthos; Papadaki, Thekla; Papaeuthimiou, Ioannis; Miltsakakis, Dimitrios

    2016-01-01

    An unusual case of a free-floating peripheral pigmented cyst in the anterior chamber is presented. A 30-year-old Caucasian male presented reporting a visual defect on his right eye in prone position over the past year. Slit-lamp examination revealed a small pigmented free-floating peripheral iris cyst at the 6 o'clock position in the anterior chamber. Ultrasound biomicroscopy revealed an unfixed epithelial pigmented cyst with an extremely thin wall and no internal reflectivity. Due to the lack of severity of visual disturbance of the patient, no surgical treatment was indicated. The patient is to be followed up annually and advised to return immediately in case of pain or any visual symptoms. Free-floating iris cysts in the anterior chamber are uncommon and remain stable in the majority of cases. Management includes only regular observation until any complications arise. PMID:26904334

  20. Free floating left atrial ball thrombus: a rare cause of stroke.

    PubMed

    Rider, Oliver J; Malhotra, Aneil; Newton, James D

    2013-10-01

    In the setting of mitral valve stenosis and atrial fibrillation, left atrial ball thrombus is a rare but recognized cause of stroke and can occur even in the presence of therapeutic anticoagulation. This case report highlights the need for echocardiography to rule out treatable cardioembolic substrates for stroke. We report a case of cardioembolic stroke as a result of free floating left atrial ball thrombus presenting as a complication of rheumatic mitral valve disease. This case highlights that, in all patients with a history of structural heart disease, atrial fibrillation, or rheumatic fever, prompt cardiac ultrasound to exclude free floating atrial thrombus is essential. PMID:22959106

  1. On the nature of control algorithms for free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Evangelos; Dubowsky, Steven

    1991-01-01

    It is suggested that nearly any control algorithm that can be used for fixed-based manipulators also can be employed in the control of free-floating space manipulator systems, with the additional conditions of estimating or measuring a spacecraft's orientation and of avoiding dynamic singularities. This result is based on the structural similarities between the kinematic and dynamic equations for the same manipulator but with a fixed base. Barycenters are used to formulate the kinematic and dynamic equations of free-floating space manipulators. A control algorithm for a space manipulator system is designed to demonstrate the value of the analysis.

  2. Motion planning for redundant prismatic-jointed manipulators in the free-floating mode

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Dong; Baoyin, He-Xi; Ma, Xing-Rui

    2012-10-01

    This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The coefficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simultaneously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method provides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.

  3. Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Walter, Ulrich

    2015-07-01

    This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  4. On the dynamic singularities in the control of free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, E.; Dubowsky, S.

    1989-01-01

    It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.

  5. A system architecture for long duration free floating flight for military applications

    SciTech Connect

    Epley, L.E. )

    1990-08-31

    Accessibility is today's space frontier. Our need for wide-band global communications, earth imaging an sensing, atmospheric measurements and military reconnaissance is endless but growing dependence on space-based systems raises concerns about potential vulnerability. Military commanders want space assets more accessible and under direct local control. As a result, a robust and low cost access to space-like capability has become a national priority. Buoyant vehicles, free floating in the middle stratosphere could provide the kind of cost effective access to space-like capability needed for a verity of missions. These vehicles are inexpensive, invisible and easily launched. Developments in payload electronics, atmospheric wind modeling and materials combined with ever-improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The fundamental question is whether a free floating balloon, used in a pseudo-satellite role, has value in a military system. Flight tests are ongoing under NASA sponsorship. Following these tests NASA intends to use the vehicles for research in the Antarctic. The concept is being reviewed by other agencies interested in stratospheric research. We believe that LDFFF systems have applications in areas of communications, surveillance and other traditional satellite missions. Dialogue with the broader community of space users is needed to expand the applications. This report reviews the status of the recent flight tests and presents an overview of the concept of Long Duration Free Floating Flight for military applications. 12 refs., 13 figs.

  6. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  7. DETECTABILITY OF FREE FLOATING PLANETS IN OPEN CLUSTERS WITH THE JAMES WEBB SPACE TELESCOPE

    SciTech Connect

    Pacucci, Fabio; Ferrara, Andrea; D'Onghia, Elena

    2013-12-01

    Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate N-dot {sub o} (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρ{sub *} of the cluster: N-dot {sub o}=αρ{sub ⋆}, with α = (23 ± 5) × 10{sup –6} pc{sup 3} Myr{sup –1}. For the Pleiades (M45), we predict that ∼26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ∼500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of F {sub ν} (4.4 μm) ≈4 × 10{sup 2} nJy, which would lead to a very clear detection (S/N ∼ 100) in only one hour of integration.

  8. A persistent sciatic artery aneurysm containing a free-floating thrombus: report of a case.

    PubMed

    Unosawa, Satoshi; Ishii, Yusuke; Niino, Tetsuya

    2015-08-01

    A persistent sciatic artery is a rare vascular anomaly in which the sciatic artery, which involutes in the embryonic stage, persists as the blood supply to the lower limb. This vascular anomaly is often associated with aneurysm formation. A persistent sciatic artery aneurysm is a rare cause of peripheral arterial embolic disease. We herein describe the case of a 72-year-old female with a free-floating thrombus in a persistent sciatic artery aneurysm. She underwent iliac-popliteal artery bypass and exclusion of the aneurysm to prevent an embolic event. PMID:25016369

  9. Estimating the center of mass of a free-floating body in microgravity.

    PubMed

    Lejeune, L; Casellato, C; Pattyn, N; Neyt, X; Migeotte, P-F

    2013-01-01

    This paper addresses the issue of estimating the position of the center of mass (CoM) of a free-floating object of unknown mass distribution in microgravity using a stereoscopic imaging system. The method presented here is applied to an object of known mass distribution for validation purposes. In the context of a study of 3-dimensional ballistocardiography in microgravity, and the elaboration of a physical model of the cardiovascular adaptation to weightlessness, the hypothesis that the fluid shift towards the head of astronauts induces a significant shift of their CoM needs to be tested. The experiments were conducted during the 57th parabolic flight campaign of the European Space Agency (ESA). At the beginning of the microgravity phase, the object was given an initial translational and rotational velocity. A 3D point cloud corresponding to the object was then generated, to which a motion-based method inspired by rigid body physics was applied. Through simulations, the effects of the centroid-to-CoM distance and the number of frames of the sequence are investigated. In experimental conditions, considering the important residual accelerations of the airplane during the microgravity phases, CoM estimation errors (16 to 76 mm) were consistent with simulations. Overall, our results suggest that the method has a good potential for its later generalization to a free-floating human body in a weightless environment. PMID:24110838

  10. Pleurotus ostreatus biofilms exhibit higher tolerance to toxicants than free-floating counterparts.

    PubMed

    Pesciaroli, Lorena; Petruccioli, Maurizio; Federici, Federico; D'Annibale, Alessandro

    2013-01-01

    The MBEC(TM)-High Throughput Assay based on the Calgary Biofilm Device was used to produce and to characterize Pleurotus ostreatus biofilms. Hydroxyapatite coating of pegs was required to enable biofilm attachment; biofilm amounts and homogeneity of distribution were markedly improved upon removal of non-sessile biomass after 48 h from inoculation. Scanning electron microscopy showed surface-associated and multi-layered growth stabilized by the presence of an extracellular matrix (ECM). Biofilms had higher contents of total sugars and ECM than their free-floating counterparts. Tolerance to Cr(VI) in the former was about twice that of the latter as inferred by the respective inhibitory concentrations (48.4 vs 24.1 mM and 114.5 vs 61.0 mM in 4- and 7-d-old cultures, respectively). Biofilms also displayed superior olive-mill wastewater (OMW) treatment efficiency along 5 consecutive batches leading to chemical oxygen demand and total phenol removals higher than 50 and 90%, respectively. Laccase activity peaks in biofilm cultures grown on OMW were significantly higher than those in free-floating cultures. PMID:23998200

  11. Carotid artery free-floating thrombus caused by paradoxical embolization from greater saphenous vein ascending thrombophlebitis.

    PubMed

    Irace, Luigi; Gabrielli, Roberto; Rosati, Maria Sofia; Giannoni, Maria Fabrizia; Castiglione, Anna; Laurito, Antonella; Gossetti, Bruno

    2013-05-01

    Stroke of unknown origin in young patients is seen to be closely correlated with patent foramen ovale (PFO) than stroke in patients with established stroke mechanisms. We report a case of a young woman without cardiovascular risk factors who was admitted to our emergency department with listlessness and altered mental status. The clinical examination revealed right lower limb swelling. Magnetic resonance imaging and contrast-enhanced computed tomographic scans revealed a free floating thrombus of the left internal carotid artery (ICA) with a large bilateral frontal ischemic lesion. The diagnosis of a medium-sized PFO with moderate right-to-left contrast shunting was made after transesophageal echocardiography. No other cardiac sources for embolization were detected, while an ascending thrombophlebitis of the right greater saphenous vein was detected by venous Doppler ultrasonography. These findings support the diagnosis of ICA free-floating thrombus caused by paradoxical embolization (via the PFO) of clot from the greater saphenous vein. The patient underwent emergency saphenofemoral disconnection with femoral vein thrombectomy and subsequently carotid artery thrombectomy under general anesthesia. No carotid atheromatous wall lesions were detected at surgical exploration; no immunologic pathology, hypercoagulable status, or malignancy were recorded. No hemorrhagic cerebral complications were observed in the postoperative period, and the patient had an improvement of her neurologic status (a reduction of the National Institutes of Health Stroke Scale score from 7 to 3). Her recovery was uneventful. The patient was transferred for rehabilitation on postoperative day 5 with oral anticoagulation. Six-month ultrasound follow-up revealed deep and superficial venous system and carotid artery patency. The patient was asymptomatic and anticoagulation was discontinued. Paradoxical cerebral embolization through a PFO is a rare phenomenon that, in our patient, appeared to have

  12. [A Case of Carotid Free-Floating Thrombus Treated by Carotid Ultrasonography-Guided Endovascular Approach].

    PubMed

    Otawa, Masato; Kinkori, Takeshi; Watanabe, Kenichi; Ando, Ryo; Tambara, Masao; Arima, Toru

    2016-06-01

    We experienced a case of carotid free-floating thrombus treated by carotid ultrasonography-guided endovascular approach. A 63-year-old man was brought to our hospital with the chief complaint of sudden onset left hemiplegia. MRI revealed acute infarction of the right MCA territory due to the right M1 occlusion. Carotid ultrasonography showed a pedunculated, polypoid mobile plaque floating with the cardiac beat. We attempted ultrasonography-guided endovascular treatment. Under proximal balloon protection, the floating plaque was successfully aspirated into the Penumbra aspiration catheter. Carotid stent was also placed to stabilize the residual pedicle of the plaque. Aspirated plaque was identified as fresh thrombus by pathological examination. Carotid ultrasonography-guided endovascular approach was effective for getting the picture of real-time dynamics of the carotid FFT. PMID:27270147

  13. Experimental study of nonlinear behaviors of a free-floating body in waves

    NASA Astrophysics Data System (ADS)

    He, Ming; Ren, Bing; Qiu, Da-hong

    2016-04-01

    Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.

  14. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  15. Echocardiographic detection of free-floating thrombus in left ventricle during coronary artery bypass grafting

    PubMed Central

    Vaggar, Jagadeesh N.; Gadhinglajkar, Shrinivas; Pillai, Vivek; Sreedhar, Rupa; Cahndran, Roshith; Roy, Suddhadeb

    2015-01-01

    We report an incident of detection of a free-floating thrombus in the left ventricle (LV) using intraoperative two-dimensional (2D) and three-dimensional (3D) transesophageal echocardiography (TEE) during proximal coronary artery bypass graft anastomosis. A 58-year-old man presented to us with a 6-month history of chest pain without any history suggestive of myocardial infarction or transient ischemic attacks. His preoperative echocardiography revealed the systolic dysfunction of LV, mild hypokinesia of basal and mid-anterior wall, and the absence of an aneurysm. He was scheduled for on-pump coronary artery bypass surgery. On intraoperative TEE before establishing cardiopulmonary bypass (CPB), a small immobile mass was found attached to LV apical area. After completion of distal coronary artery grafting, when the aortic cross-clamp was removed, the heart was filled partially and beating spontaneously. TEE examination using 2D mode revealed a free-floating mass in the LV, which was suspected to be a thrombus. Additional navigation using biplane and 3D modes confirmed the presence of the thrombus and distinguished it from papillary muscles and artifact. The surgeon opened the left atrium after re-establishing electromechanical quiescence and removed a thrombus measuring 1.5 cm × 1 cm from the LV. The LV mass in the apical region was no longer seen after discontinuation of CPB. Accurate TEE-detection and timely removal of the thrombus averted disastrous embolic complications. Intraoperative 2D and recent biplane and 3D echocardiography modes are useful monitoring tools during the conduct of CPB. PMID:26440248

  16. Lipid tethering of breast tumor cells enables real-time imaging of free-floating cell dynamics and drug response

    PubMed Central

    Whipple, Rebecca A.; Zhang, Peipei; Sooklal, Elisabeth L.; Martin, Stuart S.; Jewell, Christopher M.

    2016-01-01

    Free-floating tumor cells located in the blood of cancer patients, known as circulating tumor cells (CTCs), have become key targets for studying metastasis. However, effective strategies to study the free-floating behavior of tumor cells in vitro have been a major barrier limiting the understanding of the functional properties of CTCs. Upon extracellular-matrix (ECM) detachment, breast tumor cells form tubulin-based protrusions known as microtentacles (McTNs) that play a role in the aggregation and re-attachment of tumor cells to increase their metastatic efficiency. In this study, we have designed a strategy to spatially immobilize ECM-detached tumor cells while maintaining their free-floating character. We use polyelectrolyte multilayers deposited on microfluidic substrates to prevent tumor cell adhesion and the addition of lipid moieties to tether tumor cells to these surfaces through interactions with the cell membranes. This coating remains optically clear, allowing capture of high-resolution images and videos of McTNs on viable free-floating cells. In addition, we show that tethering allows for the real-time analysis of McTN dynamics on individual tumor cells and in response to tubulin-targeting drugs. The ability to image detached tumor cells can vastly enhance our understanding of CTCs under conditions that better recapitulate the microenvironments they encounter during metastasis. PMID:26871289

  17. Diencephalic-Mesencephalic Junction Dysplasia: A Novel Recessive Brain Malformation

    ERIC Educational Resources Information Center

    Zaki, Maha S.; Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic "butterfly"-like contour of the midbrain on…

  18. Using Planet Formation Simulations to Predict the Free-floating Planet Yield Expected from WFIRST

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.

    2016-06-01

    Planets are thought to form in circumstellar disks as a product of star formation. Material in the disk ends up in one of three places, (a) it remains in the disk as part of a planet, minor body or as interplanetary material, (b) it falls into the star, or (c) it is ejected from the system. We explore the properties of this ejected material using N-body simulations. We find that in planetary systems like ours (with Jupiter and Saturn) about half the ejected material is in bodies smaller than 1 Lunar-mass and about half is in bodies larger than 1 Mars-mass. The ejections happen early and no planets more massive than half an earth-mass are ejected. When no giant planets are present in the system, very little material is ejected. We predict that future space-borne microlensing searches for free-floating terrestrial-mass planets, such as WFIRST, will discover large numbers of Mars-mass planets but will not make significant detections of Earth-mass planets.

  19. ARE LARGE, COMETARY-SHAPED PROPLYDS REALLY (FREE-FLOATING) EVAPORATING GAS GLOBULES?

    SciTech Connect

    Sahai, R.; Guesten, R.; Morris, M. R.

    2012-12-20

    We report the detection of strong and compact molecular line emission (in the CO J = 3-2, 4-3, 6-5, 7-6, {sup 13}CO J = 3-2, HCN, and HCO{sup +} J = 4-3 transitions) from a cometary-shaped object (Carina-frEGG1) in the Carina star-forming region (SFR) previously classified as a photoevaporating protoplanetary disk (proplyd). We derive a molecular mass of 0.35 M{sub Sun} for Carina-frEGG1, which shows that it is not a proplyd, but belongs to a class of free-floating evaporating gas globules (frEGGs) recently found in the Cygnus SFR by Sahai et al. Archival adaptive optics near-IR (Ks) images show a central hourglass-shaped nebula. The derived source luminosity (about 8-18 L{sub Sun }), the hourglass morphology, and the presence of collimated jets seen in Hubble Space Telescope images imply the presence of a jet-driving, young, low-mass star deeply embedded in the dust inside Carina-frEGG1. Our results suggest that the true nature of many or most such cometary-shaped objects seen in massive SFRs and previously labeled as proplyds has been misunderstood, and that these are really frEGGs.

  20. THE COLDEST BROWN DWARF (OR FREE-FLOATING PLANET)?: THE Y DWARF WISE 1828+2650

    SciTech Connect

    Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Marsh, Kenneth A.; Barman, Travis S.; Cushing, Michael C.; Wright, E. L.

    2013-02-10

    We have monitored the position of the cool Y dwarf WISEPA J182831.08+265037.8 using a combination of ground- and space-based telescopes and have determined its distance to be 11.2{sup +1.3} {sub -1.0} pc. Its absolute H magnitude, M{sub H} = 22.21{sup +0.25} {sub -0.22} mag, suggests a mass in the range 0.5-20 M {sub Jup} for ages of 0.1-10 Gyr with an effective temperature in the range 250-400 K. The broad range in mass is due primarily to the unknown age of the object. Since the high tangential velocity of the object, 51 {+-} 5 km s{sup -1}, is characteristic of an old disk population, a plausible age range of 2-4 Gyr leads to a mass range of 3-6 M {sub Jup} based on fits to the (highly uncertain) COND evolutionary models. The range in temperature is due to the fact that no single model adequately represents the 1-5 {mu}m spectral energy distribution (SED) of the source, failing by factors of up to five at either the short or long wavelength portions of the SED. The appearance of this very cold object may be affected by non-equilibrium chemistry or low temperature condensates forming clouds, two atmospheric processes that are known to be important in brown dwarf atmospheres but have proven difficult to model. Finally, we argue that there would have to be a very steep upturn in the number density of late-type Y-dwarfs to account for the putative population of objects suggested by recent microlensing observations. Whether WISE 1828+2650 sits at the low-mass end of the brown dwarf population or is the first example of a large number of 'free-floating' planets is not yet known.

  1. CONFIGURATIONS OF BOUNDED AND FREE-FLOATING PLANETS IN VERY YOUNG OPEN CLUSTERS

    SciTech Connect

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-08-01

    Open clusters (OCs) are usually young and suitable for studying the formation and evolution of planetary systems. So far, only four planets have been found with radial velocity measurements in OCs. Meanwhile, a lot of free-floating planets (FFPs) have been detected. We utilize N-body simulations to investigate the evolution and final configurations of multi-planetary systems in very young open clusters with an age <10 Myr. After an evolution of 10 Myr, 61%-72% of the planets remain bounded and more than 55% of the planetary systems will maintain their initial orbital configurations. For systems with one planet ejected, more than 25% of them have the surviving planets in misaligned orbits. In the clusters, the fraction of planetary systems with misalignment is >6%, and only 1% have planets in retrograde orbits. We also obtain a positive correlation between the survival planet number and the distance from the cluster center r: planetary systems with a larger r tend to be more stable. Moreover, stars with a mass >2.5 M{sub Sun} are likely unstable and lose their planets. These results are roughly consistent with current observations. Planetary systems in binaries are less stable and we achieve a rough criterion: most of the binary systems with a{sub b}(1-e{sub b}{sup 2})>100 AU can retain all the initial planets. Finally, 80% of the FFPs are ejected out of the clusters, while the rest ({approx}20%) still stay in host clusters and most of them are concentrated in the center (<2 pc)

  2. [In vitro viability and glutathione levels in mesencephalic neurons after seven days hibernation].

    PubMed

    De La Cuétara-Bernal, K; Castillo-Díaz, L; Cruz-Aguado, R; González-Mena, Y; García-Varona, A Y

    In embryonic mesencephalic transplant in patients with Parkinson s disease dopaminergic survival is low (5 10%), and for this reason the use of multiple donors has been considered. The difficulty of obtaining more tissue determines the need for a procedure that enables human nigral tissue to be stored for a time without affecting its physiological state in any significant way. This study was designed to determine whether hibernation of tissue fragments has any influence on viability, how the viability of the mesencephalic cells behaves after 7 days hibernation and the glutathione levels in the hibernated tissue (HT). The viability of the HT in pieces (82.37 2.12) was found to be higher than the value for the whole mesencephalon (70.29 3.43). Viability of the HT, seven days at 4 C, at different post dissociation times, did not differ significantly. Despite the significant differences found between hibernated and fresh tissue at t= 0, this procedure does not seem to affect the mesencephalic tissue in any significant way, as it conserved a 94% viability after hibernation. No evidence was found of increased glutathione content as an antioxidizing response to the damage that might be caused by hibernation. These results suggest that since hibernation does not have any significant effect on the state of the cells it could be considered a useful procedure for conserving tissue to be used in clinical transplants. Moreover, further research is needed on survival and functionality of hibernated cells after being transplanted into animal models in order to evaluate their potential for use in cell therapy. PMID:12134300

  3. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  4. Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation.

    PubMed

    Zaki, Maha S; Saleem, Sahar N; Dobyns, William B; Barkovich, A James; Bartsch, Hauke; Dale, Anders M; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G; Grijalvo-Perez, Ana Maria

    2012-08-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic 'butterfly'-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term 'diencephalic-mesencephalic junction dysplasia' to characterize this autosomal recessive malformation. PMID:22822038

  5. Free-floating thrombus of the carotid artery with a homozygous methylenetetrahydrofolate reductase gene mutation: a case report.

    PubMed

    Colak, Necmettin; Nazli, Yunus; Kosehan, Dilek; Alpay, Mehmet Fatih; Cakir, Omer

    2013-02-01

    Free-floating thrombus (FFT) of the carotid artery is a rare condition of currently unknown etiology. We describe a symptomatic patient with an FFT in the left common carotid artery. A duplex ultrasonography scan showed the presence of a mobile floating thrombus moving in cyclical motion with the cardiac cycles in the left common carotid artery. During emergency surgery, an FFT was seen at this location and removed. No underlying wall defect was seen at the time of surgery. In a genetic screening test, TT homozygous for the methylenetetrahydrofolate reductase (MTHFR) C677T genetic polymorphisms was detected. The patient recovered uneventfully, with no neurogical events. Lifelong anticoagulant therapy was recommended. An aggressive surgical approach is recommended in the patient to prevent embolic episodes. PMID:22101856

  6. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  7. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    PubMed

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  8. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles.

    PubMed

    Yousefi, Nariman; Wargenau, Andreas; Tufenkji, Nathalie

    2016-06-15

    Identifying the mechanisms of nanoparticle (NP) interactions with cell membranes is key to understanding potential NP cytotoxicity and applications as nanocarriers for targeted drug delivery. To elucidate these mechanisms of interaction, supported phospholipid bilayers (SPBs) are commonly used as models of cell membranes. However, SPBs are soft thin films, and, as such, their properties can be significantly affected by the underlying substrate. Free-floating cell membranes would be best modeled by weakly adhered SPBs; thus, we propose a method for tailoring the interfacial interaction of an electrically charged SPB-substrate system based on modulations in the solution chemistry. Using the dissipation signal of the quartz crystal microbalance with dissipation monitoring (QCM-D), we show that the method can be used to tailor SPB-substrate interactions without the loss of its structural integrity. To demonstrate the application of the method, SPBs are exposed to cationic and anionic polystyrene latex NPs. These studies reveal that the bilayer response to the modulations in the interfacial interaction with its underlying substrate can be used as a sensitive tool to probe the integrity of SPBs upon exposure to NPs. As expected, anionic NPs tend to impart no significant damage to the anionic bilayers, whereas cationic NPs can be detrimental to bilayer integrity. This is the first report of a QCM-D based method to probe bilayer integrity following exposure to NPs. Importantly, the degree of SPB interaction with its underlying substrate is shown to be a critical factor in the kinetics of bilayer disruption by cationic NPs, whereby weakly adhered bilayers are prone to significantly faster breakup. Since free-floating cell membranes are better represented by a weakly adhered SPB, the results of this work critically influence paradigms in experimental studies involving SPBs as models for cell membranes. PMID:27211513

  9. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    PubMed Central

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  10. Regenerative medicine in Parkinson's disease: generation of mesencephalic dopaminergic cells from embryonic stem cells.

    PubMed

    Taylor, Hannah; Minger, Stephen L

    2005-10-01

    Cell replacement therapy has been proposed as a means of replacing specific populations of cells lost through trauma, disease or ageing. Parkinson's disease is a progressive neurodegenerative disorder caused by the loss of midbrain dopaminergic neurons. Intrastriatal transplants of human foetal mesencephalic tissue in Parkinson's patients have demonstrated clinical efficacy, but the limited availability of tissue precludes systematic use of this treatment. Human embryonic stem cells are capable of unlimited self-renewal and can differentiate into cells representative of all three germ layers, including cells of the central nervous system. These cells may thus provide a relatively unlimited source of cells for transplantation, if appropriate differentiation protocols to generate highly enriched and specific populations of neural cells can be developed. PMID:16143504

  11. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    PubMed

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d. PMID:23752400

  12. Hybrid origins and F1 dominance in the free-floating, sterile bladderwort, Utricularia australis f. australis (Lentibulariaceae).

    PubMed

    Kameyama, Yoshiaki; Toyama, Masahiro; Ohara, Masashi

    2005-03-01

    Abandonment of sexual reproduction is a well-known characteristic in aquatic plants, while the causes, levels, and consequences of sterility are often unknown. Utricularia australis f. australis (Lentibulariaceae) is a free-floating, sterile bladderwort distributed widely in temperate and tropical regions. Experimental crosses in cultivated conditions, AFLP analysis, and cpDNA haplotypes of natural populations clearly demonstrated that U. australis f. australis originates from the asymmetric hybridization between two parental taxa: U. australis f. tenuicaulis (mostly as female) and U. macrorhiza (mostly as male). No post-F(1) hybrids were detected using the additive patterns of AFLP bands combined with the observation of extensive sterility in U. australis f. australis. Recurrent hybridizations and subsequent perpetuation by asexual reproduction were demonstrated by the unique, but monomorphic, AFLP genotypes observed in each U. australis f. australis population. Hybrids and parental species did not coexist, implying the superiority of the hybrid U. australis f. australis in certain environmental conditions. It remains unclear whether populations of U. australis f. australis are maintained by colonizing propagules or as relicts of past hybridization events. PMID:21652424

  13. WISEA J114724.10-204021.3: A Free-floating Planetary Mass Member of the TW Hya Association

    NASA Astrophysics Data System (ADS)

    Schneider, Adam C.; Windsor, James; Cushing, Michael C.; Kirkpatrick, J. Davy; Wright, Edward L.

    2016-05-01

    We present WISEA J114724.10-204021.3, a young, low-mass, high-probability member of the TW Hya association (TWA). WISEA J114724.10-204021.3 was discovered based on its red AllWISE color (W1 ‑ W2 = 0.63 mag) and extremely red 2MASS J ‑ K S color (>2.64 mag), the latter of which is confirmed with near-infrared photometry from the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey (J ‑ K S = 2.57 ± 0.03). Follow-up near-infrared spectroscopy shows a spectral type of L7 ± 1 as well as several spectroscopic indicators of youth. These include a peaked H-band shape and a steeper K-band slope, traits typically attributed to low surface gravity. The sky position, proper motion, and distance estimates of WISEA J114724.10-204021.3 are all consistent with membership in the ∼10 Myr old TWA. Using the age of the TWA and evolutionary models, we estimate the mass of WISEA J114724.10-204021.3 to be 5–13 M Jup, making it one of the youngest and lowest-mass free-floating objects yet discovered in the Solar neighborhood.

  14. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    PubMed

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents. PMID:24146323

  15. MICROLENS TERRESTRIAL PARALLAX MASS MEASUREMENTS: A RARE PROBE OF ISOLATED BROWN DWARFS AND FREE-FLOATING PLANETS

    SciTech Connect

    Gould, Andrew; Yee, Jennifer C. E-mail: jyee@astronomy.ohio-state.edu

    2013-02-10

    Terrestrial microlens parallax is one of the very few methods that can measure the mass and number density of isolated dark low-mass objects, such as old free-floating planets and brown dwarfs. Terrestrial microlens parallax can be measured whenever a microlensing event differs substantially as observed from two or more well-separated sites. If the lens also transits the source during the event, then its mass can be measured. We derive an analytic expression for the expected rate of such events and then use this to derive two important conclusions. First, the rate is directly proportional to the number density of a given population, greatly favoring low-mass populations relative to their contribution to the general microlensing rate, which further scales as M {sup 1/2} where M is the lens mass. Second, the rate rises sharply as one probes smaller source stars, despite the fact that the probability of transit falls directly with source size. We propose modifications to current observing strategies that could yield a factor of 100 increase in sensitivity to these rare events.

  16. Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation

    PubMed Central

    Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation. PMID:22822038

  17. Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1992-01-01

    The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

  18. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.

    PubMed

    Peeters, Edwin T H M; Neefjes, Rozemarijn E M; Zuidam, Bastiaan G van

    2016-01-01

    Nutrients can determine the outcome of the competition between different floating plant species. The response of floating plants to current phosphorus levels may be affected by previously experienced phosphorus concentrations because some species have the ability to store excess phosphorus for later use. This might have an impact on their competition. Here, we investigate the effect of previous and actual phosphorus concentrations on the growth rate of free-floating plant species (Azolla filiculoides, Lemna minor/gibba and Ricciocarpus natans)and the effect of phosphorus history on the competition between L. minor/gibba and A. filiculoides and between L. minor/gibba and R. natans. As expected, plant growth was lower when previously kept at low instead of high phosphorus concentrations. Growth of L. minor/gibba and A. filiculoides with a phosphorus rich history was comparable for low and high actual phosphorus concentrations, however, internal phosphorus concentrations were significantly lower with low actual phosphorus concentration. This indicates that both species perform luxury phosphorus uptake. Furthermore, internal P concentration in Azolla and Lemna increased within two weeks after a period of P deficit without a strong increase in growth. A. filiculoides in a mixture with L. minor/gibba grew faster than its monoculture. Morphological differences may explain why A. filiculoides outcompeted L. minor/gibba and these differences may be induced by phosphorus concentrations in the past. Growth of L. minor/gibba was only reduced by the presence of A. filiculoides with a high phosphorus history. Growth of L. minor/gibba and R. natans in mixtures was positively affected only when they had a high phosphorus history themselves and their competitor a low phosphorus history. These observations clearly indicate that phosphorus history of competing plants is important for understanding the outcome of the competition. Therefore, actual and previously experienced phosphorus

  19. SEARCH FOR VERY LOW-MASS BROWN DWARFS AND FREE-FLOATING PLANETARY-MASS OBJECTS IN TAURUS

    SciTech Connect

    Quanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W.

    2010-01-01

    The number of low-mass brown dwarfs and even free floating planetary-mass objects in young nearby star-forming (SF) regions and associations is continuously increasing, offering the possibility to study the low-mass end of the initial mass function in greater detail. In this paper, we present six new candidates for (very) low-mass objects in the Taurus SF region one of which was recently discovered in parallel by Luhman et al. The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than 4 mag deeper than the Two Micron All Sky Survey and covers currently approx1.5 deg{sup 2}. Complementary optical photometry from Sloan Digital Sky Survey were available for roughly 1.0 deg{sup 2}. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail, we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra, we derive a spectral type of L2 +- 0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models, we find the effective temperature to be 2080 +- 140 K and the mass 5-15 Jupiter masses. For the second source, the J-band spectrum does not provide definite proof of the young, low-mass nature of the object, as the expected steep water vapor absorption at 1.33 mum is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 M{sub Jup}) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.

  20. Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease.

    PubMed

    Andereggen, Lukas; Meyer, Morten; Guzman, Raphael; Ducray, Angélique D; Widmer, Hans Rudolf

    2009-06-18

    Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function. PMID:19389387

  1. Non-dopaminergic neurons in ventral mesencephalic transplants make widespread axonal connections in the host brain.

    PubMed

    Thompson, Lachlan H; Kirik, Deniz; Björklund, Anders

    2008-09-01

    Motor dysfunction in Parkinson's disease (PD) can be effectively alleviated through intra-striatal transplantation of fetal ventral mesencephalic tissue. The success of this approach is dependent on the survival, axonal outgrowth and synaptic integration of newly grafted dopamine neurons with the host striatum. The functional outcome of transplantation therapy has, however, been highly variable, particularly in PD patients, but also in animal models of PD, and thus there is a need for a deeper understanding of possible mechanisms underlying this variability such as graft composition and the resulting graft-host connectivity. Here we describe a series of transplantation experiments whereby mouse VM tissue has been grafted into the striatum of 6-hydroxydopamine lesioned rats. Six weeks after grafting immunohistochemical analysis using the mouse specific 'M2M6' antibodies revealed both dopaminergic and non-dopaminergic components of graft-derived fibre outgrowth into the host brain. We report here that while dopaminergic outgrowth was predominately confined to the striatum, there was also a significant degree of non-dopaminergic outgrowth to extra-striatal structures including the thalamus, cortex and midbrain. Retrograde tracing experiments showed that grafted neurons of GABAergic identity contribute to this non-dopaminergic outgrowth. In line with our recent findings on the function of serotonergic neurons in fetal VM grafts, these results further underscore the potential impact that non-dopaminergic neurons may have on the functional outcome of intrastriatal fetal VM grafts. PMID:18602916

  2. Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression.

    PubMed

    Parada, Carolina; Martín, Cristina; Alonso, María I; Moro, José A; Bueno, David; Gato, Angel

    2005-11-01

    Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known organizing center. In this paper, we show that mesencephalic and mesencephalic+isthmic organizer explants cultured only with basal medium do not express the typically expressed mesencephalic or isthmic organizer genes analyzed (otx2 and fgf8, respectively) and that mesencephalic explants cultured with embryonic CSF-supplemented medium do effect such expression, although they exhibit an altered pattern of gene expression, including ectopic shh expression domains. Other trophic sources that are able to maintain normal neuroepithelial cell behavior, i.e., fibroblast growth factor-2, fail to activate this ectopic shh expression. Conversely, the expression pattern of the analyzed genes in mesencephalic+isthmic organizer explants cultured with embryonic cerebrospinal fluid-supplemented medium mimics the pattern for control embryos developed in ovo. We demonstrate that embryonic CSF collaborates with the isthmic organizer in regulation of the expression pattern of some characteristic neuroectodermal genes during early stages of central nervous system (CNS) development, and we suggest that this collaboration is not restricted to the maintenance of neuroepithelial cell survival. Data reported in this paper corroborate the hypothesis that factors contained within embryonic CSF contribute to the patterning of the CNS during early embryonic development. PMID:16180222

  3. An Atypically Large, Free-Floating Thrombus Extending From the Lung to the Left Atrium via a Pulmonary Vein: A Case Report.

    PubMed

    Wang, Wei; Li, Xuechang; Song, Weian; Zhang, Yunshan; Yue, Caiying; Shang, Liqun; Li, Jun; Wen, Feng; Liu, Junqiang; Zha, Peng

    2015-11-01

    An atypically large, free-floating thrombus extending from primary pulmonary malignancy into the left atrium (LA) is a rare phenomenon. Here, we report a 61-year-old man presenting with a large mass in the lower lobe of the left lung, extending to LA via the left inferior pulmonary vein.The thrombus remained clinically silent and was detected by computed tomography (CT) and transthoracic echocardiography. To prevent life-threatening complications including systemic embolism and sudden death, the patient underwent surgical excision of the mass under cardiopulmonary bypass. Pathology of the tumor and the embolus was confirmed as moderately differentiated squamous cell carcinoma. Furthermore, immunohistochemical studies demonstrated consistency of the tumor cells in this pathological category.The patient tolerated the surgery well and his condition began to improve gradually after the operation. PMID:26579798

  4. The proteome of the differentiating mesencephalic progenitor cell line CSM14.1 in vitro.

    PubMed

    Weiss, B; Haas, S; Lessner, G; Mikkat, S; Kreutzer, M; Glocker, M O; Wree, A; Schmitt, O

    2014-01-01

    The treatment of Parkinson's disease by transplantation of dopaminergic (DA) neurons from human embryonic mesencephalic tissue is a promising approach. However, the origin of these cells causes major problems: availability and standardization of the graft. Therefore, the generation of unlimited numbers of DA neurons from various types of stem or progenitor cells has been brought into focus. A source for DA neurons might be conditionally immortalized progenitor cells. The temperature-sensitive immortalized cell line CSM14.1 derived from the mesencephalon of an embryonic rat has been used successfully for transplantation experiments. This cell line was analyzed by unbiased stereology of cell type specific marker proteins and 2D-gel electrophoresis followed by mass spectrometry to characterize the differentially expressed proteome. Undifferentiated CSM14.1 cells only expressed the stem cell marker nestin, whereas differentiated cells expressed GFAP or NeuN and tyrosine hydroxylase. An increase of the latter cells during differentiation could be shown. By using proteomics an explanation on the protein level was found for the observed changes in cell morphology during differentiation, when CSM14.1 cells possessed the morphology of multipolar neurons. The results obtained in this study confirm the suitability of CSM14.1 cells as an in vitro model for the study of neuronal and dopaminergic differentiation in rats. PMID:24592386

  5. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog.

    PubMed

    Martinez-Lopez, Jesus E; Moreno-Bravo, Juan A; Madrigal, M Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  6. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    PubMed Central

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  7. Mesencephalic representations of recent experience influence decision making

    PubMed Central

    Thompson, John A; Costabile, Jamie D; Felsen, Gidon

    2016-01-01

    Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection. DOI: http://dx.doi.org/10.7554/eLife.16572.001 PMID:27454033

  8. A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys.

    PubMed

    Bohlen, Martin O; Warren, Susan; May, Paul J

    2016-05-01

    The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad. PMID:25859632

  9. Mesencephalic origin of the rostral Substantia nigra pars reticulata.

    PubMed

    Madrigal, M Pilar; Moreno-Bravo, Juan A; Martínez-López, Jesús E; Martínez, Salvador; Puelles, Eduardo

    2016-04-01

    In embryonic development, the neurons that will constitute a heterogeneous nucleus may have distinct origins. The different components of these populations reach their final location by radial and tangential migrations. The Substantia nigra pars reticulata (SNR) presents a high level of neuronal heterogeneity. It is composed by GABAergic neurons located in the mes-diencephalic basal plate. These inhibitory neurons usually display tangential migrations and it has been already described that the caudal SNR is colonized tangentially from rhombomere 1. Our aim is to unveil the origin of the rostral SNR. We have localized a Nkx6.2 positive ventricular domain located in the alar midbrain. Nkx6.2 derivatives' fate map analysis showed mainly a rostral colonization of this GABAergic neuronal population. We confirmed the mesencephalic origin by the expression of Six3. Both transcription factors are sequentially expressed along the differentiation of these neurons. We demonstrated the origin of the rostral SNR; our data allowed us to postulate that this nucleus is composed by two neuronal populations distributed in opposite gradients with different origins, one from rhombomere 1, caudal to rostral, and the other from the midbrain, rostral to caudal. We can conclude that the SNR has multiple origins and follows complex mechanisms of specification and migration. Our results support vital information for the study of genetic modifications in these extremely complex processes that result in devastating behavioral alterations and predisposition to psychiatric diseases. Understanding the development, molecular identity and functional characteristics of these diverse neuronal populations might lead to better diagnosis and treatment of several forms of neurological and psychiatric disease. PMID:25579066

  10. Predominance of clonal reproduction, but recombinant origins of new genotypes in the free-floating aquatic bladderwort Utricularia australis f. tenuicaulis (Lentibulariaceae).

    PubMed

    Kameyama, Yoshiaki; Ohara, Masashi

    2006-07-01

    Aquatic plants are a biological group sharing several adaptations to aquatic conditions. The most striking evolutionary convergence in this group is the extensive reliance on clonal reproduction, which largely determines the patterns and process of evolution in aquatic plants. Utricularia australis f. tenuicaulis is a free-floating aquatic bladderwort that reproduces both sexually via seeds and clonally via turions and shoot fragments. Amplified fragment length polymorphism analysis was conducted on 267 ramets collected from 30 populations in Japan. The genotypic diversity within populations was extremely low, regardless of the geographical distribution range: the mean number of genotypes per population (G) was 1.4 and the mean genotypic diversity (D), including monoclonal populations, was 0.17. In contrast to the predominance of a few clones within populations, many of the populations investigated had different genotypes; a large portion of the genetic variation was explained by variation among populations. Character compatibility analysis clearly revealed that somatic mutations did not contribute to the origin of genotypic diversity in this aquatic bladderwort; instead, rare-to-sporadic sexual reproduction probably generated new genotypes. Thus, future studies should examine the role of sexual reproduction in this species from the viewpoint of long-term evolutionary benefits. PMID:16724164

  11. Reconstruction of Trajectories, Mixing, and Dispersion of a Mexico City Pollution Outflow Event Using In-Situ Observations From Free-Floating Altitude-Controlled Balloons

    NASA Astrophysics Data System (ADS)

    Voss, P.; Zaveri, R.; Hartley, T.; Deonandan, I.; Deamicis, P.; Martinez Antonio, O.; Contreras Jiménez, G.; Greenberg, D.; Estrada, M.; Flocke, F.; Madronich, S.; Kleinman, L.; Springston, S.; Hubbe, J.; de Foy, B.; Mao, H.

    2007-12-01

    The phenomenal growth of megacities, particularly in the developing world, has fueled interest in their effects on climate and air quality on the local, regional, and global scales. During the MILAGRO 2006 campaign, aircraft, satellites, and ground stations were coordinated to make the most intensive measurements to date of the transport and transformation of emissions from a tropical megacity. Likely the most certain case of long-range transport observed during the campaign occurred on March 18-19 when the DOE G1 and NCAR C-130 aircraft made coordinated observations within the Mexico City Metropolitan Area and the C-130 then intercepted the remnants of this urban air 24 hours later and 800 kilometers downwind near the U.S. boarder. Confidence in this event was significantly increased by two free-floating altitude-controlled balloons that remained embedded in the airmass while making repeated profile measurements of winds, thermal structure, and humidity during the transport process. This time series of quasi-Lagrangian soundings is probably the most comprehensive set of in-situ meteorological observations made in a long-range transport event. The profile data from the balloons is used to reconstruct trajectories and estimate mixing and dispersion throughout an advecting slab of the atmosphere. When combined with aircraft, satellite, and surface measurements, the balloon data provide a unique view of an advecting megacity plume that can be used to constrain both meteorological and photochemical models.

  12. SHORT-DURATION LENSING EVENTS. I. WIDE-ORBIT PLANETS? FREE-FLOATING LOW-MASS OBJECTS? OR HIGH-VELOCITY STARS?

    SciTech Connect

    Di Stefano, Rosanne

    2012-08-01

    Short-duration lensing events tend to be generated by low-mass lenses or by lenses with high transverse velocities. Furthermore, for any given lens mass and speed, events of short duration are preferentially caused by nearby lenses (mesolenses) that can be studied in detail, or else by lenses so close to the source star that finite-source-size effects may be detected, yielding information about both the Einstein ring radius and the surface of the lensed star. Planets causing short-duration events may be in orbits with any orientation, and may have semimajor axes smaller than 1 AU, or they may reach the outer limits of their planetary systems, in the region corresponding to the solar system's Oort Cloud. They can have masses larger than Jupiter's or smaller than Pluto's. Lensing therefore has a unique potential to expand our understanding of planetary systems. A particular advantage of lensing is that it can provide precision measurements of system parameters, including the masses of and projected separation between star and planet. We demonstrate how the parameters can be extracted and show that a great deal can be learned. For example, it is remarkable that the gravitational mass of nearby free-floating planet-mass lenses can be measured by complementing observations of a photometric event with deep images that detect the planet itself. A fraction of short events may be caused by high-velocity stars located within a kiloparsec. Many high-velocity lenses are likely to be neutron stars that received large natal kicks. Other high-speed stars may be members of the halo population. Still others may be hypervelocity stars that have been ejected from the Galactic center, or runaway stars escaped from close binaries, possibly including the progenitor binaries of Type Ia supernovae.

  13. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.

    2010-02-01

    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis based on the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three different transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, and (c) low-altitude outflow with entrainment into a cleaner westerly jet below the plateau. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways. In all three cases, distinct peaks in the urban tracer signatures and LIDAR backscatter imagery were consistent with MCMA pollution. The coherence of the high-altitude outflow was well preserved after one day

  14. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.

    2010-08-01

    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the

  15. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    SciTech Connect

    Voss, Paul B.; Zaveri, Rahul A.; Flocke, Frank M.; Mao, Huitimg; Hartley, Tom; DeAmicis, Pam; Deonandan, Indira; Contrerars-Jimenez, G.; Martinez-Antonio, O.; Figueroa Estrada, M.; Greenberg, David; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Montzka, DeeDee; Crounse, J. D.; Wennberg, P. O.; Apel, Eric; Madronich, Sasha; de Foy, B.

    2010-08-04

    One of the major objectives of the Megacities Initiative: Local And Global Research 3 Observations (MILAGRO 2006) campaign was to investigate the long-range transport of 4 Mexico City Metropolitan Area (MCMA) pollution outflow and its downwind impacts on air 5 quality and climate. Four aircraft (DOE G-1, NSF/NCAR C-130, NASA-J31, and NASA 6 DC-8) made extensive chemical, aerosol, and radiation measurements above MCMA and over 7 1000 km downwind in order to characterize the evolution of MCMA pollution as it aged and 8 dispersed over the central Mexican plateau and the Gulf of Mexico. As part of this effort, 9 free-floating Controlled-Meteorological (CMET) balloons, capable of changing altitude on 10 command via satellite, characterized the MCMA outflow by performing repeated soundings 11 during the transit. In this paper, we present an analysis based on the data from two CMET 12 balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated 13 downwind with the outflow for nearly 30 hours. Continuous profile measurements made by 14 the balloons show the evolving structure of the MCMA outflow in considerable detail: its 15 stability and stratification, interaction with other air masses, mixing episodes, and dispersion 16 into the regional background. Air parcel trajectories, computed directly from the balloon 17 wind profiles, show three different transport pathways for Mexico City outflow on 18-19 18 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) low-altitude flow 19 over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, 20 and (c) the same decoupling scenario with entrainment into a cleaner westerly jet below the 21 plateau. The C-130 intercepted the balloon-based trajectories three times on 19 March, once 22 along each transport pathway. In all three cases, distinct peaks in the urban tracer signature 23 and LIDAR backscatter imagery provided evidence for Mexico City air

  16. Effects of Ex Vivo Transduction of Mesencephalic Reaggregates with Bcl-2 on Grafted Dopamine Neuron Survival

    PubMed Central

    Sortwell, Caryl E.; Bowers, William J.; Counts, Scott E.; Pitzer, Mark R.; Fleming, Matthew F.; McGuire, Susan O.; Maguire-Zeiss, Kathleen A.; Federoff, Howard J.; Collier, Timothy J.

    2007-01-01

    Survival rates of dopamine (DA) neurons grafted to the denervated striatum are extremely poor (5-20%). Gene transfer of survival promoting factors, such as the anti-apoptotic protein bcl-2, to mesencephalic DA neurons prior to transplantation (ex vivo transduction) offers a novel approach to increase graft survival. However, specific criteria to assess the efficacy of various vectors must be adhered to in order to reasonably predict successful gene transfer with appropriate timing and levels of protein expression. Cell culture results utilizing three different herpes simplex virus (HSV) vectors to deliver the reporter ß-galactosidase gene (lacZ) indicate that transduction of mesencephalic cells with a helper virus-free HSV amplicon (HF HSVTH9lac) that harbors the 9-kb tyrosine hydroxylase (TH) promoter to drive lacZ gene expression elicits the transduction of the highest percentage (≈50%) of TH-immunoreactive (THir) neurons without significant cytotoxic effects. This transduction efficiency and limited cytotoxicity was superior to that observed following transduction with helper virus-containing HSV (HC HSVlac) and helper virus-free HSV amplicons (HF HSVlac) expressing lacZ under the transcriptional control of the HSV immediate-early 4/5 gene promoter. Subsequently, we assessed the ability of HSV-TH9lac and the bcl-2 expressing HSV-TH9bcl-2 amplicon to transduce mesencephalic reaggregates. Although an increase in bcl-2 and ß-galactosidase protein was induced by transduction, amplicon-mediated overexpression of bcl-2 did not lead to an increase in grafted THir neuron number. Even with highly efficient viral vector-mediated transduction, our results demonstrate that ex vivo gene transfer of bcl-2 to mesencephalic reaggregates is ineffective in increasing grafted DA neuron survival. PMID:17196186

  17. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    PubMed

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  18. Characterization and antimicrobial resistance of Salmonella isolated from internal tissues, ceca and rinse samples from commercial broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence, serotype, and antimicrobial resistance profile of Salmonella from internal tissues (spleen, liver/gall bladder, thymus, Meckel’s diverticulum, and free floating yolk), ceca and carcass rinse samples were determined from six-week-old (n=30) and eight-week-old (n=40) commercial broilers ...

  19. Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells.

    PubMed

    Barald, K F

    1989-10-01

    Although neural crest cells are known to be very responsive to environmental cues during their development, recent evidence indicates that at least some subpopulations may be committed to a specific differentiation program prior to migration. Because the neural crest is composed of a heterogeneous mixture of cells that contributes to many vertebrate cell lineages, assessing the properties of specific subpopulations and the effect of the environment on their development has been difficult. To address this problem, we have isolated a pure subpopulation of chick mesencephalic neural crest cells by fluorescence no-flow cytometry after labeling them with monoclonal antibodies (Mabs) to a 75-kDa cell surface antigen that is associated with high affinity choline uptake. When cultures of chick mesencephalic neural crest cells are labeled with these Mabs and a fluorescent second step antibody, approximately 5% of the cells are antigen-positive (A+). After sorting, 100% of the resulting cultured mesencephalic neural crest cells are A+. The Mabs we used also label all of the neurons of the embryonic chick and quail ciliary ganglion in vivo and in vitro. We have compared the effect of various cell culture media on the isolated neural crest subpopulation and the heterogeneous chick mesencephalic neural crest from which it was derived. A+ cells were passaged and grown in a variety of media, each of which differently affected its characteristics and development. A+ cells proliferated in the presence of 15% fetal bovine serum (FBS) and high concentrations (10-15%) of chick embryo extract, but did not differentiate, although they retained basal levels of choline acetyltransferase (ChAT) activity. However, in chick serum and high (25 mM as opposed to 7 mM) K+, and heart-, iris-, or lung-conditioned medium, all of which are known to promote survival and/or cholinergic development of ciliary ganglion neurons, the cells ceased to proliferate and all of the cells in the culture became

  20. Recurrent Isolated Oculomotor Nerve Palsy after Radiation of a Mesencephalic Metastasis. Case Report and Mini Review

    PubMed Central

    Grabau, Olga; Leonhardi, Jochen; Reimers, Carl D.

    2014-01-01

    Introduction: Recurrent oculomotor nerve palsies are extremely rare clinical conditions. Case report: Here, we report on a unique case of a short-lasting recurrent unilateral incomplete external and complete internal oculomotor nerve palsy. The episodic palsies were probably caused by an ipsilateral mesencephalic metastasis of a breast carcinoma and occurred after successful brain radiation therapy. Discussion: While the pathogenic mechanism remains unclear, the recurrent sudden onset and disappearance of the palsies and their decreasing frequency after antiepileptic treatment suggest the occurrence of epilepsy-like brainstem seizures. A review of case reports of spontaneous reversible oculomotor nerve palsies is presented. PMID:25104947

  1. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity. PMID:26386147

  2. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries.

    PubMed

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B; Waskiewicz, Andrew Jan

    2007-01-15

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro and that this interaction is required for both the eng2a overexpression phenotype and Engrailed's role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube. PMID:16959235

  3. The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons

    PubMed Central

    2012-01-01

    Background The pre B-cell leukemia transcription factor 1 (Pbx1) genes belong to the three amino acid loop extension family of homeodomain proteins that form hetero-oligomeric complexes with other homeodomain transcription factors, thereby modulating target specificity, DNA binding affinity and transcriptional activity of their molecular associates. Results Here, we provide evidence that Pbx1 is expressed in mesencephalic dopaminergic neurons from embryonic day 11 into adulthood and determines some of the cellular properties of this neuronal population. In Pbx1-deficient mice, the mesencephalic dopaminergic axons stall during mid-gestation at the border between di- and telencephalon before entering the ganglionic eminence, leading to a loose organization of the axonal bundle and partial misrouting. In Pbx1-deficient dopaminergic neurons, the high affinity netrin-1 receptor, deleted in colon cancer (DCC), is down-regulated. Interestingly, we found several conserved Pbx1 binding sites in the first intron of DCC, suggesting a direct regulation of DCC transcription by Pbx1. Conclusions The expression of Pbx1 in dopaminergic neurons and its regulation of DCC expression make it an important player in defining the axonal guidance of the midbrain dopaminergic neurons, with possible implications for the normal physiology of the nigro-striatal system as well as processes related to the degeneration of neurons during the course of Parkinson’s disease. PMID:22748019

  4. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries

    PubMed Central

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B.; Waskiewicz, Andrew Jan

    2007-01-01

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro, and that this interaction is required for both the eng2a overexpression phenotype and Engrailed’s role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube. PMID:16959235

  5. Free-floating left atrial ball thrombus after mitral valve replacement with patent coronary artery bypass grafts: successful removal by a right minithoracotomy approach without aortic cross-clamp.

    PubMed

    Hisatomi, Kazuki; Hashizume, Koji; Tanigawa, Kazuyoshi; Miura, Takashi; Matsukuma, Seiji; Yokose, Shogo; Kitamura, Tessho; Shimada, Takashi; Eishi, Kiyoyuki

    2016-06-01

    A free-floating thrombus in the left atrium without attachment to either the atrial wall or the mitral valve is extremely rare. We describe a case in a 79-year-old woman with chronic atrial fibrillation and a recent stroke who had undergone mitral valve replacement 25 years previously and coronary artery bypass grafting 5 years previously. Redo cardiac surgery represents a clinical challenge due to a higher rate of peri-operative morbidity and mortality. Median re-sternotomy can be particularly difficult in patients with functioning coronary artery grafts, where the risk of graft injury is a significant concern. Prompt surgical intervention was carried out, and to avoid the challenge of re-sternotomy in this patient with two prior thoracotomies, we successfully removed the thrombus by a right minithoracotomy approach without aortic cross-clamping. There was no postoperative occurrence of a new stroke or aggravation of the pre-existing stroke. PMID:25098689

  6. The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planets

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Magnier, Eugene A.; Deacon, Niall R.; Allers, Katelyn N.; Dupuy, Trent J.; Kotson, Michael C.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Wainscoat, R. J.

    2013-11-01

    We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J - K)MKO = 2.78 and (J - K)2MASS = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207-39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 ± 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 ± 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5-22 point to membership in the β Pic moving group. Evolutionary models give a temperature of 1160^{+30}_{-40} K and a mass of 6.5^{+1.3}_{-1.0} M Jup, making PSO J318.5-22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5-22 and 2MASS J0355+11), we find their temperatures are ≈400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not "underluminous." Altogether, PSO J318.5-22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207-39.

  7. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  8. THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338–22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS

    SciTech Connect

    Liu, Michael C.; Magnier, Eugene A.; Kotson, Michael C.; Aller, Kimberly M.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Jedicke, R.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Deacon, Niall R.; Allers, Katelyn N.; Dupuy, Trent J.; Draper, P. W.; Price, P. A.; Metcalfe, N.

    2013-11-10

    We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J – K){sub MKO} = 2.78 and (J – K){sub 2MASS} = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207–39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 ± 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 ± 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5–22 point to membership in the β Pic moving group. Evolutionary models give a temperature of 1160{sup +30}{sub -40} K and a mass of 6.5{sup +1.3}{sub -1.0} M {sub Jup}, making PSO J318.5–22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5–22 and 2MASS J0355+11), we find their temperatures are ≈400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not 'underluminous'. Altogether, PSO J318.5–22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207–39.

  9. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-01

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  10. Neuroprotection with methylaminochroman and lazaroid of embryonic ventral mesencephalic tegmental dopaminergic neurons in cold storage.

    PubMed

    Thajeb, Peterus; Kuo, Jon-Son; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2006-05-01

    Embryonic ventral mesencephalic tegmental (EVMT) neurons die off over time in cold storage at 4 degrees C in hibernation buffers (HB). Manipulation of HB conditions may improve the survival of neurons in cold storage. We examined the effect of lipid peroxidation inhibitors, a methylaminochroman (U83836E) and a lazaroid (U74389G) on the viability and survival of embryonic dopaminergic neurons in the co-culture system of embryonic striatal target (EST) cells and EVMT neurons that had been stored for 3 days at 4 degrees C in HB with or without U83836E or U74389G. One-way analysis of variance (ANOVA) was used for analysis of data. The density of tyrosine hydroxylase immunoreactive (THIR)-positive neurons was significantly higher in the groups stored in supplemented HB than in the control (HB alone; P < 0.001). The neuroprotective effect was concentration-dependent. We conclude that either U83836E or U74389G-conditioned HB exerted a concentration-dependent neuroprotective effect on embryonic dopaminergic neurons in cold storage for 3 days. Supplementation of U83836E and U74389G or other methylaminochromans and lazaroids in HB may be important for cold storage of donor neuronal cells. PMID:16678726

  11. Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.

    PubMed

    Tian, Yuan-Yuan; An, Li-Jia; Jiang, Lan; Duan, Yan-Long; Chen, Jun; Jiang, Bo

    2006-12-23

    Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Microglia, the resident immune cells in the central nervous system, are pivotal in the inflammatory reaction. Activated microglia can induce expression of inducible nitric-oxide synthase (iNOS) and release significant amounts of nitric oxide (NO) and TNF-alpha, which can damage the dopaminergic neurons. Catalpol, an iridoid glycoside, contained richly in the roots of Rehmannia glutinosa, was found to be neuroprotective in gerbils subjected to transient global cerebral ischemia. But the effect of catalpol on inflammation-mediated neurodegeneration has not been examined. In this study, microglia in mesencephalic neuron-glia cultures were activated with lipopolysaccharide (LPS) and the aim of the study was to examine whether catalpol could protect dopaminergic neurons from LPS-induced neurotoxicity. The results showed that catalpol significantly reduced the release of reactive oxygen species (ROS), TNF-alpha and NO after LPS-induced microglial activation. Further, catalpol attenuated LPS-induced the expression of iNOS. As determined by immunocytochemical analysis, pretreatment by catalpol dose-dependently protected dopaminergic neurons against LPS-induced neurotoxicity. These results suggest that catalpol exerts its protective effect on dopaminergic neurons by inhibiting microglial activation and reducing the production of proinflammatory factors. Thus, catalpol may possess therapeutic potential against inflammation-related neurodegenerative diseases. PMID:17049947

  12. Mesencephalic and third ventricle cysts: diagnosis and management in four cases.

    PubMed Central

    Ramaekers, V T; Reul, J; Siller, V; Thron, A

    1994-01-01

    Four infants with obstructive hydrocephalus caused by space occupying third ventricle and mesencephalic cysts are reported. Despite immediate shunt insertion in all patients, there was either lack of clinical improvement or late onset of clinical deterioration. Neuroimaging (CT, MRI, and ventriculography) diagnosed the presence of non-communicating midline outpouchings of the CSF pathways causing obstruction of aqueductal CSF flow and brainstem signs. The cysts were of different origin. In one patient it was caused by a previous thalamic haemorrhage, in another patient by neonatal Escherichia coli meningoventriculitis. In two cases with obstructive hydrocephalus at birth, the aetiology is unclear. Direct puncture and drainage of the cysts led to clinical improvement. The cysts were poorly visualised on CT and could be misinterpreted as an enlarged third ventricle, simulating congenital aqueduct stenosis. Careful neuroradiological investigation is necessary to establish an accurate diagnosis and neurosurgical management. In such cases with hydrocephalus and persisting ventricular enlargement despite shunting, CT ventriculography is a useful tool. Images PMID:7931383

  13. Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes.

    PubMed

    Galli, Emilia; Härkönen, Taina; Sainio, Markus T; Ustav, Mart; Toots, Urve; Urtti, Arto; Yliperttula, Marjo; Lindahl, Maria; Knip, Mikael; Saarma, Mart; Lindholm, Päivi

    2016-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic β-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1-9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive. PMID:27356471

  14. Classification of phthalates based on an in vitro neurosphere assay using rat mesencephalic neural stem cells.

    PubMed

    Ishido, Masami; Suzuki, Junko

    2014-02-01

    Exposure to environmental neurotoxic chemicals both in utero and during the early postnatal period can cause neurodevelopmental disorders. To evaluate the disruption of neurodevelopmental programming, we previously established an in vitro neurosphere assay system using rat mesencephalic neural stem cells that can be used to evaluate. Here, we extended the assay system to examine the neurodevelopmental toxicity of the endocrine disruptors butyl benzyl phthalate, di-n-butyl phthalate, dicyclohexyl phthalate, diethyl phthalate, di(2-ethyl hexyl) phthalate, di-n-pentyl phthalate, and dihexyl phthalate at a range of concentrations (0-100 μM). All phthalates tested inhibited cell migration with a linear or non-linear range of concentrations when comparing migration distance to the logarithm of the phthalate concentrations. On the other hand, some, but not all, phthalates decreased the number of proliferating cells. Apoptotic cells were not observed upon phthalate exposure under any of the conditions tested, whereas the dopaminergic toxin rotenone induced significant apoptosis. Thus, we were able to classify phthalate toxicity based on cell migration and cell proliferation using the in vitro neurosphere assay. PMID:24418706

  15. Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes

    PubMed Central

    Galli, Emilia; Härkönen, Taina; Sainio, Markus T.; Ustav, Mart; Toots, Urve; Urtti, Arto; Yliperttula, Marjo; Lindahl, Maria; Knip, Mikael; Saarma, Mart; Lindholm, Päivi

    2016-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic β-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1–9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive. PMID:27356471

  16. Generation and properties of a new human ventral mesencephalic neural stem cell line

    SciTech Connect

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros; Meyer, Morten; Juliusson, Bengt; Kusk, Philip

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  17. Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest.

    PubMed Central

    Bader, C R; Bertrand, D; Dupin, E

    1985-01-01

    Neurones in explants cultured from quail mesencephalic neural crest were studied at different stages of their development using the voltage-clamp technique. A voltage-dependent outward current activated by membrane depolarization was identified as a potassium current by the sensitivity of its reversal potential to extracellular potassium. The voltage-dependent potassium current is made up of two components which differ in their sensitivity to 4-aminopyridine (4-AP) and tetraethylammonium (TEA). The component most sensitive to 4-AP has fast activation kinetics and inactivates quickly at sustained depolarized voltages. By analogy with a current described in other preparations, this current was called IA. The component most sensitive to TEA has slower activation kinetics and inactivates more slowly at sustained depolarized voltages. This current was called IK. IA and IK were already present in neurones cultured for 24 h. The ratio between the peak of IK and that of IA increased significantly between 24 h and 4 days in culture. This means that the two components of the voltage-dependent potassium current follow a different time course during development. Images Plate 1 PMID:2414432

  18. Estrogen protects against dopamine neuron toxicity in primary mesencephalic cultures through an indirect P13K/Akt mediated astrocyte pathway.

    PubMed

    Bains, Mona; Roberts, James L

    2016-01-01

    Astrocytes regulate neuronal homeostasis and have been implicated in affecting the viability and functioning of surrounding neurons under stressed and injured conditions. Previous data from our lab suggests indirect actions of estrogen through ERα in neighboring astroglia to protect dopamine neurons against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in mouse mesencephalic cultures. We further evaluate estrogen signaling in astrocytes and the mechanism of estrogen's indirect neuroprotective effects on dopamine neurons. Primary mesencephalic cultures pre-treated with 17β-estradiol and the membrane impermeable estrogen, E2-BSA, were both neuroprotective against MPP(+) -induced dopamine neuron toxicity, suggesting membrane-initiated neuroprotection. ERα was found in the plasma membrane of astrocyte cultures and colocalized with the lipid raft marker, flotillin-1. A 17β-estradiol time course revealed a significant increase in Akt, which was inhibited by the PI3 kinase inhibitor, LY294004. Estrogen conditioned media collected from pure astrocyte cultures rescued glial deficient mesencephalic cultures from MPP(+). This indirect estrogen-mediated neuroprotective effect in mesencephalic cultures was significantly reduced when PI3 kinase signaling in astrocytes was blocked prior to collecting estrogen-conditioned media using the irreversible PI3 kinase inhibitor, Wortmannin. Estrogen signaling via astrocytes is rapidly initiated at the membrane level and requires PI3 kinase signaling in order to protect primary mesencephalic dopamine neurons from MPP(+) neurotoxicity. PMID:26520464

  19. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    PubMed Central

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. PMID:26729090

  20. Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures.

    PubMed

    Heider, I; Lehmensiek, V; Lenk, Th; Müller, Th; Storch, A

    2004-01-01

    Levodopa and dopamine are metabolized to 3-O-methyldopa and 3-methoxytyramine, respectively, by the enzyme catechol-O-methyltransferase (COMT) leading to the production of the demethylated cofactor S-adenosylhomo-cysteine (SAH) and subsequently homocysteine (HC). Indeed, treatment of Parkinson's disease (PD) patients with levodopa leads to increased HC blood levels. Therefore, HC is discussed to be involved in the pathogenesis of PD as well as in enhanced progression of PD in patients treated with levodopa. Here we investigated the toxicity of HC and its derivatives SAH, homocysteic acid (HCA) and cysteic acid (CA) on tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures from rat in vitro. Furthermore, we evaluated the toxicity of HC on cultures stressed with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Incubation with HC or HCA did not result in significant effects on TH-positive neuron survival with concentrations up to 1 mM, but led to morphological changes of TH-positive cells with significantly fewer and shorter neurites at concentrations of > or = 100 microM after 48 h. In contrast, SAH and CA were toxic at concentrations of >100 microM after 48h. Furthermore, MPP+ showed strong toxicity towards TH-positive cells after 48 h (half-maximal toxic concentration: 20 microM), whereas co-incubation with HC for 24 or 48 h did not further alter TH-positive cell survival. Taken together, our results do not demonstrate relevant dopaminergic toxicity of HC in vitro, and therefore HC is most likely not involved in the pathogenesis of PD or in accelerating the progression of PD by levodopa. PMID:15354384

  1. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.

    PubMed

    Ryczko, Dimitri; Auclair, Francois; Cabelguen, Jean-Marie; Dubuc, Réjean

    2016-05-01

    In vertebrates, stimulation of the mesencephalic locomotor region (MLR) on one side evokes symmetrical locomotor movements on both sides. How this occurs was previously examined in detail in a swimmer using body undulations (lamprey), but in tetrapods the downstream projections from the MLR to brainstem neurons are not fully understood. Here we examined the brainstem circuits from the MLR to identified reticulospinal neurons in the salamander Notophthalmus viridescens. Using neural tracing, we show that the MLR sends bilateral projections to the middle reticular nucleus (mRN, rostral hindbrain) and the inferior reticular nucleus (iRN, caudal hindbrain). Ca(2+) imaging coupled to electrophysiology in in vitro isolated brains revealed very similar responses in reticulospinal neurons on both sides to a unilateral MLR stimulation. As the strength of MLR stimulation was increased, the responses increased in size in reticulospinal neurons of the mRN and iRN, but the responses in the iRN were smaller. Bath-application or local microinjections of glutamatergic antagonists markedly reduced reticulospinal neuron responses, indicating that the MLR sends glutamatergic inputs to reticulospinal neurons. In addition, reticulospinal cells responded to glutamate microinjections and the size of the responses paralleled the amount of glutamate microinjected. Immunofluorescence coupled with anatomical tracing confirmed the presence of glutamatergic projections from the MLR to reticulospinal neurons. Overall, we show that the brainstem circuits activated by the MLR in the salamander are organized similarly to those previously described in lampreys, indicating that the anatomo-physiological features of the locomotor drive are well conserved in vertebrates. J. Comp. Neurol. 524:1361-1383, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26470600

  2. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures.

    PubMed

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. PMID:26729090

  3. Free-floating atmospheric pressure ball plasmas

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Ticos, C.; Wang, Z.; Wurden, C. J. V.

    2007-11-01

    A long-lived (0.3 second, 10-20 cm diameter) ball plasma floating in the air above a water surface has been formed and studied in the laboratory. A 0.4 - 1 mF capacitor is charged to 4-5 kV, and subsequently discharged (30-60 Amps, 20-50 msec duration) into central copper cathode held fixed just below the surface of a bucket of water (with a weak solution of various salts in distilled water, such as CuSO4 or CuCl2, LiCl or NaCl). An underwater ring anode completes the circuit. A bubble of hot vapor from the water surface rises up in the first few milliseconds, and changes from a mushroom cloud with stalk, to a detached quasi-spherical object, finally evolving into a vortex ring. The plasma consists of ionized water vapor, with positive salts and OH- radicals, as well as molecular species, and it completely excludes nitrogen or oxygen from the rising plasma structure. A fine boundary layer is visible in orange, in contrast to a green ball interior when using Cu/CuSO4, and filamentary structures are visible at late times. Finally, a whisp of smoke ring is observed as a residue. A variety of visible and infrared imaging (both video and still cameras) are used, along with 200-800 nm time & space resolved spectroscopy, to identify features of this laboratory analog to ball lightning. Possible applications include a windowless ball- plasma powered pulsed copper vapor laser operating at 510 nm.

  4. [E. M. Jellinek - a "free floating" alcohologist].

    PubMed

    Kelemen, Gábor; Márk, Mónika

    2012-01-01

    This paper is divulging unpublished materials based on recent research on E. M. Jellinek who was the father of the scientific-medical agenda of alcohology. Results of our research in Hungarian archives not only open still unexplored realm for alcohol studies but also evoke fresh readings of its history. A good half of Jellinek's life has been uncharted and still contains terrain unbeknown to us. Following some infamous activity he fled from Hungary on the very same day (June 4, 1920) when the country lost two-thirds of its territory. After a ten-year roaming Jellinek's private Odyssey came to an end. He has started living his personal "American dream" in the country of his mother through the impersonal dream of alcohology, which was going to aspire to transform itself from a moral movement to an emerging interdisciplinary field of medicine. Jellinek had chosen to be uprooted and he managed to conceal his past in Budapest including his trans-generational past quite effectively. Authors have made an attempt to interpret the ambivalent tale and controversial personality of Jellinek embedded in the progress of alcohol studies. PMID:23180730

  5. Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons.

    PubMed

    Del Negro, C A; Chandler, S H

    1997-02-01

    Whole cell voltage- and current-clamp recordings were obtained from mesencephalic trigeminal sensory (Mes 5) neurons identified visually in thin brain stem slices of neonatal rats with the use of infrared video microscopy. These cells exhibited accommodation in spike discharge responses to depolarizing current injection protocols whose duration differed as a function of holding potential (-50 vs. -65 mV). Several spikes were elicited before the membrane response accommodated from -50 mV, whereas from -65 mV only single action potentials were evoked. In response to similar protocols, application of the K+ channel blocker 4-aminopyridine (4-AP) (50 microM to 2 mM) caused sustained repetitive spiking whereas tetraethylammonium (TEA) (10-30 mM) did not cause repetitive spiking. In voltage clamp, 4-AP application (100 microM) revealed a sustained outward current (I4-AP) that was active between -60 and -30 mV. I4-AP was responsible for suppressing sustained repetitive spiking behavior, producing accommodation under normal circumstances. TEA application in voltage clamp revealed a sustained outward current evoked positive to -40 mV. Two transient outward currents (TOCs) were identified by prepulse protocols typically used to characterize A-type currents: a 4-AP-insensitive fast TOC, and a slow TOC (ITOC-S) sensitive to 4-AP (> 500 microM). A Ca(2+)-dependent outward current that activated positive to -30 mV was also characterized. A mathematical model of a Mes 5 neuron was assembled from our voltage-clamp records to simulate the dynamic interaction of outward currents during membrane excitation. We conclude that in Mes 5 neurons, the 4-AP-sensitive currents ITOC-S and I4-AP determine the duration of spike trains. In particular, the noninactivating I4-AP determines whether cells exhibit sustained repetitive discharge or accommodate in response to depolarizing current. Neurotransmitter modulation of this current or modulation of the resting membrane potential could modify

  6. Functional characterization of 5-HT1D autoreceptors on the modulation of 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex.

    PubMed Central

    el Mansari, M.; Blier, P.

    1996-01-01

    1. The aims of the present study were (i) to characterize further the pharmacology of 5-HT1D autoreceptors modulating 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex; (ii) to determine whether 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones; (iii) to determine whether 5-HT1D autoreceptors are coupled to G proteins; and (iv) to assess their sensitivity following long-term 5-HT reuptake blockade and inhibition of type-A monoamine oxidase. 2. In mesencephalic raphe, hippocampus and frontal cortex slices, the 5-HT1D/1B receptor agonist, sumatriptan and the 5-HT1 receptor agonist, 5-methoxytryptamine (5-MeOT) but not the 5-HT1B receptor agonist, CP93129, inhibited electrically the evoked release of [3H]-5-HT in a concentration-dependent manner. This effect was antagonized by the 5-HT1D/1B receptor antagonist GR127935 in the three structures, but not by the 5-HT1A receptor antagonist, (+)-WAY100635 in mesencephalic raphe slices. These results confirm the presence of functional 5-HT1D autoreceptors controlling 5-HT release within the mesencephalic raphe as well as in terminal regions. 3. The inhibitory effect of sumatriptan on K(+)-evoked release of [3H]-5-HT was not reduced by the addition of the Na+ channel blocker, tetrodotoxin to the superfusion medium, suggesting that these 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones and may be considered autoreceptors. 4. The in vitro treatment with the alkylating agent N-ethylmaleimide (NEM) was used to determine whether these 5-HT1D autoreceptors are coupled to G proteins. The inhibitory effect of sumatriptan on electrically evoked release of [3H]-5-HT was attenuated in NEM-pretreated slices from mesencephalic raphe, hippocampus and frontal cortex, indicating that the 5-HT1D autoreceptors activated by sumatriptan are coupled to G proteins in these three structures. Taken together with our previous results, this suggests that, in addition to the 5

  7. Rapid OTAN method for localizing unsaturated lipids in lung tissue sections.

    PubMed

    Negi, D S; Stephens, R J

    1981-05-01

    The OTAN treatment, which is the only histochemical method available at present for the simultaneous localization of hydrophobic and hydrophilic unsaturated lipids in tissue sections, requires unduly long exposure to OsO4 and use of free-floating sections, which makes handling the sections difficult and often results in their loss or damage. Simple modifications using OsO4 treatment at 37 C and slide-mounted sections eliminate the practical drawbacks of the existing method and provide as good or better localization in less than one-eight of the time. The modified method is applicable to fixed as well as fresh frozen tissues. PMID:7268814

  8. Intranigral grafts of fetal ventral mesencephalic tissue in adult 6-hydroxydopamine-lesioned rats can induce behavioral recovery.

    PubMed

    Johnston, R E; Becker, J B

    1997-01-01

    Intrastriatal grafts of fetal ventral mesencephalon in rats with unilateral 6-hydroxydopamine lesions can reduce and even reverse rotational behavior in response to direct and indirect dopamine agonists. These grafts can ameliorate deficits on simple spontaneous behaviors, but do not improve complex behaviors that require the skilled integration of the use of both paws. We report here that rats with grafts into the DA-depleted substantia nigra, that receive cyclosporine A, can experience recovery on spontaneous behaviors that mimic those observed in Parkinson's disease. Specific cyclosporine A treatment conditions can differentially affect whether intranigral grafts normalize paw use during initiation or termination of a movement sequence. These findings may have important implications for the treatment of Parkinson's disease. PMID:9171159

  9. Biphasic response of a tecto-mesencephalic pilocytic astrocytoma after Gamma Knife surgery--A case report.

    PubMed

    Tuleasca, C; Negretti, L; Magaddino, V; Maeder, P; Lhermitte, B; Borruat, F-X; Levivier, M

    2015-08-01

    Biphasic response (shrinkage-regrowth-shrinkage) of tumors has never previously been reported in the postoperative course, neither after microsurgery, nor after Gamma Knife surgery (GKS). We present the case of an adult with dorsal midbrain syndrome resulting from a pilocytic astrocytoma centered on the mesencephalic tectum. The tumor extended to the third ventricle and the thalamus. Initially, due to tumor growth, a biopsy was performed and histology established. Later, a ventriculocisternostomy for obstructive hydrocephalus was performed. Finally, GKS was performed, as the tumor continued to grow. After GKS, the lesion exhibited a biphasic response, with a major shrinkage at 3 months, regrowth within the target volume at 6 and 9 months and a second phase of important shrinkage at 12 months, which persisted for the next two years. The possible mechanisms for this particular response pattern are discussed. PMID:26072229

  10. Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating GRP78 in SH-SY5Y cells.

    PubMed

    Huang, Jingwei; Chen, Changyan; Gu, Hua; Li, Chen; Fu, Xing; Jiang, Ming; Sun, Hui; Xu, Jun; Fang, Jianmin; Jin, Lingjing

    2016-07-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons from damage. In this study, we used MTT, immunohistochemistry, and TUNEL staining to investigate the protective effect of MANF in SH-SY5Y cells treated with 6-OHDA or overexpressed α-synuclein. Cleaved caspase-3 levels significantly increased in cells treated with 6-OHDA or overexpressed α-synuclein. 6-OHDA or α-synuclein overexpression that induced cleaved caspase-3 levels to increase was reduced by MANF treatment. In addition, MANF treatment upregulated GRP78 expressions in cells treated with 6-OHDA or overexpressed α-synuclein, and RNAi knockdown for GRP78 could block the MANF induced cell survival from 6-OHDA treatment. Furthermore, GRP78 overexpression inhibited 6-OHDA-induced apoptosis. Our data suggest that MANF inhibits apoptosis induced by 6-OHDA and overexpressed α-synuclein in SH-SY5Y cells via upregulating GRP78 in the transcriptional pattern. PMID:27145383

  11. Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue.

    PubMed

    Schaefer, Jeremy A; Tranquillo, Robert T

    2016-01-01

    We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical cardiac tissue samples. Recordings of the fluorescent bead movement during tissue pacing are used to determine the maximum distance that the tissue can displace the elastic PDMS substrate. In this study, fibrin gel hemispheres containing human induced pluripotent stem cell-derived cardiomyocytes were formed on the PDMS and allowed to culture for 9 days. Bead displacement values were measured and compared to direct force measurements to validate the utility of the system. The amplitude of bead displacement correlated with direct force measurements, and the twitch force generated by the tissues was the same in 2 and 4 mg/mL fibrin gels, even though the 2 mg/mL samples visually appear more contractile if the assessment were made on free-floating samples. These results demonstrate the usefulness of this assay as a screening tool that allows for rapid sample preparation, data collection, and analysis in a simple and cost-effective platform. PMID:26538167

  12. Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation.

    PubMed

    Kim, Sang Ryong; Chung, Eun Sook; Bok, Eugene; Baik, Hyung Hwan; Chung, Young Cheul; Won, So Yoon; Joe, Eunhye; Kim, Tae Hyong; Kim, Soung Soo; Jin, Min Young; Choi, Sang Ho; Jin, Byung Kwan

    2010-05-15

    We have shown that prothrombin kringle-2 (pKr-2), a domain of human prothrombin distinct from thrombin could activate cultured rat brain microglia in vitro. However, little is known whether pKr-2-induced microglial activation could cause neurotoxicity on dopaminergic (DA) neurons in vivo. To address this question, pKr-2 was injected into the rat substantia nigra (SN). Tyrosine hydroxylase (TH) immunohistochemistry experiments demonstrate significant loss of DA neurons seven days after injection of pKr-2. In parallel, pKr-2-activated microglia were detected in the SN with OX-42 and OX-6 immunohistochemistry. Reverse transcription PCR and double-label immunohistochemistry revealed that activated microglia in vivo exhibit early and transient expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and several proinflammatory cytokines. The pKr-2-induced loss of SN DA neurons was partially inhibited by the NOS inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride, and the COX-2 inhibitor DuP-697. Extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were activated in the SN as early as 1 hr after pKr-2 injection, and localized within microglia. Inhibition of these kinases led to attenuation of mRNA expression of iNOS, COX-2 and several proinflammatory cytokines, and rescue of DA neurons in the SN. Intriguingly, following treatment with pKr-2 in vitro, neurotoxicity was detected exclusively in co-cultures of mesencephalic neurons and microglia, but not microglia-free neuron-enriched mesencephalic cultures, indicating that microglia are required for pKr-2 neurotoxicity. Our results strongly suggest that microglia activated by endogenous compound(s), such as pKr-2, are implicated in the DA neuronal cell death in the SN. PMID:20025058

  13. Calcium regulation in mouse mesencephalic neurons-Differential roles of Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum.

    PubMed

    Wu, Pei-Chun; Kao, Lung-Sen

    2016-06-01

    Midbrain dopaminergic (DA) neurons are the key to finely tune the voluntary movement, habit and motivation. The progressive and selective degeneration of these neurons is a pathological hallmark of Parkinson's disease (PD). The susceptibility of DA neurons in the SNpc may result from differences in how Ca(2+) is handled. However, very little information is available about the mechanisms involved in the regulation of intracellular Ca(2+) concentration ([Ca(2+)]i) in DA neurons. In this study, the relative contributions of various Na(+)/Ca(2+) exchangers and their interplay with internal Ca(2+) stores, endoplasmic reticulum (ER) and the mitochondria, in the regulation of the [Ca(2+)]i of mouse mesencephalic neurons were characterized. Both the K(+)-dependent Na(+)/Ca(2+) exchanger (NCKX) and the K(+)-independent Na(+)/Ca(2+) exchanger (NCX) can be detected and are functional in DA and non-DA neurons. NCX accounts for the larger component of Na(+)/Ca(2+) exchange activity. Single-cell RT-PCR analysis showed each individual neuron expressed a distinct set of the Na(+)/Ca(2+) exchangers. Furthermore, the Na(+)/Ca(2+) exchangers play prominent roles in removing [Ca(2+)]i induced by glutamate but not [Ca(2+)]i induced by depolarization. The mitochondria serve as a major Ca(2+) sink and are functionally located close to NCX. In contrast, the ER is functionally located close to NCKX and acts primarily as a Ca(2+) source with marginal effects. This study reveals that the Na(+)/Ca(2+) exchangers, the ER and the mitochondria, which cooperate interactively, act similarly when regulating [Ca(2+)]i in mesencephalic DA and non-DA neurons. The heterogeneous expression of multiple types of Na(+)/Ca(2+) exchangers and the quantitative differences found in [Ca(2+)]i regulation, together with other risk factors specific to DA neurons such as dopamine oxidation resulting in oxidative stress, may drive these cells to undergo selective degeneration. PMID:27020658

  14. Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures.

    PubMed

    Ling, Z D; Robie, H C; Tong, C W; Carvey, P M

    1999-04-01

    Pramipexole (PPX) is a full intrinsic activity, direct-acting dopamine (DA) agonist possessing 7-fold higher affinity for D3 than for D2 receptors. It also is a potent antioxidant. PPX was previously shown to be neuroprotective because it dose dependently attenuated the DA neuron loss produced by levodopa in mesencephalic cultures. Several different drugs with properties similar to PPX were studied here to better understand the mechanism or mechanisms responsible for this neuroprotective effect. The D3-preferring agonist 7-hydroxy-diphenylaminotetralin (7-OH-DPAT) and the D3 antagonist U99194, respectively, increased and decreased the neuroprotective effects of PPX in a dose-dependent fashion. Addition of the selective D2 agonist U95666 or the D2/D3 antagonists domperidone or raclopride did not affect PPX's neuroprotective effect. Interestingly, 7-OH-DPAT by itself did not attenuate the DA neuron loss produced by levodopa. However, when 7-OH-DPAT was combined with a low dose of the antioxidants U101033E or alpha-tocopherol, the toxic effects of levodopa were attenuated. Similar results were observed when the D3-preferring agonist PD128, 907 was studied. In addition, media conditioned by exposure of mesencephalic cultures incubated with all D3-preferring agonists studied was shown to enhance the growth of DA neurons in freshly harvested recipient cultures implicating a D3-mediated trophic activity in the neuroprotective effect. These data suggest that PPX's neuroprotective actions in the levodopa toxicity model are a consequence of its combined actions as a D3 receptor agonist and an antioxidant. PMID:10087005

  15. Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: a post-mortem study in human control subjects.

    PubMed

    Lu, Lixia; Neff, Frauke; Fischer, Daniel Alvarez; Henze, Carmen; Hirsch, Etienne C; Oertel, Wolfgang H; Schlegel, Jürgen; Hartmann, Andreas

    2006-08-01

    Parkinson's disease (PD) is characterized by loss of dopaminergic (DA) neurons in the human midbrain, which varies greatly among mesencephalic subregions. The genetic expression profiles of mesencephalic DA neurons particularly prone to degenerate during PD (nigrosome 1 within the substantia nigra pars compacta-SNpc) and those particularly resistant in the disease course (central grey substance-CGS) were compared in five control subjects by immuno-laser capture microdissection followed by RNA arbitrarily primed PCR. 8 ESTs of interest were selected for analysis by real time quantitative reverse transcription PCR. DA neurons in the CGS preferentially expressed implicated in cell survival (7 out of 8 genes selected), whereas SNpc DA neurons preferentially expressed one gene making them potentially susceptible to undergo cell death in PD. We propose that factors making CGS DA neurons more resistant may be helpful in protecting SNpc DA neurons against a pathological insult. PMID:16753304

  16. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    SciTech Connect

    Teraoka, Hiroki Kubota, Akira; Dong, Wu; Kawai, Yusuke; Yamazaki, Koji; Mori, Chisato; Harada, Yoshiteru; Peterson, Richard E.; Hiraga, Takeo

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.

  17. Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism

    PubMed Central

    Sherman, David; Fuller, Patrick M.; Marcus, Jacob; Yu, Jun; Zhang, Ping; Chamberlin, Nancy L.; Saper, Clifford B.; Lu, Jun

    2015-01-01

    The mesencephalic (or midbrain) locomotor region (MLR) was first described in 1966 by Shik and colleagues, who demonstrated that electrical stimulation of this region induced locomotion in decerebrate (intercollicular transection) cats. The pedunculopontine tegmental nucleus (PPT) cholinergic neurons and midbrain extrapyramidal area (MEA) have been suggested to form the neuroanatomical basis for the MLR, but direct evidence for the role of these structures in locomotor behavior has been lacking. Here, we tested the hypothesis that the MLR is composed of non-cholinergic spinally projecting cells in the lateral pontine tegmentum. Our results showed that putative MLR neurons medial to the PPT and MEA in rats were non-cholinergic, glutamatergic, and express the orexin (hypocretin) type 2 receptors. Fos mapping correlated with motor behaviors revealed that the dorsal and ventral MLR are activated, respectively, in association with locomotion and an erect posture. Consistent with these findings, chemical stimulation of the dorsal MLR produced locomotion, whereas stimulation of the ventral MLR caused standing. Lesions of the MLR (dorsal and ventral regions together) resulted in cataplexy and episodic immobility of gait. Finally, trans-neuronal tracing with pseudorabies virus demonstrated disynaptic input to the MLR from the substantia nigra via the MEA. These findings offer a new perspective on the neuroanatomic basis of the MLR, and suggest that MLR dysfunction may contribute to the postural and gait abnormalities in Parkinsonism. PMID:26157418

  18. CURCUMIN ENHANCES PARAQUAT-INDUCED APOPTOSIS OF N27 MESENCEPHALIC CELLS VIA THE GENERATION OF REACTIVE OXYGEN SPECIES

    PubMed Central

    Ortiz-Ortiz, Miguel A.; Morán, José M.; Bravosanpedro, Jose M.; González-Polo, Rosa A.; Niso-Santano, Mireia; Anantharam, Vellareddy; Kanthasamy, Anumantha G.; Soler, Germán; Fuentes, José M.

    2009-01-01

    Curcumin, the active compound of the rhizome of Curcuma longa has anti-inflammatory, antioxidant and antiproliferative activities. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. While curcumin has been identified as an activator of apopotosis in several cell lines, the mechanism by which it initiates apoptosis, however, remains poorly understood. We considered curcumin from the point of view of its ability to protect against oxidative stress, the latter being one factor strongly implicated in the development of Parkinson’s disease. Althougth the etiology of Parkinson’s disease remains unknown, epidemiological studies have linked exposure to pesticides such paraquat to an increased risk of developing the condition. Analysis of the neurotoxic properties of these pesticide compounds has been focused on their ability to induce oxidative stress in neural cells. Given curcumin’s capacity to protect against oxidative stress, it has been considered as a potential therapeutic agent for neurodegenerative diseases such as Parkinson’s disease that involve an oxidative stress component. In the present report we describe the effect of curcumin in paraquat-mediated apoptosis of N27 mesencepahlic cells. We show that subtoxic concentrations of curcumin sensitize N27 mesencephalic cells to paraquat-mediated apoptosis. PMID:19660496

  19. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    SciTech Connect

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens; Widmer, Hans R.; Meyer, Morten

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  20. Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity

    PubMed Central

    Mätlik, K; Yu, Li-ying; Eesmaa, A; Hellman, M; Lindholm, P; Peränen, J; Galli, E; Anttila, J; Saarma, M; Permi, P; Airavaara, M; Arumäe, U

    2015-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a prosurvival protein that protects the cells when applied intracellularly in vitro or extracellularly in vivo. Its protective mechanisms are poorly known. Here we studied the role of two short sequence motifs within the carboxy-(C) terminal domain of MANF in its neuroprotective activity: the CKGC sequence (a CXXC motif) that could be involved in redox reactions, and the C-terminal RTDL sequence, an endoplasmic reticulum (ER) retention signal. We mutated these motifs and analyzed the antiapoptotic effect and intracellular localization of these mutants of MANF when overexpressed in cultured sympathetic or sensory neurons. As an in vivo model for studying the effect of these mutants after their extracellular application, we used the rat model of cerebral ischemia. Even though we found no evidence for oxidoreductase activity of MANF, the mutation of CXXC motif completely abolished its protective effect, showing that this motif is crucial for both MANF's intracellular and extracellular activity. The RTDL motif was not needed for the neuroprotective activity of MANF after its extracellular application in the stroke model in vivo. However, in vitro the deletion of RTDL motif inactivated MANF in the sympathetic neurons where the mutant protein localized to Golgi, but not in the sensory neurons where the mutant localized to the ER, showing that intracellular MANF protects these peripheral neurons in vitro only when localized to the ER. PMID:26720341

  1. Evidence for a trigeminal mesencephalic-hypoglossal nuclei loop involved in controlling vibrissae movements in the rat.

    PubMed

    Mameli, Ombretta; Caria, Marcello Alessandro; Pellitteri, Rosalia; Russo, Antonella; Saccone, Salvatore; Stanzani, Stefania

    2016-03-01

    Previous studies performed in rats showed that the whisker-pad motor innervation involves not only the facial nerve, but also some hypoglossal neurons whose axons travel within the trigeminal infraorbital nerve (ION) and target the extrinsic muscles surrounding the whisker-pad macrovibrissae. Furthermore, the electrical stimulation of the ION induced an increase in the EMG activity of these muscles, while the hypoglossal nucleus stimulation elicited evoked potentials and single motor unit responses. However, the existence of a neural network able to involve the XIIth nucleus in macrovibrissae whisking control was totally unknown until now. Since other recent experiments demonstrated that: (1) the mesencephalic trigeminal nucleus (Me5) neurons respond to both spontaneous and artificial movements of macrovibrissae, and (2) the Me5 peripheral terminals provide a monosynaptic sensory innervation to the macrovibrissae, the present study was aimed at analyzing a possible role of the Me5 nucleus as a relay station in the sensory-motor loop that involves the XIIth nucleus neurons in rhythmic whisking control. Two tracers were used in the same animal: Fluoro Gold, which was injected into the whisker pad to retrogradely label the hypoglossal whisker-pad projection neurons, and Dil, which was instead injected into the Me5 to label its projections to these hypoglossal neurons. Results demonstrated that terminals of the Me5 neurons monosynaptically target the hypoglossal whisker-pad projection neurons. The functional role of this sensory-motor connection is discussed, with particular regard to a hypothesized proprioceptive reflex in whisker-pad extrinsic muscles that can be elicited by the activation of the Me5 macrovibrissae receptors. PMID:26645304

  2. Catechol-O-methyltransferase inhibition protects against 3,4-dihydroxyphenylalanine (DOPA) toxicity in primary mesencephalic cultures: new insights into levodopa toxicity.

    PubMed

    Blessing, Heike; Bareiss, Markus; Zettlmeisl, Heinz; Schwarz, Johannes; Storch, Alexander

    2003-01-01

    Inhibition of catechol-O-methyltransferase (COMT) has protective effects on levodopa (L-DOPA), but not D-DOPA toxicity towards dopamine (DA) neurons in rat primary mesencephalic cultures [Mol. Pharmacol. 57 (2000) 589]. Here, we extend our recent studies to elucidate the mechanisms of these protective effects. Thus, we investigated the effects of all main L-DOPA/DA metabolites on survival of tyrosine hydroxylase immunoreactive (THir) neurons in primary rat mesencephalic cultures. 3-O-Methyldopa, homovanillic acid, dihydroxyphenyl acetate and 3-methoxytyramine had no effects at concentrations up to 300 micro M after 24h, whereas DA was more toxic than L-DOPA with toxicity at concentrations of >or=1 micro M. The coenzyme of COMT, S-adenosyl-L-methionine (SAM), and its demethylated product S-adenosylhomocystein caused no relevant alteration of THir neuron survival or L-DOPA toxicity. In contrast, inhibition of SAM synthesis by selenomethionine showed time- and dose-dependent increase of THir neuron survival, but did not affect L-DOPA toxicity. L-DOPA-induced lipid peroxidation in mesencephalic cultures was not modified by the COMT inhibitor Ro 41-0960 (1 micro M). Increased contamination of the cultures with glial cells attenuated L- and D-DOPA toxicity, but caused significant enhancement of protection by COMT inhibitors against L-DOPA toxicity only. Investigations of L-DOPA uptake in rat striatal cultures using HPLC revealed a significant reduction of extracellular L-DOPA concentrations by Ro 41-0960. Our data confirm that L-DOPA toxicity towards DA neurons is mediated by an autooxidative process, which is attenuated by glial cells. In addition, we demonstrate a second mechanism of L-DOPA toxicity in vitro mediated by a COMT- and glia-dependent pathway, which is blocked by COMT inhibitors, most likely due to enhanced glial uptake of L-DOPA. PMID:12421594

  3. Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency.

    PubMed Central

    Triarhou, L C; Low, W C; Ghetti, B

    1986-01-01

    Attempts to reconstruct the damaged nigrostriatal pathway in experimental models of Parkinson disease have thus far been carried out in animals with neurotoxically induced dopamine deficiency. The present study establishes the weaver (wv/wv) mutant mouse as a genetic model of chronic striatal dopamine denervation by demonstrating a marked decrease of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta. Moreover, grafts of embryonic ventral mesencephalon taken from genetically normal mice and transplanted into the lateral ventricle of adult weaver mutants can survive and grow in the mutant host environment, express tyrosine hydroxylase immunoreactivity, and reinnervate the target regions of the recipient. These results provide evidence of integration of graft and host tissue and suggest that transplantation of dopamine neurons may be effectively applied to overcome nigrostriatal degeneration of genetic etiology. Images PMID:2877463

  4. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  5. Effects of cannabinoids Δ(9)-tetrahydrocannabinol, Δ(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected murine mesencephalic cultures.

    PubMed

    Moldzio, Rudolf; Pacher, Thomas; Krewenka, Christopher; Kranner, Barbara; Novak, Johannes; Duvigneau, Johanna Catharina; Rausch, Wolf-Dieter

    2012-06-15

    Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10

  6. A tract-tracing study of the central projections of the mesencephalic nucleus of the trigeminus in the guppy (Lebistes reticulatus, teleostei), with some observations on the descending trigeminal tract.

    PubMed

    Pombal, M A; Alvarez-Otero, R; Rodicio, M C; Anadón, R

    1997-01-01

    We studied the central projections of the mesencephalic nucleus of the trigeminal nerve (MesV) in the guppy (Lebistes reticulatus), after application of horseradish peroxidase or fluorescein dextran amine into the eye orbit. A small number (1 to 13) of large mesencephalic trigeminal neurons were solid labeled in the ipsilateral rostral mesencephalon. At the level of the trigeminal nerve entrance, the united process of each mesencephalic trigeminal cell bifurcates, giving rise to a peripheral branch that exits in the trigeminal nerve and a descending branch that runs caudally in a medial bundle separated from the descending trigeminal tract. This bundle passes close to the visceromotor nuclei of the medulla oblongata. Descending processes give rise to short collaterals to the descending nucleus of the trigeminus and the ventrolateral reticular area. Most MesV descending fibres terminate in this ventrolateral field at the transition of the medulla to the spinal cord, but one or two fibres could be followed to the C6 level, where they give rise to collaterals to the dorsal funicular nucleus. No collaterals directed to the trigeminal motor nucleus, the cerebellum, or the mesencephalic tegmentum were observed. These projections were also compared with those of the descending trigeminal tract. PMID:8971415

  7. REACTIVE OXYGEN SPECIES GENERATION BY THE ETHYLENE-BIS-DITHIOCARBAMATE (EBDC) FUNGICIDE MANCOZEB AND ITS CONTRIBUTION TO NEURONAL TOXICITY IN MESENCEPHALIC CELLS

    PubMed Central

    Domico, Lisa M.; Cooper, Keith R.; Bernard, Laura P.; Zeevalk, Gail D.

    2007-01-01

    Previous in vitro studies in our laboratory have shown that mancozeb (MZ) and maneb (MB), both widely used EBDC fungicides, are equipotent neurotoxicants that produce cell loss in mesencephalic dopaminergic and GABAergic cells after an acute 24 h exposure. Mitochondrial uncoupling and inhibition were associated with fungicide exposure. Inhibition of mitochondrial respiration is known to increase free radical production. Here the mechanism(s) of neuronal damage associated with MZ exposure was further explored by determining the role that reactive oxygen species (ROS) played in toxicity. Damage to mesencephalic dopamine and GABA cell populations were significantly attenuated when carried out in the presence of ascorbate or SOD indicative of a free radical mediated contribution to toxicity. ROS generation monitored by H2O2 production using Amplex Red increased in a dose-dependent manner in response to MZ. Inhibition of intracellular catalase with aminotriazole had little effect on H2O2 generation, whereas exogenously added catalase significantly reduced H2O2 production demonstrating a large extracellular contribution to ROS generation. Conversely, cells preloaded with the ROS indicator dye DCF showed significant MZ-induced ROS production, demonstrating an increase in intracellular ROS. Both the organic backbone of MZ as well as its associated Mn ion, but not Zn ion were responsible and required for H2O2 generation. The functionally diverse NADPH oxidase inhibitors, diphenylene iodonium chloride, apocynin, and 4-(2-aminoethyl)benzene- sulfonyl fluoride hydrochloride significantly attenuated H2O2 production by MZ. In growth medium lacking cells, MZ produced little H2O2, but enhanced H2O2 generation when added with xanthine plus xanthine oxidase whereas, in cultured cells, allopurinol partially attenuated H2O2 production by MZ. Minocycline, an inhibitor of microglial activation, modestly reduced H2O2 formation in mesencephalic cells. In contrast, neuronal enriched

  8. Maneb-induced dopaminergic neuronal death is not affected by loss of mitochondrial complex I activity: Results from primary mesencephalic dopaminergic neurons cultured from individual Ndufs4+/+ and Ndufs4-/- mouse embryos

    PubMed Central

    Choi, Won-Seok; Xia, Zhengui

    2014-01-01

    Primary cultures from embryonic mouse ventral mesencephalon are widely used for investigating the mechanisms of dopaminergic neuronal death in Parkinson's disease models. Specifically, single mouse or embryo cultures from littermates can be very useful for comparative studies involving transgenic mice when the neuron cultures are to be prepared before genotyping. However, preparing single mouse embryo culture is technically challenging because of the small number of cells present in the mesencephalon of each embryo (150,000-300,000), of which only 0.5-5% are tyrosine hydroxylase (TH) -positive, dopaminergic neurons. In this study, we optimized the procedure for preparing primary mesencephalic neuron cultures from individual mouse embryos. Mesencephalic neurons that are dissociated delicately, plated on Aclar film coverslips, and incubated in DMEM supplemented with FBS for 5 days and then N2 supplement for 1 day resulted in the best survival of dopaminergic neurons from each embryo. Using this optimized method, we prepared mesencephalic neuron cultures from single Ndufs4+/+ or Ndufs4-/- embryos, and investigated the role of mitochondrial complex I in maneb-induced dopamine neuron death. Our results suggest that maneb toxicity to dopamine neurons is not affected by loss of mitochondrial complex I activity in Ndufs4-/- cultures. PMID:25275677

  9. Immune modulation by MANF promotes tissue repair and regenerative success in the retina.

    PubMed

    Neves, Joana; Zhu, Jie; Sousa-Victor, Pedro; Konjikusic, Mia; Riley, Rebeccah; Chew, Shereen; Qi, Yanyan; Jasper, Heinrich; Lamba, Deepak A

    2016-07-01

    Regenerative therapies are limited by unfavorable environments in aging and diseased tissues. A promising strategy to improve success is to balance inflammatory and anti-inflammatory signals and enhance endogenous tissue repair mechanisms. Here, we identified a conserved immune modulatory mechanism that governs the interaction between damaged retinal cells and immune cells to promote tissue repair. In damaged retina of flies and mice, platelet-derived growth factor (PDGF)-like signaling induced mesencephalic astrocyte-derived neurotrophic factor (MANF) in innate immune cells. MANF promoted alternative activation of innate immune cells, enhanced neuroprotection and tissue repair, and improved the success of photoreceptor replacement therapies. Thus, immune modulation is required during tissue repair and regeneration. This approach may improve the efficacy of stem-cell-based regenerative therapies. PMID:27365452

  10. Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants.

    PubMed

    Belekhova, Margarita G; Chudinova, Tatiana V; Rio, Jean-Paul; Tostivint, Hérve; Vesselkin, Nikolai P; Kenigfest, Natalia B

    2016-01-15

    Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations. This study aimed at describing the patterns of distribution of parvalbumin (PV) and calbindin (CB) in the visual thalamic and mesencephalic centers of the pigeon (Columba livia). We used a combination of immunohistochemistry and double labeling immunofluorescent technique. Structures studied included the thalamic relay centers involved in the tectofugal (nucleus rotundus, Rot) and thalamofugal (nucleus geniculatus lateralis, pars dorsalis, GLd) visual pathways as well as pretectal, mesencephalic, isthmic and thalamic structures inducing the driver and/or modulatory action to the visual processing. We showed that neither of these proteins was unique to the Rot or GLd. The Rot contained i) numerous PV-immunoreactive (ir) neurons and a dense neuropil, and ii) a few CB-ir neurons mostly located in the anterior dorsal part and associated with a light neuropil. These latter neurons partially overlapped with the former and some of them colocalized both proteins. The distinct subnuclei of the GLd were also characterized by different patterns of distribution of CaBPrs. Some (nucleus dorsolateralis anterior, pars magnocellularis, DLAmc; pars lateralis, DLL; pars rostrolateralis, DLAlr; nucleus lateralis anterior thalami, LA) contained both CB- and PV-ir neurons in different proportions with a predominance of the former in the DLAmc and DLL. The nucleus lateralis dorsalis of nuclei optici principalis thalami only contained PV-ir neurons and a neuropil similar to the interstitial pretectal/thalamic nuclei of the

  11. Cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator muscle are located in the mesencephalic trigeminal nucleus in rats.

    PubMed

    Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Kawagishi, Kyutaro; Moriizumi, Tetsuji

    2012-12-01

    Since the levator and frontalis muscles lack interior muscle spindles despite being antigravity mixed muscles to involuntarily sustain eyelid opening and eyebrow lifting, this study has proposed a hypothetical mechanism to compensate for this anatomical defect. The voluntary contraction of fast-twitch fibres of the levator muscle stretches the mechanoreceptors in Müller's muscle to evoke proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study confirmed the presence of cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator and frontalis muscles. After confirming that severing the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induced ipsilateral eyelid ptosis, Fluorogold was applied as a tracer to the proximal stump of the trigeminal proprioceptive nerve in rats. Fluorogold labelled the cell bodies of the trigeminal proprioceptive neurons, not in any regions of the rat brain including the trigeminal ganglion, but in the ipsilateral mesencephalic trigeminal nucleus neighbouring the locus ceruleus. Some Fluorogold particles accumulated in the area of the locus ceruleus. The trigeminal proprioceptive neurons could be considered centrally displaced ganglion cells to transmit afferent signal from the mechanoreceptors in Müller's muscle to the mesencephalon, where they may be able to make excitatory synaptic connections with both the oculomotor neurons and the frontalis muscle motoneurons for the involuntary coordination of the eyelid and eyebrow activities, and potentially to the locus ceruleus. PMID:23157498

  12. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP(+))-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway.

    PubMed

    Yu, Song; Wang, Xu; He, Xingliang; Wang, Yue; Gao, Sujie; Ren, Lu; Shi, Yan

    2016-07-01

    Neuroinflammation is closely associated with the pathophysiology of neurodegenerative diseases including Parkinson's disease (PD). Recent evidence indicates that astrocytes also play pro-inflammatory roles in the central nervous system (CNS) by activation with toll-like receptor (TLR) ligands. Therefore, targeting anti-inflammation may provide a promising therapeutic strategy for PD. Curcumin, a polyphenolic compound isolated from Curcuma longa root, has been commonly used for the treatment of neurodegenerative diseases. However, the details of how curcumin exerts neuroprotection remain uncertain. Here, we investigated the protective effect of curcumin on 1-methyl-4-phenylpyridinium ion-(MPP(+)-) stimulated primary astrocytes. Our results showed that MPP(+) stimulation resulted in significant production of tumor necrosis factor (TNF)-α, interleukin (IL-6), and reactive oxygen species (ROS) in primary mesencephalic astrocytes. Curcumin pretreatment decreased the levels of these pro-inflammatory cytokines while increased IL-10 expression in MPP(+)-stimulated astrocytes. In addition, curcumin increased the levels of antioxidant glutathione (GSH) and reduced ROS production. Our results further showed that curcumin decreased the levels of TLR4 and its downstream effectors including NF-κB, IRF3, MyD88, and TIRF that are induced by MPP(+) as well as inhibited the immunoreactivity of TLR4 and morphological activation in MPP(+)-stimulated astrocytes. Together, data suggest that curcumin might exert a beneficial effect on neuroinflammation in the pathophysiology of PD. PMID:27164829

  13. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity.

    PubMed

    Broom, Lauren; Jenner, Peter; Rose, Sarah

    2015-01-01

    The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation. PMID:25218309

  14. 6-OHDA-Induced Changes in Parkinson's Disease-Related Gene Expression are not Affected by the Overexpression of PGAM5 in In Vitro Differentiated Embryonic Mesencephalic Cells.

    PubMed

    Stępkowski, Tomasz Maciej; Wasyk, Iwona; Grzelak, Agnieszka; Kruszewski, Marcin

    2015-11-01

    LUHMES cells, a recently established line of immortalized embryonic mesencephalic cells, are the novel in vitro model for studying Parkinson's disease (PD) and dopaminergic neuron biology. Phosphoglyceromutase 5 (PGAM5) is a mitochondrial protein involved in mitophagy, mitochondria dynamics, and other processes important for PD pathogenesis. We tested the impact of lentiviral overexpression of PGAM5 protein in LUHMES cells on their differentiation and expression of 84 PD-related genes. LUHMES cells were transduced with PGAM5 or mock and treated with 100 μM 6-hydroxydopamine (6-OHDA), a model PD neurotoxin. Real-Time PCR analysis revealed that the treatment with 6-OHDA-induced changes in expression of 44 PD-related genes. PGAM5 transduction alone did not cause alternations in PD-related genes expression, nor it affected changes in gene expression mediated by 6-OHDA. The 6-OHDA-induced PD-related gene expression profile of LUHMES cells is presented for the first time and widely discussed. PMID:25986246

  15. The Mesencephalic Reticular Formation as a Conduit for Primate Collicular Gaze Control: Tectal Inputs to Neurons Targeting the Spinal Cord and Medulla

    PubMed Central

    Perkins, Eddie; Warren, Susan; May, Paul J.

    2009-01-01

    The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control. PMID:19645020

  16. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling

    PubMed Central

    Thomas, M G; Saldanha, M; Mistry, R J; Dexter, D T; Ramsden, D B; Parsons, R B

    2013-01-01

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways. PMID:23764850

  17. Tissue types (image)

    MedlinePlus

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  18. Tissue Microdissection.

    PubMed

    Rabien, Anja; Kristiansen, Glen

    2016-01-01

    The new opportunities of modern assays of molecular biology can only be exploited fully if the results can be accurately correlated to the tissue phenotype under investigation. This is a general problem of non-in situ techniques, whereas results from in situ techniques are often difficult to quantify. The use of bulk tissue, which is not precisely characterized in terms of histology, has long been the basis for molecular analysis. It has, however, become apparent, that this simple approach is not sufficient for a detailed analysis of molecular alterations, which might be restricted to a specific tissue phenotype (e.g., tumor or normal tissue, stromal or epithelial cells). Microdissection is a method to provide minute amounts of histologically characterized tissues for molecular analysis with non-in situ techniques and has become an indispensable research tool. If tissue diversity is moderate and negligible, manual microdissection can be an easy and cost-efficient method of choice. In contrast, the advantage of laser microdissection is a very exact selection down to the level of a single cell, but often with a considerable time exposure to get enough material for the following analyses. The latter issue and the method of tissue preparation needed for laser microdissection are the main problems to solve if RNA, highly sensitive to degradation, shall be analyzed. This chapter focuses on optimized procedures for manual microdissection and laser microdissection to analyze RNA of malignant and nonmalignant prostate tissue. PMID:26667453

  19. Tissue Tregs.

    PubMed

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-05-20

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular. PMID:27168246

  20. Diazepam binding inhibitor gene expression: Location in brain and peripheral tissues of rate

    SciTech Connect

    Alho, H.; Fremeau, R.T. Jr.; Tiedge, H.; Wilcox, J.; Bovolin, P.; Brosius, J.; Roberts, J.L.; Costa, E.

    1988-09-01

    Diazepam binding inhibitor (DBI), an endogenous 10-kDa polypeptide was isolated from rat and human brain by monitoring displacement of radioactive diazepam bound to specific recognition sites in brain synaptic and mitochondrial membranes. The cellular location of DBI mRNA was studied in rat brain and selected peripheral tissues by in situ hybridization histochemistry with a /sup 35/S-labeled single-stranded complementary RNA probe. DBI mRNA was heterogeneously distributed in rat brain, with particularly high levels in the area postrema, the cerebellar cortex, and ependyma of the third ventricle. Intermediate levels were found in the olfactory bulb, pontine nuclei, inferior colliculi, arcuate nucleus, and pineal gland. Relatively low but significant levels of silver grains were observed overlying many mesencephalic and telencephalic areas that have previously been shown to contain numerous DBI-immunoreactive neurons and a high density of central benzodiazepine receptors. In situ hybridizations also revealed high levels of DBI mRNA in the posterior lobe of the pituitary gland, liver, and germinal center of the white pulp of spleen, all tissues that are rich in peripheral benzodiazepine binding sites. The tissue-specific pattern of DBI gene expression described here could be exploited to further understand the physiological function of DBI in the brain and periphery.

  1. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  2. Towards precise ages and masses of Free Floating Planetary Mass Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Canty, J. I.; Lucas, P. W.; Roche, P. F.; Pinfield, D. J.

    2013-11-01

    Measurement of the substellar initial mass function (IMF) in very young clusters is hampered by the possibility of the age spread of cluster members. This is particularly serious for candidate planetary mass objects (PMOs), which have a very similar location to older and more massive brown dwarfs on the Hertzsprung-Russell Diagram (HRD). This degeneracy can be lifted by the measurement of gravity-sensitive spectral features. To this end we have obtained medium-resolution (R ≈ 5000) Near-infrared Integral Field Spectrometer (NIFS) K-band spectra of a sample of late M-/early L-type dwarfs. The sample comprises old field dwarfs and very young brown dwarfs in the Taurus association and in the σ Orionis cluster. We demonstrate a positive correlation between the strengths of the 2.21 μm Na I doublet and the objects' ages. We demonstrate a further correlation between these objects' ages and the shape of their K-band spectra. We have quantified this correlation in the form of a new index, the H2(K) index. This index appears to be more gravity-sensitive than the Na I doublet and has the advantage that it can be computed for spectra where gravity-sensitive spectral lines are unresolved, while it is also more sensitive to surface gravity at very young ages (<10 Myr) than the triangular H-band peak. Both correlations differentiate young objects from field dwarfs, while the H2(K) index can distinguish, at least statistically, populations of ˜1 Myr objects from populations of ˜10 Myr objects. We applied the H2(K) index to NIFS data for one Orion nebula cluster (ONC) PMO and to previously published low-resolution spectra for several other ONC PMOs where the 2.21 μm Na I doublet was unresolved and concluded that the average age of the PMOs is ˜1 Myr.

  3. Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb

    NASA Technical Reports Server (NTRS)

    Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve

    2011-01-01

    This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.

  4. Target berthing and base reorientation of free-floating space robotic system after capturing

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; Li, Cheng; Liang, Bin; Xu, Yangsheng; Liu, Yu; Qiang, Wenyi

    2009-01-01

    Space robots are playing an increasingly important role in on-orbital servicing, including repairing, refueling, or de-orbiting the satellite. The target must be captured and berthed before the servicing task starts. However, the attitude of the base may lean much and needs re-orientating after capturing. In this paper, a method is proposed to berth the target, and re-orientate the base at the same time, using manipulator motion only. Firstly, the system state is formed of the attitude quaternion and joint variables, and the joint paths are parameterized by sinusoidal functions. Then, the trajectory planning is transformed to an optimization problem. The cost function, defined according to the accuracy requirements of system variables, is the function of the parameters to be determined. Finally, we solve the parameters using the particle swarm optimization algorithm. Two typical cases of the spacecraft with a 6-DOF manipulator are dynamically simulated, one is that the variation of base attitude is limited; the other is that both the base attitude and the joint rates are constrained. The simulation results verify the presented method.

  5. Postmodern research: no grounding or privilege, just free-floating trouble making.

    PubMed

    Traynor, M

    1997-06-01

    Postmodernism has been criticized as failing to offer, on the one hand, authoritative explanations for social phenomena that might provide a scientific basis for policy formation or, on the other, the philosophical justification for emancipatory work-its radical scepticism about claims to knowledge leaving its advocates, including many nurses, with little scope to transform oppressive social and political regimes. Various approaches to this important problem have been offered, both philosophical and methodological. Some critical theorists have rejected certain aspects of postmodernism as dangerous and distracting. Some more accommodating solutions are troubled by unacknowledged inconsistencies. Others embrace postmodernism's unavoidable ambiguity (towards the Enlightenment for instance) with a lighter heart. In this paper I will review some of the criticism of postmodernism and some proposed solutions to these problems. Using recent research into the impact of managerialism on nursing within the UK National Health Service as an example and drawing on deconstructive literary theory, I conclude by accepting a rhetorical agonistics of undecidability. I take postmodernism as a mandate for causing trouble for those groups who are currently having their say and whose version of truth and rationality has achieved domination over others. I do not take postmodernism as a place from which to champion the cause or privilege the view of any particular group. PMID:9224046

  6. A new free-floating planet in the Upper Scorpius association

    NASA Astrophysics Data System (ADS)

    Peña Ramírez, K.; Béjar, V. J. S.; Zapatero Osorio, M. R.

    2016-02-01

    We report on a deep photometric survey covering an area of 1.17 deg2 in the young Upper Scorpius stellar association using VIMOS Iz and UKIDSS ZJHK data that was taken with several years in between. The search for the least massive population of Upper Scorpius (~5-10 Myr, 145 pc) is performed on the basis of various optical and infrared color-color and color-magnitude diagrams, including WISE photometry, in the magnitude interval J = 14.5-19 mag (completeness), which corresponds to substellar masses from 0.028 through 0.004 M⊙ at the age and distance of Upper Scorpius. We also present the proper motion analysis of the photometric candidates, finding that two objects successfully pass all photometric and astrometric criteria for membership in the young stellar association. One of them, USco J155150.2-213457, is a new discovery. We obtained low resolution, near-infrared spectroscopy (R ~ 450, 0.85-2.35 μm) of this new finding using the FIRE instrument. We confirmed its low-gravity atmosphere expected for an Upper Scorpius member (weak alkaline lines, strong VO absorption, peaked H-band pseudocontinuum). By comparison with spectroscopic standards, we derive a spectral type of L6 ± 1, and estimate a mass of ≈0.008-0.010 M⊙ for USco J155150.2-213457. The colors and spectral slope of this object resemble those of other young, cool members of Upper Scorpius and σ Orionis (~3 Myr) and field, high gravity dwarfs of related classification in contrast with the very red indices of field, low gravity, L-type dwarfs of intermediate age. USco J155150.2-213457, which does not show infrared flux excesses up to 4.5 μm, becomes one of the least massive and latest type objects known in the entire Upper Scorpius stellar association.

  7. Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bruce, R. J.; Pierson, D. L.

    2004-01-01

    Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.

  8. Free-Floating DNA: A New Strand of Technology from the Old Spool of Thought.

    ERIC Educational Resources Information Center

    Wegmann, Larry

    1989-01-01

    A procedure for extracting DNA from yeast using common reagents and equipment is given. Suggestions for variations are provided. A second activity for building a model of DNA from toothpicks is included. (CW)

  9. Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs

    NASA Astrophysics Data System (ADS)

    Cefarelli, Adrián O.; Vernet, María; Ferrario, Martha E.

    2011-06-01

    Free-drifting icebergs in the Weddell Sea are expected to affect the surrounding marine ecosystem. Sampling associated with iceberg C-18a, a large tabular, free-drifting iceberg in the NW Weddell Sea, carried out from 10 March to 7 April 2009, was designed to test the hypothesis that the iceberg's presence modified phytoplankton composition and abundance. Areas that define a gradient of possible iceberg influence were sampled for phytoplankton: stations close (<1 km) and far (18 km) from iceberg C-18a, an area with numerous small icebergs, Iceberg Alley, and a control site 74 km away. Quantitative samples were obtained from Niskin bottles and counted with an inverted microscope for species abundance. Qualitative samples were collected with nets from the ship's seawater intake. Taxonomic determinations were performed with light and electron microscopy. Overall, diatoms dominated in the mixed layer (surface-˜40 m) and unidentified small flagellated and coccid cells at depth (˜100 m). Fragilariopsis nana, a diatom 2.4-15.5 μm in length, dominated numerically the phytoplankton and was most abundant at the control area. The iceberg's effect on phytoplankton composition was consistent with the hypothesis that they facilitate phytoplankton communities enriched in diatoms, as found in other productive areas of Antarctica. Near the iceberg, diatoms were most abundant, principally at depth, while small flagellate concentration diminished. However, total phytoplankton abundance was lowest at Iceberg Alley in the area of highest meltwater contribution, as indicated by low mean temperature in the mixed layer, and highest at the control site. These results suggest that during austral fall, low growth or high zooplankton grazing could be counteracting the positive effect by icebergs on phytoplankton biomass, otherwise observed in summer months.

  10. Fetal exposure to (+/-)-methylenedioxymethamphetamine in utero enhances the development and metabolism of serotonergic neurons in three-dimensional reaggregate tissue culture.

    PubMed

    Won, Lisa; Bubula, Nancy; Heller, Alfred

    2002-07-30

    Methylenedioxymethamphetamine (MDMA, Ecstasy) is a potent psychomotor stimulant with neurotoxic potential which is widely abused by females of childbearing age raising serious public health concerns in terms of exposure of the fetus to the drug. The current study was conducted using the three-dimensional reaggregate tissue culture system as an approach to the assessment of risk to fetal brain cells following exposure to MDMA during early to mid-gestation. In this culture system, the serotonergic and dopaminergic mesencephalic-striatal projections are reconstructed and develop with a time course similar to that observed in vivo. Pregnant C57Bl/6J mice were injected twice daily with 40 mg/kg MDMA or saline from gestational day 6 to 13. On gestational day 14, mesencephalic and striatal cells from MDMA- and saline-exposed embryos were used to prepare reaggregate cultures. Levels of neurotransmitters and their metabolites in the reaggregates and culture medium were assessed at 22 and 36 days of culture. There was a long-term enhancement of serotonergic development and metabolism by fetal exposure to MDMA as evidenced by increased reaggregate serotonin levels as well as the elevated production and release of 5-hydroxyindoleacetic acid in cultures prepared from MDMA-exposed embryos which persisted for up to 36 days of culture. Dopaminergic neurons in such cultures also exhibited increased metabolism as indicated by elevated levels of dihydroxyphenylacetic acid in reaggregate tissue and culture medium. The data obtained suggest that exposure to MDMA in utero during early to mid-gestation may result in more active serotonergic and dopaminergic neurons. PMID:12128255

  11. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  12. Scar Tissue.

    PubMed

    McLean, Haydn J

    2015-12-01

    Scar tissue is associated with physical wounds and their mending, but it is also descriptive in portraying the emotional scarring that occurs following adversity, resulting in potential psychological morbidity. Provided the adversity is not severe, such challenges to adaptability may provoke Andrew Solomon's process of forging meaning and building identity. Perceiving an emotional constitution as analogous to the immune system provides a metaphor for appreciating the benefits of emotional challenges, which may provoke greater emotional resilience or posttraumatic growth. PMID:26631526

  13. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with

  14. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  15. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue

    PubMed Central

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G.; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-01-01

    Aim To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. Methods The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. Results StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. Conclusion HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats. PMID:24891281

  16. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals.

    PubMed

    Danjo, Teruko; Eiraku, Mototsugu; Muguruma, Keiko; Watanabe, Kiichi; Kawada, Masako; Yanagawa, Yuchio; Rubenstein, John L R; Sasai, Yoshiki

    2011-02-01

    During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning. PMID:21289201

  17. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  18. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with

  19. Fetal pig pancreas. Preparation and assessment of tissue for transplantation, and its in vivo development and function in athymic (nude) mice.

    PubMed

    Thompson, S C; Mandel, T E

    1990-03-01

    The possibility of using xenogeneic islets for transplantation in insulin-dependent diabetes mellitus (IDDM) necessitates characterization of their potential for growth and functional differentiation. Fetal pig pancreas (FPP) of various gestational ages was examined with respect to morphology, ability to produce insulin before and during culture, and development and function in nude mice. Insulin-containing beta cells were present, but distinct islets were not apparent in FPP even in late gestation, and did not develop during culture. FPP remained viable and produced insulin for up to 30 days in vitro. Mitotic figures were seen in cultured tissue. Culture on a gelfoam raft resulted in more viable tissue than free-floating culture. Culture in a high concentration of O2 (90% O2/10% CO2) was detrimental compared with culture in 10% CO2 in air. Responses to static incubation in secretagogues showed that IMBX, theophylline, and tolbutamide all stimulated insulin secretion, but high glucose concentration (5 g/L), arginine, and leucine did not. The potential of this tissue for growth and its ability to regulate blood glucose levels appropriately were tested in athymic (nu/nu) mice. Pancreatic tissue from fetuses as young as 4 weeks gestation showed growth after transplantation into athymic mice, with representation of the major pancreatic endocrine cells demonstrated by selective immunochemical staining. The increase in the size of the grafts showed an impressive proliferative capacity, and histology confirmed mitotic activity and islet structure in the graft. The amount of endocrine tissue in grafts reflected the condition of the explants at the time of grafting, and prolonged culture times were detrimental to eventual graft size. Functional capability of the grafted FPP to release insulin in response to hyperglycemia was tested by transplantation into mice made diabetic with streptozotocin. Blood glucose levels, animal weights and survival, and the histological

  20. Transplanting intact donor tissue enhances dopamine cell survival and the predictability of motor improvements in a rat model of Parkinson's disease.

    PubMed

    Fricker, Rosemary A; Kuiper, Jan Herman; Gates, Monte A

    2012-01-01

    Primary cell transplantation is currently the gold standard for cell replacement in Parkinson's disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM) donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1) an intact piece of half an embryonic day 13 (E13) rat VM; (2) dissociated cells from half an E13 rat VM; or (3) no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson's disease. PMID:23056602

  1. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  2. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  3. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... the bacteria Streptococcus pyogenes , which is sometimes called "flesh-eating bacteria." Necrotizing soft tissue infection develops when ...

  4. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  5. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  6. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  7. Connective Tissue Disorders

    MedlinePlus

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  8. Acute free-floating carotid artery thrombus causing stroke in a young patient: unique etiology and management using endovascular approach.

    PubMed

    Tan, Ai Peng; Taneja, Manish; Seah, Boon Heng; Leong, Hoe Nam; Venketasubramanian, Narayanaswamy

    2014-01-01

    Atherosclerotic disease accounts for 20%-30% of strokes in the general population. In young adults, it is an unexpected event and its causes involve diverse pathologies. Herein, we describe a unique case of acute embolic stroke in a young adult patient due to the presence of a large clot in the right common and internal carotid arteries, as a result of an extrinsic cause. Surgical clot retrieval was considered unsafe at that point in time in view of the active inflammatory changes surrounding the affected vessels. This was eventually treated with a novel endovascular technique, a unique alternative to open surgery, with excellent clinical outcome. To our knowledge, the penumbra system has never been used for thrombus removal in a nonacute setting. PMID:25440371

  9. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming. PMID:26573134

  10. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  11. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole. PMID:23162240

  12. Tissue engineering of reproductive tissues and organs.

    PubMed

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. PMID:22748231

  13. Adipose tissue fibrosis

    PubMed Central

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases. PMID:25987952

  14. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  15. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  16. [Bone tissue engineering scaffolds].

    PubMed

    Fang, Liru; Weng, Wenjian; Shen, Ge; Han, Gaorong; Santos, J D; Du, Peiyi

    2003-03-01

    Bone tissue engineering may provide an alternative to the repairs to skeletal defects resulting from disease, trauma or surgery. Scaffold has played an important role in bone tissue engineering, which functions as the architecture for bone in growth. In this paper, the authors gave a brief introduction about the requirement of bone tissue engineering scaffold, the key of the design of scaffolds and the current research on this subject. PMID:12744187

  17. Radiobiology of tissue reactions.

    PubMed

    Dörr, W

    2015-06-01

    Tissue effects of radiation exposure are observed in virtually all normal tissues, with interactions when several organs are involved. Early reactions occur in turnover tissues, where proliferative impairment results in hypoplasia; late reactions, based on combined parenchymal, vascular, and connective tissue changes, result in loss of function within the exposed volume; consequential late effects develop through interactions between early and late effects in the same organ; and very late effects are dominated by vascular sequelae. Invariably, involvement of the immune system is observed. Importantly, latent times of late effects are inversely dependent on the biologically equieffective dose. Each tissue component and--importantly--each individual symptom/endpoint displays a specific dose-effect relationship. Equieffective doses are modulated by exposure conditions: in particular, dose-rate reduction--down to chronic levels--and dose fractionation impact on late responding tissues, while overall exposure time predominantly affects early (and consequential late) reactions. Consequences of partial organ exposure are related to tissue architecture. In 'tubular' organs (gastrointestinal tract, but also vasculature), punctual exposure affects function in downstream compartments. In 'parallel' organs, such as liver or lungs, only exposure of a significant (organ-dependent) fraction of the total volume results in clinical consequences. Forthcoming studies must address biomarkers of the individual risk for tissue reactions, and strategies to prevent/mitigate tissue effects after exposure. PMID:25816259

  18. Clarifying Tissue Clearing

    PubMed Central

    Richardson, Douglas S.; Lichtman, Jeff W.

    2015-01-01

    Summary Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue. PMID:26186186

  19. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  20. Tissue engineered periodontal products.

    PubMed

    Bartold, P M; Gronthos, S; Ivanovski, S; Fisher, A; Hutmacher, D W

    2016-02-01

    Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer. PMID:25900048

  1. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed. PMID:26611927

  2. Leaf Tissue Senescence

    PubMed Central

    Manos, Peter J.; Goldthwaite, Jonathan

    1975-01-01

    During winter, excised leaf tissue from Rumex obtusifolius degrades chlorophyll at twice the summer rate but the plant hormones, gibberellic acid and zeatin, inhibit the senescence rate by a constant percentage, regardless of season. PMID:16659225

  3. Tissue types (image)

    MedlinePlus

    ... called voluntary) muscles that move the skeleton, and smooth muscle, such as the muscles that surround the stomach. Nerve tissue is made up of nerve cells (neurons) and is used to carry "messages" to ...

  4. Engineered cardiac tissues

    PubMed Central

    Iyer, Rohin K.; Chiu, Loraine L. Y.; Reis, Lewis A.; Radisic, Milica

    2011-01-01

    Cardiac tissue engineering offers the promise of creating functional tissue replacements for use in the failing heart or for in vitro drug screening. The last decade has seen a great deal of progress in this field with new advances in interdisciplinary areas such as developmental biology, genetic engineering, biomaterials, polymer science, bioreactor engineering, and stem cell biology. We review here a selection of the most recent advances in cardiac tissue engineering, including the classical cell-scaffold approaches, advanced bioreactor designs, cell sheet engineering, whole organ decellularization, stem-cell based approaches, and topographical control of tissue organization and function. We also discuss current challenges in the field, such as maturation of stem cell-derived cardiac patches and vascularization. PMID:21530228

  5. Assessment of tissue oxygenation.

    PubMed

    Robertson, P W; Hart, B B

    1999-06-01

    A continuous supply of oxygen to all tissues is necessary for the efficient production of ATP, and this supply is considered sufficient when aerobic metabolism is maintained. Nonhealing wounds, necrotizing infections, radiation-induced necrosis, crush injury, decompression illness, and CO poisoning all exhibit impaired tissue oxygenation. The need for efficacy of HBO therapy in such conditions is in part determined by the prevailing state of tissue oxygen supply and demand. The methods currently available or under development for assessing the adequacy of tissue oxygenation include blood gas analysis, transcutaneous oxygen measurement, gastric tonometry, pulse oximetry, near-infrared spectroscopy, functional MR imaging, MR spectroscopy, electron paramagnetic resonance, positron emission tomography, and single photon emission computed tomography. The clinical and experimental applications of these methods are discussed and emphasis is placed on their role in hyperbaric medicine. PMID:10333450

  6. Spectromicroscopy of Brain Tissue

    NASA Astrophysics Data System (ADS)

    Frazer, Bradley; Cannara, Rachel; Gilbert, Benjamin; Destasio, Gelsomina; Ogg, Mandy; Gough, Kathy

    2001-03-01

    X-ray PhotoElectron Emission Microscopy (X-PEEM) was originally developed for studying the surface microchemistry of materials science specimens. It has then evolved into a valuable tool to investigate the magnetic properties of materials and the microchemistry of cells and tissues. We used the MEPHISTO X-PEEM instrument, installed at the UW-Synchrotron Radiation Center to detect trace concentrations of non-physiological elements in senile brain tissue specimens. These tissues contain a large number of plaques, in which all the compounds and elements that the brain does not need are disposed and stored. We hypothesized that plaques should contain elements, such as Si, B, and Al which are very abundant on the Earth crust but absent from healthy tissues. We verified this hypothesis with MEPHISTO and found evidence of Si and B, and suspect Al. We also found a higher than normal concentration of Fe.

  7. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  8. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  9. Biomaterials in tissue engineering.

    PubMed

    Hubbell, J A

    1995-06-01

    Biomaterials play a pivotal role in field of tissue engineering. Biomimetic synthetic polymers have been created to elicit specific cellular functions and to direct cell-cell interactions both in implants that are initially cell-free, which may serve as matrices to conduct tissue regeneration, and in implants to support cell transplantation. Biomimetic approaches have been based on polymers endowed with bioadhesive receptor-binding peptides and mono- and oligosaccharides. These materials have been patterned in two- and three-dimensions to generate model multicellular tissue architectures, and this approach may be useful in future efforts to generate complex organizations of multiple cell types. Natural polymers have also played an important role in these efforts, and recombinant polymers that combine the beneficial aspects of natural polymers with many of the desirable features of synthetic polymers have been designed and produced. Biomaterials have been employed to conduct and accelerate otherwise naturally occurring phenomena, such as tissue regeneration in wound healing in the otherwise healthy subject; to induce cellular responses that might not be normally present, such as healing in a diseased subject or the generation of a new vascular bed to receive a subsequent cell transplant; and to block natural phenomena, such as the immune rejection of cell transplants from other species or the transmission of growth factor signals that stimulate scar formation. This review introduces the biomaterials and describes their application in the engineering of new tissues and the manipulation of tissue responses. PMID:9634795

  10. American Association of Tissue Banks

    MedlinePlus

    ... through the Gift of Cells and Tissues Tissue Bank Specialist Certification AATB offers a program for Certification ... AATB conferences, workshops, webinars & CTBS Exam prep >> Accredited Bank Search AATB's Accreditation Program ensures that tissue-banking ...

  11. Gastric tissue biopsy and culture

    MedlinePlus

    Culture - gastric tissue; Biopsy - gastric tissue ... of organisms that cause infection. A gastric tissue culture may be considered normal if it does not show certain bacteria. Stomach acids normally prevent too much bacteria from growing.

  12. Optical birefringence of aorta tissues

    NASA Astrophysics Data System (ADS)

    Tang, G. C.; Wang, W. B.; Pu, Y.; Alfano, R. R.

    2010-02-01

    The optical birefringence of porcine aortic tissues including heated and non-heated tissues was studied using polarization technique. The measurements show that a whole piece of aortic tissue has birefringence properties like a uniaxial crystal. The experiment results indicate that the birefringence status of tissue have a potential application for monitoring changes of tissue structure due to burning, plastic surgery, laser tissue welding and wound healing.

  13. Intracorporeal Electromechanical Tissue Morcellation

    PubMed Central

    Kho, Kimberly A.; Anderson, Ted L.; Nezhat, Ceana H.

    2015-01-01

    Electromechanical morcellators have come under scrutiny with concerns about complications involving iatrogenic dissemination of both benign and malignant tissues. Although the rapidly rotating blade has resulted in morcellator-related vascular and visceral injuries, equally concerning are the multiple reports in the literature demonstrating seeding of the abdominal cavity with tissue fragmented such as leiomyomas, endometriosis, adenomyosis, splenic and ovarian tissues, and occult cancers of the ovaries and uterus. Alternatives to intra-corporeal electric morcellation for tissue extirpation through the vagina and through minilaparotomy are feasible, safe, and have been shown to have comparable, if not superior, outcomes without an increased need for laparotomy. Intracorporeal morcellation within a containment bag is another option to minimize the risk of iatrogenic tissue seeding. Patient safety is a priority with balanced goals of maximizing benefits and minimizing harm. When intracorporeal electromechanical morcellation is planned, physicians should discuss the risks and consequences with their patients. Although data are being collected to quantify and understand these risks more clearly, a minimally invasive alternative to unenclosed intracorporeal morcellation is favored when available. It is incumbent on surgeons to communicate the risks of practices and devices and to advocate for continued improvement in surgical instrumentation and techniques. PMID:25198260

  14. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  15. Morphology of urethral tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  16. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  17. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  18. Tissue optical immersion clearing.

    PubMed

    Genina, Elina A; Bashkatov, Alexey N; Tuchin, Valery V

    2010-11-01

    In this article, we discuss the optical immersion method based on refractive index matching of scatterers (e.g., collagen, elastin fibers, cells and cell compartments) and the ground material (interstitial fluid and/or cytoplasm) of tissue and blood under the action of exogenous optical clearing agents. We analyze the optical clearing of fibrous and cell-structured tissues and blood from the point of view of receiving more valuable, normally hidden, information from spectroscopic and polarization measurements, confocal microscopy, optical coherence and optical projection tomography, as well as from nonlinear spectroscopies, such as two-photon fluorescence and second-harmonic generation techniques. Some important applications of the immersion technique to glucose sensing, drug delivery monitoring, improvements of image contrast and imaging depth, nondistortive delivery of laser radiation and precision tissue laser photodisruption, among others, are also described. PMID:21050092

  19. Neovascularization in Tissue Engineering

    PubMed Central

    Chung, Jennifer C.-Y.; Shum-Tim, Dominique

    2012-01-01

    A prerequisite for successful tissue engineering is adequate vascularization that would allow tissue engineering constructs to survive and grow. Angiogenic growth factors, alone and in combination, have been used to achieve this, and gene therapy has been used as a tool to enable sustained release of these angiogenic proteins. Cell-based therapy using endothelial cells and their precursors presents an alternative approach to tackling this challenge. These studies have occurred on a background of advancements in scaffold design and assays for assessing neovascularization. Finally, several studies have already attempted to translate research in neovascularization to clinical use in the blossoming field of therapeutic angiogenesis. PMID:24710553

  20. Polarized light propagation through tissue and tissue phantoms

    SciTech Connect

    Sankaran, V; Walsh, J T JR; Maitland, D J

    2000-02-08

    We show that standard tissue phantoms can be used to mimic the intensity and polarization properties of tissue. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microspheres. The dilute phantoms can empirically match tissue polarization and intensity properties. One discrepancy between the dilute phantoms and tissue exist: common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, depolarize linearly polarized light more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  1. Tissue macerating instrument

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Burnett, J. E. (Inventor)

    1977-01-01

    A surgical tissue macerating and removal tool is described which has a rotating rod with a cutting member at one end and which disposed in a tube which is then contained in an extension of the tool handle. A frusto-conical member extends into the extension at the cutter member end of the rotating rod with its small end engaging the tube. The portion of the frusto-conical member outside of the extension forms a tissue engaging member and may be cut-off at an angle to the axis of the rod to form a tissue engaging edge. Apertures are provided in the extension adjacent the frusto-concial member so that treatment fluid supplied in the annular space between the tube and the extension may flow to the operative site. An aperture is provided in the frustoconical member between the extension and the tube so that fluid may also flow into the tube where it mixes with macerated tissue being directed through an aperture in the tube to a passageway which may have suction applied to help remove macerated material.

  2. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  3. Eye tissues study

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Bashkatov, Alexey N.; Maksimova, Irina L.; Sinichkin, Yurii P.; Simonenko, Georgy V.; Genina, Elina A.; Lakodina, Nina A.

    2001-08-01

    Theoretical and in vitro and in vivo experimental study of spectral and polarization characteristics of the human and rabbit eye tissues are presented. The possibility of control of optical properties of eye cornea, lens and sclera is discussed and realized experimentally for glucose solution as the refractive index matching factor.

  4. Adult soft tissue sarcoma

    MedlinePlus

    ... free at 5 years. Most people who survive 5 years can expect to be cancer-free at 10 years. ... most soft tissue sarcomas, and there is no way to prevent it. ... them can increase your chance of surviving this type of cancer.

  5. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  6. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  7. Tissue and Tempera.

    ERIC Educational Resources Information Center

    Derby, Marie

    1998-01-01

    Gives an art activity for second-graders where they use two art techniques, tissue gluing and tempera painting, to create brightly colored pictures of landscapes. Expounds that first the students examine a variety of landscapes by different artists, such as Paul Cezanne, and then learn the differences between the foreground and background. (CMK)

  8. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  9. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. Mesencephalic stimulation elicits inhibition of phrenic nerve activity in cat.

    PubMed

    Gallman, E A; Lawing, W L; Millhorn, D E

    1991-05-01

    1. Previous work from this laboratory has indicated that the mesencephalon is the anatomical substrate for a mechanism capable of inhibiting central respiratory drive in glomectomized cats for periods of up to 1 h or more following brief exposure to systemic hypoxia; phrenic nerve activity was used as an index of central respiratory drive. 2. The present study was undertaken to further localize the region responsible for the observed post-hypoxic inhibition of respiratory drive. We studied the phrenic nerve response to stimulations of the mesencephalon in anaesthetized, paralysed peripherally chemo-denervated cats with end-expired PCO2 and body temperature servo-controlled. 3. Stimulations of two types were employed. Electrical stimulation allowed rapid determination of sites from which phrenic inhibition could be elicited. Microinjections of excitatory amino acids were used subsequently in order to confine excitation to neuronal cell bodies and not axons of passage. 4. Stimulation of discrete regions of the ventromedial aspect of the mesencephalon in the vicinity of the red nucleus produced substantial inhibition of phrenic activity which lasted up to 45 min. Stimulation of other areas of the mesencephalon either produced no phrenic inhibition or resulted in a slight stimulation of phrenic activity. 5. The results are discussed in the context of the central respiratory response to hypoxia. PMID:1676420

  11. Subependymal glioneuronal hamartoma in the mesencephalic aqueduct of a giraffe.

    PubMed

    Koehler, Jennifer; Cox, Nancy; Passler, Thomas; Wolfe, Dwight

    2012-09-01

    A 1-day-old male giraffe calf (Giraffa camelopardalis) was submitted for necropsy examination after sustaining postnatal head trauma from the cow. In addition to the expected findings of severe cerebral edema and epidural and subarachnoid hemorrhage, there also was present an incidental finding of a subependymal glioneuronal aqueductal hamartoma. Reports of this type of congenital lesion are rare in the human literature, and the lesion has not, to the authors' knowledge, previously been reported in this or any other veterinary species. PMID:23082530

  12. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. PMID:26056727

  13. Dinitrotoluene in deer tissues

    SciTech Connect

    Shugart, L.R.

    1991-09-30

    Badger Army Ammunition Plant (BAAP), Baraboo, Wisconsin, has within a security-fenced area, a herd of whitetail deer. The US Army and the State of Wisconsin, Department of Health and Social Services have determined that approximately 20 of the deer be harvested and tissue samples thus collected be analyzed for 2,4- and 2,6-dinitrotoluene (2,4- and 2,6-DNT) by high pressure liquid chromatography (HPLC) to a sensitivity of 0.1 part per million (ppm). The HPLC analyses will be done at the Oak Ridge National Laboratory (ORNL) following protocol used previously for similar work for other government sites. ORNL shall instruct Olin relative to the quantity and type of tissue required, storage and shipment requirements, and other information to ensure that all protocol and chain of custody requirements are clear. A final report will be made to Olin Corporation upon completion of the HPLC analyses.

  14. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  15. Nicotine and periodontal tissues

    PubMed Central

    Malhotra, Ranjan; Kapoor, Anoop; Grover, Vishakha; Kaushal, Sumit

    2010-01-01

    Tobacco use has been recognized to be a significant risk factor for the development and progression of periodontal disease. Its use is associated with increased pocket depths, loss of periodontal attachment, alveolar bone and a higher rate of tooth loss. Nicotine, a major component and most pharmacologically active agent in tobacco is likely to be a significant contributing factor for the exacerbation of periodontal diseases. Available literature suggests that nicotine affects gingival blood flow, cytokine production, neutrophil and other immune cell function; connective tissue turnover, which can be the possible mechanisms responsible for overall effects of tobacco on periodontal tissues. Inclusion of tobacco cessation as a part of periodontal therapy encourages dental professionals to become more active in tobacco cessation counseling. This will have far reaching positive effects on our patients’ oral and general health. PMID:20922084

  16. Perivascular Adipose Tissue

    PubMed Central

    Maille, Nicole; Clas, Darren; Osol, George

    2015-01-01

    Perivascular adipose tissue (PVAT) contributes to vasoregulation. The role of this adipose tissue bed in pregnancy has not been examined. Here, we tested the hypothesis that PVAT in pregnant rats decreases resistance artery tone. Mesenteric arteries from nonpregnant (NP) and late pregnant (LP) rats were exposed to phenylephrine (PHE) or KCl in the presence (+) versus absence (−) of PVAT. The LP PVAT(+) vessels showed a 44% decrease in sensitivity to PHE in the presence of PVAT. There was no attenuation of the contractile response to KCl when PVAT was present. The LP arteries perfused with LP or NP PVAT underwent vasodilation; unexpectedly, NP vessels in the presence of PVAT from LP rats sustained a 48% vasoconstriction. The PVAT attenuates vasoconstriction by a mechanism that involves hyperpolarization. The vasoconstriction observed when nonpregnant vessels were exposed to pregnant PVAT suggests pregnant vessels adapt to the vasoconstricting influence of pregnant PVAT. PMID:25527422

  17. Hard tissue laser procedures.

    PubMed

    Gimbel, C B

    2000-10-01

    A more conservative, less invasive treatment of the carious lesion has intrigued researchers and clinicians for decades. With over 170 million restorations placed worldwide each year, many of which could be treated using a laser, there exists an increasing need for understanding hard tissue laser procedures. An historical review of past scientific and clinical hard research, biophysics, and histology are discussed. A complete review of present applications and procedures along with their capabilities and limitations will give the clinician a better understanding. Clinical case studies, along with guidelines for tooth preparation and hard tissue laser applications and technological advances for diagnosis and treatment will give the clinician a look into the future. PMID:11048281

  18. Tissue blood flow mapping

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.

    1997-01-01

    The operating principles of Laser Doppler Perfusion Imaging (LDPI) for visualization of the tissue blood perfusion are explained. Using this emerging technology skin perfusion has been investigated in healthy volunteers and in patients with various conditions that affect skin blood flow. LDPI is anticipated to be particularly useful in evaluation of peripheral circulation in diabetics, as an objective tool in irritancy patch testing, assessment of burnt skin and visualization of spot-wise hyperperfusion in breast skin in association with carcinoma.

  19. Stereolithography in tissue engineering.

    PubMed

    Skoog, Shelby A; Goering, Peter L; Narayan, Roger J

    2014-03-01

    Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered. PMID:24306145

  20. Extraocular connective tissue architecture.

    PubMed

    Miller, Joel M; Demer, Joseph L; Poukens, Vadims; Pavlovski, Dmitri S; Nguyen, Hien N; Rossi, Ethan A

    2003-01-01

    Extraocular muscle pulleys, now well known to be kinematically significant extraocular structures, have been noted in passing and described in fragments several times over the past two centuries. They were late to be fully appreciated because biomechanical modeling of the orbit was not available to derive their kinematic consequences, and because pulleys are distributed condensations of collagen, elastin and smooth muscle (SM) that are not sharply delineated. Might other mechanically significant distributed extraocular structures still be awaiting description?An imaging approach is useful for describing distributed structures, but does not seem suitable for assessing mechanical properties. However, an image that distinguished types and densities of constituent tissues could give strong hints about mechanical properties. Thus, we have developed methods for producing three dimensional (3D) images of extraocular tissues based on thin histochemically processed slices, which distinguish collagen, elastin, striated muscle and SM. Overall tissue distortions caused by embedding for sectioning, and individual-slice distortions caused by thin sectioning and subsequent histologic processing were corrected by ordered image warping with intrinsic fiducials. We describe an extraocular structure, partly included in Lockwood's ligament, which contains dense elastin and SM bands, and which might refine horizontal eye alignment as a function of vertical gaze, and torsion in down-gaze. This active structure might therefore be a factor in strabismus and a target of therapeutic intervention. PMID:12723968

  1. Lung tissue engineering.

    PubMed

    Hoganson, David M; Bassett, Erik K; Vacanti, Joseph P

    2014-01-01

    Lung tissue engineering is an emerging field focused on the development of lung replacement devices and tissue to treat patients with end stage lung disease. Microfluidic based lung assist devices have been developed that have biomimetically designed vascular networks that achieve physiologic blood flow. Gas exchange in these devices occurs across a thin respiratory membrane. Designed for intrathoracic implantation as a bridge to transplant or destination therapy, these lung assist devices will allow ambulation and hospital discharge for patients with end stage lung disease. Decellularized lungs subsequently recellularized with epithelial and endothelial cells have been implanted in small animal models with demonstration of initial gas exchange. Further development of these tissues and scaling to large animal models will validate this approach and may be an organ source for lung transplantation. Initial clinical success has been achieved with decellularized tracheal implants using autologous stem cells. Development of microfluidic lung models using similar architecture to the lung assist device technology allows study of lung biology and diseases with manipulation of lung cells and respiratory membrane strain. PMID:24896347

  2. Connective Tissue Ulcers

    PubMed Central

    Dabiri, Ganary; Falanga, Vincent

    2013-01-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren’s syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. PMID:23756459

  3. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure. PMID:27163325

  4. Gastric tissue biopsy and culture

    MedlinePlus

    ... laboratory test that examines the tissue sample for bacteria and other organisms that can cause disease. ... of organisms that cause infection. A gastric tissue culture may be ... Stomach acids normally prevent too much bacteria from growing.

  5. Gram stain of tissue biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003453.htm Gram stain of tissue biopsy To use the sharing features on this page, please enable JavaScript. Gram stain of tissue biopsy test involves using crystal ...

  6. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  7. Tissue allograft coding and traceability in USM Tissue Bank, Malaysia.

    PubMed

    Sheikh Ab Hamid, Suzina; Abd Rahman, Muhamad Nor Firdaus

    2010-11-01

    In Malaysia, tissue banking activities began in Universiti Sains Malaysia (USM) Tissue Bank in early 1990s. Since then a few other bone banks have been set up in other government hospitals and institutions. However, these banks are not governed by the national authority. In addition there is no requirement set by the national regulatory authority on coding and traceability for donated human tissues for transplantation. Hence, USM Tissue Bank has taken the initiatives to adopt a system that enables the traceability of tissues between the donor, the processed tissue and the recipient based on other international standards for tissue banks. The traceability trail has been effective and the bank is certified compliance to the international standard ISO 9001:2008. PMID:20582480

  8. [Azithromycin: tissue pharmacology].

    PubMed

    Bergogne-Bérézin, E

    1995-06-01

    Among macrolide derivatives, azithromycin which is an azalide, is a totally original new drug as to its pharmacokinetics in serum and tissues. Compared to reference compounds such as erythromycin or roxithromycin, pharmacokinetic parameters of azithromycin are characterized by: (i) much lower serum concentrations; (ii) a much longer elimination half-life (48-96 h); (iii) high and persistent tissue concentrations. The latter characteristic has been demonstrated in animal models (experimental H. influenzae pneumonia in mice) and in human studies. In lung parenchyma, azithromycin concentrations were higher and more persistent (72 h) in infected mice (12 mg/kg) as compared to non infected mice (controls) receiving the same dose of azithromycin (50 mg/kg); this may result from high intracellular concentrations in polymorphonuclear leucocytes and release of the drug at pulmonary sites of infection. In man, concentrations of azithromycin have been measured in lung parenchyma, bronchial secretions, tonsils, during exploratory or surgical conditions. After a single dose of 500 mg of azithromycin, local levels may reach up to 10 mg/kg with persistence of high levels for > or = 72 h in lungs, tonsils, sinus and bronchial secretions (1.5 to 8.6 mg/kg or mg/l). Five consecutive doses of azithromycin (500 mg per day) maintained for 10 days tonsil concentrations higher than the MICs for susceptible bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8539071

  9. Chemokines and tissue injury.

    PubMed Central

    Furie, M. B.; Randolph, G. J.

    1995-01-01

    Accumulation of leukocytes at sites of inflammation is essential for host defense, yet secretory products of the white cells may augment injury by damaging surrounding healthy tissues. Members of the chemokine family of chemotactic cytokines play a fundamental role in this process by attracting and stimulating specific subsets of leukocytes. In vitro studies suggest that chemokines participate in at least three phases of leukocyte recruitment. First, they foster tight adhesion of circulating leukocytes to the vascular endothelium by activating leukocytic integrins. Second, because of their chemoattractant properties, chemokines guide leukocytes through the endothelial junctions and underlying tissue to the inflammatory focus. Finally, chemokines activate effector functions of leukocytes, including production of reactive oxygen intermediates and exocytosis of degradative enzymes. Animal studies in which antibodies are used to neutralize the activity of individual members of the chemokine family confirm that these mediators contribute to the development of both acute and chronic inflammatory conditions. A number of mechanisms may operate in vivo to limit the proinflammatory properties of chemokines. Therapies that target chemokines directly or enhance the body's mechanisms for controlling their activity may prove to be reasonable approaches for treatment of inflammatory diseases. PMID:7778669

  10. Tissue bioengineering in orthopedics.

    PubMed

    Hernigou, Philippe; Homma, Yasuhiro

    2012-01-01

    The use of cells for the purpose of orthopedic tissue engineering started more than 300 years ago. The first attempt of bone grafting was reported in 1668 by the Dutch surgeon Job-Van Meek'ren. In 1867, Ollier performed a series of experiments using transplanted periosteum and concluded that transplanted periosteum and bone remained alive and formed new bone. The osteogenic potential of transplanted bone marrow was later documented by Goujon in 1869, then by Macewen in 1881. Efforts of Albee and Phemister highlighted further the utility of bone transplantation for the healing of fractures and bone defects. The techniques for autografting pioneered by these individuals remained largely unchanged until today. Advances in understanding of the biology of osteogenic cells, the availability of many highly purified peptide growth factors, and the capacity to create highly specialized implantable materials have launched an explosion of new advances in bone grafting and bone regeneration, all under the banner of tissue engineering. This new field is rapidly expanding the armamentarium of orthopedic surgeons in every setting in which bone healing is required. Composites of cells and matrices are at the core of this revolution. PMID:22783330

  11. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies. PMID:27421219

  12. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  13. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  14. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  15. Polarized Light Propagation in Biological Tissue and Tissue Phantoms

    SciTech Connect

    Sankaran, V.; Walsh, J.T.; Maitland, D.

    1999-12-10

    Imaging through biologic tissue relies on the discrimination of weakly scattered from multiply scattered photons. The degree of polarization can be used as the discrimination criterion by which to reject multiply scattered photons. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microsphere. We show that, although such phantoms are designed to match the macroscopic scattering properties of tissue (i.e.. the scattering coefficient, {mu}{sub 3}, and scattering anisotropy, g), they do not accurately represent biologic tissue for polarization-sensitive studies. In common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, we find that linearly polarized light is depolarized more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  16. Sirtuins, Tissue Maintenance, and Tumorigenesis

    PubMed Central

    Mohrin, Mary

    2013-01-01

    Aging is a degenerative process resulting in compromised tissue maintenance and increased susceptibility to diseases, such as cancer. Recent advancements support the notion that aging is a highly regulated process governed by evolutionarily conserved pathways. In mammals, tissue-specific adult stem cells (ASCs) persist throughout the lifetime to maintain and repair tissues. While reduced ASC self-renewal is thought to contribute to compromised tissue maintenance, increased self-renewal of cancer stem cells (CSCs) may lead to tumorigenesis. It is speculated that genetic regulators of aging, such as sirtuins, are likely to impinge upon the ASC compartments to regulate tissue maintenance and tumorigenesis. In this review, we discuss the emerging evidence linking sirtuins to normal and malignant ASC self-renewal, tissue maintenance, and tumorigenesis. PMID:24019997

  17. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  18. Biomimetic Materials for Tissue Engineering

    PubMed Central

    Ma, Peter X

    2008-01-01

    Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular-matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or would healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/would-healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration. PMID:18045729

  19. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  20. Citrus Tissue Culture

    PubMed Central

    Einset, John W.

    1978-01-01

    In vitro growth of explant (juice vesicle or albedo tissues) cultures from citron (Citrus medica), lemon (C. limon), grapefruit (C. paradisi), sweet orange (C. sinensis), and mandarin (C. reticulata) fruits was stimulated by addition of orange juice (10% v/v optimum) to a basal medium containing Murashige and Skoog salts, 50 grams per liter sucrose, 100 milligrams per liter myo-inositol, 5 milligrams per liter thiamine·HCl, 2 milligrams per liter 2,4-dichlorophenoxyacetic acid and 0.5 milligrams per liter kinetin. In analyzing this effect of orange juice on citron explant cultures, we failed to obtain increased yields by addition of appropriate concentrations of citric acid to the basal medium but obtained growth stimulation when the medium was supplemented with juice from an “acidless” orange variety (cv. Lima). These facts suggest that some component(s) other than citric acid is involved. Addition of the inorganic ash corresponding to 10% (v/v) orange juice to the basal medium had no effect on yields. Similarly, the stimulatory effect of orange juice could not be explained based on its content of sucrose or of organic growth factors already present in the basal medium. ImagesFig. 2 PMID:16660631

  1. Ischemic tissue injury.

    PubMed Central

    Jennings, R. B.; Ganote, C. E.; Reimer, K. A.

    1975-01-01

    The subendocardial to subepicardial gradient in the severity of ischemia following acute coronary occlusion is described. The effects of mild, moderate, and severe ischemia on cell structure and function are compared in summary form, and special attention is given to the effects of severe ischemia on myocardial cells. The characteristics of reversible and irreversible ischemic injury are defined in biologic terms. The failure of cell volume regulation in cells which have entered an irreversible state of ischemic injury is demonstrated by the use of free-hand slices in vitro. Irreversibility is associated with structural defects in the plasma membrane and is reflected in an increased slice inulin-diffusible space, increased slice H2O and Na+ content, and failure of the tissue to maintain the high K+ and Mg2+ levels characteristic of normal left ventricular myocardium. Defective cell membrane function is an early feature of irreversible ischemic injury and may be a primary event in the genesis of the irreversible state. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1180331

  2. Soft tissue angiosarcomas

    SciTech Connect

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  3. Human Tissue Stimulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  4. Osteochondral tissue engineering.

    PubMed

    Martin, Ivan; Miot, Sylvie; Barbero, Andrea; Jakob, Marcel; Wendt, David

    2007-01-01

    Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. Current surgical limits in the treatment of complex joint lesions could be overcome by grafting osteochondral composite tissues, engineered by combining the patient's own cells with three-dimensional (3D) porous biomaterials of pre-defined size and shape. Various strategies have been reported for the engineering of osteochondral composites, which result from the use of one or more cell types cultured into single-component or composite scaffolds in a broad spectrum of compositions and biomechanical properties. The variety of concepts and models proposed by different groups for the generation of osteochondral grafts reflects that understanding of the requirements to restore a normal joint function is still poor. In order to introduce the use of engineered osteochondral composites in the routine clinical practice, it will be necessary to comprehensively address a number of critical issues, including those related to the size and shape of the graft to be generated, the cell type(s) and properties of the scaffold(s) to be used, the potential physical conditioning to be applied, the degree of functionality required, and the strategy for a cost-effective manufacturing. The progress made in material science, cell biology, mechanobiology and bioreactor technology will be key to support advances in this challenging field. PMID:16730354

  5. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  6. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  7. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  8. Fibrosis and Adipose Tissue Dysfunction

    PubMed Central

    Sun, Kai; Tordjman, Joan; Clément, Karine; Scherer, Philipp E.

    2013-01-01

    Fibrosis is increasingly appreciated as a major player in adipose tissue dysfunction. In rapidly expanding adipose tissue, pervasive hypoxia leads to an induction of HIF1α that in turn leads to a potent pro-fibrotic transcriptional program. The pathophysiological impact of adipose tissue fibrosis is likely to play an equally important role on systemic metabolic alterations as fibrotic conditions play in the liver, heart and kidney. Here, we discuss recent advances in our understanding of the genesis, modulation and systemic impact of excessive extracellular matrix (ECM) accumulation in adipose tissue of both rodents and humans and the ensuing impact on metabolic dysfunction. PMID:23954640

  9. Tissue regeneration during tissue expansion and choosing an expander

    PubMed Central

    Agrawal, K.; Agrawal, S.

    2012-01-01

    This paper reviews the various aspects of tissue regeneration during the process of tissue expansion. “Creep” and mechanical and biological “stretch” are responsible for expansion. During expansion, the epidermis thickens, the dermis thins out, vascularity improves, significant angiogenesis occurs, hair telogen phase becomes shorter and the peripheral nerves, vessels and muscle fibres lengthen. Expansion is associated with molecular changes in the tissue. Almost all these biological changes are reversible after the removal of the expander.This study is also aimed at reviewing the difficulty in deciding the volume and dimension of the expander for a defect. Basic mathematical formulae and the computer programmes for calculating the dimension of tissue expanders, although available in the literature, are not popular. A user-friendly computer programme based on the easily available Microsoft Excel spread sheet has been introduced. When we feed the area of defect and base dimension of the donor area or tissue expander, this programme calculates the volume and height of the expander. The shape of the expander is decided clinically based on the availability of the donor area and the designing of the future tissue movement. Today, tissue expansion is better understood biologically and mechanically. Clinical judgement remains indispensable in choosing the size and shape of the tissue expander. PMID:22754146

  10. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  11. Treatment Options for Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  12. Treatment Option Overview (Adult Soft Tissue Sarcoma)

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  13. Stages of Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  14. [Myokines - muscle tissue hormones].

    PubMed

    Stránská, Zuzana; Svačina, Štěpán

    2015-04-01

    Physical inactivity is demonstrably related to the manifestation of chronic diseases which significantly modify the quality and prognosis of life in a negative way. The benefits of exercise are surely mediated by many pathophysiological mechanisms interrelated in varying degrees, which have not yet been fully examined in their complexity. In the late 20th century it was positively proven that a working striated muscle really regulates the metabolic and physiological response in the other organs. These involve several hundred substances with autocrine, paracrine and endocrine effects. These proteins and peptides, if released into the blood stream, substantially affect the metabolism of distant organs. They were classified as "myokines" (cytokines produced by myocytes). The identified myokines include e.g. IL4, IL6, IL7, IL15, myostatin, LIF (leukemia inhibitory factor), BDNF (brain-derived neurotrophic factor), IGF1 (insulin-like growth factor), FGF2 (fibroblast growth factor 2), FGF21, FSTL1 (follistatin-related protein 1), irisin, EPO (erythropoetin) and BAIBA (β-aminoisobutyric acid). Myokines have first of all an immunoregulatory role in the human body. Another important effect of myokines is, coincidentally also in the interaction with adipose tissue, the regulation of energy homeostasis. They also affect the growth of muscle fibres and their regeneration, stimulate angiogenesis, they are involved in the regulation of glucose metabolism and have a proven effect on lipids. Considering their diverse function, myokines present a prospective therapeutic goal in the treatment of disorders of muscle growth and regeneration as well as obesity. Another recent research moves toward uncovering of the "myokine resistance" as a result of long-term muscle inactivity and its association with chronic subclinical inflammation. PMID:25894270

  15. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  16. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  17. URIC ACID AND TISSUE REPAIR

    PubMed Central

    NERY, Rodrigo Araldi; KAHLOW, Barbara Stadler; SKARE, Thelma L; TABUSHI, Fernando Issamu; CASTRO, Adham do Amaral e

    2015-01-01

    Uric acid, a metabolic product of purines, may exert a role in tissue healing. In this review we will explore its role as an alarm initiating the inflammatory process that is necessary for tissue repair, as a scavenger of oxygen free radicals, as a mobilizer of progenitor endothelial cells and as supporter of adaptive immune system. PMID:26734804

  18. The Stanford Tissue Microarray Database.

    PubMed

    Marinelli, Robert J; Montgomery, Kelli; Liu, Chih Long; Shah, Nigam H; Prapong, Wijan; Nitzberg, Michael; Zachariah, Zachariah K; Sherlock, Gavin J; Natkunam, Yasodha; West, Robert B; van de Rijn, Matt; Brown, Patrick O; Ball, Catherine A

    2008-01-01

    The Stanford Tissue Microarray Database (TMAD; http://tma.stanford.edu) is a public resource for disseminating annotated tissue images and associated expression data. Stanford University pathologists, researchers and their collaborators worldwide use TMAD for designing, viewing, scoring and analyzing their tissue microarrays. The use of tissue microarrays allows hundreds of human tissue cores to be simultaneously probed by antibodies to detect protein abundance (Immunohistochemistry; IHC), or by labeled nucleic acids (in situ hybridization; ISH) to detect transcript abundance. TMAD archives multi-wavelength fluorescence and bright-field images of tissue microarrays for scoring and analysis. As of July 2007, TMAD contained 205 161 images archiving 349 distinct probes on 1488 tissue microarray slides. Of these, 31 306 images for 68 probes on 125 slides have been released to the public. To date, 12 publications have been based on these raw public data. TMAD incorporates the NCI Thesaurus ontology for searching tissues in the cancer domain. Image processing researchers can extract images and scores for training and testing classification algorithms. The production server uses the Apache HTTP Server, Oracle Database and Perl application code. Source code is available to interested researchers under a no-cost license. PMID:17989087

  19. Biomaterials for tissue engineering: summary

    NASA Technical Reports Server (NTRS)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  20. Tissue printing on nitrocellulose membrane

    SciTech Connect

    Taylor, R.; Song, Yanru; Pont-Lezica, R.; Lin, Liangshiou; Ye, Zhenghua; Varner, J.E. )

    1989-04-01

    In the 1950's Daoust developed substrate film printing on gelatin and starch films to localize protease, amylase, DNAase and RNAase activities. These procedures were adapted to plant tissues by Yomo and Taylor (1973) and by Jacobsen and Knox (1973). Membranes such as nitrocellulose bind cellular materials from cut tissue surfaces with little lateral diffusion. Thus accurate chemical prints are obtained. When the tissue is pressed firmly onto nitrocellulose a physical impression is obtained which shows the anatomy of the tissue. We have used the tissue-print technique to localize (1) proteins with labeled antibodies, (2) RNA with labeled nucleic acid probes, (3) enzymes by catalytic activity, (4) glycoproteins by fluorescent lectins, (5) lectins by fluorescent sugars, (6) cysteine-rich proteins by dansylated iodoacetamide, (7) ascorbic acid by silver nitrate, (8) soluble fluorescent compounds by direct observation.

  1. Videofluorometer for imaging tissue metabolism

    NASA Astrophysics Data System (ADS)

    Kelly, Jeffrey J.; Rorvik, Dawn A.; Richmond, Keith N.; Barlow, Clyde H.

    1989-11-01

    A videofluorometer is described that directly acquires digital metabolic images of reduced nicotinamide adenine dinucleotide (NADH) fluorescence in tissue. NADH fluorescence provides an intrinsic indicator of the state of tissue mitochondrial oxidative metabolism. The device combines a computer-controlled fluorescence excitation system with digital image acquisition to quantify tissue bioenergetics in both spatial and time domains. Localized ischemia following coronary artery ligation in a perfused rat heart (model for a coronary artery occlusion heart attack) is used as an example to demonstrate the capabilities of the system. This videofluorometer permits monitoring changes in physiological state of organs and tissue without interfering with tissue metabolism. The digital nature of the acquired image allows detailed analysis of physiological features and their time dependence.

  2. Optical Characterization of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Barrera, Frederick; Sardar, Dhiraj; Tsin, Andrew

    2008-03-01

    University of Texas at San Antonio, San Antonio, Texas 78249. An in-depth characterization of optical properties of biological tissues has been performed. The wavelength-dependent total diffuse reflection (Rd) and total transmission (Tt) measurements have been taken for individual tissue by using a double-integrating sphere setup. The index of refraction of the tissue will be determined using conventional optical techniques. The Inverse Adding Doubling (IAD) computational method is applied to the measured values of n, Rd, and Tt to calculate the optical absorption and scattering coefficients as well as the scattering anisotropy coefficients of these tissues. The Rd and Tt determined by the IAD method were compared with those generated by the Monte Carlo simulation technique. A thorough comparison of the scattering characteristics of these tissues has been made. Furthermore, a comparison of these optical scattering and absorption coefficients calculated by IAD method were compared to the values determined by the Kubelka-Munk model.

  3. MALDI Tissue Profiling of Integral Membrane Proteins from Ocular Tissues

    PubMed Central

    Thibault, Danielle B.; Gillam, Christopher J.; Grey, Angus C.; Han, Jun; Schey, Kevin L.

    2008-01-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this communication, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed aged related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods. PMID:18396059

  4. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  5. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  6. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  7. Measurement of the Binding Rate of Magnetically Labeled Antibodies to Free-Floating Cells Using a Superconducting Quantum Interference Device (SQUID)

    NASA Astrophysics Data System (ADS)

    Myers, W. R.; Grossman, H. L.; Lee, S.; Bruehl, R.; Vreeland, V. J.; Alper, M. D.; Clarke, John

    2003-03-01

    We use a high transition temperature SQUID to measure the binding rate between magnetically labeled antibodies and their target bacteria. We label the antibodies with 50 nm superparamagnetic particles, which have a Néel relaxation time of ˜1s, and mix them with their target bacteria in the room temperature sample chamber above our SQUID. A pulsed magnetic field aligns the dipole moments, and the SQUID measures the magnetic relaxation signal when the field is turned off. Unbound magnetic particle-antibody complexes relax via Brownian rotation in ˜15 μs and are not detected. However, complexes bound to bacteria rotate relatively slowly allowing the Néel relaxation to be detected by the SQUID. The magnetic relaxation signal is proportional to the number of bound antibodies; time sequence measurements yield the binding rate. This technique can measure the signal from antibodies bound to 4 x 10^5 Listeria monocytogenes in 20 μL of solution and can discriminate against E. coli. Supported by DOE

  8. New Method to Measure Proper Motions of Microlensed Sources: Application to Candidate Free-floating-planet Event MOA-2011-BLG-262

    NASA Astrophysics Data System (ADS)

    Skowron, Jan; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Poleski, Radosław; Ulaczyk, Krzysztof; Pietrukowicz, Paweł; Kozłowski, Szymon; Wyrzykowski, Łukasz; Gould, Andrew

    2014-04-01

    We develop a new method to measure source proper motions in microlensing events, which can partially overcome problems due to blending. It takes advantage of the fact that the source position is known precisely from the microlensing event itself. We apply this method to the event MOA-2011-BLG-262, which has a short timescale t E = 3.8 day, a companion mass ratio q = 4.7 × 10-3, and a very high or high lens-source relative proper motion μrel = 20 mas yr-1 or 12 mas yr-1 (for two possible models). These three characteristics imply that the lens could be a brown dwarf or a massive planet with a roughly Earth-mass "moon." The probability of such an interpretation would be greatly increased if it could be shown that the high lens-source relative proper motion was primarily due to the lens rather than the source. Based on the long-term monitoring data of the Galactic bulge from the Optical Gravitational Lensing Experiment, we measure the source proper motion that is small, {\\boldsymbol {\\mu }}_s = (-2.3, -0.9)+/- (2.8,2.6)\\,mas\\:yr^{-1} in a (north, east) Galactic coordinate frame. These values are then important input into a Bayesian analysis of the event presented in a companion paper by Bennett et al. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  9. New method to measure proper motions of microlensed sources: Application to candidate free-floating-planet event MOA-2011-BLG-262

    SciTech Connect

    Skowron, Jan; Udalski, Andrzej; Szymański, Michał K. E-mail: udalski@astrouw.edu.pl; and others

    2014-04-20

    We develop a new method to measure source proper motions in microlensing events, which can partially overcome problems due to blending. It takes advantage of the fact that the source position is known precisely from the microlensing event itself. We apply this method to the event MOA-2011-BLG-262, which has a short timescale t {sub E} = 3.8 day, a companion mass ratio q = 4.7 × 10{sup –3}, and a very high or high lens-source relative proper motion μ{sub rel} = 20 mas yr{sup –1} or 12 mas yr{sup –1} (for two possible models). These three characteristics imply that the lens could be a brown dwarf or a massive planet with a roughly Earth-mass 'moon'. The probability of such an interpretation would be greatly increased if it could be shown that the high lens-source relative proper motion was primarily due to the lens rather than the source. Based on the long-term monitoring data of the Galactic bulge from the Optical Gravitational Lensing Experiment, we measure the source proper motion that is small, μ{sub s}=(−2.3,−0.9)±(2.8,2.6) mas yr{sup −1} in a (north, east) Galactic coordinate frame. These values are then important input into a Bayesian analysis of the event presented in a companion paper by Bennett et al.

  10. Trade in human tissue products.

    PubMed

    Tonti-Filippini, Nicholas; Zeps, Nikolajs

    2011-03-01

    Trade in human tissue in Australia is prohibited by state law, and in ethical guidelines by the National Health and Medical Research Council: National statement on ethical conduct in human research; Organ and tissue donation by living donors: guidelines for ethical practice for health professionals. However, trade in human tissue products is a common practice especially for: reconstructive orthopaedic or plastic surgery; novel human tissue products such as a replacement trachea created by using human mesenchymal stem cells; biomedical research using cell lines, DNA and protein provided through biobanks. Cost pressures on these have forced consideration of commercial models to sustain their operations. Both the existing and novel activities require a robust framework to enable commercial uses of human tissue products while maintaining community acceptability of such practices, but to date no such framework exists. In this article, we propose a model ethical framework for ethical governance which identifies specific ethical issues such as: privacy; unique value of a person's tissue; commodification of the body; equity and benefit to the community; perverse incentives; and "attenuation" as a potentially useful concept to help deal with the broad range of subjective views relevant to whether it is acceptable to commercialise certain human tissue products. PMID:21382003

  11. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  12. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  13. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    PubMed

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  14. In vitro NIR laser tissue welding of porcine ocular tissues

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Savage, Howard E.; Halder, Rabindra K.; Kartazayeu, Uladzimir; McCormick, Steven A.; Katz, Alvin; Perry, Henry D.; Alfano, Robert R.

    2005-04-01

    In this study, 72 different combinations of laser welding parameters were compared for their effectiveness in welding ocular tissue. The laser employed in the welding system was a near infrared (NIR) erbium fiber laser with a wavelength of 1.455 μm . The laser system used a motorized translational stage and shutter to control the laser exposure of the tissue being welded. The emission wavelength of the laser in the NIR range corresponds to one of the lesser absorption bands of water. Parameters of the laser welding system that could be changed to allow a more effective distribution of the laser energy and therefore management of thermal energy included: the number and kinds of intricate offset patterns of light on or around the incision, the number of lines per pattern, the power level, the speed of the laser beam movement over the tissues, the spot size, dwell time and the focus plane of the light beam in the tissue. Histopathology was used as an endpoint indication of the effects that the various sets of welding parameters had on the welded tissues. Standard Hematoxylin and Eosin stain and Sirius Red F3B (Direct Red 80) in combination with polarization microscopy were used to stain and visualize the welded ocular tissue. Paradoxically, the best cornea welds quantified using histopathology occurred with fluence of 4,500 mJ/cm2 or less while the corneal welds exhibiting the strongest tensile strengths, but most tissue damage had a delivered fluence above 7,000 mJ/cm2. The best histological representatives of welded corneas had an average delivered fluence of 2,687 mJ/cm2 and an irradiance of 14 W/cm2. Using the properly determined parameters, the NIR erbium fiber welding system provided full thickness welds without the requirement of extrinsic dyes, chromophores, or solders. The NIR laser system with the appropriately developed parameters can be used effectively to weld ocular tissues.

  15. Tissue patterning and cellular mechanics

    PubMed Central

    Heller, Evan

    2015-01-01

    In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell–cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell–cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development. PMID:26504164

  16. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  17. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  18. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  19. Nanomaterials, Inflammation and Tissue Engineering

    PubMed Central

    Padmanabhan, Jagannath

    2014-01-01

    Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications. PMID:25421333

  20. Mechanical Force Sensing in Tissues

    PubMed Central

    Chanet, Soline; Martin, Adam C.

    2015-01-01

    Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis. PMID:25081624

  1. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in the walls of the heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  2. Cytodiagnosis of soft tissue tumors.

    PubMed

    Oland, J; Rosen, A; Reif, R; Sayfan, J; Orda, R

    1988-03-01

    The only acceptable definitive diagnosis of a soft tissue mass is histologic or cytologic examination. In recent years, fine-needle aspiration cytology is used in more and more centers for diagnosis of soft tissue masses. We studied 196 aspiration cytologies performed on soft tissue lesions. Out of these, in 48 cases a definitive surgical procedure or open biopsy for histology and further evaluation were performed. There were 25 sarcomas and 23 benign tumors. There was one false negative cytologic result in this group; no false positive cytologies were detected. It seems that cytodiagnosis of soft tissue masses performed by an experienced pathologist is the method of choice, permitting a good diagnostic evaluation, with almost none of the traumatic and oncologic disadvantages of the other methods of biopsy. PMID:3352270

  3. Tissue engineering: A live disc

    NASA Astrophysics Data System (ADS)

    Hukins, David W. L.

    2005-12-01

    A material-cell hybrid device that mimics the anatomic shape of the intervertebral disc has been made and successfully implanted into mice to show that tissue engineering may, in the future, benefit sufferers from back pain.

  4. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  5. Optical Characterization of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Mimun, L.; Barrera, Frederick; Sardar, Dhiraj; Tsin, Andrew

    2008-03-01

    University of Texas at San Antonio, San Antonio, Texas 78249 An in-depth characterization of the optical properties of biological tissues has been performed. The wavelength-dependent total diffuse reflection (Rd) and total transmission (Tt) measurements have been taken for individual tissues by using a double-integrating sphere setup. The index of refraction of the tissues will be determined using conventional optical techniques. The Kubelka Munk theory is applied to determine the scattering and absorption coefficients of these samples from the measurements of diffuse transmission and reflection. A thorough study of the scattering characteristics of these tissues has been made. *This work was supported in part by the NSF sponsored Center for Biophotonics Science and Technology (CBST) at UC Davis under Cooperative Agreement No. PHY 0120999.

  6. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  7. Mechanical Signaling in Reproductive Tissues

    PubMed Central

    Jorge, Soledad; Chang, Sydney; Barzilai, Joshua J.; Leppert, Phyllis

    2014-01-01

    The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction—how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling. PMID:25001021

  8. Teaching Tips: Plant Tissue Testing.

    ERIC Educational Resources Information Center

    Osborne, Ed

    1991-01-01

    Plant tissue testing can be done to monitor plant nutrition levels during the growing season and diagnose nutrient deficiency problems. They can provide feedback on crop conditions and fertility needs. (Author)

  9. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  10. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  11. Tracheal tissue engineering in rats.

    PubMed

    Jungebluth, Philipp; Haag, Johannes C; Sjöqvist, Sebastian; Gustafsson, Ylva; Beltrán Rodríguez, Antonio; Del Gaudio, Costantino; Bianco, Alessandra; Dehnisch, Ivar; Uhlén, Per; Baiguera, Silvia; Lemon, Greg; Lim, Mei Ling; Macchiarini, Paolo

    2014-09-01

    Tissue-engineered tracheal transplants have been successfully performed clinically. However, before becoming a routine clinical procedure, further preclinical studies are necessary to determine the underlying mechanisms of in situ tissue regeneration. Here we describe a protocol using a tissue engineering strategy and orthotopic transplantation of either natural decellularized donor tracheae or artificial electrospun nanofiber scaffolds into a rat model. The protocol includes details regarding how to assess the scaffolds' biomechanical properties and cell viability before implantation. It is a reliable and reproducible model that can be used to investigate the crucial aspects and pathways of in situ tracheal tissue restoration and regeneration. The model can be established in <6 months, and it may also provide a means to investigate cell-surface interactions, cell differentiation and stem cell fate. PMID:25122525

  12. Therapeutic cloning and tissue engineering.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-01-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15094294

  13. Photoacoustic Measurements in Brain Tissue

    SciTech Connect

    Kasili, P.M.; Mobley, J.; Vo-Dinh, T.

    1999-09-19

    In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

  14. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  15. [Connective tissue diseases in adolescents].

    PubMed

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome. PMID:27000182

  16. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  17. The cryopreservation of composite tissues

    PubMed Central

    2009-01-01

    Cryopreservation of human cells and tissue has generated great interest in the scientific community since 1949, when the cryoprotective activity of glycerol was discovered. Nowadays, it is possible to reach the optimal conditions for the cryopreservation of a homogeneous cell population or a one cell-layer tissue with the preservation of a high pourcentage of the initial cells. Success is attained when there is a high recovery rate of cell structures and tissue components after thawing. It is more delicate to obtain cryopreservation of composite tissues and much more a whole organ. The present work deals with fundamental principles of the cryobiology of biological structures, with special attention to the transfer of liquids between intra and extracellular compartments and the initiation of the formation and aggregation of ice during freezing. The consequences of various physical and chemical reactions on biological tissue are described for different cryoprotective agents. Finally, we report a review of results on cyropreservation of various tissues, on the one hand, and various organs, on the other. We also report immunomodulation of antigenic responses to cryopreserved cells and organs. PMID:20046674

  18. Immediate versus chronic tissue expansion.

    PubMed

    Machida, B K; Liu-Shindo, M; Sasaki, G H; Rice, D H; Chandrasoma, P

    1991-03-01

    A quantitative comparison of the effects on tissues is performed between chronic tissue expansion, intraoperative expansion, and load cycling in a guinea pig model. Intra-operative expansion, which was developed by Sasaki as a method of immediate tissue expansion for small- to medium-sized defects, and load cycling, which was described by Gibson as a method using intraoperative pull, are compared with chronic tissue expansion on the basis of the following four parameters: amount of skin produced, flap viability, intraoperative tissue pressures, and histological changes. The chronically expanded group, which included booster and nonbooster expansions, produced a 137% increase in surface area, or a 52% increase in flap arc length, whereas intraoperative expansion resulted in a 31% increase in surface area, or a 15% increase in flap arc length. The load-cycled group, however, resulted in an almost negligible amount of skin increase. All three techniques exhibit immediate postexpansion stretchback. Flap viability is not impaired by any of the three techniques, in spite of the elevated pressures observed during expansion. Therefore, intraoperative expansion is effective primarily for limited expansion of small defects, whereas chronic tissue expansion still provides the greatest amount of skin increase when compared with other techniques. PMID:2029132

  19. Melanin content of hamster tissues, human tissues, and various melanomas

    SciTech Connect

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  20. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  1. Material Tissue Interaction-From Toxicity to Tissue Regeneration.

    PubMed

    Schmalz, G; Widbiller, M; Galler, K M

    2016-01-01

    The topic of material tissue interaction has gained increasing interest over recent decades from both the dental profession and the public. The primary goal initially was to avoid adverse reactions after the application of dental materials. New laboratory test methods have been developed, and currently premarket testing programs, which attempt to guarantee a basic level of patient safety, are legally required worldwide. The dentist is responsible for selecting the correct indication as well as the proper handling of any newly emerging risk. Apart from this phenomenon-oriented "inert materials concept," the "analytical concept" focuses primarily on analyzing the reasons for adverse reactions, and identifying their associated modifying factors, in order to prevent them or to develop new and more biocompatible materials. The "concept of bioactivity" involves addressing the possibility of positively influencing tissue by materials application, such as the generation of tertiary dentin or antibacterial effects. Finally, tissue regeneration may be supported and promoted by the use of various suitable materials (matrices/scaffolds) into which stem cells can migrate or be seeded, leading to cell differentiation and the generation of new tissue. These new dental materials must also fulfill additional requirements such as controlled degradability in order to be suitable for clinical use. Clearly, the field of material tissue interaction is complex and comprises a wide range of issues. To be successful as dentists in the future, practitioners should remain informed of these important new developments and have the argumentative competence to both properly advise and treat their patients. PMID:26645359

  2. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  3. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  4. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  5. Drugs Approved for Soft Tissue Sarcoma

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Soft Tissue Sarcoma This page lists ... soft tissue sarcoma that are not listed here. Drugs Approved for Soft Tissue Sarcoma Cosmegen (Dactinomycin) Dactinomycin ...

  6. Donation FAQs (Bone and Tissue Allografts)

    MedlinePlus

    ... donor family services. Most organ, tissue and eye banks that are members of MTF send tissue to ... according to exact surgical specifications. Small, local tissue banks could not provide this level of quality in ...

  7. Engineering of implantable liver tissues.

    PubMed

    Sakai, Yasuyuki; Nishikawa, M; Evenou, F; Hamon, M; Huang, H; Montagne, K P; Kojima, N; Fujii, T; Niino, T

    2012-01-01

    In this chapter, from the engineering point of view, we introduce the results from our group and related research on three typical configurations of engineered liver tissues; cell sheet-based tissues, sheet-like macroporous scaffold-based tissues, and tissues based on special scaffolds that comprise a flow channel network. The former two do not necessitate in vitro prevascularization and are thus promising in actual human clinical trials for liver diseases that can be recovered by relatively smaller tissue mass. The third approach can implant a much larger mass but is still not yet feasible. In all cases, oxygen supply is the key engineering factor. For the first configuration, direct oxygen supply using an oxygen-permeable polydimethylsiloxane membrane enables various liver cells to exhibit distinct behaviors, complete double layers of mature hepatocytes and fibroblasts, spontaneous thick tissue formation of hepatocarcinoma cells and fetal hepatocytes. Actual oxygen concentration at the cell level can be strictly controlled in this culture system. Using this property, we found that initially low then subsequently high oxygen concentrations were favorable to growth and maturation of fetal cells. For the second configuration, combination of poly-L: -lactic acid 3D scaffolds and appropriate growth factor cocktails provides a suitable microenvironment for the maturation of cells in vitro but the cell growth is limited to a certain distance from the inner surfaces of the macropores. However, implantation to the mesentery leaves of animals allows the cells again to proliferate and pack the remaining spaces of the macroporous structure, suggesting the high feasibility of 3D culture of hepatocyte progenitors for liver tissue-based therapies. For the third configuration, we proposed a design criterion concerning the dimensions of flow channels based on oxygen diffusion and consumption around the channel. Due to the current limitation in the resolution of 3D

  8. Bone tissue engineering in osteoporosis.

    PubMed

    Jakob, Franz; Ebert, Regina; Ignatius, Anita; Matsushita, Takashi; Watanabe, Yoshinobu; Groll, Juergen; Walles, Heike

    2013-06-01

    Osteoporosis is a polygenetic, environmentally modifiable disease, which precipitates into fragility fractures of vertebrae, hip and radius and also confers a high risk of fractures in accidents and trauma. Aging and the genetic molecular background of osteoporosis cause delayed healing and impair regeneration. The worldwide burden of disease is huge and steadily increasing while the average life expectancy is also on the rise. The clinical need for bone regeneration applications, systemic or in situ guided bone regeneration and bone tissue engineering, will increase and become a challenge for health care systems. Apart from in situ guided tissue regeneration classical ex vivo tissue engineering of bone has not yet reached the level of routine clinical application although a wealth of scaffolds and growth factors has been developed. Engineering of complex bone constructs in vitro requires scaffolds, growth and differentiation factors, precursor cells for angiogenesis and osteogenesis and suitable bioreactors in various combinations. The development of applications for ex vivo tissue engineering of bone faces technical challenges concerning rapid vascularization for the survival of constructs in vivo. Recent new ideas and developments in the fields of bone biology, materials science and bioreactor technology will enable us to develop standard operating procedures for ex vivo tissue engineering of bone in the near future. Once prototyped such applications will rapidly be tailored for compromised conditions like vitamin D and sex hormone deficiencies, cellular deficits and high production of regeneration inhibitors, as they are prevalent in osteoporosis and in higher age. PMID:23562167

  9. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  10. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  11. Interface dynamics of competing tissues

    NASA Astrophysics Data System (ADS)

    Podewitz, Nils; Jülicher, Frank; Gompper, Gerhard; Elgeti, Jens

    2016-08-01

    Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division and cell death balance. When two different tissues grow in competition, a difference of their homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the propagation of the interface separating the tissues. Here, we study structural and dynamical properties of this interface by combining continuum theory with mesoscopic simulations of a cell-based model. Using a simulation box that moves with the interface, we find that a stationary state exists in which the interface has a finite width and propagates with a constant velocity. The propagation velocity in the simulations depends linearly on the homeostatic stress difference, in excellent agreement with the analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we analyzed the interface growth and roughness as a function of time and system size. We estimated growth and roughness exponents, which differ from those previously obtained for simple tissue growth.

  12. Tissue Engineering Chamber Promotes Adipose Tissue Regeneration in Adipose Tissue Engineering Models Through Induced Aseptic Inflammation

    PubMed Central

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang

    2014-01-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin− perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34−/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction. PMID:24559078

  13. [Brown fat tissue in humans].

    PubMed

    Medvedev, L N; Elsukova, E I

    2002-01-01

    Brown adipose tissue (BAT) is universally present in mammals. Thermal production in such tissue is physiologically important for maintaining temperature homeostasis and regulation of body mass in small-size homoiotherms. At present it is clearly established that unlike other large mammals, brown adipose in man and primates is retained throughout the whole postnatal othogenesis. Therefore, BAT appears as a possible effector of pharmacogenetic protection from human excessive adiposis. Systematic reserach of various functioning aspects of this unique organ of mammals were started abroad as early as 1960-es, and are actively developing at present. Domestic research of energy circulation physiology and of thermoregulation developed mostly outside the brown adipose tissue. Therefore, the principal objective of this publication is to draw attention of experimental and clinical researches to an intriguing aspect of the issue of energy circulation in humans--the issue of brown adipose functioning. PMID:12004574

  14. Pediatric free-tissue transfer.

    PubMed

    Upton, Joseph; Guo, Lifei; Labow, Brian I

    2009-12-01

    Free-tissue transfer has facilitated and refined the reconstructive surgeon's ability to repair or reconstruct acquired or congenital defects in children. Although parallels exist between indications for free-tissue transfer in adults and children, the technical challenges and surgical skill required in pediatric patients are much greater and the level of complexity can escalate tremendously. Although this operation is difficult, the success rate is high and the results are often outstanding, with the benefit of growth and functional adaptation of the transferred tissue. Experience in this field is cumulative and creative thinking is often required. This article outlines the specific features unique to children, the most commonly used flaps, the expected results in specific regions, and the potential pitfalls to be avoided. PMID:19952700

  15. [Functional morphology of pulp tissue].

    PubMed

    Heine, H; Schaeg, G; Türk, R

    1989-01-01

    As compared with mesenchyme no genuine defense cells are developed in the tissue of the dental pulp and the nervous tissue. This is a further hint for the common development from ectoderm. The three dimensional meshwork of pulpa fibroblasts ("mesectoderm") is structured by elongated cell processes connected with each other by a variety of special cell junctions ("electronic cell coupling"). Metabolites from the microcirculation and neuropeptides from vegetative axons influence the activity of fibroblasts synthetizing groundsubstance. The meshwork of the groundsubstance has exclusion effects concerning molecules with a distinct molecular weight and charge. Thus a primitive defense system is established. With this the role of a newly described cell type of the dental pulp, the "lymphocytic pericyte" is discussed. Because of the poor capacity of the pulpa tissue for immunological reactions pathologically disorders may easily become chronically spreading their antigenic components throughout the body. PMID:2800671

  16. Focusing light through living tissue

    NASA Astrophysics Data System (ADS)

    Vellekoop, I. M.; Aegerter, C. M.

    2010-02-01

    Tissues such as skin, fat or cuticle are non-transparent because inhomogeneities in the tissue scatter light. We demonstrate experimentally that light can be focused through turbid layers of living tissue, in spite of scattering. Our method is based on the fact that coherent light forms an interference pattern, even after hundreds of scattering events. By spatially shaping the wavefront of the incident laser beam, this interference pattern was modified to make the scattered light converge to a focus. In contrast to earlier experiments, where light was focused through solid objects, we focused light through living pupae of Drosophila melanogaster. We discuss a dynamic wavefront shaping algorithm that follows changes due to microscopic movements of scattering particles in real time. We relate the performance of the algorithm to the measured timescale of the changes in the speckle pattern and analyze our experiment in the light of Laser Doppler flowmetry. Applications in particle tracking, imaging, and optical manipulation are discussed.

  17. Tissue C3b receptors.

    PubMed Central

    Schrieber, L; Penny, R

    1979-01-01

    Using fluorescein-labelled S. typhi coated with C3b (FBC) the presence of a receptor for C3b in normal human glomeruli has been confirmed. A quantitative system, counting the number of FBC bound per unit area of glomerulus, has been developed. Experimental variables have been studied to determine optimal conditions for FBC binding. Glomerular FBC binding has been shown to be dependent on FBC concentration, temperature and time of tissue incubation. A standardized procedure has been adopted. Using this technique we have examined a number of target tissues, including synovium, skin, lung, choroid plexus and uveal tract, which are frequently affected in systemic immune complex diseases. No evidence of this receptor has been found in these tissues. These results suggest a mechanism different from the C3b receptor operating to localise immune complexes in these non-renal sites. Images FIG. 2 PMID:527266

  18. [Cancer in ectopic breast tissue].

    PubMed

    Røikjer, Johan; Lindmark, Ida; Knudsen, Thor

    2015-06-15

    Two different forms of ectopic breast tissue exist in human beings: supernumerary and aberrant. Both forms are usually seen alongside the milk lines, which extend from the upper limbs to the inguinal region where they give rise to mammary glands, areolas and nipples. Although ectopic- and orthotopic breast tissue are placed in different areas of the body, they still share the same ability to undergo pathological degeneration. The focus of this case report is to shed light on this unusual form of breast cancer, and raise the level of awareness in cases with lumps located in the milk lines. PMID:26101129

  19. Triacylglycerol metabolism in adipose tissue

    PubMed Central

    Ahmadian, Maryam; Duncan, Robin E; Jaworski, Kathy; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2009-01-01

    Triacylglycerol (TAG) in adipose tissue serves as the major energy storage form in higher eukaryotes. Obesity, resulting from excess white adipose tissue, has increased dramatically in recent years resulting in a serious public health problem. Understanding of adipocyte-specific TAG synthesis and hydrolysis is critical to the development of strategies to treat and prevent obesity and its closely associated diseases, for example, Type 2 diabetes, hypertension and atherosclerosis. In this review, we present an overview of the major enzymes in TAG synthesis and lipolysis, including the recent discovery of a novel adipocyte TAG hydrolase. PMID:19194515

  20. Advances in Meniscal Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Loppini, Mattia; Forriol, Francisco; Romeo, Giovanni; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Meniscal tears are the most common knee injuries and have a poor ability of healing. In the last few decades, several techniques have been increasingly used to optimize meniscal healing. Current research efforts of tissue engineering try to combine cell-based therapy, growth factors, gene therapy, and reabsorbable scaffolds to promote healing of meniscal defects. Preliminary studies did not allow to draw definitive conclusions on the use of these techniques for routine management of meniscal lesions. We performed a review of the available literature on current techniques of tissue engineering for the management of meniscal tears. PMID:25098366

  1. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  2. Scalp repair using tissue expanders.

    PubMed

    Mangubat, E Antonio

    2013-08-01

    Repair of scalp defects is often challenging, because without careful planning, excision of the defect may leave unsatisfactory cosmesis. Contemporary techniques in hair restoration surgery allow creation of natural and undetectable results, but these techniques are often unsuitable for repairing large scarred areas of hair loss. However, by using older techniques of scalp reduction and tissue expansion, excision of many large scarring defects can be accomplished. Combining older methods with modern hair restoration surgery permits the satisfactory treatment of many previously untreatable conditions. This article focuses on tissue expansion as an adjunct to repairing large scalp defects. PMID:24017990

  3. Conductivity of living intracranial tissues.

    PubMed

    Latikka, J; Kuurne, T; Eskola, H

    2001-06-01

    Resistivity values were measured from living human brain tissue in nine patients. A monopolar needle electrode was used with a measurement frequency of 50 kHz. Mean values were 3.51 Ohms m for grey matter and 3.91 Ohms m for white matter. Cerebrospiral fluid had a mean value of 0.80 Ohms m. Values for tumour tissues were dependent on the type of tumour and ranged from 2.30 to 9.70 Ohms m. PMID:11419622

  4. The enigma of vestigial tissues.

    PubMed Central

    Cohen, B.

    1976-01-01

    There are several structures and various tissues in the human body that appear to be functionless relics of ancestral or embryonic development. As such they have long been of interest and have been cited in support of theories of evolution and of oncogenesis. Evidence can be adduced to show that these remnants are not necessarily degenerate, nor are they inevitably functionless. Vestigial tissues are especially common in tooth-bearing areas of the mouth, and the span of tooth development from early embryonic life until adolescence affords unique opportunities for studying the part played by embryonic remnants in later life. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:817639

  5. Photothermally induced delayed tissue death.

    PubMed

    Gordon, Jeffrey M; Shaco-Levy, Ruthy; Feuermann, Daniel; Huleihil, Mahmoud; Mizrahi, Solly

    2006-01-01

    We report pronounced delayed tissue death in photothermal surgery performed on the livers of live healthy rats with highly concentrated sunlight (ultrabright noncoherent light). Exposure times and power levels were selected to produce immediate necroses of the order of hundreds of cubic millimeters. Pathology reveals that lesion volumes increase by up to a factor of 5 within approximately 24 h after surgery, and then stabilize. Islands of viable cells can persist within damaged tissue, in the immediate vicinity of blood vessels, but also necrose within about 48 h. PMID:16822049

  6. [Skin and soft tissue infections].

    PubMed

    Piso, R J; Bassetti, S

    2012-03-14

    Skin- and Soft tissue infections are a frequent problem in hospital as well as in ambulatory care. Diagnostic procedures and treatment principles have to include the most frequent pathogens. While the acute forms of skin and soft tissue infections, with, necrotising fasciitis as important exception, rarely cause diagnostic or therapeutic problem, the treatment of patients with recurrent furunculosis, chronic wounds and diabetic feet is often difficult and frustration for patients and physicians. This article gives an overview of the most important problems and treatment strategies. PMID:22419138

  7. Soft tissue laser in orthodontics.

    PubMed

    Gracco, Antonio; Tracey, Stephen; Lombardo, Luca; Siciliani, Giuseppe

    2011-01-01

    Today a lot of minor cosmetic surgery operations on the gingiva can easily be carried out directly by the orthodontist with a small quantity of topical anaesthetic and the use of a soft tissue laser. The Diode laser is the most commonly used laser in dentistry for minor surgery to the soft tissues. This kind of laser offers numerous advantages with respect to traditional or electric scalpels. In this article the authors will analyse several typical uses of the diode laser in daily orthodontic practice. PMID:21515234

  8. Exercise regulation of adipose tissue.

    PubMed

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  9. [Serpins in hyperplastic colon tissue].

    PubMed

    Kit, O I; Frantsiiants, E M; Kozlova, L S; Terpugov, A L

    2014-01-01

    The purpose of the study was to define α-2-macroglobulin (α-2M) and α-1-proteinase inhibitor (α-1PI) in tissues of malignant tumors and polyps of the lower parts of the colon. 28 patients had malignant tumors of the sigmoid colon or rectum (T3N0-1M0-2), 29 had polyps of the same location. Content of α-2M and α-1PI was studied in cytosols of the central, peripheral and conditionally healthy tissues (of resection line) of the mentioned hyperplasias by the ELISA method using standard test kits. Suppression of a-2M and increase of α-1PI (perifocal zone) were found in malignant tumor tissue, as well as α-1PI maintenance in tumorous focus. Increase of α-2M and decrease of α-1PI were detected in polyp tissue. Changes in physiological balance of serpins were assessed by α-1PI/α-2M ratio in comparison with the resection line. The risk of distortion of proliferation and differentiation processes increases in polyps in ineffective inhibition of proteolysis under the influence of released factors of malignancy. Endogenous or medicamentous restoration of balance of interaction of trypsin-like proteases and kallikrein with inhibitors will probably play the crucial role. PMID:25911925

  10. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  11. Pediatric soft tissue oral lesions.

    PubMed

    Pinto, Andres; Haberland, Christel M; Baker, Suher

    2014-04-01

    This article provides an overview of common color changes and soft tissue oral nodular abnormalities in children and adolescents. The clinical presentation and treatment options to address these conditions are presented in a concise approach, highlighting key features relevant to the oral health care professional. PMID:24655531

  12. Cycling Rho for tissue contraction.

    PubMed

    Teo, Jessica L; Yap, Alpha S

    2016-08-29

    Cell contractility, driven by the RhoA GTPase, is a fundamental determinant of tissue morphogenesis. In this issue, Mason et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603077) reveal that cyclic inactivation of RhoA, mediated by its antagonist, C-GAP, is essential for effective contractility to occur. PMID:27551059

  13. Application of Tissue Culture in Ornamental Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant tissue culture can be broadly defined as the culture of plant cells, tissues, or organs under sterile or aseptic conditions. To most growers, micropropagation is the term that perhaps best describes plant tissue culture. However, plant tissue culture plays an important role through its many ap...

  14. Mechanical Forces Governing Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2002-10-01

    We have refined a UV-laser microbeam to investigate the forces at play during morphogenesis, i.e. early biological development, in the fruit fly Drosophila (1). While the microbeam typically is used to ablate tissue with cellular spatial resolution, it has the capability for submicron and thus subcellular spatial resolution. The microbeam can be steered in two-dimensions and UV-laser dissection occurred in vivo while the tissue was imaged in real time using a (visible) laser-scanning confocal microscope. We investigated a morphogenic process, known as dorsal closure, in a genetically engineered strain of Drosophila where green fluorescent protein has been fused to a fragment of a native structural protein (2). This allowed us to visualize the fluorescing contours of two opposing, outer sheets of tissue closing over an inner tissue sheet. Time-lapse imaging captured the contours in native closure as well as in response to UV-laser dissection. Specific patterns of dissection essentially eliminated a selected force: by tracking the changes in contour geometry we estimated the relative magnitude of that force (mechanical jump). Using this approach we identified and characterized a set of forces governing tissue dynamics. We have developed a mechanical model for the dynamics of dorsal closure based on this data set. This model provides a theoretical framework for investigating defective closure in mutant flies. Dorsal closure is a model system for various aspects of cell movement in wound healing and vertebrate development. This research has been supported by the DoD MFEL Program as administered by the AFOSR and by the NIH. 1. M.S. Hutson, Y. Tokutake, M-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, and G.S. Edwards. "Laser dissection of morphogenetic dynamics in Drosophila dorsal closure." In preparation. 2. D.P. Kiehart, et al, J. Cell Biol. 149, 471 (2000).

  15. Tissue macroarrays ("microchops") for gene expression analysis.

    PubMed

    Fernández, P L; Nayach, I; Fernández, E; Fresno, L; Palacín, A; Farré, X; Campo, E; Cardesa, A

    2001-06-01

    We describe a simple system of tissue arraying with multiple tissue fragments obtained with a biopsy punch from selected areas of paraffin blocks. The new blocks thus constructed allow multiple tissue sections in which the uniform shape of the fragments coupled with a geometrical display and a significant amount of tissue per case allows a dependable, cost-effective way to screen tumors or other kinds of tissues with techniques such as immunohistochemistry. This system avoids the disadvantages of previous laborious methods of tissue arraying, such as expensive equipment and scarce tissue sampling, and it can be implemented in any institution with minimal cost and elaboration. PMID:11469691

  16. Nanotechnological strategies for engineering complex tissues

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Kohane, Daniel S.; Langer, Robert

    2011-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.

  17. A Team Approach to Improving Tissue Management.

    PubMed

    Sions, Jacqueline A; Cheuvront, Kimberly A; Grove, Georgiana L; Beach, Myra J; Bowers, Jay W; Cendaña, Cinthia R; Hixson, Jesse R; Wilson, Mary C

    2016-04-01

    Tissue implant management can be labor intensive because of multiple storage locations and cumbersome tracking systems. The purpose of this quality improvement (QI) project was to enhance patient safety and nursing satisfaction by upgrading our tissue-management facility and processes. We created a centralized storage room for tissue implants and staffed this room during all shifts. Tissue management was executed using tracking software and transportation devices that supported tissue receipt, storage, disposition, documentation, and reporting. Our project resulted in our full compliance with tissue implant requirements from the US Food and Drug Administration (FDA) and The Joint Commission. We also reduced our documentation error rate from 3% to less than 1%, and decreased the tissue-expiration rate by 1.1%. Tissues are now delivered to ORs, which allows RNs to focus on patient care rather than retrieval of implants. Monitoring of the tissue inventory has improved, resulting in the reduction of tissue wastage. PMID:27004501

  18. [Metaplasia of aortic tissue into tracheal tissue. Surgical perspectives].

    PubMed

    Martinod, E; Zakine, G; Fornes, P; Zegdi, R; d'Audiffret, A; Aupecle, B; Goussef, N; Azorin, J; Chachques, J C; Fabiani, J N; Carpentier, A

    2000-05-01

    Tracheal reconstruction after extensive resection remains an unsolved surgical problem. Numerous attempts have been made using tracheal grafts or prosthetic conduits with disappointing results. In this study, we propose a new alternative using an aortic autograft as tracheal substitute. In a first series of experiments, a half circumference of two rings was replaced with an autologous carotid artery patch. In a second series, a complete segment of trachea was replaced with an autologous aortic graft supported by an endoluminal tracheal stent. No dehiscence or stenosis was observed. Microscopic examinations at 3 and 6 months showed the replacement of the aortic tissue by tracheal tissue comprising neoformation of cartilage and mucociliary or non-keratinizing metaplastic polystratified squamous epithelium. Although these results need to be confirmed by a larger series of experiments, they showed that a vascular tissue placed in a different environment with a different function can be submitted to a metaplastic transformation which tends to restore a normal structure adapted to its new function. These remarkable findings offer new perspectives in tracheal reconstruction in human. PMID:10879293

  19. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, M.; London, R.; Zimmerman, G.; Jacques, S.

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or ``welded`` using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage. 8 figs.

  20. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, Michael; London, Richard; Zimmerman, George; Jacques, Steven

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

  1. Pediatric Mixed Connective Tissue Disease.

    PubMed

    Berard, Roberta A; Laxer, Ronald M

    2016-05-01

    Pediatric-onset mixed connective tissue disease is among the rare disease entities in pediatric rheumatology and includes features of arthritis, polymyositis/dermatomyositis, systemic lupus erythematosus, and systemic sclerosis. Accurate recognition and diagnosis of the disease is paramount to prevent long-term morbidity. Advances in the genetic and immunologic understanding of the factors involved in the etiopathogenesis provide an opportunity for improvements in prognostication and targeted therapy. The development of a multinational cohort of patients with mixed connective tissue disease would be invaluable to provide more updated data regarding the clinical presentation, to develop a standardized treatment approach, disease activity and outcome tools, and to provide data on long-term outcomes and comorbidities. PMID:27032791

  2. Image-guided tissue engineering

    PubMed Central

    Ballyns, Jeffrey J; Bonassar, Lawrence J

    2009-01-01

    Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811

  3. Electrical breakdown in tissue electroporation.

    PubMed

    Guenther, Enric; Klein, Nina; Mikus, Paul; Stehling, Michael K; Rubinsky, Boris

    2015-11-27

    Electroporation, the permeabilization of the cell membrane by brief, high electric fields, has become an important technology in medicine for diverse application ranging from gene transfection to tissue ablation. There is ample anecdotal evidence that the clinical application of electroporation is often associated with loud sounds and extremely high currents that exceed the devices design limit after which the devices cease to function. The goal of this paper is to elucidate and quantify the biophysical and biochemical basis for this phenomenon. Using an experimental design that includes clinical data, a tissue phantom, sound, optical, ultrasound and MRI measurements, we show that the phenomenon is caused by electrical breakdown across ionized electrolysis produced gases near the electrodes. The breakdown occurs primarily near the cathode. Electrical breakdown during electroporation is a biophysical phenomenon of substantial importance to the outcome of clinical applications. It was ignored, until now. PMID:26482855

  4. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  5. Tissue engineering the small intestine.

    PubMed

    Spurrier, Ryan G; Grikscheit, Tracy C

    2013-04-01

    Short bowel syndrome (SBS) results from the loss of a highly specialized organ, the small intestine. SBS and its current treatments are associated with high morbidity and mortality. Production of tissue-engineered small intestine (TESI) from the patient's own cells could restore normal intestinal function via autologous transplantation. Improved understanding of intestinal stem cells and their niche have been coupled with advances in tissue engineering techniques. Originally described by Vacanti et al of Massachusetts General Hospital, TESI has been produced by in vivo implantation of organoid units. Organoid units are multicellular clusters of epithelium and mesenchyme that may be harvested from native intestine. These clusters are loaded onto a scaffold and implanted into the host omentum. The scaffold provides physical support that permits angiogenesis and vasculogenesis of the developing tissue. After a period of 4 weeks, histologic analyses confirm the similarity of TESI to native intestine. TESI contains a differentiated epithelium, mesenchyme, blood vessels, muscle, and nerve components. To date, similar experiments have proved successful in rat, mouse, and pig models. Additional experiments have shown clinical improvement and rescue of SBS rats after implantation of TESI. In comparison with the group that underwent massive enterectomy alone, rats that had surgical anastomosis of TESI to their shortened intestine showed improvement in postoperative weight gain and serum B12 values. Recently, organoid units have been harvested from human intestinal samples and successfully grown into TESI by using an immunodeficient mouse host. Current TESI production yields approximately 3 times the number of cells initially implanted, but improvements in the scaffold and blood supply are being developed in efforts to increase TESI size. Exciting new techniques in stem cell biology and directed cellular differentiation may generate additional sources of autologous intestinal

  6. PAI-1 in Tissue Fibrosis

    PubMed Central

    Ghosh, Asish K.; Vaughan, Douglas E.

    2011-01-01

    1. Summary Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation–related disease., Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the extracellular matrix depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase-type/tissue-type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities and thus help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs. PMID:21465481

  7. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  8. Biotransformations with plant tissue cultures.

    PubMed

    Carew, D P; Bainbridge, T

    1976-01-01

    Suspension cultures of Catharanthus roseus, Apocynum cannabinum and Conium maculatum were examined for their capacity to transform aniline, anisole, acetanilide, benzoic acid and coumarin. None of the cultures transformed acetanilide but each produced acetanilide when fed aniline. All three cultures converted benzoic acid to its para-hydroxy derivative. Coumarin was selectively hydroxylated at the 7-position by Catharanthus and Conium and anisole was O-demethylated only by older Catharanthus tissue. PMID:1084950

  9. Gender determination from pulpal tissue

    PubMed Central

    Khorate, Manisha M.; Dhupar, Anita; Ahmed, Junaid; Dinkar, Ajit D.

    2014-01-01

    Objective: To evaluate the diagnostic performance of X (Barr body [BB]) and Y (F body [FB]) chromosomes observed in dental pulp tissue for gender determination of an individual. Materials and Methods: The study was carried out on 100 teeth (50 male and 50 female), which were indicated for extraction. The teeth were sectioned at various intervals (within 12 h to 49 days post-extraction), and the pulpal tissue was obtained. Two slides for each pulp tissue were prepared, one for 5% Quinacrine dihydrochloride stain (FB) and the other for Hemotoxylin and Eosin stain (BB). The slides were then observed under the fluorescent microscope for FB and under the light microscope for the BB respectively. Results: Gender determination from human pulp is possible up to 7 weeks. The percentage of FB and BB decrease gradually as the time interval increases. Further, an equation was derived from the data based on the canonical discriminant function coefficients. Conclusion: The determination of gender based on a joint search for the presence or absence of X (BB) and Y (FB) Chromosome is a reliable and cost-effective technique. PMID:25125918

  10. The history of tissue tension.

    PubMed

    Peters, W S; Tomos, A D

    1996-06-01

    In recent years the phenomenon of tissue tension and its functional connection to elongation growth has regained much interest. In the present study we reconstruct older models of mechanical inhomogenities in growing plant organs, in order to establish an accurate historical background for the current discussion. We focus on the iatromechanic model developed in Stephen Hales' Vegetable Staticks, Wilhelm Hofmeister's mechanical model of negative geotropism, Julius Sachs' explanation of the development of tissue tension, and the differential-auxin-response-hypothesis by Kenneth Thimann and Charles Schneider. Each of these models is considered in the context of its respective historic and theoretical environment. In particular, the dependency of the biomechanical hypotheses on the cell theory and the hormone concept is discussed. We arrive at the conclusion that the historical development until the middle of our century is adequately described as a development towards more detailed explanations of how differential tensions are established during elongation growth in plant organs. Then we compare with the older models the structure of more recent criticism of hormonal theories of tropic curvature, and particularly the epidermal-growth-control hypothesis of Ulrich Kutschera. In contrast to the more elaborate of the older hypotheses, the recent models do not attempt an explanation of differential tensions, but instead focus on mechanical processes in organs, in which tissue tension already exists. Some conceptual implications of this discrepancy, which apparently were overlooked in the recent discussion, are briefly evaluated. PMID:11541099

  11. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  12. Bone and soft tissue ablation.

    PubMed

    Foster, Ryan C B; Stavas, Joseph M

    2014-06-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  13. Elasticity of developing cardiac tissue

    NASA Astrophysics Data System (ADS)

    Majkut, Stephanie; Swift, Joe; Krieger, Christine; Discher, Dennis

    2011-03-01

    Proper development and function of the heart from the tissue to cellular scale depends on a compliant ECM. Here we study the maturation of embryonic cardiac tissue mechanics in parallel with the effects of extracellular mechanics on individual cardiomyocyte function throughout early development. We used micropipette aspiration to measure local and bulk elastic moduli (E) of embryonic avian heart tissue from days 2-12. We observe stiffening of the early heart tube from E = 1 kPa at day 1 to E = 2 kPa at day 4, reaching neonatal values by day 12. Treating heart tubes with blebbistatin led to 30% decrease in E, indicating a significant but partial actomyosin contribution to mechanics at these stages. We performed a proteomic analysis of intact and decellularized 2-4 day heart tubes by mass spectrometry to quantify the ECM present at these stages. Isolated cardiomyocytes from 2-4 day chick embryos were cultured on collagen-coated PA gels of various stiffnesses. Beating magnitude was modulated by substrates with E = 1-2 kPa, similar to physiological E at those stages.

  14. Adipose tissue immunity and cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-01-01

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481

  15. Differentiating tissue by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Woessner, Stefan; Huen, Julien; Malthan, Dirk

    2004-03-01

    A common problem in several surgical applications is the lack of navigational information. Most often, the only source of information about the location of crucial structures, in relation to the surgical instrument, is the visible and tactile sensory input of the surgeon. In some cases, this leads to time-consuming procedures and a high risk for the patient. Therefore, we developed a spectroscopic sensor system for automatic differentiation between several tissue types. For example in milling processes, a sensor that is able to detect bone in contrast to nerve or vein tissue can be used to control the milling process. We showed exemplarily for the cochlea implant, a typical ENT-surgery, that with the help of our sensor system, the milling of bone can be accelerated without increasing the risk for the patient. It is also possible to use this type of sensor system in the area of medical robotics in soft-tissue applications. With real-time information, a continuous registration can take place, in contrast to a registration that is done using static preoperatively acquired images. We showed that our sensor system can be used to dynamically update the location of the patient in relation to CT or MR-images. In conclusion, we have been able to show that well-known spectroscopy sensors can be used to open new possibilities in medical treatment with and without the use of robotics.

  16. Cardiac Conduction through Engineered Tissue

    PubMed Central

    Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.

    2006-01-01

    In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362

  17. Optoacoustic detection of tissue glycation.

    PubMed

    Ghazaryan, Ara; Omar, Murad; Tserevelakis, George J; Ntziachristos, Vasilis

    2015-09-01

    Oxidative-based diseases including diabetes, chronic renal failure, cardiovascular diseases and neurological disorders are accompanied by accumulation of advanced glycation endproducts (AGE). Therefore, AGE-associated changes in tissue optical properties could yield a viable pathological indicator for disease diagnostics and monitoring. We investigated whether skin glycation could be detected based on absorption changes associated with AGE accumulation using spectral optoacoustic measurements and interrogated the optimal spectral band for skin glycation determination. Glycated and non-glycated skin was optoacoustically measured at multiple wavelengths in the visible region. The detected signals were spectrally processed and compared to measurements of skin auto-fluorescence and to second harmonic generation multiphoton microscopy images. Optoacoustic measurements are shown to be capable of detecting skin glycolysis based on AGE detection. A linear dependence was observed between optoacoustic intensity and the progression of skin glycation. The findings where corroborated by autofluorescence observations. Detection sensitivity is enhanced by observing normalised tissue spectra. This result points to a ratiometric method for skin glycation detection, specifically at 540 nm and 620 nm. We demonstrate that optoacoustic spectroscopy could be employed to detect AGE accumulation, and possibly can be employed as a non-invasive quick method for monitoring tissue glycation. PMID:26417487

  18. Radiation sterilization of tissue allografts: A review.

    PubMed

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-04-28

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  19. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  20. Advanced Material Strategies for Tissue Engineering Scaffolds

    PubMed Central

    Engelmayr, George C.; Borenstein, Jeffrey T.; Moutos, Franklin T.; Guilak, Farshid

    2010-01-01

    Tissue engineering seeks to restore the function of diseased or damaged tissues through the use of cells and biomaterial scaffolds. It is now apparent that the next generation of functional tissue replacements will require advanced material strategies to achieve many of the important requirements for long-term success. Here we provide representative examples of engineered skeletal and myocardial tissue constructs in which scaffolds were explicitly designed to match native tissue mechanical properties as well as to promote cell alignment. We discuss recent progress in microfluidic devices that can potentially serve as tissue engineering scaffolds, since mass transport via microvascular-like structures will be essential in the development of tissue engineered constructs on the length scale of native tissues. Given the rapid evolution of the field of tissue engineering, it is important to consider the use of advanced materials in light of the emerging role of genetics, growth factors, bioreactors, and other technologies. PMID:20882506

  1. Radiation sterilization of tissue allografts: A review

    PubMed Central

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-01-01

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  2. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  3. Monkey Alcohol Tissue Research Resource: Banking Tissues for Alcohol Research

    PubMed Central

    Daunais, JB; Davenport, AT; Helms, CM; Gonzales, SW; Hemby, SE; Friedman, DP; Farro, JP; Baker, EJ; Grant, KA

    2015-01-01

    Background An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is co-morbid with damage to major organs including heart, lungs, liver, pancreas and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of EtOH and they metabolize it more rapidly than primates. Methods The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates (NHPs), specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent/day) over long periods of time (12–30 months) with concomitant pathological changes in endocrine, hepatic and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the ethanol-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. Results The MATRR is a unique post-mortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer ethanol using a standardized experimental paradigm to the broader alcohol research community. Conclusions This resource provides a translational

  4. SURROGATE TISSUE ANALYSIS: MONITORING TOXICANT EXPOSURE AND HEALTH STATUS OF INACCESSIBLE TISSUES THROUGH THE ANALYSIS OF ACCESSIBLE TISSUES AND CELLS

    EPA Science Inventory

    Surrogate Tissue Analysis: Monitoring Toxicant Exposure And Health Status Of Inaccessible Tissues Through The Analysis Of Accessible Tissues And Cells*
    John C. Rockett1, Michael E. Burczynski 2, Albert J. Fornace, Jr.3, Paul.C. Herrmann4, Stephen A. Krawetz5, and David J. Dix1...

  5. Spectral Redundancy in Tissue Characterization

    NASA Astrophysics Data System (ADS)

    Varghese, Tomy

    1995-01-01

    Ultrasonic backscattered signals from material comprised of quasi-periodic scatterers exhibit redundancy over both its phase and magnitude spectra. This dissertation addresses the problem of estimating the mean scatterer spacing and scatterer density from the backscattered ultrasound signal using spectral redundancy characterized by the spectral autocorrelation (SAC) function. The SAC function exploits characteristic differences between the phase spectrum of the resolvable quasi-periodic (regular) scatterers and the unresolvable uniformly distributed (diffuse) scatterers to improve estimator performance over other estimators that operate directly on the magnitude spectrum. Analytical, simulation, and experimental results (liver and breast tissue) indicate the potential of utilizing phase information using the SAC function. A closed form analytical expression for the SAC function is derived for gamma distributed scatterer spacings. The theoretical expression for the SAC function demonstrate the increased regular-to-diffuse scatterer signal ratio in the off-diagonal components of the SAC function, since the diffuse component contributes only to the diagonal components (power spectrum). The A-scan is modelled as a cyclostationary signal whose statistical parameters vary in time with single or multiple periodicities. A-scan models consist of a collection of regular scatterers with gamma distributed spacings embedded in diffuse scatterers with uniform distributed spacings. The model accounts for attenuation by convolving the frequency dependent backscatter coefficients of the scatterer centers with a time-varying system response. Simulation results show that SAC-based estimates converge more reliably over smaller amounts of data than previously used cepstrum-based estimates. A major reason for the performance advantage is the use of phase information by the SAC function, while the cepstnun uses a phaseless power spectral density, that is directly affected by the system

  6. Photoacoustic characterization of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  7. Fat tissue and long life.

    PubMed

    Bluher, Matthias

    2008-01-01

    Studies over the last several years have revealed important roles of the body fat content, caloric intake and nutrition, insulin/IGF-1 signaling systems, and pathways involved in oxidative stress and control of protein acetylation on life span. Although the discovery of longevity genes supports the concept that life span is genetically determined, adipose tissue seems to be a pivotal organ in the aging process and in the determination of life span. Leanness and caloric restriction have been shown to increase longevity in organisms ranging from yeast to mammals. Increased longevity in mice with a fat-specific disruption of the insulin receptor gene (FIRKO) suggests that reduced adiposity, even in the presence of normal or increased food intake, leads to an extended life span. Reduced fat mass has an impact on longevity in a number of other model organisms. In Drosophila, a specific reduction in the fat body through overexpression of forkhead type transcription factor (dFOXO) extends life span. Sirtuin 1 (SIRT1), the mammalian ortholog of the life-extending yeast gene silent information regulator 2 (SIR2), was proposed to be involved in the molecular mechanisms linking life span to adipose tissue. Moreover, in the control of human aging and longevity, one of the striking physiological characteristics identified in centenarians is their greatly increased insulin sensitivity even compared with younger individuals. On the other hand, overweight and obesity seem to be associated with decreased life span in humans. In addition, it was recently shown that modifiable risk factors during the later years of life, including smoking, obesity, and hypertension, are associated not only with lower life expectancy, but also with poor health and function during older age. There is growing evidence that the effect of reduced adipose tissue mass on life span could be due to the prevention of obesity-related metabolic disorders including type 2 diabetes and atherosclerosis. PMID

  8. Quality control in tissue banking--ensuring the safety of allograft tissues.

    PubMed

    Humphries, Linda K; Mansavage, Vicki L

    2006-09-01

    DESPITE FEDERAL REGULATIONS for tissue-banking practices, inadequate quality control led to the largest allograft tissue recall in history in October 2005. THE RECALL INCLUDED all allograft tissues obtained from 761 donors and distributed by five tissue banks. Many of these tissues already had been implanted and were unrecoverable. THIS ARTICLE DESCRIBES the many tissue-banking industry variables, including donor selection and testing and tissue recovery, processing, and preservation. QUESTIONS THAT HEALTH CARE providers can ask to determine which tissue banks' quality control measures best ensure the safety of the allografts they provide also are included. PMID:17004664

  9. Mechanisms of tissue fusion during development

    PubMed Central

    Ray, Heather J.; Niswander, Lee

    2012-01-01

    Tissue fusion events during embryonic development are crucial for the correct formation and function of many organs and tissues, including the heart, neural tube, eyes, face and body wall. During tissue fusion, two opposing tissue components approach one another and integrate to form a continuous tissue; disruption of this process leads to a variety of human birth defects. Genetic studies, together with recent advances in the ability to culture developing tissues, have greatly enriched our knowledge of the mechanisms involved in tissue fusion. This review aims to bring together what is currently known about tissue fusion in several developing mammalian organs and highlights some of the questions that remain to be addressed. PMID:22510983

  10. Soft tissue engineering in craniomaxillofacial surgery

    PubMed Central

    Kim, Roderick Y; Fasi, Anthony C; Feinberg, Stephen E

    2014-01-01

    Craniofacial soft tissue reconstruction may be required following trauma, tumor resection, and to repair congenital deformities. Recent advances in the field of tissue engineering have significantly widened the reconstructive armamentarium of the surgeon. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signaling molecules has enabled the surgeon to design, recreate the missing tissue in its near natural form. This has resolved the issues like graft rejection, wound dehiscence, or poor vascularity. Successfully reconstructed tissue through soft tissue engineering protocols would help surgeon to restore the form and function of the lost tissue in its originality. This manuscript intends to provide a glimpse of the basic principle of tissue engineering, contemporary, and future direction of this field as applied to craniofacial surgery. PMID:24987591

  11. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  12. General Information about Adult Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Adult Soft Tissue Sarcoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. General Information about Childhood Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Childhood Soft Tissue Sarcoma Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  15. Biomimetic strategies for engineering composite tissues.

    PubMed

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. PMID:27010653

  16. Childhood Soft Tissue Sarcoma: Treatment Information

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  17. Method for localizing heating in tumor tissue

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1977-04-12

    A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.

  18. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  19. What Is a Soft Tissue Sarcoma?

    MedlinePlus

    ... in between fibrosarcoma and benign tumors such as fibromas and superficial fibromatosis. They tend to grow slowly ... These include: Elastofibromas, benign tumor of fibrous tissue Fibromas, benign tumor of fibrous tissue Fibrous histiocytomas, benign ...

  20. Survival by Stage of Soft Tissue Sarcoma

    MedlinePlus

    ... Next Topic How are soft tissue sarcomas treated? Survival by stage of soft tissue sarcoma Survival rates ... observed, not relative survival): Stage 5-year observed survival rate I 90% II 81% III 56% IV ...

  1. [Radiotherapy of adult soft tissue sarcoma].

    PubMed

    Le Péchoux, C; Moureau-Zabotto, L; Llacer, C; Ducassou, A; Sargos, P; Sunyach, M P; Thariat, J

    2016-09-01

    Incidence of soft tissue sarcoma is low and requires multidisciplinary treatment in specialized centers. The objective of this paper is to report the state of the art regarding indications and treatment techniques of main soft tissue sarcoma localisations. PMID:27523415

  2. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  3. Tissue enzyme studies in Macaca nemestrina monkeys.

    NASA Technical Reports Server (NTRS)

    Hubbard, R. W.; Hoffman, R. A.; Jenkins, D.

    1971-01-01

    Total enzyme activities in fresh tissue specimens from major organs of Macaca nemestrina were analyzed for lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and aldolase. The concentration of these enzymes varied among the different tissue with skeletal muscle, heart, and brain having the highest activities. LDH isozymes determinations for the various tissues were also made. The spectrum of LDH isozyme distribution appears to be quite specific and characteristic for at least some of the tissues analyzed.

  4. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  5. Laser Ablatin of Dental Hard Tissue

    SciTech Connect

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.; Fried, D.

    2007-07-31

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  6. Salvinia molesta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salvinia molesta is a free-floating aquatic fern. It has a horizontal stem that lies at or just below the water surface. Buoyancy is facilitated by the formation of aerenchyma tissue in the stems and leaves. Reproduction is entirely asexual: colony increase is through vegetative growth and the spre...

  7. Tissue Barriers: Introducing an exciting new journal

    PubMed Central

    Ivanov, Andrei I

    2014-01-01

    This Editorial is written to introduce Tissue Barriers, a new Taylor & Francis journal, to the readers of Temperature. It describes the role of temperature in the regulation of different tissue barriers under normal and disease conditions. It also highlights the most interesting articles published in the first volume of Tissue Barriers.

  8. Comparative Histology of Plasma Treated Tissue

    NASA Astrophysics Data System (ADS)

    Rick, Kyle

    2009-10-01

    Atmospheric plasmas applied in surgical settings have unique characteristics found in histological results from animal tissue studies. This is evident in both ex vivo bench tissue tests and in vivo fresh tissue. Examples of these histological features are presented as results of a comparative study between plasma treated, common medical argon coagulation, and electrosurgery.

  9. Radioprotection of normal tissue cells.

    PubMed

    Maier, Patrick; Wenz, Frederik; Herskind, Carsten

    2014-08-01

    Improvements of radiotherapy in combination with surgery and systemic therapy have resulted in increased survival rates of tumor patients. However, radiation-induced normal tissue toxicity is still dose limiting. Several strategies have been pursued with the goal to develop substances which may prevent or reduce damage to normal tissue. Drugs applied before radiotherapy are called radioprotectors; those given after radiotherapy to reduce long-term effects are radiomitigators. Despite more than 50 years of research, until now only two substances, amifostine and palifermin, have overcome all obstacles of clinical approval and are applied during radiotherapy of head and neck cancer or total body irradiation, respectively. However, better understanding of the cellular pathways involved in radiation response has allowed the development of several highly promising drugs functioning as scavengers of reactive oxygen species or targeting specific molecules involved in regulation of cell death pathways or cell cycle arrest. The present review describes the major targets for radioprotectors or radiomitigators currently tested in clinical trials. PMID:24638269

  10. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-01

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. PMID:24012489

  11. Kidney diseases and tissue engineering.

    PubMed

    Moon, Kyung Hyun; Ko, In Kap; Yoo, James J; Atala, Anthony

    2016-04-15

    Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented. PMID:26134528

  12. Infrared Microspectroscopy Of Pathologic Tissue

    NASA Astrophysics Data System (ADS)

    O'Leary, Timothy J.; Engler, Walter F.; Ventre, Kathleen M.

    1989-12-01

    Infrared spectroscopy is a powerful technique by which to characterize the conformations of proteins, lipids, and nucleic acids (1). Previously we have demonstrated that infrared spectroscopy can be used to characterize the secondary structure of abnormal protein accumulation products, known as amyloid, which are often found in association with medullary carcinoma of the thyroid (2). The utility of the technique was highly limited by the fact that essentially the entire specimen had to consist of this abnormal protein for infrared spectroscopic analysis to be useful. The development of high quality microscopes capable of both light microscopic and infrared characterization of materials has enabled us to extend our earlier use of infrared spectroscopy to diseases and tissues in which the abnormal region of interest is only a few hundred square micrometers in area. Tissue for spectroscopic examination is mounted on microscope slides which have been prepared by acid washing, plating with gold or gold-palladium alloy (3) and coating with high molecular weight poly-L-lysine. Sections of tissue which have been previously embedded in paraffin are cut with a microtome at 4 to 5 micrometers thickness, floated onto a bath of distilled water, picked up on the microscope slide, and allowed to dry overnight. Paraffin is removed by soaking the slides in two changes of xylene, and then the sections are rehydrated by placing them in absolute alcohol, then in fifty percent alcohol, and finally in water. Sections may then be stained using standard histologic stains, such as hematoxylin and eosin, then once again dehydrated with alcohol. After drying, the sections are covered with an index-matching fluid, such as Fluorolube, which allows a relatively good visual microscopic examination of the tissue when the microscope is used in reflectance mode. High quality reflectance infrared spectra may be easily obtained when the tissue is prepared and mounted in this way (Figure 1

  13. Lipid peroxidation and tissue damage.

    PubMed

    Mylonas, C; Kouretas, D

    1999-01-01

    In recent years it has become apparent that the oxidation of lipids, or lipid peroxidation, is a crucial step in the pathogenesis of several disease states in adult and infant patients. Lipid peroxidation is a process generated naturally in small amounts in the body, mainly by the effect of several reactive oxygen species (hydroxyl radical, hydrogen peroxide etc.). It can also be generated by the action of several phagocytes. These reactive oxygen species readily attack the polyunsaturated fatty acids of the fatty acid membrane, initiating a self-propagating chain reaction. The destruction of membrane lipids and the end-products of such lipid peroxidation reactions are especially dangerous for the viability of cells, even tissues. Enzymatic (catalase, superoxide dismutasse) and nonenzymatic (vitamins A and E) natural antioxidant defence mechanisms exist; however, these mechanisms may be overcome, causing lipid peroxidation to take place. Since lipid peroxidation is a self-propagating chain-reaction, the initial oxidation of only a few lipid molecules can result in significant tissue damage. Despite extensive research in the field of lipid peroxidation it has not yet been precisely determined if it is the cause or an effect of several pathological conditions. Lipid peroxidation has been implicated in disease states such as atherosclerosis, IBD, ROP, BPD, asthma, Parkinson's disease, kidney damage, preeclampsia and others. PMID:10459507

  14. Raman Spectroscopy of Soft Musculoskeletal Tissues

    PubMed Central

    Esmonde-White, Karen

    2015-01-01

    Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament. PMID:25286106

  15. Optical metabolic imaging of live tissue cultures

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Arteaga, Carlos L.; Skala, Melissa C.

    2013-02-01

    The fluorescence properties, both intensity and fluorescence lifetime, of NADH and FAD, two coenzymes of metabolism, are sensitive, high resolution measures of cellular metabolism. However, often in vivo measurements of tissue are not feasible. In this study, we investigate the stability over time of two-photon auto-fluorescence imaging of NADH and FAD in live-cultured tissues. Our results demonstrate that cultured tissues remain viable for at least several days post excision. Furthermore, the optical redox ratio, NADH fluorescence lifetime, and FAD fluorescence lifetime do not significantly change in the cultured tissues over time. With these findings, we demonstrate the potential of sustained tissue culture techniques for optical metabolic imaging.

  16. Photoacoustic tomography of water in biological tissue

    NASA Astrophysics Data System (ADS)

    Xu, Zhun; Li, Changhui; Wang, Lihong V.

    2011-03-01

    As an emerging imaging technique that combines high optical contrast and ultrasonic detection, photoacoustic tomography (PAT) has been widely used to image optically absorptive objects in both human and animal tissues. PAT overcomes the depth limitation of other high-resolution optical imaging methods, and it is also free from speckle artifacts. To our knowledge, water has never been imaged by PAT in biological tissue. Here, for the first time, we experimentally imaged water in both tissue phantoms and biological tissues using a near infrared (NIR) light source. The differences among photoacoustic images of water with different concentrations indicate that laser-based PAT can usefully detect and image water content in tissue.

  17. Bioengineering heart tissue for in vitro testing.

    PubMed

    Cimetta, Elisa; Godier-Furnémont, Amandine; Vunjak-Novakovic, Gordana

    2013-10-01

    A classical paradigm of tissue engineering is to grow tissues for implantation by using human stem cells in conjunction with biomaterial scaffolds (templates for tissue formation) and bioreactors (culture systems providing environmental control). A reverse paradigm is now emerging through microphysiological platforms for preclinical testing of drugs and modeling of disease that contain large numbers of very small human tissues. We discuss the biomimetic approach as a common underlying principle and some of the specifics related to the design and utilization of platforms with heart micro-tissues for high-throughput screening in vitro. PMID:23932513

  18. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  19. Tissue microarrays: applications in genomic research.

    PubMed

    Watanabe, Aprill; Cornelison, Robert; Hostetter, Galen

    2005-03-01

    The widespread application of tissue microarrays in cancer research and the clinical pathology laboratory demonstrates a versatile and portable technology. The rapid integration of tissue microarrays into biomarker discovery and validation processes reflects the forward thinking of researchers who have pioneered the high-density tissue microarray. The precise arrangement of hundreds of archival clinical tissue samples into a composite tissue microarray block is now a proven method for the efficient and standardized analysis of molecular markers. With applications in cancer research, tissue microarrays are a valuable tool in validating candidate markers discovered in highly sensitive genome-wide microarray experiments. With applications in clinical pathology, tissue microarrays are used widely in immunohistochemistry quality control and quality assurance. The timeline of a biomarker implicated in prostate neoplasia, which was identified by complementary DNA expression profiling, validated by tissue microarrays and is now used as a prognostic immunohistochemistry marker, is reviewed. The tissue microarray format provides opportunities for digital imaging acquisition, image processing and database integration. Advances in digital imaging help to alleviate previous bottlenecks in the research pipeline, permit computer image scoring and convey telepathology opportunities for remote image analysis. The tissue microarray industry now includes public and private sectors with varying degrees of research utility and offers a range of potential tissue microarray applications in basic research, prognostic oncology and drug discovery. PMID:15833047

  20. Optimal tissue tension for secure laparoscopic knots.

    PubMed

    Raut, Vikram N; Takaori, Kyoichi; Uemoto, Shinji

    2011-02-01

    Security and strength of a knot are main concerns of the surgeon since last 4000 years. The advancement of endoscopic and minimally invasive surgery in last few decades had a significant influence on a knot tying. The most difficult methods of a knot tying are performed during endoscopic procedures, in which the surgeon execute instrumentation from outside the body without palpation of organs and three-dimensional vision. In addition, laparoscopic instruments due to friction in transmission mechanism have very poor force feedback. This results into difficulty in applying the appropriate grasping force to the tissue, resulting in slippage or damage to the tissue. Our hypothesis highlights the need of tissue approximation at the 'optimum tissue tension' sufficient to resist the slippage of suture/clip without strangulation. The purpose of suture is to maintain an approximation of the tissue until healing progresses to the point where artificial support is no longer necessary for the wound to resist normal stress. When the approximation is too tight, tension in tissue leads to diminished blood supply resulting into the necrosis. Various tissues need different blood supply and different tissue pressure for optimum healings. Proposed hypothesis helps to improve the feedback of current knot pushers or clip applicators used in laparoscopic surgery using optimum tissue tension. Tissue approximation at an optimal tissue tension translates into the secure laparoscopic knot/clip application resulting in prevention of wound dehiscence, anastomosis leak, and secondary haemorrhages. PMID:21071154

  1. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  2. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  3. Multiscale tissue engineering for liver reconstruction

    PubMed Central

    Sudo, Ryo

    2014-01-01

    The liver is a target of in vitro tissue engineering despite its capability to regenerate in vivo. The construction of liver tissues in vitro remains challenging. In this review, conventional 3D cultures of hepatocytes are first discussed. Recent advances in the 3D culturing of liver cells are then summarized in the context of in vitro liver tissue reconstruction at the micro- and macroscales. The application of microfluidics technology to liver tissue engineering has been introduced as a bottom-up approach performed at the microscale, whereas whole-organ bioengineering technology was introduced as a top-down approach performed at the macroscale. Mesoscale approaches are also discussed in considering the integration of micro- and macroscale approaches. Multiple parallel multiscale liver tissue engineering studies are ongoing; however, no tissue-engineered liver that is appropriate for clinical use has yet been realized. The integration of multiscale tissue engineering studies is essential for further understanding of liver reconstruction strategies. PMID:24500493

  4. Depth-resolved fluorescence of biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  5. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs. PMID:12775655

  6. Biomaterials for vascular tissue engineering

    PubMed Central

    Ravi, Swathi; Chaikof, Elliot L

    2010-01-01

    Cardiovascular disease is the leading cause of mortality in the USA. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. While synthetic polymers have been extensively studied as substitutes in vascular engineering, they fall short of meeting the biological challenges at the blood–material interface. Various tissue engineering strategies have emerged to address these flaws and increase long-term patency of vascular grafts. Vascular cell seeding of scaffolds and the design of bioactive polymers for in situ arterial regeneration have yielded promising results. This article describes the advances made in biomaterials design to generate suitable materials that not only match the mechanical properties of native vasculature, but also promote cell growth, facilitate extracellular matrix production and inhibit thrombogenicity. PMID:20017698

  7. Tissue homeostasis: A tensile state

    NASA Astrophysics Data System (ADS)

    Podewitz, N.; Delarue, M.; Elgeti, J.

    2015-03-01

    Mechanics play a significant role during tissue development. One of the key characteristics that underlies this mechanical role is the homeostatic pressure, which is the pressure stalling growth. In this work, we explore the possibility of a negative bulk homeostatic pressure by means of a mesoscale simulation approach and experimental data of several cell lines. We show how different cell properties change the bulk homeostatic pressure, which could explain the benefit of some observed morphological changes during cancer progression. Furthermore, we study the dependence of growth on pressure and estimate the bulk homeostatic pressure of five cell lines. Four out of five result in a bulk homeostatic pressure in the order of minus one or two kPa.

  8. Endometriosis, Angiogenesis and Tissue Factor

    PubMed Central

    Krikun, Graciela

    2012-01-01

    Tissue factor (TF), is a cellular receptor that binds the factor VII/VIIa to initiate the blood coagulation cascade. In addition to its role as the initiator of the hemostatic cascade, TF is known to be involved in angiogenesis via intracellular signaling that utilizes the protease activated receptor-2 (PAR-2). We now review the physiologic expression of TF in the endometrium and its altered expression in multiple cell types derived from eutopic and ectopic endometrium from women with endometriosis compared with normal endometrium. Our findings suggest that TF might be an ideal target for therapeutic intervention in endometriosis. We have employed a novel immunoconjugate molecule known as Icon and were able to eradicate endometrial lesions in a mouse model of endometriosis without affecting fertility. These findings have major implications for potential treatment in humans. PMID:24278684

  9. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  10. Tissue Microarrays in Clinical Oncology

    PubMed Central

    Voduc, David; Kenney, Challayne; Nielsen, Torsten O.

    2008-01-01

    The tissue microarray is a recently-implemented, high-throughput technology for the analysis of molecular markers in oncology. This research tool permits the rapid assessment of a biomarker in thousands of tumor samples, using commonly available laboratory assays such as immunohistochemistry and in-situ hybridization. Although introduced less than a decade ago, the TMA has proven to be invaluable in the study of tumor biology, the development of diagnostic tests, and the investigation of oncological biomarkers. This review describes the impact of TMA-based research in clinical oncology and its potential future applications. Technical aspects of TMA construction, and the advantages and disadvantages inherent to this technology are also discussed. PMID:18314063

  11. Bottom-up tissue engineering

    PubMed Central

    Elbert, Donald L.

    2011-01-01

    Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed. PMID:21524904

  12. Heterophile Antibodies and Tissue Injury

    PubMed Central

    Tsai, Chi-Cheng; Taichman, Norton S.; Pulver, Wayne H.; Schönbaum, Eduard

    1973-01-01

    Platelets appear to be pathogenetic determinants in the development of lethal Forssman shock, which was provoked in guinea pigs by an intravenous injection of rabbit antiserum to sheep erythrocyte stromata. Within moments, circulating platelets (prelabeled with 14C-serotonin) were removed from the blood stream and impacted in the lungs, where they liberated 14C into the tissues. When animals were depleted of platelets prior to the production of shock, they survived for prolonged periods of time or were protected against death. Pretreatment with antiinflammatory compounds capable of inhibiting platelet aggregation and release phenomena had a similar protective influence. It would appear, therefore, that Forssman shock is a convenient and accessible model for investigating the mechanisms whereby platelets mediate immune vascular damage. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4740636

  13. Dynamic simulations of tissue welding

    SciTech Connect

    Maitland, D.J.; Eder, D.C.; London, R.A.; Glinsky, M.E.

    1996-02-01

    The exposure of human skin to near-infrared radiation is numerically simulated using coupled laser, thermal transport and mass transport numerical models. The computer model LATIS is applied in both one-dimensional and two-dimensional geometries. Zones within the skin model are comprised of a topical solder, epidermis, dermis, and fatty tissue. Each skin zone is assigned initial optical, thermal and water density properties consistent with values listed in the literature. The optical properties of each zone (i.e. scattering, absorption and anisotropy coefficients) are modeled as a kinetic function of the temperature. Finally, the water content in each zone is computed from water diffusion where water losses are accounted for by evaporative losses at the air-solder interface. The simulation results show that the inclusion of water transport and evaporative losses in the model are necessary to match experimental observations. Dynamic temperature and damage distributions are presented for the skin simulations.

  14. Who "owns" cells and tissues?

    PubMed

    Lebacqz, K

    2001-01-01

    Opposition to 'ownership' of cells and tissues often depends on arguments about the special or sacred nature of human bodies and other living things. Such arguments are not very helpful in dealing with the patenting of DNA fragments. Two arguments undergird support for patenting: the notion that an author has a 'right' to an invention resulting from his/her labor, and the utilitarian argument that patents are needed to support medical inventiveness. The labor theory of ownership rights is subject to critique, thought it may still have enduring value. The more important argument is that deriving from the common good. If patents on DNA are supported on the basis of their contributions to the common good, then they can also be limited based on considerations of the common good. PMID:11794837

  15. Tissue Engineered Strategies for Pseudoarthrosis

    PubMed Central

    Longo, Umile Giuseppe; Trovato, Ugo; Loppini, Mattia; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Numerous classification systems of non-union have been proposed based on: presence or absence of infection, radiographic features, clinical findings, biologic activity, location and shape. The management of pseudarthrosis is strongly related to the type of non-union (infected versus uninfected, atrophic versus hypertrophic). Surgical management of pseudarthrosis is generally effective with a success rate ranging from 75 to 100%. Nevertheless, in a relatively high number of instances several combined treatments are required for the fracture healing. The current gold standard to stimulate the bone regeneration is represented by the revision surgery with the application of autologous bone grafts. However, several approaches have been described to promote and enhance the bone tissue regeneration, including extracorporeal shock wave therapy (ESWT), ultrasound, electromagnetic, bone morphogenic proteins (BMPs) and platelet-rich-plasma (PRP). The aim of the present study was to perform a systematic review of the literature evaluating the current therapies to promote and enhance the bone tissue healing. The systematic review was performed according to PRISMA guidelines with a PRISMA checklist and algorithm. Limitations of the present systematic review are mainly related to the scanty quality of the studies available in the literature. Although the therapies previously described for the management of patients with non-unions seems to be effective, the limitations of the included studies, especially the extensive clinical heterogeneity, make not possible to provide clear recommendations regarding the application of these approaches. The problems remain the need to better understand the most effective treatment options, subject to surgical stabilization as a first step. PMID:23248729

  16. Ultrasonic Histotripsy for Tissue Therapy

    NASA Astrophysics Data System (ADS)

    Pahk, K. J.; Dhar, D. K.; Malago, M.; Saffari, N.

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  17. Volatile Emissions from Compressed Tissue

    PubMed Central

    Dini, Francesca; Capuano, Rosamaria; Strand, Tillan; Ek, Anna-Christina; Lindgren, Margareta; Paolesse, Roberto; Di Natale, Corrado; Lundström, Ingemar

    2013-01-01

    Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers. PMID:23874929

  18. Raman tomography of tissue phantoms and bone tissue

    NASA Astrophysics Data System (ADS)

    Schulmerich, Matthew V.; Srinivasan, Subhadra; Kreider, Jaclynn; Cole, Jacqueline H.; Dooley, Kathryn A.; Goldstein, Steven A.; Pogue, Brian W.; Morris, Michael D.

    2008-02-01

    We report tomographic reconstruction of objects located several millimeters below the surface of highly scattering media. For this purpose we adapted proven software developed for fluorescence tomography with and without the use of spatial priors1. For this first demonstration we acquired Raman spectra using an existing ring/disk fiber optic probe with fifty collection fibers2. Several illumination ring diameters were employed to generate multiple angles of incidence. Tomographic reconstruction from Raman scatter was tested using a 9.5 mm diameter Teflon® sphere embedded in a gel of agarose and 1% Intralipid. Blind reconstruction of the sphere using the 732 cm -1 C-F stretch yielded an accurate shape but an inaccurate depth. Using the known shape and position of the object as spatial priors, a more accurate reconstruction was obtained. We also demonstrated a reconstruction of the tibial diaphysis of an intact canine hind limb using spatial priors generated from micro-computed tomography. In this first demonstration of Raman tomography in animal tissue, the P-O stretch of the bone mineral at 958 cm -1 was used for the reconstruction. An accurate shape and depth were recovered.

  19. Tissue-resident macrophages: then and now.

    PubMed

    Davies, Luke C; Taylor, Philip R

    2015-04-01

    Macrophages have been at the heart of immune research for over a century and are an integral component of innate immunity. Macrophages are often viewed as terminally differentiated monocytic phagocytes. They infiltrate tissues during inflammation, and form polarized populations that perform pro-inflammatory or anti-inflammatory functions. Tissue-resident macrophages were regarded as differentiated monocytes, which seed the tissues to perform immune sentinel and homeostatic functions. However, tissue-resident macrophages are not a homogeneous population, but are in fact a grouping of cells with similar functions and phenotypes. In the last decade, it has been revealed that many of these cells are not terminally differentiated and, in most cases, are not derived from haematopoiesis in the adult. Recent research has highlighted that tissue-resident macrophages cannot be grouped into simple polarized categories, especially in vivo, when they are exposed to complex signalling events. It has now been demonstrated that the tissue environment itself is a major controller of macrophage phenotype, and can influence the expression of many genes regardless of origin. This is consistent with the concept that cells within different tissues have diverse responses in inflammation. There is still a mountain to climb in the field, as it evolves to encompass not only tissue-resident macrophage diversity, but also categorization of specific tissue environments and the plasticity of macrophages themselves. This knowledge provides a new perspective on therapeutic strategies, as macrophage subsets can potentially be manipulated to control the inflammatory environment in a tissue-specific manner. PMID:25684236

  20. Tissue expanders in reconstruction of maxillofacial defects.

    PubMed

    John, Jacob; Edward, Joseph; George, Joju

    2015-03-01

    Tissue expansion in its natural ways had fascinated man from prehistoric times itself. But tissue expansion for medical purposes was first tried and reported only in the early half of twentieth century. Presently the principle of tissue expansion is being used in reconstruction of many hard and soft tissue defects of larger dimension, which were previously regarded as great challenge for maxillofacial and plastic surgeons. Making use of the viscoelastic nature of the skin, considerable amount of tissue expansion based tissue engineering is possible in the maxillofacial region. Here we present a case of a facial scar of large dimension with a central oro cutaneous fistula developed as a result of facial artery blow out in a 24 year old female for which esthetic correction was done using the excess tissue obtained from tissue expansion. In this case where other methods of reconstruction such as local flaps, free flaps and normal tissue grafts were assessed to be non viable, tissue expansion was found to be an apt solution for esthetic reconstruction. PMID:25848145

  1. Tissue-resident macrophages: then and now

    PubMed Central

    Davies, Luke C; Taylor, Philip R

    2015-01-01

    Macrophages have been at the heart of immune research for over a century and are an integral component of innate immunity. Macrophages are often viewed as terminally differentiated monocytic phagocytes. They infiltrate tissues during inflammation, and form polarized populations that perform pro-inflammatory or anti-inflammatory functions. Tissue-resident macrophages were regarded as differentiated monocytes, which seed the tissues to perform immune sentinel and homeostatic functions. However, tissue-resident macrophages are not a homogeneous population, but are in fact a grouping of cells with similar functions and phenotypes. In the last decade, it has been revealed that many of these cells are not terminally differentiated and, in most cases, are not derived from haematopoiesis in the adult. Recent research has highlighted that tissue-resident macrophages cannot be grouped into simple polarized categories, especially in vivo, when they are exposed to complex signalling events. It has now been demonstrated that the tissue environment itself is a major controller of macrophage phenotype, and can influence the expression of many genes regardless of origin. This is consistent with the concept that cells within different tissues have diverse responses in inflammation. There is still a mountain to climb in the field, as it evolves to encompass not only tissue-resident macrophage diversity, but also categorization of specific tissue environments and the plasticity of macrophages themselves. This knowledge provides a new perspective on therapeutic strategies, as macrophage subsets can potentially be manipulated to control the inflammatory environment in a tissue-specific manner. PMID:25684236

  2. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    PubMed Central

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  3. Laser capture microdissection in the tissue biorepository.

    PubMed

    Liu, Angen

    2010-09-01

    An important need of many cancer research projects is the availability of high-quality, appropriately selected tissue. Tissue biorepositories are organized to collect, process, store, and distribute samples of tumor and normal tissue for further use in fundamental and translational cancer research. This, in turn, provides investigators with an invaluable resource of appropriately examined and characterized tissue specimens and linked patient information. Human tissues, in particular, tumor tissues, are complex structures composed of heterogeneous mixtures of morphologically and functionally distinct cell types. It is essential to analyze specific cell types to identify and define accurately the biologically important processes in pathologic lesions. Laser capture microdissection (LCM) is state-of-the-art technology that provides the scientific community with a rapid and reliable method to isolate a homogeneous population of cells from heterogeneous tissue specimens, thus providing investigators with the ability to analyze DNA, RNA, and protein accurately from pure populations of cells. This is particularly well-suited for tumor cell isolation, which can be captured from complex tissue samples. The combination of LCM and a tissue biorepository offers a comprehensive means by which researchers can use valuable human biospecimens and cutting-edge technology to facilitate basic, translational, and clinical research. This review provides an overview of LCM technology with an emphasis on the applications of LCM in the setting of a tissue biorepository, based on the author's extensive experience in LCM procedures acquired at Fox Chase Cancer Center and Hollings Cancer Center. PMID:20808641

  4. Multiscale mechanical modeling of soft biological tissues

    NASA Astrophysics Data System (ADS)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  5. Optical imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Bouza Dominguez, Jorge

    In this thesis, a new time-dependent model for describing light propagation in biological media is proposed. The model is based on the simplified spherical harmonics approximation and is represented by a set of coupled parabolic partial differential equations (TD-pSPN equations). In addition, the model is extended for modeling the time-dependent response of fluorescent agents in biological tissues and the ensuing time-domain propagation of light therein. In a comparison with Monte Carlo simulations, it is shown that the TD-pSPN equations present unique features in its derivation that makes it a more accurate alternative to the diffusion equation (DE). The TD-pSPN model (for orders N > 1) outperforms the DE in the description of the propagation of light in near-nondiffusive media and in all the physical situations where DE fails. Often, only small orders of the SP N approximation are needed to obtain accurate results. A diffuse optical tomography (DOT) algorithm is also implemented based on the TD-pSPN equations as the forward model using constrained optimization methods. The algorithm uses time-dependent (TD) data directly. Such an approach is benefited from both the accuracy of the SPN models and the richness of TD data. In the calculation of the gradient of the objective function, a time-dependent adjoint differentiation method is introduced that reduces computation time. Several numerical experiments are performed for small geometry media with embedded inclusions that mimic small animal imaging. In these experiments, the values of the optical coefficients are varied within realistic bounds that are representative of those found in the range of the near-infrared spectrum, including high absorption values. Single and multi-parameter reconstructions (absorption and diffusion coefficients) are performed. The reconstructed images based on the TD-pSPN equations (N > 1) give better estimates of the optical properties of the media than the DE. On the other hand

  6. Photon dynamics in tissue imaging

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Haselgrove, John C.; Wang, NaiGuang; Maris, Michael B.; Sevick-Muraca, Eva M.

    1991-11-01

    The emerging need for a fast, safe economical approach to global and localized measures of desaturation of hemoglobin with oxygen (HbO2) in the human brain motivates further research on time-resolved spectroscopy in four areas of study. (1) To afford quantization of hemoglobin saturation through time-resolved spectroscopy in the time domain (TD) and in the frequency domain (FD). Evaluation of dual-wavelength TD and FD spectrometers for determining quantitatively hemoglobin desaturation and blood-volume changes by calculations that are insensitive to mutual interference is proposed. The diffusion equation, as it applies especially to TD studies, and the absorption ((mu) a) and scattering ((mu) s) coefficients provide their independent determination from the late and early respective portions of the kinetics of the emergent photons in response to a short input pulse (50-100 psec). (2) The identification of the photon-pathlength change due to the arterial pulse in the brain tissue by FD methods with Fourier transformation affords an opportunity to employ principles of pulse oximetry to vessels localized deep within the brain tissue. (3) Localization of desaturation of hemoglobin in portions of the brain can be achieved through dual-wavelength scanning of the input/output optical fibers across the head for an X-Y coordinate and varying the distance between input and output ((rho) ) or the time delay in data acquisition to afford an in-depth Z scan. Localizations of shed blood, which have an effective concentration of over 10 times that of capillary-bed blood, are identified by X, Y, Z scans using only a single wavelength. (4) Independent measurements of absorption ((mu) a) and scattering ((mu) s) coefficients, particularly by TD techniques, affords structural mapping of the brain, which can be used to diagnose brain tumor and neuronal degeneration. Two experimental systems are used to critically evaluate these studies; the first, a hemoglobin/lipid/yeast model in which

  7. Radiation Effect on Human Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered

  8. Engineering complex orthopaedic tissues via strategic biomimicry.

    PubMed

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  9. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    PubMed Central

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  10. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  11. Unified quantitative characterization of epithelial tissue development.

    PubMed

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru; Graner, François; Bellaïche, Yohanns

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. PMID:26653285

  12. Heart Regeneration with Engineered Myocardial Tissue

    PubMed Central

    Bajpai, Vivek K.; Andreadis, Stelios T.; Murry, Charles E.

    2014-01-01

    Heart disease is the leading cause of morbidity and mortality worldwide, and regenerative therapies that replace damaged myocardium could benefit millions of patients annually. The many cell types in the heart, including cardiomyocytes, endothelial cells, vascular smooth muscle cells, pericytes, and cardiac fibroblasts, communicate via intercellular signaling and modulate each other’s function. Although much progress has been made in generating cells of the cardiovascular lineage from human pluripotent stem cells, a major challenge now is creating the tissue architecture to integrate a microvascular circulation and afferent arterioles into such an engineered tissue. Recent advances in cardiac and vascular tissue engineering will move us closer to the goal of generating functionally mature tissue. Using the biology of the myocardium as the foundation for designing engineered tissue and addressing the challenges to implantation and integration, we can bridge the gap from bench to bedside for a clinically tractable engineered cardiac tissue. PMID:24819474

  13. Nanotechnology in the Regeneration of Complex Tissues

    PubMed Central

    Cassidy, John W.

    2015-01-01

    Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds. PMID:26097381

  14. Biochemistry of adipose tissue: an endocrine organ

    PubMed Central

    Coelho, Marisa; Oliveira, Teresa

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance. PMID:23671428

  15. Biomaterials for hollow organ tissue engineering.

    PubMed

    Hendow, Eseelle K; Guhmann, Pauline; Wright, Bernice; Sofokleous, Panagiotis; Parmar, Nina; Day, Richard M

    2016-01-01

    Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials. PMID:27014369

  16. Tissue Engineering: Step Ahead in Maxillofacial Reconstruction

    PubMed Central

    Rai, Raj; Raval, Rushik; Khandeparker, Rakshit Vijay Sinai; Chidrawar, Swati K; Khan, Abdul Ahad; Ganpat, Makne Sachin

    2015-01-01

    Within the precedent decade, a new field of “tissue engineering” or “tissue regeneration” emerge that offers an innovative and exhilarating substitute for maxillofacial reconstruction. It offers a new option to supplement existing treatment regimens for reconstruction/regeneration of the oral and craniofacial complex, which includes the teeth, periodontium, bones, soft tissues (oral mucosa, conjunctiva, skin), salivary glands, and the temporomandibular joint (bone and cartilage), as well as blood vessels, muscles, tendons, and nerves. Tissue engineering is based on harvesting the stem cells which are having potential to form an organ. Harvested cells are then transferred into scaffolds that are manufactured in a laboratory to resemble the structure of the desired tissue to be replaced. This article reviews the principles of tissue engineering and its various applications in oral and maxillofacial surgery. PMID:26435634

  17. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  18. Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation.

    PubMed

    Hajdu, Zoltan; Mironov, Vladimir; Mehesz, Agnes Nagy; Norris, Russell A; Markwald, Roger R; Visconti, Richard P

    2010-12-01

    Organ printing or computer-aided robotic layer-by-layer additive biofabrication of thick three-dimensional (3D) living tissue constructs employing self-assembling tissue spheroids is a rapidly evolving alternative to classic solid scaffold-based approaches in tissue engineering. However, the absence of effective methods of accelerated tissue maturation immediately after bioprinting is the main technological imperative and potential impediment for further progress in the development of this emerging organ printing technology. Identification of the optimal combination of factors and conditions that accelerate tissue maturation ('maturogenic' factors) is an essential and necessary endeavour. Screening of maturogenic factors would be most efficiently accomplished using high-throughput quantitative in vitro tissue maturation assays. We have recently reviewed the formation of solid scaffold-free tissue constructs through the fusion of bioprinted tissue spheroids that have measurable material properties. We hypothesize that the fusion kinetics of these tissue spheroids will provide an efficacious in vitro assay of the level of tissue maturation. We report here the results of experimental testing of two simple quantitative tissue spheroid fusion-based in vitro high-throughput screening assays of tissue maturation: (a) a tissue spheroid envelopment assay; and (b) a tissue spheroid fusion kinetics assay. PMID:20603872

  19. Terahertz sensing in corneal tissues

    PubMed Central

    Bennett, David B.; Taylor, Zachary D.; Tewari, Pria; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Sassoon, Daniel J.; Johnson, R. Duncan; Hubschman, Jean-Pierre; Brown, Elliott R.

    2011-01-01

    This work introduces the potential application of terahertz (THz) sensing to the field of ophthalmology, where it is uniquely suited due to its nonionizing photon energy and high sensitivity to water content. Reflective THz imaging and spectrometry data are reported on ex-vivo porcine corneas prepared with uniform water concentrations using polyethylene glycol (PEG) solutions. At 79% water concentration by mass, the measured reflectivity of the cornea was 20.4%, 14.7%, 11.7%, 9.6%, and 7.4% at 0.2, 0.4, 0.6, 0.8, and 1 THz, respectively. Comparison of nine corneas hydrated from 79.1% to 91.5% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration, with a monotonically decreasing slope as the frequency increases. The THz-corneal tissue interaction is simulated with a Bruggeman model with excellent agreement. THz applications to corneal dystrophy, graft rejection, and refractive surgery are examined from the context of these measurements. PMID:21639581

  20. Tissue engineering a fetal membrane.

    PubMed

    Mi, Shengli; David, Anna L; Chowdhury, Bipasha; Jones, Roanne Razalia; Hamley, Ian William; Squires, Adam M; Connon, Che John

    2012-02-01

    The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype. PMID:21919796

  1. Skin and Soft Tissue Infections.

    PubMed

    Ramakrishnan, Kalyanakrishnan; Salinas, Robert C; Agudelo Higuita, Nelson Ivan

    2015-09-15

    Skin and soft tissue infections result from microbial invasion of the skin and its supporting structures. Management is determined by the severity and location of the infection and by patient comorbidities. Infections can be classified as simple (uncomplicated) or complicated (necrotizing or nonnecrotizing), or as suppurative or nonsuppurative. Most community-acquired infections are caused by methicillin-resistant Staphylococcus aureus and beta-hemolytic streptococcus. Simple infections are usually monomicrobial and present with localized clinical findings. In contrast, complicated infections can be mono- or polymicrobial and may present with systemic inflammatory response syndrome. The diagnosis is based on clinical evaluation. Laboratory testing may be required to confirm an uncertain diagnosis, evaluate for deep infections or sepsis, determine the need for inpatient care, and evaluate and treat comorbidities. Initial antimicrobial choice is empiric, and in simple infections should cover Staphylococcus and Streptococcus species. Patients with complicated infections, including suspected necrotizing fasciitis and gangrene, require empiric polymicrobial antibiotic coverage, inpatient treatment, and surgical consultation for debridement. Superficial and small abscesses respond well to drainage and seldom require antibiotics. Immunocompromised patients require early treatment and antimicrobial coverage for possible atypical organisms. PMID:26371732

  2. Keratoconus: Tissue Engineering and Biomaterials

    PubMed Central

    Karamichos, Dimitrios; Hjortdal, Jesper

    2014-01-01

    Keratoconus (KC) is a bilateral, asymmetric, corneal disorder that is characterized by progressive thinning, steepening, and potential scarring. The prevalence of KC is stated to be 1 in 2000 persons worldwide; however, numbers vary depending on size of the study and regions. KC appears more often in South Asian, Eastern Mediterranean, and North African populations. The cause remains unknown, although a variety of factors have been considered. Genetics, cellular, and mechanical changes have all been reported; however, most of these studies have proven inconclusive. Clearly, the major problem here, like with any other ocular disease, is quality of life and the threat of vision loss. While most KC cases progress until the third or fourth decade, it varies between individuals. Patients may experience periods of several months with significant changes followed by months or years of no change, followed by another period of rapid changes. Despite the major advancements, it is still uncertain how to treat KC at early stages and prevent vision impairment. There are currently limited tissue engineering techniques and/or “smart” biomaterials that can help arrest the progression of KC. This review will focus on current treatments and how biomaterials may hold promise for the future. PMID:25215423

  3. Tissue Regeneration: A Silk Road.

    PubMed

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. PMID:27527229

  4. Tissue Diagnosis of Hepatocellular Carcinoma

    PubMed Central

    Jain, Deepali

    2014-01-01

    The current American Association for the Study of Liver Diseases (AASLD) guideline provides strategies for achieving the diagnosis of hepatocellular carcinoma (HCC) based on the size of liver nodules seen on surveillance imaging. For lesions less than 1 cm in size, follow-up surveillance imaging is recommended. Lesions larger than 2 cm require typical radiological hallmark on dynamic imaging. Lesions of 1–2 cm in size require typical imaging features including intense uptake of contrast during arterial phases followed by decreased enhancement during portal venous phases on at least 2 imaging modalities. In cases of atypical radiological features of the suspected lesion, tissue diagnosis either by fine needle aspiration or biopsy should be obtained. Although fine needle aspiration could give a smaller risk of seeding than biopsy, biopsy has been preferred over cytology. Percutaneous biopsy of HCC carries a potential risk of tumor seeding along the needle tract. However the risk is low and there is no clear evidence of post transplant recurrence due to needle tract seeding. Histopathologic assessment can differentiate between premalignant lesions such as dysplastic nodules and early HCC. Atypical variants of HCC can be recognized morphologically which may have associated prognostic value. PMID:25755614

  5. Microholography applied to tissue characterization

    NASA Astrophysics Data System (ADS)

    Depeursinge, Christian D.; de Haller, Emmanuel B.; Coquoz, Olivier; Conde, Ramiro; von Bally, Gert

    1995-01-01

    An in-situ holographic technique, involving the use of a flexible miniaturized endoscope (diameter less than 1 mm) coupled to a CCD camera, to record the hologram, has been developed for medical applications and more particularly in-vivo biopsy. The hologram is formed, by reflection, on the tip of a multimode, multicore fiber (MCF), sampled, and then treated electronically. The image is reconstructed numerically, providing more flexibility to the holographic process. Reconstructed images show the capability of the microendoscopic system to restore 3D informations of the observed scene. Our predictions and experimental results have shown that the hope to achieve tissue observations at the cellular level is realistic. Furthermore, the different sources of noise of the experimental device were analyzed and their influence on the quality of the reconstructed image quantified. Images of simple cell models such as epithelial cells easily taken in the oral cavity, have been taken and analyzed. The possibility of using the microholographic technique for in-vivo biopsy is discussed both from theoretical considerations and experimental observations.

  6. Cryosectioning of undecalcified tissues for immunofluorescence.

    PubMed

    Rijntjes, N V; Van de Putte, L B; Van der Pol, M; Guelen, P J

    1979-01-01

    The present report describes a procedure for preparing 4--6 micrometers cryostat sections of undecalcified fresh frozen tissue which contain hard tissue, for immunofluorescence. The apparatus used is a cryomicrotome originally designed for cutting sections for whole body autoradiography. To obtain cryostat sections suitable for tissue immunofluorescence the standard procedure was modified with respect to the hardness and edges of the microtome knife, the temperature of the cryostat and the carboxymethyl cellulose concentration of the embedding material. PMID:387879

  7. Explant culture of sarcoma patients' tissue.

    PubMed

    Muff, Roman; Botter, Sander M; Husmann, Knut; Tchinda, Joelle; Selvam, Philomina; Seeli-Maduz, Franziska; Fuchs, Bruno

    2016-07-01

    Human sarcomas comprise a heterogeneous group of rare tumors that affect soft tissues and bone. Due to the scarcity and heterogeneity of these diseases, patient-derived cells that can be used for preclinical research are limited. In this study, we investigated whether the tissue explant technique can be used to obtain sarcoma cell lines from fresh as well as viable frozen tissue obtained from 8 out of 12 soft tissue and 9 out of 13 bone tumor entities as defined by the World Health Organization. The success rate, defined as the percent of samples that yielded sufficient numbers of outgrowing cells to be frozen, and the time to freeze were determined for a total of 734 sarcoma tissue specimens. In 552 cases (75%) enough cells were obtained to be frozen at early passage. Success rates were higher in bone tumors (82%) compared with soft tissue tumors (68%), and the mean time to freezing was lower in bone tumors (65 days) compared with soft tissue tumors (84 days). Overall, from 40% of the tissues cells could be frozen at early passage within <2 month after tissue removal. Comparable results as with fresh tissue were obtained after explant of viable frozen patient-derived material. In a selected number of bone and soft tissue sarcoma entities, conventional karyotyping and/or FISH (fluorescence in situ hybridization) analysis revealed a high amount (>60%) of abnormal cells in 41% of analyzed samples, especially in bone sarcomas (osteosarcoma and Ewing sarcoma). In conclusion, the explant technique is well suited to establish patient-derived cell lines for a large majority of bone and soft tissue sarcoma entities with adequate speed. This procedure thus opens the possibility for molecular analysis and drug testing for therapeutic decision making even during patient treatment. PMID:27111283

  8. [Cryopreservation of testicular tissue in children].

    PubMed

    Rives, Nathalie; Milazzo, Jean-Pierre; Travers, Albanne; Arkoun, Brahim; Bironneau, Amandine; Sibert, Louis; Liard-Zmuda, Agnès; Marie-Cardine, Aude; Schneider, Pascale; Vannier, Jean-Pierre; Macé, Bertrand

    2013-01-01

    The toxicity of cancer therapies can affect all organs and tissues. Some treatments damage spermatogonial stem cells (SSCs), with a risk of infertility. Storage and reimplantation of frozen testicular tissue is a recent approach tofertilitypreservationfor young boys. However, thawed frozen prepubertal testicular tissue must undergo a maturation process to restore sperm production. This process, currently being studied in animal models, can be achieved by in vivo transplantation of SSCs into seminiferous tubules or by testicular grafting, possibly following in vitro maturation. PMID:25518156

  9. Animal Models for Adipose Tissue Engineering

    PubMed Central

    Uthamanthil, Rajesh; Beahm, Elisabeth; Frye, Cindy

    2008-01-01

    Abstract There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering. PMID:18544014

  10. Method for thermal monitoring subcutaneous tissue

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Brandenburger, G. H. (Inventor)

    1985-01-01

    A noninvasive accurate method for measuring the temperature of tissue beneath the surface of a living body is described. Ultrasonic signals are directed into beads of a material that are inserted into the tissue with a syringe. The reflected signals indicate the acoustic impedance or resonance frequency of the beads which in turn indicates the temperature of the tissue. A range of temperatures around the melting temperature of the material can be measured by this method.

  11. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. PMID:23834768

  12. Preservation and transplantation of porcine testis tissue.

    PubMed

    Zeng, W; Snedaker, A K; Megee, S; Rathi, R; Chen, F; Honaramooz, A; Dobrinski, I

    2009-01-01

    Grafting of immature mammalian testis tissue to mouse hosts can preserve the male germline. To make this approach applicable to a clinical or field situation, it is imperative that the testis tissue and/or spermatozoa harvested from grafted tissue are preserved successfully. The aim of the present study was to evaluate protocols for the preservation of testis tissue in a porcine model. Testis tissue was stored at 4 degrees C for short-term preservation or cryopreserved by slow-freezing, automated slow-freezing or vitrification for long-term storage. Preserved tissue was transplanted ectopically to mouse hosts and recovered xenografts were analysed histologically. In addition, spermatozoa were harvested from xenografts and cryopreserved. Total cell viability and germ cell viability remained high after tissue preservation. Complete spermatogenesis occurred in xenografts preserved by cooling up to 48 h, whereas spermatogenesis progressed to round spermatids in the xenografts that were frozen-thawed before grafting. Approximately 50% of spermatozoa harvested from xenografts remained viable after freezing and thawing. The in vivo developmental potential of cryopreserved tissue was reduced despite high post-thaw viability. Therefore, it is important to evaluate germ cell differentiation in vivo in addition to cell viability in vitro when optimising freezing protocols for testis tissue. PMID:19261226

  13. Tissue banking training courses: Polish experience.

    PubMed

    Kaminski, Artur; Gut, Grzegorz; Uhrynowska-Tyszkiewicz, Izabela; Olender, Ewa

    2013-03-01

    Personnel directly involved in the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells should be appropriately qualified and provided with timely and relevant training according to EU directives. In the time of new tissue and cells regulations implementation such a training system existed in Poland only at a local level. The first training programme outlines for various groups of health professionals engaged in tissue banking practice was created in co-operation with the Institute for LifeLong Learning at University of Barcelona in 2006. This initial training courses were financially supported by EU Transition Facility Programme 2004. Then, starting from 2006, based on previous experience, system of advanced training courses was created. This training programme was financially supported by the National Programme for the Development of Transplantation Medicine 2006-2009-POLGRAFT financed by Polish Ministry of Health. During 2006 and 2007 first set of tissue banking initial training courses were provided according to TF 2004 project. Over 200 pathologists, forensic medicine specialists and other medical doctors responsible for donor screening and classification, medical directors of tissue establishments, technical staff; tissue graft users: orthopaedic surgeons, neurosurgeons, cardiosurgeons and ophthalmologists were trained. Between 2006 and 2009 there were organized 8 advanced tissue banking training courses according to POLGRAFT programme. There were organized both theoretical and practical courses on various aspects of tissue for over 350 persons. We present our experience in organisation of international and national tissue banking training courses. PMID:22318653

  14. Printing and Prototyping of Tissues and Scaffolds

    NASA Astrophysics Data System (ADS)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  15. Measuring tissue oxygen saturation using NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sircan-Kucuksayan, Aslinur; Uyuklu, Mehmet; Canpolat, Murat

    2014-05-01

    Tissue oxygen saturation (StO2) is known quite useful parameter for medical applications. A spectroscopic method has been developed to diagnose pathologic tissues due to lack of normal blood circulation by measuring tissue oxygen saturation. In the study, human blood samples with different level of oxygen saturations have been prepared and spectra were taken using an optical fiber probe to investigate correlation between the oxygen saturations and the spectra. The experimental set up for the spectroscopic measurements was consists of a miniature NIR light spectrometer, an optical fiber probe, a halogen-tungsten light source and a laptop. A linear correlation between the oxygen saturation of the blood samples and the ratio of the light of wavelengths 660 nm to 790 nm has been found from the spectra. Then, oxygen saturations of the blood samples were estimated from the spectroscopic measurements within an error of 2.9%. Furthermore, it has been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Tissue oxygen saturation has been estimated from the spectroscopic measurements were taken from the fingers of healthy volunteers using the correlation between the spectra and blood oxygen saturation. The tissue StO2 measured was 80% as expected. The technique developed to measure tissue oxygen saturation has potential to diagnose premalignant tissues, follow up prognosis of cancerous tissues, and evaluation of ischemia reperfusion tissues.

  16. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  17. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  18. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  19. Design of spectral filtering for tissue classification

    NASA Astrophysics Data System (ADS)

    Narayanan, Ajay; Shah, Pratik; Das, Bipul

    2012-02-01

    Tissue characterization from imaging studies is an integral part of clinical practice. We describe a spectral filter design for tissue separation in dual energy CT scans obtained from Gemstone Spectral Imaging scanner. It enables to have better 2D/3D visualization and tissue characterization in normal and pathological conditions. The major challenge to classify tissues in conventional computed tomography (CT) is the x-ray attenuation proximity of multiple tissues at any given energy. The proposed method analyzes the monochromatic images at different energy levels, which are derived from the two scans obtained at low and high KVp through fast switching. Although materials have a distinct attenuation profile across different energies, tissue separation is not trivial as tissues are a mixture of different materials with range of densities that vary across subjects. To address this problem, we define spectral filtering, that generates probability maps for each tissue in multi-energy space. The filter design incorporates variations in the tissue due to composition, density of individual constituents and their mixing proportions. In addition, it also provides a framework to incorporate zero mean Gaussian noise. We demonstrate the application of spectral filtering for bone-free vascular visualization and calcification characterization.

  20. The organization of tissue banking in Scotland.

    PubMed

    Galea, G

    2012-11-01

    Tissue banking in Scotland has developed significantly over the past 20 years or so. The range of issues procured has increased and so have their numbers. Initially, bone from live donors was the only tissue banked; later, tissues from multiorgan donors were procured; this was finally followed by the collection of tissues from donors following cardiac death. Bones, tendons, heart valves and skin are the main tissue types collected, stored and issued for clinical use. Much of our activity is based on identification of donors in two major accident and emergency departments followed by retrievals that take place in a dedicated mortuary by fully-trained staff. Tissues are released according to clinical need for Scottish patients and beyond. All of the tissue banking activity in Scotland takes place within the Scottish National Blood Transfusion Service, which is the preferred provider of tissues for Scottish patients. There is very close cooperation between our teams, the transplant teams and other clinical colleagues, including pathologists and anatomical technicians. The achievements in issue banking in Scotland are outlined along with the main clinical indications of the tissue procured. Diversification is now taking place into cellular therapy with the establishment of an islet processing programme and cell culturing techniques. The future is very exciting. PMID:23138581

  1. Excursion of vibrating microelectrodes in tissue

    NASA Technical Reports Server (NTRS)

    Kanabus, E. W.; Feldstein, C.; Crawford, D. W.

    1980-01-01

    The paper deals with a vibrating microelectrode holder consisting of a support rod attached to the cone of a miniature loudspeaker. This holder facilitates a microelectrode penetration into arterial wall tissue, eliminates surface dimpling, and relieves polarographic artifacts believed to be due to tissue compression. The paper presents construction and performance details of the electrode holder, and evaluates the extent of possible damage incurred during such vibration by measuring electrode motion relative to surrounding tissue in an excised segment of femoral artery in the rabbit. It is concluded that under proper vibratory conditions microelectrodes can be easily inserted into the arterial wall with minimum tissue disturbance.

  2. Amelogenin in Enamel Tissue Engineering

    PubMed Central

    2016-01-01

    In this chapter the basic premises, the recent findings and the future challenges in the use of amelogenin for enamel tissue engineering are being discoursed on. Results emerging from the experiments performed to assess the fundamental physicochemical mechanisms of the interaction of amelogenin, the main protein of the enamel matrix, and the growing crystals of apatite, are mentioned, alongside a moderately comprehensive literature review of the subject at hand. The clinical importance of understanding this protein/mineral interaction at the nanoscale are highlighted as well as the potential for tooth enamel to act as an excellent model system for studying some of the essential aspects of biomineralization processes in general. The dominant paradigm stating that amelogenin directs the uniaxial growth of apatite crystals in enamel by slowing down the growth of (hk0) faces on which it adheres is being questioned based on the results demonstrating the ability of amelogenin to promote the nucleation and crystal growth of apatite under constant titration conditions designed to mimic those present in the developing enamel matrix. The role of numerous minor components of the enamel matrix is being highlighted as essential and impossible to compensate for by utilizing its more abundant ingredients only. It is concluded that the three major aspects of amelogenesis outlined hereby – (1) the assembly of amelogenin and other enamel matrix proteins, (2) the proteolytic activity, and (3) crystallization – need to be in precise synergy with each other in order for the grounds for the proper imitation of amelogenesis in the lab to be created. PMID:26545753

  3. Amelogenin in Enamel Tissue Engineering.

    PubMed

    Uskoković, Vuk

    2015-01-01

    In this chapter the basic premises, the recent findings and the future challenges in the use of amelogenin for enamel tissue engineering are being discoursed on. Results emerging from the experiments performed to assess the fundamental physicochemical mechanisms of the interaction of amelogenin, the main protein of the enamel matrix, and the growing crystals of apatite, are mentioned, alongside a moderately comprehensive literature review of the subject at hand. The clinical importance of understanding this protein/mineral interaction at the nanoscale are highlighted as well as the potential for tooth enamel to act as an excellent model system for studying some of the essential aspects of biomineralization processes in general. The dominant paradigm stating that amelogenin directs the uniaxial growth of apatite crystals in enamel by slowing down the growth of (hk0) faces on which it adheres is being questioned based on the results demonstrating the ability of amelogenin to promote the nucleation and crystal growth of apatite under constant titration conditions designed to mimic those present in the developing enamel matrix. The role of numerous minor components of the enamel matrix is being highlighted as essential and impossible to compensate for by utilizing its more abundant ingredients only. It is concluded that the three major aspects of amelogenesis outlined hereby--(1) the assembly of amelogenin and other enamel matrix proteins, (2) the proteolytic activity, and (3) crystallization--need to be in precise synergy with each other in order for the grounds for the proper imitation of amelogenesis in the lab to be created. PMID:26545753

  4. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    PubMed Central

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-01-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes. PMID:25034369

  5. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  6. Effects of Tissue Mechanical Properties on Susceptibility to Histotripsy-induced Tissue Damage

    PubMed Central

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues. PMID:24351722

  7. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  8. Optical Coherence Tomography in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  9. Protein Signature of Lung Cancer Tissues

    PubMed Central

    Mehan, Michael R.; Ayers, Deborah; Thirstrup, Derek; Xiong, Wei; Ostroff, Rachel M.; Brody, Edward N.; Walker, Jeffrey J.; Gold, Larry; Jarvis, Thale C.; Janjic, Nebojsa; Baird, Geoffrey S.; Wilcox, Sheri K.

    2012-01-01

    Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment. PMID:22509397

  10. Vitamin D3 in Fat Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The literature describing vitamin D content of fat tissue is extremely limited. We conducted a pilot study that measured the concentrations of vitamin D3 in the fat tissue and serum of obese adults. These measurements were performed using a new liquid chromatography mass spectrometry (LC/MS) metho...

  11. Contemporary upper lid blepharoplasty--tissue invagination.

    PubMed

    Siegel, R J

    1993-04-01

    Blepharoplasty is the most commonly performed operation to enhance facial appearance. Controversy arises over the need for tissue invagination as opposed to simple tissue excision. This article focuses on advanced invagination-type blepharoplasty, discussing who, what, where, when, why, and how. PMID:8485932

  12. Optical Properties of Bruised Apple Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the optical properties of apple tissue, especially bruised tissue, can help us prevent or mitigate bruise occurrence during harvest and postharvest operations, and develop an effective method for detecting bruises during sorting and grading. This research was aimed at determining the o...

  13. α-Klotho Expression in Human Tissues

    PubMed Central

    Lim, Kenneth; Groen, Arnoud; Molostvov, Guerman; Lu, Tzongshi; Lilley, Kathryn S.; Snead, David; James, Sean; Wilkinson, Ian B.; Ting, Stephen

    2015-01-01

    Context: α-Klotho has emerged as a powerful regulator of the aging process. To date, the expression profile of α-Klotho in human tissues is unknown, and its existence in some human tissue types is subject to much controversy. Objective: This is the first study to characterize systemwide tissue expression of transmembrane α-Klotho in humans. We have employed next-generation targeted proteomic analysis using parallel reaction monitoring in parallel with conventional antibody-based methods to determine the expression and spatial distribution of human α-Klotho expression in health. Results: The distribution of α-Klotho in human tissues from various organ systems, including arterial, epithelial, endocrine, reproductive, and neuronal tissues, was first identified by immunohistochemistry. Kidney tissues showed strong α-Klotho expression, whereas liver did not reveal a detectable signal. These results were next confirmed by Western blotting of both whole tissues and primary cells. To validate our antibody-based results, α-Klotho-expressing tissues were subjected to parallel reaction monitoring mass spectrometry (data deposited at ProteomeXchange, PXD002775) identifying peptides specific for the full-length, transmembrane α-Klotho isoform. Conclusions: The data presented confirm α-Klotho expression in the kidney tubule and in the artery and provide evidence of α-Klotho expression across organ systems and cell types that has not previously been described in humans. PMID:26280509

  14. Nonlinear spectral imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  15. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  16. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  17. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  18. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-03-18

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  19. Live birth after ovarian tissue transplant

    NASA Astrophysics Data System (ADS)

    Lee, D. M.; Yeoman, R. R.; Battaglia, D. E.; Stouffer, R. L.; Zelinski-Wooten, M. B.; Fanton, J. W.; Wolf, D. P.

    2004-03-01

    Radiation and high-dose chemotherapy may render women with cancer prematurely sterile, a side-effect that would be avoided if ovarian tissue that had been removed before treatment could be made to function afterwards. Live offspring have been produced from transplanted ovarian tissue in mice and sheep but not in monkeys or humans, although sex steroid hormones are still secreted. Here we describe the successful transplantation of fresh ovarian tissue to a different site in a monkey, which has led to the birth of a healthy female after oocyte production, fertilization and transfer to a surrogate mother. The ectopically grafted tissue functions without surgical connection to major blood vessels and sets the stage for the transplantation of cryopreserved ovarian tissue in humans.

  20. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  1. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  2. Origin and Functions of Tissue Macrophages

    PubMed Central

    Epelman, Slava; Lavine, Kory J.; Randolph, Gwendalyn J.

    2015-01-01

    Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6chi monocytes patrol the extravascular space in resting organs, and Ly6clo nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. PMID:25035951

  3. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  4. Myocardial tissue engineering for cardiac repair.

    PubMed

    Pecha, Simon; Eschenhagen, Thomas; Reichenspurner, Hermann

    2016-03-01

    The number of patients with heart failure is increasing in the aging population. Heart transplantation remains the only curative treatment option for patients with end-stage heart failure. Because of an organ donor shortage, new organ-independent treatment options are necessary. Different approaches to cardiac repair therapies have been developed and optimized in recent years. One of these promising approaches is myocardial tissue engineering, which refers to the creation of 3-dimensional engineered heart tissue in vitro. This perspective provides an overview of different approaches to tissue engineering, including essentials to improve tissue quality and choice of ideal cell source, as well as an overview of in vitro and in vivo studies. Several hurdles that have to be overcome before clinical application of engineered heart tissue might become a realistic scenario are also addressed. PMID:26856673

  5. Dentin Matrix Proteins in Bone Tissue Engineering

    PubMed Central

    Ravindran, Sriram

    2016-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering. PMID:26545748

  6. New Era in Health Care: Tissue Engineering

    PubMed Central

    Parveen, S; Krishnakumar, K; Sahoo, SK

    2006-01-01

    Abstract Tissue engineering is a rapidly expanding field, which applies the principles and methods of physical sciences, life sciences and engineering to understand physiological and pathological systems and to modify and create cells and tissues for therapeutic applications. It has emerged as a rapidly expanding ‘interdisciplinary field’ that is a significant potential alternative wherein tissue and organ failure is addressed by implanting natural, synthetic, or semi synthetic tissue or organ mimics that grow into the required functionality or that are fully functional from the start. This review presents in a comprehensive manner the various considerations for the reconstruction of various tissues and organs as well as the various applications of this young emerging field in different disciplines. PMID:24692857

  7. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months. PMID:27521613

  8. The human transcriptome across tissues and individuals

    PubMed Central

    Melé, Marta; Ferreira, Pedro G.; Reverter, Ferran; DeLuca, David S.; Monlong, Jean; Sammeth, Michael; Young, Taylor R.; Goldmann, Jakob M; Pervouchine, Dmitri D.; Sullivan, Timothy J.; Johnson, Rory; Segrè, Ayellet V.; Djebali, Sarah; Niarchou, Anastasia; Wright, Fred A.; Lappalainen, Tuuli; Calvo, Miquel; Getz, Gad; Dermitzakis, Emmanouil T.; Ardlie, Kristin G.; Guigó, Roderic

    2015-01-01

    Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes. PMID:25954002

  9. Tissue engineering in the rheumatic diseases

    PubMed Central

    Ringe, Jochen; Sittinger, Michael

    2009-01-01

    Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research. PMID:19232063

  10. Nonmuscle Tissues Contribution to Cancer Cachexia

    PubMed Central

    Argilés, Josep M.; Stemmler, Britta; López-Soriano, Francisco J.; Busquets, Silvia

    2015-01-01

    Cachexia is a syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting, and inflammation, being often associated with anorexia. In spite of the fact that muscle tissue represents more than 40% of body weight and seems to be the main tissue involved in the wasting that occurs during cachexia, recent developments suggest that tissues/organs such as adipose (both brown and white), brain, liver, gut, and heart are directly involved in the cachectic process and may be responsible for muscle wasting. This suggests that cachexia is indeed a multiorgan syndrome. Bearing all this in mind, the aim of the present review is to examine the impact of nonmuscle tissues in cancer cachexia. PMID:26523094

  11. Design Strategies and Applications of Tissue Bioadhesives

    PubMed Central

    Mehdizadeh, Mohammadreza; Yang, Jian

    2013-01-01

    In the past two decades tissue adhesives and sealants have revolutionized hemostasis and wound management in traumatic and surgical injuries. Various biological-driven glues and synthetic adhesives are clinically utilized either as an adjunct to conventional hemostats and wound closure techniques, such as suturing, or as a replacement to them. The ability to effectively and promptly control bleeding, thus, reducing the risk of complications due to severe blood loss, in addition to convenience of use render medical adhesive a highly suitable tool for wound management. This review focuses on existing tissue adhesive systems, their structure, functioning mechanism, indicated and off-label applications, and limitations. It also includes the latest advances in the development of new tissue adhesives as well as the emerging applications in regenerative medicine. We expect that this review will provide insightful discussion on tissue bioadhesive design and lead to innovations for the development of the next generation of tissue bioadhesives and their related biomedical applications. PMID:23225776

  12. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  13. Injectable fillers for facial soft tissue enhancement.

    PubMed

    Sclafani, A P; Romo, T

    2000-01-01

    Soft tissue augmentation materials have been advocated for correction of post-surgical or post-traumatic facial defects, as well as for age-related folds and wrinkles. While autogenous tissues may be the safest option, they require a second operative site. Animal-derived or synthetic materials have been advocated since the late 19th century, and have waxed and waned in popularity. In recent years, we have gained a better understanding of the physical events that occur when material is placed within or below the skin. With this knowledge, we stand at the threshold of a new era, where soft tissue fillers can be designed and customized to suit the individual patient. This article will review the major materials that have been or are now advocated for use as soft tissue fillers, and will detail their relative strengths and weaknesses in order to give the clinician a better perspective when considering a material for soft tissue augmentation. PMID:11802343

  14. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  15. Tissue substitutes in radiation dosimetry and measurement

    SciTech Connect

    Not Available

    1989-01-01

    This book explains the activities of the International Commission on Radiation Units and Measurements and discusses tissue substitutes in radiation dosimetry and measurement. The following section is on basic concepts including definitions, specifications, and interaction coefficients. This section also includes a description of the effects of photons, electrons, neutrons, and heavily charged particles on body tissues. The third section is on selected requirements for tissue substitutes and briefly covers radiation-related requirements for radiation therapy, radiologic diagnosis, radiation protection, and radiobiology. The fourth short section is on composition of body tissues, and comparative interaction and depth dose data for selected tissue substitutes are covered in the fifth section. This includes several tables and many graphs of the ratios required to calculate the radiation dose.

  16. Tissue modification with feedback: the smart scalpel

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  17. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    SciTech Connect

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  18. Depositing archived paraffin tissue core biopsy specimens in paraffin tissue microarrays using a paraffin tissue punch modified with a countersink

    PubMed Central

    Vogel, Ulrich Felix

    2007-01-01

    Paraffin tissue microarrays (PTMAs) introduced by Kononen et al in 1998 have become a widely used technique in routine pathology and even more so in research. Kononen used a tissue puncher/arrayer (Beecher Instruments, Sun Prairie, WI, USA) to take paraffin tissue core biopsy specimens (PTCBs) of 0.6–2 mm in diameter from routine paraffin tissue blocks and transfer them to another paraffin block with up to 1000 holes. As pointed out by Mengel et al, however, it is not possible to use the Kononen/Beecher system to construct PTMAs out of archived PTCBs. To overcome this drawback in the extremely popular Beecher system, the paraffin tissue punch was modified by incorporating a conical 4 mm deep countersink. This countersink was milled with a conical precision cutter that can be bought in an ordinary hardware store (cost tissue punch and enables the construction of PTMAs with previously archived PTCBs using the widely distributed Beecher system. Moreover, this paraffin tissue punch can be used for other systems to create PTMAs, such as the low‐budget systems designed by Vogel. PMID:17079355

  19. Assessment of tissue viability by polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  20. Emergent Global Contractile Force in Cardiac Tissues.

    PubMed

    Knight, Meghan B; Drew, Nancy K; McCarthy, Linda A; Grosberg, Anna

    2016-04-12

    The heart is a complex organ whose structure and function are intricately linked at multiple length scales. Although several advancements have been achieved in the field of cardiac tissue engineering, current in vitro cardiac tissues do not fully replicate the structure or function necessary for effective cardiac therapy and cardiotoxicity studies. This is partially due to a deficiency in current understandings of cardiac tissue organization's potential downstream effects, such as changes in gene expression levels. We developed a novel (to our knowledge) in vitro tool that can be used to decouple and quantify the contribution of organization and associated downstream effects to tissue function. To do so, cardiac tissue monolayers were designed into a parquet pattern to be organized anisotropically on a local scale, within a parquet tile, and with any desired organization on a global scale. We hypothesized that if the downstream effects were muted, the relationship between developed force and tissue organization could be modeled as a sum of force vectors. With the in vitro experimental platforms of parquet tissues and heart-on-a-chip devices, we were able to prove this hypothesis for both systolic and diastolic stresses. Thus, insight was gained into the relationship between the generated stress and global myofibril organization. Furthermore, it was demonstrated that the developed quantitative tool could be used to estimate the changes in stress production due to downstream effects decoupled from tissue architecture. This has the potential to elucidate properties coupled to tissue architecture, which change force production and pumping function in the diseased heart or stem cell-derived tissues. PMID:27074686