Laparoscopic Repair of Inguinal Hernia Using Surgisis Mesh and Fibrin Sealant
2006-01-01
Objective: We tested the hypothesis that laparoscopic inguinal herniorrhaphy using Surgisis mesh secured with fibrin sealant is an effective long-term treatment for repair of inguinal hernia. This case series involved 38 adult patients with 51 inguinal hernias treated in a primary care center. Methods: Between December 2002 and May 2005, 38 patients with 45 primary and 6 recurrent inguinal hernias were treated with laparoscopic repair by the total extra-peritoneal mesh placement (TEP) technique using Surgisis mesh secured into place with fibrin sealant. Postoperative complications, incidence of pain, and recurrence were recorded, as evaluated at 2 weeks, 6 weeks, 1 year, and with a follow-up questionnaire and telephone interview conducted in May and June 2005. Results: The operations were successfully performed on all patients with no complications or revisions to an open procedure. Average follow-up was 13 months (range, 1 to 30). One hernia recurred (second recurrence of unilateral direct hernia), indicating a 2% recurrence rate. Conclusions: Laparoscopic repair of inguinal hernia using Surgisis mesh secured with fibrin sealant can be effectively used to treat primary, recurrent, direct, indirect, and bilateral inguinal hernias in adults without complications and minimal recurrence within 1-year of follow-up. PMID:17575758
Mesh generation from 3D multi-material images.
Boltcheva, Dobrina; Yvinec, Mariette; Boissonnat, Jean-Daniel
2009-01-01
The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. PMID:20426123
Quality Partitioned Meshing of Multi-Material Objects
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit
2016-01-01
We present a simple but effective algorithm for generating topologically and geometrically consistent quality triangular surface meshing of compactly packed multiple heterogeneous domains in R3. By compact packing we imply that adjacent homogeneous domains or materials share some 0, 1, and/or 2 dimensional boundary. Such packed multiple material (or multi-material) solids arise naturally from classification/partitioning/segmentation of homogeneous domains in R3 into different sub-regions. The multi-materials may also represent separate functionally classified sections or just be multiple component copies tightly fused together as perhaps by layered manufacturing processes. The input to our algorithm is a geometric representation of the entire multi-material solid, and a volumetric classification map identifying the individual materials. As output, each individual material region is represented by a triangulated 2-manifold boundary, with adjacent material regions having shared boundaries. Our algorithm has been implemented, and applied to different multi-material solids, and the results are additionally presented with quantitative analysis of detection and cure of non-manifold interfaces as well as spurious small components. These meshes are useful for combined boundary element analysis, however these simulation results are not presented.
An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.
Zhang, Yongjie; Hughes, Thomas J R; Bajaj, Chandrajit L
2010-01-01
This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555
Determination of Electromagnetic Properties of Mesh Material Using Advanced Radiometer Techniques
NASA Technical Reports Server (NTRS)
Arrington, R. F.; Blume, H. J. C.
1985-01-01
The need for a large diameter deployable antenna to map soil moisture with a 10 kilometer or better resolution using a microwave radiometer is discussed. A 6 meter deployable antenna is also needed to map sea surface temperature on the Navy Remote Ocean Sensor System (NROSS). Both of these deployable antennas require a mesh membrane material as the reflecting surface. The determination of the electromagnetic properties of mesh materials is a difficult problem. The Antenna and Microwave Research Branch (AMRB) of Langley Research Center was asked to measure the material to be used on MROSS by NRL. A cooperative program was initiated to measure this mesh material using two advanced radiometer techniques.
Lafosse, Aurore; de Magnee, Catherine; Brunati, Andrea; Bayet, Bénédicte; Vanwijck, Romain; Manzanares, Javier; Reding, Raymond
2012-08-01
We report the case of a two and a half yr boy hospitalized in our Pediatric Transplantation Unit for portal vein thrombosis following liver transplantation. After performing a meso-Rex shunt, abdominal wall closure was impossible without compressing the portal flow. A combination of two techniques was used to perform the reconstruction of the muscular fasciae and skin layers. The association of tissue expanders and porcine mesh (Surgisis(®)) allowed complete abdominal wall closure with good functional and esthetic results. Use of both techniques is a useful alternative for difficult abdominal closure after liver pediatric transplantation. PMID:21848529
Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.
2014-01-01
During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769
Mechanical Properties of Mesh Materials Used for Hernia Repair and Soft Tissue Augmentation
Pott, Peter P.; Schwarz, Markus L. R.; Gundling, Ralf; Nowak, Kai; Hohenberger, Peter; Roessner, Eric D.
2012-01-01
Background Hernia repair is the most common surgical procedure in the world. Augmentation with synthetic meshes has gained importance in recent decades. Most of the published work about hernia meshes focuses on the surgical technique, outcome in terms of mortality and morbidity and the recurrence rate. Appropriate biomechanical and engineering terminology is frequently absent. Meshes are under continuous development but there is little knowledge in the public domain about their mechanical properties. In the presented experimental study we investigated the mechanical properties of several widely available meshes according to German Industrial Standards (DIN ISO). Methodology/Principal Findings Six different meshes were assessed considering longitudinal and transverse direction in a uni-axial tensile test. Based on the force/displacement curve, the maximum force, breaking strain, and stiffness were computed. According to the maximum force the values were assigned to the groups weak and strong to determine a base for comparison. We discovered differences in the maximum force (11.1±6.4 to 100.9±9.4 N/cm), stiffness (0.3±0.1 to 4.6±0.5 N/mm), and breaking strain (150±6% to 340±20%) considering the direction of tension. Conclusions/Significance The measured stiffness and breaking strength vary widely among available mesh materials for hernia repair, and most of the materials show significant anisotropy in their mechanical behavior. Considering the forces present in the abdominal wall, our results suggest that some meshes should be implanted in an appropriate orientation, and that information regarding the directionality of their mechanical properties should be provided by the manufacturers. PMID:23071685
A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model
Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A
2009-03-03
Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.
Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material.
Walboomers, X Frank; Jansen, John A
2005-08-01
Scaffold materials for bone tissue engineering often are supplemented with bone morphogenetic proteins (BMPs). In the current study we aimed to investigate COLLOSS, a bovine extracellular matrix product containing native BMPs. Hollow cylindrical implants were made, with a length of 10 mm, a 3 mm inner diameter, and a 5 mm outer diameter, from titanium fibre mesh. The central space of the tube was filled with 20 mg COLLOSS. Subsequently, these implants, as well as non-loaded controls, were implanted subcutaneously into the back of Wistar rats, with n=6 for all study groups. After implantation periods of 2, 8, and 12 weeks, tissue-covered implants were retrieved, and sections were made, perpendicular to the long axis of the tube. Histology showed, that all implants were surrounded by a thin fibrous tissue capsule. After 2 weeks of implantation, the COLLOSS material was reduced in size inside the loaded implants, but no bone-like tissue formation was evident. After 8 weeks, in two out of six loaded specimens, new-formed bone- and bone marrow-like tissues could be observed. After 12 weeks, this had increased to five out of six COLLOSS-loaded samples. The amount of bone-like tissue did not differ between 8 and 12 weeks, and on average occupied 15% of the central space of the tube. In the non-loaded control samples, only connective tissue ingrowth was observed. In conclusion, we can say that COLLOSS material loaded in a titanium fibre mesh tube, showed bone-inducing properties. The final efficacy of these osteo-inductive properties has to be confirmed in future large animal studies. PMID:15763257
Mesh implants: An overview of crucial mesh parameters
Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe
2015-01-01
Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210
Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L
2011-04-21
The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer. PMID:21428423
Urogynecologic Surgical Mesh Implants
... Boston Scientific's urogynecologic surgical mesh may contain counterfeit raw material. We are examining these allegations to determine any ... are currently not aware that the alleged counterfeit raw material contributes to adverse events associated with these products. ...
Mesh Excision: Is Total Mesh Excision Necessary?
Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M
2016-04-01
Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement. PMID:26905696
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
... Device Safety Safety Communications Surgical Mesh: FDA Safety Communication Share Tweet Linkedin Pin it More sharing options ... Prolapse and Stress Urinary Incontinence More in Safety Communications Information About Heparin Preventing Tubing and Luer Misconnections ...
[Treatment of hernias and eventrations with alloplastic material (Mersilene type mesh)].
Crişan, G; Caloghera, C; Nica, C; Bordoş, D; Nicola, T; Lazăr, F; Chidi, J
1981-01-01
Between 1973 and 1979 the authors have performed 126 interventions, as follows: 27 hernias (18 of the inguinal type and 9 umbilical ones), and 99 eventration. They used alloplastic materials for consolidation or substitution of the musculo-aponevrotic wall of mediocre quality. In practice the "Mersilene" alloplastic material was used, made of dacron fibers, which provides a series of advantages: good tolerance, efficient sterilisation without undergoing degradation, possibility for use in reparation of large wall defects, high resistance. The net was applied for consolidation purposes in most of the cases (111 in all), and was placed either above the aponevrosis, or pre- or intra-peritoneally. In 15 patients it was used for substitution, when eventration resulted in a large muscular-aponevrotic defect. The results were very good, and a single recidive was noted, as well as two partial rejections, that did not however result in recidives. PMID:6454194
Brown, Bryan N.; Londono, Ricardo; Tottey, Stephen; Zhang, Li; Kukla, Kathryn A.; Wolf, Matthew T.; Daly, Kerry A.; Reing, Janet E.; Badylak, Stephen F.
2015-01-01
Macrophages have been classified as having plastic phenotypes which exist within a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards a predominantly M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r2=0.525–0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 versus M2 response. Both M2 and M0 macrophage conditioned
Bioprosthetic Mesh in Abdominal Wall Reconstruction
Baumann, Donald P.; Butler, Charles E.
2012-01-01
Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454
NASA Astrophysics Data System (ADS)
Jia, Zupeng; Liu, Jun; Zhang, Shudao
2013-03-01
This paper presents an effective second-order three-dimensional unstructured multi-material arbitrary Lagrangian-Eulerian (MMALE) method for compressible fluid dynamics. This is an integration work. The MMALE method utilizes Moment of Fluid (MOF) capability with interface reconstruction for multi-material modeling of immiscible fluids. It is of the explicit time-marching Lagrange plus remap type. In the Lagrangian phase, the staggered compatible discretization for Lagrangian gas dynamics is used also with Tipton's pressure relaxation model for the closure of mixed cells. For the remapping phase, an improved second-order cell-intersection-based method for three-dimensional unstructured mesh is presented. It is conservative for remapping cell-centered variables such as density and internal energy. It is suitable for remapping between two meshes with different topology. By using this remapping method, the new material centroid position in the rezoned cells can be geometrically computed. This enables it to be combined with the MOF algorithm for constructing a second-order MMALE method. The MMALE method can be implemented on three-dimensional unstructured hexahedral meshes. Numerical results have proved the accuracy and robustness of the MMALE method.
Augmentation mentoplasty using Mersilene mesh.
McCollough, E G; Hom, D B; Weigel, M T; Anderson, J R
1990-10-01
Many different materials are available for augmentation mentoplasty. However, the optimal implant material for chin implantation has yet to be found. During the past several years, a number of experienced surgeons have turned to the use of Mersilene mesh. Mersilene mesh is a non-absorbable Dacron polyester fiber that can be conformed easily into layers to achieve tailored dimensions and shape. At the McCollough Plastic Surgery Clinic PA, Birmingham, Ala, 277 patients over a 10-year period underwent chin augmentation with Mersilene mesh implants. The material provides excellent tensile strength, durability, and surgical adaptability. The overall complication rate was 3.2% (nine patients); infection rate, 2.5% (seven patients); and removal secondary to infection, 1.7% (five patients). Based on this 10-year experience, Mersilene mesh remains our material of choice for chin augmentation. PMID:2206500
Energy Science and Technology Software Center (ESTSC)
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact withmore » iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.« less
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact with iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.
Spherical geodesic mesh generation
Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
Automatic Mesh Coarsening for Discrete Ordinates Codes
Turner, Scott A.
1999-03-11
This paper describes the use of a ''mesh potential'' function for automatic coarsening of meshes in discrete ordinates neutral particle transport codes. For many transport calculations, a user may find it helpful to have the code determine a ''good'' neutronics mesh. The complexity of a problem involving millions of mesh cells, dozens of materials, and many energy groups makes it difficult to determine an adequate level of mesh refinement with a minimum number of cells. A method has been implemented in PARTISN (Parallel Time-dependent SN) to calculate a ''mesh potential'' in each original cell of a problem, and use this information to determine the maximum coarseness allowed in the mesh while maintaining accuracy in the solution. Results are presented for a simple x-y-z fuel/control/reflector problem.
Mesh for prolapse surgery: Why the fuss?
Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe
2015-06-01
Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications. PMID:25952907
Mesh Quality Improvement Toolkit
Energy Science and Technology Software Center (ESTSC)
2002-11-15
MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
Single port laparoscopic mesh rectopexy
2016-01-01
Introduction Traditionally, laparoscopic mesh rectopexy is performed with four ports, in an attempt to improve cosmetic results. Following laparoscopic mesh rectopexy there is a new operative technique called single-port laparoscopic mesh rectopexy. Aim To evaluate the single-port laparoscopic mesh rectopexy technique in control of rectal prolapse and the cosmesis and body image issues of this technique. Material and methods The study was conducted in El Fayoum University Hospital between July 2013 and November 2014 in elective surgery for symptomatic rectal prolapse with single-port laparoscopic mesh rectopexy on 10 patients. Results The study included 10 patients: 3 (30%) males and 7 (70%) females. Their ages ranged between 19 years and 60 years (mean: 40.3 ±6 years), and they all underwent laparoscopic mesh rectopexy. There were no conversions to open technique, nor injuries to the rectum or bowel, and there were no mortalities. Mean operative time was 120 min (range: 90–150 min), and mean hospital stay was 2 days (range: 1–3 days). Preoperatively, incontinence was seen in 5 (50%) patients and constipation in 4 (40%). Postoperatively, improvement in these symptoms was seen in 3 (60%) patients for incontinence and in 3 (75%) for constipation. Follow-up was done for 6 months and no recurrence was found with better cosmetic appearance for all patients. Conclusions Single-port laparoscopic mesh rectopexy is a safe procedure with good results as regards operative time, improvement in bowel function, morbidity, cost, and recurrence, and with better cosmetic appearance. PMID:27350840
Energy Science and Technology Software Center (ESTSC)
2007-02-02
The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less
Christon, M.; Hardin, D.; Compton, J.; Zosel, M.
1994-08-29
Building complex meshes for large-scale numerical simulations presents immense difficulties in exploiting high-performance computers. Industry and research leaders will describe the current state of the art for generating meshes for such large scientific problems. This will be followed by a panel and general audience discussion of the algorithmic and architectural issues surrounding the generation of meshes with10{sup 7} to 10{sup 9} grid points. (Note: The terms ``mesh`` and ``grid`` are used interchangeably in the literature.)
Taskan, Ergin; Hasar, Halil
2015-02-01
This paper summarizes the comparison of a new tin-coated copper (t-coating Cu) mesh electrode with a graphite plate electrode for potential power generation and biocompatibility in a microbial fuel cell (MFC). The study, which used domestic wastewater, demonstrated that t-coating Cu mesh electrode produced a power density (271 mW/m(2)) approximately three times higher than that produced by a graphite electrode (87 mW/m(2)). Scanning electron microscopy (SEM) results revealed that bacterial morphology on the two electrodes significantly varied. The t-coating Cu mesh electrode surface had higher bacterial diversity because the open three-dimensional macro-mesh structure allowed an excellent electro-biofilm attachment. Kinetic performances evaluated using the Nernst-Monod equation demonstrated that the t-coating Cu mesh electrode had both higher power density and good biocompatibility in a large surface area, high chemical stability, and favorable metallic conductivity. PMID:25481116
Abdominal wall reconstruction with implantable meshes.
Masden, Derek; Felder, John M; Iorio, Matthew L; Bhanot, Parag; Attinger, Christopher E
2011-01-01
Abdominal wall defects present a difficult problem for the reconstructive surgeon. Over the years, numerous implantable materials have becomes available to aid the surgeon in recreating the abdominal wall. This spectrum of implants includes permanent synthetic meshes, absorbable meshes, composite meshes and biomaterials. This review includes the pros and cons for the commercially available abdominal wall implants as well as a review of the literature regarding outcomes for each material. This review will provide the surgeon with current evidence-based information on implantable abdominal materials to be able to make a more informed decision about which implant to use. PMID:21663579
Ye, Dexin; Lu, Ling; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin
2016-01-01
A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208
Ye, Dexin; Lu, Ling; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin
2016-03-01
A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208
NASA Astrophysics Data System (ADS)
Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory
Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.
Energy Science and Technology Software Center (ESTSC)
2008-01-01
Parallel Heterogeneous Dynamic unstructured Mesh (phdMesh) data structure library and integration testing code that performs dynamic load balancing of the data structure and parallel geometric proximity search on a contrived test problem. The phdMesh library is intended to be module within a finite element or finite volume library or code. The integration testing code is intended to provide a compact and highly portable performance evaluation code for parallel computing systems.
NASA Technical Reports Server (NTRS)
Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.
1986-01-01
A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed to two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.
NASA Technical Reports Server (NTRS)
Savage, M.; Caldwell, R. J.; Wisor, G. D.; Lewicki, D. G.
1987-01-01
A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed of two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing.
A nanobursa mesh: a graded electrospun nanofiber mesh with metal nanoparticles on carbon nanotubes
NASA Astrophysics Data System (ADS)
Senturk-Ozer, Semra; Chen, Tao; Degirmenbasi, Nebahat; Gevgilili, Halil; Podkolzin, Simon G.; Kalyon, Dilhan M.
2014-07-01
A new type of material, a ``nanobursa'' mesh (from ``bursa'' meaning ``sac or pouch''), is introduced. This material consists of sequential layers of porous polymeric nanofibers encapsulating carbon nanotubes, which are functionalized with different metal nanoparticles in each layer. The nanobursa mesh is fabricated via a novel combination of twin-screw extrusion and electrospinning. Use of this hybrid process at industrially-relevant rates is demonstrated by producing a nanobursa mesh with graded layers of Pd, Co, Ag, and Pt nanoparticles. The potential use of the fabricated nanobursa mesh is illustrated by modeling of catalytic hydrocarbon oxidation.A new type of material, a ``nanobursa'' mesh (from ``bursa'' meaning ``sac or pouch''), is introduced. This material consists of sequential layers of porous polymeric nanofibers encapsulating carbon nanotubes, which are functionalized with different metal nanoparticles in each layer. The nanobursa mesh is fabricated via a novel combination of twin-screw extrusion and electrospinning. Use of this hybrid process at industrially-relevant rates is demonstrated by producing a nanobursa mesh with graded layers of Pd, Co, Ag, and Pt nanoparticles. The potential use of the fabricated nanobursa mesh is illustrated by modeling of catalytic hydrocarbon oxidation. Electronic supplementary information (ESI) available: Experimental methods and computational details. See DOI: 10.1039/c4nr01145g
Optimization of tetrahedral meshes
Briere De L`Isle, E.; George, P.L.
1995-12-31
Finite element computations are all the more exact if we start from {open_quotes}good{close_quotes} elements. We are interested in meshes where the elements are tetrahedra and we shall develop utilities allowing us to improve the quality of these meshes.
MEDICAL SUBJECTS HEADING (MESH)
MeSH is the National Library of Medicine's controlled vocabulary thesaurus. It consists of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. MeSH descriptors are arranged in both an alphabetic and a hierarchical ...
Engagement of Metal Debris into Gear Mesh
NASA Technical Reports Server (NTRS)
handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
Koniges, A.; Eder, D.; Masters, N.; Fisher, A.; Anderson, R.; Gunney, B.; Wang, P.; Benson, D.; Dixit, P.
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being applied to slurry flow (landslides).
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Ozden, Banu
1990-01-01
Efficient testing techniques for two-dimensional mesh interconnection networks are presented. The tests cover faults in the arbitration logic of the switches; this includes an examination of fault detection in the data paths, routing, and control circuitry, including the conflict resolution capabilities of mesh interconnection networks using topological test methods. The proposed methods are not implementation specific and can be applied to any design with a mesh topology. The topology and behavior of the network are described and definitions are presented. The fault model is defined and parallel testing methods for the entire network are given.
Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.
Todros, S; Pavan, P G; Natali, A N
2015-03-01
Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled. PMID:26615384
Finite element simulation of impact response of wire mesh screens
NASA Astrophysics Data System (ADS)
Wang, Caizheng; Shankar, Krishna; Fien, Alan
2015-09-01
In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.
Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees
Bronson, Jonathan; Levine, Joshua A.; Whitaker, Ross
2014-01-01
We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach. PMID:24356365
Unstructured mesh generation and adaptivity
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Adaptive Mesh Refinement for Microelectronic Device Design
NASA Technical Reports Server (NTRS)
Cwik, Tom; Lou, John; Norton, Charles
1999-01-01
Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of
NASA Astrophysics Data System (ADS)
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Geometric approaches to mesh generation
Hoffmann, C.M.
1995-12-31
We review three approaches to mesh generation that axe based on analyzing and accounting for the geometric structure of the domain. In the first approach, due to Armstrong, the domain is partitioned into subdomains based on the medial-axis transform, a tool for analyzing spatial structures. In the second approach, due to Cox, the design history defines a geometric structure of the domain. The design primitives of that structure are meshed separately, and mesh overlap is accounted for by coupling equations. The third approach argues that mesh generation ought to be integrated into the shape design process, by meshing design features separately and resolving overlapping meshes by standard geometric computations.
Curved mesh generation and mesh refinement using Lagrangian solid mechanics
Persson, P.-O.; Peraire, J.
2008-12-31
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Lagrangian fluid dynamics using the Voronoi-Delauanay mesh
Dukowicz, J.K.
1981-01-01
A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed.
Application of Quaternions for Mesh
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Multigrid Methods for Mesh Relaxation
O'Brien, M J
2006-06-12
When generating a mesh for the initial conditions for a computer simulation, you want the mesh to be as smooth as possible. A common practice is to use equipotential mesh relaxation to smooth out a distorted computational mesh. Typically a Laplace-like equation is set up for the mesh coordinates and then one or more Jacobi iterations are performed to relax the mesh. As the zone count gets really large, the Jacobi iteration becomes less and less effective and we are stuck with our original unrelaxed mesh. This type of iteration can only damp high frequency errors and the smooth errors remain. When the zone count is large, almost everything looks smooth so relaxation cannot solve the problem. In this paper we examine a multigrid technique which effectively smooths out the mesh, independent of the number of zones.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
Energy Science and Technology Software Center (ESTSC)
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being appliedmore » to slurry flow (landslides).« less
Surgical mesh for ventral incisional hernia repairs: Understanding mesh design.
Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard
2016-01-01
Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138
Light weight meshes in incisional hernia repair
Schumpelick, Volker; Klinge, Uwe; Rosch, Raphael; Junge, Karsten
2006-01-01
Incisional hernias remain one of the most common surgical complications with a long-term incidence of 10–20%. Increasing evidence of impaired wound healing in these patients supports routine use of an open prefascial, retromuscular mesh repair. Basic pathophysiologic principles dictate that for a successful long-term outcome and prevention of recurrence, a wide overlap underneath healthy tissue is required. Particularly in the neighborhood of osseous structures, only retromuscular placement allows sufficient subduction of the mesh by healthy tissue of at least 5 cm in all directions. Preparation must take into account the special anatomic features of the abdominal wall, especially in the area of the Linea alba and Linea semilunaris. Polypropylene is the material widely used for open mesh repair. New developments have led to low-weight, large-pore polypropylene prostheses, which are adjusted to the physiological requirements of the abdominal wall and permit proper tissue integration. These meshes provide the possibility of forming a scar net instead of a stiff scar plate and therefore help to avoid former known mesh complications. PMID:21187980
Design of electrospinning mesh devices
NASA Astrophysics Data System (ADS)
Russo, Giuseppina; Peters, Gerrit W. M.; Solberg, Ramon H. M.; Vittoria, Vittoria
2012-07-01
This paper describes the features of new membranes that can act as local biomedical devices owing to their peculiar shape in the form of mesh structure. These materials are designed to provide significant effects to reduce local inflammations and improve the tissue regeneration. Lamellar Hydrotalcite loaded with Diclofenac Sodium (HTLc-DIK) was homogenously dispersed inside a polymeric matrix of Poly-caprolactone (PCL) to manufacture membranes by electrospinning technique. The experimental procedure and the criteria employed have shown to be extremely effective at increasing potentiality and related applications. The employed technique has proved to be very useful to manufacture polymeric fibers with diameters in the range of nano-micro scale. In this work a dedicated collector based on a proprietary technology of IME Technologies and Eindhoven University of Technology (TU/e) was used. It allowed to obtain devices with a macro shape of a 3D-mesh. Atomic Force Microscopy (AFM) highlights a very interesting texture of the electrospun fibers. They show a lamellar morphology that is only slightly modified by the inclusion of the interclay embedded in the devices to control the drug release phenomena.
SUPERIMPOSED MESH PLOTTING IN MCNP
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
NASA Technical Reports Server (NTRS)
Macneice, Peter
1995-01-01
This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.
Parallel Adaptive Mesh Refinement
Diachin, L; Hornung, R; Plassmann, P; WIssink, A
2005-03-04
As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
On Optimal Bilinear Quadrilateral Meshes
D'Azevedo, E.
1998-10-26
The novelty of this work is in presenting interesting error properties of two types of asymptotically optimal quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected super-convergence property for certain saddle-shaped data functions. The super-convergent mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near known corner or point singularities.
On Optimal Bilinear Quadrilateral Meshes
D'Azevedo, E
2000-03-17
The novelty of this work is in presenting interesting error properties of two types of asymptotically ''optimal'' quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected ''super-convergence'' property for certain saddle-shaped data functions. The ''superconvergent'' mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near corner or point singularities.
Mesh Algorithms for PDE with Sieve I: Mesh Distribution
Knepley, Matthew G.; Karpeev, Dmitry A.
2009-01-01
We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less
Tautges, Timothy J.
2004-04-01
MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a tanslator between mesh formats, using readers and writers included with MOAB.
Energy Science and Technology Software Center (ESTSC)
2004-04-01
MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individualmore » entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a tanslator between mesh formats, using readers and writers included with MOAB.« less
NASA Astrophysics Data System (ADS)
Morán-Ruiz, Aroa; Vidal, Karmele; Larrañaga, Aitor; Laguna-Bercero, Miguel Angel; Porras-Vázquez, Jose Manuel; Slater, Peter Raymond; Arriortua, María Isabel
2014-12-01
The feasibility of using Crofer22APU mesh dip coated with LaNi0.6Co0.4O3-δ (LNC) ceramic paste as a uniform contact layer on a Crofer22APU channeled interconnect was studied. The control of LNC dip coating thickness on Fe-Cr mesh was carried out by rheological measurements of the suspension. SEM cross-section of formed composite contact material showed good adherence between ceramic and metallic components. The measured area specific resistance (ASR) value at 800 °C was 0.46 ± 0.01 mΩ cm2, indicating low contact resistance itself. The long term stability of metallic/ceramic composite was also studied. The contact resistance, when composite contact material was adhered to channeled Crofer22APU interconnect, was 5.40 ± 0.01 mΩ cm2, which is a suitable value for the performance of IT-SOFC stack. The stability of the system after treating at 800 °C for 1000 h was characterized using X-ray Micro-Diffraction (XRMD), Scanning Electron Microscope equipped with an Energy Dispersive X-ray analyzer (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) techniques. The oxidation rate of the alloy and Fe3O4 phase formation were enhanced on the channels of the interconnect. Thus, the formation of CrO3 (g) and CrO2(OH)2 (g) species was accelerated on the composite surface under the channel. Through XRMD and XPS analysis the coexistence of two perovskite phases (initial LNC and Cr-perovskite) was observed.
toolkit computational mesh conceptual model.
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-03-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
Cubit Adaptive Meshing Algorithm Library
Energy Science and Technology Software Center (ESTSC)
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
PMESH: A parallel mesh generator
Hardin, D.D.
1994-10-21
The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and Engineering to develop a unique mesh generation system that can construct large calculational meshes (of up to 10{sup 9} elements) on massively parallel computers. Such a capability will remove a critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics.
Selective laser vaporization of polypropylene sutures and mesh
NASA Astrophysics Data System (ADS)
Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.
2012-02-01
Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.
Multigrid techniques for unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Multigrid for locally refined meshes
Shapira, Y.
1999-12-01
A multilevel method for the solution of finite element schemes on locally refined meshes is introduced. For isotropic diffusion problems, the condition number of the two-level method is bounded independently of the mesh size and the discontinuities in the diffusion coefficient. The curves of discontinuity need not be aligned with the coarse mesh. Indeed, numerical applications with 10 levels of local refinement yield a rapid convergence of the corresponding 10-level, multigrid V-cycle and other multigrid cycles which are more suitable for parallelism even when the discontinuities are invisible on most of the coarse meshes.
Risk Factors for Mesh Exposure after Transvaginal Mesh Surgery
Niu, Ke; Lu, Yong-Xian; Shen, Wen-Jie; Zhang, Ying-Hui; Wang, Wen-Ying
2016-01-01
Background: Mesh exposure after surgery continues to be a clinical challenge for urogynecological surgeons. The purpose of this study was to explore the risk factors for polypropylene (PP) mesh exposure after transvaginal mesh (TVM) surgery. Methods: This study included 195 patients with advanced pelvic organ prolapse (POP), who underwent TVM from January 2004 to December 2012 at the First Affiliated Hospital of Chinese PLA General Hospital. Clinical data were evaluated including patient's demography, TVM type, concomitant procedures, operation time, blood loss, postoperative morbidity, and mesh exposure. Mesh exposure was identified through postoperative vaginal examination. Statistical analysis was performed to identify risk factors for mesh exposure. Results: Two-hundred and nine transvaginal PP meshes were placed, including 194 in the anterior wall and 15 in the posterior wall. Concomitant tension-free vaginal tape was performed in 61 cases. The mean follow-up time was 35.1 ± 23.6 months. PP mesh exposure was identified in 32 cases (16.4%), with 31 in the anterior wall and 1 in the posterior wall. Significant difference was found in operating time and concomitant procedures between exposed and nonexposed groups (F = 7.443, P = 0.007; F = 4.307, P = 0.039, respectively). Binary logistic regression revealed that the number of concomitant procedures and operation time were risk factors for mesh exposure (P = 0.001, P = 0.043). Conclusion: Concomitant procedures and increased operating time increase the risk for postoperative mesh exposure in patients undergoing TVM surgery for POP. PMID:27453227
Laparoscopic paracolostomy hernia mesh repair.
Virzí, Giuseppe; Giuseppe, Virzí; Scaravilli, Francesco; Francesco, Scaravilli; Ragazzi, Salvatore; Salvatore, Ragazzi; Piazza, Diego; Diego, Piazza
2007-12-01
Paracolostomy hernia is a common occurrence, representing a late complication of stoma surgery. Different surgical techniques have been proposed to repair the wall defect, but the lowest recurrence rates are associated with the use of mesh. We present the case report of a patient in which laparoscopic paracolostomy hernia mesh repair has been successfully performed. PMID:18097321
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
Adaptive and Unstructured Mesh Cleaving
Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.
2015-01-01
We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171
Deng, D. Y.
2015-01-01
Purpose. To evaluate the surgical treatment concepts for the complications related to the implantation of mesh material for urogynecological indications. Materials and Methods. A review of the current literature on PubMed was performed. Results. Only retrospective studies were detected. The rate of mesh-related complications is about 15–25% and mesh erosion is up to 10% for POP and SUI repair. Mesh explantation is necessary in about 1-2% of patients due to complications. The initial approach appears to be an early surgical treatment with partial or complete mesh resection. Vaginal and endoscopic access for mesh resection is favored. Prior to recurrent surgeries, a careful examination and planning for the operation strategy are crucial. Conclusions. The data on the management of mesh complication is scarce. Revisions should be performed by an experienced surgeon and a proper follow-up with prospective documentation is essential for a good outcome. PMID:25973425
Adaptive Skin Meshes Coarsening for Biomolecular Simulation.
Shi, Xinwei; Koehl, Patrice
2011-06-01
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137
Adaptive Skin Meshes Coarsening for Biomolecular Simulation
Shi, Xinwei; Koehl, Patrice
2011-01-01
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137
Tangle-Free Mesh Motion for Ablation Simulations
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Problems involving mesh motion-which should not be mistakenly associated with moving mesh methods, a class of adaptive mesh redistribution techniques-are of critical importance in numerical simulations of the thermal response of melting and ablative materials. Ablation is the process by which material vaporizes or otherwise erodes due to strong heating. Accurate modeling of such materials is of the utmost importance in design of passive thermal protection systems ("heatshields") for spacecraft, the layer of the vehicle that ensures survival of crew and craft during re-entry. In an explicit mesh motion approach, a complete thermal solve is first performed. Afterwards, the thermal response is used to determine surface recession rates. These values are then used to generate boundary conditions for an a posteriori correction designed to update the location of the mesh nodes. Most often, linear elastic or biharmonic equations are used to model this material response, traditionally in a finite element framework so that complex geometries can be simulated. A simple scheme for moving the boundary nodes involves receding along the surface normals. However, for all but the simplest problem geometries, evolution in time following such a scheme will eventually bring the mesh to intersect and "tangle" with itself, inducing failure. This presentation demonstrates a comprehensive and sophisticated scheme that analyzes the local geometry of each node with help from user-provided clues to eliminate the tangle and enable simulations on a wide-class of difficult problem geometries. The method developed is demonstrated for linear elastic equations but is general enough that it may be adapted to other modeling equations. The presentation will explicate the inner workings of the tangle-free mesh motion algorithm for both two and three-dimensional meshes. It will show abstract examples of the method's success, including a verification problem that demonstrates its accuracy and
Prosthetic Mesh Repair for Incarcerated Inguinal Hernia
Tatar, Cihad; Tüzün, İshak Sefa; Karşıdağ, Tamer; Kızılkaya, Mehmet Celal; Yılmaz, Erdem
2016-01-01
Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of non-complicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3), and the other consisting of patients not undergoing bowel resection (Group 4). Results: In Group 1, it was observed that eight (7.14%) of the patients had wound infections, while two (1.78%) had hematomas, four (3.57%) had seromas, and one (0.89%) had relapse. In Group 2, one (2.56%) of the patients had a wound infection, while three (7.69%) had hematomas, one (2.56%) had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection, seroma
Streaming Compression of Hexahedral Meshes
Isenburg, M; Courbet, C
2010-02-03
We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.
21 CFR 878.3300 - Surgical mesh.
Code of Federal Regulations, 2013 CFR
2013-04-01
... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....
21 CFR 878.3300 - Surgical mesh.
Code of Federal Regulations, 2010 CFR
2010-04-01
... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....
21 CFR 878.3300 - Surgical mesh.
Code of Federal Regulations, 2012 CFR
2012-04-01
... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....
Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.
2014-01-01
Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non
Nanowire mesh solar fuels generator
Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin
2016-05-24
This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2009-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
Gradient scaling for nonuniform meshes
Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.
1985-01-01
This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.
Mersiline mesh in premaxillary augmentation.
Foda, Hossam M T
2005-01-01
Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant. PMID:15959688
The Use of Biological Meshes in Diaphragmatic Defects - An Evidence-Based Review of the Literature.
Antoniou, Stavros A; Pointner, Rudolph; Granderath, Frank-Alexander; Köckerling, Ferdinand
2015-01-01
The widespread use of meshes for hiatal hernia repair has emerged in the era of laparoscopic surgery, although sporadic cases of mesh augmentation of traumatic diaphragmatic rupture have been reported. The indications for biologic meshes in diaphragmatic repair are ill defined. This systematic review aims to investigate the available evidence on the role of biologic meshes in diaphragmatic rupture and hiatal hernia repair. Limited data from sporadic case reports and case series have demonstrated that repair of traumatic diaphragmatic rupture with biologic mesh is safe technique in both the acute or chronic setting. High level evidence demonstrates short-term benefits of biologic mesh augmentation in hiatal hernia repair over primary repair, although adequate long-term data are not currently available. Long-term follow-up data suggest no benefit of hiatal hernia repair using porcine small intestine submucosa over suture repair. The effectiveness of different biologic mesh materials on hernia recurrence requires further investigation. PMID:26539439
Unstructured mesh methods for CFD
NASA Technical Reports Server (NTRS)
Peraire, J.; Morgan, K.; Peiro, J.
1990-01-01
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Unstructured mesh methods for CFD
NASA Astrophysics Data System (ADS)
Peraire, J.; Morgan, K.; Peiro, J.
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Image-driven mesh optimization
Lindstrom, P; Turk, G
2001-01-05
We describe a method of improving the appearance of a low vertex count mesh in a manner that is guided by rendered images of the original, detailed mesh. This approach is motivated by the fact that greedy simplification methods often yield meshes that are poorer than what can be represented with a given number of vertices. Our approach relies on edge swaps and vertex teleports to alter the mesh connectivity, and uses the downhill simplex method to simultaneously improve vertex positions and surface attributes. Note that this is not a simplification method--the vertex count remains the same throughout the optimization. At all stages of the optimization the changes are guided by a metric that measures the differences between rendered versions of the original model and the low vertex count mesh. This method creates meshes that are geometrically faithful to the original model. Moreover, the method takes into account more subtle aspects of a model such as surface shading or whether cracks are visible between two interpenetrating parts of the model.
NASA Astrophysics Data System (ADS)
Mizoguchi, Tomohiro; Kanai, Satoshi
Along with the rapid growth of industrial X-ray CT scanning systems, it is now possible to non-destructively acquire the entire meshes of assemblies consisting of a set of parts. For the advanced inspections of the assemblies, such as estimation of their assembling errors or examinations of their behaviors in the motions, based on their CT scanned meshes, it is necessary to accurately decompose the mesh and to extract a set of partial meshes each of which correspond to a part. Moreover it is required to create models which can be used for the real-product based simulations. In this paper, we focus on CT scanned meshes of gear assemblies as examples and propose beneficial methods for establishing such advance inspections of the assemblies. We first propose a method that accurately decomposes the mesh into partial meshes each of which corresponds to a gear based on periodicity recognitions. The key idea is first to accurately recognize the periodicity of each gear and then to extract the partial meshes as sets of topologically connected mesh elements where periodicities are valid. Our method can robustly and accurately recognize periodicities from noisy scanned meshes. In contrast to previous methods, our method can deal with single-material CT scanned meshes and can estimate the correct boundaries of neighboring parts with no previous knowledge. Moreover it can efficiently extract the partial meshes from large scanned meshes containing about one million triangles in a few minutes. We also propose a method for creating simulation models which can be used for a gear teeth contact evaluation using extracted partial meshes and their periodicities. Such an evaluation of teeth contacts is one of the most important functions in kinematic simulations of gear assemblies for predicting the power transmission efficiency, noise and vibration. We demonstrate the effectiveness of our method on a variety of artificial and CT scanned meshes.
Method and system for mesh network embedded devices
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.
Jayanth, S.T.; Pulimood, Anna; Abraham, Deepak; Rajaram, A.; Paul, M.J.; Nair, Aravindan
2015-01-01
Background Abdominal wall defects and hernias are commonly repaired with synthetic or biological materials. Adhesions and recurrences are a common problem. A study was conducted to compare Chitosan coated polypropylene mesh and a polypropylene–polydioxanone composite with oxidized cellulose coating mesh (Proceed™) in repair of abdominal wall defect in a Rabbit hernia model. Methods A randomized controlled experimental study was done on twelve New Zealand white rabbits. A ventral abdominal defect was created in each of the rabbits. The rabbits were divided into two groups. In one group the defect was repaired with Chitosan coated polypropylene mesh and Proceed mesh™ in the other. The rabbits were operated in two phases. They were followed up at four weeks and twelve weeks respectively after which the rabbits were sacrificed. They were evaluated by open exploration and histopathological examination. Their efficacy in reducing adhesion and ability of remodeling and tissue integration were studied. Results There was no statistical significance in the area of adhesion, the force required to remove the adhesions, tissue integration and remodeling between Chitosan and Proceed™ group. Histological analysis revealed that the inflammatory response, fibrosis, material degradation and remodeling were similar in both the groups. There were no hernias, wound infection or dehiscence in any of the studied animals. Conclusion Chitosan coated polypropylene mesh was found to have similar efficacy to Proceed™ mesh. Chitosan coated polypropylene mesh, can act as an anti adhesive barrier when used in the repair of incisional hernias and abdominal wall defects. PMID:26594357
User Manual for the PROTEUS Mesh Tools
Smith, Micheal A.; Shemon, Emily R.
2015-06-01
This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.
Lattice Cleaving: Conforming Tetrahedral Meshes of Multimaterial Domains with Bounded Quality
Bronson, Jonathan R.; Levine, Joshua A.; Whitaker, Ross T.
2013-01-01
Summary We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, in order to reduce element counts in regions of homogeneity. PMID:25309969
NASA Astrophysics Data System (ADS)
Baye, Daniel
2015-03-01
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid thanks to the use of a Gauss-quadrature approximation. The variational basis related to this Gauss quadrature is composed of Lagrange functions which are infinitely differentiable functions vanishing at all mesh points but one. This method is quite simple to use and, more importantly, can be very accurate with small number of mesh points for a number of problems. The accuracy may however be destroyed by singularities of the potential term. This difficulty can often be overcome by a regularization of the Lagrange functions which does not affect the simplicity and accuracy of the method. The principles of the Lagrange-mesh method are described, as well as various generalizations of the Lagrange functions and their regularization. The main existing meshes are reviewed and extensive formulas are provided which make the numerical calculations simple. They are in general based on classical orthogonal polynomials. The extensions to non-classical orthogonal polynomials and periodic functions are also presented. Applications start with the calculations of energies, wave functions and some observables for bound states in simple solvable models which can rather easily be used as exercises by the reader. The Dirac equation is also considered. Various problems in the continuum can also simply and accurately be solved with the Lagrange-mesh technique including multichannel scattering or scattering by non-local potentials. The method can be applied to three-body systems in appropriate systems of coordinates. Simple atomic, molecular and nuclear systems are taken as examples. The applications to the time-dependent Schrödinger equation, to the Gross-Pitaevskii equation and to Hartree-Fock calculations are also discussed as well as translations and rotations on a Lagrange mesh.
Improvements to the Unstructured Mesh Generator MESH3D
NASA Technical Reports Server (NTRS)
Thomas, Scott D.; Baker, Timothy J.; Cliff, Susan E.
1999-01-01
The AIRPLANE process starts with an aircraft geometry stored in a CAD system. The surface is modeled with a mesh of triangles and then the flow solver produces pressures at surface points which may be integrated to find forces and moments. The biggest advantage is that the grid generation bottleneck of the CFD process is eliminated when an unstructured tetrahedral mesh is used. MESH3D is the key to turning around the first analysis of a CAD geometry in days instead of weeks. The flow solver part of AIRPLANE has proven to be robust and accurate over a decade of use at NASA. It has been extensively validated with experimental data and compares well with other Euler flow solvers. AIRPLANE has been applied to all the HSR geometries treated at Ames over the course of the HSR program in order to verify the accuracy of other flow solvers. The unstructured approach makes handling complete and complex geometries very simple because only the surface of the aircraft needs to be discretized, i.e. covered with triangles. The volume mesh is created automatically by MESH3D. AIRPLANE runs well on multiple platforms. Vectorization on the Cray Y-MP is reasonable for a code that uses indirect addressing. Massively parallel computers such as the IBM SP2, SGI Origin 2000, and the Cray T3E have been used with an MPI version of the flow solver and the code scales very well on these systems. AIRPLANE can run on a desktop computer as well. AIRPLANE has a future. The unstructured technologies developed as part of the HSR program are now targeting high Reynolds number viscous flow simulation. The pacing item in this effort is Navier-Stokes mesh generation.
NASA Astrophysics Data System (ADS)
Garcia-Fresnillo, L.; Shemet, V.; Chyrkin, A.; de Haart, L. G. J.; Quadakkers, W. J.
2014-12-01
In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar-4%H2-2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in σ-phase formation at the austenite-ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the σ-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe-Ni-Cr.
Structural permeability of fluid-driven fault-fracture meshes
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
1996-08-01
Fluid redistribution in the crust is influenced by hydraulic gradient, by existing permeability anisotropy arising from bedding and other forms of layering, and by structural permeability developed under the prevailing stress field. Field evidence suggests that mesh structures, comprising faults interlinked with extensional-shear and purely extensional vein-fractures, form important conduits for large volume flow of hydrothermal and hydrocarbon fluids. Meshes may be 'self-generated' by the infiltration of pressurised fluids into a stressed heterogeneous rock mass with varying material properties, developing best where bulk coaxial strain is symmetric with existing layering, but they also form under predominantly simple shear. Fluid passage through such structures generates earthquake swarm activity by distributed fault-valve action along suprahydrostatic gradients that may arise from compaction overpressuring, metamorphic dewatering, magmatic intrusion, and mantle degassing. Within mesh structures, strong directional permeability may develop in the σ2 direction parallel to fault-fracture intersections and orthogonal to fault slip vectors. In particular tectonic settings, this promotes strongly focused flow with high potential for mineralisation. Mesh activation requires the condition Pf ~ σ3 to be maintained for the structures to remain high permeability conduits, requiring fluid overpressuring at other than shallow depths in extensional-transtensional regimes. Favoured localities for mesh development include linkage structures along large-displacement fault zones such as dilational jogs, lateral ramps, and transfer faults. In some circumstances, mesh formation appears to precede the development of major faults.
Yoon, Sung-Eui; Lindstrom, Peter; Pascucci, Valerio; Manocha, Dinesh
2005-07-01
We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications.
Self-Organizing Mesh Generation
Energy Science and Technology Software Center (ESTSC)
1991-11-01
A set of five programs which make up a self organizing mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily shaped two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchal input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program,more » RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight node elements (with mid side nodes) may be obtained with RENUM8. QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers, An overall plot showing the position of the selected plot areas is produced.« less
Parallel automated adaptive procedures for unstructured meshes
NASA Technical Reports Server (NTRS)
Shephard, M. S.; Flaherty, J. E.; Decougny, H. L.; Ozturan, C.; Bottasso, C. L.; Beall, M. W.
1995-01-01
Consideration is given to the techniques required to support adaptive analysis of automatically generated unstructured meshes on distributed memory MIMD parallel computers. The key areas of new development are focused on the support of effective parallel computations when the structure of the numerical discretization, the mesh, is evolving, and in fact constructed, during the computation. All the procedures presented operate in parallel on already distributed mesh information. Starting from a mesh definition in terms of a topological hierarchy, techniques to support the distribution, redistribution and communication among the mesh entities over the processors is given, and algorithms to dynamically balance processor workload based on the migration of mesh entities are given. A procedure to automatically generate meshes in parallel, starting from CAD geometric models, is given. Parallel procedures to enrich the mesh through local mesh modifications are also given. Finally, the combination of these techniques to produce a parallel automated finite element analysis procedure for rotorcraft aerodynamics calculations is discussed and demonstrated.
MRI is unable to illustrate the absorption time of the absorbable TIGR mesh in humans: a case report
Öberg, Stina; Andresen, Kristoffer; Møller, Jakob M.; Rosenberg, Jacob
2015-01-01
A male patient had a bilateral laparoscopic inguinal hernia repair in 2012. The right-sided hernia was treated with a permanent mesh, and the left-sided hernia received an absorbable mesh. The absorbable TIGR mesh has been proved to be completely absorbed and replaced by new connective tissue after 3 years in sheep. The patient was therefore followed for 3 years by annual magnetic resonance imagings (MRIs) to illustrate the absorption time in humans. During follow-up, the thickness of the absorbable mesh slightly decreased, and at the last clinical examination, the patient was without a recurrence. However, MRI failed to illustrate absorption of the TIGR mesh, perhaps since new connective tissue and the mesh material had the same appearance on the images. In conclusion, MRI was unable to confirm an absorption time of 3 years for the TIGR mesh, and further studies are needed to investigate if the mesh also completely absorbs in humans. PMID:26581219
Issues in adaptive mesh refinement
Dai, William Wenlong
2009-01-01
In this paper, we present an approach for a patch-based adaptive mesh refinement (AMR) for multi-physics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, and management of patches. Among the special features of this patch-based AMR are symmetry preserving, efficiency of refinement, special implementation offlux correction, and patch management in parallel computing environments. Here, higher efficiency of refinement means less unnecessarily refined cells for a given set of cells to be refined. To demonstrate the capability of the AMR framework, hydrodynamics simulations with many levels of refinement are shown in both two- and three-dimensions.
Multi-Block Enhancement for Lagrangian Dendritic Mesh setup in Altair5
Douglass, Rodney W
2010-12-15
Initial mesh setup for an ASC mUlti-physics code at LANL is done using Altair5. Altair5 assumes that the final mesh is composed of logical structured mesh blocks linked together at mesh boundaries to form, ultimately, an unstructured mesh. Within these blocks, meshes may have dendrites, that is, local regions where two zones share common edges (in two-dimensions, or faces in three-dimensions) with a single zone. In many cases, contiguous subsets of the initial set of blocks may have the same material assigned to them, but without smoothing the mesh would form a computationally challenging initial mesh. Some of these blocks may also have zones with nodes on domain boundaries. This paper reports on the implementation of multiblock smoothing in Altair5, which allows for dendrites and for moving boundary nodes. Dendritic nodes are constrained to be located at the average of their neighbor nodes while boundary nodes are constrained to move along the boundary geometry. Two fundamentally different smoothing methods were implemented. First, a variational principle is presented that balances zonal size and distortion via a user selected weighting with constraints imposed using penalty methods for dendritic nodes and Lagrange multipliers for boundary nodes. Second, the Laplace-Beltrami smoother is presented. This is a general elliptic smoother which can easily be modified to give Laplacian and Winslow-Crowley mesh smoothing. Results are shown for several test meshes of interest.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
Hybrid mesh for nasal airflow studies.
Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin
2013-01-01
The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811
Hybrid Mesh for Nasal Airflow Studies
Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin
2013-01-01
The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811
Multigrid for refined triangle meshes
Shapira, Yair
1997-02-01
A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.
Optimizing the geometrical accuracy of curvilinear meshes
NASA Astrophysics Data System (ADS)
Toulorge, Thomas; Lambrechts, Jonathan; Remacle, Jean-François
2016-04-01
This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Hausdorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.
Application of Quaternions for Mesh Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
6th International Meshing Roundtable '97
White, D.
1997-09-01
The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.
Conservation properties of unstructured staggered mesh schemes
Perot, B.
2000-03-20
Classic Cartesian staggered mesh schemes have a number of attractive properties. They do not display spurious pressure modes and they have been shown to locally conserve, mass, momentum, kinetic energy, and circulation to machine precision. Recently, a number of generalizations of the staggered mesh approach have been proposed for unstructured (triangular or tetrahedral) meshes. These unstructured staggered mesh methods have been created to retain the attractive pressure aspects and mass conservation properties of the classic Cartesian mesh method. This work addresses the momentum, kinetic energy, and circulation conservation properties of unstructured staggered mesh methods. It is shown that with certain choices of the velocity interpolation, unstructured staggered mesh discretization of the divergence form of the Navier-Stokes equations can conserve kinetic energy and momentum both locally and globally. In addition, it is shown that unstructured staggered mesh discretization of the rotational form of the Navier-Stokes equations can conserve kinetic energy and circulation both locally and globally. The analysis includes viscous terms and a generalization of the concept of conservation in the presence of viscosity to include a negative definite dissipation term in the kinetic energy equation. These novel conserving unstructured staggered mesh schemes have not been previously analyzed. It is shown that they are first-order accurate on nonuniform two-dimensional unstructured meshes and second-order accurate on uniform unstructured meshes. Numerical confirmation of the conservation properties and the order of accuracy of these unstructured staggered mesh methods is presented.
Hybrid mesh generation using advancing reduction technique
Technology Transfer Automated Retrieval System (TEKTRAN)
This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...
Computing The Compliances Of Gear Meshes
NASA Technical Reports Server (NTRS)
Lewicki, D. G.; Savage, M.; Caldwell, R. J.; Wisor, G. D.
1988-01-01
Computer model simulates compliance and sharing of loads in spur-gear mesh. Use of solid-body analysis as lower bound and rim analysis as upper bound for mesh compliance, reasonable approximations obtained for compliance in spur-gear mesh.
Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.
2016-01-01
Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity. PMID:27482490
Wolf, Matthew T.; Carruthers, Christopher A.; Dearth, Christopher L.; Crapo, Peter M.; Huber, Alexander; Burnsed, Olivia A.; Londono, Ricardo; Johnson, Scott A.; Daly, Kerry A.; Stahl, Elizabeth C.; Freund, John M.; Medberry, Christopher J.; Carey, Lisa E.; Nieponice, Alejandro; Amoroso, Nicholas J.; Badylak, Stephen F.
2013-01-01
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model. PMID:23873846
Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units
Beckingsale, D. A.; Gaudin, W. P.; Hornung, R. D.; Gunney, B. T.; Gamblin, T.; Herdman, J. A.; Jarvis, S. A.
2014-11-17
Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.
Langbach, Odd; Holmedal, Stein Harald; Grandal, Ole Jacob
2016-01-01
Aim. The aim of the present study was to perform MRI in patients after ventral hernia mesh repair, in order to evaluate MRI's ability to detect intra-abdominal adhesions. Materials and Methods. Single-center long term follow-up study of 155 patients operated for ventral hernia with laparoscopic (LVHR) or open mesh repair (OVHR), including analyzing medical records, clinical investigation with patient-reported pain (VAS-scale), and MRI. MRI was performed in 124 patients: 114 patients (74%) after follow-up, and 10 patients referred for late complaints after ventral mesh repair. To verify the MRI-diagnosis of adhesions, laparoscopy was performed after MRI in a cohort of 20 patients. Results. MRI detected adhesions between bowel and abdominal wall/mesh in 60% of the patients and mesh shrinkage in 20–50%. Adhesions were demonstrated to all types of meshes after both LVHR and OVHR with a sensitivity of 70%, specificity of 75%, positive predictive value of 78%, and negative predictive value of 67%. Independent predictors for formation of adhesions were mesh area as determined by MRI and Charlson index. The presence of adhesions was not associated with more pain. Conclusion. MRI can detect adhesions between bowel and abdominal wall in a fair reliable way. Adhesions are formed both after open and laparoscopic hernia mesh repair and are not associated with chronic pain. PMID:26819601
Langbach, Odd; Holmedal, Stein Harald; Grandal, Ole Jacob; Røkke, Ola
2016-01-01
Aim. The aim of the present study was to perform MRI in patients after ventral hernia mesh repair, in order to evaluate MRI's ability to detect intra-abdominal adhesions. Materials and Methods. Single-center long term follow-up study of 155 patients operated for ventral hernia with laparoscopic (LVHR) or open mesh repair (OVHR), including analyzing medical records, clinical investigation with patient-reported pain (VAS-scale), and MRI. MRI was performed in 124 patients: 114 patients (74%) after follow-up, and 10 patients referred for late complaints after ventral mesh repair. To verify the MRI-diagnosis of adhesions, laparoscopy was performed after MRI in a cohort of 20 patients. Results. MRI detected adhesions between bowel and abdominal wall/mesh in 60% of the patients and mesh shrinkage in 20-50%. Adhesions were demonstrated to all types of meshes after both LVHR and OVHR with a sensitivity of 70%, specificity of 75%, positive predictive value of 78%, and negative predictive value of 67%. Independent predictors for formation of adhesions were mesh area as determined by MRI and Charlson index. The presence of adhesions was not associated with more pain. Conclusion. MRI can detect adhesions between bowel and abdominal wall in a fair reliable way. Adhesions are formed both after open and laparoscopic hernia mesh repair and are not associated with chronic pain. PMID:26819601
3-D Mesh Generation Nonlinear Systems
Energy Science and Technology Software Center (ESTSC)
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less
Confined helium on Lagrange meshes.
Baye, D; Dohet-Eraly, J
2015-12-21
The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results. PMID:25732054
The moving mesh code SHADOWFAX
NASA Astrophysics Data System (ADS)
Vandenbroucke, B.; De Rijcke, S.
2016-07-01
We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Unstructured mesh algorithms for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.
Adaptive Mesh Refinement in CTH
Crawford, David
1999-05-04
This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems.
Mesh networked unattended ground sensors
NASA Astrophysics Data System (ADS)
Colling, Kent; Calcutt, Wade; Winston, Mark; Jones, Barry
2006-05-01
McQ has developed a family of low cost unattended ground sensors that utilize self-configured, mesh network communications for wireless sensing. Intended for use in an urban environment, the area monitored by the sensor system poses a communication challenge. A discussion into the sensor's communication performance and how it affects sensor installation and the operation of the system once deployed is presented.
SHARP/PRONGHORN Interoperability: Mesh Generation
Avery Bingham; Javier Ortensi
2012-09-01
Progress toward collaboration between the SHARP and MOOSE computational frameworks has been demonstrated through sharing of mesh generation and ensuring mesh compatibility of both tools with MeshKit. MeshKit was used to build a three-dimensional, full-core very high temperature reactor (VHTR) reactor geometry with 120-degree symmetry, which was used to solve a neutron diffusion critical eigenvalue problem in PRONGHORN. PRONGHORN is an application of MOOSE that is capable of solving coupled neutron diffusion, heat conduction, and homogenized flow problems. The results were compared to a solution found on a 120-degree, reflected, three-dimensional VHTR mesh geometry generated by PRONGHORN. The ability to exchange compatible mesh geometries between the two codes is instrumental for future collaboration and interoperability. The results were found to be in good agreement between the two meshes, thus demonstrating the compatibility of the SHARP and MOOSE frameworks. This outcome makes future collaboration possible.
Parallelization of irregularly coupled regular meshes
NASA Technical Reports Server (NTRS)
Chase, Craig; Crowley, Kay; Saltz, Joel; Reeves, Anthony
1992-01-01
Regular meshes are frequently used for modeling physical phenomena on both serial and parallel computers. One advantage of regular meshes is that efficient discretization schemes can be implemented in a straight forward manner. However, geometrically-complex objects, such as aircraft, cannot be easily described using a single regular mesh. Multiple interacting regular meshes are frequently used to describe complex geometries. Each mesh models a subregion of the physical domain. The meshes, or subdomains, can be processed in parallel, with periodic updates carried out to move information between the coupled meshes. In many cases, there are a relatively small number (one to a few dozen) subdomains, so that each subdomain may also be partitioned among several processors. We outline a composite run-time/compile-time approach for supporting these problems efficiently on distributed-memory machines. These methods are described in the context of a multiblock fluid dynamics problem developed at LaRC.
Local, Optimization-based Simplicial Mesh Smoothing
Energy Science and Technology Software Center (ESTSC)
1999-12-09
OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less
The Use of Biological Meshes in Diaphragmatic Defects – An Evidence-Based Review of the Literature
Antoniou, Stavros A.; Pointner, Rudolph; Granderath, Frank-Alexander; Köckerling, Ferdinand
2015-01-01
The widespread use of meshes for hiatal hernia repair has emerged in the era of laparoscopic surgery, although sporadic cases of mesh augmentation of traumatic diaphragmatic rupture have been reported. The indications for biologic meshes in diaphragmatic repair are ill defined. This systematic review aims to investigate the available evidence on the role of biologic meshes in diaphragmatic rupture and hiatal hernia repair. Limited data from sporadic case reports and case series have demonstrated that repair of traumatic diaphragmatic rupture with biologic mesh is safe technique in both the acute or chronic setting. High level evidence demonstrates short-term benefits of biologic mesh augmentation in hiatal hernia repair over primary repair, although adequate long-term data are not currently available. Long-term follow-up data suggest no benefit of hiatal hernia repair using porcine small intestine submucosa over suture repair. The effectiveness of different biologic mesh materials on hernia recurrence requires further investigation. PMID:26539439
2010-01-01
Background Randomised controlled trials with a long term follow-up (3 to 10 years) have demonstrated that mesh repair is superior to suture closure of incisional hernia with lower recurrence rates (5 to 20% versus 20 to 63%). Yet, the ideal size and material of the mesh are not defined. So far, there are few prospective studies that evaluate the influence of the mesh texture on patient's satisfaction, recurrence and complication rate. The aim of this study is to evaluate, if a non-absorbable mesh (Optilene® Mesh Elastic) will result in better health outcomes compared to a partly absorbable mesh (Ultrapro® Mesh). Methods/Design In this prospective, randomised, double blind study, eighty patients with incisional hernia after a midline laparotomy will be included. Primary objective of this study is to investigate differences in the physical functioning score from the SF-36 questionnaire 21 days after mesh insertion. Secondary objectives include the evaluation of the patients' daily activity, pain, wound complication and other surgical complications (hematomas, seromas), and safety within six months after intervention. Discussion This study investigates mainly from the patient perspective differences between meshes for treatment of incisional hernias. Whether partly absorbable meshes improve quality of life better than non-absorbable meshes is unclear and therefore, this trial will generate further evidence for a better treatment of patients. Trial registration NCT00646334 PMID:20624273
PVDF as a new polymer for the construction of surgical meshes.
Klinge, U; Klosterhalfen, B; Ottinger, A P; Junge, K; Schumpelick, V
2002-08-01
Abdominal hernia repair is the most frequently performed operation in surgery. Mostly due to lowered recurrence rates mesh repairs in hernia surgery have become an integral component despite increasing mesh-related complications. Current available mesh prosthesis are made of polypropylene (PP). polyethylene-terephtalat or polytetrafluorethylene. though all of them reveal some disadvantages. The introduction of new materials seems to be advisable. Caused by supposed advantageous textile properties and tissue response two mesh modifications made of polyvinylidene fluoride (PVDF) for abdominal hernia repair were developed. In the present study the PVDF meshes were compared to a common heavy weight PP-mesh (Prolene) in regard to functional consequences and morphological tissue response. After implantation in rats as inlay for 3, 14, 21, 42 and 90 days abdominal wall mobility was recorded by three-dimensional photogrammetry. Tensile strength of the suture zone and the mesh itself were determined. Explanted tissue samples have been investigated for their histological reaction in regard to the inflammatory infiltrate. vascularisation, connective and fat tissue ingrowth. Number of granulocytes, macrophages, fibroblasts, lymphocytes and foreign giant body cells have been evaluated to reflect quality of tissue response. The cellular response was grasped by measurement of DNA strand breaks and apoptosis (TUNEL), proliferation (Ki67) and cell stress (HSP70). Analyzing the results confirmed that construction of hernia meshes made of PVDF could be an advantageous alternative to the commonly used materials due to an improved biostability. lowered bending stiffness and a minimum tissue response. PMID:12099293
[Hernia surgery: minimization of complications by selection of the "correct mesh"].
Klinge, U; Weyhe, D
2014-02-01
The risk for developing postoperative complications increases with the degree of surgical trauma, an altered wound healing capability of the patient due to comorbidities and environmental conditions and the selection of an inadequate implant material, the latter offering options for improvement at least in some patients. In general a mesh with large pores made of monofilaments provides a reduced surface area and causes less scarring and inflammation than those with small pores and thereby reduces the rate of scar contraction, pain and the challenge to explant a mesh from a scar bed. When placing the mesh in the abdominal cavity an additional surface coating of polypropylene should prevent the formation of a fistula between mesh and bowel. The risk of recurrence mainly depends on the extent of overlap; however, the flexibility of some meshes may increase the technical difficulties of some implants. In cases of bacterial contamination of the wound there is an increased risk for late onset mesh infection and monofilament meshes offer the best option for complete healing by conservative means. An impaired function of the spermatic cord because of the material, apart from the consequences of the surgical trauma, has not been confirmed in experimental and clinical studies. Revision of mesh sites always is a surgical challenge but could be much easier with implants which are visible in computed tomography (CT) or magnetic resonance imaging (MRI) scans. PMID:24435829
Adaptive Mesh Refinement Simulations of Relativistic Binaries
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Anderson, M.; Lehner, L.; Olabarrieta, I.; Tohline, J. E.; Liebling, S. L.; Rahman, T.; Hirschman, E.; Neilsen, D.
2006-09-01
We present recent results from our efforts to evolve relativistic binaries composed of compact objects. We simultaneously solve the general relativistic hydrodynamics equations to evolve the material components of the binary and Einstein's equations to evolve the space-time. These two codes are coupled through an adaptive mesh refinement driver (had). One of the ultimate goals of this project is to address the merger of a neutron star and black hole and assess the possible observational signature of such systems as gamma ray bursts. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.
Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes
Meyer, Miriah; Whitaker, Ross; Kirby, Robert M.; Ledergerber, Christian; Pfister, Hanspeter
2009-01-01
Methods that faithfully and robustly capture the geometry of complex material interfaces in labeled volume data are important for generating realistic and accurate visualizations and simulations of real-world objects. The generation of such multimaterial models from measured data poses two unique challenges: first, the surfaces must be well-sampled with regular, efficient tessellations that are consistent across material boundaries; and second, the resulting meshes must respect the nonmanifold geometry of the multimaterial interfaces. This paper proposes a strategy for sampling and meshing multimaterial volumes using dynamic particle systems, including a novel, differentiable representation of the material junctions that allows the particle system to explicitly sample corners, edges, and surfaces of material intersections. The distributions of particles are controlled by fundamental sampling constraints, allowing Delaunay-based meshing algorithms to reliably extract watertight meshes of consistently high-quality. PMID:18989007
Harms titanium mesh cage fracture
Klezl, Zdenek; Bookland, Markus J.; Wolinsky, Jean-Paul; Rezek, Zdenek; Gokaslan, Ziya L.
2007-01-01
Interbody fusion has become a mainstay of surgical management for lumbar fractures, tumors, spondylosis, spondylolisthesis and deformities. Over the years, it has undergone a number of metamorphoses, as novel instrumentation and approaches have arisen to reduce complications and enhance outcomes. Interbody fusion procedures are common and successful, complications are rare and most often do not involve the interbody device itself. We present here a patient who underwent an anterior L4 corpectomy with Harms cage placement and who later developed a fracture of the lumbar titanium mesh cage (TMC). This report details the presentation and management of this rare complication, as well as discusses the biomechanics underlying this rare instrumentation failure. PMID:17497187
Tension free open inguinal hernia repair using an innovative self gripping semi-resorbable mesh
Chastan, Philippe
2006-01-01
Aims: Inguinal hernia repair according to Lichtenstein technique has become the most common procedure performed by general surgeons. Heavy weight polypropylene meshes have been reported to stimulate inflammatory reaction responsible for mesh shrinkage when scar tissue evolved. Additionally, some concerns remain regarding the relationship between chronic pain and mesh fixation technique. In order to reduce those drawbacks, we have developed a new mesh for anterior tension free inguinal hernia repair which exhibits self-gripping absorbable properties. Materials and Methods: 52 patients (69 hernias) were prospectivly operated with this mesh (SOFRADIM-France) made of low-weight isoelastic large pores knitted fabric which incorporated resorbable micro hooks that provides self gripping properties to the mesh during the first months post-implantation. The fixation of the mesh onto the tissues is significantly facilitated. The mesh is secured around the cord with a self gripping flap. After complete tissular ingrowth and resorption of the PLA hooks, the low-weight (40 g/m2) polypropylene mesh insures the long term wall reinforcement. Results: Peroperativly, no complication was reported, the mesh was easy to handle and to fix. Discharge was obtained at Day 1. No perioperative complication occurred, return to daily activities was obtained at Day 5.5. At one month, no neurological pain or other complications were described. Conclusions: Based on the first results of this clinical study, this unique concept of low density self gripping mesh should allows an efficient treatment of inguinal hernia. It should reduce postoperative complications and the extent of required suture fixation, making the procedure more reproducible PMID:21187984
Mesh networking optimized for robotic teleoperation
NASA Astrophysics Data System (ADS)
Hart, Abraham; Pezeshkian, Narek; Nguyen, Hoa
2012-06-01
Mesh networks for robot teleoperation pose different challenges than those associated with traditional mesh networks. Unmanned ground vehicles (UGVs) are mobile and operate in constantly changing and uncontrollable environments. Building a mesh network to work well under these harsh conditions presents a unique challenge. The Manually Deployed Communication Relay (MDCR) mesh networking system extends the range of and provides non-line-of-sight (NLOS) communications for tactical and explosive ordnance disposal (EOD) robots currently in theater. It supports multiple mesh nodes, robots acting as nodes, and works with all Internet Protocol (IP)-based robotic systems. Under MDCR, the performance of different routing protocols and route selection metrics were compared resulting in a modified version of the Babel mesh networking protocol. This paper discusses this and other topics encountered during development and testing of the MDCR system.
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
Auto-adaptive finite element meshes
NASA Technical Reports Server (NTRS)
Richter, Roland; Leyland, Penelope
1995-01-01
Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1995-01-01
In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.
NASA Astrophysics Data System (ADS)
Yanlong, Shi; Wu, Yang; Xiaojuan, Feng; Yongsheng, Wang; Guoren, Yue; Shuping, Jin
2016-03-01
A copper mesh with superhydrophobicity and superoleophilicity was fabricated via thermal oxidation and subsequent surface modification. After surface treatment, the copper mesh exhibited self-cleaning properties, striking loading capacities, and superior anticorrosion. In addition, the copper mesh could be used in a separator for separating oil from oily water with high efficiency. The presented approach may provide a promising strategy for the design and construction of superhydrophobic-superoleophilic materials which can be used for separating oil from oily water.
Mesh infrastructure for coupled multiprocess geophysical simulations
Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.
2014-01-01
We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.
Mesh infrastructure for coupled multiprocess geophysical simulations
Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.
2014-01-01
We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less
RGG: Reactor geometry (and mesh) generator
Jain, R.; Tautges, T.
2012-07-01
The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)
Mesh plug repair and groin hernia surgery.
Robbins, A W; Rutkow, I M
1998-12-01
Since the mid-1980s, dramatic progress has been made in the evolution of hernia surgery, highlighted by the increasing use of prosthetic mesh. Among the mesh-based "tension-free" hernioplasties, the use of mesh plugs has garnered a large number of spirited enthusiasts, and plug herniorrhaphy has become the fastest growing hernia repair currently employed by the American surgeon. To demonstrate the simplicity and effectiveness of mesh plugs, a 9-year experience with almost 3300 patients is reported. Technical details are discussed and presentation of a literature search serves to further emphasize the utilitarian nature of this elegantly unsophisticated surgical operation. PMID:9927981
Method of generating a surface mesh
Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
Conformal refinement of unstructured quadrilateral meshes
Garmella, Rao
2009-01-01
We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.
Low-dispersion meshes for scattering problems
Hakula, H.
1996-12-31
For scattering problems, e.g. the Helmholtz equation, the ideal mesh in 2D is a structured mesh of equilateral triangles, since the numerical dispersion and internal reflections caused by the mesh are then minimal. However, if the scattering body does not conform to the mesh, one has to add unstructured elements to the mesh. In this paper we describe a simple modification to the Rebay`s method which leads to meshes of high quality in the context of the application. Even though the Rebay`s method is a variant of Delaunay algorithms, it does include the concept of a front. By controlling the generation of fronts in the mesh we can always choose the outer boundary of the computational domain so that the mesh will be structured far from the scattering body and the only anisotropic elements are close to the body. As a result of this, one can use the same generator both for electromagnetic and flow simulations in 2D. In multi-body configurations the meshes are intimately dependent on the relative distances between the bodies.
MOAB : a mesh-oriented database.
Tautges, Timothy James; Ernst, Corey; Stimpson, Clint; Meyers, Ray J.; Merkley, Karl
2004-04-01
A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can store structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application
Consistent melting behavior induced by Joule heating between Ag microwire and nanowire meshes
2014-01-01
The melting behavior of an Ag microwire mesh induced by Joule heating was numerically investigated and compared with that of the corresponding Ag nanowire mesh with the same structure but different geometrical and physical properties of the wire itself. According to the relationship of melting current and melting voltage during the melting process, a similar repetitive zigzag pattern in melting behavior was discovered in both meshes. On this basis, a dimensionless parameter defined as figure of merit was proposed to characterize the current-carrying ability of the mesh. The consistent feature of figure of merit in both meshes indicates that the melting behavior of the Ag nanowire mesh can be predicted from the present results of the corresponding Ag microwire mesh with the same structure but made from a different wire (e.g., different size, different material) through simple conversion. The present findings can provide fundamental insight into the reliability analysis on the metallic nanowire mesh-based transparent conductive electrode. PMID:24910578
NASA Astrophysics Data System (ADS)
Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
A LAGUERRE VORONOI BASED SCHEME FOR MESHING PARTICLE SYSTEMS
Bajaj, Chandrajit
2009-01-01
We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and hexahedral meshing of particle systems within a bounded region in two and three dimensions, respectively. Particles are smooth functions over circular or spherical domains. The algorithm first breaks the bounded region containing the particles into Voronoi cells that are then subsequently decomposed into an initial quadrilateral or an initial hexahedral scaffold conforming to individual particles. The scaffolds are subsequently refined via applications of recursive subdivision (splitting and averaging rules). Our choice of averaging rules yield a particle conforming quadrilateral/hexahedral mesh, of good quality, along with being smooth and differentiable in the limit. Extensions of the basic scheme to dynamic re-meshing in the case of addition, deletion, and moving particles are also discussed. Motivating applications of the use of these static and dynamic meshes for particle systems include the mechanics of epoxy/glass composite materials, bio-molecular force field calculations, and gas hydrodynamics simulations in cosmology PMID:20454544
Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh.
Park, Jinkyung; Choi, Suji; Janardhan, Ajit H; Lee, Se-Yeon; Raut, Samarth; Soares, Joao; Shin, Kwangsoo; Yang, Shixuan; Lee, Chungkeun; Kang, Ki-Woon; Cho, Hye Rim; Kim, Seok Joo; Seo, Pilseon; Hyun, Wonji; Jung, Sungmook; Lee, Hye-Jeong; Lee, Nohyun; Choi, Seung Hong; Sacks, Michael; Lu, Nanshu; Josephson, Mark E; Hyeon, Taeghwan; Kim, Dae-Hyeong; Hwang, Hye Jin
2016-06-22
Heart failure remains a major public health concern with a 5-year mortality rate higher than that of most cancers. Myocardial disease in heart failure is frequently accompanied by impairment of the specialized electrical conduction system and myocardium. We introduce an epicardial mesh made of electrically conductive and mechanically elastic material, to resemble the innate cardiac tissue and confer cardiac conduction system function, to enable electromechanical cardioplasty. Our epicardium-like substrate mechanically integrated with the heart and acted as a structural element of cardiac chambers. The epicardial device was designed with elastic properties nearly identical to the epicardial tissue itself and was able to detect electrical signals reliably on the moving rat heart without impeding diastolic function 8 weeks after induced myocardial infarction. Synchronized electrical stimulation over the ventricles by the epicardial mesh with the high conductivity of 11,210 S/cm shortened total ventricular activation time, reduced inherent wall stress, and improved several measures of systolic function including increases of 51% in fractional shortening, ~90% in radial strain, and 42% in contractility. The epicardial mesh was also capable of delivering an electrical shock to terminate a ventricular tachyarrhythmia in rodents. Electromechanical cardioplasty using an epicardial mesh is a new pathway toward reconstruction of the cardiac tissue and its specialized functions. PMID:27334261
Choosing corners of rectangles for mapped meshing
Mitchell, S.A.
1996-12-16
Consider mapping a regular i x j quadrilateral mesh of a rectangle onto a surface. The quality of the mapped mesh of the surface depends heavily on which vertices of the surface correspond to corners of the rectangle. The authors problem is, given an n-sided surface, chose as corners four vertices such that the surface resembles a rectangle with corners at those vertices. Note that n could be quite large, and the length and width of the rectangle, i and j, are not prespecified. In general, there is either a goal number or a prescribed number of mesh edges for each bounding curve of the surface. The goals affect the quality of the mesh, and the prescribed edges may make finding a feasible set of corners difficult. The algorithm need only work for surfaces that are roughly rectangular, particular those without large reflex angles, as otherwise an unstructured meshing algorithm is used instead. The authors report on the theory and implementation of algorithms for this problem. They also given an overview of a solution to a related problem called interval assignment: given a complex of surfaces sharing curves, globally assign the number of mesh edges or intervals for each curve such that it is possible to mesh each surface according to its prescribed quadrilateral meshing algorithm, and assigned and user-prescribed boundary mesh edges and corners. They also note a practical, constructive technique that relies on interval assignment that can generate a quadrilateral mesh of a complex of surfaces such that a compatible hexahedral mesh of the enclosed volume exists.
In vivo oxidative degradation of polypropylene pelvic mesh.
Imel, Adam; Malmgren, Thomas; Dadmun, Mark; Gido, Samuel; Mays, Jimmy
2015-12-01
Commercial polypropylene pelvic mesh products were characterized in terms of their chemical compositions and molecular weight characteristics before and after implantation. These isotactic polypropylene mesh materials showed clear signs of oxidation by both Fourier-transform infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). The oxidation was accompanied by a decrease in both weight-average and z-average molecular weights and narrowing of the polydispersity index relative to that of the non-implanted material. SEM revealed the formation of transverse cracking of the fibers which generally, but with some exceptions, increased with implantation time. Collectively these results, as well as the loss of flexibility and embrittlement of polypropylene upon implantation as reported by other workers, may only be explained by in vivo oxidative degradation of polypropylene. PMID:26408998
Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells
NASA Astrophysics Data System (ADS)
Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.
An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.
Adaptive mesh refinement in titanium
Colella, Phillip; Wen, Tong
2005-01-21
In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.
Parallel mesh management using interoperable tools.
Tautges, Timothy James; Devine, Karen Dragon
2010-10-01
This presentation included a discussion of challenges arising in parallel mesh management, as well as demonstrated solutions. They also described the broad range of software for mesh management and modification developed by the Interoperable Technologies for Advanced Petascale Simulations (ITAPS) team, and highlighted applications successfully using the ITAPS tool suite.
Conforming quadrilaterals meshes on the cubed sphere.
Taylor, Mark A.; Levy, Michael Nathan; Overfelt, James Robert
2010-08-01
The cubed sphere geometry, obtained by inscribing a cube in a sphere and mapping points between the two surfaces using a gnomonic (central) projection, is commonly used in atmospheric models because it is free of polar singularities and is well-suited for parallel computing. Global meshes on the cubed-sphere typically project uniform (square) grids from each face of the cube onto the sphere, and if refinement is desired then it is done with non-conforming meshes - overlaying the area of interest with a finer uniform mesh, which introduces so-called hanging nodes on edges along the boundary of the fine resolution area. An alternate technique is to tile each face of the cube with quadrilaterals without requiring the quads to be rectangular. These meshes allow for refinement in areas of interest with a conforming mesh, providing a smoother transition between high and low resolution portions of the grid than non-conforming refinement. The conforming meshes are demonstrated in HOMME, NCAR's High Order Method Modeling Environment, where two modifications have been made: the dependence on uniform meshes has been removed, and the ability to read arbitrary quadrilateral meshes from a previously-generated file has been added. Numerical results come from a conservative spectral element method modeling a selection of the standard shallow water test cases.
Computational results for parallel unstructured mesh computations
Jones, M.T.; Plassmann, P.E.
1994-12-31
The majority of finite element models in structural engineering are composed of unstructured meshes. These unstructured meshes are often very large and require significant computational resources; hence they are excellent candidates for massively parallel computation. Parallel solution of the sparse matrices that arise from such meshes has been studied heavily, and many good algorithms have been developed. Unfortunately, many of the other aspects of parallel unstructured mesh computation have gone largely ignored. The authors present a set of algorithms that allow the entire unstructured mesh computation process to execute in parallel -- including adaptive mesh refinement, equation reordering, mesh partitioning, and sparse linear system solution. They briefly describe these algorithms and state results regarding their running-time and performance. They then give results from the 512-processor Intel DELTA for a large-scale structural analysis problem. These results demonstrate that the new algorithms are scalable and efficient. The algorithms are able to achieve up to 2.2 gigaflops for this unstructured mesh problem.
7th International Meshing Roundtable '98
Eldred, T.J.
1998-10-01
The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.
Structured mesh generation with smoothness controls
Technology Transfer Automated Retrieval System (TEKTRAN)
In geometrically complex domains, the RL (Ryskin and Leal) orthogonal mesh generation system may cause mesh distortion and overlapping problems when using the “weak constraint” method with specified boundary point distribution for all boundaries. To resolve these problems, an improved RL system with...
21 CFR 878.3300 - Surgical mesh.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical mesh. 878.3300 Section 878.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a)...
21 CFR 878.3300 - Surgical mesh.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical mesh. 878.3300 Section 878.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a)...
NASA Technical Reports Server (NTRS)
Turon, Albert; Davila, Carlos G.; Camanho, Pedro P.; Costa, Josep
2005-01-01
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Ellington, David R.; Richter, Holly E.
2013-01-01
Women are seeking care for pelvic organ prolapse (POP) in increasing numbers and a significant proportion of them will undergo a second repair for recurrence. This has initiated interest by both surgeons and industry to utilize and design prosthetic mesh materials to help augment longevity of prolapse repairs. Unfortunately, the introduction of transvaginal synthetic mesh kits for use in women was done without the benefit of Level 1 data to determine its utility compared to native tissue repair. This report summarizes the potential benefit/risks of transvaginal synthetic mesh use for POP and recommendations regarding its continued use. PMID:23563869
Full-hexahedral structured meshing for image-based computational vascular modeling.
De Santis, Gianluca; De Beule, Matthieu; Van Canneyt, Koen; Segers, Patrick; Verdonck, Pascal; Verhegghe, Benedict
2011-12-01
Image-based computational modeling offers a virtual access to spatially and temporally high resolution flow and structural mechanical data in vivo. Due to inter-subject morphological variability, mesh generation represents a critical step in modeling the patient-specific geometry and is usually performed using unstructured tetrahedral meshing algorithms. Although hexahedral structured meshes are known to provide higher accuracy and reduce the computational costs both for Finite Element Analysis and Computational Fluid Dynamics, their application in computational cardiovascular studies is challenging due to the complex 3D and branching topology of vascular territories. In this study, we propose a robust procedure for structured mesh generation, tailoring the mesh structure to the subject-specific vessel topology. The proposed methodology is based on centerline-based synthetic descriptors (i.e. centerlines, radii and centerlines' normals) which are used to solve the meshing problem following a bottom-up approach. First, topologically equivalent block-structures are placed inside and outside the lumen domain. Then, a projection operation is performed, returning a parametric volume mesh which fits the original triangulated model with sub-micrometric accuracy. Additionally, a three-layered arterial wall (resembling the intima, media and adventitia) is artificially generated, with the possibility of setting variable thickness (e.g. proximal-to-distal tapering) and material anisotropy (e.g. position-dependent collagen-fibers' orientation). This new meshing procedure, implemented using open-source software packages only, is demonstrated on two challenging human cases, being an aortic arch and an abdominal aortic aneurysm. High-quality meshes are generated in both cases, according to shape-quality metrics. By increasing the computation accuracy, the developed meshing tool has the potential to further add "confidence" to the use of computational methods in vascular
Feature recognition applications in mesh generation
Tautges, T.J.; Liu, S.S.; Lu, Y.; Kraftcheck, J.; Gadh, R.
1997-06-01
The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.
Mesh deformation based on artificial neural networks
NASA Astrophysics Data System (ADS)
Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej
2011-09-01
In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.
Modified mesh-connected parallel computers
Carlson, D.A. )
1988-10-01
The mesh-connected parallel computer is an important parallel processing organization that has been used in the past for the design of supercomputing systems. In this paper, the authors explore modifications of a mesh-connected parallel computer for the purpose of increasing the efficiency of executing important application programs. These modifications are made by adding one or more global mesh structures to the processing array. They show how our modifications allow asymptotic improvements in the efficiency of executing computations having low to medium interprocessor communication requirements (e.g., tree computations, prefix computations, finding the connected components of a graph). For computations with high interprocessor communication requirements such as sorting, they show that they offer no speedup. They also compare the modified mesh-connected parallel computer to other similar organizations including the pyramid, the X-tree, and the mesh-of-trees.
A comparison of tetrahedral mesh improvement techniques
Freitag, L.A.; Ollivier-Gooch, C.
1996-12-01
Automatic mesh generation and adaptive refinement methods for complex three-dimensional domains have proven to be very successful tools for the efficient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more difficult to compute. Fortunately, the shape of the elements can be improved through several mechanisms, including face-swapping techniques that change local connectivity and optimization-based mesh smoothing methods that adjust grid point location. The authors consider several criteria for each of these two methods and compare the quality of several meshes obtained by using different combinations of swapping and smoothing. Computational experiments show that swapping is critical to the improvement of general mesh quality and that optimization-based smoothing is highly effective in eliminating very small and very large angles. The highest quality meshes are obtained by using a combination of swapping and smoothing techniques.
Elongated silica nanoparticles with a mesh phase mesopore structure by fluorosurfactant templating.
Tan, Bing; Dozier, Alan; Lehmler, Hans-Joachim; Knutson, Barbara L; Rankin, Stephen E
2004-08-17
Mesoporous silica materials with pore structures such as 2D hexagonal close packed, bicontinuous cubic, lamellar, sponge, wormhole-like, and rectangular have been made by using surfactant templating sol-gel processes. However, there are still some "intermediate" phases, in particular mesh phases, that are formed by surfactants but which have not been made into analogous silica pore structures. Here, we describe the one-step synthesis of mesoporous silica with a mesh phase pore structure. The cationic fluorinated surfactant 1,1,2,2-tetrahydroperfluorodecylpyridinium chloride (HFDePC) is used as the template. Like many fluorinated surfactants, HFDePC forms intermediate phases in water (including a mesh phase) over a wider range of compositions than do hydrocarbon surfactants. The materials produced by this technique are novel elongated particles in which the layers of the mesh phase are oriented orthogonal to the main axis of the particles. PMID:15301475
Measured and predicted root-mean-square errors in square and triangular antenna mesh facets
NASA Technical Reports Server (NTRS)
Fichter, W. B.
1989-01-01
Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.
Update on Development of Mesh Generation Algorithms in MeshKit
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.
Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems
NASA Technical Reports Server (NTRS)
Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John
2010-01-01
Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.
Constrained CVT Meshes and a Comparison of Triangular Mesh Generators
Nguyen, Hoa; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki
2009-01-01
Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.
Method of modifying a volume mesh using sheet extraction
Borden, Michael J.; Shepherd, Jason F.
2007-02-20
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.
Layered superhydrophobic meshes for controlled drug release.
Falde, Eric J; Freedman, Jonathan D; Herrera, Victoria L M; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W
2015-09-28
Layered superhydrophobic electrospun meshes composed of poly(ε-caprolactone) (PCL) and poly(glycerol monostearate-co-ε-caprolactone) (PGC-C18) are described as a local source of chemotherapeutic delivery. Specifically, the chemotherapeutic agent SN-38 is incorporated into a central 'core' layer, between two 'shield' layers of mesh without drug. This mesh is resistant to wetting of the surface and throughout the bulk due to the pronounced hydrophobicity imparted by the high roughness of a hydrophobic polymer, PGC-C18. In serum solution, these meshes exhibit slow initial drug release over 10days corresponding to media infiltrating the shield layer, followed by steady release over >30days, as the drug-loaded core layer is wetted. This sequence of events is supported by X-ray computed tomography imaging of a contrast agent solution infiltrating the mesh. In vitro cytotoxicity data collected with Lewis Lung Carcinoma (LLC) cells are consistent with this release profile, remaining cytotoxic for over 20days, longer than the unlayered version. Finally, after subcutaneous implantation in rats, histology of meshes with and without drug demonstrated good integration and lack of adverse reaction over 28days. The drug release rates, robust superhydrophobicity, in vitro cytotoxicity of SN-38 loaded meshes, and compatibility provide key design parameters for the development of an implantable chemotherapeutic-loaded device for the prevention of local lung cancer recurrence following surgical resection. PMID:26160309
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Accurate, finite-volume methods for three dimensional magneto-hydrodynamics on Lagrangian meshes
Rousculp, C.L.; Barnes, D.C.
1999-07-01
Recently developed algorithms for ideal and resistive, 3D MHD calculations on Lagrangian hexahedral meshes have been generalized to work with a lagrangian mesh composed of arbitrary polyhedral cells. this allows for mesh refinement during a calculation to prevent the well known problem of tangling in a Lagrangian mesh. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {sm_bullet} {delta}1, is centered on all faces edges of this extended mesh. Thus, {triangledown} {sm_bullet} B = 0 is maintained to round-off error. For ideal flow, (E = v x B), vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion, (E = {minus}{eta}J), is treated with a support operator method, to obtain an energy conservative, symmetric method on an arbitrary polyhedral mesh. The equation of motion is time-step-split. First, the ideal term is treated explicitly. Next, the diffusion is solved implicitly with a preconditioned conjugate gradient method. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.
Poly-ε-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus.
Diemer, P; Markoew, S; Le, D Q S; Qvist, N
2015-04-01
Repair of long-gap esophageal atresia is associated with a high degree of complications. Tissue engineering on a scaffold of a bioresorbable material could be a solution. The aim of the present study was to investigate the in vivo tissue engineering of smooth muscle cells and epithelium on a poly-ε-caprolactone mesh in rabbit esophagus. Twenty female rabbits had a window of 0.6 × 1 cm cut in the abdominal part of the esophagus. The defect was covered with a poly-ε-caprolactone mesh. The rabbits were killed on postoperative day 28-30, and mesh with surrounding esophagus was removed for histological examination. Fifteen rabbits survived the trial period. Six had no complications and had the mesh in situ. They all had ingrowth of epithelial and smooth muscle cells and an almost completely degraded mesh. Nine rabbits developed pseudo-diverticula. It proved possible to engineer both epithelial and smooth muscle cells on the poly-ε-caprolactone mesh in spite of a fast mesh degradation. The latter may be the explanation to the development of pseudo-diverticula; this is a problem that needs attention in future experimental trials. PMID:24446895
NASA Astrophysics Data System (ADS)
Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.
Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m -2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m -3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m -2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes.
Rabani, Y.
1996-12-31
In the minimum path coloring problem, we are given a list of pairs of vertices of a graph. We are asked to connect each pair by a colored path. Paths of the same color must be edge disjoint. Our objective is to minimize the number of colors used. This problem was raised by Aggarwal et al and Raghavan and Upfal as a model for routing in all-optical networks. It is also related to questions in circuit routing. In this paper, we improve the O (ln N) approximation result of Kleinberg and Tardos for path coloring on the N x N mesh. We give an O(1) approximation algorithm to the number of colors needed, and a poly(ln ln N) approximation algorithm to the choice of paths and colors. To the best of our knowledge, these are the first sub-logarithmic bounds for any network other than trees, rings, or trees of rings. Our results are based on developing new techniques for randomized rounding. These techniques iteratively improve a fractional solution until it approaches integrality. They are motivated by the method used by Leighton, Maggs, and Rao for packet routing.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
SUPERFISH accuracy dependence on mesh size
NASA Astrophysics Data System (ADS)
Merson, J. L.; Boicourt, G. P.
1989-02-01
The RF cavity code SUPERFISH is extensively used for the design of drift-tube linac (DTL), radio-frequency quadrupole (RFQ), and coupled-cavity linac (CCL) structures. It has been known for some time that considerably finer meshes are required near the nose of a drift tube to ensure accurate calculation of the resonant frequency and related secondary quantities. This paper discusses the results of numerical experiments designed to provide rules to set proper mesh sizes for DTL, RFQ, and CCL problems. During this work, SUPERFISH problems involving more than 100,000 mesh points were solved.
Application of mesh network radios to UGS
NASA Astrophysics Data System (ADS)
Calcutt, Wade; Jones, Barry; Roeder, Brent
2008-04-01
During the past five years McQ has been actively pursuing integrating and applying wireless mesh network radios as a communications solution for unattended ground sensor (UGS) systems. This effort has been rewarded with limited levels of success and has ultimately resulted in a corporate position regarding the use of mesh network radios for UGS systems. A discussion into the background of the effort, the challenges of implementing commercial off-the-shelf (COTS) mesh radios with UGSs, the tradeoffs involved, and an overview of the future direction is presented.
H(curl) Auxiliary Mesh Preconditioning
Kolev, T V; Pasciak, J E; Vassilevski, P S
2006-08-31
This paper analyzes a two-level preconditioning scheme for H(curl) bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is more amenable for constructing optimal order multigrid methods. More specifically, we analyze the case when the auxiliary mesh only approximately covers the original domain. The latter assumption is important since it allows for easy construction of nested multilevel spaces on regular auxiliary meshes. Numerical experiments in both two and three space dimensions illustrate the optimal performance of the method.
Numerical simulation of H2/air detonation using unstructured mesh
NASA Astrophysics Data System (ADS)
Togashi, Fumiya; Löhner, Rainald; Tsuboi, Nobuyuki
2009-06-01
To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.
Grid adaptation using chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1994-01-01
The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.
Grid adaptation using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
A parallel algorithm for mesh smoothing
Freitag, L.; Jones, M.; Plassmann, P.
1999-07-01
Maintaining good mesh quality during the generation and refinement of unstructured meshes in finite-element applications is an important aspect in obtaining accurate discretizations and well-conditioned linear systems. In this article, the authors present a mesh-smoothing algorithm based on nonsmooth optimization techniques and a scalable implementation of this algorithm. They prove that the parallel algorithm has a provably fast runtime bound and executes correctly for a parallel random access machine (PRAM) computational model. They extend the PRAM algorithm to distributed memory computers and report results for two-and three-dimensional simplicial meshes that demonstrate the efficiency and scalability of this approach for a number of different test cases. They also examine the effect of different architectures on the parallel algorithm and present results for the IBM SP supercomputer and an ATM-connected network of SPARC Ultras.
LR: Compact connectivity representation for triangle meshes
Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J
2011-01-28
We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.
Grid adaption using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Efficiently Sorting Zoo-Mesh Data Sets
Cook, R; Max, N; Silva, C; Williams, P
2001-03-26
The authors describe the SXMPVO algorithm for performing a visibility ordering zoo-meshed polyhedra. The algorithm runs in practice in linear time and the visibility ordering which it produces is exact.
Octree based automatic meshing from CSG models
NASA Technical Reports Server (NTRS)
Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is emphasized. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary respresentation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractors. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
An efficient parallel algorithm for mesh smoothing
Freitag, L.; Plassmann, P.; Jones, M.
1995-12-31
Automatic mesh generation and adaptive refinement methods have proven to be very successful tools for the efficient solution of complex finite element applications. A problem with these methods is that they can produce poorly shaped elements; such elements are undesirable because they introduce numerical difficulties in the solution process. However, the shape of the elements can be improved through the determination of new geometric locations for mesh vertices by using a mesh smoothing algorithm. In this paper the authors present a new parallel algorithm for mesh smoothing that has a fast parallel runtime both in theory and in practice. The authors present an efficient implementation of the algorithm that uses non-smooth optimization techniques to find the new location of each vertex. Finally, they present experimental results obtained on the IBM SP system demonstrating the efficiency of this approach.
Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching.
Park, Jae-Hyeung; Yeom, Han-Ju; Kim, Hee-Jae; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo
2015-03-23
Mesh-based computer generated hologram enables realistic and efficient representation of three-dimensional scene. However, the dark line artifacts on the boundary between neighboring meshes are frequently observed, degrading the quality of the reconstruction. In this paper, we propose a simple technique to remove the dark line artifacts by matching the phase on the boundary of neighboring meshes. The feasibility of the proposed method is confirmed by the numerical and optical reconstruction of the generated hologram. PMID:25837138
Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation
NASA Astrophysics Data System (ADS)
Rebollar, Esther; Cordero, Diego; Martins, Albino; Chiussi, Stefano; Reis, Rui L.; Neves, Nuno M.; León, Betty
2011-02-01
Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(ɛ-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.
Boiling heat transfer on single phosphor bronze and copper mesh microstructures
NASA Astrophysics Data System (ADS)
Orman, Łukasz J.
2014-03-01
The paper presents experimental results of boiling heat transfer of distilled water and ethyl alcohol on surfaces covered with single layers of wire mesh structures made of phosphor bronze and copper. For each material two kinds of structures have been considered (higher and lower) in order to determine the impact of the height of the structure on boiling heat transfer. The wire diameter of the copper meshes was 0,25 mm and 0,32 mm, while of the bronze meshes: 0,20 mm and 0,25 mm. The structures had the same mesh aperture (distance between the wires - 0,50 mm for copper and 0,40 for bronze) but different wire diameter and, consequently, different height of the layers. The tests have been performed under ambient pressure in the pool boiling mode. The obtained results indicate a visible impact of the layer height on the boiling heat transfer performance of the analysed microstructures.
Refining quadrilateral and brick element meshes
Schneiders, R.; Debye, J.
1995-12-31
We consider the problem of refining unstructured quadrilateral and brick element meshes. We present an algorithm which is a generalization of an algorithm developed by Cheng et. al. for structured quadrilateral element meshes. The problem is solved for the two-dimensional case. Concerning three dimensions we present a solution for some special cases and a general solution that introduces tetrahedral and pyramidal transition elements.
MHD simulations on an unstructured mesh
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Implantation of the eSVS Mesh.
Emery, Robert W; Solien, Eric; Jamieson, Stuart W
2012-01-01
The eSVS Mesh (Kipps Bay Medical, Minneapolis, MN USA) Mesh (Kipps Bay Medical, Minneapolis, MN USA) is a new concept in improving saphenous vein graft patency for coronary bypass grafting. This is a nitinol-based external support device that maintains external support of the graft and prevents detrimental expansion when exposed to arterial pressure. The implanting technique is critical to outcomes and is described in this article. Clinical testing in the United States is pending. PMID:22576039
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Airplane Mesh Development with Grid Density Studies
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.
1999-01-01
Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum
Ge, Liangpeng; Liu, Lubin; Wei, Haoche; Du, Lei; Chen, Shixuan; Huang, Yong; Huang, Renshu
2016-04-01
Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. Surgical treatments for POP patients comprise a common strategy in which scaffold materials are used to reconstruct the prolapsed pelvic. However, the existing materials for pelvic reconstruction cannot meet clinical requirements in terms of biocompatibility, mechanics and immunological rejection. To address these concerns, polypropylene (PP) mesh was selected because of its strong mechanical properties. Small intestinal submucosa (SIS) was used to modify the PP mesh via a mussel-inspired polydopamine coating to enhance its biocompatibility. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) results demonstrated that SIS was successfully conjugated on the surface of the PP mesh. Moreover, the cytotoxicity results indicated that the PP mesh and SIS-modified PP mesh were safe to use. Furthermore, in vivo tests demonstrated that the fibroplasia around the implanted site in the SIS-modified PP mesh group was significantly less than the fibroplasia around the PP mesh group. In addition, the immunohistochemistry staining results indicated that the expression of pro-inflammatory macrophages (M1) was substantially lower and that the expression of pro-healing macrophages (M2) was higher in the SIS-modified PP mesh group. Furthermore, ELISA detection indicated that the expression of IL-1β and IL-6 in the SIS-modified PP mesh group was reduced compared with the PP mesh group. These findings suggest that a SIS-modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating is a promising approach in pelvic reconstruction. PMID:26801474
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend G. M.
2015-10-01
Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.
Mesh geometry impact on Micromegas performance with an Exchangeable Mesh prototype
NASA Astrophysics Data System (ADS)
Kuger, F.; Bianco, M.; Iengo, P.; Sekhniaidze, G.; Veenhof, R.; Wotschack, J.
2016-07-01
The reconstruction precision of gaseous detectors is limited by losses of primary electrons during signal formation. In addition to common gas related losses, like attachment, Micromegas suffer from electron absorption during its transition through the micro mesh. This study aims for a deepened understanding of electron losses and their dependency on the mesh geometry. It combines experimental results obtained with a novel designed Exchangeable Mesh Micromegas (ExMe) and advanced microscopic-tracking simulations (ANSYS and Garfield++) of electron drift and mesh transition.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Hybrid Surface Mesh Adaptation for Climate Modeling
Khamayseh, Ahmed K; de Almeida, Valmor F; Hansen, Glen
2008-01-01
Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.
Hybrid Surface Mesh Adaptation for Climate Modeling
Ahmed Khamayseh; Valmor de Almeida; Glen Hansen
2008-10-01
Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.
How to model wireless mesh networks topology
NASA Astrophysics Data System (ADS)
Sanni, M. L.; Hashim, A. A.; Anwar, F.; Ahmed, G. S. M.; Ali, S.
2013-12-01
The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches.
Automatic scheme selection for toolkit hex meshing
WHITE,DAVID R.; TAUTGES,TIMOTHY J.
2000-02-17
Current hexahedral mesh generation techniques rely on a set of meshing tools, which when combined with geometry decomposition leads to an adequate mesh generation process. Of these tools, sweeping tends to be the workhorse algorithm, accounting for at least 50% of most meshing applications. Constraints which must be met for a volume to be sweepable are derived, and it is proven that these constraints are necessary but not sufficient conditions for sweepability. This paper also describes a new algorithm for detecting extruded or sweepable geometries. This algorithm, based on these constraints, uses topological and local geometric information, and is more robust than feature recognition-based algorithms. A method for computing sweep dependencies in volume assemblies is also given. The auto sweep detect and sweep grouping algorithms have been used to reduce interactive user time required to generate all-hexahedral meshes by filtering out non-sweepable volumes needing further decomposition and by allowing concurrent meshing of independent sweep groups. Parts of the auto sweep detect algorithm have also been used to identify independent sweep paths, for use in volume-based interval assignment.
Automatic Scheme Selection for Toolkit Hex Meshing
TAUTGES,TIMOTHY J.; WHITE,DAVID R.
1999-09-27
Current hexahedral mesh generation techniques rely on a set of meshing tools, which when combined with geometry decomposition leads to an adequate mesh generation process. Of these tools, sweeping tends to be the workhorse algorithm, accounting for at least 50% of most meshing applications. Constraints which must be met for a volume to be sweepable are derived, and it is proven that these constraints are necessary but not sufficient conditions for sweepability. This paper also describes a new algorithm for detecting extruded or sweepable geometries. This algorithm, based on these constraints, uses topological and local geometric information, and is more robust than feature recognition-based algorithms. A method for computing sweep dependencies in volume assemblies is also given. The auto sweep detect and sweep grouping algorithms have been used to reduce interactive user time required to generate all-hexahedral meshes by filtering out non-sweepable volumes needing further decomposition and by allowing concurrent meshing of independent sweep groups. Parts of the auto sweep detect algorithm have also been used to identify independent sweep paths, for use in volume-based interval assignment.
Discrete differential geometry: The nonplanar quadrilateral mesh
NASA Astrophysics Data System (ADS)
Twining, Carole J.; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.
Discrete differential geometry: the nonplanar quadrilateral mesh.
Twining, Carole J; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids. PMID:23005244
Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo
2011-01-01
An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.
The design and application of upwind schemes on unstructured meshes
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Jespersen, Dennis C.
1989-01-01
Solution and mesh generation algorithms for solving the Euler equations on unstructured meshes consisting of triangle and quadrilateral control volumes are presented. Cell-centered and mesh-vertex upwind finite-volume schemes are developed which utilize multi-dimensional monotone linear reconstruction procedures. These algorithms differ from existing algorithms (even on structured meshes). Numerical results in two dimensions are presented.
50 CFR 622.208 - Minimum mesh size applicable to rock shrimp off Georgia and Florida.
Code of Federal Regulations, 2013 CFR
2013-10-01
... mesh size applicable to rock shrimp off Georgia and Florida. (a) The minimum mesh size for the cod end...), stretched mesh. This minimum mesh size is required in at least the last 40 meshes forward of the cod...
Method of modifying a volume mesh using sheet insertion
Borden, Michael J.; Shepherd, Jason F.
2006-08-29
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.
Large area nanoscale metal meshes for use as transparent conductive layers
NASA Astrophysics Data System (ADS)
Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan
2015-10-01
We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple
2011-01-01
Background Mesh repair of incisional hernia is superior to the conventional technique. From all available materials for open surgery polypropylene (PP) is the most widely used. Development resulted in meshes with larger pore size, decreased mesh surface and lower weight. The aim of this retrospective non randomized study was to compare the quality of life in the long term follow up (> 72 month) after incisional hernia repair with "light weight"(LW) and "heavy weight"(HW) PP meshes. Methods 12 patients who underwent midline open incisional hernia repair with a HW-PP mesh (Prolene® 109 g/m2 pore size 1.6 mm) between January 1996 and December 1997 were compared with 12 consecutive patients who underwent the same procedure with a LW-PP mesh (Vypro® 54 g/m2, pore size 4-5 mm) from January 1998. The standard technique was the sublay mesh-plasty with the retromuscular positioning of the mesh. The two groups were equal in BMI, age, gender and hernia size. Patients were routinely seen back in the clinic. Results In the long term run (mean follow up 112 ± 22 months) patients of the HW mesh group revealed no significant difference in the SF-36 Health Survey domains compared to the LW group (mean follow up 75 ± 16 months). Conclusions In this study the health related quality of life based on the SF 36 survey after open incisional hernia repair with light or heavy weight meshes is not related to the mesh type in the long term follow up. PMID:21917180
The “Pelvic Harness”: a skeletonized mesh implant for safe pelvic floor reconstruction
Natalia, Sumerova; Menahem, Neuman; Haim, Krissi; Dmitri, Pushkar
2016-01-01
ABSTRACT Objectives To evaluate the feasibility, safety and surgical results of skeletonized mesh implants to form a pelvic harness for pelvic floor reconstruction surgery. Study design Patients with advanced pelvic floor prolapse were enrolled to this study. Study model was a kit mesh, reduced to 75% of the original surface area by cutting out mesh material from the central mesh body. Patients were evaluated at the end of the 1st and 6th post-operative months and interviewed at the study conclusion. Results Ninety-five women with advanced pelvic floor prolapse had this implant. Mean follow-up duration was 9 months (6-12 months). The POP-Q point’s measurements showed marked and statistically significant improvements. Bladder over-activity symptoms, fecal incontinence, pelvic pain and constipation rates were all reduced as well. No adverse effects related to the dissection or mesh implantation were marked. The first and sixth post-operative month follow-up records as well as the study conclusion interview findings were satisfactory in terms of subjective and objective cure and adverse effects occurrence. Conclusion This study data proposes that skeletonizing meshes might be safely and successfully implanted for potentially improved pelvic floor reconstruction. PMID:27286114
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
A moving mesh finite difference method for equilibrium radiation diffusion equations
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A moving mesh finite difference method for equilibrium radiation diffusion equations
NASA Astrophysics Data System (ADS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
Kuprat, A.; George, D.
1998-12-01
When modeling deformation of geometrically complex regions, unstructured tetrahedral meshes provide the flexibility necessary to track interfaces as they change geometrically and topologically. In the class of time-dependent simulations considered in this paper, multimaterial interfaces are represented by sets of triangular facets, and motion of the interfaces is controlled by physical considerations. The motion of interior points in the conforming tetrahedral mesh (i.e., points not on interfaces) is arbitrary and may be chosen to produce good element shapes. In the context of specified boundary motion driven by physical considerations, they have found that a rather large glossary of mesh changes is required to allow the simulation to survive all the transitions of interface geometry and topology that occur during time evolution. This paper will describe mesh changes required to maintain good element quality as the geometry evolves, as well as mesh changes required to capture changes i n topology that occur when material regions collapse or pinch off. This paper will present a detailed description of mesh changes necessary for capturing the aforementioned geometrical and topological changes, as implemented in the code GRAIN3D, and will provide examples from a metallic grain growth simulation in which the normal velocity of the grain boundary is proportional to mean curvature.
Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients
Ciritsis, Alexander; Truhn, Daniel; Hansen, Nienke L.; Otto, Jens; Kuhl, Christiane K.; Kraemer, Nils A.
2016-01-01
Object In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI) and a post-processing susceptibility gradient mapping algorithm (SGM) for visualization of iron loaded mesh implants in patients. Material and Methods Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm²) and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm²) with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists. Results On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely “sufficient”. Conclusion Both “positive contrast” techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient. PMID:27192201
Conservative interpolation between general spherical meshes
NASA Astrophysics Data System (ADS)
Kritsikis, E.; Aechtner, M.; Meurdesoif, Y.; Dubos, T.
2015-06-01
An efficient, local, explicit, second-order, conservative interpolation algorithm between spherical meshes is presented. The cells composing the source and target meshes may be either spherical polygons or longitude-latitude quadrilaterals. Second-order accuracy is obtained by piecewise-linear finite volume reconstruction over the source mesh. Global conservation is achieved through the introduction of a supermesh, whose cells are all possible intersections of source and target cells. Areas and intersections are computed exactly to yield a geometrically exact method. The main efficiency bottleneck caused by the construction of the supermesh is overcome by adopting tree-based data structures and algorithms, from which the mesh connectivity can also be deduced efficiently. The theoretical second-order accuracy is verified using a smooth test function and pairs of meshes commonly used for atmospheric modelling. Experiments confirm that the most expensive operations, especially the supermesh construction, have O(NlogN) computational cost. The method presented is meant to be incorporated in pre- or post-processing atmospheric modelling pipelines, or directly into models for flexible input/output. It could also serve as a basis for conservative coupling between model components, e.g. atmosphere and ocean.
Mesh insertion as an aid for pleurodesis.
Sugarmann, W M; Widmann, W D; Mysh, D; Sattari, R
1996-12-01
With the application of video-assisted thoracic surgery (VATS) for the treatment of pneumothorax, there has been an increase in the failure rate of treatment because of inadequate pleurodesis. We sought to determine whether mesh insertion into the pleural cavity with or without pleural abrasion results in predictable pleurodesis appropriate for clinical trial as an adjunct to VATS treatment of pneumothorax. There have been no prior studies on the use of absorbable or nonabsorbable mesh in the thoracic cavity. The effects of intra-thoracic absorbable polyglactin (Vicryl) and non-absorbable polypropylene (Marlex) mesh were studied in rats. Polyglactin without abrasion caused filmy adhesions in 5/5, 1/7, and 0/5 rats studied at 1, 2, and 3 months. Polypropylene incites an extensive and dense pleural reaction not suitable for clinical use becaues it induces a fibrothorax. Pleural abrasion alone caused variable adhesions studied at 3-4 months (4/6 none, 1/6 filmy, 1/6 firm). Polyglactin plus pleural abrasion resulted in appropriate firm adhesions in 7/8 rats studied at 3-4 months with 1/8 showing filmy adhesions. Polyglactin alone results in transient filmy adhesions. Pleural abrasion alone results in inadequate pleural symphysis. However, when absorbable mesh insertion is coupled with pleural abrasion, appropriate pleurodesis is predictably achieved. Clinical application of polyglactin mesh insertion with pleural abrasion as an adjunct in the VATS treatment of pneumothorax has begun and has been successful. PMID:10064371
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.
NASA Lewis Meshed VSAT Workshop meeting summary
NASA Technical Reports Server (NTRS)
Ivancic, William
1993-01-01
NASA Lewis Research Center's Space Electronics Division (SED) hosted a workshop to address specific topics related to future meshed very small-aperture terminal (VSAT) satellite communications networks. The ideas generated by this workshop will help to identify potential markets and focus technology development within the commercial satellite communications industry and NASA. The workshop resulted in recommendations concerning these principal points of interest: the window of opportunity for a meshed VSAT system; system availability; ground terminal antenna sizes; recommended multifrequency for time division multiple access (TDMA) uplink; a packet switch design concept for narrowband; and fault tolerance design concepts. This report presents a summary of group presentations and discussion associated with the technological, economic, and operational issues of meshed VSAT architectures that utilize processing satellites.
Performance of a streaming mesh refinement algorithm.
Thompson, David C.; Pebay, Philippe Pierre
2004-08-01
In SAND report 2004-1617, we outline a method for edge-based tetrahedral subdivision that does not rely on saving state or communication to produce compatible tetrahedralizations. This report analyzes the performance of the technique by characterizing (a) mesh quality, (b) execution time, and (c) traits of the algorithm that could affect quality or execution time differently for different meshes. It also details the method used to debug the several hundred subdivision templates that the algorithm relies upon. Mesh quality is on par with other similar refinement schemes and throughput on modern hardware can exceed 600,000 output tetrahedra per second. But if you want to understand the traits of the algorithm, you have to read the report!
GRChombo: Numerical relativity with adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran
2015-12-01
In this work, we introduce {\\mathtt{GRChombo}}: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. {\\mathtt{GRChombo}} evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that {\\mathtt{GRChombo}} can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.
The generation of hexahedral meshes for assembly geometries: A survey
TAUTGES,TIMOTHY J.
2000-02-14
The finite element method is being used today to model component assemblies in a wide variety of application areas, including structural mechanics, fluid simulations, and others. Generating hexahedral meshes for these assemblies usually requires the use of geometry decomposition, with different meshing algorithms applied to different regions. While the primary motivation for this approach remains the lack of an automatic, reliable all-hexahedral meshing algorithm, requirements in mesh quality and mesh configuration for typical analyses are also factors. For these reasons, this approach is also sometimes required when producing other types of unstructured meshes. This paper will review progress to date in automating many parts of the hex meshing process, which has halved the time to produce all-hex meshes for large assemblies. Particular issues which have been exposed due to this progress will also be discussed, along with their applicability to the general unstructured meshing problem.
Cardiovascular and lung mesh generation based on centerlines.
Marchandise, E; Geuzaine, C; Remacle, J F
2013-06-01
We present a fully automatic procedure for the mesh generation of tubular geometries such as blood vessels or airways. The procedure is implemented in the open-source Gmsh software and relies on a centerline description of the input geometry. The presented method can generate different type of meshes: isotropic tetrahedral meshes, anisotropic tetrahedral meshes, and mixed hexahedral/tetrahedral meshes. Additionally, a multiple layered arterial wall can be generated with a variable thickness. All the generated meshes rely on a mesh size field and a mesh metric that is based on centerline descriptions, namely the distance to the centerlines and a local reference system based on the tangent and the normal directions to the centerlines. Different examples show that the proposed method is very efficient and robust and leads to high quality computational meshes. PMID:23606344
Multigrid solution strategies for adaptive meshing problems
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1995-01-01
This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Shuffle-exchanges on augmented meshes
NASA Technical Reports Server (NTRS)
Bokhari, S. H.
1984-01-01
A mesh connected array of size N = two to the Kth power, K an integer, can be augmented by adding at most one edge per node such that it can perform a shuffle-exchange of size N/2 in constant time. A shuffle-exchange of size N is performed on this augmented array in constant time. This is done by combining the available perfect shuffle of size N/2 with the existing nearest neighbor connections of the mesh. By carefully scheduling the different permutations that are composed in order to achieve the shuffle, the time required is reduced to 5 steps, which is optimal for this network.
FEATURE-BASED MULTIBLOCK FINITE ELEMENT MESH GENERATION
Shivanna, Kiran H.; Tadepalli, Srinivas C.; Grosland, Nicole M.
2010-01-01
Hexahedral finite element mesh development for anatomic structures and biomedical implants can be cumbersome. Moreover, using traditional meshing techniques, detailed features may be inadequately captured. In this paper, we describe methodologies to handle multi-feature datasets (i.e., feature edges and surfaces). Coupling multi-feature information with multiblock meshing techniques has enabled anatomic structures, as well as orthopaedic implants, to be readily meshed. Moreover, the projection process, node and element set creation are automated, thus reducing the user interaction during model development. To improve the mesh quality, Laplacian- and optimization-based mesh improvement algorithms have been adapted to the multi-feature datasets. PMID:21076650
Highly Symmetric and Congruently Tiled Meshes for Shells and Domes
Rasheed, Muhibur; Bajaj, Chandrajit
2016-01-01
We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368
Code of Federal Regulations, 2011 CFR
2011-10-01
... indication of the width may appear at regular intervals other than 1 mm. (2) Use of the gauge. (i) The net... direction perpendicular to the plane of the net. (iii) The gauge may be inserted into the mesh opening either with a manual force or using a weight or dynamometer, until it is stopped at the tapering edges...
Code of Federal Regulations, 2013 CFR
2013-10-01
... indication of the width may appear at regular intervals other than 1 mm. (2) Use of the gauge. (i) The net... direction perpendicular to the plane of the net. (iii) The gauge may be inserted into the mesh opening either with a manual force or using a weight or dynamometer, until it is stopped at the tapering edges...
Functionalized Nanofiber Meshes Enhance Immunosorbent Assays.
Hersey, Joseph S; Meller, Amit; Grinstaff, Mark W
2015-12-01
Three-dimensional substrates with high surface-to-volume ratios and subsequently large protein binding capacities are of interest for advanced immunosorbent assays utilizing integrated microfluidics and nanosensing elements. A library of bioactive and antifouling electrospun nanofiber substrates, which are composed of high-molecular-weight poly(oxanorbornene) derivatives, is described. Specifically, a set of copolymers are synthesized from three 7-oxanorbornene monomers to create a set of water insoluble copolymers with both biotin (bioactive) and triethylene glycol (TEG) (antifouling) functionality. Porous three-dimensional nanofiber meshes are electrospun from these copolymers with the ability to specifically bind streptavidin while minimizing the nonspecific binding of other proteins. Fluorescently labeled streptavidin is used to quantify the streptavidin binding capacity of each mesh type through confocal microscopy. A simplified enzyme-linked immunosorbent assay (ELISA) is presented to assess the protein binding capabilities and detection limits of these nanofiber meshes under both static conditions (26 h) and flow conditions (1 h) for a model target protein (i.e., mouse IgG) using a horseradish peroxidase (HRP) colorimetric assay. Bioactive and antifouling nanofiber meshes outperform traditional streptavidin-coated polystyrene plates under flow, validating their use in future advanced immunosorbent assays and their compatibility with microfluidic-based biosensors. PMID:26551162
Gravitational Collapse With Distributed Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Liebling, Steven; Lehner, Luis; Motl, Patrick; Neilsen, David; Rahman, Tanvir; Reula, Oscar
2006-04-01
Gravitational collapse is studied using distributed adaptive mesh refinement (AMR). The AMR infrastructure includes a novel treatment of adaptive boundaries which allows for high orders of accuracy. Results of the collapse of Brill waves to black holes are presented. Combining both vertex centered and cell centered fields in the same evolution is discussed.
The Factory Approach to Creating TSTT Meshes
Epperly, T
2003-10-21
The factory approach (a.k.a. virtual constructor) hides the details of the class implementing the TSTT from TSTT users. In version 0.5 of TSTT.sidl, the client hard codes the name of the implementing class into their code. The client is forced to choose from the small set of possible concrete classes defined in TSTT.sidl. This approach makes it impossible to support multiple implementations of the TSTT in a single process because each implementation has to implement the same class. The factory approach hides the details of mesh creation from the client. The client does not need to know the name of the implementing class, and the client can dynamically determine which interfaces are supported by the new mesh. A factory can support multiple TSTT implementation because each implementation defines its own concrete classes to implement. The factory approach does require the TSTT compliant mesh packages to implement a MeshFactory interface, and everyone needs to link against an implementation of the Registry. The Registry only has 7 methods that are fairly easy to implement, and everyone can share one implementation of the Registry.
Details of tetrahedral anisotropic mesh adaptation
NASA Astrophysics Data System (ADS)
Jensen, Kristian Ejlebjerg; Gorman, Gerard
2016-04-01
We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.
Propped Cantilever Mesh Convergence Study Using Hexahedral Elements
Chi-Fung Tso; David Molitoris; Spencer Snow; Alex Norman
2001-10-01
The Task Group on Computational Modelling for Explicit Analyses in the ASME Boiler and Pressure Vessel Code committee was set up in August 2008 to develop a quantitative finite element modelling guidance document for the explicit dynamic analysis of energy-limited events. This guidance document will be referenced in the ASME Boiler and Pressure Vessel Code Section III Division 3 and NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. In energy limited events, which the guidance document will address, ductile metallic materials will suffer significant plastic strains to take full advantage of their energy absorption capacity. Accuracy of the analyses in predicting large strains is therefore essential. One of the issues that this guidance document will address is the issue of the quality of a finite element mesh, and in particular, mesh refinement to obtain a convergent solution. That is, for a given structure under a given loading using a given type of element, what is the required mesh density to achieve sufficiently accurate results. One portion of the guidance document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different elements types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. The first convergence study consists of an elegantly simple problem of a cantilevering beam, simply supported at one end and built in at the other, loaded by a uniformly-distributed load that is ramped up over a finite time to a constant value. Three different loads were defined, with the smallest load to cause stresses that are entirely elastic and the largest load to cause large plastic deformations. Material properties, loading rates and boundary conditions were also
CUBIT mesh generation environment. Volume 1: Users manual
Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.
1994-05-01
The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.
On combining Laplacian and optimization-based mesh smoothing techniques
Freitag, L.A.
1997-07-01
Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.
To mesh or not to mesh: a review of pelvic organ reconstructive surgery
Dällenbach, Patrick
2015-01-01
Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324
Moving-mesh cosmology: properties of gas discs
NASA Astrophysics Data System (ADS)
Torrey, Paul; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars
2012-12-01
We compare the structural properties of galaxies formed in cosmological simulations using the smoothed particle hydrodynamics (SPH) code GADGET with those using the moving-mesh code AREPO. Both codes employ identical gravity solvers and the same subresolution physics but use very different methods to track the hydrodynamic evolution of gas. This permits us to isolate the effects of the hydro solver on the formation and evolution of galactic gas discs in GADGET and AREPO haloes with comparable numerical resolution. In a matching sample of GADGET and AREPO haloes, we fit simulated gas discs with exponential profiles. We find that the cold gas discs formed using the moving-mesh approach have systematically larger disc scale lengths and higher specific angular momenta than their GADGET counterparts across a wide range in halo masses. For low-mass galaxies, differences between the properties of the simulated galaxy discs are caused by an insufficient number of resolution elements which lead to the artificial angular momentum transfer in our SPH calculation. We however find that galactic discs formed in massive haloes, resolved with ≥106 particles/cells, are still systematically smaller in the GADGET run by a factor of ˜2. The reason for this is twofold: (i) the excessive heating of haloes close to the cooling radius due to spurious dissipation of the subsonic turbulence in GADGET reduces the supply of gas which can cool and settle on to the central disc; (ii) the efficient delivery of low angular momentum gaseous blobs to the bottom of the potential well results in the centrally concentrated gas discs in GADGET simulation. While this large population of gaseous blobs in GADGET originates from the filaments which are pressure confined and fragment due to the SPH surface tension while infalling into hot halo atmospheres, it is essentially absent in the moving-mesh calculation, clearly indicating numerical rather than physical origin of the blob material.
Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations
Ghadyani, Hamid; Sullivan, John; Wu, Ziji
2009-01-01
Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743
The influence of mesh topology in the abdominal wall repair process.
De Maria, Carmelo; Burchielli, Silvia; Salvadori, Claudia; Santoro, Vito; Montemurro, Francesca; Orsi, Gianni; Vozzi, Giovanni
2016-08-01
The tissue integration and the formation of adhesions in the repair of abdominal wall defects are principally led to the topology and the mechanical properties of implanted prosthesis. In this study we analyzed the influence of the topology of the meshes for abdominal wall repair, made of polypropylene (PP), evaluating its ability to prevent and to minimize the formation of adhesions, and to promote tissue ingrowth. Two series of in vivo studies were performed. In the first, two types of PP meshes, a lightweight macroporous mesh (LWM) and a heavyweight microporous mesh (HWM) were compared with determine the optimal porosity for tissue integration. In the second, a composite mesh, Clear Mesh Composite (CMC), made of a LWM sewn on a PP planar smooth film, was compared with a PP planar film, to demonstrate how two different topologies of same material are able to induce different tissue integration with the abdominal wall and different adhesion with internal organs. In both studies, the prostheses were implanted in Wistar rats and histological analysis and mechanical characterization of tissue coupled with the implants were performed. LWM showed better host tissue ingrowth in comparison to HWM. CMC prosthesis showed no adhesions to the viscera and no strong foreign body reaction, moreover its elasticity and anisotropy index were more similar to that of natural tissue. These results demonstrated that the surface morphology of PP surgical meshes allowed to modulate their repair ability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1220-1228, 2016. PMID:26097153
Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes
Barnes, D.C.; Rousculp, C.L.
1998-10-01
Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.
On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach
NASA Astrophysics Data System (ADS)
Liu, Zheng; Xue, Kaiping; Hong, Peilin
The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.
Mesh quality control for multiply-refined tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1994-01-01
A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.
Dynamic mesh adaption for triangular and tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.
Pelvic Organ Prolapse---Vaginal and Laparoscopic Mesh: The Evidence.
Richter, Lee A; Sokol, Andrew I
2016-03-01
This report summarizes the current literature on abdominal, laparoscopic, and transvaginal mesh for the treatment of pelvic organ prolapse. This article reviews objective and subjective cure rates as well as complications associated with synthetic mesh use for pelvic organ prolapse repair. The focus is on the latest literature that provides evidence for when synthetic mesh use is most appropriate. The use of mesh for the repair of urinary incontinence is not reviewed in this article. PMID:26880510
Simple optimization method for EMI mesh pattern design
NASA Astrophysics Data System (ADS)
Alpman, Mehmet Erhan; Senger, Tolga
2014-05-01
Metallic mesh coatings are used on visible and infrared windows and domes widely to provide shielding from EMI (Electromagnetic Interference). In this paper, different EMI mesh geometries are compared with each other regarding various performance parameters. But to decide the best fitting EMI mesh geometry to particular optic system is a little bit complicated issue. Therefore, we try to find a simple optimization methodology to decide best EMI mesh geometry design that fits our particular high performance ISR (Intelligence, Surveillance and Reconnaissance) systems.
Cubit Mesh Generation Toolkit V11.1
Energy Science and Technology Software Center (ESTSC)
2009-03-25
CUBIT prepares models to be used in computer-based simulation of real-world events. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies.
Does lining polypropylene with polyglactin mesh reduce intraperitoneal adhesions?
Dasika, U K; Widmann, W D
1998-09-01
A method that appears to reduce the rate of adhesion formation between intraperitoneal viscera and prosthetic mesh is the placement of absorbable mesh between nonabsorbable mesh and intraperitoneal viscera. In this study, polyglactin mesh was compared with nonabsorbable polypropylene mesh (Marlex). Forty-seven Sprague-Dawley rats were divided into four groups: 1) control, 2) polyglactin (Vicryl), 3) polypropylene mesh, and 4) polyglactin-lined polypropylene mesh. All rats that underwent mesh placement had midline laparotomy with anastamosis of mesh to fascial borders. Controls underwent midline laparotomy and closure only. Groups were then studied at 1, 2, and 3 months, respectively, to determine the degree of adhesion formation. Gross inspection was performed by a blinded researcher with numerical rank given based on the number of adhesions observed: 0, none; 1, mild; 2, moderate; and 3, severe. The data showed that rats in group 3 (polypropylene only) had significant adhesions at 3 months, with average numerical score of 2.75. Polyglactin and polyglactin/polypropylene groups had similar scores of 1.5 each. Control groups predictably showed little adhesion formation, with average score of 0.25. Based on these data, it is observed that lining polypropylene mesh with absorbable polyglactin mesh can reduce adhesion formation to nonabsorbable mesh. The difference in degree of adhesions is most notable at 3 months. This technique may be an important adjunct to reduce the clinical sequelae of intraperitoneal adhesions. PMID:9731806
Kull ALE: II. Grid Motion on Unstructured Arbitrary Polyhedral Meshes
Anninos, P
2002-02-11
Several classes of mesh motion algorithms are presented for the remap phase of unstructured mesh ALE codes. The methods range from local shape optimization procedures to more complex variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary for the Kull code.
Using Rock SEM Image to Create Pore-scale Finite Element Calculation Mesh
NASA Astrophysics Data System (ADS)
Jianjun, Liu; Lijun, Lin; Youjun, Ji
Micro-scale numerical simulation were often used to study the deformation, flow or heat transfer mechanism of material, among the simulation, one important step is to get simulation mesh. Taking rock as an example, this paper illustrated a method of creating pore-scale finite element calculation mesh from rock Scanning Electron Microscope (SEM) image with image processing toolbox of MATLAB, Algolab Raster to Vector Conversion Toolkit and COMSOL Multiphysics software. It established a more accurate numerical model of the microscopic pore structure of rock. Simulation results demonstrate that the method is efficiency in the application of image processing and the study of microscopic pore structure.
Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure
NASA Technical Reports Server (NTRS)
Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.
1992-01-01
Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.
Tang, Hua; Xu, Zhifei; Qin, Xiong; Wu, Bin; Wu, Lihui; Zhao, XueWei; Li, Yulin
2009-07-01
Extensive chest wall defect reconstruction remains a challenging problem for surgeons. In the past several years, little progress has been made in this area. In this study, a biodegradable polydioxanone (PDO) mesh and demineralized bone matrix (DBM) seeded with osteogenically induced bone marrow stromal cells (BMSCs) were used to reconstruct a 6 cm x 5.5 cm chest wall defect. Four experimental groups were evaluated (n=6 per group): polydioxanone (PDO) mesh/DBMs/BMSCs group, polydioxanone (PDO) mesh/DBMs group, polydioxanone (PDO) mesh group, and a blank group (no materials) in a canine model. All the animals survived except those in the blank group. In all groups receiving biomaterial implants, the polydioxanone (PDO) mesh completely degraded at 24 weeks and was replaced by fibrous tissue with thickness close to that of the normal intercostal tissue (P>0.05). In the polydioxanone (PDO) mesh/DBMs/BMSCs group, new bone formation and bone-union were observed by radiographic and histological examination. More importantly, the reconstructed rib could maintain its original radian and achieve satisfactory biomechanics close to normal ribs in terms of bending stress (P>0.05). However, in the other two groups, fibrous tissue was observed in the defect and junctions, and the reconstructed ribs were easily distorted under an outer force. Based on these results, a surgical approach utilizing biodegradable polydioxanone (PDO) mesh in combination with DBMs and BMSCs could repair the chest wall defect not only in function but also in structure. PMID:19233465
NASA Astrophysics Data System (ADS)
Pournoury, M.; Zamiri, A.; Kim, T. Y.; Yurlov, V.; Oh, K.
2016-03-01
Capacitive touch sensor screen with the metal materials has recently become qualified for substitution of ITO; however several obstacles still have to be solved. One of the most important issues is moiré phenomenon. The visibility problem of the metal-mesh, in touch sensor module (TSM) is numerically considered in this paper. Based on human eye contract sensitivity function (CSF), moiré pattern of TSM electrode mesh structure is simulated with MATLAB software for 8 inch screen display in oblique view. Standard deviation of the generated moiré by the superposition of electrode mesh and screen image is calculated to find the optimal parameters which provide the minimum moiré visibility. To create the screen pixel array and mesh electrode, rectangular function is used. The filtered image, in frequency domain, is obtained by multiplication of Fourier transform of the finite mesh pattern (product of screen pixel and mesh electrode) with the calculated CSF function for three different observer distances (L=200, 300 and 400 mm). It is observed that the discrepancy between analytical and numerical results is less than 0.6% for 400 mm viewer distance. Moreover, in the case of oblique view due to considering the thickness of the finite film between mesh electrodes and screen, different points of minimum standard deviation of moiré pattern are predicted compared to normal view.
Shephard, M.S.; Dey, S.; Georges, M.K.
1995-12-31
Specific issues associated with the automatic generation of finite element meshes for curved geometric domains axe considered. A review of the definition of when a triangulation is a valid mesh, a geometric triangulation, for curved geometric domains is given. Consideration is then given to the additional operations necessary to maintain the validity of a mesh when curved finite elements are employed. A procedure to control the mesh gradations based on the curvature of the geometric model faces is also given.
Cell adhesion on NiTi thin film sputter-deposited meshes.
Loger, K; Engel, A; Haupt, J; Li, Q; Lima de Miranda, R; Quandt, E; Lutter, G; Selhuber-Unkel, C
2016-02-01
Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium(NiTi) thin film mesheswere produced by means of magnetron sputter deposition.Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133+) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applicationsin cardiovascular tissue engineering, particularly for the fabrication of heart valves. PMID:26652414
Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.
Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei
2016-09-14
Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications. PMID:27564457
Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei
2015-03-01
Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure. PMID:25625787
Development of Au-Ag nanowire mesh fabrication by UV-induced approach
Saggar, Siddhartha; Predeep, Padmanabhan
2014-10-15
In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.
Selective separation of oil and water with mesh membranes by capillarity.
Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S J; Lai, Zhiping
2016-09-01
The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. PMID:27246717
Adaptive upscaling with the dual mesh method
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Isomorphic routing on a toroidal mesh
NASA Technical Reports Server (NTRS)
Mao, Weizhen; Nicol, David M.
1993-01-01
We study a routing problem that arises on SIMD parallel architectures whose communication network forms a toroidal mesh. We assume there exists a set of k message descriptors (xi, yi), where (xi, yi) indicates that the ith message's recipient is offset from its sender by xi hops in one mesh dimension, and yi hops in the other. Every processor has k messages to send, and all processors use the same set of message routing descriptors. The SIMD constraint implies that at any routing step, every processor is actively routing messages with the same descriptors as any other processor. We call this isomorphic routing. Our objective is to find the isomorphic routing schedule with least makespan. We consider a number of variations on the problem, yielding complexity results from O(k) to NP-complete. Most of our results follow after we transform the problem into a scheduling problem, where it is related to other well-known scheduling problems.
Electrostatic PIC with adaptive Cartesian mesh
NASA Astrophysics Data System (ADS)
Kolobov, Vladimir; Arslanbekov, Robert
2016-05-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
Gamra: Simple meshing for complex earthquakes
NASA Astrophysics Data System (ADS)
Landry, Walter; Barbot, Sylvain
2016-05-01
The static offsets caused by earthquakes are well described by elastostatic models with a discontinuity in the displacement along the fault. A traditional approach to model this discontinuity is to align the numerical mesh with the fault and solve the equations using finite elements. However, this distorted mesh can be difficult to generate and update. We present a new numerical method, inspired by the Immersed Interface Method (Leveque and Li, 1994), for solving the elastostatic equations with embedded discontinuities. This method has been carefully designed so that it can be used on parallel machines on an adapted finite difference grid. We have implemented this method in Gamra, a new code for earth modeling. We demonstrate the correctness of the method with analytic tests, and we demonstrate its practical performance by solving a realistic earthquake model to extremely high precision.
Efficient triangular adaptive meshes for tsunami simulations
NASA Astrophysics Data System (ADS)
Behrens, J.
2012-04-01
With improving technology and increased sensor density for accurate determination of tsunamogenic earthquake source parameters and consecutively uplift distribution, real-time simulations of even near-field tsunami hazard appears feasible in the near future. In order to support such efforts a new generation of tsunami models is currently under development. These models comprise adaptively refined meshes, in order to save computational resources (in areas of low wave activity) and still represent the inherently multi-scale behavior of a tsunami approaching coastal waters. So far, these methods have been based on oct-tree quadrilateral refinement. The method introduced here is based on binary tree refinement on triangular grids. By utilizing the structure stemming from the refinement strategy, a very efficient method can be achieved, with a triangular mesh, able to accurately represent complex boundaries.
Quality mesh generation in higher dimensions.
Mitchell, S. A.; Vavasis, S. A.; SNL; Cornell Univ.
2000-03-06
We consider the problem of triangulating a d-dimensional region. Our mesh generation algorithm, called QMG, is a quadtree-based algorithm that can triangulate any polyhedral region including nonconvex regions with holes. Furthermore, our algorithm guarantees a bounded aspect ratio triangulation provided that the input domain itself has no sharp angles. Finally, our algorithm is guaranteed never to overrefine the domain, in the sense that the number of simplices produced by QMG is bounded above by a factor times the number produced by any competing algorithm, where the factor depends on the aspect ratio bound satisfied by the competing algorithm. The QMG algorithm has been implemented in C++ and is used as a mesh generator for the finite element method.
Motion Editing for Time-Varying Mesh
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Yamasaki, Toshihiko; Aizawa, Kiyoharu
2008-12-01
Recently, time-varying mesh (TVM), which is composed of a sequence of mesh models, has received considerable interest due to its new and attractive functions such as free viewpoint and interactivity. TVM captures the dynamic scene of the real world from multiple synchronized cameras. However, it is expensive and time consuming to generate a TVM sequence. In this paper, an editing system is presented to reuse the original data, which reorganizes the motions to obtain a new sequence based on the user requirements. Hierarchical motion structure is observed and parsed in TVM sequences. Then, the representative motions are chosen into a motion database, where a motion graph is constructed to connect those motions with smooth transitions. After the user selects some desired motions from the motion database, the best paths are searched by a modified Dijkstra algorithm to achieve a new sequence. Our experimental results demonstrate that the edited sequences are natural and smooth.
Vertical-Axis Wind Turbine Mesh Generator
Energy Science and Technology Software Center (ESTSC)
2014-01-24
VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less
Vertical-Axis Wind Turbine Mesh Generator
2014-01-24
VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.
Parallel adaptive mesh refinement within the PUMAA3D Project
NASA Technical Reports Server (NTRS)
Freitag, Lori; Jones, Mark; Plassmann, Paul
1995-01-01
To enable the solution of large-scale applications on distributed memory architectures, we are designing and implementing parallel algorithms for the fundamental tasks of unstructured mesh computation. In this paper, we discuss efficient algorithms developed for two of these tasks: parallel adaptive mesh refinement and mesh partitioning. The algorithms are discussed in the context of two-dimensional finite element solution on triangular meshes, but are suitable for use with a variety of element types and with h- or p-refinement. Results demonstrating the scalability and efficiency of the refinement algorithm and the quality of the mesh partitioning are presented for several test problems on the Intel DELTA.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Adaption of unstructured meshes using node movement
Carpenter, J.G.; McRae, V.D.S.
1996-12-31
The adaption algorithm of Benson and McRae is modified for application to unstructured grids. The weight function generation was modified for application to unstructured grids and movement was limited to prevent cross over. A NACA 0012 airfoil is used as a test case to evaluate the modified algorithm when applied to unstructured grids and compared to results obtained by Warren. An adaptive mesh solution for the Sudhoo and Hall four element airfoil is included as a demonstration case.
Wireless experiments on a Motorola mesh testbed.
Riblett, Loren E., Jr.; Wiseman, James M.; Witzke, Edward L.
2010-06-01
Motomesh is a Motorola product that performs mesh networking at both the client and access point levels and allows broadband mobile data connections with or between clients moving at vehicular speeds. Sandia National aboratories has extensive experience with this product and its predecessors in infrastructure-less mobile environments. This report documents experiments, which characterize certain aspects of how the Motomesh network performs when obile units are added to a fixed network infrastructure.
NASA Astrophysics Data System (ADS)
Bode, Paul
2013-05-01
TPM carries out collisionless (dark matter) cosmological N-body simulations, evolving a system of N particles as they move under their mutual gravitational interaction. It combines aspects of both Tree and Particle-Mesh algorithms. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The code is parallel and uses MPI for message passing.
Wrinkle-Free Hydroforming of Wire Mesh
NASA Technical Reports Server (NTRS)
Fadness, J.
1986-01-01
Plastic films lubricate workpiece so it deforms smoothly. Thin layers of plastic below top die and above bottom die ensure wire screen slides as shaped by hydroforming. Plastic layers are 0.0043 in. (0.11 m) thick. Preformed to contours of dies and final workpiece. New method of hydroforming fine-wire-mesh heat-shield screens eliminates wrinkles and marks. Prevents screen from being damaged and pores from becoming blocked.
Structured Adaptive Mesh Refinement Application Infrastructure
Energy Science and Technology Software Center (ESTSC)
2010-07-15
SAMRAI is an object-oriented support library for structured adaptice mesh refinement (SAMR) simulation of computational science problems, modeled by systems of partial differential equations (PDEs). SAMRAI is developed and maintained in the Center for Applied Scientific Computing (CASC) under ASCI ITS and PSE support. SAMRAI is used in a variety of application research efforts at LLNL and in academia. These applications are developed in collaboration with SAMRAI development team members.
Subdivision meshes for organizing spatial biomedical data.
Ju, Tao; Carson, James P.; Liu, Lu; Warren, Joe; Bello, Musodiq; Kakadiaris, Ioannis
2010-02-01
Abstract As bio-medical images and volumes are being collected at an increasing speed, there is a growing demand for efficient means to organize spatial information for comparative analysis. In many scenarios, such as determining gene expression patterns by in situ hybridization, the images are collected from multiple subjects over a common anatomical region, such as the brain. A fundamental challenge in comparing spatial data from different images is how to account for the shape variations among subjects, which makes direct image-to-image comparison meaningless. In this paper, we describe subdivision meshes as a geometric means to efficiently organize 2D images and 3D volumes collected from different subjects for comparison. The key advantages of a subdivision mesh for this purpose are its light-weight geometric structure and its explicit modeling of anatomical boundaries, which enable efficient and accurate registration. The multi-resolution structure of a subdivision mesh also allows development of fast comparison algorithms among registered images and volumes.
Cu Mesh for Flexible Transparent Conductive Electrodes
Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young
2015-01-01
Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target—a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10–3/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells. PMID:26039977
Parallel object-oriented adaptive mesh refinement
Balsara, D.; Quinlan, D.J.
1997-04-01
In this paper we study adaptive mesh refinement (AMR) for elliptic and hyperbolic systems. We use the Asynchronous Fast Adaptive Composite Grid Method (AFACX), a parallel algorithm based upon the of Fast Adaptive Composite Grid Method (FAC) as a test case of an adaptive elliptic solver. For our hyperbolic system example we use TVD and ENO schemes for solving the Euler and MHD equations. We use the structured grid load balancer MLB as a tool for obtaining a load balanced distribution in a parallel environment. Parallel adaptive mesh refinement poses difficulties in expressing both the basic single grid solver, whether elliptic or hyperbolic, in a fashion that parallelizes seamlessly. It also requires that these basic solvers work together within the adaptive mesh refinement algorithm which uses the single grid solvers as one part of its adaptive solution process. We show that use of AMR++, an object-oriented library within the OVERTURE Framework, simplifies the development of AMR applications. Parallel support is provided and abstracted through the use of the P++ parallel array class.
Cu mesh for flexible transparent conductive electrodes.
Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young
2015-01-01
Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells. PMID:26039977
Software for Automated Generation of Cartesian Meshes
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Melton, John E.; Berger, Marshal J.
2006-01-01
Cart3D is a collection of computer programs for generating Cartesian meshes [for computational fluid dynamics (CFD) and other applications] in volumes bounded by solid objects. Aspects of Cart3D at earlier stages of development were reported in "Robust and Efficient Generation of Cartesian Meshes for CFD" (ARC-14275), NASA Tech Briefs, Vol. 23, No. 8 (August 1999), page 30. The geometric input to Cart3D comprises surface triangulations like those commonly generated by computer-aided-design programs. Complexly shaped objects can be represented as assemblies of simpler ones. Cart3D deletes all portions of such an assembled object that are not on the exterior surface. Intersections between components are preserved in the resulting triangulation. A tie-breaking routine unambiguously resolves geometric degeneracies. Then taking the intersected surface triangulation as input, the volume mesh is generated through division of cells of an initially coarse hexahedral grid. Cells are subdivided to refine the grid in regions of increased surface curvature and/or increased flow gradients. Cells that become split into multiple unconnected regions by thin pieces of surface are identified.
Use of Mesh in Laparoscopic Paraesophageal Hernia Repair: A Meta-Analysis and Risk-Benefit Analysis
Gondan, Matthias; Stock, Christian; Linke, Georg R.; Fritz, Franziska; Nickel, Felix; Diener, Markus K.; Gutt, Carsten N.; Wente, Moritz; Büchler, Markus W.; Fischer, Lars
2015-01-01
Introduction Mesh augmentation seems to reduce recurrences following laparoscopic paraesophageal hernia repair (LPHR). However, there is an uncertain risk of mesh-associated complications. Risk-benefit analysis might solve the dilemma. Materials and Methods A systematic literature search was performed to identify randomized controlled trials (RCTs) and observational clinical studies (OCSs) comparing laparoscopic mesh-augmented hiatoplasty (LMAH) with laparoscopic mesh-free hiatoplasty (LH) with regard to recurrences and complications. Random effects meta-analyses were performed to determine potential benefits of LMAH. All data regarding LMAH were used to estimate risk of mesh-associated complications. Risk-benefit analysis was performed using a Markov Monte Carlo decision-analytic model. Results Meta-analysis of 3 RCTs and 9 OCSs including 915 patients revealed a significantly lower recurrence rate for LMAH compared to LH (pooled proportions, 12.1% vs. 20.5%; odds ratio (OR), 0.55; 95% confidence interval (CI), 0.34 to 0.89; p = 0.04). Complication rates were comparable in both groups (pooled proportions, 15.3% vs. 14.2%; OR, 1.02; 95% CI, 0.63 to 1.65; p = 0.94). The systematic review of LMAH data yielded a mesh-associated complication rate of 1.9% (41/2121; 95% CI, 1.3% to 2.5%) for those series reporting at least one mesh-associated complication. The Markov Monte Carlo decision-analytic model revealed a procedure-related mortality rate of 1.6% for LMAH and 1.8% for LH. Conclusions Mesh application should be considered for LPHR because it reduces recurrences at least in the mid-term. Overall procedure-related complications and mortality seem to not be increased despite of potential mesh-associated complications. PMID:26469286
Data-Parallel Mesh Connected Components Labeling and Analysis
Harrison, Cyrus; Childs, Hank; Gaither, Kelly
2011-04-10
We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.
A Triangle Mesh Standardization Method Based on Particle Swarm Optimization
Duan, Liming; Bai, Yang; Wang, Haoyu; Shao, Hui; Zhong, Siyang
2016-01-01
To enhance the triangle quality of a reconstructed triangle mesh, a novel triangle mesh standardization method based on particle swarm optimization (PSO) is proposed. First, each vertex of the mesh and its first order vertices are fitted to a cubic curve surface by using least square method. Additionally, based on the condition that the local fitted surface is the searching region of PSO and the best average quality of the local triangles is the goal, the vertex position of the mesh is regulated. Finally, the threshold of the normal angle between the original vertex and regulated vertex is used to determine whether the vertex needs to be adjusted to preserve the detailed features of the mesh. Compared with existing methods, experimental results show that the proposed method can effectively improve the triangle quality of the mesh while preserving the geometric features and details of the original mesh. PMID:27509129
Automated hexahedral meshing of anatomic structures using deformable registration.
Grosland, Nicole M; Bafna, Ritesh; Magnotta, Vincent A
2009-02-01
This work introduces a novel method of automating the process of patient-specific finite element (FE) model development using a mapped mesh technique. The objective is to map a predefined mesh (template) of high quality directly onto a new bony surface (target) definition, thereby yielding a similar mesh with minimal user interaction. To bring the template mesh into correspondence with the target surface, a deformable registration technique based on the FE method has been adopted. The procedure has been made hierarchical allowing several levels of mesh refinement to be used, thus reducing the time required to achieve a solution. Our initial efforts have focused on the phalanx bones of the human hand. Mesh quality metrics, such as element volume and distortion were evaluated. Furthermore, the distance between the target surface and the final mapped mesh were measured. The results have satisfactorily proven the applicability of the proposed method. PMID:18688764
Mesh quality effects on the accuracy of CFD solutions on unstructured meshes
NASA Astrophysics Data System (ADS)
Katz, Aaron; Sankaran, Venkateswaran
2011-08-01
The order of accuracy and error magnitude of node- and cell-centered schemes are examined on representative unstructured meshes and flowfield solutions for computational fluid dynamics. Specifically, we investigate the properties of inviscid and viscous flux discretizations for isotropic and highly stretched meshes using the Method of Manufactured Solutions. Grid quality effects are studied by randomly perturbing the base meshes and cataloguing the error convergence as a function of grid size. For isotropic grids, node-centered approaches produce less error than cell-centered approaches. Moreover, a corrected node-centered scheme is shown to maintain third order accuracy for the inviscid terms on arbitrary triangular meshes. In contrast, for stretched meshes, cell-centered schemes are favored, with cell-centered prismatic approaches in particular showing the lowest levels of error. In three dimensions, simple flux integrations on non-planar control volume faces lead to first-order solution errors, while second-order accuracy is recovered by triangulation of the non-planar faces.
Oral, intestinal, and skin bacteria in ventral hernia mesh implants
Langbach, Odd; Kristoffersen, Anne Karin; Abesha-Belay, Emnet; Enersen, Morten; Røkke, Ola; Olsen, Ingar
2016-01-01
Background In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm) from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results A great variety of taxa were detected in 20 (66.7%) mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also serve as sources for the
Bär, Andreas; Lammers, Bernhard; Ramon, Albert; Ysebaert, Dirk; Klosterhalfen, Bernd; Boros, Mihaly; Otto, Thomas
2014-01-01
Purpose. Optimized biocompatibility is a major requirement for alloplastic materials currently applied for stress urinary incontinence (SUI) and pelvic organ prolapse (POP) repair. In the preliminary studies the mesh modification by coating with autologous plasma resulted in the increased adherence score in vitro and improved biocompatibility in an animal model. The first use of plasma coated meshes in human is presented. Materials and Methods. Between 04/2013 and 05/2014, 20 patients with the indication for SUI and POP repair were selected in a single institution. The applied meshes were modified by autologous plasma coating prior to implantation. A retrospective chart review for peri- and early postoperative complications was performed. Functional outcome and QoL were evaluated pre- and postoperatively. Results. The functional outcome and QoL improved significantly in all groups. Two reoperations (Grade IIIB) with the release of TVT-mesh in anesthesia due to the obstruction were needed. No other severe complications were registered. Conclusion. For the first time we applied a mesh modification in a human setting according to IDEAL criteria of surgical innovations. The procedure of mesh coating with autologous plasma is safe and a prospective randomized trial proving a positive effect of plasma coating on the biocompatibility and morbidity outcome with long-term registry is planned. PMID:25313358
A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics
Puckett, E.G. ); Saltzman, J.S. )
1991-08-12
Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.
KNUPP,PATRICK; MITCHELL,SCOTT A.
1999-11-01
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.
Mitchell, S.A.
1995-09-01
A popular three-dimensional mesh generation scheme is to start with a quadrilateral of the surface of a volume, and then attempt to fill the interior of volume with hexahedra, so that the hexahedra touch the surface in exactly the given quadrilaterals. Folklore has maintained that there are many quadrilateral meshes for which no such compatible hexahedral mesh exists. In this paper we give an existence proof which contradicts this folklore: A quadrilateral mesh need only satisfy some very weak conditions for there to exist a compatible hexahedral mesh. For a volume that is topologically a ball, any quadrilateral mesh composed of an even number of quadrilaterals admits a compatible hexahedral mesh. We extend this to volumes of higher genus: There is a construction to reduce to the ball case if and only if certain cycles of edges are even.
Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E
2016-07-01
The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292. PMID:26620778
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes
Veleirinho, Beatriz; Coelho, Daniela S.; Dias, Paulo F.; Maraschin, Marcelo; Pinto, Rúbia; Cargnin-Ferreira, Eduardo; Peixoto, Ana; Souza, José A.; Ribeiro-do-Valle, Rosa M.; Lopes-da-Silva, José A.
2014-01-01
Electrospun materials have been widely explored for biomedical applications because of their advantageous characteristics, i.e., tridimensional nanofibrous structure with high surface-to-volume ratio, high porosity, and pore interconnectivity. Furthermore, considering the similarities between the nanofiber networks and the extracellular matrix (ECM), as well as the accepted role of changes in ECM for hernia repair, electrospun polymer fiber assemblies have emerged as potential materials for incisional hernia repair. In this work, we describe the application of electrospun non-absorbable mats based on poly(ethylene terephthalate) (PET) in the repair of abdominal defects, comparing the performance of these meshes with that of a commercial polypropylene mesh and a multifilament PET mesh. PET and PET/chitosan electrospun meshes revealed good performance during incisional hernia surgery, post-operative period, and no evidence of intestinal adhesion was found. The electrospun meshes were flexible with high suture retention, showing tensile strengths of 3 MPa and breaking strains of 8–33%. Nevertheless, a significant foreign body reaction (FBR) was observed in animals treated with the nanofibrous materials. Animals implanted with PET and PET/chitosan electrospun meshes (fiber diameter of 0.71±0.28 µm and 3.01±0.72 µm, respectively) showed, respectively, foreign body granuloma formation, averaging 4.2-fold and 7.4-fold greater than the control commercial mesh group (Marlex). Many foreign body giant cells (FBGC) involving nanofiber pieces were also found in the PET and PET/chitosan groups (11.9 and 19.3 times more FBGC than control, respectively). In contrast, no important FBR was observed for PET microfibers (fiber diameter = 18.9±0.21 µm). Therefore, we suggest that the reduced dimension and the high surface-to-volume ratio of the electrospun fibers caused the FBR reaction, pointing out the need for further studies to elucidate the mechanisms underlying
Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes.
Veleirinho, Beatriz; Coelho, Daniela S; Dias, Paulo F; Maraschin, Marcelo; Pinto, Rúbia; Cargnin-Ferreira, Eduardo; Peixoto, Ana; Souza, José A; Ribeiro-do-Valle, Rosa M; Lopes-da-Silva, José A
2014-01-01
Electrospun materials have been widely explored for biomedical applications because of their advantageous characteristics, i.e., tridimensional nanofibrous structure with high surface-to-volume ratio, high porosity, and pore interconnectivity. Furthermore, considering the similarities between the nanofiber networks and the extracellular matrix (ECM), as well as the accepted role of changes in ECM for hernia repair, electrospun polymer fiber assemblies have emerged as potential materials for incisional hernia repair. In this work, we describe the application of electrospun non-absorbable mats based on poly(ethylene terephthalate) (PET) in the repair of abdominal defects, comparing the performance of these meshes with that of a commercial polypropylene mesh and a multifilament PET mesh. PET and PET/chitosan electrospun meshes revealed good performance during incisional hernia surgery, post-operative period, and no evidence of intestinal adhesion was found. The electrospun meshes were flexible with high suture retention, showing tensile strengths of 3 MPa and breaking strains of 8-33%. Nevertheless, a significant foreign body reaction (FBR) was observed in animals treated with the nanofibrous materials. Animals implanted with PET and PET/chitosan electrospun meshes (fiber diameter of 0.71 ± 0.28 µm and 3.01 ± 0.72 µm, respectively) showed, respectively, foreign body granuloma formation, averaging 4.2-fold and 7.4-fold greater than the control commercial mesh group (Marlex). Many foreign body giant cells (FBGC) involving nanofiber pieces were also found in the PET and PET/chitosan groups (11.9 and 19.3 times more FBGC than control, respectively). In contrast, no important FBR was observed for PET microfibers (fiber diameter = 18.9 ± 0.21 µm). Therefore, we suggest that the reduced dimension and the high surface-to-volume ratio of the electrospun fibers caused the FBR reaction, pointing out the need for further studies to elucidate the mechanisms underlying
Patil, Santosh M; Kumar, Ashok; Kumar, Kuthadi Sravan; Mithun, Gorre
2016-01-01
Introduction Lichtenstein’s tension free mesh hernioplasty is the commonly done open technique for inguinal hernias. As our hospital is in rural area, majority of patients are labourers, open hernias are commonly done. The present study was done by comparing Lichtenstein Mesh Repair (LMR) v/s Modified Bassini’s repair (MBR) + Lichtenstein mesh repair (LMR) of direct Inguinal Hernias to compare the technique of both surgeries and its outcome like postoperative complications and recurrence rate. Materials and Methods A comparative randomized study was conducted on patients reporting to MNR hospital, sangareddy with direct inguinal hernias. A total of fifty consecutive patients were included in this study of which, 25 patients were operated by LMR and 25 patients were operated by MBR+LMR and followed up for a period of two years. The outcomes of the both techniques were compared. Results Study involved 25 each of Lichtenstein’s mesh repair (LMR) and modified bassini’s repair (MBR) + LMR, over a period of 2 years. The duration of surgery for lichtenstein mesh repair is around 34.56 min compared to LMR+MBR, which is 47.56 min which was statistically significant (p-value is <0.0001). In this study the most common complication for both the groups was seroma. The pain was relatively higher in LMR+MBR group in POD 1, but not statistically significant (p-value is 0.0949) and from POD 7 the pain was almost similar in both groups. The recurrence rate is 2% for LMR and 0% for MBR+LMR. Conclusion LMR+MBR was comparatively better than only LMR in all direct inguinal hernias because of low recurrence rate (0%) and low postoperative complications, which showed in our present study. PMID:27042517
A unified approach for a posteriori high-order curved mesh generation using solid mechanics
NASA Astrophysics Data System (ADS)
Poya, Roman; Sevilla, Ruben; Gil, Antonio J.
2016-06-01
The paper presents a unified approach for the a posteriori generation of arbitrary high-order curvilinear meshes via a solid mechanics analogy. The approach encompasses a variety of methodologies, ranging from the popular incremental linear elastic approach to very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally linearised approach is also presented and applied for the first time in this context. Utilising a consistent derivation from energy principles, a theoretical comparison of the various approaches is presented which enables a detailed discussion regarding the material characterisation (calibration) employed for the different solid mechanics formulations. Five independent quality measures are proposed and their relations with existing quality indicators, used in the context of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical examples, both in two and three dimensions, including challenging geometries of interest to the solids, fluids and electromagnetics communities, are shown in order to illustrate and thoroughly compare the performance of the different methodologies. This comparison considers the influence of material parameters and number of load increments on the quality of the generated high-order mesh, overall computational cost and, crucially, the approximation properties of the resulting mesh when considering an isoparametric finite element formulation.
A unified approach for a posteriori high-order curved mesh generation using solid mechanics
NASA Astrophysics Data System (ADS)
Poya, Roman; Sevilla, Ruben; Gil, Antonio J.
2016-09-01
The paper presents a unified approach for the a posteriori generation of arbitrary high-order curvilinear meshes via a solid mechanics analogy. The approach encompasses a variety of methodologies, ranging from the popular incremental linear elastic approach to very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally linearised approach is also presented and applied for the first time in this context. Utilising a consistent derivation from energy principles, a theoretical comparison of the various approaches is presented which enables a detailed discussion regarding the material characterisation (calibration) employed for the different solid mechanics formulations. Five independent quality measures are proposed and their relations with existing quality indicators, used in the context of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical examples, both in two and three dimensions, including challenging geometries of interest to the solids, fluids and electromagnetics communities, are shown in order to illustrate and thoroughly compare the performance of the different methodologies. This comparison considers the influence of material parameters and number of load increments on the quality of the generated high-order mesh, overall computational cost and, crucially, the approximation properties of the resulting mesh when considering an isoparametric finite element formulation.
Performance of Stainless Steel Mesh Cathode and PVDF-graphite Cathode in Microbial Fuel Cells
NASA Astrophysics Data System (ADS)
Huang, Liping; Tian, Ying; Li, Mingliang; He, Gaohong; Li, Zhikao
2010-11-01
Inexpensive and conductive materials termed as stainless steel mesh and polyvinylidene fluoride (PVDF)-graphite were currently used as the air cathode electrodes in MFCs for the investigation of power production. By loading PTFE (poly(tetrafluoroethylene)) on the surface of stainless steel mesh, electricity production reached 3 times as high as that of the naked stainless steel. A much high catalytic activity for oxygen reduction was exhibited by Pt based and PTFE loading stainless steel mesh cathode, with an electricity generation of 1144±44 mW/m2 (31±1 W/m3) and a Coulombic efficiency (CE) of 77±2%. When Pt was replaced by an inexpensive transition metal based catalyst (cobalt tetramethylphenylporphyrin, CoTMPP), power production and CE were 845±21 mW/m2 (23±1 W/m3) and 68±1%, respectively. Accordingly, power production from PVDF-graphite (hydrophobic) MFC and PVDF-graphite (hydrophile) MFC were 286±20 mW/m2(8±1 W/m3) and 158±13 mW/m2(4±0.4 W/m3), respectively using CoTMPP as catalyst. These results give us new insight into materials like stainless steel mesh and PVDF-graphite as low cost cathode for reducing the costs of MFCs for wastewater treatment applications.
Symptom Resolution After Operative Management of Complications From Transvaginal Mesh
Crosby, Erin C.; Abernethy, Melinda; Berger, Mitchell B.; DeLancey, John O.; Fenner, Dee E.; Morgan, Daniel M.
2014-01-01
OBJECTIVE Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. METHODS A retrospective review of all patients having surgery by the Urogynecology group in the Department of Obstetrics & Gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the chi-squared or Fisher’s exact test with significance at p<0.05. RESULTS Between January 2008 and April 2012, 90 patients had surgery for complications related to vaginal mesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure 62% (n=56), pain 64% (n=58), and dyspareunia 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of cases, while pain was only successfully treated in 51% of women. CONCLUSION Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of cases. PMID:24463673
A fast approach for accurate content-adaptive mesh generation.
Yang, Yongyi; Wernick, Miles N; Brankov, Jovan G
2003-01-01
Mesh modeling is an important problem with many applications in image processing. A key issue in mesh modeling is how to generate a mesh structure that well represents an image by adapting to its content. We propose a new approach to mesh generation, which is based on a theoretical result derived on the error bound of a mesh representation. In the proposed method, the classical Floyd-Steinberg error-diffusion algorithm is employed to place mesh nodes in the image domain so that their spatial density varies according to the local image content. Delaunay triangulation is next applied to connect the mesh nodes. The result of this approach is that fine mesh elements are placed automatically in regions of the image containing high-frequency features while coarse mesh elements are used to represent smooth areas. The proposed algorithm is noniterative, fast, and easy to implement. Numerical results demonstrate that, at very low computational cost, the proposed approach can produce mesh representations that are more accurate than those produced by several existing methods. Moreover, it is demonstrated that the proposed algorithm performs well with images of various kinds, even in the presence of noise. PMID:18237961
CAD and mesh repair with Radial Basis Functions
NASA Astrophysics Data System (ADS)
Marchandise, E.; Piret, C.; Remacle, J.-F.
2012-03-01
In this paper we present a process that includes both model/mesh repair and mesh generation. The repair algorithm is based on an initial mesh that may be either an initial mesh of a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junctions. This initial mesh is then remeshed by computing a discrete parametrization with Radial Basis Functions (RBF's). We showed in [1] that a discrete parametrization can be computed by solving Partial Differential Equations (PDE's) on an initial correct mesh using finite elements. Paradoxically, the meshless character of the RBF's makes it an attractive numerical method for solving the PDE's for the parametrization in the case where the initial mesh contains errors or holes. In this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF solution method for solving PDE's on arbitrary surfaces. Different examples show that the presented method is able to deal with errors such as gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover, the presented algorithm can be used as a hole-filling algorithm to repair meshes with undesirable holes. The overall procedure is implemented in the open-source mesh generator Gmsh [3].
Improved mesh based photon sampling techniques for neutron activation analysis
Relson, E.; Wilson, P. P. H.; Biondo, E. D.
2013-07-01
The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)
Pérez-Köhler, Bárbara; García-Moreno, Francisca; Brune, Thierry; Pascual, Gemma; Bellón, Juan Manuel
2015-01-01
Introduction Prosthetic mesh infection constitutes one of the major complications following hernia repair. Antimicrobial, non-antibiotic biomaterials have the potential to reduce bacterial adhesion to the mesh surface and adjacent tissues while avoiding the development of novel antibiotic resistance. This study assesses the efficacy of presoaking reticular polypropylene meshes in chlorhexidine or a chlorhexidine and allicin combination (a natural antibacterial agent) for preventing bacterial infection in a short-time hernia-repair rabbit model. Methods Partial hernia defects (5 x 2 cm) were created on the lateral right side of the abdominal wall of New Zealand White rabbits (n = 21). The defects were inoculated with 0.5 mL of a 106 CFU/mL Staphylococcus aureus ATCC25923 strain and repaired with a DualMesh Plus antimicrobial mesh or a Surgipro mesh presoaked in either chlorhexidine (0.05%) or allicin-chlorhexidine (900 μg/mL-0.05%). Fourteen days post-implant, mesh contraction was measured and tissue specimens were harvested to evaluate bacterial adhesion to the implant surface (via sonication, S. aureus immunolabeling), host-tissue incorporation (via staining, scanning electron microscopy) and macrophage response (via RAM-11 immunolabeling). Results The polypropylene mesh showed improved tissue integration relative to the DualMesh Plus. Both the DualMesh Plus and the chlorhexidine-soaked polypropylene meshes exhibited high bacterial clearance, with the latter material showing lower bacterial yields. The implants from the allicin-chlorhexidine group displayed a neoformed tissue containing differently sized abscesses and living bacteria, as well as a diminished macrophage response. The allicin-chlorhexidine coated implants exhibited the highest contraction. Conclusions The presoaking of reticular polypropylene materials with a low concentration of chlorhexidine provides the mesh with antibacterial activity without disrupting tissue integration. Due to the
Shadowfax: Moving mesh hydrodynamical integration code
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
On Convergence Acceleration Techniques for Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.
Mesh and measure in early general relativity
NASA Astrophysics Data System (ADS)
Darrigol, Olivier
2015-11-01
In the early days of general relativity, several of Einstein's readers misunderstood the role of coordinates or "mesh-system" in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein's first systematic exposition of his theory. A few of Einstein's followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement.
Perspective on the Lagrange–Jacobi mesh
NASA Astrophysics Data System (ADS)
Rampho, Gaotsiwe J.
2016-07-01
This paper presents a unified treatment of the kinetic energy matrix elements related to a number of Lagrange functions associated with the Lagrange–Jacobi mesh. The matrix elements can be readily modified for application to problems requiring eigenfunction expansion with Lagrange–Legendre, Lagrange–Chebyshev, Lagrange–Gegenbauer, as well as the Lagrange–Jacobi functions. The applicability of and the accuracy attainable with the matrix elements is demonstrated with the solution to the Schrödinger equation for confining trigonometric Pöschl–Teller potentials. The results obtained are within machine accuracy when appropriate choices of the basis functions are used.
Garimella, Rao V.
2004-05-15
MSTK or Mesh Toolkit is a mesh framework that allows users to represent, manipulate and query unstructured 3D arbitrary topology meshes in a general manner without the need to code their own data structures. MSTK is a flexible framework in that is allows (or will eventually allow) a wide variety of underlying representations for the mesh while maintaining a common interface. It will allow users to choose from different mesh representations either at initialization or during the program execution so that the optimal data structures are used for the particular algorithm. The interaction of users and applications with MSTK is through a functional interface that acts as through the mesh always contains vertices, edges, faces and regions and maintains connectivity between all these entities.
Energy Science and Technology Software Center (ESTSC)
2004-05-15
MSTK or Mesh Toolkit is a mesh framework that allows users to represent, manipulate and query unstructured 3D arbitrary topology meshes in a general manner without the need to code their own data structures. MSTK is a flexible framework in that is allows (or will eventually allow) a wide variety of underlying representations for the mesh while maintaining a common interface. It will allow users to choose from different mesh representations either at initialization ormore » during the program execution so that the optimal data structures are used for the particular algorithm. The interaction of users and applications with MSTK is through a functional interface that acts as through the mesh always contains vertices, edges, faces and regions and maintains connectivity between all these entities.« less
Split Bregman's algorithm for three-dimensional mesh segmentation
NASA Astrophysics Data System (ADS)
Habiba, Nabi; Ali, Douik
2016-05-01
Variational methods have attracted a lot of attention in the literature, especially for image and mesh segmentation. The methods aim at minimizing the energy to optimize both edge and region detections. We propose a spectral mesh decomposition algorithm to obtain disjoint but meaningful regions of an input mesh. The related optimization problem is nonconvex, and it is very difficult to find a good approximation or global optimum, which represents a challenge in computer vision. We propose an alternating split Bregman algorithm for mesh segmentation, where we extended the image-dedicated model to a three-dimensional (3-D) mesh one. By applying our scheme to 3-D mesh segmentation, we obtain fast solvers that can outperform various conventional ones, such as graph-cut and primal dual methods. A consistent evaluation of the proposed method on various public domain 3-D databases for different metrics is elaborated, and a comparison with the state-of-the-art is performed.
Algebraic turbulence modeling for unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1990-01-01
An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for use on unstructured grids. The implementation is based on the use of local background structured turbulence meshes. At each time-step, flow variables are interpolated from the unstructured mesh onto the background structured meshes, the turbulence model is executed on these meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh. Modifications to the algebraic model were required to enable the treatment of more complicated flows, such as confluent boundary layers and wakes. The model is used in conjuction with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple element airfoils are obtained and compared with experimental data.
Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality
Wang, Jun; Yu, Zeyun
2012-01-01
Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is provably guaranteed: the smallest dihedral angle is always greater than 5.71°. The meshes generated by our method are not only adaptive from the interior to the boundary, but also feature-sensitive on the surface with denser elements in high-curvature regions where geometric feature most likely reside. A variety of experimental results are presented to demonstrate the effectiveness and robustness of this algorithm. PMID:22328787
Cardwell, Robyn D; Kluge, Jonathan A; Thayer, Patrick S; Guelcher, Scott A; Dahlgren, Linda A; Kaplan, David L; Goldstein, Aaron S
2015-07-01
Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression
A comparison of mesh morphing methods for shape optimization.
Staten, Matthew L.; Owen, Steven James
2010-08-01
The ability to automatically morph an existing mesh to conform to geometry modifications is a necessary capability to enable rapid prototyping of design variations. This paper compares six methods for morphing hexahedral and tetrahedral meshes, including the previously published FEMWARP and LBWARP methods as well as four new methods. Element quality and performance results show that different methods are superior on different models. We recommend that designers of applications that use mesh morphing consider both the FEMWARP and a linear simplex based method.
DISCO: 3-D moving-mesh magnetohydrodynamics package
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-05-01
DISCO evolves orbital fluid motion in two and three dimensions, especially at high Mach number, for studying astrophysical disks. The software uses a moving-mesh approach with a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas, thus removing diffusive advection errors and permitting longer timesteps than a static grid. DISCO uses an HLLD Riemann solver and a constrained transport scheme compatible with the mesh motion to implement magnetohydrodynamics.
Hexahedral mesh generation via the dual arrangement of surfaces
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatible hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.
Boiling heat transfer on meshed surfaces of different aperture
NASA Astrophysics Data System (ADS)
Orman, Łukasz J.
2014-08-01
The paper presents the results of investigations of the impact of mesh aperture on boiling heat transfer. The tests have been performed for distilled water and ethyl alcohol at ambient pressure. It was observed that the meshed surfaces performed much better than the smooth reference surface and that meshes of smaller aperture provided better results. The obtained results have been compared with selected models of boiling heat transfer from literature.
Melnyk, Andrew
2012-05-01
Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. PMID:26301463
Tolerance and Long-Term MRI Imaging of Gadolinium-Modified Meshes Used in Soft Organ Repair
Letouzey, Vincent; Huberlant, Stéphanie; Cornille, Arnaud; Blanquer, Sébastien; Guillaume, Olivier; Lemaire, Laurent; Garric, Xavier; de Tayrac, Renaud
2015-01-01
Background Synthetic meshes are frequently used to reinforce soft tissues. The aim of this translational study is to evaluate tolerance and long-term MRI visibility of two recently developed Gadolinium-modified meshes in a rat animal model. Materials and Methods Gadolinium-poly-ε-caprolactone (Gd-PCL) and Gadolinium-polymethylacrylate (Gd-PMA) modified meshes were implanted in Wistar rats and their tolerance was assessed daily. Inflammation and biocompatibility of the implants were assessed by histology and immunohistochemistry after 30 days post implantation. Implants were visualised by 7T and 3T MRI at day 30 and at day 90. Diffusion of Gadolinium in the tissues of the implanted animals was assessed by Inductively Coupled Plasma Mass Spectrometry. Results Overall Gd-PMA coated implants were better tolerated as compared to those coated with Gd-PCL. In fact, Gd-PMA implants were characterised by a high ratio collagen I/III and good vascularisation of the integration tissues. High resolution images of the coated mesh were obtained in vivo with experimental 7T as well as 3T clinical MRI. Mass spectrometry analyses showed that levels of Gadolinium in animals implanted with coated mesh were similar to those of the control group. Conclusions Meshes coated with Gd-PMA are better tolerated as compared to those coated with Gd-PCL as no signs of erosion or significant inflammation were detected at 30 days post implantation. Also, Gd-PMA coated meshes were clearly visualised with both 7T and 3T MRI devices. This new technique of mesh optimisation may represent a valuable tool in soft tissue repair and management. PMID:25811855
Finding Regions of Interest on Toroidal Meshes
Wu, Kesheng; Sinha, Rishi R; Jones, Chad; Ethier, Stephane; Klasky, Scott; Ma, Kwan-Liu; Shoshani, Arie; Winslett, Marianne
2011-02-09
Fusion promises to provide clean and safe energy, and a considerable amount of research effort is underway to turn this aspiration intoreality. This work focuses on a building block for analyzing data produced from the simulation of microturbulence in magnetic confinementfusion devices: the task of efficiently extracting regions of interest. Like many other simulations where a large amount of data are produced,the careful study of ``interesting'' parts of the data is critical to gain understanding. In this paper, we present an efficient approach forfinding these regions of interest. Our approach takes full advantage of the underlying mesh structure in magnetic coordinates to produce acompact representation of the mesh points inside the regions and an efficient connected component labeling algorithm for constructingregions from points. This approach scales linearly with the surface area of the regions of interest instead of the volume as shown with bothcomputational complexity analysis and experimental measurements. Furthermore, this new approach is 100s of times faster than a recentlypublished method based on Cartesian coordinates.
Mobility Management in Wireless Mesh Networks
NASA Astrophysics Data System (ADS)
Mirchandani, Vinod; Prodan, Ante
A viable support of an on-going or a new session for a subscriber on the move requires an effective scheme for Mobility Management. To this end, an array of protocols such as MIPv4, MIPv6, HMIPv6, FMIPv6 have been proposed for the wired Internet. Unfortunately, the wireless connectivity in the wireless mesh networks (WMNs) gives rise to several issues that limits the direct applicability of these mobility management protocols for the wired network. We have contributed to this chapter by identifying and explaining these issues and then giving a critical review of some of the key research proposals made in this area. The literature review also shows that the proposals offer a limited support for mobility management in multiradio wireless mesh networks (MR-WMN). Thus, we have further contributed, by proposing a scheme to carry out a seamless mobility management in WMN as well as MR-WMN. We have taken into account the lessons learnt from the proposals made in the literature. This chapter has been written in a simple way such that students as well as professionals including those who are new to this area should be able to significantly benefit from reading it.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Parallel tetrahedral mesh refinement with MOAB.
Thompson, David C.; Pebay, Philippe Pierre
2008-12-01
In this report, we present the novel functionality of parallel tetrahedral mesh refinement which we have implemented in MOAB. This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB. The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on design, performance, and operation specific to MOAB are contained herein. As MOAB is intended mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previous papers), the primary use case is different: rather than refining elements with non-linear basis functions, the goal is to increase the number of degrees of freedom in some region in order to more accurately represent the solution to some system of equations that cannot be solved analytically. Also, MOAB has a unique mesh representation which impacts the algorithm. This introduction contains a brief review of streaming edge-based tetrahedral refinement. The remainder of the report is broken into three sections: design and implementation, performance, and conclusions. Appendix A contains instructions for end users (simulation authors) on how to employ the refiner.
The Tera Multithreaded Architecture and Unstructured Meshes
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Mavriplis, Dimitri J.
1998-01-01
The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.
3D Compressible Melt Transport with Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo
2015-04-01
Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and
Ethyl alcohol boiling heat transfer on multilayer meshed surfaces
NASA Astrophysics Data System (ADS)
Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.
2016-06-01
The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.
Reconfigurable lattice mesh designs for programmable photonic processors.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A
2016-05-30
We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor. PMID:27410130
Late onset mesh infection following laparoscopic inguinal hernia repair
Samee, Abdus; Adjepong, Samuel; Pattar, Jay
2011-01-01
In our series of 710 consecutive laparoscopic total-extra-peritoneal hernia repairs over a period of 10 years (2001–2010), the authors report a rare case of delayed mesh infection developing 7 years postoperatively. A 56-year-old patient presented with diarrhoea and fullness in right iliac fossa region. Radiological imaging confirmed a floating mesh in a fluid-containing cavity. Subsequent exploration revealed a large preperitoneal cavity containing 550 ml of pus with a floating mesh in it. The mesh was removed and the patient was discharged after making a good recovery. PMID:22674603
Mesh-matrix analysis method for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
The mesh-matrix method is a procedure for calculating the current distribution in the conductors of electromagnetic launchers with coil or flat-plate geometry. Once the current distribution is known the launcher performance can be calculated. The method divides the conductors into parallel current paths, or meshes, and finds the current in each mesh by matrix inversion. The author presents procedures for writing equations for the current and voltage relations for a few meshes to serve as a pattern for writing the computer code. An available subroutine package provides routines for field and flux coefficients and equation solution.
Risk Factors for Mesh/Suture Erosion Following Sacrocolpopexy
Cundiff, Geoffrey W.; Varner, Edward; Visco, Anthony G.; Zyczynski, Halina M.; Nager, Charles W.; Norton, Peggy A.; Schaffer, Joseph; Brown, Morton B.; Brubaker, Linda
2008-01-01
Objectives To identify risks for mesh/suture erosions following sacrocolpopexy (ASC). Study Design We analyzed demographic, perioperative variables and erosion status in 322 participants in the Colpopexy and Urinary Reduction Efforts study two years after sacrocolpopexy. Results The predominant graft used was synthetic mesh; Mersilene (42%) or Polypropylene (48%). Twenty subjects (6%) experienced mesh/suture erosion. Unadjusted risk factors for mesh/suture erosion were expanded polytrafluroethylene (ePTFE) mesh (ePTFE 4/21 (19%) versus non-ePFTE 16/301 (5%): OR 4.2), concurrent hysterectomy (OR 4.9) and current smoking (OR 5.2). Of those with mesh erosion, most affected women (13/17) underwent at least one surgery for partial or total mesh removal. Two were completely resolved, 6 had persistent problems and 5 were lost to follow-up. No resolution was documented in the 4 women who elected observation. Conclusions Expanded PTFE mesh should not be used for sacrocolpopexy. Concurrent hysterectomy and smoking are modifiable risks for mesh/suture erosion. PMID:18976976
Mesh Optimization for Monte Carlo-Based Optical Tomography
Edmans, Andrew; Intes, Xavier
2015-01-01
Mesh-based Monte Carlo techniques for optical imaging allow for accurate modeling of light propagation in complex biological tissues. Recently, they have been developed within an efficient computational framework to be used as a forward model in optical tomography. However, commonly employed adaptive mesh discretization techniques have not yet been implemented for Monte Carlo based tomography. Herein, we propose a methodology to optimize the mesh discretization and analytically rescale the associated Jacobian based on the characteristics of the forward model. We demonstrate that this method maintains the accuracy of the forward model even in the case of temporal data sets while allowing for significant coarsening or refinement of the mesh. PMID:26566523
Triangulated manifold meshing method preserving molecular surface topology.
Chen, Minxin; Tu, Bin; Lu, Benzhuo
2012-09-01
Generation of manifold mesh is an urgent issue in mathematical simulations of biomolecule using boundary element methods (BEM) or finite element method (FEM). Defects, such as not closed mesh, intersection of elements and missing of small structures, exist in surface meshes generated by most of the current meshing method. Usually the molecular surface meshes produced by existing methods need to be revised carefully by third party software to ensure the surface represents a continuous manifold before being used in a BEM and FEM calculations. Based on the trace technique proposed in our previous work, in this paper, we present an improved meshing method to avoid intersections and preserve the topology of the molecular Gaussian surface. The new method divides the whole Gaussian surface into single valued pieces along each of x, y, z directions by tracing the extreme points along the fold curves on the surface. Numerical test results show that the surface meshes produced by the new method are manifolds and preserve surface topologies. The result surface mesh can also be directly used in surface conforming volume mesh generation for FEM type simulation. PMID:23117290
AN ALGORITHM FOR PARALLEL SN SWEEPS ON UNSTRUCTURED MESHES
S. D. PAUTZ
2000-12-01
We develop a new algorithm for performing parallel S{sub n} sweeps on unstructured meshes. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with ''normal'' mesh partitionings we have observed nearly linear speedups on up to 126 processors. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, we do not observe any severe asymptotic degradation in the parallel efficiency with modest ({le}100) levels of parallelism. This work is a fundamental step in the development of parallel S{sub n} methods.
Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting
Yu, Zeyun
2012-01-01
We propose in this paper a robust surface mesh denoising method that can effectively remove mesh noise while faithfully preserving sharp features. This method utilizes surface fitting and projection techniques. Sharp features are preserved in the surface fitting algorithm by considering an anisotropic neighborhood of each vertex detected by the normal-weighted distance. In addition, to handle the mesh with a high level of noise, we perform a pre-filtering of surface normals prior to the neighborhood searching. A number of experimental results and comparisons demonstrate the excellent performance of our method in preserving important surface geometries while filtering mesh noise. PMID:22328806
A new approach to automatic quadrilateral mesh generation
Zhou, J.M.; Shao, K.R.; Zhou, K.D.; Li, L.R. )
1993-03-01
This paper presents a new methodology for automatic quadrilateral mesh generation. It is based on a novel application of the Delaunay triangulation algorithm, by which quadrilateral meshes can be generated as easily as triangular meshes for complex domains. The relative element size method (RESM) has been used for effective a priori and a posterior control of the number and distribution of elements. A new adaptive quadrilateral mesh refinement technique, which allows specified solution accuracy to be achieved with one, at most two refinement cycles, is also proposed. Its robustness is demonstrated by examples.
Numerical modeling of seismic waves using frequency-adaptive meshes
NASA Astrophysics Data System (ADS)
Hu, Jinyin; Jia, Xiaofeng
2016-08-01
An improved modeling algorithm using frequency-adaptive meshes is applied to meet the computational requirements of all seismic frequency components. It automatically adopts coarse meshes for low-frequency computations and fine meshes for high-frequency computations. The grid intervals are adaptively calculated based on a smooth inversely proportional function of grid size with respect to the frequency. In regular grid-based methods, the uniform mesh or non-uniform mesh is used for frequency-domain wave propagators and it is fixed for all frequencies. A too coarse mesh results in inaccurate high-frequency wavefields and unacceptable numerical dispersion; on the other hand, an overly fine mesh may cause storage and computational overburdens as well as invalid propagation angles of low-frequency wavefields. Experiments on the Padé generalized screen propagator indicate that the Adaptive mesh effectively solves these drawbacks of regular fixed-mesh methods, thus accurately computing the wavefield and its propagation angle in a wide frequency band. Several synthetic examples also demonstrate its feasibility for seismic modeling and migration.
Plencner, Martin; Prosecká, Eva; Rampichová, Michala; East, Barbora; Buzgo, Matej; Vysloužilová, Lucie; Hoch, Jiří; Amler, Evžen
2015-01-01
Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2-3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. PMID:25878497
Plencner, Martin; Prosecká, Eva; Rampichová, Michala; East, Barbora; Buzgo, Matej; Vysloužilová, Lucie; Hoch, Jiří; Amler, Evžen
2015-01-01
Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2–3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. PMID:25878497
Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.
Staten, Matthew L.; Owen, Steven James
2010-09-01
Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes
NASA Astrophysics Data System (ADS)
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2014-09-01
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro++ (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2013-09-30
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
Fabrication of compliant hybrid grafts supported with elastomeric meshes.
Kobashi, T; Matsuda, T
1999-01-01
We devised tubular hybrid medial tissues with mechanical properties similar to those of native arteries, which were composed of bovine smooth muscle cells (SMCs) and type I collagen with minimal reinforcement with knitted fabric meshes made of synthetic elastomers. Three hybrid medial tissue models that incorporated segmented polyester (mesh A) or polyurethane-nylon (mesh B) meshes were designed: the inner, sandwich, and wrapping models. Hybrid medial tissues were prepared by pouring a cold mixed solution of SMCs and collagen into a tubular glass mold consisting of an inner mandrel and an outer sheath and subsequent thermal gelation, followed by further culture for 7 days. For the inner model, the mandrel was wrapped with a mesh. For the sandwich model, a cylindrically shaped mesh was incorporated into a space between the mandrel and the sheath. The wrapping model was prepared by wrapping a 7-day-incubated nonmesh gel with a mesh. The inner diameter was 3 mm, irrespective of the model, and the length was 2.5-4.0 cm, depending on the model. The intraluminal pressure-external diameter relationship showed that nonmesh and inner models had a very low burst strength below 50 mmHg, while the sandwich model ruptured at around 110-120 mmHg; no rupturing below 240 mmHg was observed for the wrapping model, regardless of the type of mesh used. Compliance values of wrapping and sandwich models were close to those of native arteries. Pressure-dependent distensibility characteristics similar to native arteries were observed for a mesh A wrapping model, whereas a mesh B wrapping model expanded almost linearly as intraluminal pressure increased, which appeared to be due to elasticity of the incorporated mesh. Thus, design criteria for hybrid vascular grafts with appropriate biomechanical matching with host arteries were established. Such hybrid grafts may be mechanically adapted in an arterial system. PMID:10580342
Anisotropic Mesh Adaptivity for Turbulent Flows with Boundary Layers
NASA Astrophysics Data System (ADS)
Chitale, Kedar C.
Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using various experimental and numerical tools. For computational analysis, a variety of turbulence models are available and the accuracy of these models in capturing the phenomenon depends largely on the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured meshes called "mesh boundary layers" are widely used in the CFD community in simulations of turbulent flows, because of their graded and orthogonal layered structure. They provide an efficient way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped elements. Since usually the required mesh spacings to accurately resolve the flow are not known a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to achieve an appropriate mesh. In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on boundary layers. We construct a framework to calculate the critical wall normal mesh spacings inside the boundary layers based on the flow physics and the knowledge of the turbulence model. This approach is combined with numerical error indicators to adapt the entire flow region. We illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and studying their superior performance in capturing the flow structures in detail. We also demonstrate the capabilities of the current developments in parallel boundary layer mesh adaptation by applying them to two internal flow problems. We also study the application of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight the advantage of using such techniques for superior wake and tip region resolution by showcasing flow results. We also outline the future direction for the adaptive meshing techniques to be useful to the large scale flow computations.
Silva, Leonardo de Freitas; Magalhães, Tibério Gomes; Santana, Diego Matos; Pimentel, Gabriel Gomes; Faverani, Leonardo Perez; Mello, Manoel de Jesus Rodrigues
2015-10-01
The blowout fractures may be classified as pure or impure depending on the associated structures. There are 2 main theories attempting to describe the mechanism of injury, the hydraulic, and blocking mechanism. The complications of this type of fracture may involve diplopia, enophthalmos, and ocular movement restriction. Several materials are available for the reconstruction of orbital floor, including the titanium mesh, which present great properties, such as easy modeling and stabilization, small thickness, and shape maintenance. There, however, are disadvantages such as the possibility of adherence formation. The aim of this report is to describe the case of a patient with an 8-month blowout fracture sequel, presenting extensive enophthalmos and treated by affixing a titanium mesh associated with bovine pericardium membrane in the orbital floor. Therefore, based on a 2-year follow-up, it was possible to observe how effective the association between these 2 materials in solving the case was. PMID:26468837
NASA Astrophysics Data System (ADS)
Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.
2016-09-01
The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.
Progressive Compression of Volumetric Subdivision Meshes
Laney, D; Pascucci, V
2004-04-16
We present a progressive compression technique for volumetric subdivision meshes based on the slow growing refinement algorithm. The system is comprised of a wavelet transform followed by a progressive encoding of the resulting wavelet coefficients. We compare the efficiency of two wavelet transforms. The first transform is based on the smoothing rules used in the slow growing subdivision technique. The second transform is a generalization of lifted linear B-spline wavelets to the same multi-tier refinement structure. Direct coupling with a hierarchical coder produces progressive bit streams. Rate distortion metrics are evaluated for both wavelet transforms. We tested the practical performance of the scheme on synthetic data as well as data from laser indirect-drive fusion simulations with multiple fields per vertex. Both wavelet transforms result in high quality trade off curves and produce qualitatively good coarse representations.
A review of metal mesh filters
NASA Astrophysics Data System (ADS)
Ade, Peter A. R.; Pisano, Giampaolo; Tucker, Carole; Weaver, Samuel
2006-06-01
The Astronomical Instrumentation Group at Cardiff University has been developing metal mesh optical filters for more than 30 years, which are currently in use in many ground-, balloon- and space-based instruments. Here we review the current state of the art with respect to these quasi-optical components (low-pass, high-pass and band-pass filters, dichroics and beam-dividers) as developed for the FIR and sub-millimetre wavelength region. We compare performance data with various modelling tools (HFSS, transmission line theory or Floquet mode analysis). These models assist with our understanding of the behaviour of these filters when used at non-normal incidence or in the diffraction region of the grid structures. Interesting artefacts, such as the Wood anomalies and behaviour with S and P polarisations, which dictate the usage of these components in polarisation sensitive instruments, will be discussed.
Visualization Tools for Adaptive Mesh Refinement Data
Weber, Gunther H.; Beckner, Vincent E.; Childs, Hank; Ligocki,Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes
2007-05-09
Adaptive Mesh Refinement (AMR) is a highly effective method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations that must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR visualization research and tools and describe how VisIt currently handles AMR data.
Hypersonic Flow Computations on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Bibb, K. L.; Riley, C. J.; Peraire, J.
1997-01-01
A method for computing inviscid hypersonic flow over complex configurations using unstructured meshes is presented. The unstructured grid solver uses an edge{based finite{volume formulation. Fluxes are computed using a flux vector splitting scheme that is capable of representing constant enthalpy solutions. Second{order accuracy in smooth flow regions is obtained by linearly reconstructing the solution, and stability near discontinuities is maintained by locally forcing the scheme to reduce to first-order accuracy. The implementation of the algorithm to parallel computers is described. Computations using the proposed method are presented for a sphere-cone configuration at Mach numbers of 5.25 and 10.6, and a complex hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data and computations made with established structured grid methods. The use of the solver as a screening tool for rapid aerodynamic assessment of proposed vehicles is described.
Metal mesh resonant filters for terahertz frequencies.
Melo, Arline M; Kornberg, Mariano A; Kaufmann, Pierre; Piazzetta, Maria H; Bortolucci, Emílio C; Zakia, Maria B; Bauer, Otto H; Poglitsch, Albrecht; da Silva, Alexandre M P Alves
2008-11-10
The interest in terahertz photometric and imaging measurements has motivated the development of bandpass resonant filters to be coupled to multiple-pixel devices such as bolometer arrays. Resonant grids are relatively simple to fabricate, exhibiting high transmission at the central frequency, a narrow bandpass, and good rejection of the side frequencies of the spectrum. We have fabricated filters centered at different frequencies between 0.4 and 10 THz, using photolithography and electroforming techniques. Transmission measurements have shown center frequencies and bandwidths close to the design predictions. The performance of the filters was found not to be critically dependent on small physical deformations in the mesh, becoming more noticeable at higher frequencies (i.e., for smaller physical sizes). Wider bandwidths, needed to attain higher sensitivities in the continuum, were obtained by changing the design parameters for filters at 2 and 3 THz. PMID:19002231
Visualization of Scalar Adaptive Mesh Refinement Data
VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes
2007-12-06
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.
Towards mesh independent simulation of ductile fracture.
Fang, Huei Eliot; Veilleux, Michael; Emery, John M.; Wellman, Gerald William; Foulk, James W., III
2010-11-01
Recent work at Sandia National Laboratories has focused on preparing strong predictive models for the simulation of ductile failure in metals. The focus of this talk is on the development of engineering-ready models that use a phenomenological approach to represent the ductile fracture processes. As such, an empirical tearing parameter that accounts for mean stress effects along the crack front is presented. A critical value of the tearing parameter is used in finite element calculations as the criterion for crack growth. Regularization is achieved with three different methods and the results are compared. In the first method, upon reaching the critical tearing, the stress within a solid element is decayed by uniformly shrinking the yield surface over a user specified amount of strain. This yields mesh-size dependent results. As a second method for regularization, cohesive surface elements are inserted using an automatic remeshing technique. In the third method, strain-localization elements are inserted with the automated remeshing.
Superoleophobic Surfaces Obtained via Hierarchical Metallic Meshes.
Grynyov, Roman; Bormashenko, Edward; Whyman, Gene; Bormashenko, Yelena; Musin, Albina; Pogreb, Roman; Starostin, Anton; Valtsifer, Viktor; Strelnikov, Vladimir; Schechter, Alex; Kolagatla, Srikanth
2016-05-01
Hierarchical metallic surfaces demonstrating pronounced water and oil repellence are reported. The surfaces were manufactured with stainless-steel microporous meshes, which were etched with perfluorononanoic acid. As a result, a hierarchical relief was created, characterized by roughness at micro- and sub-microscales. Pronounced superoleophobicity was registered with regard to canola, castor, sesame, flax, crude (petroleum), and engine oils. Relatively high sliding angles were recorded for 5 μL turpentine, olive, and silicone oil droplets. The stability of the Cassie-like air trapping wetting state, established with water/ethanol solutions, is reported. The omniphobicity of the surfaces is due to the interplay of their hierarchical relief and surface fluorination. PMID:27077637
Repair of subxiphoid incisional hernias with Marlex mesh after median sternotomy.
Cohen, M J; Starling, J R
1985-11-01
Median sternotomy is sometimes complicated by a bifid xiphoid process and an incisional (ventral) hernia in the subxiphoid region. Such hernias often recur after primary suture repair. We recently initiated the use of a polypropylene prosthetic mesh to primarily repair subxiphoid incisional hernias. This report details the results of using this material in 14 patients between January 1980 and December 1983. We also discuss the complex anatomy of the xiphoid region. PMID:4051732
Wang, Xin; Cheng, Shaoan; Feng, Yujie; Merrill, Matthew D; Saito, Tomonori; Logan, Bruce E
2009-09-01
Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450 degrees C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/ m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, power increased to 1015 mW/m2(51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes. PMID:19764262
Macrophage polarization in response to ECM coated polypropylene mesh
Wolf, MT; Dearth, CL; Ranallo, CA; LoPresti, S; Carey, LE; Daly, KA; Brown, BN; Badylak, SF
2015-01-01
The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3-35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. PMID:24856104
Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse
Moon, Jei Won
2016-01-01
Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic approach and its having a lower recurrence rate than a traditional approach. However, the advantages of a vaginal approach with mesh for POP surgery must be weighed against the disadvantages. Specific complications that have been reported when using mesh in POP procedures are mesh erosion, dyspareunia, hematomas, urinary incontinence and so on, and evidence supporting the use of transvaginal surgery with mesh is still lacking. Hence, surgeons should understand the details of the surgical pelvic anatomy, the various surgical techniques for POP surgery, including using mesh, and the possible side effects of using mesh. PMID:26962530
Effects of neurosurgical titanium mesh on radiation dose
Patone, Hassisen . E-mail: hash.patone@mail.mcgill.ca; Barker, Jennifer; Roberge, David
2006-01-01
The purpose of this study was to determine the dosimetric impact of a neurosurgical titanium mesh in patients treated with 6- and 18-MV photon beams. The effects of a 0.4-mm-thick titanium mesh on the dose profile at 3 regions within a solid water phantom were measured using extended dose range-2 (EDR2) film for 6- and 18-MV photon beams. All measurements were performed with the titanium mesh placed at a depth of 1.5 cm in the phantom. Films were exposed immediately above the mesh, immediately below the mesh, and at a depth of 5 cm from the surface of the phantom. The films were scanned using a scanning densitometer. In the region directly above the titanium mesh, there was an increase in dose of 7.1% for 6-MV photons and 4.9% for 18-MV photons. Directly below the titanium mesh, there was an average decrease in dose of 1.5% for 6-MV photons and an increase of 1.0% for 18-MV photons. At 5-cm depth, for 6- and 18-MV photons, there was a decrease in dose of 2.2% and 0.6%, respectively. We concluded that for cranial irradiation with high-energy photons, the dosimetric impact of a 0.4-mm titanium mesh is small and does not require modification in treatment parameters.
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
Communication performance of the Intel Touchstone DELTA mesh
Dunigan, T.H.
1992-01-01
The communication performance of the i860-based Intel DELTA mesh supercomputer is compared with the Intel iPSC/860 hypercube and the Ncube 6400 hypercube. Single and multiple hop communication bandwidth and latencies are measured. Concurrent communication speeds and speed under network load are also measured. File I/O performance of the mesh-attached Concurrent File System is measured.
50 CFR 622.302 - Minimum mesh size.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Sargassum Habitat of the South Atlantic Region § 622.302 Minimum mesh size. (a) The minimum allowable mesh size for a net used to fish for pelagic sargassum in the South Atlantic EEZ is 4.0 inches (10.2 cm... possess any pelagic sargassum. (b)...
50 CFR 622.302 - Minimum mesh size.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Sargassum Habitat of the South Atlantic Region § 622.302 Minimum mesh size. (a) The minimum allowable mesh size for a net used to fish for pelagic sargassum in the South Atlantic EEZ is 4.0 inches (10.2 cm... possess any pelagic sargassum. (b)...
A Comparison of the Efficiency Between Fog Collecting Meshes
NASA Astrophysics Data System (ADS)
Eljenholm, C. M.; Coffey, E. M.; Fernandez, D.; Hernandez, C.; Mairs, A. A.
2014-12-01
Precipitation is the most recognized source of water; however, significant amounts of water reside in the air in the form of fog. Standard fog collectors designed by Schemenauer (Schemenauer and Cereceda, 1993) utilize a 1.00 square meter of a specific polypropylene fabric called Coresa with a 35% Raschel shade coefficient to capture and coalesce tiny fog droplets into larger drops that fall into a trough and are measured by a tipping bucket rain gauge. In this study, we compare three different types of mesh; the Chilean Coresa mesh mentioned above, a German mesh called FogHa-Tin, and an optimized mesh designed at the Massachusetts Institute of Technology, a POSS-PEMA dipped metallic mesh (Park et al, 2013). These meshes vary greatly in composition, as well as price. In order to determine which mesh is most optimal for fog collection in a variety of meteorological conditions, standard collectors of each type described above with a mesh area of 1.00 square meter have been placed at five locations around central California with accompanying meteorological instrumentation. This project will report on the effectiveness of each of these passive fog collectors in conjunction with accompanying meteorological data.
Developments and trends in three-dimensional mesh generation
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1989-01-01
An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.
OCME: Out-of-Core Mesh Editing made practical.
Ganovelli, Fabio; Scopigno, Roberto
2012-01-01
OCME (Out-of-Core Mesh Editing) comprises a novel data structure and related algorithms for out-of-core editing of large meshes. Triangles are inserted in a multigrid on the basis of their size in average constant time. OCME maintains no explicit hierarchy, so inserting, modifying, or deleting data doesn't require costly refitting. PMID:24806001
Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse.
Moon, Jei Won; Chae, Hee Dong
2016-02-01
Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic approach and its having a lower recurrence rate than a traditional approach. However, the advantages of a vaginal approach with mesh for POP surgery must be weighed against the disadvantages. Specific complications that have been reported when using mesh in POP procedures are mesh erosion, dyspareunia, hematomas, urinary incontinence and so on, and evidence supporting the use of transvaginal surgery with mesh is still lacking. Hence, surgeons should understand the details of the surgical pelvic anatomy, the various surgical techniques for POP surgery, including using mesh, and the possible side effects of using mesh. PMID:26962530
Micro-mesh fabric pollination bags for switchgrass
Technology Transfer Automated Retrieval System (TEKTRAN)
Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...
Concomitant sublay mesh repair of umbilical hernia and abdominoplasty
McKnight, Catherine L; Fowler, James L; Cobb, William S; Smith, Dane E; Carbonell, Alfredo M
2012-01-01
Concomitant mesh repair of large umbilical hernias and abdominoplasty pose a serious risk of devascularizing the umbilical stalk. A technique of placing mesh in a sublay manner, deep to the fascial defect, for an umbilical herniorrhaphy to avoid damage to the deep umbilical perforators during an abdominoplasty is described. PMID:24294023
Scalable Video Streaming in Wireless Mesh Networks for Education
ERIC Educational Resources Information Center
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
Plated nickel wire mesh makes superior catalyst bed
NASA Technical Reports Server (NTRS)
Sill, M.
1965-01-01
Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.
Performance of an artificial absorber for truncating FEM meshes
NASA Astrophysics Data System (ADS)
Gong, Jian; Volakis, John L.
1995-01-01
We investigate the effectiveness of an artificial absorber for truncating finite element (FE) meshes. Specifically, we present the implementation of a novel mesh truncation approach using a perfectly matched anisotropic absorber for waveguides and stripline circuits. This truncation scheme is useful in many applications, including antennas, scattering, and microwave circuits.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.
Differencing the diffusion equation on unstructured meshes in 2-D
Palmer, T.S.
1994-10-24
During the last few years, there has been an increased effort to devise robust transport differencings for unstructured meshes, specifically arbitrarily connected grids of polygons. Adams has investigated unstructured mesh discretization techniques for the even- and odd-parity forms of the transport equation, and for the more traditional first-order form. Conversely, development of unstructured mesh diffusion methods has been lacking. While Morel, Kershaw, Shestakov and others have done a great deal of work on diffusion schemes for logically-rectangular grids, to the author`s knowledge there has been no work on discretizations of the diffusion equation on unstructured meshes of polygons. In this paper, the authors introduce a point-centered diffusion differencing for two-dimensional unstructured meshes. They have designed the method to have the following attractive properties: (1) the scheme is equivalent to the standard five-point point-centered scheme on an orthogonal mesh; (2) the method preserves the homogeneous linear solution; (3) the method gives second-order accuracy; (4) they have strict conservation within the control volume surrounding each point; and (5) the numerical solution converges to the exact result as the mesh is refined, regardless of the smoothness of the mesh. A potential disadvantage of the method is that the diffusion matrix is asymmetric, in general.
Vector diffraction analysis of reflector antennas with mesh surfaces
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Lee, S.-W.
1985-01-01
Reflector antennas with mesh surfaces are used extensively in many satellite and ground antenna systems. A strip-aperture modeling of commonly used mesh surfaces is presented which provides considerable versatility in characterizing the mesh cells. The mesh transmission coefficients are constructed using a Floquet-modal expansion in conjuction with two dominant aperture modes. To account for the mesh local coordinates, the Eulerian angle transformation is invoked to obtain the total induced current on the curved reflector surface. General formulas are presented to show how the solid surface induced current is modified due to the transmission through the mesh. The effects of a variety of mesh configurations on both the co-polar and cross-polar patterns of reflector antennas are studied by numerically evaluating the vector diffraction integral using the Jacobi-Bessel expansion. For some special cases, a comparison is made with the results of the commonly used wire-grid formulation. Many of the numerical data are tailored to the dimensions of a conceptually designed mesh deployable offset reflector of the land mobile satellite system (LMSS).
A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment
NASA Technical Reports Server (NTRS)
Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott
1995-01-01
The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution
NASA Astrophysics Data System (ADS)
Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.
2015-08-01
The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.
Serial and parallel dynamic adaptation of general hybrid meshes
NASA Astrophysics Data System (ADS)
Kavouklis, Christos
The Navier-Stokes equations are a standard mathematical representation of viscous fluid flow. Their numerical solution in three dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed and memory. A strategy to increase accuracy of Navier-Stokes simulations, while maintaining computing resources to a minimum, is local refinement of the associated computational mesh in regions of large solution gradients and coarsening in regions where the solution does not vary appreciably. In this work we consider adaptation of general hybrid meshes for Computational Fluid Dynamics (CFD) applications. Hybrid meshes are composed of four types of elements; hexahedra, prisms, pyramids and tetrahedra, and have been proven a promising technology in accurately resolving fluid flow for complex geometries. The first part of this dissertation is concerned with the design and implementation of a serial scheme for the adaptation of general three dimensional hybrid meshes. We have defined 29 refinement types, for all four kinds of elements. The core of the present adaptation scheme is an iterative algorithm that flags mesh edges for refinement, so that the adapted mesh is conformal. Of primary importance is considered the design of a suitable dynamic data structure that facilitates refinement and coarsening operations and furthermore minimizes memory requirements. A special dynamic list is defined for mesh elements, in contrast with the usual tree structures. It contains only elements of the current adaptation step and minimal information that is utilized to reconstruct parent elements when the mesh is coarsened. In the second part of this work, a new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid meshes is presented. Partitioning of a hybrid mesh reduces to partitioning of the corresponding dual graph. Communication among processors is based on the faces of the interpartition boundary. The distributed
Rate sensitive continuum damage models and mesh dependence in finite element analyses.
Ljustina, Goran; Fagerström, Martin; Larsson, Ragnar
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the "damage" does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
Biologic versus Synthetic Mesh Reinforcement: What are the Pros and Cons?
FitzGerald, James F.; Kumar, Anjali S.
2014-01-01
Preserving patients' native tissues has posed many challenges for surgeons. Increased life expectancy is leading to a proportionately older surgical population with weaker tissues. The growing population of morbidly obese patients in addition to those with multiple comorbidities which influence the native strength and perfusion of tissues compounds the surgeon's challenge. Certainly, there is a rising demand for materials to replace or augment a patient's native tissue when it has been compromised. Over time, the number of products available has increased substantially. The ideal substitute, however, is debatable. The manufacturing and processing of these materials has become more complex and this has resulted in a significant increase in cost. The composition of the mesh, clinical scenario, and operative technique all interact to impact the long-term results. Surgeons require a thorough understanding of these products to guide proper selection and use, to ensure optimal outcomes for patients, and to properly steward financial resources. This review will outline the properties of commonly used materials, highlighting the strength and weakness of each. It will then discuss recommendations regarding mesh selection, coding, and reimbursement. While general principles and trends can be highlighted, further studies of biologic versus synthetic meshes are clearly necessary. PMID:26106284
Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses
Fagerström, Martin
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the “damage” does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2004-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.
Passive intermodulation generation in wire mesh deployable reflector antennas
NASA Technical Reports Server (NTRS)
Turner, Gregory M.
1993-01-01
Deployable reflector antennas represent a proven technology with obvious benefits for mobile satellite applications. Harris Corporation has provided deployable reflector antennas for NASA's Tracking and Data Relay Satellite System (TDRSS). These antennas utilize a rigid, radial rib unfurlable reflector with a wire mesh surface. This type of mesh has been identified as a potential design risk for multichannel communications applications based on the potential for generation of Passive Intermodulation (PIM). These concerns are based on the existence of numerous, nonpermanent metal to metal contacts that are inherent to the mesh design. To address this issue, Harris has an ongoing IR&D program to characterize mesh PIM performance. This paper presents the results of the investigation into mesh PIM performance to date and provides background information on the design and performance of the Harris radial rib deployable reflector.
Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data⋆
Zhang, Yongjie; Bajaj, Chandrajit
2009-01-01
This paper describes an algorithm to extract adaptive and quality quadrilateral/hexahedral meshes directly from volumetric data. First, a bottom-up surface topology preserving octree-based algorithm is applied to select a starting octree level. Then the dual contouring method is used to extract a preliminary uniform quad/hex mesh, which is decomposed into finer quads/hexes adaptively without introducing any hanging nodes. The positions of all boundary vertices are recalculated to approximate the boundary surface more accurately. Mesh adaptivity can be controlled by a feature sensitive error function, the regions that users are interested in, or finite element calculation results. Finally, a relaxation based technique is deployed to improve mesh quality. Several demonstration examples are provided from a wide variety of application domains. Some extracted meshes have been extensively used in finite element simulations. PMID:19750180
Adaptive-mesh algorithms for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Roe, Philip L.; Quirk, James
1993-01-01
The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
Transgastric Synthetic Mesh Migration, 9 Years after Liver Resection
You, Jae; Onizuka, Neil; Wong, Linda
2014-01-01
Complications of synthetic mesh have been described in various hernia procedures including migration and erosion, but no previous report mentions this complication after liver resection. This case describes a patient who had undergone a left hepatic resection with mesh pledgets sutured along the cut edge of the liver. He remained complication-free until nine years later when he presented with weight loss and early satiety, and endoscopy revealed mesh within the lumen of the stomach. While still attached to the liver, the mesh had eroded into the lumen of the stomach and he ultimately required surgery to remove this. The use of synthetic mesh in hepatectomies and other abdominal procedures may require further consideration by surgeons regarding its relatively unknown tendency for migration and erosion. PMID:24839576
Turbulent flow calculations using unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1990-01-01
A method of efficiently computing turbulent compressible flow over complex two dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow-field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of flow-field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly-stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady-state is achieved using an unstructured multigrid algorithm. Turbulence modeling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element airfoil geometries are computed and compared with experimental data.
Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2013-01-01
A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method. PMID:23580890
Tran, Kim; Zajkowska, Marta; Lam, Vincent; Hawthorne, Wayne
2014-01-01
Introduction: Despite an exponential rise in laparoscopic surgery for inguinal herniorrhaphy, overall recurrence rates have remained unchanged. Therefore, an increasing number of patients present with recurrent hernias after having failed anterior and laparoscopic repairs. This study reports our experience with single-incision laparoscopic (SIL) intraperitoneal onlay mesh (IPOM) repair for these hernias. Materials and methods: All patients referred with multiply recurrent inguinal hernias underwent SIL-IPOM from November 1 2009 to October 30 2013. A 2.5-cm infraumbilical incision was made and a SIL surgical port was placed intraperitoneally. Modified dissection techniques, namely, “chopsticks” and “inline” dissection, 5.5 mm/52 cm/30° angled laparoscope and conventional straight dissecting instruments were used. The peritoneum was incised above the symphysis pubis and dissection continued laterally and proximally raising an inferior flap, below a previous extraperitoneal mesh, while reducing any direct/indirect/femoral/cord lipoma before placement of antiadhesive mesh that was fixed into the pubic ramus as well as superiorly with nonabsorbable tacks before fixing its inferior border with fibrin sealant. The inferior peritoneal flap was then tacked back onto the mesh. Results: There were 9 male patients who underwent SIL-IPOM. Mean age was 55 years old and mean body mass index was 26.8 kg/m2. Mean mesh size was 275 cm2. Mean operation time was 125 minutes with hospital stay of 1 day and umbilical scar length of 21 mm at 4 weeks' follow-up. There were no intraoperative/postoperative complications, port-site hernias, chronic groin pain, or recurrence with mean follow-up of 20 months. Conclusions: Multiply recurrent inguinal hernias after failed conventional anterior and laparoscopic repairs can be treated safely and efficiently with SIL-IPOM. PMID:25392643
A new design concept for knitted external vein-graft support mesh.
Singh, Charanpreet; Wang, Xungai
2015-08-01
Autologous vein-graft failure significantly limits the long-term efficacy of coronary artery bypass procedures. The major cause behind this complication is biomechanical mismatch between the vein and coronary artery. The implanted vein experiences a sudden increase (10-12 fold) in luminal pressures. The resulting vein over-distension or 'ballooning' initiates wall thickening phenomenon and ultimate occlusion. Therefore, a primary goal in improving the longevity of a coronary bypass procedure is to inhibit vein over-distension using mechanical constriction. The idea of using an external vein-graft support mesh has demonstrated sustained benefits and wide acceptance in experimental studies. Nitinol based knitted structures have offered more promising mechanical features than other mesh designs owing to their unique loosely looped construction. However, the conventional plain knit construction still exhibits limitations (radial compliance, deployment ease, flexibility, and bending stresses) which limit this design from proving its real clinical advantage. The new knitted mesh design presented in this study is based on the concept of composite knitting utilising high modulus (nitinol and polyester) and low modulus (polyurethane) material components. The experimental comparison of the new design with a plain knit design demonstrated significant improvement in biomechanical (compliance, flexibility, extensibility, viscoelasticity) and procedural (deployment limit) parameters. The results are indicative of the promising role of new mesh in restoring the lost compliance and pulsatility of vein-graft at high arterial pressures. This way it can assist in controlled vein-graft remodelling and stepwise restoration of vein mechanical homoeostasis. Also, improvement in deployment limit parameter offers more flexibility for a surgeon to use a wide range of vein diameters, which may otherwise be rendered unusable for a plain knit mesh. PMID:25916819
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator
Shin, H.C.; Kim, Y.H.; Kim, Y.B.
1999-07-01
This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.
Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation
Yao, Ruoyang; Intes, Xavier; Fang, Qianqian
2015-01-01
Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826
VAGINAL DEGENERATION FOLLOWING IMPLANTATION OF SYNTHETIC MESH WITH INCREASED STIFFNESS
Liang, Rui; Abramowitch, Steven; Knight, Katrina; Palcsey, Stacy; Nolfi, Alexis; Feola, Andrew; Stein, Susan; Moalli, Pamela A.
2012-01-01
Objective To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition. Design A mechanistic study employing a non-human primate (NHP) model. Setting Magee-Womens Research Institute at the University of Pittsburgh. Population Parous rhesus macaques, with similar age, weight, parity and POP-Q scores. Methods Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls. Main Outcome Measures The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly. Results Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01). Conclusion Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration. PMID:23240802
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Delzanno, G L; Finn, J M
2009-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.
Resorbable biosynthetic mesh for crural reinforcement during hiatal hernia repair.
Alicuben, Evan T; Worrell, Stephanie G; DeMeester, Steven R
2014-10-01
The use of mesh to reinforce crural closure during hiatal hernia repair is controversial. Although some studies suggest that using synthetic mesh can reduce recurrence, synthetic mesh can erode into the esophagus and in our opinion should be avoided. Studies with absorbable or biologic mesh have not proven to be of benefit for recurrence. The aim of this study was to evaluate the outcome of hiatal hernia repair with modern resorbable biosynthetic mesh in combination with adjunct tension reduction techniques. We retrospectively analyzed all patients who had crural reinforcement during repair of a sliding or paraesophageal hiatal hernia with Gore BioA resorbable mesh. Objective follow-up was by videoesophagram and/or esophagogastroduodenoscopy. There were 114 patients. The majority of operations (72%) were laparoscopic primary repairs with all patients receiving a fundoplication. The crura were closed primarily in all patients and reinforced with a BioA mesh patch. Excessive tension prompted a crural relaxing incision in four per cent and a Collis gastroplasty in 39 per cent of patients. Perioperative morbidity was minor and unrelated to the mesh. Median objective follow-up was one year, but 18 patients have objective follow-up at two or more years. A recurrent hernia was found in one patient (0.9%) three years after repair. The use of crural relaxing incisions and Collis gastroplasty in combination with crural reinforcement with resorbable biosynthetic mesh is associated with a low early hernia recurrence rate and no mesh-related complications. Long-term follow-up will define the role of these techniques for hiatal hernia repair. PMID:25264654
SCEC CVM-Toolkit (CVM-T) -- High Performance Meshing Tools for SCEC Community Velocity Models
NASA Astrophysics Data System (ADS)
Small, P.; Maechling, P. J.; Ely, G. P.; Olsen, K. B.; Withers, K.; Graves, R. W.; Jordan, T. H.; Plesch, A.; Shaw, J. H.
2010-12-01
The SCEC Community Velocity Model Toolkit (CVM-T) enables earthquake modelers to quickly build, visualize, and validate large-scale 3D velocity meshes using SCEC CVM-H or CVM-4. CVM-T is comprised of three main components: (1) a current SCEC community velocity model for Southern California, (2) tools for extracting meshes from this model and visualizing them, and (3) an automated test framework for evaluating new releases of CVMs using SCEC’s AWP-ODC forward wave propagation software and one, or more, ground motion goodness of fit (GoF) algorithms. CVM-T is designed to help SCEC modelers build large-scale velocity meshes by extracting material properties from the most current version of Community Velocity Model H (CVM-H) and to provide a consistent interface as new CVM-H versions are developed. The CVM-T software provides a highly-scalable interface to CVM-H 6.2 (and later) voxets. Along with an improved interface to CVM-H material properties, the CVM-T software adds a geotechnical layer (GTL) to CVM-H 6.2+ based on Ely’s Vs30-derived GTL. The initial release of CVM-T also extends the coverage region for CVM-H 6.2 with a Hadley-Kanamori 1D background. Smoothing is performed within the transition boundary between the core model and the 1D background. The user interface now includes a C API that allows applications to query the model either by elevation or depth. The Extraction and Visualization Tools (EVT) include a parallelized 3D mesh generator which can quickly generate meshes (consisting of Vp, Vs, and density) from either CVM-H or CVM-4 with over 100 billion points. Python plotting scripts can be employed to plot horizontal or profile slices from existing meshes or directly from either CVM. The Automated Test Framework (ATF) is a system for quantitatively evaluating new versions of CVM-H and ensuring that the model improves against prior versions. The ATF employs the CruiseControl build and test framework to run an AWP-ODC simulation for the 2008 Chino
How to Avoid and Deal with Pelvic Mesh Litigation.
Karlovsky, Matthew E
2016-08-01
Medical malpractice as it relates to transvaginal mesh implantation adds another level of responsibility when deciding on surgical options to repair stress urinary incontinence or pelvic organ prolapse. As mesh is a viable option for repair, the informed consent process must involve a time commitment to discuss thoroughly the knowns and unknowns about mesh, and potentially must cover other aspects related to surgery: FDA classification of mesh, experience, potential off label usage, and conflicts of interest. A therapeutic alliance must be developed between physician and patient to allay possible fears about the intrinsic uncertainty of surgery. Proper risk assessment of the patient and pre-operative judgment as to when and if mesh implantation is appropriate are decisions that must be documented. Resolution of a conflict from a complication can be dealt with formally or informally. Above all, sharp skills, good communication, broad knowledge base of mesh surgeries, complication management, knowledge of guidelines, along with methodical documentation can mitigate or avert mesh-related litigation. PMID:27287606
A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid
2004-01-01
Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.
Mesh fixation alternatives in laparoscopic ventral hernia repair.
Muysoms, Filip E; Novik, Bengt; Kyle-Leinhase, Iris; Berrevoet, Frederik
2012-12-01
Since the introduction of laparoscopic ventral hernia repair, there has been an ongoing dispute over the optimal method of fixating the mesh against the abdominal wall. In general, one could say that the more penetrating the fixation used, the stronger the fixation, but at the cost of increased acute postoperative pain. The occurrence of chronic pain in some patients has led to the search for less permanent penetrating fixation, but without risking a less stable mesh fixation and increased recurrences due to shift or shrinkage of the mesh. Avoiding transfascial sutures by using a double crown of staples has been proposed and recently absorbable fixation devices have been developed. Some surgeons have proposed fixation with glue to reduce the number of staples, or even eliminate them entirely. The continuously increasing multitude of marketed meshes and fixating devices leads to unlimited options in mesh fixation combination and geometry. Therefore, we will never be able to get a clear view on the benefits and pitfalls of every specific combination. Clearance of the anterior abdominal wall from peritoneal fatty tissue and correct positioning of the mesh with ample overlap of the hernia defect are possibly as important as the choice of mesh and fixation. Other topics that are involved in successful outcomes but not addressed in this article are adequate training in the procedure, appropriate selection of patients, and careful adhesiolysis to minimize accidental visceral injuries. PMID:23225589
Prosthetic Bioabsorbable Mesh for Hiatal Hernia Repair During Sleeve Gastrectomy
2013-01-01
Background and Objectives: Laparoscopic sleeve gastrectomy has become a valuable primary bariatric operation. It has an acceptable complication profile and amount of weight loss. However, one of the most distressing complications to the patient is reflux postoperatively. There is thought to be a relationship between a hiatal hernia and postoperative reflux. There is disagreement on how to address a hiatal hernia intraoperatively, and the use of mesh is controversial. Our objectives were to examine the use of a prosthetic bioabsorbable mesh for repair of a large hiatal hernia during a sleeve gastrectomy and to examine the incidence of reflux and mesh-related complications in the near term. Methods: This is a case series of patients with hiatal hernia undergoing a primary sleeve gastrectomy. None of the patients had a previous hiatal hernia repair. Three patients with large hiatal hernias diagnosed preoperatively or intraoperatively were included. The hiatus of the diaphragm was repaired with a posterior crural closure, and a piece of prosthetic bioabsorbable mesh was placed posteriorly to reinforce the repair. Results: There were 3 patients. The mean follow-up period was 12 months. There were no mesh-related complications. One of the patients needed to resume proton pump inhibitors to control reflux. Conclusion: The use of a prosthetic bioabsorbable mesh to repair a hiatal hernia simultaneously with a sleeve gastrectomy is safe. There were no mesh-related complications at 1 year. PMID:24398209
A Survey of Solver-Related Geometry and Meshing Issues
NASA Technical Reports Server (NTRS)
Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris
2016-01-01
There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.
Two Similarity Metrics for Medical Subject Headings (MeSH):
Smalheiser, Neil R.; Bonifield, Gary
2016-01-01
In the present paper, we have created and characterized several similarity metrics for relating any two Medical Subject Headings (MeSH terms) to each other. The article-based metric measures the tendency of two MeSH terms to appear in the MEDLINE record of the same article. The author-based metric measures the tendency of two MeSH terms to appear in the body of articles written by the same individual (using the 2009 Author-ity author name disambiguation dataset as a gold standard). The two metrics are only modestly correlated with each other (r = 0.50), indicating that they capture different aspects of term usage. The article-based metric provides a measure of semantic relatedness, and MeSH term pairs that co-occur more often than expected by chance may reflect relations between the two terms. In contrast, the author metric is indicative of how individuals practice science, and may have value for author name disambiguation and studies of scientific discovery. We have calculated article metrics for all MeSH terms appearing in at least 25 articles in MEDLINE (as of 2014) and author metrics for MeSH terms published as of 2009. The dataset is freely available for download and can be queried at http://arrowsmith.psych.uic.edu/arrowsmith_uic/mesh_pair_metrics.html. Handling editor: Elizabeth Workman, MLIS, PhD. PMID:27213780
Method and apparatus for connecting finite element meshes and performing simulations therewith
Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.
2003-05-06
The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.
Photocatalytic destruction of atrazine using TiO{sub 2} mesh
Pugh, K.C.; Kiserow, D.J.; Sullivan, J.M.; Grinstead, J.H. Jr.
1994-10-01
The optimization of a technology for the TiO{sub 2}-mediated solar photocatalysis of atrazine is described. The target users of this technology might be agrochemical dealers, manufacturers, and possibly farmers. Studies were performed to determine the ideal cover material for such a reactor based on UV light transmitting properties. The best cover material was a UV transmitting acrylic. The TiO{sub 2} employed for this technology was bound to fiberglass mesh. The effects of mesh amount, stirring, water impurities, concentration of pesticide, and source of UV light (mercury vapor lamp vs. solar) were also determined. The most efficient photocatalysis was achieved using five layers of mesh, a stirred reaction, water low in carbonate and other ions, a dilute waste stream, and solar irradiation rather than a mercury-vapor lamp. The formation and disappearance of eight intermediates were followed in a 2429 h indoor experiment comparing pure and formulated atrazine. A modified reaction mechanism was proposed based on studies of the detected intermediates.
Prakash, Pradeep; Bansal, Virinder Kumar; Misra, Mahesh Chandra; Babu, Divya; Sagar, Rajesh; Krishna, Asuri; Kumar, Subodh; Rewari, Vimi; Subramaniam, Rajeshwari
2016-01-01
BACKGROUND: The aim of our study was to compare chronic groin pain and quality of life (QOL) after laparoscopic lightweight (LW) and heavyweight (HW) mesh repair for groin hernia. MATERIALS AND METHODS: One hundred and forty adult patients with uncomplicated inguinal hernia were randomised into HW mesh group or LW mesh group. Return to activity, chronic groin pain and recurrence rates were assessed. Short form-36 v2 health survey was used for QOL analysis. RESULTS: One hundred and thirty-one completed follow-up of 3 months, 66 in HW mesh group and 65 in LW mesh group. Early post-operative convalescence was better in LW mesh group in terms of early return to walking (P = 0.01) and driving (P = 0.05). The incidence of early post-operative pain, chronic groin pain and QOL and recurrences were comparable. CONCLUSION: Outcomes following laparoscopic inguinal hernia repair using HW and LW mesh are comparable in the short-term as well as long-term. PMID:27073309
Barbosa, Sandra; Nieves, Tania; García, Félix; Cepeda, Eva; Moll, Xavier; Marco, Alberto; Weis, Christine; Turon, Pau; Vergara, Patri
2015-01-01
Objective. The aim of this study was to find a proper experimental design and to evaluate n-butyl-2-cyanoacrylate (Histoacryl) as a fixation method for a light-weight and large pore PP mesh (Synthetic PP Mesh-1) using the sheep as an animal model. Methods. Posterior vaginal implantation by means of episiotomy was used to implant 8 ewes which were evaluated macroscopically and histologically at 3 months (n = 4) and 6 months (n = 4) post-surgery. In previous pilot studies anterior vaginal implantation was evaluated, as well as different synthetic mesh materials, sizes and fixation methods (n = 1 to 3) during three weeks. In all cases a clinical evaluation of the animal was performed. Results. A reduction in the mesh size (Synthetic PP Mesh-1) together with precise application of the surgical glue Histoacryl to fix the mesh yielded significantly better histocompatibility results (P < 0.01) compared to larger size or other fixation methods. Conclusion. The combination of Synthetic PP Mesh-1 with Histoacryl offered a high degree of graft integration without vaginal ulceration and a minimal foreign body reaction, being the sheep a proper animal model to test these types of medical devices. PMID:26221605
Recommending MeSH terms for annotating biomedical articles
Huang, Minlie; Névéol, Aurélie
2011-01-01
Background Due to the high cost of manual curation of key aspects from the scientific literature, automated methods for assisting this process are greatly desired. Here, we report a novel approach to facilitate MeSH indexing, a challenging task of assigning MeSH terms to MEDLINE citations for their archiving and retrieval. Methods Unlike previous methods for automatic MeSH term assignment, we reformulate the indexing task as a ranking problem such that relevant MeSH headings are ranked higher than those irrelevant ones. Specifically, for each document we retrieve 20 neighbor documents, obtain a list of MeSH main headings from neighbors, and rank the MeSH main headings using ListNet–a learning-to-rank algorithm. We trained our algorithm on 200 documents and tested on a previously used benchmark set of 200 documents and a larger dataset of 1000 documents. Results Tested on the benchmark dataset, our method achieved a precision of 0.390, recall of 0.712, and mean average precision (MAP) of 0.626. In comparison to the state of the art, we observe statistically significant improvements as large as 39% in MAP (p-value <0.001). Similar significant improvements were also obtained on the larger document set. Conclusion Experimental results show that our approach makes the most accurate MeSH predictions to date, which suggests its great potential in making a practical impact on MeSH indexing. Furthermore, as discussed the proposed learning framework is robust and can be adapted to many other similar tasks beyond MeSH indexing in the biomedical domain. All data sets are available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing. PMID:21613640
Extraction and applications of skeletons in finite element mesh generation.
Quadros, William Roshan
2010-05-01
This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.
NASA Astrophysics Data System (ADS)
Pavanello, Fabio; Garet, Frédéric; Kuppam, Mohan-Babu; Peytavit, Emilien; Vanwolleghem, Mathias; Vaurette, François; Coutaz, Jean-Louis; Lampin, Jean-François
2013-03-01
The cyclic olefin copolymer (COC) has recently demonstrated promising properties for THz applications due to its extremely high transparency in the THz region. Here, we prove that COC can be efficiently used as substrate material for free-space THz devices through the design, fabrication, and characterization of high-pass metal mesh filters. Measurements are in good agreement with calculations, and a transmittance higher than 75% has been measured between 1.5 THz and 2.5 THz for a single-layer filter. In addition, we prove that stacked meshes can be easily embedded to improve their rejection ratio in the stop-band, while preserving a high transparency in the pass-band. The broadband behavior of these filters should extend up to their diffraction limit estimated at around 6.3 THz for the single-layer filter.
Wettability behavior of special microscale ZnO nail-coated mesh films for oil-water separation.
Du, Xin; Huang, Xing; Li, Xiaoyu; Meng, Xiangmin; Yao, Lin; He, Junhui; Huang, Hongwei; Zhang, Xueji
2015-11-15
The surface free energy and geometrical structure are two important factors to govern the surface wettability. However, the design and simple synthesis of materials with specific surface free energy and geometrical structure, and their elaborate regulations are still a key challenge. Herein, through one-step thermal evaporation method, we successfully synthesized aligned arrays of highly crystallized ZnO with modulated nail structures on the stainless steel meshes for the first time. Owing to the decoration of [0001] oriented nail structures, the wire surface of meshes were indeed enclosed by the ZnO (0002) facets, which had the lowest surface energy in wurtzite structure. Under no any further modifications, just by regulating the nail structure and density as well as the mesh pore sizes, we not only obtained ZnO nail-coated mesh with hydrophobic, oleophilic (oil penetration), and underwater oleophilic properties, but also fabricated one with hydrophilic (water penetration), oleophilic (oil penetration), and underwater superoleophobic properties. Furthermore, interestingly, the separation of oil and water mixture was realized by utilizing two ZnO-nail coated meshes with different wettability. The underlying mechanism was investigated and discussed in the work. Therefore, our study provides interesting insight into the design of novel functional films with desired surface wettability for the separation of oil-water mixture. PMID:26207588
NASA Technical Reports Server (NTRS)
Turon, A.; Davila, C. G.; Camanho, P. P.; Costa, J.
2007-01-01
This paper presents a methodology to determine the parameters to be used in the constitutive equations of Cohesive Zone Models employed in the simulation of delamination in composite materials by means of decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is also proposed. The procedure ensures that the energy dissipated by the fracture process is computed correctly. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used for the simulation of fracture processes.
Pressure Profile Calculation with Mesh Ewald Methods.
Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál
2016-09-13
The importance of calculating pressure profiles across liquid interfaces is increasingly gaining recognition, and efficient methods for the calculation of long-range contributions are fundamental in addressing systems with a large number of charges. Here, we show how to compute the local pressure contribution for mesh-based Ewald methods, retaining the typical N log N scaling as a function of the lattice nodes N. This is a considerable improvement on existing methods, which include approximating the electrostatic contribution using a large cutoff and the, much slower, Ewald calculation. As an application, we calculate the contribution to the pressure profile across the water/vapor interface, coming from different molecular layers, both including and removing the effect of thermal capillary waves. We compare the total pressure profile with the one obtained using the cutoff approximation for the calculation of the stresses, showing that the stress distributions obtained using the Harasima and Irving-Kirkwood path are quite similar and shifted with respect to each other at most 0.05 nm. PMID:27508458
On the dynamics of entailment-meshes
NASA Astrophysics Data System (ADS)
Medina Martins, Pedro Roberto
1999-03-01
One of the most puzzling problems that general psychology has always faced, has been concerned with the question of human psychodynamics, with its possible `mechanisms', motivations, `inner' and `outer' actions, etc., briefly, what we usually embrace under the general and vague label "mental processes." Together with its `rational' part, a great deal of such processes is pervaded by an `irrationality' whose influences upon each of us not only remain still obscure but also show to be highly dependent on each of our living experiments/experiences as well as on the way we have interpreted them. Thus, difficult to be treated by the methods of the classical physical/quasi-physical paradigm and, consequently, offering additional problems of computing/robotic simulation/emulation. To shadow forth a (possible) blueprint model of (part of) such processes in which a especial emphasis is laid upon the affective and associative ones is just one of the major objectives of this paper. The model relies upon my own neuro-fuzzy approach to Pask's concept of entailment-mesh, albeit radically modified and extended and it works as an introduction to a more extended approach to the aforementioned problem of human psychodynamics.
Elliptic Solvers for Adaptive Mesh Refinement Grids
Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.
1999-06-03
We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Adaptive mesh fluid simulations on GPU
NASA Astrophysics Data System (ADS)
Wang, Peng; Abel, Tom; Kaehler, Ralf
2010-10-01
We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.
Streaming Compression of Tetrahedral Volume Meshes
Isenburg, M; Lindstrom, P; Gumhold, S; Shewchuk, J
2005-11-21
Geometry processing algorithms have traditionally assumed that the input data is entirely in main memory and available for random access. This assumption does not scale to large data sets, as exhausting the physical memory typically leads to IO-inefficient thrashing. Recent works advocate processing geometry in a 'streaming' manner, where computation and output begin as soon as possible. Streaming is suitable for tasks that require only local neighbor information and batch process an entire data set. We describe a streaming compression scheme for tetrahedral volume meshes that encodes vertices and tetrahedra in the order they are written. To keep the memory footprint low, the compressor is informed when vertices are referenced for the last time (i.e. are finalized). The compression achieved depends on how coherent the input order is and how many tetrahedra are buffered for local reordering. For reasonably coherent orderings and a buffer of 10,000 tetrahedra, we achieve compression rates that are only 25 to 40 percent above the state-of-the-art, while requiring drastically less memory resources and less than half the processing time.
Modeling study of mesh conductors and their electroluminescent devices
NASA Astrophysics Data System (ADS)
Hu, Bin; Li, Dapeng; Manandhar, Prakash; Fan, Qinguo; Kasilingam, Dayalan; Calvert, Paul
2015-02-01
Numerical models were established to correlate with the experimentally measured properties of mesh conductors previously developed through a combined process of dip coating carbon nanotubes and inkjet printing poly 3,4-ethylenedioxythiophene: poly styrene sulfonate. The electroluminescent (EL) devices assembled with such mesh conductors as front electrodes were modeled by commercially available finite element method software COMSOL Multiphysics. The modeling results are in agreement with those from the experiments and suggest that an optimized fiber arrangement is the key for further improving the performance of EL devices based on mesh conductors.
Hex-dominant mesh generation using 3D constrained triangulation
OWEN,STEVEN J.
2000-05-30
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
Adaptive mesh refinement for stochastic reaction-diffusion processes
Bayati, Basil; Chatelain, Philippe; Koumoutsakos, Petros
2011-01-01
We present an algorithm for adaptive mesh refinement applied to mesoscopic stochastic simulations of spatially evolving reaction-diffusion processes. The transition rates for the diffusion process are derived on adaptive, locally refined structured meshes. Convergence of the diffusion process is presented and the fluctuations of the stochastic process are verified. Furthermore, a refinement criterion is proposed for the evolution of the adaptive mesh. The method is validated in simulations of reaction-diffusion processes as described by the Fisher-Kolmogorov and Gray-Scott equations.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
Parameterized reduced order models from a single mesh using hyper-dual numbers
NASA Astrophysics Data System (ADS)
Brake, M. R. W.; Fike, J. A.; Topping, S. D.
2016-06-01
In order to assess the predicted performance of a manufactured system, analysts must consider random variations (both geometric and material) in the development of a model, instead of a single deterministic model of an idealized geometry with idealized material properties. The incorporation of random geometric variations, however, potentially could necessitate the development of thousands of nearly identical solid geometries that must be meshed and separately analyzed, which would require an impractical number of man-hours to complete. This research advances a recent approach to uncertainty quantification by developing parameterized reduced order models. These parameterizations are based upon Taylor series expansions of the system's matrices about the ideal geometry, and a component mode synthesis representation for each linear substructure is used to form an efficient basis with which to study the system. The numerical derivatives required for the Taylor series expansions are obtained via hyper-dual numbers, and are compared to parameterized models constructed with finite difference formulations. The advantage of using hyper-dual numbers is two-fold: accuracy of the derivatives to machine precision, and the need to only generate a single mesh of the system of interest. The theory is applied to a stepped beam system in order to demonstrate proof of concept. The results demonstrate that the hyper-dual number multivariate parameterization of geometric variations, which largely are neglected in the literature, are accurate for both sensitivity and optimization studies. As model and mesh generation can constitute the greatest expense of time in analyzing a system, the foundation to create a parameterized reduced order model based off of a single mesh is expected to reduce dramatically the necessary time to analyze multiple realizations of a component's possible geometry.
Benedetti, M; Albertario, S; Niebel, T; Bianchi, C; Tinozzi, F P; Moglia, P; Arcidiaco, M; Tinozzi, S
2005-03-01
Tension-free and sutureless hernioplasty by plug and mesh of nonreabsorbable material is one of the most common techniques for inguinal hernia repair. It's a simple and quick procedure with a low cost and allows for a short hospital stay. It shows a low reoccurrence rate, but it can result, in very few cases, in complications strictly related to prosthetic material. The literature describes some cases of plug migration from its proper position, for example, to the scrotum, preperitoneal adipose tissue, and abdominal cavity. We report on a case of sigmoid colon perforation due to a plug of Trabucco hernioplasty performed 2 years previously. PMID:15290610
2010-01-01
Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions
Accurate solution of the Dirac equation on Lagrange meshes.
Baye, Daniel; Filippin, Livio; Godefroid, Michel
2014-04-01
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n+1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n+2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points. PMID:24827362
3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS
J. MOREL; J. MCGHEE; ET AL
2000-11-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.
Mechanical durability of superhydrophobic and oleophobic copper meshes
NASA Astrophysics Data System (ADS)
Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng
2014-10-01
We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.
Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh
Linker, Kevin L.; Bouchier, Frank A.; Theisen, Lisa; Arakaki, Lester H.
2007-11-27
A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.
Interoperable mesh and geometry tools for advanced petascale simulations
Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M; Tautges, T; Trease, H
2007-07-04
SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and datastructure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications.
Are patient specific meshes required for EIT head imaging?
Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David
2016-06-01
Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma. PMID:27206049
Accurate solution of the Dirac equation on Lagrange meshes
NASA Astrophysics Data System (ADS)
Baye, Daniel; Filippin, Livio; Godefroid, Michel
2014-04-01
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n +1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n +2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.
Parallel performance optimizations on unstructured mesh-based simulations
Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid
2015-06-01
This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
Laparoscopic mesh repair of parahiatal hernia: a case report.
Lew, Pei Shi; Wong, Andrew Siang Yih
2013-08-01
We report a case of a primary parahiatal hernia that was repaired laparoscopically with a composite mesh. A 51-year-old woman presented with vomiting and epigastric pain. CT scan showed a giant paraesophageal hernia with intrathoracic gastric volvulus. Intraoperatively, a diaphragmatic muscular defect was found lateral to an attenuated left crus of the diaphragm, distinct from the normal esophageal hiatus. The defect ring was fibrotic, making a tension-free primary repair difficult. A laparoscopic mesh repair was performed with a composite mesh, which was covered with the hernia sac to prevent potential erosion into the esophagus or stomach. Recovery was uneventful and the patient was discharged on the 5 days postoperatively. She remained asymptomatic at subsequent follow-up. Laparoscopic repair of parahiatal hernia can be safely performed. In circumstances where a large or fibrotic defect prevents a tension-free primary repair, the use of a composite mesh can provide effective repair of the hernia. PMID:23879418
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-01-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles
1999-01-01
In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.
Geometrical and topological issues in octree based automatic meshing
NASA Technical Reports Server (NTRS)
Saxena, Mukul; Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.
Gao, Zhanheng; Yu, Zeyun; Holst, Michael
2012-12-01
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522
Biocompatible surgical meshes based on decellularized human amniotic membrane.
Shi, Peina; Gao, Mengna; Shen, Qiuxia; Hou, Lei; Zhu, Yabin; Wang, Jun
2015-09-01
Meshes play important roles to repair human tissue defect. In this work, human amniotic membrane (HAM) was decellularized and explored the efficacy as an implantable biological mesh. Surfactant, hypertonic saline, lipase and DNAase were used individually or collectively to remove all cell components and remain the extracellular matrix. Results of H&E and DAPI staining demonstrated that the method of surfactant and lipase combining with DNAase is the most effective treatment for HAM decellularization. Primary smooth muscle cells were seeded to evaluate the decellularized HAM's (dHAM) in vitro cytocompatibility. The in vivo test was performed via implantation at rabbits' uterus with clinic polypropylene mesh (PP) as the control. The results indicated that dHAM possessed good biocompatibility and will be a potential candidate for biological mesh. PMID:26046274
Tetrahedral mesh improvement via optimization of the element condition number
FREITAG,LORI A.; KNUPP,PATRICK
2000-05-22
The authors present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, they formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. They review the optimization techniques used with each objective function and presents experimental results that demonstrate the effectiveness of the mesh improvement methods. They show that a combined optimization approach that uses both objective functions obtains the best-quality meshes for several complex geometries.
Triangular framework mesh generation of 3D geological structure
NASA Astrophysics Data System (ADS)
Meng, Xianhai; Zhou, Kun; Li, Jigang; Yang, Qin
2013-03-01
The dynamic simulation of oil migration and accumulation is an important issue on the research of petroleum exploration, and it is a numerical simulation process with special requirement on the framework mesh of 3D geological models, which means that the mesh should have same geometry and topology relation near the intersected part of geological surfaces. In this paper, basing on the conforming Delaunay triangulation algorithm to construct mesh of individual geological stratum or fault, a novel link-Delaunay-triangulation method is presented to achieve the geometric and topological consistency in the intersected line between two surfaces, also with the analysis of termination of our algorithm. Finally, some examples of the geological framework mesh are provided and the experimental result proved that the algorithm's effectiveness in engineering practice.
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Schoeppner, Gregory A.
2006-01-01
NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.
Finite element meshing approached as a global minimization process
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
Design methodology of the strength properties of medical knitted meshes
NASA Astrophysics Data System (ADS)
Mikołajczyk, Z.; Walkowska, A.
2016-07-01
One of the most important utility properties of medical knitted meshes intended for hernia and urological treatment is their bidirectional strength along the courses and wales. The value of this parameter, expected by the manufacturers and surgeons, is estimated at 100 N per 5 cm of the sample width. The most frequently, these meshes are produced on the basis of single- or double-guide stitches. They are made of polypropylene and polyester monofilament yarns with the diameter in the range from 0.6 to 1.2 mm, characterized by a high medical purity. The aim of the study was to develop the design methodology of meshes strength based on the geometrical construction of the stitch and strength of yarn. In the environment of the ProCAD warpknit 5 software the simulated stretching process of meshes together with an analysis of their geometry changes was carried out. Simulations were made for four selected representative stitches. Both on a built, unique measuring position and on the tensile testing machine the real parameters of the loops geometry of meshes were measured. Model of mechanical stretching of warp-knitted meshes along the courses and wales was developed. The thesis argument was made, that the force that breaks the loop of warp-knitted fabric is the lowest value of breaking forces of loop link yarns or yarns that create straight sections of loop. This thesis was associate with the theory of strength that uses the “the weakest link concept”. Experimental verification of model was carried out for the basic structure of the single-guide mesh. It has been shown that the real, relative strength of the mesh related to one course is equal to the strength of the yarn breakage in a loop, while the strength along the wales is close to breaking strength of a single yarn. In relation to the specific construction of the medical mesh, based on the knowledge of the density of the loops structure, the a-jour mesh geometry and the yarns strength, it is possible, with high
Enhancing physiologic simulations using supervised learning on coarse mesh solutions.
Kolandaivelu, Kumaran; O'Brien, Caroline C; Shazly, Tarek; Edelman, Elazer R; Kolachalama, Vijaya B
2015-03-01
Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes--a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion. PMID:25652458
Adaptive mesh generation for viscous flows using Delaunay triangulation
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1988-01-01
A method for generating an unstructured triangular mesh in two dimensions, suitable for computing high Reynolds number flows over arbitrary configurations is presented. The method is based on a Delaunay triangulation, which is performed in a locally stretched space, in order to obtain very high aspect ratio triangles in the boundary layer and the wake regions. It is shown how the method can be coupled with an unstructured Navier-Stokes solver to produce a solution adaptive mesh generation procedure for viscous flows.
MeshTV: scientific visualization and graphical analysis software
Brugger, E S; Roberts, L; Wookey, S G
1999-02-08
The increasing data complexity engendered by the Accelerated Scientific Computing Initiative (ASCI) requires more capability in our scientific visualization software. B Division at Lawrence Livermore National Laboratory (LLNL) addresses these new and changing requirements with MeshTV. We began work on MeshTV around eight years ago, and have progressively refined the software to provide improved scientific analysis and visualization to well over 100 users at Liver-more, Los Alamos, Sandia, and in private industry. (U)
Adaptive mesh and algorithm refinement using direct simulation Monte Carlo
Garcia, A.L.; Bell, J.B.; Crutchfield, W.Y.; Alder, B.J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
An application of MeSH enrichment analysis in livestock.
Morota, G; Peñagaricano, F; Petersen, J L; Ciobanu, D C; Tsuyuzaki, K; Nikaido, I
2015-08-01
An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome-wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species. PMID:26036323
Anisotropic adaptive mesh generation in two dimensions for CFD
Borouchaki, H.; Castro-Diaz, M.J.; George, P.L.; Hecht, F.; Mohammadi, B.
1996-12-31
This paper describes the extension of the classical Delaunay method in the case where anisotropic meshes are required such as in CFD when the modelized physic is strongly directional. The way in which such a mesh generation method can be incorporated in an adaptative loop of CFD as well as the case of multicriterium adaptation are discussed. Several concrete application examples are provided to illustrate the capabilities of the proposed method.
A general boundary capability embedded in an orthogonal mesh
Hewett, D.W.; Yu-Jiuan Chen
1995-07-01
The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.
A module concept for a cable-mesh deployable antenna
NASA Technical Reports Server (NTRS)
Meguro, Akira
1993-01-01
This paper describes the design, manufacture, and deployment tests of a modular mesh deployable antenna. Reaction forces and moments created by a mesh and cable network are estimated using CASA. Deployment analysis is carried out using DADS. Three types of deployable antenna modules are developed and fabricated. Their design approach and deployment characteristics are also presented. Ground deployment tests are performed to verify design criteria.
Parallel adaptive mesh refinement for electronic structure calculations
Kohn, S.; Weare, J.; Ong, E.; Baden, S.
1996-12-01
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.
Wu, Xujun; Wang, Yuru; Zhu, Cancan; Tong, Xiaowen; Yang, Ming; Yang, Li; Liu, Zhang; Huang, Weihong; Wu, Feng; Zong, Honghai; Li, Huaifang; He, Hongbing
2016-01-01
Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(l-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement. PMID:26893556
Wu, Xujun; Wang, Yuru; Zhu, Cancan; Tong, Xiaowen; Yang, Ming; Yang, Li; Liu, Zhang; Huang, Weihong; Wu, Feng; Zong, Honghai; Li, Huaifang; He, Hongbing
2016-01-01
Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(L-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement. PMID:26893556
Numerical modelling of tsunami generation by deformable submarine slides using mesh adaptivity
NASA Astrophysics Data System (ADS)
Smith, Rebecca; Parkinson, Samuel; Hill, Jon; Collins, Gareth; Piggott, Matthew
2014-05-01
Tsunamis generated by submarine slides are often under considered in comparison to earthquake generated tsunami, despite several recent examples. Tsunamigenic slides have generated waves that have caused significant damage and loss of life, for example the 1998 Papua New Guinea submarine mass failure resulted in a tsunami that devastated coastal villages and killed over 2,100 people. Numerical simulations of submarine slide generated waves can help us understand the nature of the waves that are generated, and identify the important factors in determining wave characteristics. There have not been many studies of tsunami generation by deformable submarine slides, largely because of the complexities and computational expense involved in modelling these large scale events. At large, real world, scales modelling of tsunami waves by the generation of slides is computationally challenging. Fluidity is an open source finite element code that is ideally suited to tackle this type of problem as it uses unstructured, adaptive meshes, which help to reduce the computational expense without losing accuracy in the results. Adaptive meshes change topology and resolution based on the current simulation state and as such can focus or reduce resolution when and where it is required. The model also allows a number of different numerical approaches to be taken to simulate the same problem within the same numerical framework. In this example we use multi-material approach, with both two materials (slide and water) and three materials (slide, water and air), alongside a density-driven sediment model approach. We will present results of validating Fluidity against benchmarks from experimental and other numerical studies, at different scales, for deformable underwater slides, and consider the utility of mesh adaptivity. We show good agreement to both laboratory results and other numerical models, both with a fixed mesh and a dynamically adaptive mesh, tracking important features of the
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail
2016-02-24
Here, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. Also, this volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problemmore » in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less
Progress in integrated analysis with adaptive unstructured meshing
NASA Technical Reports Server (NTRS)
Dechaumphai, Pramote
1992-01-01
Design of lightweight structures and thermal protection systems for hypersonic vehicles depend on accurate prediction of aerothermal loads, structural temperatures and their gradients, and structural deformations and stresses. Concentration is on an alternative meshing technique which generates an entirely new adaptive unstructured mesh based on the solution obtained from the earlier mesh. The technique combined with the finite element method has been shown to significantly improve the efficiency and accuracy of the fluid, thermal, and structural analyses. Current capability of the adaptive unstructured meshing technique for the integrated fluid-thermal-structural analysis is described first. The technique was extended to transient thermal analysis of structures with time-dependent adaptive meshing to capture the detailed temperature response with a minimum number of unknowns and computational cost. Both linear and higher-order finite elements are implemented to demonstrate the generality of the technique and to investigate their solution accuracy. Currently, the adaptive meshing technique is being developed for plane structures that can be modeled with membrane elements and built-up structures modeled with membrane and bending elements. The capability of the technique to these different disciplinary problems is demonstrated by several examples.
Coarse-mesh diffusion synthetic acceleration in slab geometry
Kim, K.S.; Palmer, T.S.
2000-07-01
It has long been known that the success of a diffusion synthetic acceleration (DSA) scheme is very sensitive to the consistency between the discretization of the transport and diffusion acceleration equations. Acceleration schemes involving inconsistent discretizations have been successful, but no prescription is available that determines a priori an allowable degree of inconsistency. It is notable, however, that all current DSA schemes involve diffusion equations discretized on the spatial mesh used to solve the transport equations. Often the solution of a large number of low-order equations is an expensive part of the transport simulation. This motivates the desire to find stable and rapidly convergent acceleration schemes that are discretized on a mesh that is coarse relative to the transport mesh. The authors present here results showing that the low-order diffusion equation can be solved on a mesh coarser (by a factor of 2) than that used for the slab geometry transport equation. Their results show that coarse-mesh DSA is unconditionally stable and is as rapidly convergent as a DSA method discretized on the transport mesh. They have used Adams and Martin's modified four-step acceleration method (M4S) applied to the linear discontinuous (LD) finite element transport equations in slab geometry. To evaluate their procedure, they have performed a Fourier analysis to calculate theoretical spectral radii. They compare this analysis with convergence behavior observed in an implementation code for several model problems.
Personalized identification of abdominal wall hernia meshes on computed tomography.
Pham, Tuan D; Le, Dinh T P; Xu, Jinwei; Nguyen, Duc T; Martindale, Robert G; Deveney, Clifford W
2014-01-01
An abdominal wall hernia is a protrusion of the intestine through an opening or area of weakness in the abdominal wall. Correct pre-operative identification of abdominal wall hernia meshes could help surgeons adjust the surgical plan to meet the expected difficulty and morbidity of operating through or removing the previous mesh. First, we present herein for the first time the application of image analysis for automated identification of hernia meshes. Second, we discuss the novel development of a new entropy-based image texture feature using geostatistics and indicator kriging. Third, we seek to enhance the hernia mesh identification by combining the new texture feature with the gray-level co-occurrence matrix feature of the image. The two features can characterize complementary information of anatomic details of the abdominal hernia wall and its mesh on computed tomography. Experimental results have demonstrated the effectiveness of the proposed study. The new computational tool has potential for personalized mesh identification which can assist surgeons in the diagnosis and repair of complex abdominal wall hernias. PMID:24184112
LES on unstructured deforming meshes: Towards reciprocating IC engines
NASA Technical Reports Server (NTRS)
Haworth, D. C.; Jansen, K.
1996-01-01
A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.
Initial outcomes of laparoscopic paraesophageal hiatal hernia repair with mesh.
Gebhart, Alana; Vu, Steven; Armstrong, Chris; Smith, Brian R; Nguyen, Ninh T
2013-10-01
The use of mesh in laparoscopic paraesophageal hiatal hernia repair (LHR) may reduce the risk of late hernia recurrence. The aim of this study was to evaluate initial outcomes and recurrence rate of 92 patients who underwent LHR reinforced with a synthetic bioabsorbable mesh. Surgical approaches included LHR and Nissen fundoplication (n = 64), LHR without fundoplication (n = 10), reoperative LHR (n = 9), LHR with a bariatric operation (n = 6), and emergent LHR (n = 3). The mean length of hospital stay was 2 ± 3 days (range, 1 to 30 days). There were no conversions to open laparotomy and no intraoperative complications. One of 92 patients (1.1%) required intensive care unit stay. The 90-day mortality was zero. Minor complications occurred in 3.3 per cent, major complications in 2.2 per cent, and late complications in 5.5 per cent of patients. There were no perforations or early hernia recurrence. The 30-day reoperation rate was 1.1 per cent. For patients with available 1-year follow-up, the overall recurrence rate was 18.5 per cent with a mean follow-up of 30 months (range, 12 to 51 months). LHR repair with mesh is associated with low perioperative morbidity and no mortality. The use of bioabsorbable mesh appears to be safe with no early hiatal hernia recurrence or late mesh erosion. Longer follow-up is needed to determine the long-term rate of hernia recurrence associated with LHR with mesh. PMID:24160791
Shape design sensitivities using fully automatic 3-D mesh generation
NASA Technical Reports Server (NTRS)
Botkin, M. E.
1990-01-01
Previous work in three dimensional shape optimization involved specifying design variables by associating parameters directly with mesh points. More recent work has shown the use of fully-automatic mesh generation based upon a parameterized geometric representation. Design variables have been associated with a mathematical model of the part rather than the discretized representation. The mesh generation procedure uses a nonuniform grid intersection technique to place nodal points directly on the surface geometry. Although there exists an associativity between the mesh and the geometrical/topological entities, there is no mathematical functional relationship. This poses a problem during certain steps in the optimization process in which geometry modification is required. For the large geometrical changes which occur at the beginning of each optimization step, a completely new mesh is created. However, for gradient calculations many small changes must be made and it would be too costly to regenerate the mesh for each design variable perturbation. For that reason, a local remeshing procedure has been implemented which operates only on the specific edges and faces associated with the design variable being perturbed. Two realistic design problems are presented which show the efficiency of this process and test the accuracy of the gradient computations.
Parallel adaptation of general three-dimensional hybrid meshes
NASA Astrophysics Data System (ADS)
Kavouklis, Christos; Kallinderis, Yannis
2010-05-01
A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.
Feature based volume decomposition for automatic hexahedral mesh generation
LU,YONG; GADH,RAJIT; TAUTGES,TIMOTHY J.
2000-02-21
Much progress has been made through these years to achieve automatic hexahedral mesh generation. While general meshing algorithms that can take on general geometry are not there yet; many well-proven automatic meshing algorithms now work on certain classes of geometry. This paper presents a feature based volume decomposition approach for automatic Hexahedral Mesh generation. In this approach, feature recognition techniques are introduced to determine decomposition features from a CAD model. The features are then decomposed and mapped with appropriate automatic meshing algorithms suitable for the correspondent geometry. Thus a formerly unmeshable CAD model may become meshable. The procedure of feature decomposition is recursive: sub-models are further decomposed until either they are matched with appropriate meshing algorithms or no more decomposition features are detected. The feature recognition methods employed are convexity based and use topology and geometry information, which is generally available in BREP solid models. The operations of volume decomposition are also detailed in the paper. The final section, the capability of the feature decomposer is demonstrated over some complicated manufactured parts.
Optimization-based mesh correction with volume and convexity constraints
NASA Astrophysics Data System (ADS)
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail
2016-05-01
We consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.
Patched based methods for adaptive mesh refinement solutions of partial differential equations
Saltzman, J.
1997-09-02
This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.
The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
Jiang, Zai X; Geng, Lin; Huang, Yu D; Guan, Shi A; Dong, W; Ma, Zi Y
2011-02-15
A comprehensive analytical model is proposed to provide a relationship between the macroscopic roughness and contact angle, which is used to develop macroscopic rough surface and to create biomimetic superhydrophobic surfaces. Using chemical surface modification of steel wires, an artificial hydrophobic surface was prepared. A steel mesh mimicking the Asparagus setaceus leaf was created by lowing the surface energy and enhancing macroscopic surface roughness. Water contact angles as high as 129.0° were achieved on the steel mesh with 200μm×200μm pore size. Bad agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the roughness magnitude changes from nano/microscopic to macroscopic. A new model, called macroscopic Cassie-Baxter (MCB) model, is constructed by the introduction of contact area density (δ) to original Cassie-Baxter model. It is shown that the measured data is in good agreement with the predicted data based on the MCB model. This model not only for solving macroscopic hydrophobic problems of meshes, but also can be used to solve that of other materials with macroscopic roughness. PMID:21115180