Sample records for metabolic processes affected

  1. Positive affect predicts cerebral glucose metabolism in late middle-aged adults

    PubMed Central

    Nicholas, Christopher R.; Hoscheidt, Siobhan M.; Clark, Lindsay R.; Racine, Annie M.; Berman, Sara E.; Koscik, Rebecca L.; Maritza Dowling, N.; Asthana, Sanjay; Christian, Bradley T.; Sager, Mark A.

    2017-01-01

    Abstract Positive affect is associated with a number of health benefits; however, few studies have examined the relationship between positive affect and cerebral glucose metabolism, a key energy source for neuronal function and a possible index of brain health. We sought to determine if positive affect was associated with cerebral glucose metabolism in late middle-aged adults (n = 133). Participants completed the positive affect subscale of the Center for Epidemiological Studies Depression Scale at two time points over a two-year period and underwent 18F-fluorodeoxyglucose-positron emission tomography scanning. After controlling for age, sex, perceived health status, depressive symptoms, anti-depressant use, family history of Alzheimer’s disease, APOE ε4 status and interval between visits, positive affect was associated with greater cerebral glucose metabolism across para-/limbic, frontal, temporal and parietal regions. Our findings provide evidence that positive affect in late midlife is associated with greater brain health in regions involved in affective processing and also known to be susceptible to early neuropathological processes. The current findings may have implications for interventions aimed at increasing positive affect to attenuate early neuropathological changes in at-risk individuals. PMID:28402542

  2. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  3. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  4. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-09-02

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae.

  5. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  6. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.

    PubMed

    Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M

    2016-04-01

    Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.

  7. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Does methamphetamine affect bone metabolism?

    PubMed

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  9. Flavanol plasma bioavailability is affected by metabolic syndrome in rats.

    PubMed

    Margalef, Maria; Pons, Zara; Iglesias-Carres, Lisard; Bravo, Francisca Isabel; Muguerza, Begoña; Arola-Arnal, Anna

    2017-09-15

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state influenced flavanol plasma bioavailability. Standard and cafeteria (CAF) diet fed rats, a robust model of metabolic syndrome (MeS), were administered 1000mg/kg of flavanol enriched grape seed polyphenol extract (GSPE). Flavanols and their metabolites were quantified by HPLC-MS/MS in plasma before and at 2, 4, 7, 24, and 48h after GSPE ingestion. Results showed that in CAF administered rats the maximum time of plasma flavanol concentration was delayed and these animals presented higher levels of plasma phase-II metabolites as well as altered microbial metabolites. In conclusion, this study demonstrated that MeS pathological state modified flavanol bioavailability, supporting the hypothesis that flavanol metabolism, and therefore flavanol functionality, depend on the organism's state of health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Coping, affect, and the metabolic syndrome in older men: how does coping get under the skin?

    PubMed

    Yancura, Loriena A; Aldwin, Carolyn M; Levenson, Michael R; Spiro, Avron

    2006-09-01

    The metabolic syndrome is a complex construct with interrelated factors of obesity, blood pressure, lipids, and glucose. It is a risk factor for a number of chronic diseases in late life. This study tested a model in which the relationship between stress and the metabolic syndrome was mediated by appraisal, coping, and affect. Data were collected from 518 male participants in the Normative Aging Study (X(age) = 68.17 years). The model was partially confirmed. Relationships among stress, appraisal, coping, and affect were valenced along positive and negative pathways. However, affect was not directly related to the metabolic syndrome. The metabolic syndrome was related to positive coping as operationalized by self-regulatory strategies. The results of this study suggest that the influence of coping on physical health may occur through emotional regulation.

  11. Metabolism, obesity and the metabolic syndrome.

    PubMed

    Persson, Pontus B; Bondke Persson, Anja

    2018-05-13

    The current obesity epidemic has not only spread from Western to developing economies, but is affecting ever younger individuals. While oftentimes blamed on a slow metabolism or a hereditary component, one might consider whether family recipes and dietary habits are hereditary to a much higher degree than slow metabolism or big bones could ever be. Education is critical, so how do we explain metabolism to a layman, e.g. a parent of an obese child? - Metabolism denotes all the processes, which turn nutrients from our food into energy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Perceptual Processing Affects Conceptual Processing

    ERIC Educational Resources Information Center

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  13. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development

    PubMed Central

    Bazer, Fuller W; Kim, Jingyoung; Song, Gwonhwa; Ka, Hakhyun; Tekwe, Carmen D; Wu, Guoyao

    2012-01-01

    Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity. PMID:23050969

  14. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  15. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  16. Positive affect and psychobiological processes

    PubMed Central

    Dockray, Samantha; Steptoe, Andrew

    2010-01-01

    Positive affect has been associated with favourable health outcomes, and it is likely that several biological processes mediate the effects of positive mood on physical health. There is converging evidence that positive affect activates the neuroendocrine, autonomic and immune systems in distinct and functionally meaningful ways. Cortisol, both total output and the awakening response, has consistently been shown to be lower among individuals with higher levels of positive affect. The beneficial effects of positive mood on cardiovascular function, including heart rate and blood pressure, and the immune system have also been described. The influence of positive affect on these psychobiological processes are independent of negative affect, suggesting that positive affect may have characteristic biological correlates. The duration and conceptualisation of positive affect may be important considerations in understanding how different biological systems are activated in association with positive affect. The association of positive affect and psychobiological processes has been established, and these biological correlates may be partly responsible for the protective effects of positive affect on health outcomes. PMID:20097225

  17. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  18. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    PubMed

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Vascular affection in relation to oxidative DNA damage in metabolic syndrome.

    PubMed

    Abd El Aziz, Rokayaa; Fawzy, Mary Wadie; Khalil, Noha; Abdel Atty, Sahar; Sabra, Zainab

    2018-02-01

    Obesity has become an important issue affecting both males and females. Obesity is now regarded as an independent risk factor for atherosclerosis-related diseases. Metabolic syndrome is associated with increased risk for development of cardiovascular disease. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine concentration has been used to express oxidation status. Twenty-seven obese patients with metabolic syndrome, 25 obese patients without metabolic syndrome and 31 healthy subjects were included in our study. They were subjected to full history and clinical examination; fasting blood sugar (FBS), 2 hour post prandial blood sugar (2HPP), lipid profile, urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and carotid duplex, A/B index and tibial diameters were all assessed. There was a statistically significant difference ( p = 0.027) in diameter of the right anterior tibial artery among the studied groups, with decreased diameter of the right anterior tibial artery in obese patients with metabolic syndrome compared to those without metabolic syndrome; the ankle brachial index revealed a lower index in obese patients with metabolic syndrome compared to those without metabolic syndrome. There was a statistically insignificant difference ( p = 0.668) in the 8-oxodG in the studied groups. In obese patients with metabolic syndrome there was a positive correlation between 8-oxodG and total cholesterol and LDL. Urinary 8-oxodG is correlated to total cholesterol and LDL in obese patients with metabolic syndrome; signifying its role in the mechanism of dyslipidemia in those patients. Our study highlights the importance of anterior tibial artery diameter measurement and ankle brachial index as an early marker of atherosclerosis, and how it may be an earlier marker than carotid intima-media thickness.

  20. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    PubMed

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Assessment of Chitosan-Affected Metabolic Response by Peroxisome Proliferator-Activated Receptor Bioluminescent Imaging-Guided Transcriptomic Analysis

    PubMed Central

    Kao, Chia-Hung; Hsiang, Chien-Yun; Ho, Tin-Yun

    2012-01-01

    Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR), a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB) and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo. PMID:22496881

  2. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  3. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE PAGES

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridiamore » demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  4. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  5. Perceptual processing affects conceptual processing.

    PubMed

    Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2008-04-05

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.

  6. MOLECULAR PROCESSES IN CELLULAR ARSENIC METABOLISM

    EPA Science Inventory

    Elucidating molecular processes that underlie accumulation, metabolism, and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptu...

  7. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  8. Factors affecting human heterocyclic amine intake and the metabolism of PhIP.

    PubMed

    Knize, Mark G; Kulp, Kristen S; Salmon, Cynthia P; Keating, Garrett A; Felton, James S

    2002-09-30

    We are working to understand possible human health effects from exposure to heterocyclic amines that are formed in meat during cooking. Laboratory-cooked beef, pork, and chicken are capable of producing tens of nanograms of MeIQx, IFP, and PhIP per gram of meat and smaller amounts of other heteroyclic amines. Well-done restaurant-cooked beef, pork, and chicken may contain PhIP and IFP at concentrations as high as tens of nanograms per gram and MeIQx at levels up to 3 ng/g. Although well-done chicken breast prepared in the laboratory may contain large amounts of PhIP, a survey of flame-grilled meat samples cooked in private homes showed PhIP levels in beef steak and chicken breast are not significantly different (P=0.36). The extremely high PhIP levels reported in some studies of grilled chicken are not seen in home-cooked samples.Many studies suggest individuals may have varying susceptibility to carcinogens and that diet may influence metabolism, thus affecting cancer susceptibility. To understand the human metabolism of PhIP, we examined urinary metabolites of PhIP in volunteers following a single well-done meat exposure. Using solid-phase extraction and LC/MS/MS, we quantified four major PhIP metabolites in human urine. In addition to investigating individual variation, we examined the interaction of PhIP with a potentially chemopreventive food. In a preliminary study of the effect of broccoli on PhIP metabolism, we fed chicken to six volunteers before and after eating steamed broccoli daily for 3 days. Preliminary results suggest that broccoli, which contains isothiocyanates shown to induce Phases I and II metabolism in vitro, may affect both the rate of metabolite excretion and the metabolic products of a dietary carcinogen. This newly developed methodology will allow us to assess prevention strategies that reduce the possible risks associated with PhIP exposure.

  9. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis[OPEN

    PubMed Central

    Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha

    2016-01-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  10. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  11. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  12. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  13. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  14. [Influence of conjugated linoleic acids on metabolic processes in cells and tissues].

    PubMed

    Siwiec, Ewa; Stachowska, Ewa

    2017-01-01

    Conjugated linoleic acids (CLA) are constitutional and geometric isomers of this acid. The most commonly consumed geometric isomers are cis-9,trans-11 (c9, t11) CLA and trans-10, cis-12 (t10,c12) CLA. These isomers together with trans-9,trans-11 CLA and trans-10,trans-12 CLA constitute about 90% of all CLA in natural products. Different structure of the isomers affects their functions in the body. Differences in the effects on organs and tissues are sometimes small and sometimes opposed, sometimes the isomers work synergistically. Diverse influence has been shown mainly in neoplastic processes and lipid metabolism. For example, differences in inhibition of proliferation of prostate cancer cells are explained by different pathways: t10,c12 CLA acts on apoptosis and cell cycle control genes, while c9,t11 CLA regulates genes involved in metabolism of arachidonic acid with subsequent impairment of eicosanoids synthesis. Other studies have shown that t10,c12 CLA, but not c9,t11 CLA, can induce fat reduction in adipose tissue and apoptosis of adipocytes in mice.

  15. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  16. Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development In Vivo.

    PubMed

    Mycielska, Maria E; Dettmer, Katja; Rümmele, Petra; Schmidt, Katharina; Prehn, Cornelia; Milenkovic, Vladimir M; Jagla, Wolfgang; Madej, Gregor M; Lantow, Margareta; Schladt, Moritz; Cecil, Alexander; Koehl, Gudrun E; Eggenhofer, Elke; Wachsmuth, Christian J; Ganapathy, Vadivel; Schlitt, Hans J; Kunzelmann, Karl; Ziegler, Christine; Wetzel, Christian H; Gaumann, Andreas; Lang, Sven A; Adamski, Jerzy; Oefner, Peter J; Geissler, Edward K

    2018-05-15

    Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy. Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits

    PubMed Central

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals. PMID:25072162

  18. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers.

    PubMed

    Pierozan, Paula; Jernerén, Fredrik; Ransome, Yusuf; Karlsson, Oskar

    2017-08-01

    The impact of euthanasia methods on endocrine and metabolic parameters in rodent tissues and biological fluids is highly relevant for the accuracy and reliability of the data collected. However, few studies concerning this issue are found in the literature. We compared the effects of three euthanasia methods currently used in animal experimentation (i.e. decapitation, CO 2 inhalation and pentobarbital injection) on the serum levels of corticosterone, insulin, glucose, triglycerides, cholesterol and a range of free fatty acids in rats. The corticosterone and insulin levels were not significantly affected by the euthanasia protocol used. However, euthanasia by an overdose of pentobarbital (120 mg/kg intraperitoneal injection) increased the serum levels of glucose, and decreased cholesterol, stearic and arachidonic acids levels compared with euthanasia by CO 2 inhalation and decapitation. CO 2 inhalation appears to increase the serum levels of triglycerides, while euthanasia by decapitation induced no individual discrepant biomarker level. We conclude that choice of the euthanasia methods is critical for the reliability of serum biomarkers and indicate the importance of selecting adequate euthanasia methods for metabolic analysis in rodents. Decapitation without anaesthesia may be the most adequate method of euthanasia when taking both animal welfare and data quality in consideration. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers

    PubMed Central

    Pierozan, Paula; Jernerén, Fredrik; Ransome, Yusuf; Karlsson, Oskar

    2018-01-01

    The impact of euthanasia methods on endocrine and metabolic parameters in rodent tissues and biological fluids is highly relevant for the accuracy and reliability of the data collected. However, few studies concerning this issue are found in the literature. We compared the effects of three euthanasia methods currently used in animal experimentation (i.e. decapitation, CO2 inhalation and pentobarbital injection) on the serum levels of corticosterone, insulin, glucose, triglycerides, cholesterol and a range of free fatty acids in rats. The corticosterone and insulin levels were not significantly affected by the euthanasia protocol used. However, euthanasia by an overdose of pentobarbital (120 mg/kg intraperitoneal injection) increased the serum levels of glucose, and decreased cholesterol, stearic and arachidonic acids levels compared with euthanasia by CO2 inhalation and decapitation. CO2 inhalation appears to increase the serum levels of triglycerides, while euthanasia by decapitation induced no individual discrepant biomarker level. We conclude that choice of the euthanasia methods is critical for the reliability of serum biomarkers and indicate the importance of selecting adequate euthanasia methods for metabolic analysis in rodents. Decapitation without anaesthesia may be the most adequate method of euthanasia when taking both animal welfare and data quality in consideration. PMID:28244216

  1. [Effect of vinegar-processed Curcumae Rhizoma on bile metabolism in rats].

    PubMed

    Gu, Wei; Lu, Tu-Lin; Li, Jin-Ci; Wang, Qiao-Han; Pan, Zi-Hao; Ji, De; Li, Lin; Zhang, Ji; Mao, Chun-Qin

    2016-04-01

    To explore the effect of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile by investigating the endogenous metabolites difference in bile before and after Curcumae Rhizoma was processed with vinegar. Alcohol extracts of crude and vinegar-processed Curcumae Rhizoma, as well as normal saline were prepared respectively, which were then given to the rats by intragastric administration for 0.5 h. Then common bile duct intubation drainage was conducted to collect 12 h bile of the rats. UPLC-TOF-MS analysis of bile samples was applied after 1∶3 acetonitrile protein precipitation; unidimensional statistics were combined with multivariate statistics and PeakView software was compared with network database to identify the potential biomarkers. Vinegar-processed Curcumae Rhizoma extracts had significant effects on metabolites spectrum in bile of the rats. With the boundaries of P<0.05, 13 metabolites with significant differences were found in bile of crude and vinegar-processed Curcumae Rhizoma groups, and 8 of them were identified when considering the network database. T-test unidimensional statistical analysis was applied between administration groups and blank group to obtain 7 metabolites with significant differences and identify them as potential biomarkers. 6 of the potential biomarkers were up-regulated in vinegar-processed group, which were related to the metabolism regulation of phospholipid metabolism, fat metabolism, bile acid metabolism, and N-acylethanolamine hydrolysis reaction balance, indicating the mechanism of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile of the rats. Copyright© by the Chinese Pharmaceutical Association.

  2. Age and the metabolic syndrome affect salivary cortisol rhythm: data from a community sample.

    PubMed

    Ceccato, Filippo; Barbot, Mattia; Zilio, Marialuisa; Ferasin, Sergio; De Lazzari, Paola; Lizzul, Laura; Boscaro, Marco; Scaroni, Carla

    2015-01-01

    Measurement of cortisol levels in saliva is a marker of free hormone. How salivary cortisol rhythm is affected by age, gender, the metabolic syndrome and estrogen-progestin therapy was evaluated in a community sample of adults. One hundred twenty volunteers recruited from the Hospital staff and family members of the Endocrinology Unit were instructed to collect 7 salivary samples: the first on awakening (F(0)) and 6 more (F(1.5), F(5), F(6), F(10), F(11.5) and F(14)) over the next 14 hours. Each volunteer also underwent a complete physical evaluation and a comprehensive medical history was taken. Salivary cortisol was measured using a radioimmunometric assay. Daily cortisol secretion was evaluated computing the Area Under the Curve (AUC(F0)(→)(F14)); the F(14)/F(0) ratio was calculated as a marker of cortisol rhythm. Median F(14) levels were higher in the subjects in the third tertile of age than in those falling in the second or in the first age tertile (respectively, 2.09 vs 1.33 vs 1.25 ng/mL, p=0.023 and p=0.006), in the hypertensive volunteers (2.44 vs 1.44 ng/mL, p=0.030) and in those with the metabolic syndrome (2.95 vs 1.4 ng/mL, p=0.002), with an elevated median F(14)/F(0) ratio (0.48 vs 0.19, p=0.006). According to the Kruskal-Wallis analysis of variance, the most important factor affecting F(14) value was age (p=0.001). AUC(F0)(→)(F14) was not influenced by gender, age, metabolic syndrome or estrogen-progestin therapy. While it did not affect the daily cortisol rate, late-night salivary cortisol levels were found to be increased in the subjects in the higher age tertile and in those with the metabolic syndrome.

  3. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters.

    PubMed

    Martínez, Inés; Perdicaro, Diahann J; Brown, Andrew W; Hammons, Susan; Carden, Trevor J; Carr, Timothy P; Eskridge, Kent M; Walter, Jens

    2013-01-01

    The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota.

  4. Affective processing in bilingual speakers: disembodied cognition?

    PubMed

    Pavlenko, Aneta

    2012-01-01

    A recent study by Keysar, Hayakawa, and An (2012) suggests that "thinking in a foreign language" may reduce decision biases because a foreign language provides a greater emotional distance than a native tongue. The possibility of such "disembodied" cognition is of great interest for theories of affect and cognition and for many other areas of psychological theory and practice, from clinical and forensic psychology to marketing, but first this claim needs to be properly evaluated. The purpose of this review is to examine the findings of clinical, introspective, cognitive, psychophysiological, and neuroimaging studies of affective processing in bilingual speakers in order to identify converging patterns of results, to evaluate the claim about "disembodied cognition," and to outline directions for future inquiry. The findings to date reveal two interrelated processing effects. First-language (L1) advantage refers to increased automaticity of affective processing in the L1 and heightened electrodermal reactivity to L1 emotion-laden words. Second-language (L2) advantage refers to decreased automaticity of affective processing in the L2, which reduces interference effects and lowers electrodermal reactivity to negative emotional stimuli. The differences in L1 and L2 affective processing suggest that in some bilingual speakers, in particular late bilinguals and foreign language users, respective languages may be differentially embodied, with the later learned language processed semantically but not affectively. This difference accounts for the reduction of framing biases in L2 processing in the study by Keysar et al. (2012). The follow-up discussion identifies the limits of the findings to date in terms of participant populations, levels of processing, and types of stimuli, puts forth alternative explanations of the documented effects, and articulates predictions to be tested in future research.

  5. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE−/− mice

    PubMed Central

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-01-01

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440

  6. NOVEL POLYPHENOLS THAT INHIBIT COLON CANCER CELL GROWTH AFFECTING CANCER CELL METABOLISM.

    PubMed

    Gomez de Cedron, Marta; Vargas, Teodoro; Madrona, Andres; Jimenez, Aranza; Perez Perez, Maria Jesus; Quintela, Jose Carlos; Reglero, Guillermo; San-Felix, Ana Rosa; Ramirez de Molina, Ana

    2018-06-05

    New series of polyphenols with a hydrophilic galloyl based "head" and a hydrophobic N-acyl "tail", linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anti-cancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that activates AMPK and induces apoptotic cell death. Based on these results we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these anti-proliferative and pro-apoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism. The American Society for Pharmacology and Experimental Therapeutics.

  7. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    PubMed Central

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  8. β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells.

    PubMed

    Vergara, Daniele; Stanca, Eleonora; Guerra, Flora; Priore, Paola; Gaballo, Antonio; Franck, Julien; Simeone, Pasquale; Trerotola, Marco; De Domenico, Stefania; Fournier, Isabelle; Bucci, Cecilia; Salzet, Michel; Giudetti, Anna M; Maffia, Michele

    2017-01-01

    β-catenin plays an important role as regulatory hub in several cellular processes including cell adhesion, metabolism, and epithelial mesenchymal transition. This is mainly achieved by its dual role as structural component of cadherin-based adherens junctions, and as a key nuclear effector of the Wnt pathway. For this dual role, different classes of proteins are differentially regulated via β-catenin dependent mechanisms. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to identify proteins modulated after β-catenin knockdown in the breast cancer cell line MCF-7. We used a label free analysis to compare trypsin-digested proteins from CTR (shCTR) and β-catenin knockout cells (shβcat). This led to the identification of 98 differentially expressed proteins, 53 of them were up-regulated and 45 down-regulated. Loss of β-catenin induced morphological changes and a significant modulation of the expression levels of proteins associated with primary metabolic processes. In detail, proteins involved in carbohydrate metabolism and tricarboxylic acid cycle were found to be down-regulated, whereas proteins associated to lipid metabolism were found up-regulated in shβcat compared to shCTR. A loss of mitochondrial mass and membrane potential was also assessed by fluorescent probes in shβcat cells with respect to the controls. These data are consistent with the reduced expression of transcriptional factors regulating mitochondrial biogenesis detected in shβcat cells. β-catenin driven metabolic reprogramming resulted also in a significant modulation of lipogenic enzyme expression and activity. Compared to controls, β-catenin knockout cells showed increased incorporation of [1- 14 C]acetate and decreased utilization of [U- 14 C]glucose for fatty acid synthesis. Our data highlight a role of β-catenin in the regulation of metabolism and energy homeostasis in breast cancer cells.

  9. [Effect of the nonspecific biogenic stimulators pentoxyl and mumie on metabolic processes].

    PubMed

    Shvetskiĭ, A G; Vorob'eva, L M

    1978-01-01

    Unspecific biogenic stimulants (pentoxyl and mummie) accelerated metabolism of nucleic acids and protein in rat liver tissue. After the treatment with the stimulants the rate of lipolysis exceeded that of lipogenesis. Increase in content of lactate was similar if glycogen and glucose-6-phosphate were used as substrates of glycolysis, but it was stimulated 2-3-fold, when glucose was used; the phenomenon appears to be due to activation of hexokinase. As shown by polarographic measurements mitochondrial respiration was increased in all the metabolic states, but increased doses caused an inhibition of phosphorylation apparently due to functional overstrain of mitochondria. Increased doses of the stimulants accelerated also some other metabolic processes studied, but the effects were not dose-dependent. Pentoxyl and mummie apparently increased processes of protein and nuclei acid metabolism and stimulated the energy-providing reactions.

  10. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  11. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    PubMed

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  12. Affect intensity and processing fluency of deterrents.

    PubMed

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  13. How coffee affects metabolic syndrome and its components.

    PubMed

    Baspinar, B; Eskici, G; Ozcelik, A O

    2017-06-21

    Metabolic syndrome, with its increasing prevalence, is becoming a major public health problem throughout the world. Many risk factors including nutrition play a role in the emergence of metabolic syndrome. Of the most-consumed beverages in the world, coffee contains more than 1000 components such as caffeine, chlorogenic acid, diterpenes and trigonelline. It has been proven in many studies that coffee consumption has a positive effect on chronic diseases. In this review, starting from the beneficial effects of coffee on health, the relationship between coffee consumption and metabolic syndrome and its components has been investigated. There are few studies investigating the relationship between coffee and metabolic syndrome, and the existing ones put forward different findings. The factors leading to the differences are thought to stem from coffee variety, the physiological effects of coffee elements, and the nutritional ingredients (such as milk and sugar) added to coffee. It is reported that consumption of coffee in adults up to three cups a day reduces the risk of Type-2 diabetes and metabolic syndrome.

  14. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  15. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    PubMed

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  16. Positive affect improves working memory: implications for controlled cognitive processing.

    PubMed

    Yang, Hwajin; Yang, Sujin; Isen, Alice M

    2013-01-01

    This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.

  17. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection.

    PubMed

    Marden, James H

    2013-12-01

    Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. © 2013 John Wiley & Sons Ltd.

  18. Genetic alterations affecting cholesterol metabolism and human fertility.

    PubMed

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  19. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  20. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men.

    PubMed

    Bisschop, P H; De Sain-Van Der Velden, M G M; Stellaard, F; Kuipers, F; Meijer, A J; Sauerwein, H P; Romijn, J A

    2003-08-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets with identical protein content and low-carbohydrate/high-fat (2% and 83% of total energy, respectively), intermediate-carbohydrate/intermediate-fat (44% and 41% of total energy, respectively), and high-carbohydrate/low-fat (85% and 0% of total energy, respectively) content in six healthy men. Whole body protein metabolism was assessed by 24-h urinary nitrogen excretion, postabsorptive leucine kinetics, and fibrinogen and albumin synthesis by infusion of [1-(13)C]leucine and [1-(13)C]valine. The low-carbohydrate/high-fat diet resulted in lower absorptive and postabsorptive plasma insulin concentrations, and higher rates of nitrogen excretion compared with the other two diets: 15.3 +/- 0.9 vs. 12.1 +/- 1.1 (P = 0.03) and 10.8 +/- 0.5 g/24 h (P = 0.005), respectively. Postabsorptive rates of appearance of leucine and of leucine oxidation were not different among the three diets. In addition, dietary carbohydrate content did not affect the synthesis rates of fibrinogen and albumin. In conclusion, eucaloric carbohydrate deprivation increases 24-h nitrogen loss but does not affect postabsorptive protein metabolism at the hepatic and whole body level. By deduction, dietary carbohydrate is required for an optimal regulation of absorptive, rather than postabsorptive, protein metabolism.

  1. Metabolic control of redox and redox control of metabolism in plants.

    PubMed

    Geigenberger, Peter; Fernie, Alisdair R

    2014-09-20

    Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable

  2. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    PubMed Central

    Dufault, Renee; Schnoll, Roseanne; Lukiw, Walter J; LeBlanc, Blaise; Cornett, Charles; Patrick, Lyn; Wallinga, David; Gilbert, Steven G; Crider, Raquel

    2009-01-01

    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. PMID:19860886

  3. High infestation levels of Schizotetranychus oryzae severely affects rice metabolism.

    PubMed

    Blasi, Édina A R; Buffon, Giseli; Rativa, Angie G S; Lopes, Mara C B; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R; Schwambach, Joséli; Beys-da-Silva, Walter O; Sperotto, Raul A

    2017-12-01

    High levels of Schizotetranychus oryzae phytophagous mite infestation on rice leaves can severely affect productivity. Physiological characterization showed that S. oryzae promotes a decrease in chlorophyll concentration and the establishment of a senescence process in rice leaves. Late-infested leaves also present high levels of superoxide radical and hydrogen peroxide accumulation, along with high levels of membrane integrity loss, which is indicative of cell death. To better understand the rice molecular responses to high levels of mite infestation, we employed the Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We identified 83 and 88 proteins uniquely present in control and late-infested leaves, respectively, along with 11 and one proteins more abundant in control and late-infested leaves, respectively. S. oryzae infestation induces a decreased abundance of proteins related to translation, protease inhibition, and photosynthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation. Our results also suggest that S. oryzae infestation interferes with intracellular transport, DNA structure maintenance, and amino acid and lipid metabolism in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of late-infested rice leaves and suggest several targets which could be tested in future biotechnological approaches aiming to avoid the population increase of phytophagous mite in rice plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine.

    PubMed

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew

    2005-08-01

    A number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function. These have also proven useful in expanding our understanding of neurodegeneration processes. For example, the metabolic compromise induced by inhibitors such as 3-nitropropionic acid (3-NPA), rotenone, and 1-methyl-4-phenylpyridinium (MPP+) can cause neurodegeneration in animal models and these models are thought to simulate the processes that may lead to diseases such as Huntington's and Parkinson's diseases. These inhibitors of metabolism are thought to selectively kill neurons by inhibiting various mitochondrial enzymes. However, the eventual cell death is attributed to oxidative stress damage of selectively vulnerable cells, especially highly differentiated neurons. Various studies indicate that the neurotoxicity resulting from these types of metabolic compromise is related to mitochondrial dysfunction and may be ameliorated by metabolic modifiers such as L-carnitine (L-C), creatine, and coenzyme Q10, as well as by antioxidants such as lipoic acid, vitamin E, and resveratrol. Mitochondrial function and cellular metabolism are also affected by the dietary intake of essential polyunsaturated fatty acids (PUFAs), which may regulate membrane composition and influence cellular processes, especially the inflammatory pathways. Cellular metabolic function may also be ameliorated by caloric restriction diets. L-C is a naturally occurring quaternary ammonium compound that is a vital cofactor for the mitochondrial entry and oxidation of fatty acids. Any factors affecting L-C levels may also affect ATP levels. This endogenous compound

  5. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  6. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    USDA-ARS?s Scientific Manuscript database

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  7. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    PubMed Central

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  8. The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects.

    PubMed

    Wolever, T M S; Jenkins, A L; Vuksan, V; Campbell, J

    2009-09-01

    Glycaemic responses are influenced by carbohydrate absorption rate, type of monosaccharide absorbed and the presence of fat; the effect of some of these factors may be modulated by metabolic differences between subjects. We hypothesized that glycaemic index (GI) values are affected by the metabolic differences between subjects for foods containing fructose or fat, but not for starchy foods. The GI values of white bread (WB), fruit leather (FL) and chocolate-chip cookies (CCC) (representing starch, fructose and fat, respectively) were determined in subjects (n=77) recruited to represent all 16 possible combinations of age (< or =40, >40 years), sex (male, female), ethnicity (Caucasian, non-Caucasian) and body mass index (BMI) (< or =25, >25 kg/m2) using glucose as the reference. At screening, fasting insulin, lipids, c-reactive protein (CRP), aspartate transaminase (AST) and waist circumference (WC) were measured. There were no significant main effects of age, sex, BMI or ethnicity on GI, but there were several food x subject-factor interactions. Different factors affected each food's area under the curve (AUC) and GI. The AUC after oral glucose was related to ethnicity, age and triglycerides (r 2=0.27); after WB to ethnicity, age, triglycerides, sex and CRP (r 2=0.43); after CCC to age and weight (r 2=0.18); and after FL to age and CRP (r 2=0.12). GI of WB was related to ethnicity (r 2=0.12) and of FL to AST, insulin and WC (r 2=0.23); but there were no significant correlations for CCC. The GI values of foods containing fructose might be influenced by metabolic differences between -subjects, whereas the GI of starchy foods might be affected by ethnicity. However, the proportion of variation explained by subject factors is small.

  9. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    PubMed

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ibogaine affects brain energy metabolism.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Zivin, Marko; Raspor, Peter; Strukelj, Borut

    2006-12-15

    Ibogaine is an indole alkaloid present in the root of the plant Tabernanthe iboga. It is known to attenuate abstinence syndrome in animal models of drug addiction. Since the anti-addiction effect lasts longer than the presence of ibogaine in the body, some profound metabolic changes are expected. The aim of this study was to investigate the effect of ibogaine on protein expression in rat brains. Rats were treated with ibogaine at 20 mg/kg body weight i.p. and subsequently examined at 24 and 72 h. Proteins were extracted from whole brain and separated by two-dimensional (2-D) electrophoresis. Individual proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Enzymes of glycolysis and tricarboxylic acid (TCA) cycle namely glyceraldehyde-3-phosphate dehydrogenase, aldolase A, pyruvate kinase and malate dehydrogenase were induced. The results suggest that the remedial effect of ibogaine could be mediated by the change in energy availability. Since energy dissipating detoxification and reversion of tolerance to different drugs of abuse requires underlying functional and structural changes in the cell, higher metabolic turnover would be favourable. Understanding the pharmacodynamics of anti-addiction drugs highlights the subcellular aspects of addiction diseases, in addition to neurological and psychological perspectives.

  11. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    NASA Astrophysics Data System (ADS)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L-1, reaching 80% and 100% inhibition at 10 mg L-1 and 50 mg L-1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  12. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    PubMed Central

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L−1, reaching 80% and 100% inhibition at 10 mg L−1 and 50 mg L−1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  13. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  14. Early nutritional programming affects liver transcriptome in diploid and triploid Atlantic salmon, Salmo salar.

    PubMed

    Vera, L M; Metochis, C; Taylor, J F; Clarkson, M; Skjærven, K H; Migaud, H; Tocher, D R

    2017-11-17

    To ensure sustainability of aquaculture, plant-based ingredients are being used in feeds to replace marine-derived products. However, plants contain secondary metabolites which can affect food intake and nutrient utilisation of fish. The application of nutritional stimuli during early development can induce long-term changes in animal physiology. Recently, we successfully used this approach to improve the utilisation of plant-based diets in diploid and triploid Atlantic salmon. In the present study we explored the molecular mechanisms occurring in the liver of salmon when challenged with a plant-based diet in order to determine the metabolic processes affected, and the effect of ploidy. Microarray analysis revealed that nutritional history had a major impact on the expression of genes. Key pathways of intermediary metabolism were up-regulated, including oxidative phosphorylation, pyruvate metabolism, TCA cycle, glycolysis and fatty acid metabolism. Other differentially expressed pathways affected by diet included protein processing in endoplasmic reticulum, RNA transport, endocytosis and purine metabolism. The interaction between diet and ploidy also had an effect on the hepatic transcriptome of salmon. The biological pathways with the highest number of genes affected by this interaction were related to gene transcription and translation, and cell processes such as proliferation, differentiation, communication and membrane trafficking. The present study revealed that nutritional programming induced changes in a large number of metabolic processes in Atlantic salmon, which may be associated with the improved fish performance and nutrient utilisation demonstrated previously. In addition, differences between diploid and triploid salmon were found, supporting recent data that indicate nutritional requirements of triploid salmon may differ from those of their diploid counterparts.

  15. Road transport and diet affect metabolic response to exercise in horses.

    PubMed

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  16. Monkeys preferentially process body information while viewing affective displays.

    PubMed

    Bliss-Moreau, Eliza; Moadab, Gilda; Machado, Christopher J

    2017-08-01

    Despite evolutionary claims about the function of facial behaviors across phylogeny, rarely are those hypotheses tested in a comparative context-that is, by evaluating how nonhuman animals process such behaviors. Further, while increasing evidence indicates that humans make meaning of faces by integrating contextual information, including that from the body, the extent to which nonhuman animals process contextual information during affective displays is unknown. In the present study, we evaluated the extent to which rhesus macaques (Macaca mulatta) process dynamic affective displays of conspecifics that included both facial and body behaviors. Contrary to hypotheses that they would preferentially attend to faces during affective displays, monkeys looked for longest, most frequently, and first at conspecifics' bodies rather than their heads. These findings indicate that macaques, like humans, attend to available contextual information during the processing of affective displays, and that the body may also be providing unique information about affective states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. 4 Things That Affect Your Metabolism

    Cancer.gov

    Metabolism is how your body uses food as energy and then burns that energy to keep your body going. Even if you did nothing all day, your body would still need to use energy just to stay alive—for things like breathing and keeping your heart beating.

  18. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    PubMed Central

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  19. A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism

    DOE PAGES

    Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea; ...

    2017-05-03

    In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less

  20. A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea

    In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less

  1. A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism

    PubMed Central

    Xiong, Yi; Qin, Lina; Kennedy, Megan; Bauer, Diane; Barry, Kerrie; Northen, Trent R.; Grigoriev, Igor V.

    2017-01-01

    In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26 mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution. PMID:28467421

  2. Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1

    PubMed Central

    DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-01-01

    ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065

  3. Metabolic pathways in T cell activation and lineage differentiation.

    PubMed

    Almeida, Luís; Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2016-10-01

    Recent advances in the field of immunometabolism support the concept that fundamental processes in T cell biology, such as TCR-mediated activation and T helper lineage differentiation, are closely linked to changes in the cellular metabolic programs. Although the major task of the intermediate metabolism is to provide the cell with a constant supply of energy and molecular precursors for the production of biomolecules, the dynamic regulation of metabolic pathways also plays an active role in shaping T cell responses. Key metabolic processes such as glycolysis, fatty acid and mitochondrial metabolism are now recognized as crucial players in T cell activation and differentiation, and their modulation can differentially affect the development of T helper cell lineages. In this review, we describe the diverse metabolic processes that T cells engage during their life cycle from naïve towards effector and memory T cells. We consider in particular how the cellular metabolism may actively support the function of T cells in their different states. Moreover, we discuss how molecular regulators such as mTOR or AMPK link environmental changes to adaptations in the cellular metabolism and elucidate the consequences on T cell differentiation and function. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  5. Comprehensive assessment of variables affecting metabolic control in patients with type 2 diabetes mellitus in Jordan.

    PubMed

    Qteishat, Rola Reyad; Ghananim, Abdel Rahman Al

    2016-01-01

    The aim of the study was to identify variables affecting metabolic control among diabetic patients treated at diabetes and endocrine clinic in Jordan. A total of 200 patients were studied by using a cross sectional study design. Data were collected from patients' medical records, glycemic control tests and prestructured questionnaires about variables that were potentially important based on previous researches and clinical judgment: Adherence evaluation, Patients' knowledge about drug therapy and non-pharmacological therapy, Anxiety and depression, Beliefs about diabetes treatment (benefits and barriers of treatment), Knowledge about treatment goals, Knowledge about diabetes, Self efficacy, and Social support. The mean (±SD) age was 53.5 (±10.38) years and mean HbA1c was 8.4 (±1.95). In the multivariate analysis, education level, and self efficacy found to have significantly independent association with metabolic control (P<0.03). Adequate knowledge and high self efficacy was significant in patients with good metabolic control. Emphasizing the importance of continuous educational programs and improving the self efficacy as well, could warrant achieving good metabolic control. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  6. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry ( P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for

  7. Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius).

    PubMed

    Magnoni, Leonardo J; Salas-Leiton, Emilio; Peixoto, Maria-João; Pereira, Luis; Silva-Brito, Francisca; Fontinha, Filipa; Gonçalves, José F M; Wilson, Jonathan M; Schrama, Johan W; Ozório, Rodrigo O A

    2017-09-01

    Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na 2 CO 3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na + and K + concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    PubMed

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  9. Modeling Central Carbon Metabolic Processes in Soil Microbial Communities: Comparing Measured With Modeled

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.

    2013-12-01

    Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.

  10. Hyperthyroidism affects lipid metabolism in lactating and suckling rats.

    PubMed

    Varas, S M; Jahn, G A; Giménez, M S

    2001-08-01

    Two per thousand pregnant women have hyperthyroidism (HT), and although the symptoms are attenuated during pregnancy, they rebound after delivery, affecting infant development. To examine the effects of hyperthyroidism on lactation, we studied lipid metabolism in maternal mammary glands and livers of hyperthyroid rats and their pups. Thyroxine (10 microg/100 g body weight/d) or vehicle-treated rats were made pregnant 2 wk after commencement of treatment and sacrificed on days 7, 14, and 21 of lactation with the litters. Circulating triiodothyronine and tetraiodothyronine concentrations in the HT mothers were increased on all days. Hepatic esterified cholesterol (EC) and free cholesterol (FC) and triglyceride (TG) concentrations were diminished on days 14 and 21. Lipid synthesis, measured by incorporation of [3H]H2O into EC, FC, and TG, fatty acid synthase, and acetyl CoA carboxylase activities increased at day 14, while incorporation into FC and EC decreased at days 7 and 21, respectively. Mammary FC and TG concentrations were diminished at day 14; incorporation of [3H]H2O into TG decreased at days 7 and 21, and incorporation of [3H]H2O into FC increased at day 14. In the HT pups, growth rate was diminished, tetraiodothyronine concentration rose at days 7 and 14 of lactation, and triiodothyronine increased only at day 14. Liver TG concentrations increased at day 7 and fell at day 14, while FC increased at day 14 and only acetyl CoA carboxylase activity fell at day 14. Thus, hyperthyroidism changed maternal liver and mammary lipid metabolism, with decreased lipid concentration in spite of increased liver rate of synthesis and decreases in mammary synthesis. These changes, along with the mild hyperthyroidism of the litters, may have contributed to their reduced growth rate.

  11. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  12. Emotional language processing: how mood affects integration processes during discourse comprehension.

    PubMed

    Egidi, Giovanna; Nusbaum, Howard C

    2012-09-01

    This research tests whether mood affects semantic processing during discourse comprehension by facilitating integration of information congruent with moods' valence. Participants in happy, sad, or neutral moods listened to stories with positive or negative endings during EEG recording. N400 peak amplitudes showed mood congruence for happy and sad participants: endings incongruent with participants' moods demonstrated larger peaks. Happy and neutral moods exhibited larger peaks for negative endings, thus showing a similarity between negativity bias (neutral mood) and mood congruence (happy mood). Mood congruence resulted in differential processing of negative information: happy mood showed larger amplitudes for negative endings than neutral mood, and sad mood showed smaller amplitudes. N400 peaks were also sensitive to whether ending valence was communicated directly or as a result of inference. This effect was moderately modulated by mood. In conclusion, the notion of context for discourse processing should include comprehenders' affective states preceding language processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Metabolomics and proteomics technologies to explore the herbal preparation affecting metabolic disorders using high resolution mass spectrometry.

    PubMed

    Zhang, Aihua; Zhou, Xiaohang; Zhao, Hongwei; Zou, Shiyu; Ma, Chung Wah; Liu, Qi; Sun, Hui; Liu, Liang; Wang, Xijun

    2017-01-31

    An integrative metabolomics and proteomics approach can provide novel insights in the understanding of biological systems. We have integrated proteome and metabolome data sets for a holistic view of the molecular mechanisms in disease. Using quantitative iTRAQ-LC-MS/MS proteomics coupled with UPLC-Q-TOF-HDMS based metabolomics, we determined the protein and metabolite expression changes in the kidney-yang deficiency syndrome (KYDS) rat model and further investigated the intervention effects of the Jinkui Shenqi Pill (JSP). The VIP-plot of the orthogonal PLS-DA (OPLS-DA) was used for discovering the potential biomarkers to clarify the therapeutic mechanisms of JSP in treating KYDS. The results showed that JSP can alleviate the kidney impairment induced by KYDS. Sixty potential biomarkers, including 5-l-glutamyl-taurine, phenylacetaldehyde, 4,6-dihydroxyquinoline, and xanthurenic acid etc., were definitely up- or down-regulated. The regulatory effect of JSP on the disturbed metabolic pathways was proved by the established metabonomic method. Using pathway analyses, we identified the disturbed metabolic pathways such as taurine and hypotaurine metabolism, pyrimidine metabolism, tyrosine metabolism, tryptophan metabolism, histidine metabolism, steroid hormone biosynthesis, etc. Furthermore, using iTRAQ-based quantitative proteomics analysis, seventeen differential proteins were identified and significantly altered by the JSP treatment. These proteins appear to be involved in Wnt, chemokine, PPAR, and MAPK signaling pathways, etc. Functional pathway analysis revealed that most of the proteins were found to play a key role in the regulation of metabolism pathways. Bioinformatics analysis with the IPA software found that these differentially-expressed moleculars had a strong correlation with the α-adrenergic signaling, FGF signaling, etc. Our data indicate that high-throughput metabolomics and proteomics can provide an insight on the herbal preparations affecting the

  14. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN

    PubMed Central

    Khaling, Eliezer; Lassueur, Steve

    2016-01-01

    Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847

  15. Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice.

    PubMed

    Pavlin, T; Nagelhus, E A; Brekken, C; Eyjolfsson, E M; Thoren, A; Haraldseth, O; Sonnewald, U; Ottersen, O P; Håberg, A K

    2017-01-01

    The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1- 13 C]glucose and [1,2- 13 C]acetate injection with ex vivo 13 C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4- 13 C]glutamate and [4- 13 C]glutamine, and percent enrichment in [4- 13 C]glutamate were detected in the α-syn KO mice. [1,2- 13 C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.

  16. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  17. In Ovo Injection of Betaine Affects Hepatic Cholesterol Metabolism through Epigenetic Gene Regulation in Newly Hatched Chicks

    PubMed Central

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. PMID:25860502

  18. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack C; Begoli, Edmon; Jose, Ajith

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Severalmore » useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.« less

  19. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism.

    PubMed

    Tirabassi, G; Chelli, F M; Ciommi, M; Lenzi, A; Balercia, G

    2016-01-01

    Functional hypercortisolism (FH) is generated by clinical states able to chronically activate the hypothalamic-pituitary-adrenal (HPA) axis [e.g. diabetes mellitus (DM)]. No study has evaluated FH influence in worsening the metabolic profile of male patients affected by DM-associated hypogonadism. In this retrospective work, we assess the possible association between HPA axis-dysregulation and cardiovascular risk factors in men simultaneously affected by DM and late-onset hypogonadism (LOH). Fourteen DM and LOH subjects affected by FH (Hypercort-DM-LOH) and fourteen DM and LOH subjects who were not suffering from FH (Normocort-DM-LOH) were retrospectively considered. Clinical, hormonal and metabolic parameters were retrieved. All metabolic parameters, except for systolic blood pressure, were significantly worse in Hypercort-DM-LOH than in Normocort-DM-LOH. After adjustment for body mass index, waist and total testosterone, Hypercort-DM-LOH subjects showed significantly worse metabolic parameters than Normocort-DM-LOH ones. In Normocort-DM-LOH, no significant correlation between general/hormonal parameters and metabolic variables was present. In Hypercort-DM-LOH, positive and significant correlations of cortisol area under the curve (AUC) after corticotropin releasing hormone with glycemia, triglycerides and blood pressure were evident; on the other hand, negative and significant correlation was present between cortisol AUC and high density lipoprotein (HDL) cholesterol. The associations of AUC cortisol with glycemia, HDL cholesterol and diastolic blood pressure (DBP) were further confirmed at quantile regression after adjustment for therapy. FH may determine a worsening of the metabolic profile in DM-associated hypogonadism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  20. Factors affecting medication-order processing time.

    PubMed

    Beaman, M A; Kotzan, J A

    1982-11-01

    The factors affecting medication-order processing time at one hospital were studied. The order processing time was determined by directly observing the time to process randomly selected new drug orders on all three work shifts during two one-week periods. An order could list more than one drug for an individual patient. The observer recorded the nature, location, and cost of the drugs ordered, as well as the time to process the order. The time and type of interruptions also were noted. The time to process a drug order was classified as six dependent variables: (1) total time, (2) work time, (3) check time, (4) waiting time I--time from arrival on the dumbwaiter until work was initiated, (5) waiting time II--time between completion of the work and initiation of checking, and (6) waiting time III--time after the check was completed until the order left on the dumbwaiter. The significant predictors of each of the six dependent variables were determined using stepwise multiple regression. The total time to process a prescription order was 58.33 +/- 48.72 minutes; the urgency status of the order was the only significant determinant of total time. Urgency status also significantly predicted the three waiting-time variables. Interruptions and the number of drugs on the order were significant determinants of work time and check time. Each telephone interruption increased the work time by 1.72 minutes. While the results of this study cannot be generalized to other institutions, pharmacy managers can use the method of determining factors that affect medication-order processing time to identify problem areas in their institutions.

  1. Affective pictures processing, attention, and pain tolerance.

    PubMed

    de Wied, M; Verbaten, M N

    2001-02-01

    Two experiments were conducted to determine whether attention mediates the effects of affective distractors on cold pressor pain, or whether the cognitive processes of priming and appraisal best account for the effects. In Experiment I, 65 male respondents were exposed to either pleasant, neutral or unpleasant pictures selected from the International Affective Pictures System (IAPS). The cold-pressor test was administered simultaneously. Consistent with predictions based on priming and appraisal hypotheses, results revealed a linear trend across conditions, such that pain tolerance scores were higher as a function of picture pleasantness. A second study was conducted to examine the role of pain cues in the effects of negative affect on cold pressor pain. Thirty-nine male respondents were exposed to unpleasant pictures that either did or did not include pain-related material. Respondents who viewed pictures without pain cues tolerated the cold water for a longer period of time than respondents who viewed pictures that contained pain-related information. Priming and appraisal processes that might underlie the observed differences, and the type of affective distractors that could be meaningful for enhancing pain tolerance, are discussed.

  2. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  3. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial.

    PubMed

    Rijpma, Anne; van der Graaf, Marinette; Lansbergen, Marieke M; Meulenbroek, Olga; Cetinyurek-Yavuz, Aysun; Sijben, John W; Heerschap, Arend; Olde Rikkert, Marcel G M

    2017-07-26

    Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer's disease. Thirty-four drug-naive patients with mild Alzheimer's disease (Mini Mental State Examination score ≥20) were enrolled in this exploratory, double-blind, randomized controlled study. Before and after 4-week intervention with Souvenaid or an isocaloric control product, phosphorus and proton magnetic resonance spectroscopy (MRS) was performed to assess surrogate measures of phospholipid synthesis and breakdown (phosphomonoesters [PME] and phosphodiesters [PDEs]), neural integrity (N-acetyl aspartate), gliosis (myo-inositol), and choline metabolism (choline-containing compounds [tCho]). The main outcome parameters were PME and PDE signal intensities and the PME/PDE ratio. MRS data from 33 patients (60-86 years old; 42% males; Souvenaid arm n = 16; control arm n = 17) were analyzed. PME/PDE and tCho were higher after 4 weeks of Souvenaid compared with control (PME/PDE least squares [LS] mean difference [95% CI] 0.18 [0.06-0.30], p = 0.005; tCho LS mean difference [95% CI] 0.01 [0.00-0.02], p = 0.019). No significant differences were observed in the other MRS outcome parameters. MRS reveals that Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease, in line with findings in preclinical studies. Netherlands Trial Register, NTR3346 . Registered on 13 March 2012.

  4. From chemical metabolism to life: the origin of the genetic coding process

    PubMed Central

    2017-01-01

    Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life. PMID:28684991

  5. The Co-Metabolism within the Gut-Brain Metabolic Interaction: Potential Targets for Drug Treatment and Design.

    PubMed

    Obrenovich, Mark; Flückiger, Rudolf; Sykes, Lorraine; Donskey, Curtis

    2016-01-01

    We know that within the complex mammalian gut is any number of metabolic biomes. The gut has been sometimes called the "second brain" within the "gut-brain axis". A more informative term would be the gut-brain metabolic interactome, which is coined here to underscore the relationship between the digestive system and cognitive function or dysfunction as the case may be. Co-metabolism between the host and the intestinal microbiota is essential for life's processes. How diet, lifestyle, antibiotics and other factors shape the gut microbiome constitutes a rapidly growing area of research. Conversely, the gut microbiome also affects mammalian systems. Metabolites of the gut-brain axis are potential targets for treatment and drug design since the interaction or biochemical interplay results in net metabolite production or end-products with either positive or negative effects on human health. This review explores the gut-brain metabolic interactome, with particular emphasis on drug design and treatment strategies and how commensal bacteria or their disruption lead to dysbiosis and the effect this has on neurochemistry. Increasing data indicate that the intestinal microbiome can affect neurobiology, from mental and even behavioral health to memory, depression, mood, anxiety, obesity, cravings and even the creation and maintenance of the blood brain barrier.

  6. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    PubMed

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.

  7. Multiple dietary supplements do not affect metabolic and cardiovascular health

    PubMed Central

    Holloszy, John O.; Fontana, Luigi

    2014-01-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24659610

  8. Parasitoid wasp affects metabolism of cockroach host to favor food preservation for its offspring.

    PubMed

    Haspel, Gal; Gefen, Eran; Ar, Amos; Glusman, J Gustavo; Libersat, Frederic

    2005-06-01

    Unlike predators, which immediately consume their prey, parasitoid wasps incapacitate their prey to provide a food supply for their offspring. We have examined the effects of the venom of the parasitoid wasp Ampulex compressa on the metabolism of its cockroach prey. This wasp stings into the brain of the cockroach causing hypokinesia. We first established that larval development, from egg laying to pupation, lasts about 8 days. During this period, the metabolism of the stung cockroach slows down, as measured by a decrease in oxygen consumption. Similar decreases in oxygen consumption occurred after pharmacologically induced paralysis or after removing descending input from the head ganglia by severing the neck connectives. However, neither of these two groups of cockroaches survived more than six days, while 90% of stung cockroaches survived at least this long. In addition, cockroaches with severed neck connectives lost significantly more body mass, mainly due to dehydration. Hence, the sting of A. compressa not only renders the cockroach prey helplessly submissive, but also changes its metabolism to sustain more nutrients for the developing larva. This metabolic manipulation is subtler than the complete removal of descending input from the head ganglia, since it leaves some physiological processes, such as water retention, intact.

  9. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  10. Resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin.

    PubMed

    Yuan, Hong; Weng, Chunyan; Yang, Youbo; Huang, Lihua; Xing, Xiaowei

    2013-12-01

    The metabolic syndrome (MS) is a cluster of metabolic disorders arising from insulin resistance, characterized by the presence of central obesity, impaired fasting glucose level, dyslipidemia and hypertension. As the first-line medication, metformin is commonly used for MS to reduce insulin resistance. Comparing with rosiglitazone, metformin does not increase cardiovascular mortality risk in patients with MS. However, metformin is not good enough in improving insulin sensitivity. Its molecular mechanism is still not clear. Recent studies have demonstrated that resistin, an adipokine, could induce IR by both AMPK-dependent and AMPK-independent pathways. Though there were conflicting findings of resistin in metabolic syndrome or type 2 diabetes mellitus in different studies, resistin was significant decreased in the rosiglitazone treated patients than in the metformin-treated patients in most of studies. Here, we hypothesized that resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin. This hypothesis could explain why rosiglitazone is superior to metformin in enhancement of insulin sensitivity. Copyright © 2013. Published by Elsevier Ltd.

  11. Affective processes in human-automation interactions.

    PubMed

    Merritt, Stephanie M

    2011-08-01

    This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.

  12. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism.

    PubMed

    Wang, R H; Liang, R R; Lin, H; Zhu, L X; Zhang, Y M; Mao, Y W; Dong, P C; Niu, L B; Zhang, M H; Luo, X

    2017-03-01

    This study investigated the effects of acute heat stress and slaughter processing on poultry meat quality and carbohydrate metabolism. Broilers (200) were randomly divided into 2 groups receiving heat stress (HS; 36°C for one h), compared to a non-stressed control (C). At slaughter, each group was further divided into 2 groups for slaughter processing (L = laboratory; F = commercial factory). L group breasts were removed immediately after bleeding without carcass scalding or defeathering, and stored at 4°C. F group broilers were scalded (60°C, 45 s) after bleeding and defeathering. Then the breasts were removed and cooled in ice water until the core temperature was ≤4°C. Rates of Pectoralis core temperature and pH decline were changed by slaughter processing, but only HS affected ultimate pH in group L. HS muscles had higher L* values (P < 0.05) than controls at 24 h postmortem. Laboratory processing "hot-deboning" increased drip loss, which resulted in a lower cooked loss (P < 0.05). Postmortem glycolysis was affected only by HS. The speed of lactic acid accumulation and glycogen degradation was faster in the HS group than controls at 5 min postmortem. During storage the glycolysis rates were not different (P > 0.05). Sarcoplasmic protein solubility was higher in F processed birds (P < 0.05). HS decreased the solubility of myofibrillar and total protein in the L-slaughtered birds. Thus, HS caused a higher frequency of accelerated muscle glycolysis than controls. Factory processing (chilling) could not completely eliminate the effects of accelerated glycolysis caused by pre-slaughter HS. © 2016 Poultry Science Association Inc.

  13. Attachment affects social information processing: Specific electrophysiological effects of maternal stimuli.

    PubMed

    Wu, Lili; Gu, Ruolei; Zhang, Jianxin

    2016-01-01

    Attachment is critical to each individual. It affects the cognitive-affective processing of social information. The present study examines how attachment affects the processing of social information, specifically maternal information. We assessed the behavioral and electrophysiological responses to maternal information (compared to non-specific others) in a Go/No-go Association Task (GNAT) with 22 participants. The results illustrated that attachment affected maternal information processing during three sequential stages of information processing. First, attachment affected visual perception, reflected by enhanced P100 and N170 elicited by maternal information as compared to others information. Second, compared to others, mother obtained more attentional resources, reflected by faster behavioral response to maternal information and larger P200 and P300. Finally, mother was evaluated positively, reflected by shorter P300 latency in a mother + good condition as compared to a mother + bad condition. These findings indicated that the processing of attachment-relevant information is neurologically differentiated from other types of social information from an early stage of perceptual processing to late high-level processing.

  14. Age, Marital Processes, and Depressed Affect

    ERIC Educational Resources Information Center

    Bookwala, Jamila; Jacobs, Jamie

    2004-01-01

    Purpose: We examined age-cohort differences in the interrelationships among marital processes and depressed affect. Design and Methods: We used data from individuals in first marriages that participated in the National Survey of Families and Households (NSFH). The NSFH interviewed one adult per household of a nationally representative sample.…

  15. Dexmedetomidine metabolic clearance is not affected by fat mass in obese patients.

    PubMed

    Rolle, A; Paredes, S; Cortínez, L I; Anderson, B J; Quezada, N; Solari, S; Allende, F; Torres, J; Cabrera, D; Contreras, V; Carmona, J; Ramírez, C; Oliveros, A M; Ibacache, M

    2018-05-01

    Obesity has been associated with reduced dexmedetomidine clearance, suggesting impaired hepatic function or reduced hepatic blood flow. The aim of this study was to clarify the effect of obesity in dexmedetomidine metabolic clearance. Forty patients, ASA I-III, 18-60 yr old, weighing 47-126 kg, scheduled for abdominal laparoscopic surgery, were enrolled. Anaesthetic agents (propofol, remifentanil, and dexmedetomidine) were dosed based on lean body weight measured by dual X-ray absorptiometry. Serial venous samples were drawn during and after dexmedetomidine infusion. A pharmacokinetic analysis was undertaken using non-linear mixed-effect models. In the modelling approach, the total body weight, lean body weight, and adjusted body weight were first tested as size descriptors for volumes and clearances. Hepatic blood flow, liver histopathology, liver enzymes, and gene expression of metabolic enzymes (UGT2B10 and UGT1A4) were tested as covariates of dexmedetomidine metabolic clearance. A decrease in NONMEM objective function value (ΔOFV) of 3.84 points, for an added parameter, was considered significant at the 0.05 level. A total of 637 dexmedetomidine serum samples were obtained. A two-compartmental model scaled to measured lean weight adequately described the dexmedetomidine pharmacokinetics. Liver blood flow was a covariate for dexmedetomidine clearance (ΔOFV=-5.878). Other factors, including fat mass, histopathological damage, and differential expression of enzymes, did not affect the dexmedetomidine clearance in the population studied (ΔOFV<3.84). We did not find a negative influence of obesity in dexmedetomidine clearance when doses were adjusted to lean body weight. Liver blood flow showed a significant effect on dexmedetomidine clearance. NCT02557867. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  16. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

    PubMed

    Tang, Hong-Wen; Hu, Yanhui; Chen, Chiao-Lin; Xia, Baolong; Zirin, Jonathan; Yuan, Min; Asara, John M; Rabinow, Leonard; Perrimon, Norbert

    2018-05-01

    Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Metabolic intervention to affect myocardial recovery following ischemia.

    PubMed Central

    Pasque, M K; Wechsler, A S

    1984-01-01

    Myocardial recovery during reperfusion following ischemia is critical to patient survival in a broad spectrum of clinical settings. Myocardial functional recovery following ischemia correlates well with recovery of myocardial adenosine triphosphate (ATP). Adenosine triphosphate recovery is uniformly incomplete during reperfusion following moderate ischemic injury and is therefore subject to manipulation by metabolic intervention. By definition ATP recovery is limited either by (1) energy availability and application in the phosphorylation of adenosine monophosphate (AMP) to ATP or (2) availability of AMP for this conversion. Experimental data suggest that substrate energy and the mechanisms required for its application in the creation of high energy phosphate bonds (AMP conversion to ATP) are more than adequate during reperfusion following moderate ischemic injury. Adenosine monophosphate availability, however, is inadequate following ischemia due to loss of diffusable adenine nucleotide purine metabolites. These purine precursors are necessary to fuel adenine nucleotide salvage pathways. Metabolic interventions that enhance AMP recovery rather than those that improve substrate energy availability during reperfusion are therefore recommended. The mechanisms of various metabolic interventions are discussed in this framework along with the rationale for or against their clinical application. PMID:6428332

  18. Lateralization of affective processing in the insula.

    PubMed

    Duerden, Emma G; Arsalidou, Marie; Lee, Minha; Taylor, Margot J

    2013-09-01

    Evidence from electrophysiological and functional neuroimaging studies has suggested strong lateralization of affective processing within the insular cortices; however, little is known about the spatial location of these processes in these regions. Using quantitative meta-analytic methods the laterality of: (1) emotional processing; (2) stimulus valence (positive vs. negative); (3) perception vs. experience of emotion; and (4) sex-differences were assessed using the data from 143 functional magnetic resonance imaging studies. Activation in response to all emotional stimuli occurred in bilateral anterior and mid-insula, and the left posterior insula. Positive emotional stimuli were associated with activation in the left anterior and mid-insula, while negative emotional stimuli activated bilateral anterior and mid-insula. Activation in response to the perception and experience of emotions was highest in bilateral anterior insula, and within the mid and posterior insula it was left lateralized. In males, emotional stimuli predominantly activated the left anterior/mid-insula and right posterior insula, whereas females activated bilateral anterior insula and the left mid and posterior insula. Spatial distinctions observed in emotional processing and its subcategories can provide a comprehensive account of the role of the insular cortices in affect processing, which could aid in understanding deficits seen in psychiatric or developmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  20. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians

    PubMed Central

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E.; Jazwinski, S. Michal

    2016-01-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3′-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  1. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    PubMed

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  2. Stress modulation of cognitive and affective processes

    PubMed Central

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  3. Facial affect processing and depression susceptibility: cognitive biases and cognitive neuroscience.

    PubMed

    Bistricky, Steven L; Ingram, Rick E; Atchley, Ruth Ann

    2011-11-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal experience, cognition, and social behavior. We therefore review the burgeoning depressive facial affect processing literature and examine its potential for integrating disciplines, theories, and research. In particular, we evaluate studies in which information processing or cognitive neuroscience paradigms were used to assess facial affect processing in depressed and depression-susceptible populations. Most studies have assessed and supported cognitive models. This research suggests that depressed and depression-vulnerable groups show abnormal facial affect interpretation, attention, and memory, although findings vary based on depression severity, comorbid anxiety, or length of time faces are viewed. Facial affect processing biases appear to correspond with distinct neural activity patterns and increased depressive emotion and thought. Biases typically emerge in depressed moods but are occasionally found in the absence of such moods. Indirect evidence suggests that childhood neglect might cultivate abnormal facial affect processing, which can impede social functioning in ways consistent with cognitive-interpersonal and interpersonal models. However, reviewed studies provide mixed support for the social risk model prediction that depressive states prompt cognitive hypervigilance to social threat information. We recommend prospective interdisciplinary research examining whether facial affect processing abnormalities promote-or are promoted by-depressogenic attachment experiences, negative thinking, and social dysfunction.

  4. Metabolic and hormone influences on emotion processing during menopause.

    PubMed

    Berent-Spillson, Alison; Marsh, Courtney; Persad, Carol; Randolph, John; Zubieta, Jon-Kar; Smith, Yolanda

    2017-02-01

    Disturbances of emotion regulation and depressive symptoms are common during the menopause transition. Reproductive hormone levels are not directly correlated with depressive symptoms, and other factors may influence mood symptoms during menopause. In this study, we sought to determine the role of metabolic function in mood symptoms during menopause, hypothesizing an association with menopause status and long-term glucose load. We studied 54 women across three menopause transition stages (15 premenopause, 11 perimenopause, and 28 postmenopause), examining effects of age, hormones, and metabolism on mood and neural activation during emotional discrimination. We assessed participants using behavioral and functional MRI measures of negative emotion and emotion discrimination, and glycated hemoglobin A1c, to assess long-term glucose load. We found that emotionally unpleasant images activated emotion regulation (amygdala) and cognitive association brain regions (prefrontal cortex, posterior cingulate, temporal-parietal-occipital (TPO) junction, hippocampus). Cognitive association region activity increased with menopause stage. Perimenopausal women had left TPO junction activation, and postmenopausal women had prefrontal cortex, posterior cingulate, and TPO junction activation. Negative affect was associated with decreased amygdala activation, while depression symptoms and negative mood were associated with increased TPO junction activation. Hemoglobin A1c was associated with negative interpretation bias of neutral images and cognitive region recruitment during emotion discrimination. FSH levels, indicating menopause stage, were associated with negative mood. Age was not associated with any behavioral measures or activation patterns during the emotion task. Our results suggest that an interaction between metabolic and hormonal factors may influence emotion regulation, leading to increased risk for depression during menopause. Copyright © 2016 Elsevier Ltd. All rights

  5. Obesity, but not metabolic syndrome, negatively affects outcome in bipolar disorder.

    PubMed

    McElroy, S L; Kemp, D E; Friedman, E S; Reilly-Harrington, N A; Sylvia, L G; Calabrese, J R; Rabideau, D J; Ketter, T A; Thase, M E; Singh, V; Tohen, M; Bowden, C L; Bernstein, E E; Brody, B D; Deckersbach, T; Kocsis, J H; Kinrys, G; Bobo, W V; Kamali, M; McInnis, M G; Leon, A C; Faraone, S; Nierenberg, A A; Shelton, R C

    2015-06-26

    Examine the effects of obesity and metabolic syndrome on outcome in bipolar disorder. The Comparative Effectiveness of a Second Generation Antipsychotic Mood Stabilizer and a Classic Mood Stabilizer for Bipolar Disorder (Bipolar CHOICE) study randomized 482 participants with bipolar disorder in a 6-month trial comparing lithium- and quetiapine-based treatment. Baseline variables were compared between groups with and without obesity, with and without abdominal obesity, and with and without metabolic syndrome respectively. The effects of baseline obesity, abdominal obesity, and metabolic syndrome on outcomes were examined using mixed effects linear regression models. At baseline, 44.4% of participants had obesity, 48.0% had abdominal obesity, and 27.3% had metabolic syndrome; neither obesity, nor abdominal obesity, nor metabolic syndrome were associated with increased global severity, mood symptoms, or suicidality, or with poorer functioning or life satisfaction. Treatment groups did not differ on prevalence of obesity, abdominal obesity, or metabolic syndrome. By contrast, among the entire cohort, obesity was associated with less global improvement and less improvement in total mood and depressive symptoms, suicidality, functioning, and life satisfaction after 6 months of treatment. Abdominal obesity was associated with similar findings. Metabolic syndrome had no effect on outcome. Obesity and abdominal obesity, but not metabolic syndrome, were associated with less improvement after 6 months of lithium- or quetiapine-based treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    PubMed

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  7. Electrophysiological differences in the processing of affect misattribution.

    PubMed

    Hashimoto, Yohei; Minami, Tetsuto; Nakauchi, Shigeki

    2012-01-01

    The affect misattribution procedure (AMP) was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target) are presented, following an emotional stimulus (known as the prime). Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing-whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP) dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP). In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes.

  8. Carbohydrate Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally ...

  9. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis)

    PubMed Central

    Owerkowicz, Tomasz; Elsey, Ruth M.; Hicks, James W.

    2009-01-01

    Summary Recent palaeoatmospheric models suggest large-scale fluctuations in ambient oxygen level over the past 550 million years. To better understand how global hypoxia and hyperoxia might have affected the growth and physiology of contemporary vertebrates, we incubated eggs and raised hatchlings of the American alligator. Crocodilians are one of few vertebrate taxa that survived these global changes with distinctly conservative morphology. We maintained animals at 30°C under chronic hypoxia (12% O2), normoxia (21% O2) or hyperoxia (30% O2). At hatching, hypoxic animals were significantly smaller than their normoxic and hyperoxic siblings. Over the course of 3 months, post-hatching growth was fastest under hyperoxia and slowest under hypoxia. Hypoxia, but not hyperoxia, caused distinct scaling of major visceral organs–reduction of liver mass, enlargement of the heart and accelerated growth of lungs. When absorptive and post-absorptive metabolic rates were measured in juvenile alligators, the increase in oxygen consumption rate due to digestion/absorption of food was greatest in hyperoxic alligators and smallest in hypoxic ones. Hyperoxic alligators exhibited the lowest breathing rate and highest oxygen consumption per breath. We suggest that, despite compensatory cardiopulmonary remodelling, growth of hypoxic alligators is constrained by low atmospheric oxygen supply, which may limit their food utilisation capacity. Conversely, the combination of elevated metabolism and low cost of breathing in hyperoxic alligators allows for a greater proportion of metabolised energy to be available for growth. This suggests that growth and metabolic patterns of extinct vertebrates would have been significantly affected by changes in the atmospheric oxygen level. PMID:19376944

  10. Impaired copper and iron metabolism in blood cells and muscles of patients affected by copper deficiency myeloneuropathy.

    PubMed

    Spinazzi, Marco; Sghirlanzoni, Angelo; Salviati, Leonardo; Angelini, Corrado

    2014-12-01

    Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention. © 2013 British Neuropathological Society.

  11. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock.

    PubMed

    Brager, Allison J; Heemstra, Lydia; Bhambra, Raman; Ehlen, J Christopher; Esser, Karyn A; Paul, Ketema N; Novak, Colleen M

    2017-01-01

    Brain and muscle-ARNT-like factor (Bmal1/BMAL1) is an essential transcriptional/translational factor of circadian clocks. Loss of function of Bmal1/BMAL1 is highly disruptive to physiological and behavioral processes. In light of these previous findings, we examined if transgenic overexpression of Bmal1/BMAL1 in skeletal muscle could alter metabolic processes. First, we characterized in vivo and ex vivo metabolic phenotypes of muscle overexpressed mice (male and female) compared to wild-type littermates (WT). Second, we examined in vivo and ex vivo metabolic processes in the presence of positive and negative homeostatic challenges: high-intensity treadmill running (positive) and acute sleep deprivation (negative). In vivo measures of metabolic processes included body composition, respiratory exchange ratio (RER; VCO 2 /VO 2 ), energy expenditure, total activity counts, and food intake collected from small animal indirect calorimetry. Ex vivo measure of insulin sensitivity in skeletal muscle was determined from radioassays. RER was lower for muscle overexpressed females compared to female WTs. There were no genotype-dependent differences in metabolic phenotypes for males. With homeostatic challenges, muscle overexpressed mice had lower energy expenditure after high-intensity treadmill running. Acute sleep deprivation reduced insulin sensitivity in skeletal muscle in overexpressed male mice, but not male WTs. The present study contributes to a body of evidence showing pleiotropic, non-circadian, and homeostatic effects of altered Bmal1/BMAL1 expression on metabolic processes, demonstrating a critical need to further investigate the broad and complex actions of Bmal1/BMAL1 on physiology and behavior. Published by Elsevier B.V.

  12. High-fat diets affect energy and bone metabolism in growing rats.

    PubMed

    Macri, Elisa V; Gonzales Chaves, Macarena M; Rodriguez, Patricia N; Mandalunis, Patricia; Zeni, Susana; Lifshitz, Fima; Friedman, Silvia M

    2012-06-01

    High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.

  13. Osmoregulatory processes and skeletal muscle metabolism

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  14. Exploring the nature of facial affect processing deficits in schizophrenia.

    PubMed

    van 't Wout, Mascha; Aleman, André; Kessels, Roy P C; Cahn, Wiepke; de Haan, Edward H F; Kahn, René S

    2007-04-15

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as well as in controlled evaluation of facial affect. Thirty-seven patients with schizophrenia were compared with 41 control subjects on incidental facial affect processing (gender decision of faces with a fearful, angry, happy, disgusted, and neutral expression) and degraded facial affect labeling (labeling of fearful, angry, happy, and neutral faces). The groups were matched on estimates of verbal and performance intelligence (National Adult Reading Test; Raven's Matrices), general face recognition ability (Benton Face Recognition), and other demographic variables. The results showed that patients with schizophrenia as well as control subjects demonstrate the normal threat-related interference during incidental facial affect processing. Conversely, on controlled evaluation patients were specifically worse in the labeling of fearful faces. In particular, patients with high levels of negative symptoms may be characterized by deficits in labeling fear. We suggest that patients with schizophrenia show no evidence of deficits in the automatic allocation of attention resources to fearful (threat-indicating) faces, but have a deficit in the controlled processing of facial emotions that may be specific for fearful faces.

  15. Pseudoxanthoma elasticum is a metabolic disease.

    PubMed

    Jiang, Qiujie; Endo, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2009-02-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the "metabolic" versus the "PXE cell" hypotheses. We examined a murine PXE model (Abcc6(-/-)) by transplanting muzzle skin from knockout (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, whereas grafting KO mouse muzzle skin onto WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu.

  16. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  17. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    PubMed

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 10(6) cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  18. β-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury.

    PubMed

    Ley, Eric J; Clond, Morgan A; Bukur, Marko; Park, Ryan; Chervonski, Michael; Dagliyan, Grant; Margulies, Dan R; Lyden, Patrick D; Conti, Peter S; Salim, Ali

    2012-07-01

    The purpose of this study was to evaluate how β-adrenergic receptor inhibition after traumatic brain injury (TBI) alters changes in early cerebral glucose metabolism and motor performance, as well as cerebral cytokine and heat shock protein (HSP) expression. Mouse cerebral glucose metabolism was measured by microPET fluorodeoxyglucose uptake and converted into standardized uptake values (SUV). Four groups of C57/Bl6 mice (wild type [WT]) were initially evaluated: sham or TBI, followed by tail vein injection of either saline or a nonselective β-adrenergic receptor inhibitor (propranolol, 4 mg/kg). Then motor performance, cerebral cytokine, and HSP70 expression were studied at 12 hours and 24 hours after sham injury or TBI in WT mice treated with saline or propranolol and in β1-adrenergic/β2-adrenergic receptor knockout (BARKO) mice treated with saline. Cerebral glucose metabolism was significantly reduced after TBI (mean SUV TBI, 1.63 vs. sham 1.97, p < 0.01) and propranolol attenuated this reduction (mean SUV propranolol, 1.89 vs. saline 1.63, p < 0.01). Both propranolol and BARKO reduced motor deficits at 24 hours after injury, but only BARKO had an effect at 12 hours after injury. TBI WT mice treated with saline performed worse than propranolol mice at 24 hours after injury on rotarod (23 vs. 44 seconds, p < 0.01) and rearing (130 vs. 338 events, p = 0.01) results. At 24 hours after injury, sham BARKO and TBI BARKO mice were similar on rotarod (21 vs. 19 seconds, p = 0.53), ambulatory testing (2,891 vs. 2,274 events, p = 0.14), and rearing (129 vs. 64 events, p = 0.09) results. Interleukin 1β expression was affected by BARKO and propranolol after TBI; attenuation of interleukin 6 and increased HSP70 expression were noted only with BARKO. β-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, as well as cerebral cytokine and HSP expression after TBI.

  19. Feed Your Head: Neurodevelopmental Control of Feeding and Metabolism

    PubMed Central

    Lee, Daniel A.; Blackshaw, Seth

    2014-01-01

    During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding. PMID:24274739

  20. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  1. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation.

    PubMed

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-09-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation.

  2. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    PubMed

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  3. The Impact of Affect on Out-Group Judgments Depends on Dominant Information-Processing Styles: Evidence From Incidental and Integral Affect Paradigms.

    PubMed

    Isbell, Linda M; Lair, Elicia C; Rovenpor, Daniel R

    2016-04-01

    Two studies tested the affect-as-cognitive-feedback model, in which positive and negative affective states are not uniquely associated with particular processing styles, but rather serve as feedback about currently accessible processing styles. The studies extend existing work by investigating (a) both incidental and integral affect, (b) out-group judgments, and (c) downstream consequences. We manipulated processing styles and either incidental (Study 1) or integral (Study 2) affect and measured perceptions of out-group homogeneity. Positive (relative to negative) affect increased out-group homogeneity judgments when global processing was primed, but under local priming, the effect reversed (Studies 1 and 2). A similar interactive effect emerged on attributions, which had downstream consequences for behavioral intentions (Study 2). These results demonstrate that both incidental and integral affect do not directly produce specific processing styles, but rather influence thinking by providing feedback about currently accessible processing styles. © 2016 by the Society for Personality and Social Psychology, Inc.

  4. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    PubMed Central

    Brownlow, Milene L.; Jung, Seung H.; Moore, Raquel J.; Bechmann, Naomi; Jankord, Ryan

    2017-01-01

    Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a) augment cognitive outcomes in healthy subjects; and (b) prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD), ketone supplemented (KS), or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA) axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the control diet group

  5. Analysis of urban metabolic processes based on input-output method: model development and a case study for Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Liu, Hong; Chen, Bin; Zheng, Hongmei; Li, Yating

    2014-06-01

    Discovering ways in which to increase the sustainability of the metabolic processes involved in urbanization has become an urgent task for urban design and management in China. As cities are analogous to living organisms, the disorders of their metabolic processes can be regarded as the cause of "urban disease". Therefore, identification of these causes through metabolic process analysis and ecological element distribution through the urban ecosystem's compartments will be helpful. By using Beijing as an example, we have compiled monetary input-output tables from 1997, 2000, 2002, 2005, and 2007 and calculated the intensities of the embodied ecological elements to compile the corresponding implied physical input-output tables. We then divided Beijing's economy into 32 compartments and analyzed the direct and indirect ecological intensities embodied in the flows of ecological elements through urban metabolic processes. Based on the combination of input-output tables and ecological network analysis, the description of multiple ecological elements transferred among Beijing's industrial compartments and their distribution has been refined. This hybrid approach can provide a more scientific basis for management of urban resource flows. In addition, the data obtained from distribution characteristics of ecological elements may provide a basic data platform for exploring the metabolic mechanism of Beijing.

  6. Metabolic modelling and flux analysis of microorganisms from the Atacama Desert used in biotechnological processes.

    PubMed

    Razmilic, Valeria; Castro, Jean Franco; Marchant, Francisca; Asenjo, Juan A; Andrews, Barbara

    2018-02-02

    Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.

  7. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    PubMed Central

    Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei

    2013-01-01

    With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897

  8. Proprotein convertases in high-density lipoprotein metabolism.

    PubMed

    Choi, Seungbum; Korstanje, Ron

    2013-09-18

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects.

  9. Proprotein convertases in high-density lipoprotein metabolism

    PubMed Central

    2013-01-01

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects. PMID:24252756

  10. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  11. Emotional Language Processing: How Mood Affects Integration Processes during Discourse Comprehension

    ERIC Educational Resources Information Center

    Egidi, Giovanna; Nusbaum, Howard C.

    2012-01-01

    This research tests whether mood affects semantic processing during discourse comprehension by facilitating integration of information congruent with moods' valence. Participants in happy, sad, or neutral moods listened to stories with positive or negative endings during EEG recording. N400 peak amplitudes showed mood congruence for happy and sad…

  12. Increased Risk of Metabolic Syndrome in Patients with Vitiligo.

    PubMed

    Ataş, Hatice; Gönül, Müzeyyen

    2017-05-05

    Inflammatory and immune processes can be triggered in vitiligo due to a decreased number of melanocytes and their anti-inflammatory effects. Because of the systemic nature of vitiligo, metabolic abnormalities such as insulin resistance and lipid profile disturbances as well as skin involvement may be observed in vitiligo. To investigate the association between metabolic syndrome and vitiligo. Case-control study. The demographic, clinical and laboratory features in the subjects were compared according to presence of vitiligo and metabolic syndrome [patients (n=63) vs. gender-age matched controls (n=65) and metabolic syndrome positive (n=38) vs. negative (n=90)]. A logistic regression analysis was also used. We identified metabolic syndrome in 24 (38.1%) subjects with vitiligo and 14 (21.5%) subjects without vitiligo (p=0.04). Active vitiligo, segmental vitiligo, an increased duration of vitiligo and an increased percentage in the affected body surface area were determined to be independent predictors of metabolic syndrome [activity of vitiligo: p=0.012, OR (95% CI)=64.4 (2.5-1672); type of vitiligo: p=0.007, OR (95% CI)=215.1 (4.3-10725.8); duration of vitiligo: p=0.03, OR (95% CI)=1.4 (1.1-2.0); percentage of affected body surface area: p=0.07, OR (95% CI)=1.2 (0.98-1.5)]. The risk of developing metabolic syndrome is increased in patients with vitiligo. The poor clinical features of vitiligo, such as active, extended and segmental vitiligo with an increased duration of time, are independent predictors for developing metabolic syndrome.

  13. Metabolic remodeling of substrate utilization during heart failure progression.

    PubMed

    Chen, Liang; Song, Jiangping; Hu, Shengshou

    2018-05-23

    Heart failure (HF) is a clinical syndrome caused by a decline in cardiac systolic or diastolic function, which leaves the heart unable to pump enough blood to meet the normal physiological requirements of the human body. It is a serious disease burden worldwide affecting nearly 23 million patients. The concept that heart failure is "an engine out of fuel" has been generally accepted and metabolic remodeling has been recognized as an important aspect of this condition; it is characterized by defects in energy production and changes in metabolic pathways involved in the regulation of essential cellular functions such as the process of substrate utilization, the tricarboxylic acid cycle, oxidative phosphorylation, and high-energy phosphate metabolism. Advances in second-generation sequencing, proteomics, and metabolomics have made it possible to perform comprehensive tests on genes and metabolites that are crucial in the process of HF, thereby providing a clearer and comprehensive understanding of metabolic remodeling during HF. In recent years, new metabolic changes such as ketone bodies and branched-chain amino acids were demonstrated as alternative substrates in end-stage HF. This systematic review focuses on changes in metabolic substrate utilization during the progression of HF and the underlying regulatory mechanisms. Accordingly, the conventional concepts of metabolic remodeling characteristics are reviewed, and the latest developments, particularly multi-omics studies, are compiled.

  14. The human body metabolism process mathematical simulation based on Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur

    2017-08-01

    The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.

  15. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    PubMed

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  16. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  17. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    PubMed

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  18. Metabolic consequences of physical inactivity.

    PubMed

    Biolo, Gianni; Ciocchi, Beniamino; Stulle, Manuela; Piccoli, Arianna; Lorenzon, Stefania; Dal Mas, Viviana; Barazzoni, Rocco; Zanetti, Michela; Guarnieri, Gianfranco

    2005-01-01

    Physical inactivity is associated with alteration of normal physiologic processes leading to muscle atrophy, reduced exercise capacity, insulin resistance, and altered energy balance. Bed rest studies in human beings using stable isotopes of amino acids indicate that muscle unloading decreases the turnover rates of muscle and whole-body proteins, with a prevailing inhibition of protein synthesis. In the fasting state, muscle and whole-body nitrogen loss was not accelerated during bed rest. In experimental postprandial states, the amino acid-mediated stimulation of protein synthesis was impaired, whereas the ability of combined insulin and glucose infusion to decrease whole-body proteolysis was not affected by muscle inactivity. Thus, an impaired ability of protein/amino acid feeding to stimulate body protein synthesis is the major catabolic mechanism for the effect of bed rest on protein metabolism. This suggests that a protein intake level greater than normal could be required to achieve the same postprandial anabolic effect during muscle inactivity. Metabolic adaptation to muscle inactivity also involves development of resistance to the glucoregulatory action of insulin, decreased energy requirements, and increased insulin and leptin secretion. These alterations may lead to the development of the metabolic syndrome that is defined as the association of hyperinsulinemia, dyslipidemia, hypertension, hyperglycemia, and abdominal obesity. This cluster of metabolic abnormalities is a risk factor for coronary artery disease and stroke. Evidence indicates that exercise training programs may counteract all of these abnormalities both in healthy sedentary subjects and in patients affected by a variety of chronic disease states.

  19. Cognitive and Affective Processes Underlying Career Change

    ERIC Educational Resources Information Center

    Muja, Naser; Appelbaum, Steven H.

    2012-01-01

    Purpose: Aligning social identity and career identity has become increasingly complex due to growth in the pursuit of meaningful careers that offer very long-term personal satisfaction and stability. This paper aims to explore the complex cognitive and affective thought process involved in the conscious planning of voluntary career change.…

  20. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease.

    PubMed

    Song, Ning; Wang, Jun; Jiang, Hong; Xie, Junxia

    2018-03-01

    Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Nuclear localization of metabolic enzymes in immunity and metastasis.

    PubMed

    He, Yuchen; Gao, Menghui; Cao, Yiqu; Tang, Haosheng; Liu, Shuang; Tao, Yongguang

    2017-12-01

    Metabolism is essential to all living organisms that provide cells with energy, regulators, building blocks, enzyme cofactors and signaling molecules, and is in tune with nutritional conditions and the function of cells to make the appropriate developmental decisions or maintain homeostasis. As a fundamental biological process, metabolism state affects the production of multiple metabolites and the activation of various enzymes that participate in regulating gene expression, cell apoptosis, cancer progression and immunoreactions. Previous studies generally focus on the function played by the metabolic enzymes in the cytoplasm and mitochondrion. In this review, we conclude the role of them in the nucleus and their implications for cancer progression, immunity and metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release.

    PubMed

    Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2014-01-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. © 2013.

  3. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  4. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems.

    PubMed

    Saha, Tanusree; Chatterjee, Mahasweta; Verma, Deepak; Ray, Anirban; Sinha, Swagata; Rajamma, Usha; Mukhopadhyay, Kanchan

    2018-06-08

    An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B 9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B 12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B 6 , which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated

  5. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids.

    PubMed

    Cassidy, Aedín; Minihane, Anne-Marie

    2017-01-01

    At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods.

  6. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    PubMed

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    ERIC Educational Resources Information Center

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  8. How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism

    PubMed Central

    Jeschke, Verena; Kearney, Emily E.; Schramm, Katharina; Kunert, Grit; Shekhov, Anton; Gershenzon, Jonathan; Vassão, Daniel G.

    2017-01-01

    Multiple lepidopteran larvae feed successfully on plants containing glucosinolates despite the diverse array of toxic and deterrent breakdown products, such as isothiocyanates (ITCs), formed upon plant damage. While much is known about how specialist lepidopterans metabolize and tolerate glucosinolates, there is little information about the metabolic fate of these plant defense compounds in specialized herbivores. Employing 13C- and 14C-labeled 4-methylsulfinylbutyl glucosinolate (glucoraphanin), we identified and quantified the major detoxification products of glucosinolates and ITCs in selected specialized and generalist larvae. While specialists prevented glucosinolate hydrolysis or diverted hydrolysis to form nitriles, hydrolysis in generalists proceeded to toxic ITCs, of which a portion were conjugated to glutathione. However, a large amount of ITCs remained unmodified, which may have led to the observed negative effects on growth and development. The performance of two generalist-feeding caterpillars, Spodoptera littoralis (African cotton leafworm) and Mamestra brassicae (cabbage moth) on Arabidopsis thaliana Col-0 and various glucosinolate-deficient mutants was investigated from hatching until pupation. We found that glucosinolates negatively affected larval growth and development, but not survival, with aliphatic glucosinolates having stronger effects than indolic glucosinolates, and the combination of the two glucosinolate types being even more detrimental to growth and development. Curiously, last instar larvae grew better on wild type than on non-glucosinolate-containing plant lines, but this could not be attributed to a change in detoxification rate or feeding behavior. Glucosinolates thus appear to be effective defenses against generalist lepidopteran herbivores at least during most stages of larval development. Nevertheless, the reversal of negative effects in the oldest instar is intriguing, and further investigation of this phenomenon may shed light

  9. Meditation-induced neuroplastic changes in amygdala activity during negative affective processing.

    PubMed

    Leung, Mei-Kei; Lau, Way K W; Chan, Chetwyn C H; Wong, Samuel S Y; Fung, Annis L C; Lee, Tatia M C

    2018-06-01

    Recent evidence suggests that the effects of meditation practice on affective processing and resilience have the potential to induce neuroplastic changes within the amygdala. Notably, literature speculates that meditation training may reduce amygdala activity during negative affective processing. Nonetheless, studies have thus far not verified this speculation. In this longitudinal study, participants (N = 21, 9 men) were trained in awareness-based compassion meditation (ABCM) or matched relaxation training. The effects of meditation training on amygdala activity were examined during passive viewing of affective and neutral stimuli in a non-meditative state. We found that the ABCM group exhibited significantly reduced anxiety and right amygdala activity during negative emotion processing than the relaxation group. Furthermore, ABCM participants who performed more compassion practice had stronger right amygdala activity reduction during negative emotion processing. The lower right amygdala activity after ABCM training may be associated with a general reduction in reactivity and distress. As all participants performed the emotion processing task in a non-meditative state, it appears likely that the changes in right amygdala activity are carried over from the meditation practice into the non-meditative state. These findings suggest that the distress-reducing effects of meditation practice on affective processing may transfer to ordinary states, which have important implications on stress management.

  10. Electrophysiological Differences in the Processing of Affect Misattribution

    PubMed Central

    Hashimoto, Yohei; Minami, Tetsuto; Nakauchi, Shigeki

    2012-01-01

    The affect misattribution procedure (AMP) was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target) are presented, following an emotional stimulus (known as the prime). Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing—whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP) dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP). In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes. PMID:23145097

  11. Natural toxins that affect plant amino acid metabolism

    USDA-ARS?s Scientific Manuscript database

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  12. Succession of the functional microbial communities and the metabolic functions in maize straw composting process.

    PubMed

    Wei, Huawei; Wang, Liuhong; Hassan, Muhammad; Xie, Bing

    2018-05-01

    Illumina MiSeq sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were applied to study the dynamic changes and effects of microbial community structures as well as the metabolic function of bacterial community in maize straw composting process. Results showed that humic acid contents in loosely combined humus (HA1) and stably combined humus (HA2) increased after composting and Staphylococcus, Cellulosimicrobium and Ochrobactrum possibly participated in the transformation of the process. The bacterial communities differed in different stages of the composting. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were reported the dominant phyla throughout the process and the relative abundance of the dominant phyla varied significantly (p < 0.05) over time. Moreover, the total phosphorus (TP) had the greatest influence on the microbial community structure among C/N ratio, available phosphorus (AP) and humic substances. Metabolism, cellular processes and environmental information processing might be the primary functions of microbial community during the composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Factors affecting the periapical healing process of endodontically treated teeth.

    PubMed

    Holland, Roberto; Gomes, João Eduardo; Cintra, Luciano Tavares Angelo; Queiroz, Índia Olinta de Azevedo; Estrela, Carlos

    2017-01-01

    Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing), the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient) that affect the outcome of root canal treatment prediction.

  14. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  15. Long-term metabolic effects of aripiprazole, ziprasidone and quetiapine: a pragmatic clinical trial in drug-naïve patients with a first-episode of non-affective psychosis.

    PubMed

    Vázquez-Bourgon, Javier; Pérez-Iglesias, Rocío; Ortiz-García de la Foz, Víctor; Suárez Pinilla, Paula; Díaz Martínez, Álvaro; Crespo-Facorro, Benedicto

    2018-01-01

    The use of second-generation antipsychotics (SGA) has been associated with metabolic changes. However, there are differences in the metabolic profile between SGAs. We have previously observed that ziprasidone had a more benign early metabolic profile compared to aripiprazole and quetiapine. However, a long-term follow-up is preferred to detect clinically relevant impairment in metabolic parameters. We aimed to compare the effect of aripiprazole, ziprasidone, and quetiapine on metabolic measures in first-episode non-affective psychosis patients after 1 year of treatment. One hundred and sixty-five drug-naïve patients, suffering from a first episode of non-affective psychosis, were randomly assigned to receive quetiapine, ziprasidone, or aripiprazole. Weight and glycemic/lipid parameters were recorded at baseline and after 1 year of treatment. After 1 year of antipsychotic treatment, we found significant increments in weight, BMI, total cholesterol, LDL-cholesterol, triglycerides, and the triglyceride/HDL index in the sample as a whole. These changes produced a significant rise in the percentage of patients with obesity, hypercholesterolemia, and hypertriglyceridemia. However, when comparing the differential effect of each antipsychotic medication, we found no significant differences in any of the metabolic parameters between antipsychotics groups after 1 year of treatment. We concluded that the antipsychotics studied present similar metabolic profiles. However, the primary exposure to SGAs during the first year of psychosis was associated with significant increases in weight and metabolic parameters, leading to increments in obesity, hypertriglyceridemia, and hypercholesterolemia.

  16. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    PubMed Central

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-01

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this

  17. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    PubMed

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  18. Affective-cognitive meta-bases versus structural bases of attitudes predict processing interest versus efficiency.

    PubMed

    See, Ya Hui Michelle; Petty, Richard E; Fabrigar, Leandre R

    2013-08-01

    We proposed that (a) processing interest for affective over cognitive information is captured by meta-bases (i.e., the extent to which people subjectively perceive themselves to rely on affect or cognition in their attitudes) and (b) processing efficiency for affective over cognitive information is captured by structural bases (i.e., the extent to which attitudes are more evaluatively congruent with affect or cognition). Because processing speed can disentangle interest from efficiency by being manifest as longer or shorter reading times, we hypothesized and found that more affective meta-bases predicted longer affective than cognitive reading time when processing efficiency was held constant (Study 1). In contrast, more affective structural bases predicted shorter affective than cognitive reading time when participants were constrained in their ability to allocate resources deliberatively (Study 2). When deliberation was neither encouraged nor constrained, effects for meta-bases and structural bases emerged (Study 3). Implications for affective-cognitive processing and other attitudes-relevant constructs are discussed.

  19. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. © 2016 The Author(s).

  20. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    PubMed

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Lanfray, Damien; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. Copyright © 2016 the American Physiological Society.

  1. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes

    PubMed Central

    Lebeau, Julie; Wesselingh, Renate A.; Van Dyck, Hans

    2016-01-01

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  2. Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows.

    PubMed

    Enjalbert, F; Nicot, M C; Bayourthe, C; Moncoulon, R

    1998-09-01

    The effect of dietary lipids on the fatty acid (FA) profile of cows' milk fat is mainly dependent on digestive processes and mammary gland uptake and metabolism of FA. The objective of this study was to determine the separate effects of high arterial concentrations of 16:0, 18:0 and cis-18:1(n-9) on uptake, synthesis and 18:0 desaturation rate in the mammary gland of lactating dairy cows, via arterio-venous differences and mammary gland balance of FA. In a 4 x 4 Latin square, four lactating Holstein cows with cannula in the proximal duodenum were infused duodenally with a mixture providing daily 0 (C treatment) or 500 g FA with mainly 16:0 (P treatment), 18:0 (S treatment) or cis-18:1(n-9) (O treatment). Significantly higher arterial concentrations of infused FA in arterial plasma nonesterified FA and triglycerides (NETGFA) were observed with P and O treatments, but the effect of the S treatment was much lower. Arterio-venous differences of NETGFA increased with arterial concentrations. The number of synthesized FA in the mammary gland was not significantly affected by duodenal infusion of FA. Mean chain length was significantly reduced by P and O treatments, suggesting an effect of mammary gland uptake of long-chain FA on the termination process of mammary gland synthesis of FA. Across all treatments, 4:0 mammary gland balance increased linearly (r = 0.67, P = 0.004) with mammary gland FA uptake. Mammary gland desaturation of 18:0 to cis-18:1(n-9) averaged 52% and was not significantly affected by treatments, but was reduced by trans-18:1 mammary gland uptake. Uptake, synthesis and desaturation of FA by the mammary gland of dairy cows are affected by arterial concentrations of 16:0, 18:0 and cis-18:1(n-9).

  3. [Cholesterol metabolism and lipid peroxidation processes in hypodynamia. Effect of using ascorbic acid and alpha-tocopherol].

    PubMed

    Elikov, A V; Tsapok, P I

    2010-01-01

    Study status of cholesterol metabolism, processes of lipid peroxidation and antioxidant protection in blood plasma, erythrocytes and homogenates of the, heart, liver, muscle femors of rats attached to movement active. Establishment effects application of ascorbic acid and alpha-tocopherol. Ascorbic acid and alpha-tocopherol were infused daily. The daily dosage was 2 and 1 mg respectively. Characteristic shift changes of cholesterol metabolism in conditions of limited muscular activity were revealed. It was shown that vitamin antioxidants play a role in correction of metabolic disorders in case of immobile distress syndrome.

  4. Increased Risk of Metabolic Syndrome in Patients with Vitiligo

    PubMed Central

    Ataş, Hatice; Gönül, Müzeyyen

    2017-01-01

    Background: Inflammatory and immune processes can be triggered in vitiligo due to a decreased number of melanocytes and their anti-inflammatory effects. Because of the systemic nature of vitiligo, metabolic abnormalities such as insulin resistance and lipid profile disturbances as well as skin involvement may be observed in vitiligo. Aims: To investigate the association between metabolic syndrome and vitiligo. Study Design: Case-control study. Methods: The demographic, clinical and laboratory features in the subjects were compared according to presence of vitiligo and metabolic syndrome [patients (n=63) vs. gender-age matched controls (n=65) and metabolic syndrome positive (n=38) vs. negative (n=90)]. A logistic regression analysis was also used. Results: We identified metabolic syndrome in 24 (38.1%) subjects with vitiligo and 14 (21.5%) subjects without vitiligo (p=0.04). Active vitiligo, segmental vitiligo, an increased duration of vitiligo and an increased percentage in the affected body surface area were determined to be independent predictors of metabolic syndrome [activity of vitiligo: p=0.012, OR (95% CI)=64.4 (2.5-1672); type of vitiligo: p=0.007, OR (95% CI)=215.1 (4.3-10725.8); duration of vitiligo: p=0.03, OR (95% CI)=1.4 (1.1-2.0); percentage of affected body surface area: p=0.07, OR (95% CI)=1.2 (0.98-1.5)]. Conclusion: The risk of developing metabolic syndrome is increased in patients with vitiligo. The poor clinical features of vitiligo, such as active, extended and segmental vitiligo with an increased duration of time, are independent predictors for developing metabolic syndrome. PMID:28443562

  5. Identifying differences in biased affective information processing in major depression.

    PubMed

    Gollan, Jackie K; Pane, Heather T; McCloskey, Michael S; Coccaro, Emil F

    2008-05-30

    This study investigates the extent to which participants with major depression differ from healthy comparison participants in the irregularities in affective information processing, characterized by deficits in facial expression recognition, intensity categorization, and reaction time to identifying emotionally salient and neutral information. Data on diagnoses, symptom severity, and affective information processing using a facial recognition task were collected from 66 participants, male and female between ages 18 and 54 years, grouped by major depressive disorder (N=37) or healthy non-psychiatric (N=29) status. Findings from MANCOVAs revealed that major depression was associated with a significantly longer reaction time to sad facial expressions compared with healthy status. Also, depressed participants demonstrated a negative bias towards interpreting neutral facial expressions as sad significantly more often than healthy participants. In turn, healthy participants interpreted neutral faces as happy significantly more often than depressed participants. No group differences were observed for facial expression recognition and intensity categorization. The observed effects suggest that depression has significant effects on the perception of the intensity of negative affective stimuli, delayed speed of processing sad affective information, and biases towards interpreting neutral faces as sad.

  6. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    PubMed

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  7. Viral affects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection

    PubMed Central

    Yu, Yongjun; Clippinger, Amy J.; Alwine, James C.

    2011-01-01

    Human cytomegalovirus (HCMV) infection causes dramatic alterations of intermediary metabolism, similar to those found in tumor cells. In infected cells, glucose carbon is not completely broken down by the tricarboxylic acid (TCA) cycle for energy; instead it is used biosynthetically. This process requires increased glucose uptake, increased glycolysis and the diversion of glucose carbon, in the form of citrate, from the TCA cycle for use in HCMV-induced fatty acid biosynthesis. The diversion of citrate from the TCA cycle (cataplerosis) requires induction of enzymes to promote glutaminolysis, the conversion of glutamine to -ketoglutarate in order to maintain the TCA cycle (anaplerosis) and ATP production. Such changes could result in heretofore uncharacterized pathogenesis, potentially implicating HCMV as a subtle co-factor in many maladies, including oncogenesis. Recognition of the effects of HCMV, and other viruses, on host cell metabolism will provide new understanding of viral pathogenesis and novel avenues for antiviral therapy. PMID:21570293

  8. Positive affective processes underlie positive health behaviour change.

    PubMed

    Van Cappellen, Patty; Rice, Elise L; Catalino, Lahnna I; Fredrickson, Barbara L

    2018-01-01

    Positive health behaviours such as physical activity can prevent or reverse many chronic conditions, yet a majority of people fall short of leading a healthy lifestyle. Recent discoveries in affective science point to promising approaches to circumvent barriers to lifestyle change. Here, we present a new theoretical framework that integrates scientific knowledge about positive affect with that on implicit processes. The upward spiral theory of lifestyle change explains how positive affect can facilitate long-term adherence to positive health behaviours. The inner loop of this spiral model identifies nonconscious motives as a central mechanism of behavioural maintenance. Positive affect experienced during health behaviours increases incentive salience for cues associated with those behaviours, which in turn, implicitly guides attention and the everyday decisions to repeat those behaviours. The outer loop represents the evidence-backed claim, based on Fredrickson's broaden-and-build theory, that positive affect builds a suite of endogenous resources, which may in turn amplify the positive affect experienced during positive health behaviours and strengthen the nonconscious motives. We offer published and preliminary evidence in favour of the theory, contrast it to other dominant theories of health behaviour change, and highlight attendant implications for interventions that merit testing.

  9. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  10. Comprehensive metabolic panel

    MedlinePlus

    A comprehensive metabolic panel is a group of blood tests. They provide an overall picture of your body's chemical balance and metabolism. Metabolism refers to all the physical and chemical processes ...

  11. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids1

    PubMed Central

    Cassidy, Aedín; Minihane, Anne-Marie

    2017-01-01

    At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods. PMID:27881391

  12. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  13. Tinnitus, anxiety and automatic processing of affective information: an explorative study.

    PubMed

    Ooms, Els; Vanheule, Stijn; Meganck, Reitske; Vinck, Bart; Watelet, Jean-Baptiste; Dhooge, Ingeborg

    2013-03-01

    Anxiety is found to play an important role in the severity complaint of tinnitus patients. However, when investigating anxiety in tinnitus patients, most studies make use of verbal reports of affect (e.g., self-report questionnaires and/or interviews). These methods reflect conscious appraisals of anxiety, but do not map underlying processing mechanisms. Nonetheless, such mechanisms, like the automatic processing of affective information, are important as they modulate emotional experience and emotion-related behaviour. Research showed that highly anxious people process threatening information (e.g., fearful and angry faces) faster than non-anxious people. Therefore, this study investigates whether tinnitus patients process affective stimuli (happy, sad, fearful, and angry faces) in the same way as highly anxious people do. Our sample consisted out of 67 consecutive tinnitus patients. Relationships between tinnitus severity, pitch, loudness, hearing loss, and the automatic processing of affective information were explored. Results indicate that especially in severely distressed tinnitus patients, the severity complaint is highly related to the automatic processing of fearful (r = 0.37, p < 0.05), angry (r = 0.44, p < 0.00) and happy (r = -0.44, p < 0.00) faces, and these relationships became even stronger after controlling for hearing loss. Furthermore, in contrast with findings on the relation between audiological characteristics (pitch and loudness) and conscious report of anxiety, we did find that the audiological characteristic, loudness, tends to be in some degree related to the automatic processing of fearful faces (r = 0.25, p = 0.08). We conclude that tinnitus is an anxiety-related problem on an automatic processing level.

  14. Subliminal Processing of Smoking-Related and Affective Stimuli in Tobacco Addiction

    PubMed Central

    Leventhal, Adam M.; Waters, Andrew J.; Breitmeyer, Bruno G.; Tapia, Evelina; Miller, Elizabeth; Li, Yisheng

    2009-01-01

    Cognitive processing biases toward smoking-related and affective cues may play a role in tobacco dependence. Because processing biases may occur outside conscious awareness, the current study examined processing of smoking-related and affective stimuli presented at subliminal conditions. A pictorial subliminal repetition priming task was administered to three groups: (1) Nonsmokers (n = 56); (2) Smokers (≥10 cigarettes/day) who had been deprived from smoking for 12 h (n = 47); and (3) Nondeprived smokers (n = 66). Prime stimuli were presented briefly (17 ms) and were followed by a mask (to render them unavailable to conscious awareness) and then a target. Participants were required to make a speeded classification to the target. A posttask awareness check was administered to ensure that participants could not consciously perceive the briefly presented primes (i.e., smoking paraphernalia, neutral office supplies, and happy, angry, and neutral facial expressions). The groups differed in the degree to which they exhibited a processing bias for smoking-related stimuli, F(2, 166) = 4.99, p = .008. Deprived smokers exhibited a bias toward processing smoking (vs. neutral office supply) stimuli, F(1, 46) = 5.67, p = .02, whereas nondeprived smokers and nonsmokers did not (ps > .22). The three groups did not differ in the degree to which they exhibited a subliminal processing bias for affective stimuli. Tobacco deprivation appears to increase smokers’ subliminal processing of smoking-related (vs. neutral) stimuli but does not influence subliminal processing of affective stimuli. Future research should investigate whether subliminal biases toward smoking-related stimuli influence relapse. PMID:18729684

  15. Subliminal processing of smoking-related and affective stimuli in tobacco addiction.

    PubMed

    Leventhal, Adam M; Waters, Andrew J; Breitmeyer, Bruno G; Miller, Elizabeth K; Tapia, Evelina; Li, Yisheng

    2008-08-01

    Cognitive processing biases toward smoking-related and affective cues may play a role in tobacco dependence. Because processing biases may occur outside conscious awareness, the current study examined processing of smoking-related and affective stimuli presented at subliminal conditions. A pictorial subliminal repetition priming task was administered to three groups: (1) Nonsmokers (n = 56); (2) Smokers (> or =10 cigarettes/day) who had been deprived from smoking for 12 h (n = 47); and (3) Nondeprived smokers (n = 66). Prime stimuli were presented briefly (17 ms) and were followed by a mask (to render them unavailable to conscious awareness) and then a target. Participants were required to make a speeded classification to the target. A posttask awareness check was administered to ensure that participants could not consciously perceive the briefly presented primes (i.e., smoking paraphernalia, neutral office supplies, and happy, angry, and neutral facial expressions). The groups differed in the degree to which they exhibited a processing bias for smoking-related stimuli, F(2, 166) = 4.99, p = .008. Deprived smokers exhibited a bias toward processing smoking (vs. neutral office supply) stimuli, F(1, 46) = 5.67, p = .02, whereas nondeprived smokers and nonsmokers did not (ps > .22). The three groups did not differ in the degree to which they exhibited a subliminal processing bias for affective stimuli. Tobacco deprivation appears to increase smokers' subliminal processing of smoking-related (vs. neutral) stimuli but does not influence subliminal processing of affective stimuli. Future research should investigate whether subliminal biases toward smoking-related stimuli influence relapse.

  16. Factors affecting the periapical healing process of endodontically treated teeth

    PubMed Central

    Holland, Roberto; Gomes, João Eduardo; Cintra, Luciano Tavares Angelo; Queiroz, Índia Olinta de Azevedo; Estrela, Carlos

    2017-01-01

    Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing), the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient) that affect the outcome of root canal treatment prediction. PMID:29069143

  17. Antioxidant metabolism in Xenopus laevis embryos is affected by stratospheric balloon flight.

    PubMed

    Rizzo, Angela M; Rossi, Federica; Zava, Stefania; Montorfano, Gigliola; Adorni, Laura; Cotronei, Vittorio; Zanini, Alba; Berra, Bruno

    2007-07-01

    To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.

  18. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa.

    PubMed

    Neilson, Andrew P; Ferruzzi, Mario G

    2011-01-01

    Flavan-3-ols are a major subclass of the class of plant phytochemicals known as flavonoids. Flavan-3-ols are commonly found in fruit, vegetable, and botanical products, including tea, cocoa, grapes, and apples. Both monomeric catechins and polymeric procyanidins are common in the diet, along with several derivatives produced by degradation of these species during processing. Both epidemiological and biological evidence suggests a health-protective role for dietary flavan-3-ols, leading to increased interest in the bioavailability of these compounds from foods. Flavan-3-ol bioavailability depends on numerous factors, including digestive release, absorption, metabolism, and elimination. In addition to these in vivo factors, the complexity of whole-food systems (physical form, flavan-3-ol form and dose, macronutrient and micronutrient profile, processing, etc.) influences the absorption efficiency and circulating profile of flavan-3-ols. An understanding of how food matrices may influence flavan-3-ol absorption will provide a framework to design and develop functional products that positively affect flavan-3-ol absorption and, by extension, potential bioactivity.

  19. Affective picture processing: An integrative review of ERP findings

    PubMed Central

    Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John

    2008-01-01

    The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800

  20. Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments

    Treesearch

    C.L. Crenshaw; H.M. Valett; J.R. Webster

    2002-01-01

    1. Metabolic and biogeochemical processes in hyporheic zones may depend on inputs of coarse particulate organic matter. Our research focused on how differing quantity and quality of organic matter affects metabolism and nutrient retention in the hyporheic zone of a first-order Appalachian stream. 2. Sixteen plots were established on a tributary of Hugh White Creek, NC...

  1. Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle

    PubMed Central

    Forde, Niamh; Poirée, Mélanie; Healey, Gareth D.; Giraud-Delville, Corinne; Reinaud, Pierrette; Eozenou, Caroline; Vitorino Carvalho, Anaïs; Galio, Laurent; Raliou, Mariam; Oudin, Jean-François; Richard, Christophe; Sheldon, I. Martin; Charpigny, Gilles; Lonergan, Pat; Sandra, Olivier

    2017-01-01

    Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered. PMID:29281695

  2. Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle.

    PubMed

    Lesage-Padilla, Audrey; Forde, Niamh; Poirée, Mélanie; Healey, Gareth D; Giraud-Delville, Corinne; Reinaud, Pierrette; Eozenou, Caroline; Vitorino Carvalho, Anaïs; Galio, Laurent; Raliou, Mariam; Oudin, Jean-François; Richard, Christophe; Sheldon, I Martin; Charpigny, Gilles; Lonergan, Pat; Sandra, Olivier

    2017-01-01

    Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered.

  3. [Endocrine-metabolic peculiarities in women of reproductive age with hyperplastic processes of cervix and mammary glands].

    PubMed

    Kadzhaia, N R; Virsaladze, D K; Tkeshelashvili, B D; Dzhavashvili, L V; Dzhugeli, M K

    2006-05-01

    The aim of our investigation was the detection of endocrine-metabolic disorders in patients with hyperplastic processes of endomyometrium, uterine cervix and mammary glands. 88 patients of reproductive age with several gynaecological complaints have been investigated. 72 patients with hyperplastic processes in endomyometrium, uterine cervix (hyperplasia, polyposis, myoma) and mammary glands (fibroadenomatosis, adenomatosis) were selected in main group. Control group consisted of 16 patients without any hyperplastic processes of reproductive organs. Metabolic syndrome in main group was revealed in 28% of cases, in control - 18,8% (chi(2)=3,95, p=0,047); insulin resistance - 37,5% and 18,7% (chi(2)=4,59, p=0,033), respectively; obesity - 52,8% and 25,0% (chi(2)=4,05, p=0,045), respectively; dyslipidemia - 52,8% and 0,0%; hypertension - 26,4% and 12,5% (chi(2)=1,88, p=NS), respectively. Blood leptin level in main group was - 13,7+/-10,9 ng/ml, and in control - 5,0+/-2,9 ng/ml (p=0,005). Our results suggest that metabolic syndrome and its components significantly influences the formation of hyperplastic processes of endomyometrium, uterine cervix and mammary glands. Blood leptin level is significantly increased in patients with hyperplastic pathologies.

  4. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review.

    PubMed

    Herrero-Fresno, Ana; Olsen, John Elmerdhahl

    2018-05-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    PubMed

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  6. Social information processing in children: specific relations to anxiety, depression, and affect.

    PubMed

    Luebbe, Aaron M; Bell, Debora J; Allwood, Maureen A; Swenson, Lance P; Early, Martha C

    2010-01-01

    Two studies examined shared and unique relations of social information processing (SIP) to youth's anxious and depressive symptoms. Whether SIP added unique variance over and above trait affect in predicting internalizing symptoms was also examined. In Study 1, 215 youth (ages 8-13) completed symptom measures of anxiety and depression and a vignette-based interview measure of SIP. Anxiety and depression were each related to a more negative information-processing style. Only depression was uniquely related to a less positive information processing style. In Study 2, 127 youth (ages 10-13) completed measures of anxiety, depression, SIP, and trait affect. SIP's relations to internalizing symptoms were replicated. Over and above negative affect, negative SIP predicted both anxiety and depression. Low positive SIP added variance over and above positive affect in predicting only depression. Finally, SIP functioning partially mediated the relations of affect to internalizing symptoms.

  7. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  8. Deanol affects choline metabolism in peripheral tissues of mice.

    PubMed

    Haubrich, D R; Gerber, N H; Pflueger, A B

    1981-08-01

    Administration of 2-dimethylaminoethanol (deanol) to mice induced an increase in both the concentration and the rate of turnover of free choline in blood. Treatment with deanol also caused an increase in the concentration of choline in kidneys, and markedly inhibited the rates of oxidation and phosphorylation of intravenously administered [3H-methyl]choline. In the liver, deanol inhibited the rate of phosphorylation of [3H-methyl]choline, but did not inhibit its rate of oxidation or cause an increase in the level of free choline. These findings suggest that deanol increases the choline concentration in blood by inhibition of its metabolism in tissues. Deanol may ultimately produce its central cholinergic effects by inhibition of choline metabolism in peripheral tissues, causing free choline choline to accumulate in blood, enter the brain, and stimulate cholinergic receptors.

  9. Loneliness in late-life depression: structural and functional connectivity during affective processing.

    PubMed

    Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C

    2016-09-01

    Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.

  10. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes.

    PubMed

    Bociąga-Jasik, Monika; Polus, Anna; Góralska, Joanna; Czech, Urszula; Gruca, Anna; Śliwa, Agnieszka; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona

    2013-01-01

    The iatrogenic, HIV-related lipodystrophy is associated with development of the significant metabolic and cardiovascular complications. The underlying mechanisms of antiretroviral (ARV) drugs are not completely explored. The aim of the study was to characterize effects of the protease inhibitor (PI)--saquinavir (SQV) on metabolic functions, and gene expression during differentiation in cells (Chub-S7) culture. SQV in concentrations observed during antiretroviral therapy (ART) significantly decreased mitochondrial membrane potential (MMP), oxygen consumption and ATP generation. The effects were greater in already differentiated cells. This was accompanied by characteristic changes in the expression of the genes involved in endoplasmic reticulum (ER) stress, and differentiation (lipid droplet formation) process such as: WNT10a, C/EBPa, AFT4, CIDEC, ADIPOQ, LPIN1. The results indicate that SQV affects not only metabolic (mitochondrial) activity of adipocytes, but affects the expression of genes related to differentiation and to a lesser extent to cell apoptosis.

  11. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  12. Constraint based modeling of metabolism allows finding metabolic cancer hallmarks and identifying personalized therapeutic windows.

    PubMed

    Bordel, Sergio

    2018-04-13

    In order to choose optimal personalized anticancer treatments, transcriptomic data should be analyzed within the frame of biological networks. The best known human biological network (in terms of the interactions between its different components) is metabolism. Cancer cells have been known to have specific metabolic features for a long time and currently there is a growing interest in characterizing new cancer specific metabolic hallmarks. In this article it is presented a method to find personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic Models. This method is implemented in the python library, pyTARG. Our predictions showed that the most anticancer selective (affecting 27 out of 34 considered cancer cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic reactions are those involved in cholesterol biosynthesis. Excluding cholesterol biosynthesis, all the considered cell lines can be selectively affected by targeting different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which suggests that a small subset of drugs or siRNAs combined in patient specific manners could be at the core of metabolism based personalized treatments.

  13. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  14. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.

  15. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report.

    PubMed

    Cuthbert, B N; Schupp, H T; Bradley, M M; Birbaumer, N; Lang, P J

    2000-03-01

    Emotionally arousing picture stimuli evoked scalp-recorded event-related potentials. A late, slow positive voltage change was observed, which was significantly larger for affective than neutral stimuli. This positive shift began 200-300 ms after picture onset, reached its maximum amplitude approximately 1 s after picture onset, and was sustained for most of a 6-s picture presentation period. The positive increase was not related to local probability of content type, but was accentuated for pictures that prompted increased autonomic responses and reports of greater affective arousal (e.g. erotic or violent content). These results suggest that the late positive wave indicates a selective processing of emotional stimuli, reflecting the activation of motivational systems in the brain.

  16. Protein metabolism in marine animals: the underlying mechanism of growth.

    PubMed

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  17. Triglyceride level affecting shared susceptibility genes in metabolic syndrome and coronary artery disease.

    PubMed

    Kisfali, P; Polgár, N; Sáfrány, E; Sümegi, K; Melegh, B I; Bene, J; Wéber, A; Hetyésy, K; Melegh, B

    2010-01-01

    Metabolic syndrome is characterized primarily by abdominal obesity, high triglyceride- and low HDL cholesterol levels, elevated blood pressure, and increased fasting glucose levels, which are often associated with coronary heart diseases. Several factors, such as physical inactivity, age, and several endocrine and genetic factors can increase the risk of the development of the disease. Gathered evidence shows, that metabolic syndrome is not only a risk factor for cardiovascular disease, but often both of them have the same shared susceptibility genes, as several genetic variants have shown a predisposition to both diseases. Due to the spread of robust genome wide association studies, the number of candidate genes in metabolic syndrome and coronary heart disease susceptibility increases very rapidly. From the growing spectrum of the genes influencing lipid metabolism (like the LPL; PPARA; APOE; APOAI/CIII/AIV genecluster and APOAS5), the current review focuses on shared susceptibility variants involved in triglyceride metabolism and consequently the effects on the circulating triglyceride levels. As the elevated levels of triglycerides can be associated with disease phenotypes, some of these SNPs can have susceptibility features in both metabolic syndrome and in coronary heart disease, thereby some of them can even represent a kind of susceptibility link between metabolic syndrome and coronary artery disease.

  18. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor.

    PubMed

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Sauerwein, Helga; Bruckmaier, Rupert M

    2017-06-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (control group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before estimated parturition date and ended the day of parturition, resulting in a minimum of 4 d of infusion (8.4 ± 0.7 d of infusion). Until parturition, blood samples were collected before the daily infusions, and postpartum daily until d 7, and on d 30. Plasma concentrations of parathyroid hormone (PTH) were transiently increased at parturition and on d 1 in control cows. In the 5-HTP group PTH remained unchanged. The concentration of pyridinoline (PYD), an established marker for calcium release from the bone to the bloodstream, increased on d 1 postpartum only in the 5-HTP group. In control cows, PYD concentrations did not change on d 1 postpartum. Melatonin concentrations were slightly but significantly increased in the 5-HTP group compared with the control group. Insulin concentrations decreased in both groups postpartum. Before parturition, leptin concentrations decreased in both groups and remained at this level until d 30 postpartum. Plasma IgG concentrations decreased in both groups on d -1 postpartum. Haptoglobin increased in both groups on d -1 and remained at this level until d 7 postpartum. No differences between groups were observed for insulin, glucagon, IgG, leptin

  19. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines in all organisms including plants affect a myriad of growth and developmental processes. Therefore, there is continued interest in understanding their (here polyamines) biosynthesis and functional roles in regulating plant metabolism, physiology and development. The role of polyamine...

  20. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen?

    PubMed

    Ceja-Galicia, Zeltzin A; Daniel, Alberto; Salazar, Ana María; Pánico, Pablo; Ostrosky-Wegman, Patricia; Díaz-Villaseñor, Andrea

    2017-09-05

    The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polymorphism of the beta3-adrenergic receptor gene affects basal metabolic rate in obese Finns.

    PubMed

    Sipiläinen, R; Uusitupa, M; Heikkinen, S; Rissanen, A; Laakso, M

    1997-01-01

    Low basal metabolic rate (BMR) is a risk factor for weight gain and obesity. The polymorphism at codon 64 of the beta3-adrenergic receptor gene has been suggested to be associated with BMR. We investigated the frequency of the Trp64Arg of the beta3-adrenergic receptor gene and the effects of this polymorphism on BMR in obese Finns. Altogether, 170 obese subjects (29 men, 141 women, BMI 34.7 +/- 3.8 kg/m2, mean +/- SD) participated in the study. The frequency of the Trp64Arg polymorphism was 19%. None of the obese subjects were homozygous for the Arg-encoding allele. The frequency of the Trp64Arg polymorphism in obese Finns did not differ from nonobese and normoglycemic control subjects. BMR adjusted for lean body mass and age was lower in subjects with the Trp64Arg polymorphism (n = 20) than in normal homozygotes Trp64Trp (n = 99) (1,569 +/- 73 vs. 1,635 +/- 142 kcal/day, P = 0.004). For the female group (n = 98), the respective values were 1,501 +/- 66 kcal/day vs. 1,568 +/- 127 kcal/day (P = 0.004). There were no significant differences in weight, BMI, waist-to-hip ratio, lean body mass, percentage of fat, and respiratory quotient between the groups with or without the Trp64Arg polymorphism. Neither serum glucose nor insulin levels differed between the two groups. We conclude that the Trp64Arg polymorphism of the beta3-adrenergic receptor gene affects basal metabolic rate in obese Finns but does not have significant effect on glucose metabolism.

  2. Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.

    PubMed

    Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M

    2015-02-01

    Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.

  3. Gender Effects in Alcohol Dependence: An fMRI Pilot Study Examining Affective Processing

    PubMed Central

    Padula, Claudia B.; Anthenelli, Robert M.; Eliassen, James C.; Nelson, Erik; Lisdahl, Krista M.

    2017-01-01

    Background Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Methods Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Results Fearful Condition—The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition—AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Conclusions Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. PMID:25684049

  4. Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle.

    PubMed

    Kubrak, Olga I; Atamaniuk, Tetiana M; Husak, Viktor V; Lushchak, Volodymyr I

    2013-09-01

    This study aims to assess effects of 96 h goldfish exposure to 1, 10 and 100 mg/L of the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), on metabolic indices and free radical process markers in white muscle of a commercial fish, the goldfish Carassius auratus L. Most oxidative stress markers and antioxidant enzymes were not affected at 2,4-D fish treatment. 2,4-D fish exposure induced the elevated levels of total (by 46% and 40%) and reduced (by 77% and 73%) glutathione in muscles of goldfish of 10 mg/L 2,4-D and recovery (after 100 mg/L of 2,4-D exposure) groups, respectively. However, in muscles of 100 mg/L 2,4-D exposed goldfish these parameters were depleted (by 47% and 64%). None of investigated parameters of protein and carbohydrate metabolisms changed in white muscles of 2,4-D exposed fish, with exception of lactate dehydrogenase activity, which was slightly (by 11-15%) elevated in muscles of goldfish exposed to 10-100 mg/L of 2,4-D, but also recovered. Thus, the short term exposure of goldfish to the selected concentrations of 2,4-D does not substantially affect their white muscle, suggesting the absence of any effect under the environmentally relevant concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Disrupted Bone Metabolism in Long-Term Bedridden Patients.

    PubMed

    Eimori, Keiko; Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.

  6. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    PubMed

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  7. The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    PubMed

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations

  8. Acute stress affects prospective memory functions via associative memory processes.

    PubMed

    Szőllősi, Ágnes; Pajkossy, Péter; Demeter, Gyula; Kéri, Szabolcs; Racsmány, Mihály

    2018-01-01

    Recent findings suggest that acute stress can improve the execution of delayed intentions (prospective memory, PM). However, it is unclear whether this improvement can be explained by altered executive control processes or by altered associative memory functioning. To investigate this issue, we used physical-psychosocial stressors to induce acute stress in laboratory settings. Then participants completed event- and time-based PM tasks requiring the different contribution of control processes and a control task (letter fluency) frequently used to measure executive functions. According to our results, acute stress had no impact on ongoing task performance, time-based PM, and verbal fluency, whereas it enhanced event-based PM as measured by response speed for the prospective cues. Our findings indicate that, here, acute stress did not affect executive control processes. We suggest that stress affected event-based PM via associative memory processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals.

    PubMed

    Glazier, Douglas Stewart

    2009-10-01

    Metabolic rate is commonly thought to scale with body mass (M) to the 3/4 power. However, the metabolic scaling exponent (b) may vary with activity state, as has been shown chiefly for interspecific relationships. Here I use a meta-analysis of literature data to test whether b changes with activity level within species of ectothermic animals. Data for 19 species show that b is usually higher during active exercise (mean +/- 95% confidence limits = 0.918 +/- 0.038) than during rest (0.768 +/- 0.069). This significant upward shift in b to near 1 is consistent with the metabolic level boundaries hypothesis, which predicts that maximal metabolic rate during exercise should be chiefly influenced by volume-related muscular power production (scaling as M (1)). This dependence of b on activity level does not appear to be a simple temperature effect because body temperature in ectotherms changes very little during exercise.

  10. [Absorption and metabolism of Chuanxiong Rhizoma decoction with multi-component sequential metabolism method].

    PubMed

    Liu, Yang; Luo, Zhi-Qiang; Lv, Bei-Ran; Zhao, Hai-Yu; Dong, Ling

    2016-04-01

    The multiple components in Chinese herbal medicines (CHMS) will experience complex absorption and metabolism before entering the blood system. Previous studies often lay emphasis on the components in blood. However, the dynamic and sequential absorption and metabolism process following multi-component oral administration has not been studied. In this study, the in situ closed-loop method combined with LC-MS techniques were employed to study the sequential process of Chuanxiong Rhizoma decoction (RCD). A total of 14 major components were identified in RCD. Among them, ferulic acid, senkyunolide J, senkyunolide I, senkyunolide F, senkyunolide G, and butylidenephthalide were detected in all of the samples, indicating that the six components could be absorbed into blood in prototype. Butylphthalide, E-ligustilide, Z-ligustilide, cnidilide, senkyunolide A and senkyunolide Q were not detected in all the samples, suggesting that the six components may not be absorbed or metabolized before entering the hepatic portal vein. Senkyunolide H could be metabolized by the liver, while senkyunolide M could be metabolized by both liver and intestinal flora. This study clearly demonstrated the changes in the absorption and metabolism process following multi-component oral administration of RCD, so as to convert the static multi-component absorption process into a comprehensive dynamic and continuous absorption and metabolism process. Copyright© by the Chinese Pharmaceutical Association.

  11. Visualizing and quantifying difference in cytoplasmic and nuclear metabolism in the hepatobiliary system in vivo

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ju; Kang, Ning; Lee, Jian-Ye; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2015-01-01

    The liver is a major organ responsible for performing xenobiotic metabolism. In this process, xenobiotic is uptaken and processed in hepatocytes and subsequently excreted into the bile canaliculi. However, the intracellular heterogeneity in such metabolic processes is not known. We use the molecular probe 6-carboxyfluorescein diacetate (6-CFDA) to investigate xenobiotic metabolism in hepatocytes with intravital multiphoton fluorescence microscopy. 6-CFDA is processed by intracellular esterase to fluorescent 6-CF, which can be imaged and quantified. We found that compared to the nucleus, cytoplasmic 6-CF fluorescence intensity reached a maximum earlier (cytoplasm: 11.3±4.4 min nucleus: 14.7±4.9 min) following 6-CFDA injection. We also found a slight difference in the rate of 6-CFDA metabolism as the rates of 6-CF decay at rates of 1.43±0.75 and 1.27±0.72 photons/min for the cytoplasm and nucleus, respectively. These results indicate that molecular transport to the nucleus is additionally hindered and can affect drug transport there.

  12. Dietary starch types affect liver nutrient metabolism of finishing pigs.

    PubMed

    Xie, Chen; Li, Yanjiao; Li, Jiaolong; Zhang, Lin; Zhou, Guanghong; Gao, Feng

    2017-09-01

    This study aimed to evaluate the effect of different starch types on liver nutrient metabolism of finishing pigs. In all ninety barrows were randomly allocated to three diets with five replicates of six pigs, containing purified waxy maize starch (WMS), non-waxy maize starch (NMS) and pea starch (PS) (the amylose to amylopectin ratios were 0·07, 0·19 and 0·28, respectively). After 28 d of treatments, two per pen (close to the average body weight of the pen) were weighed individually, slaughtered and liver samples were collected. Compared with the WMS diet, the PS diet decreased the activities of glycogen phosphorylase, phosphoenolpyruvate carboxykinase and the expression of phosphoenolpyruvate carboxykinase 1 in liver (P0·05). Compared with the WMS diet, the PS diet reduced the expressions of glutamate dehydrogenase and carbamoyl phosphate synthetase 1 in liver (P<0·05). PS diet decreased the expression of the insulin receptor, and increased the expressions of mammalian target of rapamycin complex 1 and ribosomal protein S6 kinase β-1 in liver compared with the WMS diet (P<0·05). These findings indicated that the diet with higher amylose content could down-regulate gluconeogenesis, and cause less fat deposition and more protein deposition by affecting the insulin/PI3K/protein kinase B signalling pathway in liver of finishing pigs.

  13. Facial affect processing in patients receiving opioid treatment in palliative care: preferential processing of threat in pain catastrophizers.

    PubMed

    Carroll, Erin M A; Kamboj, Sunjeev K; Conroy, Laura; Tookman, Adrian; Williams, Amanda C de C; Jones, Louise; Morgan, Celia J A; Curran, H Valerie

    2011-06-01

    As a multidimensional phenomenon, pain is influenced by various psychological factors. One such factor is catastrophizing, which is associated with higher pain intensity and emotional distress in cancer and noncancer pain. One possibility is that catastrophizing represents a general cognitive style that preferentially supports the processing of negative affective stimuli. Such preferential processing of threat--toward negative facial expressions, for example--is seen in emotional disorders and is sensitive to pharmacological treatment. Whether pharmacological (analgesic) treatment might also influence the processing of threat in pain patients is currently unclear. This study investigates the effects catastrophizing on processing of facial affect in those receiving an acute opioid dose. In a double-blind crossover design, the performance of 20 palliative care patients after their usual dose of immediate-release opioid was compared with their performance following matched-placebo administration on a facial affect recognition (i.e., speed and accuracy) and threat-pain estimation task (i.e., ratings of pain intensity). The influence of catastrophizing was examined by splitting the sample according to their score on the Pain Catastrophizing Scale (PCS). Opioid administration had no effect on facial affect processing compared with placebo. However, the main finding was that enhanced processing of fear, sadness, and disgust was found only in patients who scored highly on the PCS. There was no difference in performance between the two PCS groups on the other emotions (i.e., happiness, surprise, and anger). These findings suggest that catastrophizing is associated with an affective information-processing bias in patients with severe pain conditions. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  14. Processes affecting the remediation of chromium-contaminated sites.

    PubMed

    Palmer, C D; Wittbrodt, P R

    1991-05-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites.

  15. Astrocytic glycogen metabolism in the healthy and diseased brain.

    PubMed

    Bak, Lasse K; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S

    2018-05-11

    The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K + and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  17. Aberrant semantic and affective processing in people at risk for psychosis.

    PubMed

    Kerns, J G; Berenbaum, H

    2000-11-01

    Semantic and affective processing were examined in people at risk for psychosis. The participants were 3 groups of college students: 41 people with elevated Perceptual Aberration and Magical Ideation (PerMag) scores, 18 people with elevated Social Anhedonia (SocAnh) scores, and 100 control participants. Participants completed a single-word, continuous presentation pronunciation task that included semantically related words, affectively valenced words, and semantically unrelated and affectively neutral words. PerMag participants exhibited increased semantic priming and increased sensitivity to affectively valenced primes. SocAnh participants had increased sensitivity to affectively valenced targets.

  18. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  19. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine.

    PubMed

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-08-01

    Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.

  20. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All

  1. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism.

    PubMed

    Karlstädt, Anja; Fliegner, Daniela; Kararigas, Georgios; Ruderisch, Hugo Sanchez; Regitz-Zagrosek, Vera; Holzhütter, Hermann-Georg

    2012-08-29

    Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  2. Neuropsychiatric Subsyndromes and Brain Metabolic Network Dysfunctions in Early Onset Alzheimer’s Disease

    PubMed Central

    Tommaso, Ballarini; Leonardo, Iaccarino; Giuseppe, Magnani; Nagehan, Ayakta; Bruce L, Miller; William J, Jagust; Luisa, Gorno-Tempini Maria; Gil D, Rabinovici; Daniela, Perani

    2017-01-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer’s disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective and psychotic SSy). 85% of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N=51) and Healthy Controls (N=57). The apathetic, hyperactivity and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. PMID:27412866

  3. Heme oxygenase-1: a metabolic nike.

    PubMed

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  4. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  5. Neuropsychiatric subsyndromes and brain metabolic network dysfunctions in early onset Alzheimer's disease.

    PubMed

    Ballarini, Tommaso; Iaccarino, Leonardo; Magnani, Giuseppe; Ayakta, Nagehan; Miller, Bruce L; Jagust, William J; Gorno-Tempini, Maria Luisa; Rabinovici, Gil D; Perani, Daniela

    2016-12-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer's disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18 F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective, and psychotic SSy). Eighty-five percent of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18 F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N = 51) and Healthy Controls (N = 57). The apathetic, hyperactivity, and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. Hum Brain Mapp 37:4234-4247, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process.

    PubMed

    Costamagna, M S; Zampini, I C; Alberto, M R; Cuello, S; Torres, S; Pérez, J; Quispe, C; Schmeda-Hirschmann, G; Isla, M I

    2016-01-01

    Geoffroea decorticans (chañar), is widely distributed throughout Northwestern Argentina. Its fruit is consumed as flour, arrope or hydroalcoholic beverage. The chañar fruits flour was obtained and 39 phenolic compounds were tentatively identified by HPLC-MS/MS(n). The compounds comprised caffeic acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of vanillic acid, p-coumaric acid and its phenethyl ester as well as free and glycosylated flavonoids. The polyphenols enriched extract with and without gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-amylase, α-glucosidase, lipase and hydroxyl methyl glutaryl CoA reductase. The polyphenolic extract exhibited antioxidant activity by different mechanisms and inhibited the pro-inflammatory enzymes (ciclooxygenase, lipoxygenase and phospholipase A2). The polyphenolic extract did not showed mutagenic effect by Ames test against Salmonella typhimurium TA98 and TA100 strains. These findings add evidence that chañar fruit flour may be considered a functional food with preventive properties against diseases associated with oxidative stress, inflammatory mediators and metabolic syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Metabolic acidosis].

    PubMed

    Regolisti, Giuseppe; Fani, Filippo; Antoniotti, Riccardo; Castellano, Giuseppe; Cremaschi, Elena; Greco, Paolo; Parenti, Elisabetta; Morabito, Santo; Sabatino, Alice; Fiaccadori, Enrico

    2016-01-01

    Metabolic acidosis is frequently observed in clinical practice, especially among critically ill patients and/or in the course of renal failure. Complex mechanisms are involved, in most cases identifiable by medical history, pathophysiology-based diagnostic reasoning and measure of some key acid-base parameters that are easily available or calculable. On this basis the bedside differential diagnosis of metabolic acidosis should be started from the identification of the two main subtypes of metabolic acidosis: the high anion gap metabolic acidosis and the normal anion gap (or hyperchloremic) metabolic acidosis. Metabolic acidosis, especially in its acute forms with elevated anion gap such as is the case of lactic acidosis, diabetic and acute intoxications, may significantly affect metabolic body homeostasis and patients hemodynamic status, setting the stage for true medical emergencies. The therapeutic approach should be first aimed at early correction of concurrent clinical problems (e.g. fluids and hemodynamic optimization in case of shock, mechanical ventilation in case of concomitant respiratory failure, hemodialysis for acute intoxications etc.), in parallel to the formulation of a diagnosis. In case of severe acidosis, the administration of alkalizing agents should be carefully evaluated, taking into account the risk of side effects, as well as the potential need of renal replacement therapy.

  8. Mangiferin Modulation of Metabolism and Metabolic Syndrome

    PubMed Central

    Fomenko, Ekaterina Vladimirovna; Chi, Yuling

    2016-01-01

    The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. PMID:27534809

  9. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.

    PubMed

    Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte

    2015-12-01

    Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    PubMed

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  11. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat

    PubMed Central

    Palmnäs, Marie S. A.; Cowan, Theresa E.; Bomhof, Marc R.; Su, Juliet; Reimer, Raylene A.; Vogel, Hans J.; Hittel, Dustin S.; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5–7 mg/kg/d in drinking water) treatments for 8 week (n = 10–12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation. PMID:25313461

  12. Metabolic functions of FABPs— mechanisms and therapeutic implications

    PubMed Central

    Hotamisligil, Gökhan S.; Bernlohr, David A.

    2015-01-01

    Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases. PMID:26260145

  13. Effective connectivity during processing of facial affect: evidence for multiple parallel pathways.

    PubMed

    Dima, Danai; Stephan, Klaas E; Roiser, Jonathan P; Friston, Karl J; Frangou, Sophia

    2011-10-05

    The perception of facial affect engages a distributed cortical network. We used functional magnetic resonance imaging and dynamic causal modeling to characterize effective connectivity during explicit (conscious) categorization of affective stimuli in the human brain. Specifically, we examined the modulation of connectivity from posterior regions of the face-processing network to the lateral ventral prefrontal cortex (VPFC) during affective categorization and we tested for a potential role of the amygdala (AMG) in mediating this modulation. We found that explicit processing of facial affect led to prominent modulation (increase) in the effective connectivity from the inferior occipital gyrus (IOG) to the VPFC, while there was less evidence for modulation of the afferent connections from fusiform gyrus and AMG to VPFC. More specifically, the forward connection from IOG to the VPFC exhibited a selective increase under anger (as opposed to fear or sadness). Furthermore, Bayesian model comparison suggested that the modulation of afferent connections to the VPFC was mediated directly by facial affect, as opposed to an indirect modulation mediated by the AMG. Our results thus suggest that affective information is conveyed to the VPFC along multiple parallel pathways and that AMG activity is not sufficient to account for the gating of information transfer to the VPFC during explicit emotional processing.

  14. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    PubMed

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  15. The Effect of Positive Mood on Flexible Processing of Affective Information.

    PubMed

    Grol, Maud; De Raedt, Rudi

    2017-07-17

    Recent efforts have been made to understand the cognitive mechanisms underlying psychological resilience. Cognitive flexibility in the context of affective information has been related to individual differences in resilience. However, it is unclear whether flexible affective processing is sensitive to mood fluctuations. Furthermore, it remains to be investigated how effects on flexible affective processing interact with the affective valence of information that is presented. To fill this gap, we tested the effects of positive mood and individual differences in self-reported resilience on affective flexibility, using a task switching paradigm (N = 80). The main findings showed that positive mood was related to lower task switching costs, reflecting increased flexibility, in line with previous findings. In line with this effect of positive mood, we showed that greater resilience levels, specifically levels of acceptance of self and life, also facilitated task set switching in the context of affective information. However, the effects of resilience on affective flexibility seem more complex. Resilience tended to relate to more efficient task switching when negative information was preceded by positive information, possibly because the presentation of positive information, as well as positive mood, can facilitate task set switching. Positive mood also influenced costs associated with switching affective valence of the presented information. This latter effect was indicative of a reduced impact of no longer relevant negative information and more impact of no longer relevant positive information. Future research should confirm these effects of individual differences in resilience on affective flexibility, considering the affective valence of the presented information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Body-related cognitions, affect and post-event processing in body dysmorphic disorder.

    PubMed

    Kollei, Ines; Martin, Alexandra

    2014-03-01

    Cognitive behavioural models postulate that individuals with BDD engage in negative appearance-related appraisals and affect. External representations of one's appearance are thought to activate a specific mode of processing characterized by increased self-focused attention and an activation of negative appraisals and affect. The present study used a think-aloud approach including an in vivo body exposure to examine body-related cognitions and affect in individuals with BDD (n = 30), as compared to individuals with major depression (n = 30) and healthy controls (n = 30). Participants were instructed to think aloud during baseline, exposure and follow-up trials. Individuals with BDD verbalized more body-related and more negative body-related cognitions during all trials and reported higher degrees of negative affect than both control groups. A weaker increase of positive body-related cognitions during exposure, a stronger increase of sadness and anger after exposure and higher levels of post-event processing, were specific processes in individuals with BDD. Individuals with major depression were not excluded from the BDD group. This is associated with a reduction of internal validity, as the two clinical groups are somewhat interwoven. Key findings need to be replicated. The findings indicate that outcomes such as negative appearance-related cognitions and affect are specific to individuals with BDD. An external representation of one's appearance activates a specific mode of processing in BDD, manifesting itself in the absence of positive body-related cognitions, increased anger and sadness, and high levels of post-event processing. These specific processes may contribute toward maintenance of BDD psychopathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Do diabetes and obesity affect the metabolic response to exercise?

    PubMed

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  18. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    PubMed

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  19. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances

    PubMed Central

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats. PMID:29566035

  20. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  1. Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats.

    PubMed

    Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I

    2013-09-01

    Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.

  2. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  3. Disrupted Bone Metabolism in Long-Term Bedridden Patients

    PubMed Central

    Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Background Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. Methods This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. Results The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Conclusions Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients. PMID:27275738

  4. Affective priming effects of musical sounds on the processing of word meaning.

    PubMed

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  5. On whether mirror neurons play a significant role in processing affective prosody.

    PubMed

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  6. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans.

    PubMed

    Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  8. Using ERPs to Investigate Valence Processing in the Affect Misattribution Procedure

    PubMed Central

    Von Gunten, Curtis D.; Bartholow, Bruce D.; Scherer, Laura D.

    2016-01-01

    The construct validity of the Affect Misattribution Procedure (AMP) has been challenged by theories proposing that the task does not actually measure affect misattribution. The current study tested the validity of the AMP as a measure of affect misattribution by examining three components of the event-related potential (ERP) known to be associated with the allocation of motivated attention. Results revealed that ERP amplitudes varied in response to affectively ambiguous targets as a function of the valence of preceding primes. Furthermore, differences in ERP responses to the targets were largely similar to differences in ERPs elicited by the primes. The existence of valence differentiation in both the prime-locked and the target-locked ERPs, along with the similarity in this differentiation, provides evidence that the affective content of the primes is psychologically registered, and that this content influences the processing of the subsequent, evaluatively ambiguous targets, both of which are required if the priming effects found in the AMP are the result of affect misattribution. However, the behavioral priming effect was uncorrelated with ERP amplitudes, leaving some question as to the locus of this effect in the information-processing system. Findings are discussed in light of the strengths and weaknesses of using ERPs to understand the priming effects in the AMP. PMID:27754548

  9. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  10. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  11. How current ginning processes affect fiber length uniformity index

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop cotton ginning methods that improve fiber characteristics that are compatible with the newer and more efficient spinning technologies. A literature search produced recent studies that described how current ginning processes affect HVI fiber length uniformity index. Resul...

  12. Maternal cardiac metabolism in pregnancy

    PubMed Central

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  13. Information processing and negative affect: evidence from the 2003 Health Information National Trends Survey.

    PubMed

    Beckjord, Ellen Burke; Finney Rutten, Lila J; Arora, Neeraj K; Moser, Richard P; Hesse, Bradford W

    2008-03-01

    Health communication can help reduce the cancer burden by increasing processing of information about health interventions. Negative affect is associated with information processing and may be a barrier to successful health communication. We examined associations between negative affect and information processing at the population level. Symptoms of depression (6 items) and cancer worry (1 item) operationalized negative affect; attention to health information (5 items) and cancer information-seeking experiences (6 items) operationalized information processing. Higher cancer worry was associated with more attention to health information (p<.01) and worse cancer information-seeking experiences (p<.05). More symptoms of depression were associated with worse information-seeking experiences (p<.01), but not with attention. We found population-level evidence that increased cancer worry is associated with more attention to health information, and increased cancer worry and symptoms of depression are associated with worse cancer information-seeking experiences. Results suggest that affect plays a role in health information processing, and decreasing negative affect associated with cancer communication may improve experiences seeking cancer information. Copyright (c) 2008 APA, all rights reserved.

  14. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats.

    PubMed

    Zhang, Yan; Li, Rui; Li, Yang; Chen, Wei; Zhao, Shi; Chen, Guoxun

    2012-08-01

    We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.

  16. Paternal epigenetic programming: evolving metabolic disease risk.

    PubMed

    Hur, Suzy S J; Cropley, Jennifer E; Suter, Catherine M

    2017-04-01

    Parental health or exposures can affect the lifetime health outcomes of offspring, independently of inherited genotypes. Such 'epigenetic' effects occur over a broad range of environmental stressors, including defects in parental metabolism. Although maternal metabolic effects are well documented, it has only recently been established that that there is also an independent paternal contribution to long-term metabolic health. Both paternal undernutrition and overnutrition can induce metabolic phenotypes in immediate offspring, and in some cases, the induced phenotype can affect multiple generations, implying inheritance of an acquired trait. The male lineage transmission of metabolic disease risk in these cases implicates a heritable factor carried by sperm. Sperm-based transmission provides a tractable system to interrogate heritable epigenetic factors influencing metabolism, and as detailed here, animal models of paternal programming have already provided some significant insights. Here, we review the evidence for paternal programming of metabolism in humans and animal models, and the available evidence on potential underlying mechanisms. Programming by paternal metabolism can be observed in multiple species across animal phyla, suggesting that this phenomenon may have a unique evolutionary significance. © 2017 Society for Endocrinology.

  17. Interplay between gut microbiota metabolism and inflammation in HIV infection.

    PubMed

    Vázquez-Castellanos, Jorge F; Serrano-Villar, Sergio; Jiménez-Hernández, Nuria; Soto Del Rio, María Dolores; Gayo, Sara; Rojo, David; Ferrer, Manuel; Barbas, Coral; Moreno, Santiago; Estrada, Vicente; Rattei, Tomas; Latorre, Amparo; Moya, Andrés; Gosalbes, María José

    2018-05-23

    HIV infection causes a disruption of gut-associated lymphoid tissue, driving a shift in the composition of gut microbiota. A deeper understanding of the metabolic changes and how they affect the interplay with the host is needed. Here, we assessed functional modifications of HIV-associated microbiota by combining metagenomic and metatranscriptomic analyses. The transcriptionally active microbiota was well-adapted to the inflamed environment, overexpressing pathways related to resistance to oxidative stress. Furthermore, gut inflammation was maintained by the Gram-negative nature of the HIV-associated microbiota and underexpression of anti-inflammatory processes, such as short chain fatty acid biosynthesis or indole production. We performed co-occurrence and metabolic network analyses that showed relevance in the microbiota structure of both taxonomic and metabolic HIV-associated biomarkers. The Bayesian network revealed the most determinant pathways for maintaining the structure stability of the bacterial community. In addition, we identified the taxa's contribution to metabolic activities and their interactions with host health.

  18. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    ERIC Educational Resources Information Center

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  19. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  20. Metabolic regulation of inflammation.

    PubMed

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  1. Searching for Judy: How Small Mysteries Affect Narrative Processes and Memory

    ERIC Educational Resources Information Center

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how authors' narrative choices, including the introduction of small mysteries, can affect readers' narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that 1 type of small mystery--a character introduced without information linking him or her to the story--affects readers'…

  2. Epidemiological evidence for metabolic programming in dairy cattle.

    PubMed

    Opsomer, G; Van Eetvelde, M; Kamal, M; Van Soom, A

    2016-01-01

    In humans, there is evidence that metabolic diseases occurring in later life arise in utero as a result of programming of key endocrine systems during suboptimal intrauterine conditions. The process by which prenatal insults lead to permanent changes in tissue structure and function, and finally to low birthweight (BW), is known as developmental programming. Poor nutrition, environmental temperature, oxygen availability and overnutrition all have been shown to significantly affect intrauterine development. Because the placenta is the organ for communication between mother and fetus, placental insufficiency invariably affects embryonic development and health in later life. In order to optimise their income, dairy farmers inseminate their nulliparous heifers at adolescent age, and subsequently strive for calving intervals not longer than 380 days. Hence, heifers are still growing and multiparous animals are still yielding large quantities of milk while pregnant. Dairy cows heavily selected for milk yield have specific endocrinological characteristics, like low peripheral insulin levels and low peripheral insulin sensitivity, both contributing to safeguard glucose for milk production. The reverse of this advanced selection is the high incidence of a wide range of metabolic diseases. Evidence from epidemiological studies is now available demonstrating that milk yield during gestation and environmental factors, such as season of pregnancy and parturition, affect both the size and the intermediary metabolism of the neonatal calf. The latter suggests that further optimisation in terms of production, reproduction, general health and longevity in the dairy sector may be feasible by taking into account environmental factors occurring during pregnancy.

  3. Searching for Judy: How small mysteries affect narrative processes and memory

    PubMed Central

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how author’s narrative choices, including the introduction of small mysteries, can affect readers’ narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that one type of small mystery—a character introduced without information linking him or her to the story—affects readers’ moment-by-moment processing. For that project, participants read stories that introduced characters by proper name alone (e.g., Judy) or with information connecting the character to the rest of the story (e.g., our principal Judy). In an on-line recognition probe task, responses to the character’s name three lines after his or her introduction were faster when the character had not been introduced with connecting information, suggesting that the character remained accessible awaiting resolution. In the four experiments in this paper, we extended our theoretical analysis of small mysteries. In Experiments 1 and 2, we found evidence that trait information (e.g., daredevil Judy) is not sufficient to connect a character to a text. In Experiments 3 and 4, we provide evidence that the moment-by-moment processing effects of such small mysteries also affect readers’ memory for the stories. We interpret the results in terms of Kintsch’s Construction-Integration model (1988) of discourse processing. PMID:20438273

  4. TNFα Altered Inflammatory Responses, Impaired Health and Productivity, but Did Not Affect Glucose or Lipid Metabolism in Early-Lactation Dairy Cows

    PubMed Central

    Mamedova, Laman K.; Sordillo, Lorraine M.; Bradford, Barry J.

    2013-01-01

    Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows. PMID:24260367

  5. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease.

    PubMed

    Martins, Ian J; Berger, Tamar; Sharman, Matthew J; Verdile, Giuseppe; Fuller, Stephanie J; Martins, Ralph N

    2009-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.

  6. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  7. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma.

    PubMed

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-04-09

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes.

  8. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma

    PubMed Central

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-01-01

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes. PMID:27070597

  9. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  10. The metabolic footprint of aging in mice.

    PubMed

    Houtkooper, Riekelt H; Argmann, Carmen; Houten, Sander M; Cantó, Carles; Jeninga, Ellen H; Andreux, Pénélope A; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.

  11. The metabolic footprint of aging in mice

    PubMed Central

    Houtkooper, Riekelt H.; Argmann, Carmen; Houten, Sander M.; Cantó, Carles; Jeninga, Ellen H.; Andreux, Pénélope A.; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan. PMID:22355651

  12. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    PubMed Central

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  13. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease.

    PubMed

    Dumas, Marc-Emmanuel; Kinross, James; Nicholson, Jeremy K

    2014-01-01

    Metabolic syndrome, a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease, is becoming an increasing global health concern. Insulin resistance is often associated with metabolic syndrome and also typical hepatic manifestations such as nonalcoholic fatty liver disease. Profiling of metabolic products (metabolic phenotyping or metabotyping) has provided new insights into metabolic syndrome and nonalcoholic fatty liver disease. Data from nuclear magnetic resonance spectroscopy and mass spectrometry combined with statistical modeling and top-down systems biology have allowed us to analyze and interpret metabolic signatures in terms of metabolic pathways and protein interaction networks and to identify the genomic and metagenomic determinants of metabolism. For example, metabolic phenotyping has shown that relationships between host cells and the microbiome affect development of the metabolic syndrome and fatty liver disease. We review recent developments in metabolic phenotyping and systems biology technologies and how these methodologies have provided insights into the mechanisms of metabolic syndrome and nonalcoholic fatty liver disease. We discuss emerging areas of research in this field and outline our vision for how metabolic phenotyping could be used to study metabolic syndrome and fatty liver disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  15. Regulation of Stem Cell Aging by Metabolism and Epigenetics.

    PubMed

    Ren, Ruotong; Ocampo, Alejandro; Liu, Guang-Hui; Izpisua Belmonte, Juan Carlos

    2017-09-05

    Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses.

  17. Processing fluency affects subjective claims of recollection.

    PubMed

    Kurilla, Bran P; Westerman, Deanne L

    2008-01-01

    Previous studies that have used the remember-know paradigm to investigate subjective awareness in memory have shown that fluency manipulations have an impact on "know" responses but not on "remember" responses (e.g., Rajaram, 1993), a finding typically accounted for by invoking inferential processing in judgments of familiarity but not of recollection. However, in light of several researchers' criticisms of this procedure, as well as findings documenting the influence of processing fluency on various subjective judgments, the present study was conducted in order to investigate whether judgments of recollection might also be subject to inferential processes and not solely the product of conscious retrieval. When the standard remember-know procedure was used (Experiment 1), manipulations of perceptual fluency increased "know" responses but had no effect on "remember" responses, replicating previous findings. However, when an independent ratings method was employed (Higham & Vokey, 2004), manipulations of perceptual fluency (Experiment 2) and conceptual fluency (Experiment 3) reliably increased claims of both familiarity and recollection, suggesting that the conclusion that fluency affects only "know" responses may be an artifact of the standard remember-know procedure.

  18. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    PubMed

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  19. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  20. Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways.

    PubMed

    Hagland, Hanne R; Søreide, Kjetil

    2015-01-28

    The interconnectivity between diet, gut microbiota and cell molecular responses is well known; however, only recently has technology allowed the identification of strains of microorganisms harbored in the gastrointestinal tract that may increase susceptibility to cancer. The colonic environment appears to play a role in the development of colon cancer, which is influenced by the human metabolic lifestyle and changes in the gut microbiome. Studying metabolic changes at the cellular level in cancer be useful for developing novel improved preventative measures, such as screening through metabolic breath-tests or treatment options that directly affect the metabolic pathways responsible for the carcinogenicity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Global transcriptome analysis of eukaryotic genes affected by gromwell extract.

    PubMed

    Bang, Soohyun; Lee, Dohyun; Kim, Hanhe; Park, Jiyong; Bahn, Yong-Sun

    2014-02-01

    Gromwell is known to have diverse pharmacological, cosmetic and nutritional benefits for humans. Nevertheless, the biological influence of gromwell extract (GE) on the general physiology of eukaryotic cells remains unknown. In this study a global transcriptome analysis was performed to identify genes affected by the addition of GE with Cryptococcus neoformans as the model system. In response to GE treatment, genes involved in signal transduction were immediately regulated, and the evolutionarily conserved sets of genes involved in the core cellular functions, including DNA replication, RNA transcription/processing and protein translation/processing, were generally up-regulated. In contrast, a number of genes involved in carbohydrate metabolism and transport, inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperone functions and signal transduction were down-regulated. Among the GE-responsive genes that are also evolutionarily conserved in the human genome, the expression patterns of YSA1, TPO2, CFO1 and PZF1 were confirmed by northern blot analysis. Based on the functional characterization of some GE-responsive genes, it was found that GE treatment may promote cellular tolerance against a variety of environmental stresses in eukaryotes. GE treatment affects the expression levels of a significant portion of the Cryptococcus genome, implying that GE significantly affects the general physiology of eukaryotic cells. © 2013 Society of Chemical Industry.

  2. Eco-evolutionary processes affecting plant-herbivore interactions during early community succession.

    PubMed

    Howard, Mia M; Kalske, Aino; Kessler, André

    2018-06-01

    The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima. We use surveys in a large-scale field experiment with repeated plots representing 6 years of early oldfield succession and reciprocal transplant common garden experiments to test for the relative importance of rapid evolution (genetic) and environmental changes (soil quality) in affecting mean plant resistance and growth phenotypes during community succession. While plant growth varied strongly with soil quality over the first 5 years of agricultural abandonment, plant secondary metabolism, and herbivore resistance varied minimally with the soil environment. Instead, mean composition and abundance of plant secondary compound bouquets differed between S. altissima plants from populations collected in communities in the first ("early") and sixth ("intermediate") years of oldfield succession, which was reflected in the feeding preference of the specialist herbivore, Trirhabda virgata, for early succession lines. Moreover, this preference was most pronounced on poorer quality, early succession soils. Overall, our data demonstrate that plant quality varies for insect herbivores during the course of early succession and this change is a combination of altered genotypic composition of the population and phenotypic plasticity in different soil environments.

  3. Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.

    PubMed

    Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata

    2014-01-01

    Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.

  4. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  5. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less

  6. Relation between facial affect recognition and configural face processing in antipsychotic-free schizophrenia.

    PubMed

    Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier

    2015-03-01

    Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  7. Selective attention to affective value alters how the brain processes taste stimuli.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2008-02-01

    How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.

  8. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    PubMed Central

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  9. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory

    PubMed Central

    Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.

    2015-01-01

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  10. Parameters of Glucose and Lipid Metabolism Affect the Occurrence of Colorectal Adenomas Detected by Surveillance Colonoscopies

    PubMed Central

    Kim, Nam Hee; Suh, Jung Yul; Park, Jung Ho; Park, Dong Il; Cho, Yong Kyun; Sohn, Chong Il; Choi, Kyuyong

    2017-01-01

    Purpose Limited data are available regarding the associations between parameters of glucose and lipid metabolism and the occurrence of metachronous adenomas. We investigated whether these parameters affect the occurrence of adenomas detected on surveillance colonoscopy. Materials and Methods This longitudinal study was performed on 5289 subjects who underwent follow-up colonoscopy between 2012 and 2013 among 62171 asymptomatic subjects who underwent an initial colonoscopy for a health check-up between 2010 and 2011. The risk of adenoma occurrence was assessed using Cox proportional hazards modeling. Results The mean interval between the initial and follow-up colonoscopy was 2.2±0.6 years. The occurrence of adenomas detected by the follow-up colonoscopy increased linearly with the increasing quartiles of fasting glucose, hemoglobin A1c (HbA1c), insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and triglycerides measured at the initial colonoscopy. These associations persisted after adjusting for confounding factors. The adjusted hazard ratios for adenoma occurrence comparing the fourth with the first quartiles of fasting glucose, HbA1c, insulin, HOMA-IR, and triglycerides were 1.50 [95% confidence interval (CI), 1.26–1.77; ptrend<0.001], 1.22 (95% CI, 1.04–1.43; ptrend=0.024), 1.22 (95% CI, 1.02–1.46; ptrend=0.046), 1.36 (95% CI, 1.14–1.63; ptrend=0.004), and 1.19 (95% CI, 0.99–1.42; ptrend=0.041), respectively. In addition, increasing quartiles of low-density lipoprotein-cholesterol and apolipoprotein B were associated with an increasing occurrence of adenomas. Conclusion The levels of parameters of glucose and lipid metabolism were significantly associated with the occurrence of adenomas detected on surveillance colonoscopy. Improving the parameters of glucose and lipid metabolism through lifestyle changes or medications may be helpful in preventing metachronous adenomas. PMID:28120565

  11. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions.

    PubMed

    Johnson, Lacey; Tan, Shereen; Wood, Ben; Davis, April; Marks, Denese C

    2016-07-01

    Alternatives to room temperature storage of platelets (PLTs) may be beneficial to extend the limited shelf life and support transfusion logistics in rural and military areas. The aim of this study was to assess the morphologic, metabolic, and functional aspects of PLTs stored at room temperature or in refrigerated conditions or cryopreserved. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were room temperature stored (20-24°C), cold-stored (2-6°C), and cryopreserved (-80°C with dimethyl sulfoxide). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were examined immediately after thawing and after 6 and 24 hours of storage at room temperature. Cold-stored and cryopreserved PLTs underwent a significant shape change, although the cryopreserved PLTs appeared to recover from this during subsequent storage. Glycolytic metabolism was reduced in cold-stored PLTs, but accelerated in cryopreserved PLTs, while oxidative phosphorylation was negatively affected by both storage conditions. PLT aggregation was potentiated by cold storage and diminished by cryopreservation in comparison to room temperature-stored PLTs. Cold storage and cryopreservation resulted in faster clot formation (R-time; thromboelastography), which was associated with an increase in microparticles. Cold storage and cryopreservation of PLTs led to morphologic and metabolic changes. However, storage under these conditions appears to maintain or even enhance certain aspects of in vitro PLT function. © 2016 AABB.

  12. High intake of orange juice and cola differently affects metabolic risk in healthy subjects.

    PubMed

    Büsing, Franziska; Hägele, Franziska A; Nas, Alessa; Döbert, Laura-Verena; Fricker, Alena; Dörner, Elisabeth; Podlesny, Daniel; Aschoff, Julian; Pöhnl, Tobias; Schweiggert, Ralf; Fricke, W Florian; Carle, Reinhold; Bosy-Westphal, Anja

    2018-03-03

    Higher consumption of sugar-containing beverages has been associated with an elevated risk of type 2 diabetes and gout. Whether this equally applies to cola with an unhealthy image and orange juice (OJ) having a healthy image remains unknown. In order to investigate whether OJ and cola differently affect metabolic risk 26 healthy adults (24.7 ± 3.2 y; BMI 23.2 ± 3.3 kg/m 2 ) participated in a 2 × 2-wk intervention and consumed either OJ or caffeine-free cola (20% Ereq as sugar from beverages) in-between 3 meals/d at ad libitum energy intake. Glycemic control, uric acid metabolism and gut microbiota were assessed as outcome parameters. Fecal microbiota, body weight, basal and OGTT-derived insulin sensitivity remained unchanged in both intervention periods. Levels of uric acid were normal at baseline and did not change with 2-wk cola consumption (-0.03 ± 0.67 mg/dL; p > 0.05), whereas they decreased with OJ intervention (-0.43 ± 0.56 mg/dL; p < 0.01) due to increased uric acid excretion (+130.2 ± 130.0 mg/d; p < 0.001). Compared to OJ, consumption of cola led to a higher daylong glycemia (ΔiAUC: 36.9 ± 83.2; p < 0.05), an increase in glucose variability (ΔMAGE-Index: 0.29 ± 0.44; p < 0.05), and a lower 24 h-insulin secretion (ΔC-peptide excretion: -31.76 ± 38.61 μg/d; p < 0.001), which may be explained by a decrease in serum potassium levels (-0.11 ± 0.24 mmol/L; p < 0.05). Despite its sugar content, regular consumption of large amounts of OJ do not increase the risk of gout but may even contribute to lower uric acid levels. The etiology of impaired insulin secretion with cola consumption needs to be further investigated. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  14. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  15. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger

  16. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories.

    PubMed

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing. The affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample ( n  = 99) using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures) was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory. Main findings were that higher levels of trait (but not state) measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal) processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing. These results cast doubt on the hypothesis that ruminative processing of

  17. Combined transcriptome and metabolome analyses of metformin effects reveal novel links between metabolic networks in steroidogenic systems.

    PubMed

    Udhane, Sameer S; Legeza, Balazs; Marti, Nesa; Hertig, Damian; Diserens, Gaëlle; Nuoffer, Jean-Marc; Vermathen, Peter; Flück, Christa E

    2017-08-17

    Metformin is an antidiabetic drug, which inhibits mitochondrial respiratory-chain-complex I and thereby seems to affect the cellular metabolism in many ways. It is also used for the treatment of the polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. In addition, metformin possesses antineoplastic properties. Although metformin promotes insulin-sensitivity and ameliorates reproductive abnormalities in PCOS, its exact mechanisms of action remain elusive. Therefore, we studied the transcriptome and the metabolome of metformin in human adrenal H295R cells. Microarray analysis revealed changes in 693 genes after metformin treatment. Using high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS-NMR), we determined 38 intracellular metabolites. With bioinformatic tools we created an integrated pathway analysis to understand different intracellular processes targeted by metformin. Combined metabolomics and transcriptomics data analysis showed that metformin affects a broad range of cellular processes centered on the mitochondrium. Data confirmed several known effects of metformin on glucose and androgen metabolism, which had been identified in clinical and basic studies previously. But more importantly, novel links between the energy metabolism, sex steroid biosynthesis, the cell cycle and the immune system were identified. These omics studies shed light on a complex interplay between metabolic pathways in steroidogenic systems.

  18. The role of white matter in personality traits and affective processing in bipolar disorder.

    PubMed

    Bauer, Isabelle E; Wu, Mon-Ju; Meyer, Thomas D; Mwangi, Benson; Ouyang, Austin; Spiker, Danielle; Zunta-Soares, Giovana B; Huang, Hao; Soares, Jair C

    2016-09-01

    Bipolar disorder (BD) is characterized by affective processing bias and variations in personality traits. It is still unknown whether these features are linked to the same structural brain alterations. The aim of this study was to investigate relationships between specific personality traits, white matter (WM) properties, and affective processing in BD and HC. 24 healthy controls (HC) and 38 adults with BDI (HC: 29.47 ± 2.23 years, 15 females; BDI: 32.44 ± 1.84 years, 20 females) completed clinical scales and the Big Five Inventory. They were also administered the Affective Go/No-Go (AGN) and the Rapid Visual Processing (RVP) tasks of the Cambridge Neuropsychological Test Automated Battery. Diffusion Tensor Imaging (DTI) assessed the microstructure of WM tracts. In BDI measures of WM properties were reduced across all major brain white matter tracts. As expected, individuals with BDI reported greater neuroticism, lower agreeableness and conscientiousness, and made a greater number of errors in response to affective stimuli in the AGN task compared to HC. High neuroticism scores were associated with faster AGN latency, and overall reduced AGN accuracy in both HC and BDI. Elevated FA values were associated with reduced neuroticism and increased cognitive processing in HC but not in BDI. Our findings showed important potential links between personality, affective processing and WM integrity in BD. In the future therapeutic interventions for BD using brain stimulation protocols might benefit from the use of DTI to target pathways underlying abnormal affective processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Searching for Judy: how small mysteries affect narrative processes and memory.

    PubMed

    Love, Jessica; McKoon, Gail; Gerrig, Richard J

    2010-05-01

    Current theories of text processing say little about how authors' narrative choices, including the introduction of small mysteries, can affect readers' narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that 1 type of small mystery-a character introduced without information linking him or her to the story-affects readers' moment-by-moment processing. For that project, participants read stories that introduced characters by proper name alone (e.g., "Judy") or with information connecting the character to the rest of the story (e.g., "our principal Judy"). In an online recognition probe task, responses to the character's name 3 lines after his or her introduction were faster when the character had not been introduced with connecting information, suggesting that the character remained accessible awaiting resolution. In the 4 experiments in this article, we extend our theoretical analysis of small mysteries. In Experiments 1 and 2, we found evidence that trait information (e.g., "daredevil Judy") is not sufficient to connect a character to a text. In Experiments 3 and 4, we found evidence that the moment-by-moment processing effects of such small mysteries also affect readers' memory for the stories. We interpret the results in terms of Kintsch's (1988) construction-integration model of discourse processing. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  20. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun

    2013-01-01

    Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554

  1. Aldolase B-Mediated Fructose Metabolism Drives Metabolic Reprogramming of Colon Cancer Liver Metastasis.

    PubMed

    Bu, Pengcheng; Chen, Kai-Yuan; Xiang, Kun; Johnson, Christelle; Crown, Scott B; Rakhilin, Nikolai; Ai, Yiwei; Wang, Lihua; Xi, Rui; Astapova, Inna; Han, Yan; Li, Jiahe; Barth, Bradley B; Lu, Min; Gao, Ziyang; Mines, Robert; Zhang, Liwen; Herman, Mark; Hsu, David; Zhang, Guo-Fang; Shen, Xiling

    2018-06-05

    Cancer metastasis accounts for the majority of cancer-related deaths and remains a clinical challenge. Metastatic cancer cells generally resemble cells of the primary cancer, but they may be influenced by the milieu of the organs they colonize. Here, we show that colorectal cancer cells undergo metabolic reprogramming after they metastasize and colonize the liver, a key metabolic organ. In particular, via GATA6, metastatic cells in the liver upregulate the enzyme aldolase B (ALDOB), which enhances fructose metabolism and provides fuel for major pathways of central carbon metabolism during tumor cell proliferation. Targeting ALDOB or reducing dietary fructose significantly reduces liver metastatic growth but has little effect on the primary tumor. Our findings suggest that metastatic cells can take advantage of reprogrammed metabolism in their new microenvironment, especially in a metabolically active organ such as the liver. Manipulation of involved pathways may affect the course of metastatic growth. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Electrophysiological differences in the processing of affective information in words and pictures.

    PubMed

    Hinojosa, José A; Carretié, Luis; Valcárcel, María A; Méndez-Bértolo, Constantino; Pozo, Miguel A

    2009-06-01

    It is generally assumed that affective picture viewing is related to higher levels of physiological arousal than is the reading of emotional words. However, this assertion is based mainly on studies in which the processing of either words or pictures has been investigated under heterogenic conditions. Positive, negative, relaxing, neutral, and background (stimulus fragments) words and pictures were presented to subjects in two experiments under equivalent experimental conditions. In Experiment 1, neutral words elicited an enhanced late positive component (LPC) that was associated with an increased difficulty in discriminating neutral from background stimuli. In Experiment 2, high-arousing pictures elicited an enhanced early negativity and LPC that were related to a facilitated processing for these stimuli. Thus, it seems that under some circumstances, the processing of affective information captures attention only with more biologically relevant stimuli. Also, these data might be better interpreted on the basis of those models that postulate a different access to affective information for words and pictures.

  3. Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens.

    PubMed

    Abasht, Behnam; Mutryn, Marie F; Michalek, Ryan D; Lee, William R

    2016-01-01

    This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR<0.1 and fold-change A/U>1.3 or <0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.

  4. Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens

    PubMed Central

    Abasht, Behnam; Mutryn, Marie F.; Michalek, Ryan D.; Lee, William R.

    2016-01-01

    This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47–48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR < 0.1 and fold-change A/U > 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens. PMID:27097013

  5. Neural Correlates of Affect Processing and Aggression in Methamphetamine Dependence

    PubMed Central

    Payer, Doris E.; Lieberman, Matthew D.; London, Edythe D.

    2012-01-01

    Context Methamphetamine abuse is associated with high rates of aggression, but few studies have addressed the contributing neurobiological factors. Objective To quantify aggression, investigate function of the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. Design In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Setting Participants were recruited from the general community to an academic research center. Participants Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. Main outcome measures We measured self-reported and perpetrated aggression, and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching), and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Results Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation, but found lower activation in methamphetamine-dependent than control participants in bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling

  6. Variation of preserving organic matter bound in interlayer of montmorillonite induced by microbial metabolic process.

    PubMed

    Zhao, Yulian; Dong, Faqin; Dai, Qunwei; Li, Gang; Ma, Jie

    2017-07-25

    This paper aimed to investigate the variation of preserving organic matter bound in the interlayer space of montmorillonite (Mt) induced by a microbe metabolic process. We selected Bacillus pumilus as the common soil native bacteria. The alteration of d 001 value, functional group, and C,N organic matter contents caused by bacteria were analyzed by XRD, FTIR, and elementary analyzer, respectively. XRD results showed that the d 001 value of montmorillonite increased with the concentration decreasing and decreased with the culture time increasing after interacting with bacteria indicating the interlayer space of montmorillonite was connected with the organic matter. The findings of long-term interaction by resetting culture conditions implied that the montmorillonite buffered the organic matter when the nutrition was enough and released again when the nutrition was lacking. The results of the elementary analyzer declared the content of organic matter was according to the d 001 value of montmorillonite and N organic matter which played a major impact. FTIR results confirmed that the Si-O stretching vibrations of Mt were affected by the functional group of organic matter. Our results showed that the montmorillonite under the influence of soil bacteria has a strong buffering capacity for preserving organic matter into the interlayer space in a short-term. It might provide critical implications for understanding the evolution process and the preservation of fertilization which was in the over-fertilization or less-fertilization conditions on farmland.

  7. Gut Microbiota and Metabolic Disorders

    PubMed Central

    Hur, Kyu Yeon

    2015-01-01

    Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders. PMID:26124989

  8. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism

    PubMed Central

    Bruce, Kimberley D.; Zsombok, Andrea; Eckel, Robert H.

    2017-01-01

    Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders. PMID:28421037

  9. Social and nonsocial affective processing in schizophrenia - An ERP study.

    PubMed

    Okruszek, Ł; Wichniak, A; Jarkiewicz, M; Schudy, A; Gola, M; Jednoróg, K; Marchewka, A; Łojek, E

    2016-09-01

    Despite social cognitive dysfunction that may be observed in patients with schizophrenia, the knowledge about social and nonsocial affective processing in schizophrenia is scant. The aim of this study was to examine neurophysiological and behavioural responses to neutral and negative stimuli with (faces, people) and without (animals, objects) social content in schizophrenia. Twenty-six patients with schizophrenia (SCZ) and 21 healthy controls (HC) completed a visual oddball paradigm with either negative or neutral pictures from the Nencki Affective Picture System (NAPS) as targets while EEG was recorded. Half of the stimuli within each category presented social content (faces, people). Negative stimuli with social content produced lower N2 amplitude and higher mean LPP than any other type of stimuli in both groups. Despite differences in behavioural ratings and alterations in ERP processing of affective stimuli (lack of EPN differentiation, decreased P3 to neutral stimuli) SCZ were still able to respond to specific categories of stimuli similarly to HC. The pattern of results suggests that with no additional emotion-related task demands patients with schizophrenia may present similar attentional engagement with negative social stimuli as healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Altered drug metabolism during pregnancy: Hormonal regulation of drug-metabolizing enzymes

    PubMed Central

    Jeong, Hyunyoung

    2013-01-01

    Importance of the field Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Areas covered in this review Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are likely responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes, thus potentially responsible for altered drug metabolism during pregnancy. What the reader will gain The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of drug-metabolizing enzymes. Take home message In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy. PMID:20367533

  11. What is the role of metabolic hormones in taste buds of the tongue.

    PubMed

    Cai, Huan; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Gustation is one of the important chemical senses that guides the organism to identify nutrition while avoiding toxic chemicals. An increasing number of metabolic hormones and/or hormone receptors have been identified in the taste buds of the tongue and are involved in modulating taste perception. The gustatory system constitutes an additional endocrine regulatory locus that affects food intake, and in turn whole-body energy homeostasis. Here we provide an overview of the main metabolic hormones known to be present in the taste buds of the tongue; discuss their potential functional roles in taste perception and energy homeostasis and how their functional integrity is altered in the metabolic imbalance status (obesity and diabetes) and aging process. Better understanding of the functional roles of metabolic hormones in flavor perception as well as the link between taste perception and peripheral metabolism may be vital for developing strategies to promote healthier eating and prevent obesity or lifestyle-related disorders. © 2014 S. Karger AG, Basel.

  12. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    PubMed

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  13. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    PubMed

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  14. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness.

    PubMed

    Lemoine, Nathan P; Burkepile, Deron E

    2012-11-01

    As physiological processes of ectotherms are coupled to environmental temperature, climate change will likely alter their fundamental biological rates, including metabolism, consumption, growth, and reproduction. Here we combine the metabolic theory of ecology (MTE) with metabolism and consumption measurements of a model organism, the urchin Lytechinus variegatus, to test how climate change will affect consumer fitness. Unexpectedly, we found that metabolism and consumption exhibit different scaling relationships with temperature and are mismatched at high temperatures. This led to a dramatic reduction in ingestion efficiency and potentially in consumer fitness. Using metaanalysis, we showed that such temperature-driven mismatches between consumption and metabolism are common across taxa and frequently lead to reduced consumer fitness. Our empirical and synthetic analyses identify a mechanism by which climate change reduces the fitness of ectotherm consumers that may be applied to a broad array of taxonomic groups. Moreover, we showed that the assumptions of MTE do not hold at temperatures near the upper range of species' thermal tolerances for a wide array of taxa. Models using MTE to predict the effects of climate change on consumer-resource dynamics may therefore be underestimating the consequences of rising temperatures on population and community dynamics.

  15. Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse.

    PubMed

    Berman, S M; Voytek, B; Mandelkern, M A; Hassid, B D; Isaacson, A; Monterosso, J; Miotto, K; Ling, W; London, E D

    2008-09-01

    Changes in brain function during the initial weeks of abstinence from chronic methamphetamine abuse may substantially affect clinical outcome, but are not well understood. We used positron emission tomography with [F-18]fluorodeoxyglucose (FDG) to quantify regional cerebral glucose metabolism, an index of brain function, during performance of a vigilance task. A total of 10 methamphetamine-dependent subjects were tested after 5-9 days of abstinence, and after 4 additional weeks of supervised abstinence. A total of 12 healthy control subjects were tested at corresponding times. Global glucose metabolism increased between tests (P=0.01), more in methamphetamine-dependent (10.9%, P=0.02) than control subjects (1.9%, NS). Glucose metabolism did not change in subcortical regions of methamphetamine-dependent subjects, but increased in neocortex, with maximal increase (>20%) in parietal regions. Changes in reaction time and self-reports of negative affect varied more in methamphetamine-dependent than in control subjects, and correlated both with the increase in parietal glucose metabolism, and decrease in relative activity (after scaling to the global mean) in some regions. A robust relationship between change in self-reports of depressive symptoms and relative activity in the ventral striatum may have great relevance to treatment success because of the role of this region in drug abuse-related behaviors. Shifts in cortical-subcortical metabolic balance either reflect new processes that occur during early abstinence, or the unmasking of effects of chronic methamphetamine abuse that are obscured by suppression of cortical glucose metabolism that continues for at least 5-9 days after cessation of methamphetamine self-administration.

  16. Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry.

    PubMed

    Kubannek, F; Schröder, U; Krewer, U

    2018-06-01

    In this work we employ differential electrochemical mass spectrometry (DEMS) in combination with static and dynamic electrochemical techniques for the study of metabolic processes of electrochemically active bacteria. CO 2 production during acetate oxidation by electrode respiring bacteria was measured, in-vivo and online with a sensitivity of 6.5 ⋅ 10 -13 mol/s. The correlation of ion current and electrical current provides insight into the interaction of metabolic processes and extra-cellular electron transfer. In low-turnover CVs, two competing potential dependent electron transfer mechanisms were observed and formal potentials of two redox systems that are involved in complete oxidation of acetate to CO 2 were determined. By balancing charge and carbon flows during dynamic measurements, two significant storage mechanisms in electrochemically active bacteria were identified: 1) a charge storage mechanism that allows substrate oxidation to proceed at a constant rate despite of external current flowing in cathodic direction. 2) a carbon storage mechanism that allows the biofilm to take up acetate at an unchanged rate at very low potentials even though the oxidation to CO 2 stops. These storage capabilities allow a limited decoupling of electrical current and CO 2 production rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Maternal Nutrition during Pregnancy Affects Testicular and Bone Development, Glucose Metabolism and Response to Overnutrition in Weaned Horses Up to Two Years

    PubMed Central

    Mendoza, Luis; Peugnet, Pauline; Dubois, Cédric; Dahirel, Michèle; Lejeune, Jean-Philippe; Caudron, Isabelle; Guenon, Isabelle; Camous, Sylvaine; Tarrade, Anne; Wimel, Laurence; Serteyn, Didier; Bouraima-Lelong, Hélène; Chavatte-Palmer, Pascale

    2017-01-01

    Introduction Pregnant mares and post-weaning foals are often fed concentrates rich in soluble carbohydrates, together with forage. Recent studies suggest that the use of concentrates is linked to alterations of metabolism and the development of osteochondrosis in foals. The aim of this study was to determine if broodmare diet during gestation affects metabolism, osteoarticular status and growth of yearlings overfed from 20 to 24 months of age and/or sexual maturity in prepubertal colts. Material and methods Twenty-four saddlebred mares were fed forage only (n = 12, group F) or cracked barley and forage (n = 12, group B) from mid-gestation until foaling. Colts were gelded at 12 months of age. Between 20 and 24 months of age, all yearlings were overfed (+140% of requirements) using an automatic concentrate feeder. Offspring were monitored for growth between 6 and 24 months of age, glucose homeostasis was evaluated via modified frequently sampled intra veinous glucose tolerance test (FSIGT) at 19 and 24 months of age and osteoarticular status was investigated using radiographic examinations at 24 months of age. The structure and function of testicles from prepubertal colts were analyzed using stereology and RT-qPCR. Results Post-weaning weight growth was not different between groups. Testicular maturation was delayed in F colts compared to B colts at 12 months of age. From 19 months of age, the cannon bone was wider in B vs F yearlings. F yearlings were more insulin resistant at 19 months compared to B yearlings but B yearlings were affected more severely by overnutrition with reduced insulin sensitivity. The osteoarticular status at 24 months of age was not different between groups. Conclusion In conclusion, nutritional management of the pregnant broodmare and the growing foal may affect sexual maturity of colts and the metabolism of foals until 24 months of age. These effects may be deleterious for reproductive and sportive performances in older horses. PMID

  18. Ultrasonic Vocalizations: evidence for an affective opponent process during cocaine self-administration

    PubMed Central

    Barker, David J.; Simmons, Steven J.; Servilio, Lisa C.; Bercovicz, Danielle; Ma, Sisi; Root, David H.; Pawlak, Anthony P.; West, Mark O.

    2013-01-01

    Rationale Preclinical models of cocaine addiction in the rodent have shown that cocaine induces both positive and negative affective states. These observations have led to the notion that the initial positive/euphoric state induced by cocaine administration may be followed by an opposing, negative process. In the rodent, one method for inferring positive and negative affective states involves measuring their ultrasonic vocalizations (USVs). Previous USV recordings from our laboratory suggested that the transition between positive and negative affect might involve decaying or sub-satiety levels of selfadministered cocaine. Objectives In order to explicitly test the role of cocaine levels on these affective states, the present study examined USVs when calculated body levels of cocaine were clamped (i.e. held at a constant level via experimenter- controlled infusions) at, below, or above subjects’ self-determined drug satiety thresholds. Results USVs indicated that 1) positive affect was predominantly observed during the drug loading period, but declined quickly to near zero during maintenance and exhibited little relation to calculated drug level, and 2) in contrast, negative affect was observed at sub-satiety cocaine levels, but was relatively absent when body levels of cocaine were clamped at or above subjects’ satiety thresholds. Conclusions The results reinforce the opponent-process hypothesis of addiction and suggest that an understanding of the mechanisms underlying negative affect might serve to inform behavioral and pharmacological therapies. PMID:24197178

  19. Processing of face identity in the affective flanker task: a diffusion model analysis.

    PubMed

    Mueller, Christina J; Kuchinke, Lars

    2016-11-01

    Affective flanker tasks often present affective facial expressions as stimuli. However, it is not clear whether the identity of the person on the target picture needs to be the same for the flanker stimuli or whether it is better to use pictures of different persons as flankers. While Grose-Fifer, Rodrigues, Hoover & Zottoli (Advances in Cognitive Psychology 9(2):81-91, 2013) state that attentional focus might be captured by processing the differences between faces, i.e. the identity, and therefore use pictures of the same individual as target and flanker stimuli, Munro, Dywan, Harris, McKee, Unsal & Segalowitz (Biological Psychology, 76:31-42, 2007) propose an advantage in presenting pictures of a different individual as flankers. They state that participants might focus only on small visual changes when targets and flankers are from the same individual instead of processing the affective content of the stimuli. The present study manipulated face identity in a between-subject design. Through investigation of behavioral measures as well as diffusion model parameters, we conclude that both types of flankers work equally efficient. This result seems best supported by recent accounts that propose an advantage of emotional processing over identity processing in face recognition. In the present study, there is no evidence that the processing of the face identity attracts sufficient attention to interfere with the affective evaluation of the target and flanker faces.

  20. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance

    PubMed Central

    2016-01-01

    Ageing and lifespan are strongly affected by metabolism. The maximal possible uptake of oxygen is not only a good predictor of performance in endurance sports, but also of life expectancy. Figuratively speaking, healthy ageing is a competitive sport. Although the root cause of ageing is damage to macromolecules, it is the balance with repair processes that is decisive. Reduced or intermittent nutrition, hormones and intracellular signalling pathways that regulate metabolism have strong effects on ageing. Homeostatic regulatory processes tend to keep the environment of the cells within relatively narrow bounds. On the other hand, the body is constantly adapting to physical activity and food consumption. Spontaneous fluctuations in heart rate and other processes indicate youth and health. A (homeo)dynamic aspect of homeostasis deteriorates with age. We are now in a position to develop computational models of human metabolism and the dynamics of heart rhythm and oxygen transport that will advance our understanding of ageing. Computational modelling of the connections between dietary restriction, metabolism and protein turnover may increase insight into homeostasis of the proteins in our body. In this way, the computational reconstruction of human physiological processes, the Physiome, can help prevent frailty and age-related disease. PMID:27051508

  1. Endogenous Enzymes, Heat, and pH Affect Flavone Profiles in Parsley (Petroselinum crispum var. neapolitanum) and Celery (Apium graveolens) during Juice Processing

    PubMed Central

    Hostetler, Gregory L.; Riedl, Ken M.; Schwartz, Steven J.

    2013-01-01

    Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. The effects of juice extraction, acidification, thermal processing, and endogenous enzymes on flavone glycoside profile and concentration in both parsley and celery were investigated. Parsley yielded 72% juice with 64% of the total flavones extracted, whereas celery yielded 79% juice with 56% of flavones extracted. Fresh parsley juice averaged 281 mg flavones/100 g and fresh celery juice, 28.5 mg/100 g. Flavones in steamed parsley and celery were predominantly malonyl apiosylglucoside conjugates, whereas those in fresh samples were primarily apiosylglucoside conjugates; this was apparently the result of endogenous malonyl esterases. Acidification and thermal processing of celery converted flavone apiosylglucosides to flavone glucosides, which may affect the intestinal absorption and metabolism of these compounds. PMID:22224550

  2. Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing.

    PubMed

    Hostetler, Gregory L; Riedl, Ken M; Schwartz, Steven J

    2012-01-11

    Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. The effects of juice extraction, acidification, thermal processing, and endogenous enzymes on flavone glycoside profile and concentration in both parsley and celery were investigated. Parsley yielded 72% juice with 64% of the total flavones extracted, whereas celery yielded 79% juice with 56% of flavones extracted. Fresh parsley juice averaged 281 mg flavones/100 g and fresh celery juice, 28.5 mg/100 g. Flavones in steamed parsley and celery were predominantly malonyl apiosylglucoside conjugates, whereas those in fresh samples were primarily apiosylglucoside conjugates; this was apparently the result of endogenous malonyl esterases. Acidification and thermal processing of celery converted flavone apiosylglucosides to flavone glucosides, which may affect the intestinal absorption and metabolism of these compounds.

  3. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    PubMed

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Investigating cholesterol metabolism and ageing using a systems biology approach.

    PubMed

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2017-08-01

    CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.

  5. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    PubMed

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-01

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Taxonomy of rare genetic metabolic bone disorders.

    PubMed

    Masi, L; Agnusdei, D; Bilezikian, J; Chappard, D; Chapurlat, R; Cianferotti, L; Devolgelaer, J-P; El Maghraoui, A; Ferrari, S; Javaid, M K; Kaufman, J-M; Liberman, U A; Lyritis, G; Miller, P; Napoli, N; Roldan, E; Papapoulos, S; Watts, N B; Brandi, M L

    2015-10-01

    This article reports a taxonomic classification of rare skeletal diseases based on metabolic phenotypes. It was prepared by The Skeletal Rare Diseases Working Group of the International Osteoporosis Foundation (IOF) and includes 116 OMIM phenotypes with 86 affected genes. Rare skeletal metabolic diseases comprise a group of diseases commonly associated with severe clinical consequences. In recent years, the description of the clinical phenotypes and radiographic features of several genetic bone disorders was paralleled by the discovery of key molecular pathways involved in the regulation of bone and mineral metabolism. Including this information in the description and classification of rare skeletal diseases may improve the recognition and management of affected patients. IOF recognized this need and formed a Skeletal Rare Diseases Working Group (SRD-WG) of basic and clinical scientists who developed a taxonomy of rare skeletal diseases based on their metabolic pathogenesis. This taxonomy of rare genetic metabolic bone disorders (RGMBDs) comprises 116 OMIM phenotypes, with 86 affected genes related to bone and mineral homeostasis. The diseases were divided into four major groups, namely, disorders due to altered osteoclast, osteoblast, or osteocyte activity; disorders due to altered bone matrix proteins; disorders due to altered bone microenvironmental regulators; and disorders due to deranged calciotropic hormonal activity. This article provides the first comprehensive taxonomy of rare metabolic skeletal diseases based on deranged metabolic activity. This classification will help in the development of common and shared diagnostic and therapeutic pathways for these patients and also in the creation of international registries of rare skeletal diseases, the first step for the development of genetic tests based on next generation sequencing and for performing large intervention trials to assess efficacy of orphan drugs.

  7. Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis.

    PubMed

    Bay-Jensen, Anne C; Slagboom, Eline; Chen-An, Pingping; Alexandersen, Peter; Qvist, Per; Christiansen, Claus; Meulenbelt, Ingrid; Karsdal, Morten A

    2013-05-01

    Joint health is affected by local and systemic hormones. It is well accepted that systemic factors regulate the metabolism of joint tissues, and that substantial cross-talk between tissues actively contributes to homeostasis. In the current review, we try to define a subtype of osteoarthritis (OA), metabolic OA, which is dependent on an unhealthy phenotype. Peer-reviewed research articles and reviews were reviewed and summarized. Only literature readily available online, either by download or by purchase order, was included. OA is the most common joint disease and is more common in women after menopause. OA is a disease that affects the whole joint, including cartilage, subchondral bone, synovium, tendons, and muscles. The clinical endpoints of OA are pain and joint space narrowing, which is characterized by cartilage erosion and subchondral sclerosis, suggesting that cartilage is a central tissue of joint health. Thus, the joint, more specifically the cartilage, may be considered a target of endocrine function in addition to the well-described traditional risk factors of disease initiation and progression such as long-term loading of the joint due to obesity. Metabolic syndrome affects a range of tissues and may in part be molecularly described as a dysregulation of cytokines, adipokines, and hormones (e.g., estrogen and thyroid hormone). Consequently, metabolic imbalance may both directly and indirectly influence joint health and cartilage turnover, altering the progression of diseases such as OA. There is substantial evidence for a connection between metabolic health and development of OA. We propose that more focus be directed to understanding this connection to improve the management of menopausal health and associated comorbidities.

  8. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  9. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  10. Opportunities for genetic improvement of metabolic diseases

    USDA-ARS?s Scientific Manuscript database

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors and status of gene...

  11. The Berlin Affective Word List for Children (kidBAWL): Exploring Processing of Affective Lexical Semantics in the Visual and Auditory Modalities

    PubMed Central

    Sylvester, Teresa; Braun, Mario; Schmidtke, David; Jacobs, Arthur M.

    2016-01-01

    While research on affective word processing in adults witnesses increasing interest, the present paper looks at another group of participants that have been neglected so far: pupils (age range: 6–12 years). Introducing a variant of the Berlin Affective Wordlist (BAWL) especially adapted for children of that age group, the “kidBAWL,” we examined to what extent pupils process affective lexical semantics similarly to adults. In three experiments using rating and valence decision tasks in both the visual and auditory modality, it was established that children show the two ubiquitous phenomena observed in adults with emotional word material: the asymmetric U-shaped function relating valence to arousal ratings, and the inversely U-shaped function relating response times to valence decision latencies. The results for both modalities show large structural similarities between pupil and adult data (taken from previous studies) indicating that in the present age range, the affective lexicon and the dynamic interplay between language and emotion is already well-developed. Differential effects show that younger children tend to choose less extreme ratings than older children and that rating latencies decrease with age. Overall, our study should help to develop more realistic models of word recognition and reading that include affective processes and offer a methodology for exploring the roots of pleasant literary experiences and ludic reading. PMID:27445930

  12. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.

    PubMed

    Smolders, Lotte; Mensink, Ronald P; Boekschoten, Mark V; de Ridder, Rogier J J; Plat, Jogchum

    2018-04-01

    Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms have never been studied. The objective was to evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and duodenal gene expression. In a randomized, double-blind crossover study, 44 healthy men and women, with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-h postprandial test. Blood was sampled frequently for analysis of lipid and glucose metabolism. In a subgroup of 10 men, 5 h after meal consumption duodenal biopsies were taken for microarray analysis. 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P = 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In duodenal biopsies, microarray analysis showed no consistent changes in expression of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism. It is not likely that the potential beneficial effects of cocoa on CVD can be ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and duodenal gene expression, and unfavorably affected postprandial glucose and insulin responses. This trial was registered on clinicaltrials.gov under

  13. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    PubMed

    Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes

  14. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system

    PubMed Central

    Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression

  15. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  16. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. Energy and redox metabolism of glucose-6-phosphate-dehydrogenase-deficient erythrocytes.

    PubMed

    Schuster, R; Jacobasch, G; Holzhütter, H G

    1989-07-01

    The effects of various forms of glucose-6-phosphate dehydrogenase deficiency on erythrocyte metabolism have been studied on the basis of a complex mathematical model which comprises the main pathways of this cell: glycolysis, pentose pathway, reactions of the glutathione and adenine nucleotide metabolism. The calculated flux rates through the oxidative pentose pathway with and without methylene blue are in good accord with experimental results. The degree of deficiency as predicted by the model on the basis of calculated upper oxidative load boundaries, as well as of maximal methylene blue stimulation, correlates with the individual clinical manifestation of the metabolic disease. Therefore, the model allows one to judge the degree of metabolic disorder in the presence of glucose-6-phosphate dehydrogenase enzymopathies if the kinetic properties of the defect enzyme are known. Experimentally accessible parameters for an assessment of the oxidative load capacity of cells in vivo are proposed. It is pointed out that the threshold of tolerance as to energetic load is drastically reduced in the case of severe glucose-6-phosphate dehydrogenase deficiency.

  17. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  18. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect

    PubMed Central

    Bush, Keith A.; Inman, Cory S.; Hamann, Stephan; Kilts, Clinton D.; James, G. Andrew

    2017-01-01

    Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective

  19. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    PubMed

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-12-01

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  20. Reconciling theories for metabolic scaling.

    PubMed

    Maino, James L; Kearney, Michael R; Nisbet, Roger M; Kooijman, Sebastiaan A L M

    2014-01-01

    Metabolic theory specifies constraints on the metabolic organisation of individual organisms. These constraints have important implications for biological processes ranging from the scale of molecules all the way to the level of populations, communities and ecosystems, with their application to the latter emerging as the field of metabolic ecology. While ecologists continue to use individual metabolism to identify constraints in ecological processes, the topic of metabolic scaling remains controversial. Much of the current interest and controversy in metabolic theory relates to recent ideas about the role of supply networks in constraining energy supply to cells. We show that an alternative explanation for physicochemical constraints on individual metabolism, as formalised by dynamic energy budget (DEB) theory, can contribute to the theoretical underpinning of metabolic ecology, while increasing coherence between intra- and interspecific scaling relationships. In particular, we emphasise how the DEB theory considers constraints on the storage and use of assimilated nutrients and derive an equation for the scaling of metabolic rate for adult heterotrophs without relying on optimisation arguments or implying cellular nutrient supply limitation. Using realistic data on growth and reproduction from the literature, we parameterise the curve for respiration and compare the a priori prediction against a mammalian data set for respiration. Because the DEB theory mechanism for metabolic scaling is based on the universal process of acquiring and using pools of stored metabolites (a basal feature of life), it applies to all organisms irrespective of the nature of metabolic transport to cells. Although the DEB mechanism does not necessarily contradict insight from transport-based models, the mechanism offers an explanation for differences between the intra- and interspecific scaling of biological rates with mass, suggesting novel tests of the respective hypotheses. © 2013 The

  1. Changes in Intestinal Microbiota Affect Metabolism of Ginsenoside Re.

    PubMed

    Zhang, Lei; Li, Fei; Qin, Wang-Jun; Fu, Chao; Zhang, Xiang-Lin

    2018-05-10

    Ginsenoside Re, an active ingredient in Panax ginseng, is widely used as a therapeutic and nutriment. Intestinal microbiota plays crucial roles in modulating the pharmacokinetics and pharmacological actions of ginsenoside Re. The aim of this study was to explore the relationship between bacterial community variety and the metabolic profiles of ginsenoside Re. We developed two models with intestinal dysbacteriosis: a pseudo-germ-free model induced by a non-absorbable antimicrobial mixture (ATM), and Qi-deficiency model established via over-fatigue and acute cold stress (OACS). First, the bacterial community structures in control, ATM, and OACS rats were compared via 16S rRNA amplicon sequencing. Then, gut microbial metabolism of ginsenoside Re was assessed qualitatively and quantitatively in the three groups by UPLC-Q-TOF/MS and HPLC-TQ-MS, respectively. Ten metabolites of ginsenoside Re were detected and tentatively identified, three of which were novel. Moreover, due to significant differences in bacterial communities, deglycosylated products, as the main metabolites of ginsenoside Re, were produced at lower levels in ATM and OACS models. Importantly, the levels of these deglycosylated metabolites correlated with alterations in Prevotella, Lactobacillus, and Bacteroides populations, as well as glycosidase activities. Collectively, biotransformation of ginsenoside Re is potentially influenced by regulating the composition of intestinal microbiota and glycosidase activities. This article is protected by copyright. All rights reserved.

  2. Non-photosynthetic plastids as hosts for metabolic engineering.

    PubMed

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm.

  4. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    PubMed

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  5. Metabolic pathways and pharmacokinetics of natural medicines with low permeability.

    PubMed

    Zeng, Mei; Yang, Lan; He, Dan; Li, Yao; Shi, Mingxin; Zhang, Jingqing

    2017-11-01

    Drug metabolism plays an important role in the drug disposal process. Differences in pharmacokinetics among individuals are the basis for personalized medicine. Natural medicines, formed by long-term evolution of nature, prioritize the action of a target protein with a drug. Natural medicines are valued for structural diversity, low toxicity, low cost, and definite biological activities. Metabolic pathway and pharmacokinetic research of natural medicines is highly beneficial for clinical dose adjustment and the development of personalized medicine. This review was performed using a systematic search of all available literature. It provides an overview and discussion of metabolic pathways and the pharmacokinetics of natural medicines with low permeability. The related enzymes and factors affecting them are analyzed. The series of metabolic reactions, including phase I reactions(oxidation hydrolysis, and reduction reactions) and phase II reactions (binding reactions), catalyzed by intracellular metabolic enzymes (such as CYP450, esterase, SULT, and UGT enzymes) in tissues (such as liver and gastro-intestinal tract) or in the body fluid environment were examined. The administration route, drug dose, and delivery system had a large influence on absorption, metabolism, and pharmacokinetics. Natural medicines with low permeability had distinctive metabolisms and pharmacokinetics. The metabolic and in vivo kinetic properties were favorably modified by choosing suitable drug delivery systems, administration routes and drug doses, among other variables. This study provides valuable information for clinicians and pharmacists to guide patients safe, effective, and rational drug use. The research of metabolism and pharmacokinetics is significant in guiding personalized clinical medicine.

  6. Honeybee associative learning performance and metabolic stress resilience are positively associated.

    PubMed

    Amdam, Gro V; Fennern, Erin; Baker, Nicholas; Rascón, Brenda

    2010-03-17

    Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology that will give

  7. The need for monitoring metabolic status

    NASA Astrophysics Data System (ADS)

    Vanderveen, John E.

    2005-05-01

    Modern military operations utilize complex technologies that require high levels of readiness and sustained cognitive and physical performance of combat military combat personnel. These military operations often depend on weapon systems that use advanced computer technology coupled with an array of sensors that provide continuous information on the battlefield environment and on equipment function. However there is a lack of real-time information on status of the personnel who control these systems and who are vital to mission success. Failure of the human element renders the weapon system useless so it is important to know if an individual is physically and cognitively fit to perform his or her task. Based on the premise that status of metabolic processes provide an early indication of a change in an individuals physiological status, monitoring of selective biomarkers of metabolism and organ function can provide insight on the individual"s ability to perform mission tasks. During combat individuals may not be aware that they have reached a compromised physiological condition due to dehydration, physical exertion, stress, fatigue, sleep deprivation, exposure to toxins or other condition that may affect physical and cognitive performance and health. Systems that can provide the individual or his or her commander with information about significant changes in one or more metabolic functions could permit timely intervention to correct the condition. In the event that serious injury has already occurred to an individual, metabolic monitoring can provide valuable intelligence needed for decisions on achieving mission objectives.

  8. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  9. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  10. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage.

    PubMed

    Cosme Silva, Gláucia Michelle; Silva, Willian Batista; Medeiros, David B; Salvador, Acácio Rodrigues; Cordeiro, Maria Helena Menezes; da Silva, Natália Martins; Santana, Diederson Bortolini; Mizobutsi, Gisele Polete

    2017-12-15

    Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Emotion and working memory: evidence for domain-specific processes for affective maintenance.

    PubMed

    Mikels, Joseph A; Reuter-Lorenz, Patricia A; Beyer, Jonathan A; Fredrickson, Barbara L

    2008-04-01

    Working memory is comprised of separable subsystems for visual and verbal information, but what if the information is affective? Does the maintenance of affective information rely on the same processes that maintain nonaffective information? The authors address this question using a novel delayed-response task developed to investigate the short-term maintenance of affective memoranda. Using selective interference methods the authors find that a secondary emotion-regulation task impaired affect intensity maintenance, whereas secondary cognitive tasks disrupted brightness intensity maintenance, but facilitated affect maintenance. Additionally, performance on the affect maintenance task depends on the valence of the maintained feeling, further supporting the domain-specific nature of the task. The importance of affect maintenance per se is further supported by demonstrating that the observed valence effects depend on a memory delay and are not evident with simultaneous presentation of stimuli. These findings suggest that the working memory system may include domain-specific components that are specialized for the maintenance of affective memoranda. (Copyright) 2008 APA.

  12. Agricultural management affects evolutionary processes in a migratory songbird

    USGS Publications Warehouse

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  13. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    PubMed

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  14. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  15. Seasonal variations in energy levels and metabolic processes of two dominant Acropora species ( A. spicifera and A. digitifera) at Ningaloo Reef

    NASA Astrophysics Data System (ADS)

    Hinrichs, S.; Patten, N. L.; Allcock, R. J. N.; Saunders, S. M.; Strickland, D.; Waite, A. M.

    2013-09-01

    Seasonal variations in coral health indices reflecting autotrophic activity (chlorophyll a and zooxanthellae density), metabolic rates (RNA/DNA ratio and protein) and energy storage (ratio of storage: structural lipids or lipid ratios) were examined for two dominant Acropora species [ Acropora digitifera ( AD) and Acropora spicifera ( AS)] at Ningaloo Reef (north-western Australia). Such detailed investigation of metabolic processes is important background, with regard to understanding the vulnerability of corals to environmental change. Health indices in AD and AS were measured before and after spawning in austral autumn and winter 2010, and austral summer 2011 at six stations. Health indices showed seasonal and species-specific differences but negligible spatial differences across a reef section. For AD, autotrophic indices were negatively correlated with lipid ratios and metabolic indices. Metabolic indices were significantly higher in AS than AD. No correlation was observed between RNA/DNA ratios and lipid ratios with any autotrophic indices for AS. Lipid ratios were stable throughout the year for AS while they changed significantly for AD. For both species, indices of metabolic activity were highest during autumn, while autotrophic indices were highest in winter and summer. Results suggest that the impact of the broadcast spawning event on coral health indices at Ningaloo Reef occurred only as a backdrop to massive seasonal changes in coral physiology. The La Niña summer pattern resulted in high autotrophic indices and low metabolic indices and energy stores. Our results imply different metabolic processes in A. digitifera and A. spicifera as well as a strong impact of extreme events on coral physiology.

  16. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  17. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  18. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi

    PubMed Central

    Greif, Gonzalo; Rodriguez, Matias; Alvarez-Valin, Fernando

    2017-01-01

    American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions. PMID:28286708

  19. The role of intestinal microbiota in the pathogenesis of metabolic diseases.

    PubMed

    Węgielska, Iwona; Suliburska, Joanna

    2016-01-01

    The incidence of metabolic diseases is increasing rapidly all over the world. This situation has led researchers to attempt to explain the pathomechanisms of these disorders and to develop specific recommendations for the prevention and treatment of diseases such as obesity, type-2 diabetes, and atherosclerosis. Recent studies show clear evidence of the role of human intestinal microbiota in health and in predispositions to diseases. Gut microbiota affect a number of complex metabolic reactions, significantly altering the functioning of the human body. Numerous experiments have shown the key role played by the formation process of the intestinal ecosystem in the early stages of human life for programming its metabolic health. The following article is a compilation of the literature available on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, type-2 diabetes, and atherosclerosis.

  20. CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae

    PubMed Central

    Kuipers, Oscar P.; Neves, Ana Rute

    2011-01-01

    In Gram-positive bacteria, the transcriptional regulator CcpA is at the core of catabolite control mechanisms. In the human pathogen Streptococcus pneumoniae, links between CcpA and virulence have been established, but its role as a master regulator in different nutritional environments remains to be elucidated. Thus, we performed whole-transcriptome and metabolic analyses of S. pneumoniae D39 and its isogenic ccpA mutant during growth on glucose or galactose, rapidly and slowly metabolized carbohydrates presumably encountered by the bacterium in different host niches. CcpA affected the expression of up to 19% of the genome covering multiple cellular processes, including virulence, regulatory networks and central metabolism. Its prevalent function as a repressor was observed on glucose, but unexpectedly also on galactose. Carbohydrate-dependent CcpA regulation was also observed, as for the tagatose 6-phosphate pathway genes, which were activated by galactose and repressed by glucose. Metabolite analyses revealed that two pathways for galactose catabolism are functionally active, despite repression of the Leloir genes by CcpA. Surprisingly, galactose-induced mixed-acid fermentation apparently required CcpA, since genes involved in this type of metabolism were mostly under CcpA-repression. These findings indicate that the role of CcpA extends beyond transcriptional regulation, which seemingly is overlaid by other regulatory mechanisms. In agreement, CcpA influenced the level of many intracellular metabolites potentially involved in metabolic regulation. Our data strengthen the view that a true understanding of cell physiology demands thorough analyses at different cellular levels. Moreover, integration of transcriptional and metabolic data uncovered a link between CcpA and the association of surface molecules (e.g. capsule) to the cell wall. Hence, CcpA may play a key role in mediating the interaction of S. pneumoniae with its host. Overall, our results support the

  1. Epigenomics, gestational programming and risk of metabolic syndrome.

    PubMed

    Desai, M; Jellyman, J K; Ross, M G

    2015-04-01

    Epigenetic mechanisms are emerging as mediators linking early environmental exposures during pregnancy with programmed changes in gene expression that alter offspring growth and development. There is irrefutable evidence from human and animal studies that nutrient and environmental agent exposures (for example, endocrine disruptors) during pregnancy may affect fetal/newborn development resulting in offspring obesity and obesity-associated metabolic abnormalities (metabolic syndrome). This concept of 'gestational programming' is associated with alterations to the epigenome (nongenomic) rather than changes in the DNA sequence (genomic). Epigenetic alterations induced by suboptimal maternal nutrition/endocrine factors include DNA methylation, histone modifications, chromatin remodeling and/or regulatory feedback by microRNAs, all of which have the ability to modulate gene expression and promote the metabolic syndrome phenotype. Recent studies have shown tissue-specific transcriptome patterns and phenotypes not only in the exposed individual, but also in subsequent progeny. Notably, the transmission of gestational programming effects to subsequent generations occurs in the absence of continued adverse environmental exposures, thus propagating the cycle of obesity and metabolic syndrome. This phenomenon may be attributed to an extrinsic process resulting from the maternal phenotype and the associated nutrient alterations occurring within each pregnancy. In addition, epigenetic inheritance may occur through somatic cells or through the germ line involving both maternal and paternal lineages. Since epigenetic gene modifications may be reversible, understanding how epigenetic mechanisms contribute to transgenerational transmission of obesity and metabolic dysfunction is crucial for the development of novel early detection and prevention strategies for programmed metabolic syndrome. In this review we discuss the evidence in human and animal studies for the role of

  2. Evaluation of ovarian function and metabolic factors in women affected by polycystic ovary syndrome after treatment with D-Chiro-Inositol.

    PubMed

    Laganà, Antonio Simone; Barbaro, Luisa; Pizzo, Alfonsa

    2015-05-01

    To evaluate the effects of D-Chiro-Inositol in women affected by polycystic ovary syndrome (PCOS). We enrolled 48 patients, with homogeneous bio-physical characteristics, affected by PCOS and menstrual irregularities. These patients underwent treatment with 1 gr of D-Chiro-Inositol/die plus 400 mcg of Folic Acid/die orally for 6 months. We analyzed pre-treatment and post-treatment BMI, Systolic and Diastolic blood pressure, Ferriman-Gallwey score, Cremoncini score, serum LH, LH/FSH ratio, total and free testosterone, DHEA-S, Δ-4-androstenedione, SHBG, prolactin, glucose/IRI ratio, HOMA index, and resumption of regular menstrual cycles. We evidenced a statistically significant reduction of systolic blood pressure, Ferriman-Gallwey score, LH, LH/FSH ratio, total Testosterone, free Testosterone, ∆-4-Androstenedione, Prolactin, and HOMA Index; in the same patients, we noticed a statistically significant increase of SHBG and Glycemia/IRI ratio. Moreover, we observed statistically significant (62.5%; p < 0.05) post-treatment menstrual cycle regularization. D-Chiro-Inositol is effective in improving ovarian function and metabolism of patients affected by PCOS.

  3. Ontogenetic scaling of metabolism, growth, and assimilation: testing metabolic scaling theory with Manduca sexta larvae.

    PubMed

    Sears, Katie E; Kerkhoff, Andrew J; Messerman, Arianne; Itagaki, Haruhiko

    2012-01-01

    Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.

  4. Processes Affecting the Annual Surface Energy Budget at High-Latitude Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, P. O. G.; Stone, R. S.; Grachev, A.; Matrosova, L.

    2012-04-01

    Instrumentation at four Study of Environmental Arctic Change (SEARCH) sites (Barrow, Eureka, Alert, and Tiksi) have been enhanced in the past 6 years, including during the 2007-2008 IPY. Data from these sites are used to investigate the annual cycle of the surface energy budget (SEB), its coupling to atmospheric processes, and for Alert, its interannual variability. The comprehensive data sets are useful for showing interactions between the atmosphere, surface, and soil at high temporal resolution throughout the annual cycle. Processes that govern the SEB variability at each site are identified, and their impacts on the SEB are quantified. For example, mesoscale modulation of the SEB caused by forcing from the local terrain (downslope wind events) and coastlines (sea and land breezes) are significant at Alert and Eureka, with these processes affecting both radiative, turbulent, and ground heat flux terms in the SEB. Sub-seasonal and interannual variations in atmospheric processes and SEB impact soil thermal structures, such as the depth and timing of the summer active layer. These analyses provide an improved understanding of the processes producing changes in surface and soil temperature, linking them through the SEB as affected by atmospheric processes.

  5. Metabolic Diseases of Muscle

    MedlinePlus

    ... diets. Your MDA clinic director can help you design a specific plan suited for your metabolic disorder ... respira- tory or speech therapy consultations • annual flu shots • support groups for those affected, spouses, parents or ...

  6. The role of colonic metabolism in lactose intolerance.

    PubMed

    He, T; Venema, K; Priebe, M G; Welling, G W; Brummer, R-J M; Vonk, R J

    2008-08-01

    Lactose maldigestion and intolerance affect a large part of the world population. The underlying factors of lactose intolerance are not fully understood. In this review, the role of colonic metabolism is discussed, i.e. fermentation of lactose by the colonic microbiota, colonic processing of the fermentation metabolites and how these processes would play a role in the pathophysiology of lactose intolerance. We suggest that the balance between the removal and production rate of osmotic-active components (lactose, and intermediate metabolites, e.g. lactate, succinate, etc.) in the colon is a key factor in the development of symptoms. The involvement of the colon may provide the basis for designing new targeted strategies for dietary and clinical management of lactose intolerance.

  7. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    PubMed Central

    Johansen, Helle Krogh; Molin, Søren

    2018-01-01

    ABSTRACT Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo, we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. PMID:29636437

  8. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.

    PubMed

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2016-01-01

    In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.

  9. The UPR reduces glucose metabolism via IRE1 signaling.

    PubMed

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity.

    PubMed

    Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih

    2016-04-12

    Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.

  11. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  12. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  13. Color categories only affect post-perceptual processes when same- and different-category colors are equally discriminable.

    PubMed

    He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna

    2014-04-01

    Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.

  14. Selective attention to affective value alters how the brain processes olfactory stimuli.

    PubMed

    Rolls, Edmund T; Grabenhorst, Fabian; Margot, Christian; da Silva, Maria A A P; Velazco, Maria Ines

    2008-10-01

    How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmine odor, activations were greater in the medial orbito-frontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top-down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.

  15. White wine taste and mouthfeel as affected by juice extraction and processing.

    PubMed

    Gawel, Richard; Day, Martin; Van Sluyter, Steven C; Holt, Helen; Waters, Elizabeth J; Smith, Paul A

    2014-10-15

    The juice used to make white wine can be extracted using various physical processes that affect the amount and timing of contact of juice with skins. The influence of juice extraction processes on the mouthfeel and taste of white wine and their relationship to wine composition were determined. The amount and type of interaction of juice with skins affected both wine total phenolic concentration and phenolic composition. Wine pH strongly influenced perceived viscosity, astringency/drying, and acidity. Despite a 5-fold variation in total phenolics among wines, differences in bitter taste were small. Perceived viscosity was associated with higher phenolics but was not associated with either glycerol or polysaccharide concentration. Bitterness may be reduced by using juice extraction and handling processes that minimize phenolic concentration, but lowering phenolic concentration may also result in wines of lower perceived viscosity.

  16. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy.

    PubMed

    Tomasetti, Marco; Lee, Wan; Santarelli, Lory; Neuzil, Jiri

    2017-01-20

    Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell-cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.

  17. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    PubMed Central

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484

  18. Metabolism pathways in chronic lymphocytic leukemia

    PubMed Central

    Rozovski, Uri; Hazan-Halevy, Inbal; Barzilay, Merav; Keating, Michael J.; Estrov, Zeev

    2016-01-01

    Alterations in CLL cell metabolism have been studied by several investigators. Unlike normal B lymphocytes or other leukemia cells, CLL cells, like adipocytes, store lipids and utilize free fatty acids (FFA) to produce chemical energy. None of the recently identified mutations in CLL directly affects metabolic pathways, suggesting that genetic alterations do not directly contribute to CLL cells’ metabolic reprogramming. Conversely, recent data suggest that activation of STAT3 or downregulation of microRNA-125 levels plays a crucial role in the utilization of FFA to meet CLL cells’ metabolic needs. STAT3, known to be constitutively activated in CLL, increases the levels of lipoprotein lipase that mediates lipoprotein uptake and shifts CLL cells’ metabolism towards utilization of FFA. Herein we review the evidence for altered lipid metabolism, increased mitochondrial activity, and formation of reactive oxygen species in CLL cells, and discuss possible therapeutic strategies to inhibit lipid metabolism pathways in patient with CLL. PMID:26643954

  19. Metabolic Features of Multiple Myeloma.

    PubMed

    El Arfani, Chaima; De Veirman, Kim; Maes, Ken; De Bruyne, Elke; Menu, Eline

    2018-04-14

    Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells. Changes in the BM micro-environment could be the reason for such adjustments. Enhancement of glycolysis and glutaminolysis is found in MM cells compared to healthy cells. Metabolites and enzymes can be upregulated or downregulated and play a crucial role in drug resistance. Therefore, this review will focus on changes in glucose and glutamine metabolism linked with the emergence of drug resistance. Moreover, metabolites do not only affect other metabolic components to benefit cancer development; they also interfere with transcription factors involved in proliferation and apoptotic regulation.

  20. Affective indicators of the psychotherapeutic process: an empirical case study.

    PubMed

    Dreher, M; Mengele, U; Krause, R; Kämmerer, A

    2001-03-01

    By analyzing facial expressions of emotion and the emotional experience of a patient and a psychotherapist, we attempted to objectively register unconscious interaction processes that could have contributed to the failure of a psychotherapy that ended prematurely. In this connection, the affect 'contempt' played a particular role. It is made clear how an unconscious enactment results in a gap between emotional expression and experience. In addition, the countertransference of the psychotherapist is examined and the emotional experience is contrasted with her affective behavior. In this study, it is demonstrated how this particular psychotherapy failed due to a lack of acknowledging the involvement of the interactive dynamics.

  1. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism.

    PubMed

    Shimodahira, Makiko; Fujimoto, Shimpei; Mukai, Eri; Nakamura, Yasuhiko; Nishi, Yuichi; Sasaki, Mayumi; Sato, Yuichi; Sato, Hiroki; Hosokawa, Masaya; Nagashima, Kazuaki; Seino, Yutaka; Inagaki, Nobuya

    2010-01-01

    Rapamycin, an immunosuppressant used in human transplantation, impairs beta-cell function, but the mechanism is unclear. Chronic (24 h) exposure to rapamycin concentration dependently suppressed 16.7 mM glucose-induced insulin release from islets (1.65+/-0.06, 30 nM rapamycin versus 2.35+/-0.11 ng/islet per 30 min, control, n=30, P<0.01) without affecting insulin and DNA contents. Rapamycin also decreased alpha-ketoisocaproate-induced insulin release, suggesting reduced mitochondrial carbohydrate metabolism. ATP content in the presence of 16.7 mM glucose was significantly reduced in rapamycin-treated islets (13.42+/-0.47, rapamycin versus 16.04+/-0.46 pmol/islet, control, n=30, P<0.01). Glucose oxidation, which indicates the velocity of metabolism in the Krebs cycle, was decreased by rapamycin in the presence of 16.7 mM glucose (30.1+/-2.7, rapamycin versus 42.2+/-3.3 pmol/islet per 90 min, control, n=9, P<0.01). Immunoblotting revealed that the expression of complex I, III, IV, and V was not affected by rapamycin. Mitochondrial ATP production indicated that the respiratory chain downstream of complex II was not affected, but that carbohydrate metabolism in the Krebs cycle was reduced by rapamycin. Analysis of enzymes in the Krebs cycle revealed that activity of alpha-ketoglutarate dehydrogenase (KGDH), which catalyzes one of the slowest reactions in the Krebs cycle, was reduced by rapamycin (10.08+/-0.82, rapamycin versus 13.82+/-0.84 nmol/mg mitochondrial protein per min, control, n=5, P<0.01). Considered together, these findings indicate that rapamycin suppresses high glucose-induced insulin secretion from pancreatic islets by reducing mitochondrial ATP production through suppression of carbohydrate metabolism in the Krebs cycle, together with reduced KGDH activity.

  2. Approaches for the Development of Drugs for Treatment of Obesity and Metabolic Syndrome.

    PubMed

    Maksimov, Maksim L; Svistunov, Andrey A; Tarasov, Vadim V; Chubarev, Vladimir N; Ávila-Rodriguez, Marco; Barreto, George E; Dralova, Olga V; Aliev, Gjumrakch

    2016-01-01

    Obesity and metabolic syndrome (MS) are risk factors for diabetes, cancer, some cardiovascular and musculoskeletal diseases. Pharmacotherapy should be used when the body mass index (BMI) exceeds 30 kg/m² or 27 kg/m² with comorbidity. Efficacy and safety of pharmacotherapy depend on the mechanism of action of drugs. In this context, drugs affecting the central and peripheral mediator systems such as cannabinoid receptor antagonists (Rimonabant), neuronal reuptake inhibitor of NE and 5 HT (Sibutramine), neuronal reuptake inhibitor of NE 5-HT DA (Tesofensine), agonist of 5 HT 2C receptors (Lorcaserin) have a high risk of side effects on the central nervous and cardiovascular systems when used for a long period. Apparently, the drugs design targeting obesity should screen safer drugs that affect fat absorption (Orlistat), activate energy metabolism (Adipokines), inhibit MetAP2 (Beloranib) and other peripheral metabolic processes. The use of synergies of anti-obesity drugs with different mechanisms of action is an effective approach for developing new combined pharmaceutical compositions (Contrave®, EmpaticTM, Qsymia et al). The purpose of this article is to review the currently available anti-obesity drugs and some new promising trends in development of anti-obesity therapy.

  3. Metabolism in Fungal Pathogenesis

    PubMed Central

    Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard

    2014-01-01

    Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251

  4. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo

    PubMed Central

    Abdullah, Muhammad; Kornegay, Joe N.; Honcoop, Aubree; Parry, Traci L.; Balog-Alvarez, Cynthia J.; Muehlbauer, Michael J.; Newgard, Christopher B.; Patterson, Cam

    2017-01-01

    Background: Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. Methods: We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Results: Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10−3), carnosine (0.40-fold of controls, p = 1.88 × 10−2), fumaric acid (0.40-fold of controls, p = 7.40 × 10−4), lactamide (0.33-fold of controls, p = 4.84 × 10−2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10−2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10−2), glutamic acid (2.48-fold of controls, p = 2.63 × 10−2), and proline (1.73-fold of controls, p = 3.01 × 10−2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10−4, FDR 4.7 × 10−2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle

  5. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo.

    PubMed

    Abdullah, Muhammad; Kornegay, Joe N; Honcoop, Aubree; Parry, Traci L; Balog-Alvarez, Cynthia J; O'Neal, Sara K; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Patterson, Cam; Willis, Monte S

    2017-07-29

    Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10 -3 ), carnosine (0.40-fold of controls, p = 1.88 × 10 -2 ), fumaric acid (0.40-fold of controls, p = 7.40 × 10 -4 ), lactamide (0.33-fold of controls, p = 4.84 × 10 -2 ), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10 -2 ), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10 -2 ), glutamic acid (2.48-fold of controls, p = 2.63 × 10 -2 ), and proline (1.73-fold of controls, p = 3.01 × 10 -2 ). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10 -4 , FDR 4.7 × 10 -2 ), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two

  6. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  7. Negative ion treatment increases positive emotional processing in seasonal affective disorder.

    PubMed

    Harmer, C J; Charles, M; McTavish, S; Favaron, E; Cowen, P J

    2012-08-01

    Antidepressant drug treatments increase the processing of positive compared to negative affective information early in treatment. Such effects have been hypothesized to play a key role in the development of later therapeutic responses to treatment. However, it is unknown whether these effects are a common mechanism of action for different treatment modalities. High-density negative ion (HDNI) treatment is an environmental manipulation that has efficacy in randomized clinical trials in seasonal affective disorder (SAD). The current study investigated whether a single session of HDNI treatment could reverse negative affective biases seen in seasonal depression using a battery of emotional processing tasks in a double-blind, placebo-controlled randomized study. Under placebo conditions, participants with seasonal mood disturbance showed reduced recognition of happy facial expressions, increased recognition memory for negative personality characteristics and increased vigilance to masked presentation of negative words in a dot-probe task compared to matched healthy controls. Negative ion treatment increased the recognition of positive compared to negative facial expression and improved vigilance to unmasked stimuli across participants with seasonal depression and healthy controls. Negative ion treatment also improved recognition memory for positive information in the SAD group alone. These effects were seen in the absence of changes in subjective state or mood. These results are consistent with the hypothesis that early change in emotional processing may be an important mechanism for treatment action in depression and suggest that these effects are also apparent with negative ion treatment in seasonal depression.

  8. Abnormal brain processing of affective and sensory pain descriptors in chronic pain patients.

    PubMed

    Sitges, Carolina; García-Herrera, Manuel; Pericás, Miquel; Collado, Dolores; Truyols, Magdalena; Montoya, Pedro

    2007-12-01

    Previous research has suggested that chronic pain patients might be particularly vulnerable to the effects of negative mood during information processing. However, there is little evidence for abnormal brain processing of affective and sensory pain-related information in chronic pain. Behavioral and brain responses, to pain descriptors and pleasant words, were examined in chronic pain patients and healthy controls during a self-endorsement task. Eighteen patients with fibromyalgia (FM), 18 patients with chronic musculoskeletal pain due to identifiable physical injury (MSK), and 16 healthy controls were asked to decide whether word targets described their current or past experience of pain. The number of self-endorsed words, elapsed time to endorse the words, and event-related potentials (ERPs) elicited by words, were recorded. Data revealed that chronic pain patients used more affective and sensory pain descriptors, and were slower in responding to self-endorsed pain descriptors than to pleasant words. In addition, it was found that affective pain descriptors elicited significantly more enhanced positive ERP amplitudes than pleasant words in MSK pain patients; whereas sensory pain descriptors elicited greater positive ERP amplitudes than affective pain words in healthy controls. These data support the notion of abnormal information processing in chronic pain patients, which might be characterized by a lack of dissociation between sensory and affective components of pain-related information, and by an exaggerated rumination over word meaning during the encoding of self-referent information about pain.

  9. Self-focused attention affects subsequent processing of positive (but not negative) performance appraisals.

    PubMed

    Holzman, Jacob B; Valentiner, David P

    2016-03-01

    Cognitive-behavioral models highlight the conjoint roles of self-focused attention (SFA), post-event processing (PEP), and performance appraisals in the maintenance of social anxiety. SFA, PEP, and biased performance appraisals are related to social anxiety; however, limited research has examined how SFA affects information-processing following social events. The current study examined whether SFA affects the relationships between performance appraisals and PEP following a social event.. 137 participants with high (n = 72) or low (n = 65) social anxiety were randomly assigned to conditions of high SFA or low SFA while engaging in a standardized social performance. Subsequent performance appraisals and PEP were measured. Immediate performance appraisals were not affected by SFA. High levels of SFA led to a stronger, inverse relationship between immediate positive performance appraisals and subsequent negative PEP. High levels of SFA also led to a stronger, inverse relationship between negative PEP and changes in positive performance appraisals.. Future research should examine whether the current findings, which involved a standardized social performance event, extend to interaction events as well as in a clinical sample. These findings suggest that SFA affects the processing of positive information following a social performance event. SFA is particularly important for understanding how negative PEP undermines positive performance appraisals.. Published by Elsevier Ltd.

  10. Metabolic synthetic lethality in cancer therapy.

    PubMed

    Zecchini, Vincent; Frezza, Christian

    2017-08-01

    Our understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis. These mutations induce profound adaptive metabolic alterations that are a prerequisite for the survival of the mutated cells. Because these metabolic events are specific to cancer cells, they offer an opportunity to develop new therapies that specifically target tumour cells without affecting healthy tissue. Here, we will describe recent developments in metabolism-based cancer therapy, in particular focusing on the concept of metabolic synthetic lethality. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantitation of Cellular Metabolic Fluxes of Methionine

    PubMed Central

    Shlomi, Tomer; Fan, Jing; Tang, Baiqing; Kruger, Warren D.; Rabinowitz, Joshua D.

    2014-01-01

    Methionine is an essential proteogenic amino acid. In addition, it is a methyl donor for DNA and protein methylation and a propylamine donor for polyamine biosyn-thesis. Both the methyl and propylamine donation pathways involve metabolic cycles, and methods are needed to quantitate these cycles. Here, we describe an analytical approach for quantifying methionine metabolic fluxes that accounts for the mixing of intracellular and extracellular methionine pools. We observe that such mixing prevents isotope tracing experiments from reaching the steady state due to the large size of the media pools and hence precludes the use of standard stationary metabolic flux analysis. Our approach is based on feeding cells with 13C methionine and measuring the isotope-labeling kinetics of both intracellular and extracellular methionine by liquid chromatography−mass spectrometry (LC-MS). We apply this method to quantify methionine metabolism in a human fibrosarcoma cell line and study how methionine salvage pathway enzyme methylthioadenosine phosphorylase (MTAP), frequently deleted in cancer, affects methionine metabolism. We find that both transmethylation and propylamine transfer fluxes amount to roughly 15% of the net methionine uptake, with no major changes due to MTAP deletion. Our method further enables the quantification of flux through the pro-tumorigenic enzyme ornithine decarboxylase, and this flux increases 2-fold following MTAP deletion. The analytical approach used to quantify methionine metabolic fluxes is applicable for other metabolic systems affected by mixing of intracellular and extracellular metabolite pools. PMID:24397525

  12. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals?

    PubMed

    Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr

    2014-01-01

    Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p < 0.030), low-density lipoprotein cholesterol ( 3.28 mmol/L vs. 2.90 mmol/L, p < 0.032), and non-high-density lipoprotein cholesterol ( 3.74 mmol/L vs. 3.25 mmol/L, p < 0.016) levels, in addition to lower fasting glucose levels ( 4.51 mmol/L vs. 4.81 mmol/L, p < 0.042). A positive correlation between fasting glucose and insulin levels (r = 0.28; p < 0.015) was detected in the fhMetS participants. Higher mean daytime systolic blood pressure (121.5 mmHg vs. 113.3 mmHg, p < 0.035), mean daytime diastolic blood pressure ( 79.0 mmHg vs. 74.5 mmHg, p < 0.045), and mean nighttime diastolic blood pressure ( 64.0 mmHg vs. 59.5 mmHg, p < 0.019) were observed in the fhMetS group. More than 50% of the fhMetS participants had excess weight or a lipid disorder, which may indicate an increased risk of cardiovascular disease and the need for regular ambulatory

  13. Pseudoxanthoma Elasticum is a Metabolic Disease

    PubMed Central

    Jiang, Qiujie; Endoh, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the “metabolic” versus the “PXE cell” hypotheses. We examined a murine PXE model (Abcc6−/−) by transplanting muzzle skin from knock-out (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, while grafting KO mouse muzzle skin onto the WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu. PMID:18685618

  14. Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.

    PubMed

    Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle

    2017-07-07

    Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.

  15. Sense and Nonsense in Metabolic Control of Reproduction

    PubMed Central

    Schneider, Jill E.; Klingerman, Candice M.; Abdulhay, Amir

    2012-01-01

    An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable. PMID:22649413

  16. Sense and nonsense in metabolic control of reproduction.

    PubMed

    Schneider, Jill E; Klingerman, Candice M; Abdulhay, Amir

    2012-01-01

    An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.

  17. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    PubMed

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparative study of hop-containing products on human cytochrome p450-mediated metabolism.

    PubMed

    Foster, Brian C; Kearns, Nikia; Arnason, John T; Saleem, Ammar; Ogrodowczyk, Carolina; Desjardins, Suzanne

    2009-06-10

    Thirty-five national and international brands of beer were examined for their potential to affect human cytochrome P450 (CYP)-mediated metabolism. They represented the two main categories of beer, ales and lagers, and included a number of specialty products including bitter (porter, stout), coffee, ice, wheat, Pilsner, and hemp seed. Aliquots were examined for nonvolatile soluble solids, effect on CYP metabolism and P-glycoprotein (Pgp) transport, and major alpha- and beta-hop acids. Wide variance was detected in contents of alcohol, nonvolatile suspended solids, and hop acids and in the potential to affect CYP-mediated metabolism and Pgp-mediated efflux transport. Many of the products affected CYP2C9-mediated metabolism, and only two (NRP 306 and 307) markedly affected CYP3A4; hence, some products have the capacity to affect drug safety. CYP3A4, CYP3A5, CYP3A7, and CYP19 (aromatase) inhibition to the log concentration of beta-acid content was significant with r(2) > 0.37, suggesting that these components can account for some of the variation in inhibition of CYP metabolism.

  19. Understanding the intersections between metabolism and cancer biology

    PubMed Central

    Heiden, Matthew G. Vander; DeBerardinis, Ralph J.

    2017-01-01

    Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress towards answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients. PMID:28187287

  20. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition.

    PubMed

    Zarrin, M; Grossen-Rösti, L; Bruckmaier, R M; Gross, J J

    2017-03-01

    show that effects of hyperketonemia on plasma glucose concentrations are similar before and after calving but that endocrine adaptation to hyperketonemia differs before and after parturition. We assume that BHB is a metabolic key regulator in early lactating dairy cows and may affect glucose concentration by further pathways such as gluconeogenesis and altered lipolysis. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    PubMed

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. © 2011 IEEE

  2. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking

    PubMed Central

    Zelik, Karl E.; Collins, Steven H.; Adamczyk, Peter G.; Segal, Ava D.; Klute, Glenn K.; Morgenroth, David C.; Hahn, Michael E.; Orendurff, Michael S.; Czerniecki, Joseph M.; Kuo, Arthur D.

    2014-01-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the Controlled Energy Storage and Return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. PMID:21708509

  3. The effect of pathological narcissism on interpersonal and affective processes in social interactions.

    PubMed

    Wright, Aidan G C; Stepp, Stephanie D; Scott, Lori N; Hallquist, Michael N; Beeney, Joseph E; Lazarus, Sophie A; Pilkonis, Paul A

    2017-10-01

    Narcissism has significant interpersonal costs, yet little research has examined behavioral and affective patterns characteristic of narcissism in naturalistic settings. Here we studied the effect of narcissistic features on the dynamic processes of interpersonal behavior and affect in daily life. We used interpersonal theory to generate transactional models of social interaction (i.e., linkages among perceptions of others' behavior, affect, and one's own behavior) predicted to be characteristic of narcissism. Psychiatric outpatients (N = 102) completed clinical interviews and a 21-day ecological momentary assessment protocol using smartphones. After social interactions (N = 5,781), participants reported on perceptions of their interaction partner's behavior (scored along the dimensions of dominant-submissive and affiliative-quarrelsome), their own affect, and their own behavior. Multilevel structural equation modeling was used to examine dynamic links among behavior and affect across interactions, and the role of narcissism in moderating these links. Results showed that perceptions of others' dominance did not predict dominant behavior, but did predict quarrelsome behavior, and this link was potentiated by narcissism. Furthermore, the link between others' dominance and one's own quarrelsome behavior was mediated by negative affect. Moderated mediation was also found: Narcissism amplified the link between ratings of others' dominance and one's own quarrelsomeness and negative affect. Narcissism did not moderate the link between other dominance and own dominance, nor the link between other affiliation and own affiliation. These results suggest that narcissism is associated with specific interpersonal and affective processes, such that sensitivity to others' dominance triggers antagonistic behavior in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Phylogenetic, Metabolic, and Taxonomic Diversities Shape Mediterranean Fruit Fly Microbiotas during Ontogeny

    PubMed Central

    Aharon, Yael; Pasternak, Zohar; Ben Yosef, Michael; Behar, Adi; Lauzon, Carol; Yuval, Boaz

    2013-01-01

    The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping “core” diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers. PMID:23104413

  5. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life.

    PubMed

    Kumar, Rakesh; Tamboli, Vajir; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2018-09-01

    Several Penjar accessions of tomato grown in the Mediterranean exhibit prolonged shelf life and harbor alcobaca mutation. To uncover the metabolic basis underlying shelf life, we compared four Penjar accessions to Ailsa Craig. Three accessions bore alcobaca mutation, whereas the fourth was a novel NAC-NOR allele. Cuticle composition of Penjars varied widely during fruit ripening. All Penjars exhibited delayed ripening, prolonged on-vine and off-vine shelf life, low ethylene emission, and carotenoid levels. Metabolic profiling revealed shifts in Krebs cycle intermediates, amino acids, and γ-aminobutyric acid levels indicating the attenuation of respiration in Penjars during post-harvest storage. Penjar fruits also showed concerted downregulation of several cell-wall modifying genes and related metabolites. The high ABA and sucrose levels at the onset of senescence in Penjar fruits likely contribute to reduced water loss. Our analyses reveal that the attenuation of various metabolic processes by NAC-NOR mutation likely prolongs the shelf life of Penjar fruits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Metabolic rate covaries with fitness and the pace of the life history in the field

    PubMed Central

    Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.

    2016-01-01

    Metabolic rate reflects the ‘pace of life’ in every organism. Metabolic rate is related to an organism's capacity for essential maintenance, growth and reproduction—all of which interact to affect fitness. Although thousands of measurements of metabolic rate have been made, the microevolutionary forces that shape metabolic rate remain poorly resolved. The relationship between metabolic rate and components of fitness are often inconsistent, possibly because these fitness components incompletely map to actual fitness and often negatively covary with each other. Here we measure metabolic rate across ontogeny and monitor its effects on actual fitness (lifetime reproductive output) for a marine bryozoan in the field. We also measure key components of fitness throughout the entire life history including growth rate, longevity and age at the onset of reproduction. We found that correlational selection favours individuals with higher metabolic rates in one stage and lower metabolic rates in the other—individuals with similar metabolic rates in each developmental stage displayed the lowest fitness. Furthermore, individuals with the lowest metabolic rates lived for longer and reproduced more, but they also grew more slowly and took longer to reproduce initially. That metabolic rate is related to the pace of the life history in nature has long been suggested by macroevolutionary patterns but this study reveals the microevolutionary processes that probably generated these patterns. PMID:27226476

  7. Vitamin A Metabolism: An Update

    PubMed Central

    D’Ambrosio, Diana N.; Clugston, Robin D.; Blaner, William S.

    2011-01-01

    Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years. PMID:21350678

  8. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD + degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    PubMed

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  10. The effect of meaningfulness and integrative processing in expressive writing on positive and negative affect and life satisfaction.

    PubMed

    Schutte, Nicola S; Searle, Trudy; Meade, Stephen; Dark, Neill A

    2012-01-01

    Meaningfulness and integrative processing of expressive writing may influence the effect of expressive writing. Participants completed measures of positive affect, negative affect and life satisfaction before and after an expressive writing intervention. Participants were randomly assigned to one of four expressive writing instruction conditions, which combined higher and lower levels of meaning and integrative processing instructions. Meaningfulness and integrative processing instructions had significant effects in increasing positive affect and there was a significant interaction between meaningfulness instructions and integrative processing instructions; participants in the high meaningfulness and high integrative processing instruction condition showed the greatest increase in positive affect. Meaningfulness had a significant effect in decreasing negative affect. The intervention did not influence life satisfaction. Both meaningfulness and integrative processing instructions led to more self-reported personal meaningfulness of the writing and more cognitive, emotional, behavioural and situational changes. More self-reported meaningfulness of the writing and more cognitive, emotional, behavioural and situational changes made as a result of the writing were in turn associated with greater increases in positive affect. The results of the study affirm the importance of meaningfulness and processing in expressive writing and potentially provide information regarding how to increase the effectiveness of expressive writing.

  11. Elements of the cellular metabolic structure

    PubMed Central

    De la Fuente, Ildefonso M.

    2015-01-01

    A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell. PMID:25988183

  12. Abdominal obesity and metabolic syndrome: exercise as medicine?

    PubMed

    Paley, Carole A; Johnson, Mark I

    2018-01-01

    Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies.Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes. There is moderate evidence supporting the use of programmes of exercise to reverse metabolic syndrome although at present the optimal dose and type of exercise is unknown. The main challenge for health care professionals is how to motivate individuals to participate and adherence to programmes of exercise used prophylactically and as a treatment for metabolic syndrome.

  13. Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?

    PubMed Central

    Harris, Kristina; Kassis, Amira; Major, Geneviève; Chou, Chieh J.

    2012-01-01

    The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1) the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide) resulting in inflammation and (2) bacterial metabolites of dietary compounds (e.g., SCFA from fiber), which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study. PMID:22315672

  14. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering.

    PubMed

    Santala, Suvi; Efimova, Elena; Kivinen, Virpi; Larjo, Antti; Aho, Tommi; Karp, Matti; Santala, Ville

    2011-05-18

    Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  15. High- and low-temperature manipulation during late incubation: effects on embryonic development, the hatching process, and metabolism in broilers.

    PubMed

    Willemsen, H; Kamers, B; Dahlke, F; Han, H; Song, Z; Ansari Pirsaraei, Z; Tona, K; Decuypere, E; Everaert, N

    2010-12-01

    Temperatures continuously higher and lower than the standard incubation temperature by 3°C from embryonic d 16 until embryonic d 18.5 result in differential effects on embryonic development, the hatching process, and embryonic metabolism. Embryos in the high-temperature group were forced into a state of malnutrition by the temperature treatment, as reflected by reduced embryo growth and yolk consumption, resulting in a significantly lower chick weight at hatch. In addition, altered air cell and blood gases as well as a retarded hatching process further indicated reduced growth of embryos exposed to higher incubation temperatures during the latter part of incubation. In addition, hatchability was significantly reduced by the high-temperature treatment due to higher embryonic mortality during the treatment period and the hatching process. Levels of blood glucose, lactate, liver glycogen, plasma triglycerides, and nonesterified fatty acids indicated an altered carbohydrate and lipid metabolism for the high-temperature group. Although the hatching process of embryos exposed to lower incubation temperatures was also significantly retarded, their embryonic development and growth were strikingly similar to those of the control group.

  16. Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle

    PubMed Central

    Dickinson, Jared M.; Drummond, Micah J.; Fry, Christopher S.; Gundermann, David M.; Walker, Dillon K.; Timmerman, Kyle L.; Volpi, Elena; Rasmussen, Blake B.

    2013-01-01

    Administration of the mTORC1 inhibitor, rapamycin, to humans blocks the increase in skeletal muscle protein synthesis in response to resistance exercise or amino acid ingestion. Objective To determine whether rapamycin administration influences basal post-absorptive protein synthesis or breakdown in human skeletal muscle. Materials/Methods Six young (26±2 years) subjects were studied during two separate trials, in which each trial was divided into two consecutive 2h basal periods. The trials were identical except during one trial a single oral dose (16mg) of rapamycin was administered immediately prior to the second basal period. Muscle biopsies were obtained from the vastus lateralis at 0, 2, and 4h to examine protein synthesis, mTORC1 signaling, and markers of autophagy (LC3B-I and LC3B-II protein) associated with each 2h basal period. Results During the Control trial, muscle protein synthesis, whole body protein breakdown (phenylalanine Ra), mTORC1 signaling, and markers of autophagy were similar between both basal periods (p>0.05). During the Rapamycin trial, these variables were similar to the Control trial (p>0.05) and were unaltered by rapamycin administration (p>0.05). Thus, post-absorptive muscle protein metabolism and mTORC1 signaling were not affected by rapamycin administration. Conclusions Short-term rapamycin administration may only impair protein synthesis in human skeletal muscle when combined with a stimulus such as resistance exercise or increased amino acid availability. PMID:22959478

  17. Synchronous contextual irregularities affect early scene processing: replication and extension.

    PubMed

    Mudrik, Liad; Shalgi, Shani; Lamy, Dominique; Deouell, Leon Y

    2014-04-01

    Whether contextual regularities facilitate perceptual stages of scene processing is widely debated, and empirical evidence is still inconclusive. Specifically, it was recently suggested that contextual violations affect early processing of a scene only when the incongruent object and the scene are presented a-synchronously, creating expectations. We compared event-related potentials (ERPs) evoked by scenes that depicted a person performing an action using either a congruent or an incongruent object (e.g., a man shaving with a razor or with a fork) when scene and object were presented simultaneously. We also explored the role of attention in contextual processing by using a pre-cue to direct subjects׳ attention towards or away from the congruent/incongruent object. Subjects׳ task was to determine how many hands the person in the picture used in order to perform the action. We replicated our previous findings of frontocentral negativity for incongruent scenes that started ~ 210 ms post stimulus presentation, even earlier than previously found. Surprisingly, this incongruency ERP effect was negatively correlated with the reaction times cost on incongruent scenes. The results did not allow us to draw conclusions about the role of attention in detecting the regularity, due to a weak attention manipulation. By replicating the 200-300 ms incongruity effect with a new group of subjects at even earlier latencies than previously reported, the results strengthen the evidence for contextual processing during this time window even when simultaneous presentation of the scene and object prevent the formation of prior expectations. We discuss possible methodological limitations that may account for previous failures to find this an effect, and conclude that contextual information affects object model selection processes prior to full object identification, with semantic knowledge activation stages unfolding only later on. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  19. The indirect effect of emotion dysregulation in terms of negative affect and smoking-related cognitive processes.

    PubMed

    Johnson, Adrienne L; McLeish, Alison C

    2016-02-01

    Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots.

    PubMed

    Yuan, Yuan; Liu, Yunjun; Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi

    2012-01-01

    The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.

  1. Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Scutellaria baicalensis Georgi Roots

    PubMed Central

    Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi

    2012-01-01

    The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi. PMID:23077481

  2. Additive solutions differentially affect metabolic and functional parameters of platelet concentrates.

    PubMed

    Leitner, G C; List, J; Horvath, M; Eichelberger, B; Panzer, S; Jilma-Stohlawetz, P

    2016-01-01

    Pathogen inactivation (PI) of platelet concentrates with extension of shelf life to 7 days requires the use of platelet additive solutions (PAS). We examined the quality of platelets resuspended in three different PAS stored for up to 7 days. Twelve triple adult dose platelet concentrates (PC) were collected using the TrimaAccel® collection system. Each highly concentrated product was divided into three equal parts, and the additive solutions (Composol® or SSP+® or Intersol™) were added to a final concentration of 56% PAS and 44% plasma. Samples were drawn on days 1, 5 and 7 to measure pH, glucose, lactate dehydrogenase (LDH), lactate, mean platelet volume (MPV) and the aggregation response to collagen and the thrombin receptor agonist peptide-6. Further, p-selectin expression on platelets was assessed. No statistically significant changes were observed for pH and MPV during 7 days of storage in all PAS containing PCs, whereas glucose decreased and LDH and lactate increased over time (P < 0·05). These changes were particularly evident in Intersol PCs on days 5 and 7 compared with Composol® PCs or SSP+® PCs (P < 0·05). Platelets from Intersol PCs exhibited the highest baseline activation of p-selectin and showed reduced collagen- and TRAP-6-induced aggregation. Resuspension of platelets in Intersol for 7 days results in increased platelet activation and platelet metabolism compared with SSP+® or Composol®. Further clinical studies are needed to evaluate whether the observed differences in PAS-PCs affect the recovery rate or the life span of transfused platelets. © 2015 International Society of Blood Transfusion.

  3. Facial Affect Processing and Depression Susceptibility: Cognitive Biases and Cognitive Neuroscience

    ERIC Educational Resources Information Center

    Bistricky, Steven L.; Ingram, Rick E.; Atchley, Ruth Ann

    2011-01-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal…

  4. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits.

    PubMed

    Akar, Fatma; Pektas, M Bilgehan; Tufan, Can; Soylemez, Selen; Sepici, Aylin; Ulus, A Tulga; Gokalp, Burcu; Ozturk, Kamile; Surucu, H Selcuk

    2011-04-01

    Resveratrol has been shown to have vasoprotective effects by upregulating oxidative defense mechanisms in a variety of pathophysiological conditions. However, the effect of resveratrol on diabetic oxidative stress and vascular and metabolic abnormalities is not completely understood. Therefore, this study was designed to evaluate whether long-term resveratrol supplementation has a protective effect on vascular function and integrity in association with metabolic parameters and oxidative stress in insulin-dependent diabetes. Diabetes was induced in rabbits with alloxan and maintained for 8 weeks. We used a resveratrol dose of 5 mg/L (10 weeks, starting 14 days before alloxan injection) and 50 mg/L (8 or 10 weeks, starting concomitantly or 14 days before alloxan injection) in the drinking water of rabbits. Relaxation to acetylcholine was impaired (control 75.6 ± 3.59%, versus diabetic 42.23 ± 2.53%) and contractions to phenylephrine increased (control 136.89 ± 2.27%, versus diabetic 159.37 ± 6.27%) in aortas from diabetic animals. These changes were associated with increased basal or NAD(P)H-induced superoxide production, as well as lipid peroxide and superoxide dismutase (SOD) levels in the aortic samples. The maximal relaxation to acetylcholine improved by 75.74 ± 9.04% in diabetic rabbits treated with resveratrol. The increased contractions to phenylephrine were not restored to control values after resveratrol treatments, but sensitivity to the contractions tended to decrease. Resveratrol increased nitrite/nitrate levels and suppressed basal or NAD(P)H-induced superoxide production and lipid peroxide levels in the aortas. Importantly, resveratrol increased serum insulin levels without affecting blood glucose and the lipid profile in diabetic rabbits. Using electron microscopic examinations, resveratrol was found to markedly protect the endothelial integrity from diabetes. Overall, there was no noticeable difference between resveratrol

  5. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  6. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    PubMed

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  7. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  8. Metabolic changes in malnutrition.

    PubMed

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  9. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  10. 40 CFR 63.7885 - What are the general standards I must meet for my affected process vents?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet for my affected process vents? 63.7885 Section 63.7885 Protection of Environment ENVIRONMENTAL... Remediation General Standards § 63.7885 What are the general standards I must meet for my affected process...) You determine for the remediation material treated or managed by the process vented through the...

  11. 40 CFR 63.7885 - What are the general standards I must meet for my affected process vents?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet for my affected process vents? 63.7885 Section 63.7885 Protection of Environment ENVIRONMENTAL... Remediation General Standards § 63.7885 What are the general standards I must meet for my affected process...) You determine for the remediation material treated or managed by the process vented through the...

  12. 40 CFR 63.7885 - What are the general standards I must meet for my affected process vents?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meet for my affected process vents? 63.7885 Section 63.7885 Protection of Environment ENVIRONMENTAL... Remediation General Standards § 63.7885 What are the general standards I must meet for my affected process...) You determine for the remediation material treated or managed by the process vented through the...

  13. 40 CFR 63.7885 - What are the general standards I must meet for my affected process vents?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet for my affected process vents? 63.7885 Section 63.7885 Protection of Environment ENVIRONMENTAL... Remediation General Standards § 63.7885 What are the general standards I must meet for my affected process...) You determine for the remediation material treated or managed by the process vented through the...

  14. Neural bases of different cognitive strategies for facial affect processing in schizophrenia.

    PubMed

    Fakra, Eric; Salgado-Pineda, Pilar; Delaveau, Pauline; Hariri, Ahmad R; Blin, Olivier

    2008-03-01

    To examine the neural basis and dynamics of facial affect processing in schizophrenic patients as compared to healthy controls. Fourteen schizophrenic patients and fourteen matched controls performed a facial affect identification task during fMRI acquisition. The emotional task included an intuitive emotional condition (matching emotional faces) and a more cognitively demanding condition (labeling emotional faces). Individual analysis for each emotional condition, and second-level t-tests examining both within-, and between-group differences, were carried out using a random effects approach. Psychophysiological interactions (PPI) were tested for variations in functional connectivity between amygdala and other brain regions as a function of changes in experimental conditions (labeling versus matching). During the labeling condition, both groups engaged similar networks. During the matching condition, schizophrenics failed to activate regions of the limbic system implicated in the automatic processing of emotions. PPI revealed an inverse functional connectivity between prefrontal regions and the left amygdala in healthy volunteers but there was no such change in patients. Furthermore, during the matching condition, and compared to controls, patients showed decreased activation of regions involved in holistic face processing (fusiform gyrus) and increased activation of regions associated with feature analysis (inferior parietal cortex, left middle temporal lobe, right precuneus). Our findings suggest that schizophrenic patients invariably adopt a cognitive approach when identifying facial affect. The distributed neocortical network observed during the intuitive condition indicates that patients may resort to feature-based, rather than configuration-based, processing and may constitute a compensatory strategy for limbic dysfunction.

  15. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells.

    PubMed

    de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana

    2018-03-08

    Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  16. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training.

    PubMed

    Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C

    2016-08-01

    Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.

    PubMed

    Aldor, Ilana S; Keasling, Jay D

    2003-10-01

    Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.

  18. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    PubMed

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  19. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.

    PubMed

    Kitagaki, Hiroshi; Takagi, Hiroshi

    2014-04-01

    Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  1. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155

  2. The role of fructose in metabolism and cancer.

    PubMed

    Charrez, Bérénice; Qiao, Liang; Hebbard, Lionel

    2015-05-01

    Fructose consumption has dramatically increased in the last 30 years. The principal form has been in the form of high-fructose corn syrup found in soft drinks and processed food. The effect of excessive fructose consumption on human health is only beginning to be understood. Fructose has been confirmed to induce several obesity-related complications associated with the metabolic syndrome. Here we present an overview of fructose metabolism and how it contrasts with that of glucose. In addition, we examine how excessive fructose consumption can affect de novo lipogenesis, insulin resistance, inflammation, and reactive oxygen species production. Fructose can also induce a change in the gut permeability and promote the release of inflammatory factors to the liver, which has potential implications in increasing hepatic inflammation. Moreover, fructose has been associated with colon, pancreas, and liver cancers, and we shall discuss the evidence for these observations. Taken together, data suggest that sustained fructose consumption should be curtailed as it is detrimental to long-term human health.

  3. Factors affecting the process performance of biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopchynski, D.M.; Farmer, R.W.; Maier, W.J.

    1996-11-01

    Biofiltration is an emerging biological treatment technology for the removal of airborne VOCs from industrial process waste streams. Removal of air-phase VOCs by biofiltration is accomplished by contacting a process airstream with an active microbial biofilm attached to a solid phase packing. VOCs that partition into the biofilm are aerobically oxidized to the endproducts of water, carbon dioxide and salts. A multiple reactor biofiltration pilot plant test program has been in progress at the University of Minnesota Environmental Engineering Laboratories since 1992. The primary goal of the program is to study factors that affect biofiltration process performance. Initial results ofmore » this test program were reported in a previous conference paper and master`s thesis. This paper presents the results of more recent studies that focus on the effects of: (1) biofilm accumulation (which in turn causes a decrease in biofilter bed porosity and packing bed surface area), (2) rates of nutrient addition, and (3) chemical properties of the target contaminant, on biofiltration removal performance. Removal performance was evaluated by determining biofilter removal capacities and efficiencies for various substrate feeds. The performance parameters were measured under constant contaminant inlet concentrations and under constant temperature. Three VOCs were selected for study and they are: MEK, (methyl ethyl ketone), xylene, and hexane. MEK, xylene, and hexane were chosen because they are representative of widely used industrial solvents and they have significantly different Henry`s law constants relative to each other (the MEK value < Xylene value < Hexane value). Henry`s law constants quantify the partitioning of a chemical between the air and water-biofilm phase and therefore can be used to correlate the effect of chemical properties on biofilter removal capacities. This paper also introduces a new model for the biofiltration process.« less

  4. Effects of metabolic syndrome on language functions in aging.

    PubMed

    Cahana-Amitay, Dalia; Spiro, Avron; Cohen, Jason A; Oveis, Abigail C; Ojo, Emmanuel A; Sayers, Jesse T; Obler, Loraine K; Albert, Martin L

    2015-02-01

    This study explored effects of the metabolic syndrome (MetS) on language in aging. MetS is a constellation of five vascular and metabolic risk factors associated with the development of chronic diseases and increased risk of mortality, as well as brain and cognitive impairments. We tested 281 English-speaking older adults aged 55-84, free of stroke and dementia. Presence of MetS was based on the harmonized criteria (Alberti et al., 2009). Language performance was assessed by measures of accuracy and reaction time on two tasks of lexical retrieval and two tasks of sentence processing. Regression analyses, adjusted for age, education, gender, diabetes, hypertension, and heart disease, demonstrated that participants with MetS had significantly lower accuracy on measures of lexical retrieval (action naming) and sentence processing (embedded sentences, both subject and object relative clauses). Reaction time was slightly faster on the test of embedded sentences among those with MetS. MetS adversely affects the language performance of older adults, impairing accuracy of both lexical retrieval and sentence processing. This finding reinforces and extends results of earlier research documenting the negative influence of potentially treatable medical conditions (diabetes, hypertension) on language performance in aging. The unanticipated finding that persons with MetS were faster in processing embedded sentences may represent an impairment of timing functions among older individuals with MetS.

  5. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  6. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera)

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2017-01-01

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food. PMID:28193870

  7. Processing of affective speech prosody is impaired in Asperger syndrome.

    PubMed

    Korpilahti, Pirjo; Jansson-Verkasalo, Eira; Mattila, Marja-Leena; Kuusikko, Sanna; Suominen, Kalervo; Rytky, Seppo; Pauls, David L; Moilanen, Irma

    2007-09-01

    Many people with the diagnosis of Asperger syndrome (AS) show poorly developed skills in understanding emotional messages. The present study addressed discrimination of speech prosody in children with AS at neurophysiological level. Detection of affective prosody was investigated in one-word utterances as indexed by the N1 and the mismatch negativity (MMN) of auditory event-related potentials (ERPs). Data from fourteen boys with AS were compared with those for thirteen typically developed boys. These results suggest atypical neural responses to affective prosody in children with AS and their fathers, especially over the RH, and that this impairment can already be seen at low-level information processes. Our results provide evidence for familial patterns of abnormal auditory brain reactions to prosodic features of speech.

  8. Deepening, and repairing, the metabolic rift.

    PubMed

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  9. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model.

    PubMed

    Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R

    2013-07-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.

  10. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  11. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  12. Anemone bleaching increases the metabolic demands of symbiont anemonefish.

    PubMed

    Norin, Tommy; Mills, Suzanne C; Crespel, Amélie; Cortese, Daphne; Killen, Shaun S; Beldade, Ricardo

    2018-04-11

    Increased ocean temperatures are causing mass bleaching of anemones and corals in the tropics worldwide. While such heat-induced loss of algal symbionts (zooxanthellae) directly affects anemones and corals physiologically, this damage may also cascade on to other animal symbionts. Metabolic rate is an integrative physiological trait shown to relate to various aspects of organismal performance, behaviour and locomotor capacity, and also shows plasticity during exposure to acute and chronic stressors. As climate warming is expected to affect the physiology, behaviour and life history of animals, including ectotherms such as fish, we measured if residing in bleached versus unbleached sea anemones ( Heteractis magnifica ) affected the standard (i.e. baseline) metabolic rate and behaviour (activity) of juvenile orange-fin anemonefish ( Amphiprion chrysopterus ) . Metabolic rate was estimated from rates of oxygen uptake [Formula: see text], and the standard metabolic rate [Formula: see text] of anemonefish from bleached anemones was significantly higher by 8.2% compared with that of fish residing in unbleached anemones, possibly due to increased stress levels. Activity levels did not differ between fish from bleached and unbleached anemones. As [Formula: see text] reflects the minimum cost of living, the increased metabolic demands may contribute to the negative impacts of bleaching on important anemonefish life history and fitness traits observed previously (e.g. reduced spawning frequency and lower fecundity). © 2018 The Author(s).

  13. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.

    PubMed

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-04-10

    Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo , we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. IMPORTANCE Only a few examples of real-time evolutionary investigations in environments outside the laboratory are described in the scientific literature. Remembering that biological evolution, as it has progressed in nature, has not taken place in test tubes, it is not

  14. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism

    PubMed Central

    Wu, Kun; Tan, Xiao-Ying; Wei, Chuan-Chuan; You, Wen-Jing; Zhuo, Mei-Qin; Song, Yu-Feng

    2016-01-01

    Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta. PMID:27011172

  15. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Wei, Chuan-Chuan; You, Wen-Jing; Zhuo, Mei-Qin; Song, Yu-Feng

    2016-03-22

    Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta.

  16. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes

    PubMed Central

    Baart, Gino JE; Zomer, Bert; de Haan, Alex; van der Pol, Leo A; Beuvery, E Coen; Tramper, Johannes; Martens, Dirk E

    2007-01-01

    Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature. PMID:17617894

  17. Nutrigenetics of the lipoprotein metabolism.

    PubMed

    Garcia-Rios, Antonio; Perez-Martinez, Pablo; Delgado-Lista, Javier; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

    2012-01-01

    It is well known that lipid metabolism is a cornerstone in the development of the commonest important chronic diseases worldwide, such as obesity, cardiovascular disease, or metabolic syndrome. In this regard, the area of lipid and lipoprotein metabolism is one of the areas in which the understanding of the development and progression of those metabolic disorders has been studied in greater depth. Thus, growing evidence has demonstrated that while universal recommendations might be appropriate for the general population, in this area there is great variability among individuals, related to a combination of environmental and genetic factors. Moreover, the interaction between genetic and dietary components has helped in understanding this variability. Therefore, with further study into the interaction between the most important genetic markers or single-nucleotide polymorphisms (SNPs) and diet, it may be possible to understand the variability in lipid metabolism, which could lead to an increase in the use of personalized nutrition as the best support to combat metabolic disorders. This review discusses some of the evidence in which candidate SNPs can affect the key players of lipid metabolism and how their phenotypic manifestations can be modified by dietary intake. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Affective Cues and Processing Strategy: Color-Coded Examination Forms Influence Performance.

    ERIC Educational Resources Information Center

    Sinclair, Robert C.; Soldat, Alexander S.; Mark, Melvin M.

    1998-01-01

    Argues that external cues provide affective information that influence processing strategy and, therefore, examination performance. Notes the differences in performance for two midterm examinations, identical, except that they were printed on blue and red paper. Discusses a method for appropriately adjusting scores to control for form effects.…

  19. Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus.

    PubMed

    Rivera, Daniela S; Lindsay, Carolina B; Codocedo, Juan F; Carreño, Laura E; Cabrera, Daniel; Arrese, Marco A; Vio, Carlos P; Bozinovic, Francisco; Inestrosa, Nibaldo C

    2018-04-13

    There has been a progressive increase in the incidence of fructose-induced metabolic disorders, such as metabolic syndrome (MetS). Moreover, novel evidence reported negative effects of high-fructose diets in brain function. This study was designed to evaluate for the first time the effects of long-term fructose consumption (LT-FC) on the normal ageing process in a long-lived animal model rodent, Octodon degus or degu. Moreover, we could replicate human sugar consumption behaviour over time, leading us to understand then the possible mechanisms by which this MetS-like condition could affect cognitive abilities. Our results support that 28 months (from pup to adulthood) of a 15% solution of fructose induced clinical conditions similar to MetS which includes an insulin-resistance scenario together with elevated basal metabolic rate and non-alcoholic fatty liver disease. Additionally, we extended our analysis to evaluate the impact of this MetS-like condition on the functional and cognitive brain processes. Behavioural test suggests that fructose-induced MetS-like condition impair hippocampal-dependent and independent memory performance. Moreover, we also reported several neuropathological events as impaired hippocampal redox balance, together with synaptic protein loss. These changes might be responsible for the alterations in synaptic plasticity and transmitter release observed in these cognitively impaired animals. Our results indicate that LT-FC induced several facets of MetS that eventually could trigger brain disorders, in particular, synaptic dysfunction and reduced cognition.

  20. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    PubMed

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past.

  1. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Metabolic alterations in patients with Parkinson disease and visual hallucinations.

    PubMed

    Boecker, Henning; Ceballos-Baumann, Andres O; Volk, Dominik; Conrad, Bastian; Forstl, Hans; Haussermann, Peter

    2007-07-01

    Visual hallucinations (VHs) occur frequently in advanced stages of Parkinson disease (PD). Which brain regions are affected in PD with VH is not well understood. To characterize the pattern of affected brain regions in PD with VH and to determine whether functional changes in PD with VH occur preferentially in visual association areas, as is suggested by the complex clinical symptomatology. Positron emission tomography measurements using fluorodeoxyglucose F 18. Between-group statistical analysis, accounting for the variance related to disease stage. University hospital. Patients Eight patients with PD and VH and 11 patients with PD without VH were analyzed. The presence of VH during the month before positron emission tomography was rated using the Neuropsychiatric Inventory subscale for VH (PD and VH, 4.63; PD without VH, 0.00; P < .002). Parkinson disease with VH, compared with PD without VH, was characterized by reduction in the regional cerebral metabolic rate for glucose consumption (P < .05, corrected for false discovery rate) in occipitotemporoparietal regions, sparing the occipital pole. No significant increase in regional glucose metabolism was detected in patients with PD and VH. The pattern of resting-state metabolic changes in regions of the dorsal and ventral visual streams, but not in primary visual cortex, in patients with PD and VH, is compatible with the functional roles of visual association areas in higher-order visual processing. These findings may help to further elucidate the functional mechanisms underlying VH in PD.

  3. Energy Metabolism in the Liver

    PubMed Central

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  4. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    PubMed

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Elucidation of primary metabolic pathways in Aspergillus species: orphaned research in characterizing orphan genes.

    PubMed

    Andersen, Mikael Rørdam

    2014-11-01

    Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80-96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2-4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas--despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes. © The Author 2014. Published by Oxford University Press.

  6. Environmental versatility promotes modularity in genome-scale metabolic networks.

    PubMed

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  7. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism.

    PubMed

    Porporato, Paolo E; Payen, Valéry L; Baselet, Bjorn; Sonveaux, Pierre

    2016-04-01

    Metabolic alterations are a hallmark of cancer controlling tumor progression and metastasis. Among the various metabolic phenotypes encountered in tumors, this review focuses on the contributions of mitochondria, lipid and amino acid metabolism to the metastatic process. Tumor cells require functional mitochondria to grow, proliferate and metastasize, but shifts in mitochondrial activities confer pro-metastatic traits encompassing increased production of mitochondrial reactive oxygen species (mtROS), enhanced resistance to apoptosis and the increased or de novo production of metabolic intermediates of the TCA cycle behaving as oncometabolites, including succinate, fumarate, and D-2-hydroxyglutarate that control energy production, biosynthesis and the redox state. Lipid metabolism and the metabolism of amino acids, such as glutamine, glutamate and proline are also currently emerging as focal control points of cancer metastasis.

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  9. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE PAGES

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  10. Imaging metabolic heterogeneity in cancer.

    PubMed

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  11. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    PubMed Central

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O.; Sokolova, Inna M.; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and

  12. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  13. Postprandial Metabolism of Macronutrients and Cardiometabolic Risk: Recent Developments, Emerging Concepts, and Future Directions.

    PubMed

    Jacome-Sosa, Miriam; Parks, Elizabeth J; Bruno, Richard S; Tasali, Esra; Lewis, Gary F; Schneeman, Barbara O; Rains, Tia M

    2016-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Although the role of habitual lifestyle factors such as physical activity and dietary patterns in increasing CVD risk has long been appreciated, less is known about how acute daily activities may cumulatively contribute to long-term disease risk. Here, the term acute refers to metabolic responses occurring in a short period of time after eating, and the goal of this article is to review recently identified stressors that can occur after meals and during the sleep-wake cycle to affect macronutrient metabolism. It is hypothesized that these events, when repeated on a regular basis, contribute to the observed long-term behavioral risks identified in population studies. In this regard, developments in research methods have supported key advancements in 3 fields of macronutrient metabolism. The first of these research areas is the focus on the immediate postmeal metabolism, spanning from early intestinal adsorptive events to the impact of incretin hormones on these events. The second topic is a focus on the importance of meal components on postprandial vasculature function. Finally, some of the most exciting advances are being made in understanding dysregulation in metabolism early in the day, due to insufficient sleep, that may affect subsequent processing of nutrients throughout the day. Key future research questions are highlighted which will lead to a better understanding of the relations between nocturnal, basal (fasting), and early postmeal events, and aid in the development of optimal sleep and targeted dietary patterns to reduce cardiometabolic risk. © 2016 American Society for Nutrition.

  14. Gastroenteropancreatic hormones and metabolism in fish.

    PubMed

    Nelson, Laura E; Sheridan, Mark A

    2006-09-01

    Metabolism of vertebrates integrates a vast array of systems and processes, including the pursuit and capture of food, feeding and digestion of ingested food, absorption and transport of nutrients, assimilation, partitioning and utilization of energy, and the processing and elimination of wastes. Fish, which are the most diverse group of vertebrates and occupy a wide range of habitats and display numerous life history patterns, have proven to be important models for the study of the structure, biosynthesis, evolution, and function of gastroenteropancreatic (GEP) hormones. Food intake is promoted by galanin, neuropeptide Y, and pancreatic polypeptide (PP), while cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) inhibit food intake. Digestion of ingested food is facilitated by CCK, PP, and secretin by coordinating gastrointestinal tract motility and regulation of exocrine secretion. Somatostatins (SS), on the other hand, generally inhibit exocrine secretions. Insulin facilitates assimilation by promoting the uptake of nutrient molecules (e.g., glucose, amino acids, and fatty acids) into cells. Insulin also is generally anabolic and stimulates the synthesis and deposition of energy reserves (e.g., glycogen, triacylglycerol) as well as of proteins, thereby facilitating organismal growth. Insulin-like growth factors (e.g., IGF-1) also promote cell proliferation and organismal growth. Breakdown and mobilization of stored energy reserves is stimulated by glucagon, GLP-1, and SS. Somatostatins also affect metabolism and reproduction via their effects on the thyroid axis as well as growth via effects on growth hormone (GH) release and perhaps directly via modulation of GH sensitivity. Studies in fish have revealed that GEP hormones play an important role in coordinating the various aspects of metabolism with each other and with the physiological and developmental status of the animal as well as with the environment.

  15. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    PubMed Central

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter

  16. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.

    PubMed

    Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter

  17. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    PubMed

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  18. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  19. Quantifying spatial differences in metabolism in headwater streams

    Treesearch

    Ricardo González-Pinzón; Roy Haggerty; Alba Argerich

    2014-01-01

    Stream functioning includes simultaneous interaction among solute transport, nutrient processing, and metabolism. Metabolism is measured with methods that have limited spatial representativeness and are highly uncertain. These problems restrict development of methods for up-scaling biological processes that mediate nutrient processing. We used the resazurin–resorufin (...

  20. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    PubMed

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.