Science.gov

Sample records for metabolism neurological functions

  1. Metabolic phenotyping and systems biology approaches to understanding neurological disorders.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2013-01-01

    The development of high-throughput metabolic profiling and the study of the metabolome are particularly important in brain research where small molecules or metabolites play fundamental signalling roles: neurotransmitters, signalling lipids, osmolytes and even ions. Metabolic profiling has shown that metabolic perturbations in the brain go beyond alterations of neurotransmission and that variations in brain metabolic homeostasis are associated with neurological disorders. In this report, we will focus on recent developments in the field of metabolic phenotyping that have contributed to unravelling the pathophysiology of neurological diseases. Also, we will highlight the necessity of implementing systems biology approaches to integrate metabolic data and tackle the structural and functional complexity of the brain in normal and pathological conditions. PMID:23755365

  2. [Nutritional and metabolic aspects of neurological diseases].

    PubMed

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  3. Metabolic Disturbances in Diseases with Neurological Involvement

    PubMed Central

    Duarte, João M. N.; Schuck, Patrícia F.; Wenk, Gary L.; Ferreira, Gustavo C.

    2014-01-01

    Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses. PMID:25110608

  4. Functional symptoms in neurology: mimics and chameleons.

    PubMed

    Stone, Jon; Reuber, Markus; Carson, Alan

    2013-04-01

    The mimics and chameleons of functional symptoms in neurology could be a whole textbook of neurology. Nevertheless, there are some recurring themes when things go wrong, notably diagnostic bias introduced by the presence or absence of psychiatric comorbidity or life events, neurological diseases that look 'weird' and lack of appreciation of the more unusual features of functional symptoms themselves. PMID:23468561

  5. Functional Disorders in Neurology: Case Studies.

    PubMed

    Stone, Jon; Hoeritzauer, Ingrid; Gelauff, Jeannette; Lehn, Alex; Gardiner, Paula; van Gils, Anne; Carson, Alan

    2016-08-01

    Functional, often called psychogenic, disorders are common in neurological practice. We illustrate clinical issues and highlight some recent research findings using six case studies of functional neurological disorders. We discuss dizziness as a functional disorder, describing the relatively new consensus term Persistent Posturo-Perceptual Dizziness (PPPD), axial jerking/myoclonus as a functional movement disorder, functional speech symptoms, post-concussion disorder with functional cognitive symptoms and finally advances in treatment of dissociative seizures and functional motor disorders. PMID:27445247

  6. Functional neurological disorders: mechanisms and treatment.

    PubMed

    Lehn, Alexander; Gelauff, Jeannette; Hoeritzauer, Ingrid; Ludwig, Lea; McWhirter, Laura; Williams, Stevie; Gardiner, Paula; Carson, Alan; Stone, Jon

    2016-03-01

    Functional neurological disorders are common problems in neurologic practice. In the past decade there has been an increasing interest in this group of disorders both from a clinical as well as research point of view. In this review, we highlight some of the most salient and exciting publications from recent years focusing especially on new findings illuminating mechanism and studies examining treatment. PMID:26410744

  7. Reptilian neurology: anatomy and function.

    PubMed

    Wyneken, Jeanette

    2007-09-01

    The reptilian nervous system is relatively simple in structure yet is characterized by great functional diversity. This article describes the reptilian nervous system, highlighting the similarities and differences among species in structures and functions. PMID:17765850

  8. Functional neurological disorders: the neurological assessment as treatment.

    PubMed

    Stone, Jon

    2016-02-01

    The neurologist's role in patients with functional disorders has traditionally been limited to making the diagnosis, excluding a 'disease' and pronouncing the symptoms to be 'non-organic' or 'psychogenic'. In this article, I argue that there are multiple opportunities during routine assessment of a patient with a functional disorder for the neurologist to take the lead with treatment. These opportunities occur throughout history taking, during the examination and, with greatest potential for treatment, at the end of the consultation. Elements of the neurologist's discussion that may be most useful include (a) emphasis that symptoms are genuine, common and potentially reversible; (b) explanation of the positive nature of the diagnosis (ie, not a diagnosis of exclusion); (c) simple advice about distraction techniques, self-help techniques and sources of information; (d) referral on to appropriate physiotherapy and/or psychological services; and (e) offering outpatient review. I also discuss how new diagnostic criteria for Diagnostic and Statistical Manual of Mental Disorders-5 and changes proposed for International Classification of Diseases may facilitate changes that allow neurologists to bring their management of patients with functional disorders in line with other multidisciplinary neurological disorders in the outpatient clinic. PMID:26715762

  9. Update on 3-iodothyronamine and its neurological and metabolic actions.

    PubMed

    Zucchi, Riccardo; Accorroni, Alice; Chiellini, Grazia

    2014-01-01

    3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of

  10. Sparring and Neurological Function in Professional Boxers

    PubMed Central

    Stiller, John W.; Yu, Steven S.; Brenner, Lisa A.; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B.; Roberts, Darryl W.; Monsell, Ray M. T.; Binks, Sidney W.; Guzman, Alvaro; Postolache, Teodor T.

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer’s physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253

  11. Sparring and neurological function in professional boxers.

    PubMed

    Stiller, John W; Yu, Steven S; Brenner, Lisa A; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B; Roberts, Darryl W; Monsell, Ray M T; Binks, Sidney W; Guzman, Alvaro; Postolache, Teodor T

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer's physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253

  12. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    PubMed

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes. PMID:26900733

  13. Functional neurological disorders in outpatient practice: An Australian cohort.

    PubMed

    Ahmad, Omar; Ahmad, Kate E

    2016-06-01

    Functional disorders are defined as neurological symptoms without causative organic pathology identified. They are a diverse and often neglected group of disorders. The aim of this was to determine the incidence and outcome of functional neurological disorders in an Australian neurology practice. Over a 17month period, all patients presenting to a single outpatient neurology service were evaluated to determine the incidence and outcome of these disorders. A total of 884 patients were assessed and of these, 137 had a final diagnosis of functional neurological illness, equating to an incidence of 15% of all patients seen. Functional disorders were the third most common presentation overall. Patients with functional disorders were younger, more likely to be female and had a higher rate of current psychiatric comorbidity compared to other neurology patients. Sensory symptoms were the most common manifestation (48%) followed by limb weakness (37%) and psychogenic non-epileptic seizures (14%). Outcome information was available for 49% of patients at an average of 3months follow-up. 45% had some improvement in their symptoms, 43% had static symptoms and 12% had worsening of symptoms. This study confirms the high incidence of functional disorders in outpatient neurology practice. Early improvement was seen in a substantial proportion of patients and is influenced by duration of symptoms. PMID:26754851

  14. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    SciTech Connect

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 {mu}g/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 {mu}g/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 {mu}g/L, mean 99 {mu}g/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  15. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases

    PubMed Central

    Müller, Juliane S.; Giunta, Michele; Horvath, Rita

    2016-01-01

    Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms. PMID:27127732

  16. Functional (Psychogenic) Cognitive Disorders: A Perspective from the Neurology Clinic.

    PubMed

    Stone, Jon; Pal, Suvankar; Blackburn, Daniel; Reuber, Markus; Thekkumpurath, Parvez; Carson, Alan

    2015-09-24

    Cognitive symptoms such as poor memory and concentration represent a common cause of morbidity among patients presenting to general practitioners and may result in referral for a neurological opinion. In many cases, these symptoms do not relate to an underlying neurological disease or dementia. In this article we present a personal perspective on the differential diagnosis of cognitive symptoms in the neurology clinic, especially as this applies to patients who seek advice about memory problems but have no neurological disease process. These overlapping categories include the following 'functional' categories: 1) cognitive symptoms as part of anxiety or depression; 2) "normal" cognitive symptoms that become the focus of attention; 3) isolated functional cognitive disorder in which symptoms are outwith 'normal' but not explained by anxiety; 4) health anxiety about dementia; 5) cognitive symptoms as part of another functional disorder; and 6) retrograde dissociative (psychogenic) amnesia. Other 'non-dementia' diagnoses to consider in addition are 1) cognitive symptoms secondary to prescribed medication or substance misuse; 2) diseases other than dementia causing cognitive disorders; 3) patients who appear to have functional cognitive symptoms but then go on to develop dementia/another neurological disease; and finally 4) exaggeration/malingering. We discuss previous attempts to classify the problem of functional cognitive symptoms, the importance of making a positive diagnosis for the patient, and the need for large cohort studies to better define and manage this large group of patients. PMID:26445274

  17. [Neurological lower torso function test. A new assessment].

    PubMed

    Merkert, J; Butz, S; Nieczaj, R; Steinhagen-Thiessen, E; Eckardt, R

    2013-02-01

    The neurological lower torso function test was developed in addition to the Berg Balance Scale as an assessment for diagnosis and follow-up of lower torso stability and functioning in neurological patients, used for example in subjects in the early rehabilitation phase or still showing low motoric recovery after suffering a stroke. Due to the ground effect for changes in severely affected neurological patients, other tests currently available do not provide an adequate level of sensitivity. The neurological function test was integrated into the study "Combined whole body vibration and balance training using Vibrosphere" with 66 inpatient/partial inpatient neurological subjects ≥ 60 years. Based on six tasks, a qualitative assessment of the selective function of movement and posture tone of the lower extremity, the muscular system around the hip, and the lower torso are performed. Analogous to the Berg Balance Scale, a 5 point scale is used. It shows a high degree of reliability and responsiveness and can be performed with little effort of time and personnel. PMID:22733479

  18. Phonatory Function of Neurologically Impaired Patients.

    ERIC Educational Resources Information Center

    Zwirner, Petra; And Others

    1991-01-01

    This investigation compared five parameters of phonatory function in an examination of the use of acoustic measures in differential diagnosis in 39 subjects in 3 neuropathological groups (Parkinson, Huntington, cerebellar ataxia) and a normal control group. Results indicated higher variability in perturbation in all the neuropathological groups.…

  19. Plasticity and functional recovery in neurology.

    PubMed

    Ramachandran, V S

    2005-01-01

    Experiments on patients with phantom limbs suggest that neural connections in the adult human brain are much more malleable than previously assumed. Three weeks after amputation of an arm, sensations from the ipsilateral face are referred to the phantom; this effect is caused by the sensory input from the face skin 'invading' and activating deafferented hand zones in the cortex and thalamus. Many phantom arms are 'paralysed' in a painful position. If a mirror is propped vertically in the sagittal plane and the patient looks at the reflection of his/her normal hand, this reflection appears superimposed on the 'felt' position of the phantom. Remarkably, if the real arm is moved, the phantom is felt to move as well and this sometimes relieves the painful cramps in the phantom. Mirror visual feedback (MVF) has shown promising results with chronic regional pain syndrome and hemiparesis following stroke. These results suggest two reasons for a paradigm shift in neurorehabilitation. First, there appears to be tremendous latent plasticity even in the adult brain. Second, the brain should be thought of, not as a hierarchy of organised autonomous modules, each of which delivers its output to the next level, but as a set of complex interacting networks that are in a state of dynamic equilibrium with the brain's environment. Both principles can be potentially exploited in a clinical context to facilitate recovery of function. PMID:16138492

  20. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    PubMed Central

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  1. Neurological and neurocognitive functions from intrauterine methylmercury exposure.

    PubMed

    Yorifuji, Takashi; Kado, Yoko; Diez, Midory Higa; Kishikawa, Toshihiro; Sanada, Satoshi

    2016-05-01

    In the 1950s, large-scale food poisoning caused by methylmercury was identified in Minamata, Japan. Although severe intrauterine exposure cases (ie, congenital Minamata disease patients) are well known, possible impacts of methylmercury exposure in utero among residents, which is likely at lower levels than in congenital Minamata disease patients, are rarely explored. In 2014, the authors examined neurological and neurocognitive functions among 18 exposed participants in Minamata, focusing on fine motor, visuospatial construction, and executive functions. More than half of the participants had some fine motor and coordination difficulties. In addition, several participants had lower performance for neurocognitive function tests (the Rey-Osterrieth Complex Figure test and Keio version of the Wisconsin card sorting test). These deficits imply diffuse brain damage. This study suggests possible neurological and neurocognitive impacts of prenatal exposure to methylmercury among exposed residents of Minamata. PMID:26267674

  2. Functions of noncoding RNAs in neural development and neurological diseases

    PubMed Central

    Bian, Shan; Sun, Tao

    2011-01-01

    The development of the central nervous system (CNS) relies on precisely orchestrated gene expression regulation. Dysregualtion of both genetic and environmental factors can affect proper CNS development and results in neurological diseases. Recent studies have shown that similar to protein coding genes, noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. In this review, we have highlighted discoveries of functions of noncoding RNAs, in particular microRNAs and long noncoding RNAs, in neural development and neurological diseases. Emerging evidence has shown that microRNAs play an essential role in many aspects of neural development, such as proliferation of neural stem cells and progenitors, neuronal differentiation, maturation and synaptogenesis. Misregulation of microRNAs is associated with some mental disorders and neurodegeneration diseases. In addition, long noncoding RNAs are found to play a role in neural development by regulating expression of protein coding genes. Therefore, examining noncoding RNA-mediated gene regulations has revealed novel mechanisms of neural development and provided new insights into the etiology of human neurological diseases. PMID:21969146

  3. Leigh Syndrome in Childhood: Neurologic Progression and Functional Outcome

    PubMed Central

    Lee, Jin Sook; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Jieun; Kim, Ki Joong; Hwang, Yong Seung

    2016-01-01

    Background and Purpose Few studies have analyzed the clinical course and functional outcome in Leigh syndrome (LS). The aim of this study was to determine the clinical, radiological, biochemical, and genetic features of patients with LS, and identify prognostic indicators of the disease progression and neurological outcome. Methods Thirty-nine patients who had been diagnosed with LS at the Seoul National University Children's Hospital were included. Their medical records, neuroimaging findings, and histological/biochemical findings of skeletal muscle specimens were reviewed. Targeted sequencing of mitochondrial DNA was performed based on mitochondrial respiratory chain (MRC) enzyme defects. Results Isolated complex I deficiency was the most frequently observed MRC defect (in 42% of 38 investigated patients). Mitochondrial DNA mutations were identified in 11 patients, of which 81.8% were MT-ND genes. The clinical outcome varied widely, from independent daily activity to severe disability. Poor functional outcomes and neurological deterioration were significantly associated with early onset (before an age of 1 year) and the presence of other lesions additional to basal ganglia involvement in the initial neuroimaging. Conclusions The neurological severity and outcome of LS may vary widely and be better than those predicted based on previous studies. We suggest that age at onset and initial neuroimaging findings are prognostic indicators in LS. PMID:27074294

  4. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders.

    PubMed

    Iannotti, Fabio Arturo; Di Marzo, Vincenzo; Petrosino, Stefania

    2016-04-01

    The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the "endocannabinoids"), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement in some of the most common neurological disorders. PMID:26965148

  5. Neurologic Factors in Female Sexual Function and Dysfunction

    PubMed Central

    Siroky, Mike B.

    2010-01-01

    Sexual dysfunction affects both men and women, involving organic disorders, psychological problems, or both. Overall, the state of our knowledge is less advanced regarding female sexual physiology in comparison with male sexual function. Female sexual dysfunction has received little clinical and basic research attention and remains a largely untapped field in medicine. The epidemiology of female sexual dysfunction is poorly understood because relatively few studies have been done in community settings. In the United States, female sexual dysfunction has been estimated to affect 40% of women in the general population. Among the elderly, however, it has been reported that up to 87% of women complain of sexual dissatisfaction. Several studies have shown that the prevalence of female sexual arousal disorders correlates significantly with increasing age. These studies have shown that sexual arousal and frequency of coitus in the female decreases with increasing age. The pathophysiology of female sexual dysfunction appears more complex than that of males, involving multidimensional hormonal, neurological, vascular, psychological, and interpersonal aspects. Organic female sexual disorders may include a wide variety of vascular, neural, or neurovascular factors that lead to problems with libido, lubrication, and orgasm. However, the precise etiology and mechanistic pathways of age-related female sexual arousal disorders are yet to be determined. In the past two decades, some advances have been made in exploring the basic hemodynamics and neuroregulation of female sexual function and dysfunction in both animal models and in human studies. In this review, we summarize neural regulation of sexual function and neurological causes of sexual dysfunction in women. PMID:20664775

  6. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale.

    PubMed

    Han, Sungwon; Lemire, Joseph; Appanna, Varun P; Auger, Christopher; Castonguay, Zachary; Appanna, Vasu D

    2013-04-01

    Metal pollutants are a global health risk due to their ability to contribute to a variety of diseases. Aluminum (Al), a ubiquitous environmental contaminant is implicated in anemia, osteomalacia, hepatic disorder, and neurological disorder. In this review, we outline how this intracellular generator of reactive oxygen species (ROS) triggers a metabolic shift towards lipogenesis in astrocytes and hepatocytes. This Al-evoked phenomenon is coupled to diminished mitochondrial activity, anerobiosis, and the channeling of α-ketoacids towards anti-oxidant defense. The resulting metabolic reconfiguration leads to fat accumulation and a reduction in ATP synthesis, characteristics that are common to numerous medical disorders. Hence, the ability of Al toxicity to create an oxidative environment promotes dysfunctional metabolic processes in astrocytes and hepatocytes. These molecular events triggered by Al-induced ROS production are the potential mediators of brain and liver disorders. PMID:23463459

  7. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage

    PubMed Central

    Xie, Wen-jing; Yu, Hong-quan; Zhang, Yu; Liu, Qun; Meng, Hong-mei

    2016-01-01

    Clinical outcomes are positively associated with hematoma absorption. The monocyte-macrophage scavenger receptor, CD163, plays an important role in the metabolism of hemoglobin, and a soluble form of CD163 is present in plasma and other tissue fluids; therefore, we speculated that serum CD163 affects hematoma absorption after intracerebral hemorrhage. Patients with intracerebral hemorrhage were divided into high- and low-level groups according to the average CD163 level (1,977.79 ± 832.91 ng/mL). Compared with the high-level group, the low-level group had a significantly slower hematoma absorption rate, and significantly increased National Institutes of Health Stroke Scale scores and modified Rankin Scale scores. These results suggest that CD163 promotes hematoma absorption and the recovery of neurological function in patients with intracerebral hemorrhage.

  8. Neurologic function among termiticide applicators exposed to chlorpyrifos.

    PubMed Central

    Steenland, K; Dick, R B; Howell, R J; Chrislip, D W; Hines, C J; Reid, T M; Lehman, E; Laber, P; Krieg, E F; Knott, C

    2000-01-01

    Chlorpyrifos is a moderately toxic organophosphate pesticide. Houses and lawns in the United States receive a total of approximately 20 million annual chlorpyrifos treatments, and 82% of U.S. adults have detectable levels of a chlorpyrifos metabolite (3,5, 6-trichloro-2-pyridinol; TCP) in the urine. The U.S. Environmental Protection Agency has estimated that there are 5,000 yearly reported cases of accidental chlorpyrifos poisoning, and approximately one-fourth of these cases exhibit symptoms. Organophosphates affect the nervous system, but there are few epidemiologic data on chlorpyrifos neurotoxicity. We studied neurologic function in 191 current and former termiticide applicators who had an average of 2.4 years applying chlorpyrifos and 2.5 years applying other pesticides, and we compared them to 189 nonexposed controls. The average urinary TCP level for 65 recently exposed applicators was 629.5 microg/L, as compared to 4.5 microg/L for the general U.S. population. The exposed group did not differ significantly from the nonexposed group for any test in the clinical examination. Few significant differences were found in nerve conduction velocity, arm/hand tremor, vibrotactile sensitivity, vision, smell, visual/motor skills, or neurobehavioral skills. The exposed group did not perform as well as the nonexposed group in pegboard turning tests and some postural sway tests. The exposed subjects also reported significantly more symptoms, including memory problems, emotional states, fatigue, and loss of muscle strength; our more quantitative tests may not have been adequate to detect these symptoms. Eight men who reported past chlorpyrifos poisoning had a pattern of low performance on a number of tests, which is consistent with prior reports of chronic effects of organophosphate poisoning. Overall, the lack of exposure effects on the clinical examination was reassuring. The findings for self-reported symptoms raise some concern, as does the finding of low performance

  9. Central nervous system structure and function in Sturge-Weber syndrome: evidence of neurologic and radiologic progression.

    PubMed

    Maria, B L; Neufeld, J A; Rosainz, L C; Drane, W E; Quisling, R G; Ben-David, K; Hamed, L M

    1998-12-01

    Sturge-Weber syndrome is characterized by the presence of a port-wine nevus, epilepsy, stroke-like episodes, headache, and developmental delay. We studied 20 cases to test the hypothesis that decreased cerebral blood flow alters neurologic function by affecting cellular glucose metabolism. Group A consisted of 10 patients with a mean age of 1.75 years and early seizure onset (6.8 months), whereas group B was composed of older patients (mean age, 15.3 years) with later onset of seizures (3.7 years). Neurologic disease was more severe in group A, but group B had more widespread structural brain defects - shown on computed tomographic scans and magnetic resonance imaging - and metabolic brain defects shown on hexamethylpropyleneamine oxime and [18F] fluorodeoxyglucose single photon emission computed tomographic scans. Six group A cases had hypoperfusion at baseline and five of nine had worsening of perfusion and glucose metabolism 1 year later. A total of 119 stroke-like episodes occurred in six group A cases and eight group B cases; there were 65% fewer strokes in children treated with aspirin. The data suggest that progressive hypoperfusion and glucose hypometabolism are associated with neurologic deterioration in Sturge-Weber syndrome. Longitudinal studies are needed to better define the natural history of disease and to evaluate the safety and efficacy of aspirin therapy. PMID:9881531

  10. Cognitive and motor function of neurologically impaired extremely low birth weight children

    PubMed Central

    Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    BACKGROUND: Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. OBJECTIVE: To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). METHODS: Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. RESULTS: Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). CONCLUSION: Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed. PMID:26435676

  11. Differentiating cerebral ischemia from functional neurological symptom disorder: a psychosomatic perspective

    PubMed Central

    2014-01-01

    Background The differential diagnosis of pseudo-neurological symptoms often represents a clinical challenge. The Diagnostic and Statistical Manual of Mental Disorders, DSM-5, made an attempt to improve diagnostic criteria of conversion disorder (functional neurological symptom disorder). Incongruences of the neurological examination, i.e. positive neurological signs, indicate a new approach - whereas psychological factors are not necessary anymore. As the DSM-5 will influence the International Classification of Diseases, ICD-11, this is of importance. In the case presented, a history of psychological distress and adverse childhood experiences coexisted with a true neurological disorder. We discuss the relevance of an interdisciplinary assessment and of operationalized diagnostic criteria. Case presentation A 32-year-old man presented twice with neurological symptoms without obvious pathological organic findings. A conversion disorder was considered early on at the second admission by the neurology team. Sticking to ICD-10, this diagnosis was not supported by a specialist for psychosomatic medicine, due to missing hints of concurrent psychological distress in temporal association with neurological symptoms. Further investigations then revealed a deep vein thrombosis (though D-dimers had been negative), which had probably resulted in a crossed embolus. Conclusion The absence of a clear proof of biological dysfunction underlying neurological symptoms should not lead automatically to the diagnosis of a conversion disorder. In contrast, at least in more complex patients, the work-up should include repeated psychological and neurological assessments in close collaboration. According to ICD-10 positive signs of concurrent psychological distress are required, while DSM-5 emphasizes an incongruity between neurological symptoms and neurophysiological patterns of dysfunction. In the case presented, an extensive medical work-up was initially negative, and neither positive

  12. Mammalian aquaglyceroporin function in metabolism.

    PubMed

    Laforenza, Umberto; Bottino, Cinzia; Gastaldi, Giulia

    2016-01-01

    Aquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes. Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders. PMID:26456554

  13. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    SciTech Connect

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  14. The Assessment of Neurological Systems with Functional Imaging

    ERIC Educational Resources Information Center

    Eidelberg, David

    2007-01-01

    In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…

  15. ENDOCRINE DISRUPTORS AS A THREAT TO NEUROLOGICAL FUNCTION

    PubMed Central

    Weiss, Bernard

    2011-01-01

    Endocrine disruption is a concept and principle whose origins can be traced to the beginnings of the environmental movement in the 1960s. It began with puzzlement about and the flaring of research on the decline of wildlife, particularly avian species. The proposed causes accented pesticides, especially persistent organochlorines such as DDT. Its scope gradually widened beyond pesticides, and, as endocrine disruption offered an explanation for the wildlife phenomena, it seemed to explain, as well, changes in fertility and disorders of male reproduction such as testicular cancer. Once disturbed gonadal hormone function became the most likely explanation, it provoked other questions. The most challenging arose because of how critical gonadal hormones are to brain function, especially as determinants of brain sexual differentiation. Pursuit of such connections has generated a robust literature embracing a broad swath of chemical classes. How endocrine disrupting chemicals influence the adult and aging brain is a question, so far mostly ignored because of the emphasis on early development, that warrants vigorous investigation. Gonadal hormones are crucial to optimal brain function during maturity and even senescence. They are pivotal to the processes of neurogenesis. They exert protective actions against neurodegenerative disorders such as dementia and support smoothly functioning cognitive activities. The limited research conducted so far on endocrine disruptors, aging, and neurogenesis argues that they should be overlooked no longer. PMID:21474148

  16. [Development of motoricity as functional-neurologic diagnosis].

    PubMed

    Göllnitz, G

    1970-01-01

    Movement is one of the characteristic features of a living organism. The movements of human beings are controlled by the brain via the nervous system. Disturbances in the development of the brain therefore also manifest themselves in the organization and course of motoricity. The normal and pathological development of the child--from birth through to maturation--therefore also shows itself in the differentiation of motoricity and psychomotoricity. In the first three years of life the organization of motor coordination is even the most reliable indicator of normal somatic and psychic development and of the functional capacity of the central nervous system. The author discuss at length: The development of tonicity. The diagnostically most significant reflex mechanisms of neonates; time of occurrence and disappearance within the framework of the integration of voluntary movements. Motometric studies for determining the various coordinative capacities, the discussion centering on: The motor functions of the maturation test. Examinations of small children using the methods developed by Griffith, Brunet-Lézine. Metric scale according to Oseretzky, mimic scale according to Kwint. Disturbances of writing motoricity. Coordinative examinations on juveniles and adolescents. The motor diagnosis may be carried out without the need for using a larger number of apparatus and instruments and--provided broad methods of examination and longitudinal-section controls are employed--permits to obtain results, the reliability of which is not at present surpassed by those obtained using any other method. PMID:5006291

  17. Clinical assessment of social cognitive function in neurological disorders.

    PubMed

    Henry, Julie D; von Hippel, William; Molenberghs, Pascal; Lee, Teresa; Sachdev, Perminder S

    2016-01-01

    Social cognition broadly refers to the processing of social information in the brain that underlies abilities such as the detection of others' emotions and responding appropriately to these emotions. Social cognitive skills are critical for successful communication and, consequently, mental health and wellbeing. Disturbances of social cognition are early and salient features of many neuropsychiatric, neurodevelopmental and neurodegenerative disorders, and often occur after acute brain injury. Its assessment in the clinic is, therefore, of paramount importance. Indeed, the most recent edition of the American Psychiatric Association's Diagnostic and Statistical Manual for Mental Disorders (DSM-5) introduced social cognition as one of six core components of neurocognitive function, alongside memory and executive control. Failures of social cognition most often present as poor theory of mind, reduced affective empathy, impaired social perception or abnormal social behaviour. Standard neuropsychological assessments lack the precision and sensitivity needed to adequately inform treatment of these failures. In this Review, we present appropriate methods of assessment for each of the four domains, using an example disorder to illustrate the value of these approaches. We discuss the clinical applications of testing for social cognitive function, and finally suggest a five-step algorithm for the evaluation and treatment of impairments, providing quantitative evidence to guide the selection of social cognitive measures in clinical practice. PMID:26670297

  18. Neurologic deficit

    MedlinePlus

    ... neurologic deficit refers to abnormal function of a body area due to weaker function of the brain, spinal cord, muscles, or nerves. Examples include: Abnormal reflexes Inability to speak Decreased sensation Loss of balance ...

  19. Interoceptive awareness in patients with functional neurological symptoms.

    PubMed

    Ricciardi, Lucia; Demartini, Benedetta; Crucianelli, Laura; Krahé, Charlotte; Edwards, Mark J; Fotopoulou, Aikaterini

    2016-01-01

    Historically, emotional factors, such as trauma or psychological conflict, have been suggested as causal factors of functional motor disorders (FMD). More recent approaches have instead stressed potential neural and cognitive abnormalities in the allocation and maintenance of attention. Yet these studies have mostly focused on how attention is allocated to exteroceptive signals about the state of the body. Given the proposed important role of interoception for emotion, the study of FMD patients' ability to monitor their interoceptive signals may serve as a useful, mechanistic link between studies that aim to identify key emotional factors in FMD, and those that examine specific sensorimotor or cognitive abnormalities. In the current study, we compared the interoceptive awareness of a group of individuals with FMD (N=16) with a group of healthy controls (N=17). We employed a commonly used heartbeat detection task which tracks the level of concordance between one's heart rate and its subjective perception, as a proxy for interoceptive awareness more generally. We found that FMD patients have lower interoceptive accuracy than healthy subjects, and such reduced interoceptive accuracy was predictive of their depressive symptoms, as well as their tendency to focus on the external features of their body (self-objectification). Contary to our predictions, interoceptive accuracy was not predictive of alexithymia. These results suggest a potental trade-off between the allocation of attention to internal versus external aspects of the body in FMD. More generally, they warrant further investigation of interoceptive awareness in this population, as a means to understand their emotional abnormalities at a more mechanistic level than studies concentrating on traumatic life events and related risk factors. PMID:26528552

  20. Activated spinal cord ependymal stem cells rescue neurological function.

    PubMed

    Moreno-Manzano, Victoria; Rodríguez-Jiménez, Francisco Javier; García-Roselló, Mireia; Laínez, Sergio; Erceg, Slaven; Calvo, Maria Teresa; Ronaghi, Mohammad; Lloret, Maria; Planells-Cases, Rosa; Sánchez-Puelles, Jose María; Stojkovic, Miodrag

    2009-03-01

    Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage. PMID:19259940

  1. The concept of technology transfer. [for neurologically handicapped persons with impairment of sensorimotor functions

    NASA Technical Reports Server (NTRS)

    Arnold, L.

    1974-01-01

    Potential benefits from aerospace technology applications are elaborated that will enable the neurologically handicapped to recapture and upgrade some of their motor and sensor functions. Considered are all individuals whose sensorimotor communication systems have been damaged as a result of disease, trauma, or aging.

  2. Metabolic regulation of stem cell function.

    PubMed

    Burgess, R J; Agathocleous, M; Morrison, S J

    2014-07-01

    Stem cell function is regulated by intrinsic mechanisms, such as transcriptional and epigenetic regulators, as well as extrinsic mechanisms, such as short-range signals from the niche and long-range humoral signals. Interactions between these regulatory mechanisms and cellular metabolism are just beginning to be identified. In multiple systems, differentiation is accompanied by changes in glycolysis, oxidative phosphorylation and the levels of reactive oxygen species. Indeed, metabolic pathways regulate proliferation and differentiation by regulating energy production and the generation of substrates for biosynthetic pathways. Some metabolic pathways appear to function differently in stem cells as compared with restricted progenitors and differentiated cells. They also appear to influence stem cell function by regulating signal transduction, epigenetic marks and oxidative stress. Studies to date illustrate the importance of metabolism in the regulation of stem cell function and suggest complex cross-regulation likely exists between metabolism and other stem cell regulatory mechanisms. PMID:24697828

  3. Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies

    PubMed Central

    Zhang, Shuxiao; Ross, Kevin D.; Seidner, Glen A.; Gorman, Michael R.; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth M.; Lee, Patricia N.; Martindale, Mark Q.; Joiner, William J.; Hamilton, Bruce A.

    2015-01-01

    Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes. PMID:26131556

  4. KTX 0101: a potential metabolic approach to cytoprotection in major surgery and neurological disorders.

    PubMed

    Smith, Sharon L; Heal, David J; Martin, Keith F

    2005-01-01

    KTX 0101 is the sodium salt of the physiological ketone, D-beta-hydroxybutyrate (betaOHB). This neuroprotectant, which has recently successfully completed clinical Phase IA evaluation, is being developed as an intravenous infusion fluid to prevent the cognitive deficits caused by ischemic foci in the brain during cardiopulmonary bypass (CPB) surgery. KTX 0101 maintains cellular viability under conditions of physiological stress by acting as a "superfuel" for efficient ATP production in the brain and peripheral tissues. Unlike glucose, this ketone does not require phosphorylation before entering the TCA cycle, thereby sparing vital ATP stores. Although no reliable models of CPB-induced ischemia exist, KTX 0101 is powerfully cytoprotectant under the more severe ischemic conditions of global and focal cerebral ischemia, cardiac ischemia and lung hemorrhage. Neuroprotection has been demonstrated by reductions in infarct volume, edema, markers of apoptosis and functional impairment. One significant difference between KTX 0101 and other potential neuroprotectants in development is that betaOHB is a component of human metabolic physiology which exploits the body's own neuroprotective mechanisms. KTX 0101 also protects hippocampal organotypic cultures against early and delayed cell death in an in vitro model of status epilepticus, indicating that acute KTX 0101 intervention in this condition could help prevent the development of epileptiform foci, a key mechanism in the etiology of intractable epilepsy. In models of chronic neurodegenerative disorders, KTX 0101 protects neurons against damage caused by dopaminergic neurotoxins and by the fragment of beta-amyloid, Abeta(1-42), implying possible therapeutic applications for ketogenic strategies in treating Parkinson's and Alzheimer's diseases. Major obstacles to the use of KTX 0101 for long term therapy in chronic disorders, e.g., Parkinson's and Alzheimer's diseases, are the sodium loading problem and the need to administer

  5. The use of a battery of tracking tests in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Albers, J. W.; Potvin, A. R.; Tourtellotte, W. W.

    1972-01-01

    A tracking test battery has been applied in a drug trail designed to compare the efficacy of L-DOPA and amantadine to that of L-DOPA and placebo in the treatment of 28 patients with Parkinson's disease. The drug trial provided an ideal opportunity for objectively evaluating the usefulness of tracking tests in assessing changes in neurologic function. Evaluating changes in patient performance resulting from disease progression and controlled clinical trials is of great importance in establishing effective treatment programs.

  6. Anti-VEGF treatment improves neurological function and augments radiation response in NF2 schwannoma model

    PubMed Central

    Gao, Xing; Zhao, Yingchao; Stemmer-Rachamimov, Anat O.; Liu, Hao; Huang, Peigen; Chin, ShanMin; Selig, Martin K.; Plotkin, Scott R.; Jain, Rakesh K.; Xu, Lei

    2015-01-01

    Hearing loss is the main limitation of radiation therapy for vestibular schwannoma (VS), and identifying treatment options that minimize hearing loss are urgently needed. Treatment with bevacizumab is associated with tumor control and hearing improvement in neurofibromatosis type 2 (NF2) patients; however, its effect is not durable and its mechanism of action on nerve function is unknown. We modeled the effect anti-VEGF therapy on neurological function in the sciatic nerve model and found that it improves neurological function by alleviating tumor edema, which may further improve results by decreasing muscle atrophy and increasing nerve regeneration. Using a cranial window model, we showed that anti-VEGF treatment may achieve these effects via normalizing the tumor vasculature, improving vessel perfusion, and delivery of oxygenation. It is known that oxygen is a potent radiosensitizer; therefore, we further demonstrated that combining anti-VEGF with radiation therapy can achieve a better tumor control and help lower the radiation dose and, thus, minimize radiation-related neurological toxicity. Our results provide compelling rationale for testing combined therapy in human VS. PMID:26554010

  7. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury

    PubMed Central

    Gao, Shuang; Zhang, Zhong-ming; Shen, Zhao-liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-mei

    2016-01-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14–42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  8. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury.

    PubMed

    Gao, Shuang; Zhang, Zhong-Ming; Shen, Zhao-Liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-Mei

    2016-06-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  9. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  10. Cognitive-analytical therapy for a patient with functional neurological symptom disorder-conversion disorder (psychogenic myopia): A case study

    PubMed Central

    Nasiri, Hamid; Ebrahimi, Amrollah; Zahed, Arash; Arab, Mostafa; Samouei, Rahele

    2015-01-01

    Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia) was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful. PMID:26487881

  11. Soft Neurological Signs and Cognitive Function in Obsessive-compulsive Disorder Patients

    PubMed Central

    Dhuri, Chetali Vijay; Parkar, Shubhangi R.

    2016-01-01

    Objective: Modern research on obsessive-compulsive disorder (OCD) indicates that the primary cause of OCD, which was earlier explained only on basis of psychoanalytical theories, is biological. Our study attempts to investigate the neurobiological signs in form of soft neurological signs and cognitive function in OCD. Methods: A cross sectional study was conducted at psychiatric facility of Seth G.S. Medical College and KEM Hospital. Materials and Method: 50 OCD patients and age- and education-matched controls were selected for the study. Established instruments were used to assess the neurological soft signs (NSS) and the cognitive deficits. Results: OCD patients had significant more NSS in tests for motor coordination, sensory integration, complex motor tasks, hard signs, and right/left and spatial orientation. Cognitive deficits in the domains of visuospatial ability, executive function, attention, and working memory were significantly more in OCD patients compared to controls. Conclusion: Our study highlights the role of biological factors in form of soft neurological signs and cognitive dysfunction in the development of the OCD. PMID:27570338

  12. Sphingosine 1-phosphate in blood: function, metabolism, and fate.

    PubMed

    Thuy, Andreas V; Reimann, Christina-Maria; Hemdan, Nasr Y A; Gräler, Markus H

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid metabolite and a ligand of five G protein-coupled cell surface receptors S1PR1 to S1PR5. These receptors are expressed on various cells and cell types of the immune, cardiovascular, respiratory, hepatic, reproductive, and neurologic systems, and S1P has an impact on many different pathophysiological conditions including autoimmune, cardiovascular, and neurodegenerative diseases, cancer, deafness, osteogenesis, and reproduction. While these diverse signalling properties of S1P have been extensively reviewed, the particular role of S1P in blood is still a matter of debate. Blood contains the highest S1P concentration of all body compartments, and several questions are still not sufficiently answered: Where does it come from and how is it metabolized? Why is the concentration of S1P in blood so high? Are minor changes of the high blood S1P concentrations physiologically relevant? Do blood cells and vascular endothelial cells that are constantly exposed to high blood S1P levels still respond to S1P via S1P receptors? Recent data reveal new insights into the functional role and the metabolic fate of blood-borne S1P. This review aims to summarize our current knowledge regarding the source, secretion, transportation, function, metabolism, and fate of S1P in blood. PMID:24977489

  13. Neurological, Metabolic, and Psychiatric Adverse Events in Children and Adolescents Treated With Aripiprazole.

    PubMed

    Jakobsen, Klaus Damgaard; Bruhn, Christina Hedegaard; Pagsberg, Anne-Katrine; Fink-Jensen, Anders; Nielsen, Jimmi

    2016-10-01

    Aripiprazole is a partial dopamine agonist with only minor neurological and psychiatric adverse effects, making it a potential first-line drug for the treatment of psychiatric disorders. However, the evidence of its use in children and adolescents is rather sparse. The aim of this case study is to discuss adverse drug reaction (ADR) reports concerning aripiprazole-associated neurological and psychiatric events in children and adolescents. The ADR report database at Danish Medicines Agency was searched for all ADRs involving children and adolescents (<18 years) reported by the search term [aripiprazole] AND all spontaneous reports since the introduction of aripiprazole in 2003 until December 31, 2015. Nineteen case reports were included in the study and included both patients with psychotic disorders (PS group) and nonpsychotic disorders (non-PS group). The PS group consisted of 5 patients with schizophrenia and psychoses, not otherwise specified; and the non-PS group consisted of fourteen cases including autism spectrum disorders, attention deficit and hyperactivity disorder, obsessive-compulsive disorder, and Tourette syndrome. The main reported adverse effects in the non-PS group were chronic insomnia, Parkinsonism, behavioral changes psychoses, and weight gain, whereas the adverse effects in the PS group was predominantly anxiety, convulsions, and neuroleptic malignant syndrome. Although aripiprazole is considered safe and well tolerated in children and adolescents, severe adverse events as neuroleptic malignant syndrome, extreme insomnia, and suicidal behavior has been reported to health authorities. Clinicians should pay attention to these possible hazards when prescribing aripiprazole to this vulnerable group of patients. PMID:27504593

  14. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  15. Immune responses at brain barriers and implications for brain development and neurological function in later life

    PubMed Central

    Stolp, Helen B.; Liddelow, Shane A.; Sá-Pereira, Inês; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2013-01-01

    For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed. PMID:23986663

  16. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  17. Is there an association of vitamin B12 status with neurological function in older people? A systematic review.

    PubMed

    Miles, Lisa M; Mills, Kerry; Clarke, Robert; Dangour, Alan D

    2015-08-28

    Low vitamin B12 status is common in older people; however, its public health significance in terms of neurological manifestations remains unclear. The present systematic review evaluated the association of vitamin B12 status with neurological function and clinically relevant neurological outcomes in adults aged 50+ years. A systematic search of nine bibliographic databases (up to March 2013) identified twelve published articles describing two longitudinal and ten cross-sectional analyses. The included study populations ranged in size (n 28-2287) and mean/median age (range 65-81 years). Studies reported various neurological outcomes: nerve function; clinically measured signs and symptoms of nerve function; self-reported neurological symptoms. Studies were assessed for risk of bias, and results were synthesised qualitatively. Among the general population groups of older people, one longitudinal study reported no association, and four of seven cross-sectional studies reported limited evidence of an association of vitamin B12 status with some, but not all, neurological outcomes. Among groups with clinical and/or biochemical evidence of low vitamin B12 status, one longitudinal study reported an association of vitamin B12 status with some, but not all, neurological outcomes and three cross-sectional analyses reported no association. Overall, there is limited evidence from observational studies to suggest an association of vitamin B12 status with neurological function in older people. The heterogeneity and quality of the evidence base preclude more definitive conclusions, and further high-quality research is needed to better inform understanding of public health significance in terms of neurological function of vitamin B12 status in older people. PMID:26202329

  18. The use of a tracking test battery in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.

    1973-01-01

    A number of tracking tasks that have proven useful to control engineers and psychologists measuring skilled performance have been evaluated for clinical use. Normal subjects as well as patients with previous diagnoses of Parkinson's disease, multiple sclerosis, and cerebral palsy were used in the evaluation. The tests that were studied included step tracking, random tracking, and critical tracking. The results of the present experiments encourage the continued use of tracking tasks as assessment precedures in a clinical environment. They have proven to be reliable, valid, and sensitive measures of neurological function.

  19. Functions for diverse metabolic activities in heterochromatin.

    PubMed

    Su, Xue Bessie; Pillus, Lorraine

    2016-03-15

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes. PMID:26936955

  20. Metabolic hormones in saliva: origins and functions

    PubMed Central

    Zolotukhin, S.

    2012-01-01

    The salivary proteome consists of thousands of proteins, which include, among others, hormonal modulators of energy intake and output. Although the functions of this prominent category of hormones in whole body energy metabolism are well characterized, their functions in the oral cavity, whether as a salivary component, or when expressed in taste cells, are less studied and poorly understood. The respective receptors for the majority of salivary metabolic hormones have been also shown to be expressed in salivary glands, taste cells, or other cells in the oral mucosa. This review provides a comprehensive account of the gastrointestinal hormones, adipokines, and neuropeptides identified in saliva, salivary glands, or lingual epithelium, as well as their respective cognate receptors expressed in the oral cavity. Surprisingly, few functions are assigned to salivary metabolic hormones, and these functions are mostly associated with the modulation of taste perception. Because of the well-characterized correlation between impaired oral nutrient sensing and increased energy intake and body mass index, a conceptually provocative point of view is introduced, whereupon it is argued that targeted changes in the composition of saliva could affect whole body metabolism in response to the activation of cognate receptors expressed locally in the oral mucosa. PMID:22994880

  1. Early prediction of neurological outcome after falls in children: metabolic and clinical markers.

    PubMed Central

    Paret, G; Tirosh, R; Lotan, D; Stein, M; Ben-Abraham, R; Vardi, A; Harel, R; Barzilay, Z

    1999-01-01

    Falls are the foremost reason for non-fatal injuries and are second only to motor vehicle accidents in causing accidental death. The purpose of this study was to identify the clinical and metabolic predictors of the outcome of head injury caused by falls from a height. Medical records of 61 children who had been admitted to the paediatric intensive care unit from 1990 to 1993 after falling from a height were reviewed retrospectively. Outcomes were categorised as good, moderate, severe, and poor. Glasgow coma scores, pupillary responses, brain oedema, and midline shift are significantly associated with poor outcome (p < 0.05). Metabolic markers associated with poor outcome included hyperglycaemia and hypokalaemia. Children with a poor outcome had, at admission, significantly higher glucose concentrations compared with children with good outcomes (mean SD): 20.0 (7.1) v 9.31 (4.0) mmol/l, p < 0.01), and lower potassium concentrations compared with children with good, moderate, and severe outcomes (mean (SD): 2.8 (0.4) v 3.7 (0.4) mmol/l, p < 0.001, 3.5 (0.3) mmol/l, p < 0.01, and 3.41 (0.3) mmol/l, p < 0.05, respectively). These findings allow for an early allocation of effort and resources to children injured from such falls. Images Figure 1 Figure 2 PMID:10353044

  2. On functional module detection in metabolic networks.

    PubMed

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  3. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  4. Neurological channelopathies

    PubMed Central

    Graves, T; Hanna, M

    2005-01-01

    Ion channels are membrane-bound proteins that perform key functions in virtually all human cells. Such channels are critically important for the normal function of the excitable tissues of the nervous system, such as muscle and brain. Until relatively recently it was considered that dysfunction of ion channels in the nervous system would be incompatible with life. However, an increasing number of human diseases associated with dysfunctional ion channels are now recognised. Such neurological channelopathies are frequently genetically determined but may also arise through autoimmune mechanisms. In this article clinical, genetic, immunological, and electrophysiological aspects of this expanding group of neurological disorders are reviewed. Clinical situations in which a neurological channelopathy should enter into the differential diagnosis are highlighted. Some practical guidance on how to investigate and treat this complex group of disorders is also included. PMID:15640425

  5. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation.

    PubMed

    Thaut, Michael H; Gardiner, James C; Holmberg, Dawn; Horwitz, Javan; Kent, Luanne; Andrews, Garrett; Donelan, Beth; McIntosh, Gerald R

    2009-07-01

    This study examined the immediate effects of neurologic music therapy (NMT) on cognitive functioning and emotional adjustment with brain-injured persons. Four treatment sessions were held, during which participants were given a pre-test, participated in 30 min of NMT that focused on one aspect of rehabilitation (attention, memory, executive function, or emotional adjustment), which was followed by post-testing. Control participants engaged in a pre-test, 30 min of rest, and then a post-test. Treatment participants showed improvement in executive function and overall emotional adjustment, and lessening of depression, sensation seeking, and anxiety. Control participants improved in emotional adjustment and lessening of hostility, but showed decreases in measures of memory, positive affect, and sensation seeking. PMID:19673815

  6. Altered white matter metabolism in delayed neurologic sequelae after carbon monoxide poisoning: A proton magnetic resonance spectroscopic study.

    PubMed

    Kuroda, Hiroshi; Fujihara, Kazuo; Mugikura, Shunji; Takahashi, Shoki; Kushimoto, Shigeki; Aoki, Masashi

    2016-01-15

    Proton magnetic resonance spectroscopy ((1)H-MRS) was recently used to examine altered metabolism in the white matter (WM) of patients experiencing carbon monoxide (CO) poisoning; however, only a small number of patients with delayed neurologic sequelae (DNS) were analyzed. We aimed to detect altered metabolism in the WM of patients with DNS using (1)H-MRS; to explore its clinical relevance in the management of patients experiencing CO poisoning. Patients experiencing acute CO poisoning underwent (1)H-MRS and cerebrospinal fluid (CSF) examination within 1week and at 1month after acute poisoning. Metabolites including choline-containing compounds (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate were measured from the periventricular WM. Myelin basic protein (MBP) concentrations were measured in CSF. Fifty-two patients experiencing acute CO poisoning (15 with DNS, 37 without DNS; median age, 49years; 65% males) underwent (1)H-MRS. Within 1week, NAA/Cr ratios, reflecting neuroaxonal viability, were lower in patients with DNS than in those without DNS (P<0.05). At 1month, when 9 of 15 patients (60%) developed DNS, Cho/Cr ratios were higher, and NAA/Cr and NAA/Cho ratios lower in patients with DNS (P=0.0001, <0.0001, and <0.0001, respectively), indicating increased membrane metabolism and decreased neuroaxonal viability. (1)H-MRS parameter abnormalities correlated with the elevation of MBP in CSF. The presence of a lactate peak was a predictor for a poor long-term outcome. (1)H-MRS within 1week may be useful for predicting DNS development; (1)H-MRS at 1month may be useful for discriminating patients with DNS and predicting long-term outcomes. PMID:26723994

  7. Functional Performance and Associations between Performance Tests and Neurological Assessment Differ in Men and Women with Parkinson's Disease

    PubMed Central

    Medijainen, Kadri; Pääsuke, Mati; Lukmann, Aet; Taba, Pille

    2015-01-01

    Background. Neurological assessment of a patient with Parkinson's disease (PD) is expected to reflect upon functional performance. As women are known to report more limitations even for same observed functional performance level, present study was designed to examine whether associations between neurological assessments and functional performance differ across genders. Methods. 14 men and 14 women with PD participated. Functional performance was assessed by measuring walking speeds on 10-meter walk test (10MWT) and by performing timed-up-and-go-test (TUG). Neurological assessment included Hoehn and Yahr Scale (HY), Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Schwab and England Activities of Daily Living Scale (S-E), and Mini Mental State Examination (MMSE). Results. In women with PD, Kendall's tau-b correlation analyses revealed significant correlations between functional performance tests and neurological assessment measures, with the exception in MMSE. No corresponding associations were found for men, although they demonstrated better functional performance, as expected. Conclusion. Men in similar clinical stage of the PD perform better on functional tests than women. Disease severity reflects upon functional performance differently in men and women with PD. Results indicate that when interpreting the assessment results of both functional performance and neurological assessment tests, the gender of the patient should be taken into consideration. PMID:26586928

  8. Testosterone replacement in 49,XXXXY syndrome: andrological, metabolic and neurological aspects

    PubMed Central

    Delfino, Michele; Elia, Jlenia; Benedetti, Francesco; Alesi, Laura; Chessa, Luciana; Mazzilli, Fernando

    2015-01-01

    Summary We report the case of a 19-year-old boy, presenting several congenital malformations (facial dysmorphisms, cardiac and musculoskeletal abnormalities), mental retardation, recurrent respiratory infections during growth and delayed puberty. Although previously hospitalised in other medical centres, only psychological support had been recommended for this patient. In our department, genetic, biochemical/hormonal and ultrasound examinations were undertaken. The karyotype was 49,XXXXY, a rare aneuploidy with an incidence of 1/85 000–100 000, characterised by the presence of three extra X chromosomes in phenotypically male subjects. The hormonal/biochemical profile showed hypergonadotropic hypogonadism, insulin resistance and vitamin D deficiency. The patient was then treated with testosterone replacement therapy. After 12 months of treatment, we observed the normalisation of testosterone levels. There was also an increase in pubic hair growth, testicular volume and penis size, weight loss, homeostatic model assessment index reduction and the normalisation of vitamin D values. Moreover, the patient showed greater interaction with the social environment and context. Learning points In cases of plurimalformative syndrome, cognitive impairment, recurrent infections during growth and, primarily, delayed puberty, it is necessary to ascertain as soon as possible whether the patient is suffering from hypogonadism or metabolic disorders due to genetic causes. In our case, the diagnosis of hypogonadism, and then of 49,XXXXY syndrome, was unfortunately made only at the age of 19 years.The testosterone replacement treatment, even though delayed, induced positive effects on: i) development of the reproductive system, ii) regulation of the metabolic profile and iii) interaction with the social environment and context.However, earlier and timely hormonal replacement treatment could probably have improved the quality of life of this subject and his family. PMID:26767114

  9. A test of the 1992 International Standards for Neurological and Functional Classification of Spinal Cord Injury.

    PubMed

    Cohen, M E; Ditunno, J F; Donovan, W H; Maynard, F M

    1998-08-01

    This study was designed to test the 1992 International Standards for Neurological and Functional Classification of Spinal Cord Injury. One hundred and six professionals in the field of spinal cord injury attending an instructional course at the 1994 ASIA Meeting participated in the test. Participants completed a pretest and posttest in which they classified two patients who had a spinal cord injury (one with complete tetraplegia and one with incomplete paraplegia) by sensory and motor levels, zone of partial preservation (ZPP), ASIA Impairment Scale and completeness of injury. Between tests, three members of the ASIA Standards Executive Committee gave presentations on the neurological assessment, scoring, scaling and classification of spinal cord injury and a video of the actual examinations of the two cases was viewed. Percent 'correct' (as defined by the ASIA Standards Committee) was calculated for sensory and motor levels, ZPP, ASIA Impairment and completeness. Overall, the analyses showed that participants had very little difficulty in correctly classifying the patient with complete tetraplegia. Pretests scores ranged from 72% (left motor level) to 96% (complete injury), posttest scores from 73% (left motor level) to 100% correct (complete injury). For the patient with incomplete paraplegia (Case 2), scores were considerably lower. Pretest scores ranged from 16% (right motor level) to 95% correct (incomplete injury); posttest scores from 21% (right motor level) to 97% correct (incomplete injury). The results showed that further revisions of the 1992 Standards and more training is needed to ensure accurate classification of spinal cord injury. PMID:9713924

  10. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling.

    PubMed

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-03-01

    Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  11. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling

    PubMed Central

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-01-01

    Summary Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  12. Wharton's jelly transplantation improves neurologic function in a rat model of traumatic brain injury

    PubMed Central

    Cheng, Tian; Yang, Bo; Li, Dongpeng; Ma, Shanshan; Tian, Yi; Qu, Ruina; Zhang, Wenjin; Zhang, Yanting; Hu, Kai; Guan, Fangxia; Wang, Jian

    2015-01-01

    Traumatic brain injury (TBI), which can lead to disability, dysfunction, and even death, is a prominent health problem worldwide. Effective therapy for this serious and debilitating condition is needed. Human umbilical cord matrix, known as Wharton's jelly (WJ), provides a natural, interface scaffold that is enriched in mesenchymal stem cells. In this study, we tested the efficacy of WJ tissue transplantation in a weight drop model of TBI in rats. WJ tissue was cultured and transplanted into the injury site 24h after TBI. The modified neurologic severity score, body weight, brain edema, and lesion volume were evaluated at various time points after TBI. Cognitive behavior was assessed by the novel object recognition test and the Morris water maze test. Expression of brain-derived neurotrophic factor (BDNF) in the perilesional brain area was measured at day 14 after TBI. We found that WJ tissue transplantation lessened TBI-induced brain edema (day 3), reduced lesion volume (day 28), improved neurologic function (days 21 to 28), and promoted memory and cognitive recovery. Additionally, expression of BDNF mRNA and protein was higher in WJ tissue-treated rats than in sham-operated or vehicle-treated rats. These data suggest that WJ tissue transplantation can reduce TBI-induced brain injury and may have therapeutic potential for the treatment of TBI. PMID:25638565

  13. Synchrotron-Generated Microbeam Sensorimotor Cortex Transections Induce Seizure Control without Disruption of Neurological Functions

    PubMed Central

    Romanelli, Pantaleo; Fardone, Erminia; Battaglia, Giuseppe; Bräuer-Krisch, Elke; Prezado, Yolanda; Requardt, Herwig; Le Duc, Geraldine; Nemoz, Christian; Anschel, David J.; Spiga, Jenny; Bravin, Alberto

    2013-01-01

    Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by the ability to deliver extremely high doses of radiation to spatially restricted volumes of tissue. Minimal dose spreading outside the beam path provides an exceptional degree of protection from radio-induced damage to the neurons and glia adjacent to the microscopic slices of tissue irradiated. The preservation of cortical architecture following high-dose microbeam irradiation and the ability to induce non-invasively the equivalent of a surgical cut over the cortex is of great interest for the development of novel experimental models in neurobiology and new treatment avenues for a variety of brain disorders. Microbeams (size 100 µm/600 µm, center-to-center distance of 400 µm/1200 µm, peak entrance doses of 360-240 Gy/150-100 Gy) delivered to the sensorimotor cortex of six 2-month-old naïve rats generated histologically evident cortical transections, without modifying motor behavior and weight gain up to 7 months. Microbeam transections of the sensorimotor cortex dramatically reduced convulsive seizure duration in a further group of 12 rats receiving local infusion of kainic acid. No subsequent neurological deficit was associated with the treatment. These data provide a novel tool to study the functions of the cortex and pave the way for the development of new therapeutic strategies for epilepsy and other neurological diseases. PMID:23341950

  14. Impaired functional default mode network in patients with mild neurological Wilson's disease.

    PubMed

    Han, Yongsheng; Cheng, Hewei; Toledo, Jon B; Wang, Xun; Li, Bo; Han, Yongzhu; Wang, Kai; Fan, Yong

    2016-09-01

    Wilson's disease (WD) is an autosomal recessive metabolic disorder characterized by cognitive, psychiatric and motor signs and symptoms that are associated with structural and pathological brain abnormalities, in addition to liver changes. However, functional brain connectivity pattern of WD patients remains largely unknown. In the present study, we investigated functional brain connectivity pattern of WD patients using resting state functional magnetic resonance imaging. Particularly, we studied default mode network (DMN) using posterior cingulate cortex (PCC) based seed functional connectivity analysis and graph theoretic functional brain network analysis tools, and investigated the relationship between the DMN's functional connectivity pattern of WD patients and their attention functions examined using the attention network test (ANT). Our results demonstrated that WD patients had altered DMN's functional connectivity and lower local and global network efficiency compared with normal controls (NCs). In addition, the functional connectivity between left inferior temporal cortex and right lateral parietal cortex was correlated with altering function, one of the attention functions, across WD and NC subjects. These findings indicated that the DMN's functional connectivity was altered in WD patients, which might be correlated with their attention dysfunction. PMID:27372239

  15. Neurological function following intra-neural injection of fluorescent neuronal tracers in rats☆

    PubMed Central

    Hu, Wen; Liu, Dan; Zhang, Yanping; Shen, Zhongyi; Gu, Tianwen; Gu, Xiaosong; Gu, Jianhui

    2013-01-01

    Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in functional impairment remains to be elucidated. In the present study, we examined the functions of motor, sensory and autonomic nerves following the application of 5% Fluoro-Gold, 4% True Blue and 10% Fluoro-Ruby (5 μL) to rat tibial nerves via pressure injection. A set of evaluation methods including walking track analysis, plantar test and laser Doppler perfusion imaging was used to determine the action of the fluorescent neuronal tracers. Additionally, nerve pathology and ratio of muscle wet weight were also observed. Results showed that injection of Fluoro-Gold significantly resulted in loss of motor nerve function, lower plantar sensibility, increasing blood flow volume and higher neurogenic vasodilatation. Myelinated nerve fiber degeneration, unclear boundaries in nerve fibers and high retrograde labeling efficacy were observed in the Fluoro-Gold group. The True Blue group also showed obvious neurogenic vasodilatation, but less severe loss of motor function and degeneration, and fewer labeled motor neurons were found compared with the Fluoro-Gold group. No anomalies of motor and sensory nerve function and no myelinated nerve fiber degeneration were observed in the Fluoro-Ruby group. Experimental findings indicate that Fluoro-Gold tracing could lead to significant functional impairment of motor, sensory and autonomic nerves, while functional impairment was less severe following True Blue tracing. Fluoro-Ruby injection appears to have no effect on neurological function. PMID:25206419

  16. Metabolic Syndrome Biomarkers Predict Lung Function Impairment

    PubMed Central

    Naveed, Bushra; Weiden, Michael D.; Kwon, Sophia; Gracely, Edward J.; Comfort, Ashley L.; Ferrier, Natalia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Rationale: Cross-sectional studies demonstrate an association between metabolic syndrome and impaired lung function. Objectives: To define if metabolic syndrome biomarkers are risk factors for loss of lung function after irritant exposure. Methods: A nested case-control study of Fire Department of New York personnel with normal pre–September 11th FEV1 and who presented for subspecialty pulmonary evaluation before March 10, 2008. We correlated metabolic syndrome biomarkers obtained within 6 months of World Trade Center dust exposure with subsequent FEV1. FEV1 at subspecialty pulmonary evaluation within 6.5 years defined disease status; cases had FEV1 less than lower limit of normal, whereas control subjects had FEV1 greater than or equal to lower limit of normal. Measurements and Main Results: Clinical data and serum sampled at the first monitoring examination within 6 months of September 11, 2001, assessed body mass index, heart rate, serum glucose, triglycerides and high-density lipoprotein (HDL), leptin, pancreatic polypeptide, and amylin. Cases and control subjects had significant differences in HDL less than 40 mg/dl with triglycerides greater than or equal to 150 mg/dl, heart rate greater than or equal to 66 bpm, and leptin greater than or equal to 10,300 pg/ml. Each increased the odds of abnormal FEV1 at pulmonary evaluation by more than twofold, whereas amylin greater than or equal to 116 pg/ml decreased the odds by 84%, in a multibiomarker model adjusting for age, race, body mass index, and World Trade Center arrival time. This model had a sensitivity of 41%, a specificity of 86%, and a receiver operating characteristic area under the curve of 0.77. Conclusions: Abnormal triglycerides and HDL and elevated heart rate and leptin are independent risk factors of greater susceptibility to lung function impairment after September 11, 2001, whereas elevated amylin is protective. Metabolic biomarkers are predictors of lung disease, and may be useful for assessing

  17. [Metabolic therapy in neurology].

    PubMed

    Zhivolupov, S A; Samartsev, I N; Rashidov, N A; Bodrova, T V; Vorob'eva, M N

    2013-01-01

    We studied the efficacy of rheosorbilact, an original infusion drug based on polyalcohols, in the complex therapy of patients with brain ischemia and diabetic neuropathy. Reosorbilact was used intravenously indrops 200-400 ml in day - 20 days. The primary endpoint of the study was the improvement of quality of life assessed with the SF-36 scale after 1 month of treatment. Patients with brain ischemia underwent neuropsychological tests and ultrasound duplex scanning of the carotid and vertebral arteries. In the group of patients with diabetic neuropathy, we evaluated the intensity of pain syndrome with the NRS, blood glucose level and electroneuromyography parameters of low extremities nerves. Some characteristics of acid-base balance were studied in patients of both groups. The results obtained in the study indicate the significant clinical effect of reosorbilact in patients with brain ischemia and diabetic neuropathy. PMID:23994919

  18. Metabolic Regulation of Regulatory T Cell Development and Function

    PubMed Central

    Coe, David John; Kishore, Madhav; Marelli-Berg, Federica

    2014-01-01

    It is now well established that the effector T cell (Teff) response is regulated by a series of metabolic switches. Quiescent T cells predominantly require adenosine triphosphate-generating processes, whereas proliferating Teff require high metabolic flux through growth-promoting pathways, such as glycolysis. Pathways that control metabolism and immune cell function are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell effector functions. Furthermore, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. In particular, naturally occurring regulatory T cells (Treg) are characterized by a unique metabolic signature distinct to that of conventional Teff cells. We here briefly review the signaling pathways that control Treg metabolism and how this metabolic phenotype integrates their differentiation and function. Ultimately, these metabolic features may provide new opportunities for the therapeutic modulation of unwanted immune responses. PMID:25477880

  19. Neurological function following cerebral ischemia/reperfusion is improved by the Ruyi Zhenbao pill in a rats

    PubMed Central

    WANG, TIAN; DUAN, SIJIN; WANG, HAIPING; SUN, SHAN; HAN, BING; FU, FENGHUA

    2016-01-01

    The present study aimed to investigate the effect and underlying mechanisms of the Ruyi Zhenbao pill on neurological function following cerebral ischemia/reperfusion in rats. Male Sprague-Dawley rats underwent middle cerebral artery occlusion following reperfusion. The rats received intragastrically either sodium carboxymethyl cellulose (control and model groups) or Ruyi Zhenbao pill at doses of 0.2, 0.4 or 0.8 g/kg. Neurological function was assessed by cylinder, adhesive and beam-walking tests after 14-day Ruyi Zhenbao pill treatment. Neurogenesis and angiogenesis were detected using immunofluorescence staining. The expression levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were determined by enzyme-linked immunosorbent assays. Treatment with 0.4 and 0.8 g/kg Ruyi Zhenbao for 14 days significantly improved neurological function, and increased the number of von Willebrand Factor- and neuronal nuclear antigen-positive cells in the ischemic hemisphere of rats. Ruyi Zhenbao pill treatment also significantly enhanced the expression levels of BDNF, NGF and VEGF in the ischemic hemisphere. The results demonstrated that the Ruyi Zhenbao pill improved neurological function following ischemia in rats. The mechanisms of the Ruyi Zhenbao pill are associated with increasing the expression levels of BDNF, NGF and VEGF, and subsequently promoting neurogenesis and angiogenesis in the ischemic zone. PMID:26893831

  20. [Non-invasive brain stimulation in neurology : Transcranial direct current stimulation to enhance cognitive functioning].

    PubMed

    Antonenko, D; Flöel, A

    2016-08-01

    Transcranial direct current stimulation (tDCS) has been successfully used in neuroscientific research to modulate cognitive functions. Recent studies suggested that improvement of behavioral performance is associated with tDCS-induced modulation of neuronal activity and connectivity. Thus, tDCS may also represent a promising tool for reconstitution of cognitive functions in the context of memory decline related to Alzheimer's disease or aphasia following stroke; however, evidence from randomized sham-controlled clinical trials is still scarce. Initial results of tDCS-induced behavioral improvement in patients with Alzheimer's dementia and its precursors indicated that an intense memory training combined with tDCS may be effective. Early interventions in the stage of mild cognitive impairment could be crucial but further evidence is needed to substantiate this. In patients with aphasia following stroke tDCS was applied to the left and right hemispheres, with varying results depending on the severity of the symptoms and polarity of the stimulation. Patients with mild aphasia can benefit from tDCS of the language dominant hemisphere while in patients with severe aphasia tDCS of right hemispheric homologous brain language areas may be particularly relevant. Moreover, recent studies suggested that an intervention in the subacute phase of aphasia could be most promising. In summary, tDCS could provide the exciting possibility to reconstitute cognitive functions in patients with neurological disorders. Future studies have to elucidate whether tDCS can be used in the clinical routine to prevent further cognitive decline in neurodegenerative diseases and whether beneficial effects from experimental studies translate into long-term improvement in activities of daily life. PMID:27167887

  1. Computerized Functional Reach Test to Measure Balance Stability in Elderly Patients With Neurological Disorders

    PubMed Central

    Scena, Silvio; Steindler, Roberto; Ceci, Moira; Zuccaro, Stefano Maria; Carmeli, Eli

    2016-01-01

    Background The ability to maintain static and dynamic balance is a prerequisite for safe walking and for obtaining functional mobility. For this reason, a reliable and valid means of screening for risk of falls is needed. The functional reach test (FRT) is used in many countries, yet it does not provide some kinematic parameters such as shoulder or pelvic girdles translation. The purpose was to analyze video records measuring of distance, velocity, time length, arm direction and girdles translation while doing FRT. Methods A cross-sectional, descriptive study was conducted where the above variables were correlated to the mini-mental state examination (MMSE) for mental status and the Tinetti balance assessment test, which have been validated, in order to computerize the FRT (cFRT) for elderly patients with neurological disorders. Eighty patients were tested and 54 were eligible to serve as experimental group. The patients underwent the MMSE, the Tinetti test and the FRT. LAB view software was used to record the FRT performances and to process the videos. The control group consisted of 51 healthy subjects who had been previously tested. Results The experimental group was not able to perform the tests as well as the healthy control subjects. The video camera provided valuable kinematic results such as bending down while performing the forward reach test. Conclusions Instead of manual measurement, we proposed to use a cheap with fair resolution web camera to accurately estimate the FRT. The kinematic parameters were correlated with Tinetti and MMSE scores. The performance values established in this study indicate that the cFRT is a reliable and valid assessment, which provides more accurate data than “manual” test about functional reach.

  2. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease.

    PubMed

    Schellenberg, Matthew J; Tumbale, Percy P; Williams, R Scott

    2015-03-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1. PMID:25637650

  3. Perimenopause as a neurological transition state.

    PubMed

    Brinton, Roberta D; Yao, Jia; Yin, Fei; Mack, Wendy J; Cadenas, Enrique

    2015-07-01

    Perimenopause is a midlife transition state experienced by women that occurs in the context of a fully functioning neurological system and results in reproductive senescence. Although primarily viewed as a reproductive transition, the symptoms of perimenopause are largely neurological in nature. Neurological symptoms that emerge during perimenopause are indicative of disruption in multiple estrogen-regulated systems (including thermoregulation, sleep, circadian rhythms and sensory processing) and affect multiple domains of cognitive function. Estrogen is a master regulator that functions through a network of estrogen receptors to ensure that the brain effectively responds at rapid, intermediate and long timescales to regulate energy metabolism in the brain via coordinated signalling and transcriptional pathways. The estrogen receptor network becomes uncoupled from the bioenergetic system during the perimenopausal transition and, as a corollary, a hypometabolic state associated with neurological dysfunction can develop. For some women, this hypometabolic state might increase the risk of developing neurodegenerative diseases later in life. The perimenopausal transition might also represent a window of opportunity to prevent age-related neurological diseases. This Review considers the importance of neurological symptoms in perimenopause in the context of their relationship to the network of estrogen receptors that control metabolism in the brain. PMID:26007613

  4. Quantitative measures of sympathetic skin response in diabetes: relation to sudomotor and neurological function.

    PubMed Central

    Levy, D M; Reid, G; Rowley, D A; Abraham, R R

    1992-01-01

    The sympathetic skin response (SSR) at the foot to a deep inspiration was measured in 68 randomly selected diabetic patients and 46 age matched normal subjects and compared with other quantitative measures of neurological and sudomotor function. SSR was obtained in all but three diabetic patients. The upper limit of normal for the onset latency was 2202 ms and the lower limit for the amplitude of the first wave 92 microV. Ten diabetic patients had measurable but prolonged latencies, and 11 had measurable but low amplitudes. There were no significant associations between latency, height, and age, but in insulin dependent patients there was a significant diminution of response amplitude with increasing duration of diabetes. Latency was weakly associated with Marstock thermal thresholds, respiratory RR variation, and common peroneal nerve conduction velocity. SSR amplitude was associated with the density of pilocarpine activatable sweatspots in the same region of the foot. Patients with abnormal latencies were significantly older and had reduced thermal sensation than those with normal latencies. Median coefficients of variation for repeat testing in diabetic patients were 9% for latency and 13% for amplitude. The test is objective and reproducible, but latency measurements reflect conduction in a long multineuronal pathway and are not purely a measure of peripheral C fibre function; amplitude measurements reflect the density of spontaneously activable sweat glands and are therefore a valid measure of peripheral sympathetic activity, though they depend more on temperature than do latencies (mean change over the range 32-34 degrees C; 8.5% degrees C for amplitude, -2.5%/degrees C for latency). Images PMID:1331334

  5. The colon: Absorptive, seccretory and metabolic functions.

    PubMed

    Cummings, J G

    1975-01-01

    The role which the human colon fulfils in digestion and metabolism remains largely undocumented. Its capacity to conserve water and electrolytes is well known although how this is controlled is uncertain. In the animal kingdom, calcium and magnesium absorption from the colon are improtant as are absorption and synthesis of vitamins. The abundant microflora of the human colon gives it unique properties. Dietary residue is metabolised forming short-chain fatty acids, hydrogen, carbon dioxide and methane; whilst 20% of urea synthesised in man is broken down in the colon to ammonia, which is reabsorbed, and carbonic acid. The microflora also degrades a wide variety of organic compounds including food additives, drugs, bile salts, and cholesterol which may be relevant to the development of colon cancer. Regional differences in colonic function also exist making interpretation of data from this relatively inaccessible organ more difficult. PMID:1205009

  6. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    PubMed Central

    2011-01-01

    Background The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles. Methods Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O2/88% N2) or normoxic (22% O2/78% N2) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique. Results TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels. Conclusion Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction. PMID

  7. Effects of vitamin B-12 supplementation on neurologic and cognitive function in older people: a randomized controlled trial12

    PubMed Central

    Dangour, Alan D; Allen, Elizabeth; Clarke, Robert; Elbourne, Diana; Fletcher, Astrid E; Letley, Louise; Richards, Marcus; Whyte, Ken; Uauy, Ricardo; Mills, Kerry

    2015-01-01

    Background: Moderate vitamin B-12 deficiency is relatively common in older people. However, there is little robust evidence on the effect of vitamin B-12 supplementation on neurologic and cognitive outcomes in later life. Objective: We investigated whether vitamin B-12 supplementation benefits neurologic and cognitive function in moderately vitamin B-12–deficient older people. Design: We conducted a double-blind, randomized, placebo-controlled trial in 7 general practices in South East England, United Kingdom. Study participants were aged ≥75 y and had moderate vitamin B-12 deficiency (serum vitamin B-12 concentrations: 107–210 pmol/L) in the absence of anemia and received 1 mg crystalline vitamin B-12 or a matching placebo as a daily oral tablet for 12 mo. Peripheral motor and sensory nerve conduction, central motor conduction, a clinical neurologic examination, and cognitive function were assessed before and after treatment. Results: A total of 201 participants were enrolled in the trial, and 191 subjects provided outcome data. Compared with baseline, allocation to vitamin B-12 was associated with a 177% increase in serum concentration of vitamin B-12 (641 compared with 231 pmol/L), a 331% increase in serum holotranscobalamin (240 compared with 56 pmol/L), and 17% lower serum homocysteine (14.2 compared with 17.1 μmol/L). In intention-to-treat analysis of covariance models, with adjustment for baseline neurologic function, there was no evidence of an effect of supplementation on the primary outcome of the posterior tibial compound muscle action potential amplitude at 12 mo (mean difference: −0.2 mV; 95% CI: –0.8, 0.3 mV). There was also no evidence of an effect on any secondary peripheral nerve or central motor function outcome, or on cognitive function or clinical examination. Conclusion: Results of the trial do not support the hypothesis that the correction of moderate vitamin B-12 deficiency, in the absence of anemia and of neurologic and cognitive

  8. Associations among treatment-related neurological risk factors and neuropsychological functioning in survivors of childhood brain tumor.

    PubMed

    McCurdy, Mark D; Rane, Shruti; Daly, Brian P; Jacobson, Lisa A

    2016-03-01

    Adverse neurological side effects associated with childhood brain tumors and their treatments contribute to long-term neurocognitive morbidity. Measures designed to quantify tumor-related risk factors are lacking. The neurological predictor scale (NPS) is designed to assess treatment-related neurological risks. Preliminary validation established associations between the NPS and global cognitive functioning in this population, though its associations with specific neurobehavioral domains has yet to be addressed. Participants referred for outpatient neuropsychological assessment completed performance-based measures of intellectual, attentional, working memory, motor speed, and executive abilities. Caregivers completed ratings of adaptive functioning. Neuropsychological and adaptive data were available for 100 brain tumor survivors (51 % female), ages 6 to 22 years (M = 12.83, SD = 4.37). Total NPS scores were generated via retrospective medical record review. Total NPS scores were significantly associated with several neurocognitive composite scores including verbal reasoning and working memory, after controlling for years post-diagnosis (ps < .05). NPS scores also were significantly associated with performance-based measures of attention, executive functioning, and cognitive efficiency (ps < .05). No significant relationship was demonstrated between NPS scores and caregiver-reported adaptive behavior skills (ps > .05). Results indicate that the NPS is associated with performance-based neurocognitive functioning and executive skills but not with functioning in specific caregiver-reported adaptive behavior domains. The NPS offers some value as a resource for understanding associations between treatment-related neurological risks and select aspects of neurocognitive morbidity. Future studies should examine whether the NPS can aid in planning appropriate therapeutic intervention as survivors progress into early adulthood. PMID:26725098

  9. Factors Associated With Neurological Recovery of Brainstem Function Following Postoperative Conformal Radiation Therapy for Infratentorial Ependymoma

    SciTech Connect

    Merchant, Thomas E.; Chitti, Ramana M.; Li Chenghong; Xiong Xiaoping; Sanford, Robert A.; Khan, Raja B.

    2010-02-01

    Purpose: To identify risk factors associated with incomplete neurological recovery in pediatric patients with infratentorial ependymoma treated with postoperative conformal radiation therapy (CRT). Methods: The study included 68 patients (median age +- standard deviation of 2.6 +- 3.8 years) who were followed for 5 years after receiving CRT (54-59.4 Gy) and were assessed for function of cranial nerves V to VII and IX to XII, motor weakness, and dysmetria. The mean (+- standard deviation) brainstem dose was 5,487 (+-464) cGy. Patients were divided into four groups representing those with normal baseline and follow-up, those with abnormal baseline and full recovery, those with abnormal baseline and partial or no recovery, and those with progressive deficits at 12 (n = 62 patients), 24 (n = 57 patients), and 60 (n = 50 patients) months. Grouping was correlated with clinical and treatment factors. Results: Risk factors (overall risk [OR], p value) associated with incomplete recovery included gender (male vs. female, OR = 3.97, p = 0.036) and gross tumor volume (GTV) (OR/ml = 1.23, p = 0.005) at 12 months, the number of resections (>1 vs. 1; OR = 23.7, p = 0.003) and patient age (OR/year = 0.77, p = 0.029) at 24 months, and cerebrospinal fluid (CSF) shunting (Yes vs. No; OR = 21.9, p = 0.001) and GTV volume (OR/ml = 1.18, p = 0.008) at 60 months. An increase in GTV correlated with an increase in the number of resections (p = 0.001) and CSF shunting (p = 0.035); the number of resections correlated with CSF shunting (p < 0.0001), and male patients were more likely to undergo multiple tumor resections (p = 0.003). Age correlated with brainstem volume (p < 0.0001). There were no differences in outcome based on the absolute or relative volume of the brainstem that received more than 54 Gy. Conclusions: Incomplete recovery of brainstem function after CRT for infratentorial ependymoma is related to surgical morbidity and the volume and the extent of tumor.

  10. Neurologic Functional and Quality of Life Outcomes after TBI: Clinic Attendees versus Non-Attendees.

    PubMed

    Patel, Mayur B; Wilson, Laura D; Bregman, Jana A; Leath, Taylor C; Humble, Stephen S; Davidson, Mario A; de Riesthal, Michael R; Guillamondegui, Oscar D

    2015-07-01

    This investigation describes the relationship between TBI patient demographics, quality of life outcome, and functional status outcome among clinic attendees and non-attendees. Of adult TBI survivors with intracranial hemorrhage, 63 attended our TBI clinic and 167 did not attend. All were telephone surveyed using the Extended-Glasgow Outcome Scale (GOSE), the Quality of Life after Brain Injury (QOLIBRI) scale, and a post-discharge therapy questionnaire. To determine risk factors for GOSE and QOLIBRI outcomes, we created multivariable regression models employing covariates of age, injury characteristics, clinic attendance, insurance status, post-discharge rehabilitation, and time from injury. Compared with those with severe TBI, higher GOSE scores were identified in individuals with both mild (odds ratio [OR]=2.0; 95% confidence interval [CI]: 1.1-3.6) and moderate (OR=4.7; 95% CI: 1.6-14.1) TBIs. In addition, survivors with private insurance had higher GOSE scores, compared with those with public insurance (OR=2.0; 95% CI: 1.1-3.6), workers' compensation (OR=8.4; 95% CI: 2.6-26.9), and no insurance (OR=3.1; 95% CI: 1.6-6.2). Compared with those with severe TBI, QOLIBRI scores were 11.7 points (95% CI: 3.7-19.7) higher in survivors with mild TBI and 17.3 points (95% CI: 3.2-31.5) higher in survivors with moderate TBI. In addition, survivors who received post-discharge rehabilitation had higher QOLIBRI scores by 11.4 points (95% CI: 3.7-19.1) than those who did not. Survivors with private insurance had QOLIBRI scores that were 25.5 points higher (95% CI: 11.3-39.7) than those with workers' compensation and 16.8 points higher (95% CI: 7.4-26.2) than those without insurance. Because neurologic injury severity, insurance status, and receipt of rehabilitation or therapy are independent risk factors for functional and quality of life outcomes, future directions will include improving earlier access to post-TBI rehabilitation, social work services, affordable insurance

  11. Quantitative sleep stage analyses as a window to neonatal neurologic function

    PubMed Central

    Burns, Joseph W.; Barks, John D.E.; Chervin, Ronald D.

    2014-01-01

    Objective: To test the hypothesis that neonatal sleep physiology reflects cerebral dysfunction, we compared neurologic examination scores to the proportions of recorded sleep/wake states, sleep depth, and sleep fragmentation in critically ill neonates. Methods: Newborn infants (≥35 weeks gestation) who required intensive care and were at risk for seizures were monitored with 8- to 12-hour polysomnograms (PSGs). For each infant, the distribution of sleep-wake states, entropy of the sequence of state transitions, and delta power from the EEG portion of the PSG were quantified. Standardized neurologic examination (Thompson) scores were calculated. Results: Twenty-eight infants participated (mean gestational age 39.0 ± 1.6 weeks). An increased fraction of quiet sleep correlated with worse neurologic examination scores (Spearman rho = 0.54, p = 0.003), but the proportion of active sleep did not (p > 0.1). Higher state entropy corresponded to better examination scores (rho = −0.43, p = 0.023). Decreased delta power during quiet sleep, but not the power at other frequencies, was also associated with worse examination scores (rho = −0.48, p = 0.009). These findings retained significance after adjustment for gestational age or postmenstrual age at the time of the PSG. Sleep stage transition probabilities were also related to examination scores. Conclusions: Among critically ill neonates at risk for CNS dysfunction, several features of recorded sleep—including analyses of sleep stages, depth, and fragmentation—showed associations with neurologic examination scores. Quantitative PSG analyses may add useful objective information to the traditional neurologic assessment of critically ill neonates. PMID:24384644

  12. Potential Interactions between the Autonomic Nervous System and Higher Level Functions in Neurological and Neuropsychiatric Conditions

    PubMed Central

    Bassi, Andrea; Bozzali, Marco

    2015-01-01

    The autonomic nervous system (ANS) maintains the internal homeostasis by continuously interacting with other brain structures. Its failure is commonly observed in many neurological and neuropsychiatric disorders, including neurodegenerative and vascular brain diseases, spinal cord injury, and peripheral neuropathies. Despite the different underlying pathophysiological mechanisms, ANS failure associates with various forms of higher level dysfunctions, and may also negatively impact on patients’ clinical outcome. In this review, we will discuss potential relationships between ANS and higher level dysfunctions in a selection of neurological and neuropsychiatric disorders. In particular, we will focus on the effect of a documented fall in blood pressure fulfilling the criteria for orthostatic hypotension and/or autonomic-reflex impairment on cognitive performances. Some evidence supports the hypothesis that cardiovascular autonomic failure may play a negative prognostic role in most neurological disorders. Despite a clear causal relationship between ANS involvement and higher level dysfunctions that is still controversial, this might have implications for neuro-rehabilitation strategies aimed at improving patients’ clinical outcome. PMID:26388831

  13. Neurological, neuropsychological, and functional outcome following treatment for unruptured intracranial aneurysms.

    PubMed

    Towgood, Karren; Ogden, Jenni A; Mee, Edward

    2005-09-01

    The objective of this study was to carry out a detailed investigation of the neurological, neuropsychological, and return-to-work status of treatment for unruptured intracranial aneurysms (UIAs). A prospective design was used to evaluate the outcome of UIA treatment in a group of 26 UIA patients. Over a 24-month period UIA patients were assessed prior to treatment, during hospitalization, at three months and at six months following treatment. Their performance was compared to a group of 20 matched controls. Neurological morbidity as a result of the UIA treatment was 5%, as assessed by the Glasgow Outcome Scale (GOS) or Rankin at 3 months. The Telephone Interview for Cognitive Status (TICS) proved to be unreliable as a measure of cognitive change. Reliability of change analysis was more sensitive than group analysis, and revealed a pattern of cognitive deficits in 10% of patients as a result of the UIA treatment. In addition, 25% of patients reported a change in work role as a result of the UIA treatment. While 10% of patients sustained mild to moderate neurological and cognitive impairments 3 to 6 months following UIA treatment, their deficits were not as wide-ranging nor as severe as those sustained by patients who survive a subarachnoid hemorrhage (SAH). PMID:16212679

  14. Chapter 38: American neurology.

    PubMed

    Freemon, Frank R

    2010-01-01

    The great formative event in the history of North America, the Civil War of 1861 to 1865, was the stimulus for the development of clinical neurology and the neurosciences. The first neurological research center on the continent was the US Army hospital at Turner's Lane, Philadelphia, PA. Silas Weir Mitchell and his colleagues described causalgia (reflex sympathetic dystrophy), phantom limb sensation, and Horner's syndrome (before Horner). The medical leader of the Northern army was William Hammond. After the conclusion of hostilities, he began a huge clinical practice in New York City. In the United States, clinical neurology began in private practice, unlike Europe, where neurology began in institutions. Hammond's textbook, which first used the term athetosis, was used by a generation of physicians who encountered patients with neurological signs and symptoms. Early in the 20th century, neurological institutions were formed around universities; probably the most famous was the Montreal Neurological Institute founded by Wilder Penfield. The US federal government sponsored extensive research into the function and dysfunction of the nervous system through the Neurological Institute of Neurological Diseases and Blindness, later called the National Institute of Neurological Diseases and Stroke. The government officially classified the final 10 years of the 20th century as the Decade of the Brain and provided an even greater level of research funding. PMID:19892141

  15. Metabolic control of regulatory T cell development and function.

    PubMed

    Zeng, Hu; Chi, Hongbo

    2015-01-01

    Foxp3(+) regulatory T cells (Tregs) maintain immune tolerance and play an important role in immunological diseases and cancers. Recent studies have revealed an intricate relationship between Treg biology and host and microbial metabolism. Various metabolites or nutrients produced by host and commensal microbes, such as vitamins and short-chain fatty acids (SCFAs), regulate Treg generation, trafficking, and function. Furthermore, cell intrinsic metabolic programs, orchestrated by mTOR and other metabolic sensors, modulate Foxp3 induction and Treg suppressive activity. Conversely, Tregs are crucial in regulating obesity-associated inflammation and host metabolic balance, and in shaping homeostasis of gut microbiota. We review here the interplay between Tregs and metabolism, with a particular focus on how host, commensal, and cellular metabolism impinge upon Treg homeostasis and function. PMID:25248463

  16. Fueling Immunity: Insights into Metabolism and Lymphocyte Function

    PubMed Central

    Pearce, Erika L.; Poffenberger, Maya C.; Chang, Chih-Hao; Jones, Russell G.

    2015-01-01

    Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function. PMID:24115444

  17. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients. PMID:25808503

  18. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. PMID:25696811

  19. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  20. Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice.

    PubMed

    Krey, Lea; Lühder, Fred; Kusch, Kathrin; Czech-Zechmeister, Bozena; Könnecke, Birte; Fleming Outeiro, Tiago; Trendelenburg, George

    2015-12-01

    Sirtuin-2 (Sirt2) is a member of the NAD(+)-dependent protein deacetylase family. Various members of the sirtuin class have been found to be involved in processes related to longevity, regulation of inflammation, and neuroprotection. Induction of Sirt2 mRNA was found in the whole hemisphere after experimental stroke in a recent screening approach. Moreover, Sirt2 protein is highly expressed in myelin-rich brain regions after stroke. To examine the effects of Sirt2 on ischemic stroke, we induced transient focal cerebral ischemia in adult male Sirt2-knockout and wild-type mice. Two stroke models with different occlusion times were applied: a severe ischemia (45 minutes of middle cerebral artery occlusion (MCAO)) and a mild one (15 minutes of MCAO), which was used to focus on subcortical infarcts. Neurological deficit was determined at 48 hours after 45 minutes of MCAO, and up to 7 days after induction of 15 minutes of cerebral ischemia. In contrast to recent data on Sirt1, Sirt2(-/-) mice showed less neurological deficits in both models of experimental stroke, with the strongest manifestation after 48 hours of reperfusion. However, we did not observe a significant difference of stroke volumes or inflammatory cell count between Sirt2-deficient and wild-type mice. Thus we postulate that Sirt2 mediates myelin-dependent neuronal dysfunction during the early phase after ischemic stroke. PMID:26219598

  1. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish

    PubMed Central

    Kozol, Robert A.; Abrams, Alexander J.; James, David M.; Buglo, Elena; Yan, Qing; Dallman, Julia E.

    2016-01-01

    Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies. PMID:27458342

  2. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish.

    PubMed

    Kozol, Robert A; Abrams, Alexander J; James, David M; Buglo, Elena; Yan, Qing; Dallman, Julia E

    2016-01-01

    Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies. PMID:27458342

  3. Current neurology

    SciTech Connect

    Appel, S.H. )

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases.

  4. Steviol glycosides: chemical diversity, metabolism, and function.

    PubMed

    Ceunen, Stijn; Geuns, Jan M C

    2013-06-28

    Steviol glycosides are a group of highly sweet diterpene glycosides discovered in only a few plant species, most notably the Paraguayan shrub Stevia rebaudiana. During the past few decades, the nutritional and pharmacological benefits of these secondary metabolites have become increasingly apparent. While these properties are now widely recognized, many aspects related to their in vivo biochemistry and metabolism and their relationship to the overall plant physiology of S. rebaudiana are not yet understood. Furthermore, the large size of the steviol glycoside pool commonly found within S. rebaudiana leaves implies a significant metabolic investment and poses questions regarding the benefits S. rebaudiana might gain from their accumulation. The current review intends to thoroughly discuss the available knowledge on these issues. PMID:23713723

  5. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; Orwoll, Shiela; McCarron, David A.

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  6. The Edinburgh human metabolic network reconstruction and its functional analysis

    PubMed Central

    Ma, Hongwu; Sorokin, Anatoly; Mazein, Alexander; Selkov, Alex; Selkov, Evgeni; Demin, Oleg; Goryanin, Igor

    2007-01-01

    A better understanding of human metabolism and its relationship with diseases is an important task in human systems biology studies. In this paper, we present a high-quality human metabolic network manually reconstructed by integrating genome annotation information from different databases and metabolic reaction information from literature. The network contains nearly 3000 metabolic reactions, which were reorganized into about 70 human-specific metabolic pathways according to their functional relationships. By analysis of the functional connectivity of the metabolites in the network, the bow-tie structure, which was found previously by structure analysis, is reconfirmed. Furthermore, the distribution of the disease related genes in the network suggests that the IN (substrates) subset of the bow-tie structure has more flexibility than other parts. PMID:17882155

  7. Functional Neurological Symptom Disorder: Mismanagement, Misdiagnosis, Chronic Cough Following Sexual Abuse: A Rare Case Report.

    PubMed

    Bidaki, Reza; Zarepur, Ehsan; Akrami, Maryam; Mohammad, Mohammad

    2016-01-01

    Objective Conversion disorder (CD) is a mental disorder in which patient displays neurological symptoms such as blindness, mutism, paralysis and seizure. It starts when our mind converts our mental stress into a physical symptom. A 15-year-old single white female with chronic cough, which had begun 5 months ago, was brought to our clinic. She had no history of hospitalization. His daily cough was without sputum production or fever, rhinorrhea and stopped during sleep. There was no recent exposure to tobacco smoke or a person with a chronic productive cough. Laboratory tests were normal. She had engaged 4 months ago. Doing sex during engagement is prohibited in her culture but and had anal sex, because of her spouse's trend. Psychotherapy was done and complete recovery was accomplished. PMID:27247590

  8. Functional Neurological Symptom Disorder: Mismanagement, Misdiagnosis, Chronic Cough Following Sexual Abuse: A Rare Case Report

    PubMed Central

    BIDAKI, Reza; ZAREPUR, Ehsan; AKRAMI, Maryam; Mohammad, Mohammad

    2016-01-01

    Objective Conversion disorder (CD) is a mental disorder in which patient displays neurological symptoms such as blindness, mutism, paralysis and seizure. It starts when our mind converts our mental stress into a physical symptom. A 15-year-old single white female with chronic cough, which had begun 5 months ago, was brought to our clinic. She had no history of hospitalization. His daily cough was without sputum production or fever, rhinorrhea and stopped during sleep. There was no recent exposure to tobacco smoke or a person with a chronic productive cough. Laboratory tests were normal. She had engaged 4 months ago. Doing sex during engagement is prohibited in her culture but and had anal sex, because of her spouse’s trend. Psychotherapy was done and complete recovery was accomplished. PMID:27247590

  9. Neurological and neuropsychological functions in adults with a history of developmental arsenic poisoning from contaminated milk powder.

    PubMed

    Yorifuji, Takashi; Kato, Tsuguhiko; Ohta, Hitoshi; Bellinger, David C; Matsuoka, Kenichi; Grandjean, Philippe

    2016-01-01

    During the summer of 1955, mass arsenic poisoning of bottle-fed infants occurred in the western part of Japan due to contaminated milk powder, and more than 100 died; some childhood victims were later found to suffer from neurological sequelae in adolescence. This unique incident enabled us to explore infancy as a critical period of arsenic exposure in regard to developmental neurotoxicity and its possible persistence through adulthood. The purpose of this work is to evaluate the association between developmental arsenic exposure and the neurological outcomes more than 50 years later. We conducted a retrospective cohort study during the period from April 2012 to February 2013 in two hospitals in Okayama Prefecture, Japan. The study sample consisted of 50 individuals: 27 known poisoning victims from Okayama Prefecture, and 23 non-exposed local controls of similar age. In addition to neurological examination, we adapted a battery of neurophysiological and neuropsychological tests to identify the types of brain functions affected by early-life arsenic exposure. While limited abnormalities were found in the neurophysiological tests, neuropsychological deficits were observed. Except for Finger tapping, all test scores in the exposed group--Vocabulary and Block Design from Wechsler Adults Intelligent Scale III, Design memory subtest from Wide Range Assessment of Memory and Learning 2, and Grooved pegboard test--were substantially below those obtained by the unexposed. The exposed group showed average performance at least 1.2 standard deviations below the average for the controls. Exposed participants performed less well than controls, even after exclusion of subjects with recognized disabilities or those with a high level of education. Adults who had suffered arsenic poisoning during infancy revealed neuropsychological dysfunctions, even among those subjects not recognized as having disabilities. Developmental neurotoxicity due to arsenic likely results in permanent

  10. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  11. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    PubMed Central

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates. PMID:25540776

  12. Improved differentiation of oligodendrocyte precursor cells and neurological function after spinal cord injury in rats by oscillating field stimulation.

    PubMed

    Jing, J-H; Qian, J; Zhu, N; Chou, W-B; Huang, X-J

    2015-09-10

    Oscillating field stimulation (OFS) has been used in attempts to treat spinal cord injury (SCI) and has been shown to improve remyelination after SCI in rats. However, some controversies regarding the effects of OFS have been presented in previous papers. Oligodendrocytes (OLs) are the main cell for remyelination and are derived from the differentiation of oligodendrocyte precursor cells (OPCs). To date, it has been unclear whether the differentiation of OPCs can be regulated by OFS. The goal of this study was to determine if OFS can improve the differentiation of OPCs and promote the recovery of neurological function after SCI in rats. Immature and mature OLs were observed in spinal cord slices through immunofluorescence staining. Levels of adenosine triphosphate (ATP) and the cytokine leukemia inhibitory factor (LIF) were detected by enzyme-linked immunosorbent assay (ELISA). Basso-Beattie-Bresnahan (BBB) scores and transcranial magnetic motor-evoked potentials (tcMMEPs) were used to evaluate the locomotor outcomes of rats after SCI. Our results showed a significant improvement in the differentiation of OPCs and the content of ATP and LIF in the injured spinal cord in the OFS group. Furthermore, BBB scores and tcMMEPs were significantly improved in the rats stimulated by OFS. These findings suggest that OFS can improve the differentiation of OPCs and promote the recovery of neurological function following SCI in rats. PMID:26166729

  13. Focal neurological deficits

    MedlinePlus

    A focal neurologic deficit is a problem with nerve, spinal cord, or brain function. It affects a specific ... of the back, neck, or head Electromyogram (EMG)/ nerve conduction velocities (NCV) MRI of the back, neck, or head Spinal tap

  14. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  15. [Energy metabolism and myocardial function in myocardiodystrophy].

    PubMed

    Temirova, K V; Kurlygina, L A; Zavodskaia, I S; Novikova, N A

    1976-09-01

    A total of 92 patients with chronic tonsilitis and cardiovascular changes were subjected to clinical observations, ECG analysis, potassium and nitroglycerine tests, and studies of the lactic acid level and creatinekinase activity as indces of myocardial metabolism. The examinations were conducted prior to and following tonsillectomy. In a majority of patients a correlation was revealed between the degree of ECG changes and the serum lactic acid level, as well as between the ECG improvement and a reduction of the lactic acid level following tonsillectomy. Three stages of tonsillogenic myocardiodystrophy were distinguished. The obtained data indicate the rationale of the used tests for the evaluation of the myocardial meabolism alterations and of the efficacy of treatment of chronic tonsillitis patients. PMID:1011536

  16. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    PubMed Central

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo; da Rocha, Ivan Dias; Marcon, Raphael Martus

    2015-01-01

    OBJECTIVES: To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. METHODS: In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. RESULTS: The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. CONCLUSIONS: Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury. PMID:26598084

  17. Dependence of hippocampal function on ERRγ-regulated mitochondrial metabolism.

    PubMed

    Pei, Liming; Mu, Yangling; Leblanc, Mathias; Alaynick, William; Barish, Grant D; Pankratz, Matthew; Tseng, Tiffany W; Kaufman, Samantha; Liddle, Christopher; Yu, Ruth T; Downes, Michael; Pfaff, Samuel L; Auwerx, Johan; Gage, Fred H; Evans, Ronald M

    2015-04-01

    Neurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRγ) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRγ(-/-) neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRγ(-/-) hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRγ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRγ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRγ in the metabolic adaptations required for memory formation. PMID:25863252

  18. Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia

    PubMed Central

    Herzog, Raimund I.; Jiang, Lihong; Herman, Peter; Zhao, Chen; Sanganahalli, Basavaraju G.; Mason, Graeme F.; Hyder, Fahmeed; Rothman, Douglas L.; Sherwin, Robert S.; Behar, Kevin L.

    2013-01-01

    Hypoglycemia occurs frequently during intensive insulin therapy in patients with both type 1 and type 2 diabetes and remains the single most important obstacle in achieving tight glycemic control. Using a rodent model of hypoglycemia, we demonstrated that exposure to antecedent recurrent hypoglycemia leads to adaptations of brain metabolism so that modest increments in circulating lactate allow the brain to function normally under acute hypoglycemic conditions. We characterized 3 major factors underlying this effect. First, we measured enhanced transport of lactate both into as well as out of the brain that resulted in only a small increase of its contribution to total brain oxidative capacity, suggesting that it was not the major fuel. Second, we observed a doubling of the glucose contribution to brain metabolism under hypoglycemic conditions that restored metabolic activity to levels otherwise only observed at euglycemia. Third, we determined that elevated lactate is critical for maintaining glucose metabolism under hypoglycemia, which preserves neuronal function. These unexpected findings suggest that while lactate uptake was enhanced, it is insufficient to support metabolism as an alternate substrate to replace glucose. Lactate is, however, able to modulate metabolic and neuronal activity, serving as a “metabolic regulator” instead. PMID:23543056

  19. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  20. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge. PMID:26521082

  1. Neurological Assessment.

    PubMed

    Fritz, Deborah; Musial, Maryann K

    2016-01-01

    Reasons for completing a neurological exam include: detecting life-threatening conditions, identifying nervous system dysfunction and the effects of this dysfunction on activities of daily living, comparing current data to previous exams to determine trends, and to provide a database upon which to base collaborative care across disciplines. In this third article of a four-part series, subjective and objective assessment of the neurological exam is reviewed. PMID:26645839

  2. Pathways and functions of gut microbiota metabolism impacting host physiology.

    PubMed

    Krishnan, Smitha; Alden, Nicholas; Lee, Kyongbum

    2015-12-01

    The bacterial populations in the human intestine impact host physiological functions through their metabolic activity. In addition to performing essential catabolic and biotransformation functions, the gut microbiota produces bioactive small molecules that mediate interactions with the host and contribute to the neurohumoral axes connecting the intestine with other parts of the body. This review discusses recent progress in characterizing the metabolic products of the gut microbiota and their biological functions, focusing on studies that investigate the responsible bacterial pathways and cognate host receptors. Several key areas are highlighted for future development: context-based analysis targeting pathways; integration of analytical approaches; metabolic modeling; and synthetic systems for in vivo manipulation of microbiota functions. Prospectively, these developments could further our mechanistic understanding of host-microbiota interactions. PMID:26340103

  3. Neurological assessment.

    PubMed

    Maher, Ann Butler

    2016-08-01

    Neurological system assessment is an important skill for the orthopaedic nurse because the nervous system has such an overlap with the musculoskeletal system. Nurses whose scope of practice includes such advanced evaluation, e.g. nurse practitioners, may conduct the examination described here but the information will also be useful for nurses caring for patients who have abnormal neurological assessment findings. Within the context of orthopaedic physical assessment, possible neurological findings are evaluated as they complement the patient's history and the examiner's findings. Specific neurological assessment is integral to diagnosis of some orthopaedic conditions such as carpal tunnel syndrome. In other situations such as crushing injury to the extremities, there is high risk of associated neurological or neurovascular injury. These patients need anticipatory examination and monitoring to prevent complications. This article describes a basic neurological assessment; emphasis is on sensory and motor findings that may overlap with an orthopaedic presentation. The orthopaedic nurse may incorporate all the testing covered here or choose those parts that further elucidate specific diagnostic questions suggested by the patient's history, general evaluation and focused musculoskeletal examination. Abnormal findings help to suggest further testing, consultation with colleagues or referral to a specialist. PMID:27118633

  4. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  5. Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats.

    PubMed

    Liu, Da; Huang, Ying; Li, Bin; Jia, Changqing; Liang, Feng; Fu, Qin

    2015-02-01

    Acute spinal cord injury (SCI) leads to permanent functional deficits via mechanical injury and secondary mechanisms, but the therapeutic strategy for SCI is limited. Carvedilol has been shown to possess multiple biological and pharmacological properties. The of the present study was to investigate the possible protective effect of carvedilol in SCI rats. An acute SCI rat model was established and neurological function was tested. After carvedilol (10 mg/kg, oral gavage) treatment for 21 days, the status of osteoporosis, neuron damage, astrocyte activation, inflammation, oxidative stress and apoptosis were evaluated in rats. Carvedilol significantly improved locomotor activity that was decreased by SCI. In addition, carvedilol promoted bone growth by regulating the expression of nuclear factor-κB ligand (receptor activator of nuclear factor-κB ligand; RANKL) and osteoprotegerin (OPG), inactivating osteoclasts and thereby increasing bone mineral density in tibias. In addition, carvedilol reduced SCI-induced neural damage, increased neuron number and reduced astrocyte activation in the spinal cord. Furthermore, the production and mRNA expression of tumour necrosis factor-α, interleukin (IL)-1β and IL-6 were significantly reduced, reduced glutathione content and superoxide dismutase activity were markedly increased and malondialdehyde content was markedly decreased in the spinal cords of carvedilol-treated rats. These results indicate that carvedilol exhibits anti-inflammatory and anti-oxidative effects in SCI rats. In addition, the expression of Fas and Fas ligand was reduced by carvedilol treatment, which, in turn, reduced cleaved caspase 3 expression and finally decreased the number of apoptotic cells in the spinal cord. In conclusion, carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute SCI in rats. PMID:25424914

  6. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke.

    PubMed

    Zhang, Wenting; Wang, Hailian; Zhang, Hui; Leak, Rehana K; Shi, Yejie; Hu, Xiaoming; Gao, Yanqin; Chen, Jun

    2015-10-01

    Stroke is a devastating neurological disease with no satisfactory therapies to preserve long-term neurological function, perhaps due to the sole emphasis on neuronal survival in most preclinical studies. Recent studies have revealed the importance of protecting multiple cell types in the injured brain, such as oligodendrocytes and components of the neurovascular unit, before long-lasting recovery of function can be achieved. For example, revascularization in the ischemic penumbra is critical to provide various neurotrophic factors that enhance the survival and activity of neurons and other progenitor cells, such as oligodendrocyte precursor cells. In the present study, we hypothesized that chronic dietary supplementation with fish oil promotes post-stroke angiogenesis, neurogenesis, and oligodendrogenesis, thereby leading to long-term functional improvements. Mice received dietary supplementation with n-3 PUFA-enriched fish oil for three months before and up to one month after stroke. As expected, dietary n-3 PUFAs significantly increased levels of n-3 PUFAs in the brain and improved long-term behavioral outcomes after cerebral ischemia. n-3 PUFAs also robustly improved revascularization and angiogenesis and boosted the survival of NeuN/BrdU labeled newborn neurons up to 35days after stroke injury. Furthermore, these pro-neurogenic effects were accompanied by robust oligodendrogenesis. Thus, this is the first study to demonstrate that chronic dietary intake of n-3 PUFAs is an effective prophylactic measure not only to protect against ischemic injury for the long term but also to actively promote neurovascular restorative dynamics and brain repair. PMID:25771800

  7. Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study

    PubMed Central

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer’s disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key points Metabolic syndrome (MS) is associated with an increased risk of cognitive impairment. Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music. In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word

  8. Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study.

    PubMed

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-Hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key pointsMetabolic syndrome (MS) is associated with an increased risk of cognitive impairment.Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music.In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word list

  9. Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases.

    PubMed

    Karuppagounder, Saravanan S; Kumar, Amit; Shao, Diana S; Zille, Marietta; Bourassa, Megan W; Caulfield, Joseph T; Alim, Ishraq; Ratan, Rajiv R

    2015-12-01

    Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26232572

  10. Circadian rhythms in myocardial metabolism and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  11. Common Polymorphisms in the Solute Carrier SLC30A10 are Associated With Blood Manganese and Neurological Function

    PubMed Central

    Kippler, Maria; Alhamdow, Ayman; Rahman, Syed Moshfiqur; Smith, Donald R.; Vahter, Marie; Lucchini, Roberto G.; Broberg, Karin

    2016-01-01

    Manganese (Mn) is an essential nutrient in humans, but excessive exposure to Mn may cause neurotoxicity. Despite homeostatic regulation, Mn concentrations in blood vary considerably among individuals. We evaluated if common single-nucleotide polymorphisms (SNPs) in SLC30A10, which likely encodes an Mn transporter, influence blood Mn concentrations and neurological function. We measured blood Mn concentrations by ICP-MS or atomic absorption spectroscopy and genotyped 2 SLC30A10 non-coding SNPs (rs2275707 and rs12064812) by TaqMan PCR in cohorts from Bangladesh (N = 406), the Argentinean Andes (N = 198), and Italy (N = 238). We also measured SLC30A10 expression in whole blood by TaqMan PCR in a sub-group (N = 101) from the Andean cohort, and neurological parameters (sway velocity and finger-tapping speed) in the Italian cohort. The rs2275707 variant allele was associated with increased Mn concentrations in the Andes (8%, P = .027) and Italy (10.6%, P = .012), but not as clear in Bangladesh (3.4%, P = .21; linear regression analysis adjusted for age, gender, and plasma ferritin). This allele was also associated with increased sway velocity (15%, P = .033; adjusted for age and sex) and reduced SLC30A10 expression (−24.6%, P = .029). In contrast, the rs12064812 variant homozygous genotype was associated with reduced Mn concentrations, particularly in the Italian cohort (−18.4%, P = .04), and increased finger-tapping speed (8.7%, P = .025). We show that common SNPs in SLC30A10 are associated with blood Mn concentrations in 3 unrelated cohorts and that their influence may be mediated by altered SLC30A10 expression. Moreover, the SNPs appeared to influence neurological functions independent of blood Mn concentrations, suggesting that SLC30A10 could regulate brain Mn levels. PMID:26628504

  12. Functional-metabolic imaging of neuroblastoma.

    PubMed

    Sharp, S E; Parisi, M T; Gelfand, M J; Yanik, G A; Shulkin, B L

    2013-03-01

    Neuroblastoma is the third most common malignant solid tumor of childhood. It originates from primitive neural crest cells of the sympathetic nervous system. Many imaging procedures help guide therapy and predict outcomes. Anatomic imaging methods, such as CT and MRI, are most useful for evaluation of the primary tumor mass and nearby involved lymph nodes. Functional imaging tracers, such as [123I]MIBG, [18F]FDG, and [99mTc]MDP, are used to assess the extent of disease and to search for distant metastases. [123I]MIBG is the principal functional imaging tracer for the detection and monitoring of neuroblastoma. [18F]FDG PET/CT is an alternative that is valuable in tumors with poor or no MIBG-uptake. [99mTc]MDP bone scans may be useful to assess cortical bone metastases. This article will review the use of [123I]MIBG and other functional imaging agents for the management of patients with neuroblastoma. PMID:23474631

  13. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    PubMed

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. PMID:23769508

  14. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  15. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  16. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function

    SciTech Connect

    Berent, S.; Giordani, B.; Lehtinen, S.; Markel, D.; Penney, J.B.; Buchtel, H.A.; Starosta-Rubinstein, S.; Hichwa, R.; Young, A.B.

    1988-06-01

    Fifteen drug-free patients with early to mid-stage Huntington's disease (HD) were evaluated with positron emission tomographic (PET) scans of /sup 18/F-2-fluoro-2-deoxy-D-glucose uptake and quantitative measures of neurological function, learning, memory, and general intelligence. In comparison with a group of normal volunteers, the HD patients showed lower metabolism in both caudate (p less than 0.001) and putamen (p less than 0.001) on PET scans. A significant and positive relationship was found between neuropsychological measures of verbal learning and memory and caudate metabolism in the patient group but not in the normal group. Visual-spatial learning did not reflect a similar pattern, but performance intelligence quotient was positively related to both caudate and putamen metabolism in the HD group. Vocabulary level was unrelated to either brain structure. Discussion focuses on these and other observed brain-behavior relationships and on the implications of these findings for general behaviors such as those involved in coping and adaptation.

  17. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  18. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    ERIC Educational Resources Information Center

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  19. Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders

    PubMed Central

    Bowler, Rosemarie M; Roels, Harry A; Nakagawa, Sanae; Drezgic, Marija; Diamond, Emily; Park, Robert; Koller, William; Bowler, Russell P; Mergler, Donna; Bouchard, Maryse; Smith, Donald; Gwiazda, Roberto; Doty, Richard L

    2007-01-01

    Background Although adverse neuropsychological and neurological health effects are well known among workers with high manganese (Mn) exposures in mining, ore‐processing and ferroalloy production, the risks among welders with lower exposures are less well understood. Methods Confined space welding in construction of a new span of the San Francisco–Oakland Bay Bridge without adequate protection was studied using a multidisciplinary method to identify the dose–effect relationship between adverse health effects and Mn in air or whole blood. Bridge welders (n = 43) with little or no personal protection equipment and exposed to a welding fume containing Mn, were administered neurological, neuropsychological, neurophysiological and pulmonary tests. Outcome variables were analysed in relation to whole blood Mn (MnB) and a Cumulative Exposure Index (CEI) based on Mn‐air, duration and type of welding. Welders performed a mean of 16.5 months of welding on the bridge, were on average 43.8 years of age and had on average 12.6 years of education. Results The mean time weighted average of Mn‐air ranged from 0.11–0.46 mg/m3 (55% >0.20 mg/m3). MnB >10 µg/l was found in 43% of the workers, but the concentrations of Mn in urine, lead in blood and copper and iron in plasma were normal. Forced expiratory volume at 1s: forced vital capacity ratios (FEV1/FVC) were found to be abnormal in 33.3% of the welders after about 1.5 years of welding at the bridge. Mean scores of bradykinesia and Unified Parkinson Disease Rating Scale exceeded 4 and 6, respectively. Computer assisted tremor analysis system hand tremor and body sway tests, and University of Pennsylvania Smell Identification Test showed impairment in 38.5/61.5, 51.4 and 88% of the welders, respectively. Significant inverse dose–effect relationships with CEI and/or MnB were found for IQ (p⩽0.05), executive function (p⩽0.03), sustaining concentration and sequencing (p⩽0.04), verbal learning (p

  20. Long-term outcomes of adults with pediatric-onset spinal cord injuries as a function of neurological impairment

    PubMed Central

    Vogel, Lawrence C.; Chlan, Kathleen M.; Zebracki, Kathy; Anderson, Caroline J.

    2011-01-01

    Objective To identify outcomes of participation, life satisfaction, and medical complications as a function of impairment in adults with pediatric-onset spinal cord injury (SCI). Methods Study participants were adults who sustained SCI at age 18 years or younger and were interviewed at age 24 years or older (M = 26.9, SD = 3.5). The telephone interview included a questionnaire and several standardized measures: FIM® instrument (FIM®), Craig Handicap Assessment and Reporting Technique (CHART), SF-12® Health Survey, and Satisfaction with Life Scale. Using the International Standards for Neurological Classification of Spinal Cord Injury and the American Spinal Injury Association (ASIA) Impairment Scale (AIS), subjects were grouped into four impairment categories: C1–C4 ABC, C5–C8 ABC, T1–L4 ABC, and AIS D. Results Of the 410 participants, 62% were male, 54% had tetraplegia, 70% had AIS A lesions, and average age at injury was 14 years (SD = 4.3). Of the 407 subjects who had complete neurological information, 59 had C1–C4 ABC, 140 had C5–C8 ABC, 168 had T1–L4 ABC, and 40 had AIS D lesions. The outcomes were delineated for education, employment, independent living and driving, marriage, participation, medical complications, health-related quality of life, and global life satisfaction, in addition to the ASIA motor score and FIM® motor scores, for each of the four impairment groups. Conclusions This information should help focus interventions that facilitate positive outcomes in relationship to the severity of impairment. In addition, these data can provide a level of expectation about long-term outcomes for newly injured children and their parents. PMID:21528628

  1. GABAA receptor complex function in frontal cortex membranes from control and neurological patients.

    PubMed

    Lloyd, G K; Lowenthal, A; Javoy-Agid, F; Constantidinis, J

    1991-05-01

    The functional integrity of the GABAA receptor-benzodiazepine (BZ) recognition site-Cl- ionophore complex was assessed by means of [35S]TBPS (t-butylbicyclophosphorothionate) binding to frontal cortex membranes prepared from frozen postmortem brain tissue taken from control (n = 4), Alzheimer (n = 7), Parkinson (n = 3) and Huntington's chorea (n = 2) patients. Specific [35S]TBPS binding was similar in control, Parkinson's disease and Huntington's chorea brains, but was significantly reduced (78% control, P less than 0.01) in frontal cortex membranes from Alzheimer's patients. The linkage between the BZ recognition sites and the GABAA receptor-linked Cl- ionophore was functionally intact in these membranes as BZ site agonists (zolpidem, alpidem, flunitrazepam and clonazepam) enhanced [35S]TBPS binding under the conditions used (well-washed membranes in the presence of 1.0 M NaCl). Zolpidem (BZ1 selective) exhibited a biphasic enhancement in control membranes whereas the other compounds induced a bell-shaped concentration-response curve. The enhancement of [35S]TBPS binding by alpidem, flunitrazepam and clonazepam was greater in frontal cortex membranes from Alzheimer's patients than in controls whereas it tended to be reduced in membranes from the brains of Huntington's chorea patients. These studies demonstrate the functional integrity of the GABAA receptor macromolecular complex and also the usefulness of [35S]TBPS binding in the study of human postmortem tissue. PMID:1654259

  2. Functional neuroimaging of human central auditory processing in normal subjects and patients with neurological and neuropsychiatric disorders.

    PubMed

    Engelien, A; Stern, E; Silbersweig, D

    2001-02-01

    Auditory sensory processing in the human cerebral cortex is disturbed in several neurological and neuropsychiatric disorders, ranging from devastating perceptual deficits in neuropsychological syndromes such as cortical deafness and auditory agnosia to the problem of involuntary hallucinatory perception in schizophrenia. With modern non-invasive functional imaging techniques (e.g., PET, fMRI, and MEG), the normal auditory cortical functional anatomy can now be studied in humans in vivo, as well as its disruption in pathological conditions. This article will summarize current knowledge on human central auditory perception in health and disease, with an emphasis on recent functional neuroimaging studies, in the context of clinical and basic neuroscientific knowledge. New strategies include a focus on the role of other, non-temporal brain areas for auditory processing, particularly in the frontal lobes, and the combined use of techniques offering both precise spatial and temporal resolution. One step towards this goal has been the recent development of a silent, event-related fMRI scanning technique. PMID:11320447

  3. The body electric: a long view of electrical therapy for functional neurological disorders.

    PubMed

    McWhirter, Laura; Carson, Alan; Stone, Jon

    2015-04-01

    The use of electricity in medical treatment has always been technology-driven, rather than aetiology-driven; as new techniques have appeared, clinicians have quickly looked to try them in the treatment of all sorts of conditions where existing treatment options are limited. Functional disorders--as identified anachronistically in our analysis--have been key contenders for emerging electrical treatments: with Leyden jars, with galvanic and electromagnetic machines, and more recently with TMS and TENS. Parallels can be drawn with the history of electrical treatments for migraine and headache (Koehler and Boes, 2010). Regardless of the mode of delivery of electricity, stimulating a limb to produce movement has repeatedly been found to aid and assist recovery in functional motor disorders. This may also be true of non-electrical methods: we have found benefits using both therapeutic sedation and explanatory demonstration of a positive Hoover's sign as therapeutic methods of demonstrating normal movement in functionally weak limbs (Stone et al., 2014). Each surge in enthusiasm for new electrical treatments has been followed by questions about the nature of the disorder and validity of the treatment response. Physicians have tended to attribute therapeutic success initially to powerful biological or even metaphysical effects, but with time and experience these explanations have been replaced by views that the treatment works through suggestion and placebo. Discomfort with these conclusions has in the past discouraged ongoing development of electrical treatments, even if the end result for patients has been encouraging. In Edwards's Bayesian model, functional motor and sensory symptoms are hypothesized to arise when 'pathologically precise prior beliefs' mediated by attentional processes cause experience of symptoms via a hierarchy of false inferences (Edwards, 2012). It can be argued that use of TMS or peripheral stimulation to produce movement of a functionally weak

  4. Metabolic Syndrome Augments the Risk of Early Neurological Deterioration in Acute Ischemic Stroke Patients Independent of Inflammatory Mediators: A Hospital-Based Prospective Study

    PubMed Central

    Zhang, Xiaohao; Sun, Zhiguang; Ding, Caixia; Tang, Yinyan; Jiang, Xuemei; Xie, Yi; Li, Chuanyou; Zhang, Lankun; Hu, Dan; Li, Tingting; Xu, Gelin; Sheng, Lei

    2016-01-01

    Background and Aims. Metabolic syndrome (MetS) has been associated with occurrence and prognosis of ischemic stroke. This study aimed to evaluate whether an association exists between MetS and early neurological deterioration (END) following acute ischemic stroke and the possible role inflammatory biomarkers play. Methods and Results. We conducted a prospective cohort investigation that involved 208 stroke patients within 48 hours from symptom onset. MetS was determined by the modified National Cholesterol Education Program/Adult Treatment Panel III criteria. END was defined as an increase of ⩾1 point in motor power or ⩾2 points in the total National Institutes of Health Stroke Scale (NIHSS) score within 7 days. Univariate logistic regression analysis showed that patients with MetS had a 125% increased risk of END (OR 2.25; 95% CI 1.71–4.86, P = 0.005). After adjustment for fibrinogen and high-sensitivity C-reactive protein, MetS remained significantly correlated to END (OR 2.20; 95% CI 1.10–4.04, P = 0.026) with a 77% elevated risk per additional MetS trait (OR 1.77; 95% CI 1.23–2.58, P = 0.002). Conclusions. This study demonstrated that MetS may be a potential predictor for END after ischemic stroke, which was independent of raised inflammatory mediators. PMID:27119010

  5. A newly recognized autosomal recessive syndrome affecting neurologic function and vision.

    PubMed

    Salih, Mustafa A; Tzschach, Andreas; Oystreck, Darren T; Hassan, Hamdy H; AlDrees, Abdulmajeed; Elmalik, Salah A; El Khashab, Heba Y; Wienker, Thomas F; Abu-Amero, Khaled K; Bosley, Thomas M

    2013-06-01

    Genetic factors represent an important etiologic group in the causation of intellectual disability. We describe a Saudi Arabian family with closley related parents in which four of six children were affected by a congenital cognitive disturbance. The four individuals (aged 18, 16, 13, and 2 years when last examined) had motor and cognitive delay with seizures in early childhood, and three of the four (sparing only the youngest child) had progressive, severe cognitive decline with spasticity. Two affected children had ocular malformations, and the three older children had progressive visual loss. The youngest had normal globes with good functional vision when last examined but exhibited the oculodigital sign, which may signify a subclinical visual deficit. A potentially deleterious nucleotide change (c.1A>G; p.Met1Val) in the C12orf57 gene was homozygous in all affected individuals, heterozygous in the parents, and absent in an unaffected sibling and >350 normal individuals. This gene has no known function. This family manifests a autosomal recessive syndrome with some phenotypic variability that includes abnormal development of brain and eyes, delayed cognitive and motor milestones, seizures, and a severe cognitive and visual decline that is associated with a homozygous variant in a newly identified gene. PMID:23633300

  6. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs)

    PubMed Central

    De Souza, Lorraine H.; Frank, Andrew O.

    2016-01-01

    Abstract Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. Method: Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. Results: Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11–70) with RDs were identified and reviewed a mean of 64 (range 0–131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich’s ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. Conclusions: The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living.Implications for RehabilitationPowered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features.The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual’s need for function and participation whilst allowing for disease progression and/or growth.Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise

  7. Metabolic Functions of the Lung, Disorders and Associated Pathologies

    PubMed Central

    Alvarado, Alcibey; Arce, Isabel

    2016-01-01

    The primary function of the lungs is gas exchange. Approximately 400 million years ago, the Earth’s atmosphere gained enough oxygen in the gas phase for the animals that emerged from the sea to breathe air. The first lungs were merely primitive air sacs with a few vessels in the walls that served as accessory organs of gas exchange to supplement the gills. Eons later, as animals grew accustomed to a solely terrestrial life, the lungs became highly compartmentalized to provide the vast air-blood surface necessary for O2 uptake and CO2 elimination, and a respiratory control system was developed to regulate breathing in accordance with metabolic demands and other needs. With the evolution and phylogenetic development, lungs were taking a variety of other specialized functions to maintain homeostasis, which we will call the non-respiratory functions of the lung and that often, and by mistake, are believed to have little or no connection with the replacement gas. In this review, we focus on the metabolic functions of the lung, perhaps the least known, and mainly, in the lipid metabolism and blood-adult lung vascular endothelium interaction. When these functions are altered, respiratory disorders or diseases appear, which are discussed concisely, emphasizing how they impact the most important function of the lungs: external respiration.

  8. Determinants of Neurological Functional Recovery Potential after Stroke in Young Adults

    PubMed Central

    Haselbach, Daniel; Renggli, Anastasia; Carda, Stefano; Croquelois, Alexandre

    2014-01-01

    Background/Objectives Despite recent progress in stroke prevention and acute treatment, neurorehabilitation remains one of the main methods of treatment in the management of stroke patients. The aim of this study is to point out some important predicting factors of in-hospital neurorehabilitation outcomes. Methods A rehabilitation registry including all patients who had undergone a standardized program of neurorehabilitation at the neurorehabilitation unit of the Lausanne University Hospital, Lausanne, Switzerland, was created. Patients aged <65 years and having experienced a first ever nontraumatic stroke from 2005 to 2010 were admitted. Using logistical regression models, predicting factors for each patient were compared to the exit Functional Independence Measure (FIM) score. Results Age >55 years, gender, aphasia, hemilateral spatial neglect, spasticity, complications, length of stay >70 days, entry FIM >100 and relative possible FIM gain/week of >10% were considered to be significant and independent predicting factors of the neurorehabilitation outcome. Discussion/Conclusion Some factors of the in-hospital rehabilitation period have been identified before (spasticity, complications, length of stay, relative possible FIM gain/week) and should be considered for a better management of the neurorehabilitation therapy. In addition, a personalized rehabilitation strategy based on the patient's individual needs should be aimed at. The question of resource allocation can also be addressed with regard to the present findings. PMID:24847344

  9. Metabolic functions of FABPs— mechanisms and therapeutic implications

    PubMed Central

    Hotamisligil, Gökhan S.; Bernlohr, David A.

    2015-01-01

    Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases. PMID:26260145

  10. Simple topological properties predict functional misannotations in a metabolic network

    PubMed Central

    Liberal, Rodrigo; Pinney, John W.

    2013-01-01

    Motivation: Misannotation in sequence databases is an important obstacle for automated tools for gene function annotation, which rely extensively on comparison with sequences with known function. To improve current annotations and prevent future propagation of errors, sequence-independent tools are, therefore, needed to assist in the identification of misannotated gene products. In the case of enzymatic functions, each functional assignment implies the existence of a reaction within the organism’s metabolic network; a first approximation to a genome-scale metabolic model can be obtained directly from an automated genome annotation. Any obvious problems in the network, such as dead end or disconnected reactions, can, therefore, be strong indications of misannotation. Results: We demonstrate that a machine-learning approach using only network topological features can successfully predict the validity of enzyme annotations. The predictions are tested at three different levels. A random forest using topological features of the metabolic network and trained on curated sets of correct and incorrect enzyme assignments was found to have an accuracy of up to 86% in 5-fold cross-validation experiments. Further cross-validation against unseen enzyme superfamilies indicates that this classifier can successfully extrapolate beyond the classes of enzyme present in the training data. The random forest model was applied to several automated genome annotations, achieving an accuracy of in most cases when validated against recent genome-scale metabolic models. We also observe that when applied to draft metabolic networks for multiple species, a clear negative correlation is observed between predicted annotation quality and phylogenetic distance to the major model organism for biochemistry (Escherichia coli for prokaryotes and Homo sapiens for eukaryotes). Contact: j.pinney@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  11. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism.

    PubMed

    Kusters, Yvo H A M; Barrett, Eugene J

    2016-03-15

    We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism. PMID:26714849

  12. RELATIONSHIP BETWEEN INSULIN-RESISTANCE PROCESSING SPEED AND SPECIFIC EXECUTIVE FUNCTION PROFILES IN NEUROLOGICALLY-INTACT OLDER ADULTS

    PubMed Central

    Frazier, Darvis T.; Bettcher, Brianne M.; Dutt, Shubir; Patel, Nihar; Mungas, Dan; Miller, Joshua; Green, Ralph; Kramer, Joel H.

    2016-01-01

    Objective This study investigated the relationship between insulin-resistance and constituent components of executive function in a sample of neurologically-intact older adult subjects using the homeostasis model assessment (HOMA-IR) and latent factors of working memory, cognitive control and processing speed derived from confirmatory factor analysis. Low-density lipoprotein (LDL), mean arterial pressure (MAP), along with body mass index (BMI) and white matter hypointensity (WMH) were used to control for vascular risk factors, adiposity and cerebrovascular injury. Methods The study included 119 elderly subjects recruited from the University of California, San Francisco Memory and Aging Center. Subjects underwent neuropsychological assessment, fasting blood draw and brain magnetic resonance imaging (MRI). Partial correlations and linear regression models were used to examine the HOMA-IR-executive function relationship. Results Pearson correlation adjusting for age showed a significant relationship between HOMA-IR and working memory (rp=−.18, p=.047), a trend with cognitive control (rp=−.17, p=.068), and no relationship with processing speed (rp=.013, p=.892). Linear regression models adjusting for demographic factors (age, education and gender), LDL, MAP, BMI and WMH indicated that HOMA-IR was negatively associated with cognitive control (r=−.256; p=.026) and working memory (r=−.234; p=.054). Conclusions These results suggest a greater level of peripheral insulin-resistance is associated with decreased cognitive control and working memory. After controlling for demographic factors, vascular risk, adiposity and cerebrovascular injury, HOMA-IR remained significantly associated with cognitive control, with working memory showing a trend. These findings substantiate the insulin-resistance-executive function hypothesis and suggest a complex interaction, demonstrated by the differential impact of insulin-resistance on processing speed and specific aspects of

  13. Relationship between Insulin-Resistance Processing Speed and Specific Executive Function Profiles in Neurologically Intact Older Adults.

    PubMed

    Frazier, Darvis T; Bettcher, Brianne M; Dutt, Shubir; Patel, Nihar; Mungas, Dan; Miller, Joshua; Green, Ralph; Kramer, Joel H

    2015-09-01

    This study investigated the relationship between insulin-resistance and constituent components of executive function in a sample of neurologically intact older adult subjects using the homeostasis model assessment (HOMA-IR) and latent factors of working memory, cognitive control and processing speed derived from confirmatory factor analysis. Low-density lipoprotein (LDL), mean arterial pressure (MAP), along with body mass index (BMI) and white matter hypointensity (WMH) were used to control for vascular risk factors, adiposity and cerebrovascular injury. The study included 119 elderly subjects recruited from the University of California, San Francisco Memory and Aging Center. Subjects underwent neuropsychological assessment, fasting blood draw and brain magnetic resonance imaging (MRI). Partial correlations and linear regression models were used to examine the HOMA-IR-executive function relationship. Pearson correlation adjusting for age showed a significant relationship between HOMA-IR and working memory (rp = -.18; p = .047), a trend with cognitive control (rp = -.17; p = .068), and no relationship with processing speed (rp = .013; p = .892). Linear regression models adjusting for demographic factors (age, education, and gender), LDL, MAP, BMI, and WMH indicated that HOMA-IR was negatively associated with cognitive control (r = -.256; p = .026) and working memory (r = -.234; p = .054). These results suggest a greater level of peripheral insulin-resistance is associated with decreased cognitive control and working memory. After controlling for demographic factors, vascular risk, adiposity and cerebrovascular injury, HOMA-IR remained significantly associated with cognitive control, with working memory showing a trend. These findings substantiate the insulin-resistance-executive function hypothesis and suggest a complex interaction, demonstrated by the differential impact of insulin-resistance on processing speed and specific aspects of executive function. PMID

  14. Effect of metabolic syndrome on mitsugumin 53 expression and function.

    PubMed

    Ma, Hanley; Liu, Jason; Bian, Zehua; Cui, Yuqi; Zhou, Xinyu; Zhou, Xuefeng; Zhang, Bo; Adesanya, T M Ayodele; Yi, Frank; Park, Ki Ho; Tan, Tao; Chen, Zhishui; Zhu, Hua

    2015-01-01

    Metabolic syndrome is a cluster of risk factors, such as obesity, insulin resistance, and hyperlipidemia that increases the individual's likelihood of developing cardiovascular diseases. Patients inflicted with metabolic disorders also suffer from tissue repair defect. Mitsugumin 53 (MG53) is a protein essential to cellular membrane repair. It facilitates the nucleation of intracellular vesicles to sites of membrane disruption to create repair patches, contributing to the regenerative capacity of skeletal and cardiac muscle tissues upon injury. Since individuals suffering from metabolic syndrome possess tissue regeneration deficiency and MG53 plays a crucial role in restoring membrane integrity, we studied MG53 activity in mice models exhibiting metabolic disorders induced by a 6 month high-fat diet (HFD) feeding. Western blotting showed that MG53 expression is not altered within the skeletal and cardiac muscles of mice with metabolic syndrome. Rather, we found that MG53 levels in blood circulation were actually reduced. This data directly contradicts findings presented by Song et. al that indict MG53 as a causative factor for metabolic syndrome (Nature 494, 375-379). The diminished MG53 serum level observed may contribute to the inadequate tissue repair aptitude exhibited by diabetic patients. Furthermore, immunohistochemical analyses reveal that skeletal muscle fibers of mice with metabolic disorders experience localization of subcellular MG53 around mitochondria. This clustering may represent an adaptive response to oxidative stress resulting from HFD feeding and may implicate MG53 as a guardian to protect damaged mitochondria. Therapeutic approaches that elevate MG53 expression in serum circulation may be a novel method to treat the degenerative tissue repair function of diabetic patients. PMID:25950605

  15. Dependence of Hippocampal Function on ERRγ Regulated Mitochondrial Metabolism

    PubMed Central

    Pei, Liming; Mu, Yangling; Leblanc, Mathias; Alaynick, William; Barish, Grant D.; Pankratz, Matthew; Tseng, Tiffany W.; Kaufman, Samantha; Liddle, Christopher; Yu, Ruth T.; Downes, Michael; Pfaff, Samuel L.; Auwerx, Johan; Gage, Fred H.; Evans, Ronald M.

    2015-01-01

    SUMMARY Neurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen related receptor gamma (ERRγ) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRγ−/− neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRγ−/− hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRγ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRγ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRγ in the metabolic adaptations required for memory formation. PMID:25863252

  16. The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation

    PubMed Central

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies. PMID:25340655

  17. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    PubMed

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner; Reuter, Stefan; Suwelack, Barbara

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies. PMID:25340655

  18. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review

    PubMed Central

    2014-01-01

    Background Integrating rehabilitation services through wearable systems has the potential to accurately assess the type, intensity, duration, and quality of movement necessary for procuring key outcome measures. Objectives This review aims to explore wearable accelerometry-based technology (ABT) capable of assessing mobility-related functional activities intended for rehabilitation purposes in community settings for neurological populations. In this review, we focus on the accuracy of ABT-based methods, types of outcome measures, and the implementation of ABT in non-clinical settings for rehabilitation purposes. Data sources Cochrane, PubMed, Web of Knowledge, EMBASE, and IEEE Xplore. The search strategy covered three main areas, namely wearable technology, rehabilitation, and setting. Study selection Potentially relevant studies were categorized as systems either evaluating methods or outcome parameters. Methods Methodological qualities of studies were assessed by two customized checklists, depending on their categorization and rated independently by three blinded reviewers. Results Twelve studies involving ABT met the eligibility criteria, of which three studies were identified as having implemented ABT for rehabilitation purposes in non-clinical settings. From the twelve studies, seven studies achieved high methodological quality scores. These studies were not only capable of assessing the type, quantity, and quality measures of functional activities, but could also distinguish healthy from non-healthy subjects and/or address disease severity levels. Conclusion While many studies support ABT’s potential for telerehabilitation, few actually utilized it to assess mobility-related functional activities outside laboratory settings. To generate more appropriate outcome measures, there is a clear need to translate research findings and novel methods into practice. PMID:24625308

  19. Bedside saccadometry as an objective and quantitative measure of hemisphere-specific neurological function in patients undergoing cranial surgery.

    PubMed

    Saleh, Y; Marcus, H J; Iorga, R; Nouraei, R; Carpenter, R H; Nandi, D

    2015-02-01

    Cranial surgery continues to carry a significant risk of neurological complications. New bedside tools that can objectively and quantitatively evaluate cerebral function may allow for earlier detection of such complications, more rapid initiation of therapy, and improved patient outcomes. We assessed the potential of saccadic eye movements as a measure of cerebral function in patients undergoing cranial surgery peri-operatively. Visually evoked saccades were measured in 20 patients before (-12 hours) and after (+2 and +5 days) undergoing cranial surgery. Hemisphere specific saccadic latencies were measured using a simple step-task and saccadic latency distributions were compared using the Kolmogorov-Smirnov test. Saccadic latency values were incorporated into an empirically validated mathematical model (Linear Approach to Threshold with Ergodic Rate [LATER] model) for further analysis (using Wilcoxon signed rank test). Thirteen males and seven females took part in our study (mean age 55 ± 4.9 years). Following cranial surgery, saccades initiated by the cerebral hemisphere on the operated side demonstrated significant deteriorations in function after 2 days (p < 0.01) that normalised after 5 days. Analysis using the LATER model confirmed these findings, highlighting decreased cerebral information processing as a potential mechanism for noted changes (p < 0.05). No patients suffered clinical complications after surgery. To conclude, bedside saccadometry can demonstrate hemisphere-specific changes after surgery in the absence of clinical symptoms. The LATER model confirms these findings and offers a mechanistic explanation for this change. Further work will be necessary to assess the practical validity of these changes in relation to clinical complications after surgery. PMID:25282394

  20. The Cognition Battery of the NIH Toolbox for Assessment of Neurological and Behavioral Function: Validation in an Adult Sample

    PubMed Central

    Weintraub, Sandra; Dikmen, Sureyya S.; Heaton, Robert K.; Tulsky, David S.; Zelazo, Philip David; Slotkin, Jerry; Carlozzi, Noelle E.; Bauer, Patricia J.; Wallner-Allen, Kathleen; Fox, Nathan; Havlik, Richard; Beaumont, Jennifer L.; Mungas, Dan; Manly, Jennifer J.; Moy, Claudia; Conway, Kevin; Edwards, Emmeline; Nowinski, Cindy J.; Gershon, Richard

    2014-01-01

    This paper introduces a special series on validity studies of the Cognition Battery (CB) from the U.S. National Institutes of Health Toolbox for the Assessment of Neurological and Behavioral Function (NIHTB) (R. C. Gershon et al., 2013) in an adult sample. This first paper in the series describes the sample, each of the seven instruments in the NIHTB-CB briefly, and the general approach to data analysis. Data are provided on test-retest reliability and practice effects, and raw scores (mean, standard deviation, range) are presented for each instrument and the gold standard instruments used to measure construct validity. Accompanying papers provide details on each instrument, including information about instrument development, psychometric properties, age and education effects on performance, and convergent and discriminant construct validity. One paper in the series is devoted to a factor analysis of the NIHTB-CB in adults and another describes the psychometric properties of three composite scores derived from the individual measures representing fluid and crystallized abilities and their combination. The NIHTB-CB is designed to provide a brief, comprehensive, common set of measures to allow comparisons among disparate studies and to improve scientific communication. PMID:24959840

  1. Bladder function - neurological control

    MedlinePlus Videos and Cool Tools

    ... with urine, sensory nerves send impulses to the brain indicating that the bladder is full. The sensory ... cord to relay this information. In turn, the brain sends impulses back to the bladder instructing the ...

  2. Mutant p53 exerts oncogenic functions by modulating cancer cell metabolism

    PubMed Central

    Zhou, Ge; Myers, Jeffrey N

    2014-01-01

    The metabolic function of p53 is important for its oncosuppressive function. Mutant p53 (mutp53) with gain of oncogenic function can regulate cell metabolism. Our recent study revealed a novel transcription-independent mechanism for a gain-of-function mutp53 that directly inhibits activation of adenosine monophosphate-activated protein kinase (AMPK) to promote cancer cell metabolism. PMID:27308343

  3. Hypothalamic inflammation in the control of metabolic function.

    PubMed

    Valdearcos, Martin; Xu, Allison W; Koliwad, Suneil K

    2015-01-01

    Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease. PMID:25668019

  4. Norepinephrine transporter function and autonomic control of metabolism.

    PubMed

    Boschmann, Michael; Schroeder, Christoph; Christensen, Niels Juel; Tank, Jens; Krupp, Goetz; Biaggioni, Italo; Klaus, Susanne; Sharma, Arya M; Luft, Friedrich C; Jordan, Jens

    2002-11-01

    Genetic variability, numerous medications, and some illicit drugs influence norepinephrine transporter (NET) function; however, the metabolic consequences of NET inhibition are poorly understood. We performed a randomized, double-blind, cross-over trial in 15 healthy subjects who ingested 8 mg of the selective NET inhibitor reboxetine or placebo. Energy expenditure and substrate oxidation rates were determined by indirect calorimetry before and during iv infusion of 0.25, 0.5, 1, and 2 micro g isoproterenol/min. Adipose tissue metabolism was studied by microdialysis before and during local isoproterenol perfusion. At rest, energy expenditure and substrate oxidation rates did not differ between reboxetine and placebo treatment. At 1 micro g/min isoproterenol, energy expenditure was significantly increased in men (+15%) and women (+20%) with both reboxetine and placebo treatment. However, carbohydrate oxidation rate was significantly higher with reboxetine compared with placebo. Baseline and isoproterenol-stimulated adipose tissue blood flow was about 2-fold higher with reboxetine vs. placebo. Furthermore, glucose supply and metabolism was significantly increased and lipid mobilization much more stimulated in adipose tissue under reboxetine when compared with placebo at all isoproterenol concentrations used. We conclude that acute NET inhibition increases adipose tissue glucose uptake and metabolism. While lipid mobilization is increased, overall lipid oxidation is decreased during beta-adrenergic stimulation. This effect cannot be explained by increased systemic or adipose tissue norepinephrine concentrations. Instead, NET inhibition may sensitize adipose tissue to beta-adrenergic stimulation. PMID:12414883

  5. Metabolic functions of glucocorticoid receptor in skeletal muscle

    PubMed Central

    Kuo, Taiyi; Harris, Charles A.; Wang, Jen-Chywan

    2016-01-01

    Glucocorticoids (GCs) exert key metabolic influences on skeletal muscle. GCs increase protein degradation and decrease protein synthesis. The released amino acids are mobilized from skeletal muscle to liver, where they serve as substrates for hepatic gluconeogenesis. This metabolic response is critical for mammals’ survival under stressful conditions, such as fasting and starvation. GCs suppress insulin-stimulated glucose uptake and utilization and glycogen synthesis, and play a permissive role for catecholamine-induced glycogenolysis, thus preserving the level of circulating glucose, the major energy source for the brain. However, chronic or excess exposure of GCs can induce muscle atrophy and insulin resistance. GCs convey their signal mainly through the intracellular glucocorticoid receptor (GR). While GR can act through different mechanisms, one of its major actions is to regulate the transcription of its primary target genes through genomic glucocorticoid response elements (GREs) by directly binding to DNA or tethering onto other DNA-binding transcription factors. These GR primary targets trigger physiological and pathological responses of GCs. Much progress has been made to understand how GCs regulate protein and glucose metabolism. In this review, we will discuss how GR primary target genes confer metabolic functions of GCs, and the mechanisms governing the transcriptional regulation of these targets. Comprehending these processes not only contributes to the fundamental understanding of mammalian physiology, but also will provide invaluable insight for improved GC therapeutics. PMID:23523565

  6. New insights on glucosylated lipids: metabolism and functions.

    PubMed

    Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio

    2013-09-01

    Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. PMID:23770033

  7. Epigenetic mechanisms in neurological and neurodegenerative diseases

    PubMed Central

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS’s regulation and neurological disorders are mediated via modulation of chromatin structure. “Epigenetics”, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD+) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics

  8. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    PubMed

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS's regulation and neurological disorders are mediated via modulation of chromatin structure. "Epigenetics", introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD(+)) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and

  9. Ravel's neurological illness.

    PubMed

    Alonso, R J; Pascuzzi, R M

    1999-01-01

    In the last 10 years of his life, Maurice Ravel (1875-1937) experienced a gradually progressive decline in neurological function. Dr. Alajouanine examined Ravel, noting the presence of aphasia and apraxia with relative preservation of comprehension and memory. The exact diagnosis remains unclear, but the likelihood of a progressive degenerative disorder, such as frontotemporal dementia, is herein discussed. PMID:10718529

  10. Creativity and neurological disease.

    PubMed

    Acosta, Lealani Mae Y

    2014-08-01

    Although humans have long valued creativity, the generation of such innovation is still incompletely understood. Looking at the healthy brain, researchers have localized certain parts for a basic understanding of these mechanisms. By researching the brain affected by neurological disease, scientists have observed unique manifestations of creativity, such as in frontotemporal lobar degeneration, Alzheimer's disease, Parkinson's disease and parkinsonian spectrum disorders, and stroke, which help clarify these creative underpinnings. Incorporating both healthy and disease models of cerebral functioning, neurological and neuroscientific research from recent years has built on established theories and expanded current knowledge. PMID:24938215

  11. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  12. Functional foods as potential therapeutic options for metabolic syndrome.

    PubMed

    Brown, L; Poudyal, H; Panchal, S K

    2015-11-01

    Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven. PMID:26345360

  13. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.

    PubMed

    Xu, Changcheng; Shanklin, John

    2016-04-29

    Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals. PMID:26845499

  14. Regulation of cardiac metabolism and function by lipogenic factors.

    PubMed

    Bednarski, Tomasz; Pyrkowska, Aleksandra; Opasińska, Agnieszka; Dobrzyń, Paweł

    2016-01-01

    The heart has a limited capacity for lipogenesis and de novo lipid synthesis. However, expression of lipogenic genes in cardiomyocytes is unexpectedly high. Recent studies showed that lipogenic genes are important factors regulating cardiac metabolism and function. Long chain fatty acids are a major source of ATP required for proper heart function, and under aerobic conditions, the heart derives 60-90% of the energy necessary for contractile function from fatty acid oxidation. On the other hand, cardiac lipid over-accumulation (e.g. ceramides, diacylglycerols) leads to heart dysfunction. Downregulation of the lipogenic genes' expression (e.g. sterol regulatory element binding protein 1, stearoyl-CoA desaturase, acetyl-CoA kwacarboxylase) decreased heart steatosis and cardiomyocyte apoptosis, improving systolic and diastolic function of the left ventricle. Lipogenic factors also regulate fatty acids and glucose utilization in the heart, underlining their important role in maintaining energetic homeostasis in pathological states. Fatty acid synthase, the enzyme catalyzing fatty acids de novo synthesis, affects cardiac calcium signaling through regulation of L-type calcium channel activity. Thus, a growing body of evidence suggests that the role of lipogenic genes in cardiomyocytes may be distinct from other tissues. Here, we review recent advances made in understanding the role of lipogenic genes in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathy. PMID:27333934

  15. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis

    PubMed Central

    Oppenheim, Rebecca D.; Soldati-Favre, Dominique; Hatzimanikatis, Vassily

    2013-01-01

    Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets. PMID:23793264

  16. Skeletal Muscle Phospholipid Metabolism Regulates Insulin Sensitivity and Contractile Function.

    PubMed

    Funai, Katsuhiko; Lodhi, Irfan J; Spears, Larry D; Yin, Li; Song, Haowei; Klein, Samuel; Semenkovich, Clay F

    2016-02-01

    Skeletal muscle insulin resistance is an early defect in the development of type 2 diabetes. Lipid overload induces insulin resistance in muscle and alters the composition of the sarcoplasmic reticulum (SR). To test the hypothesis that skeletal muscle phospholipid metabolism regulates systemic glucose metabolism, we perturbed choline/ethanolamine phosphotransferase 1 (CEPT1), the terminal enzyme in the Kennedy pathway of phospholipid synthesis. In C2C12 cells, CEPT1 knockdown altered SR phospholipid composition and calcium flux. In mice, diet-induced obesity, which decreases insulin sensitivity, increased muscle CEPT1 expression. In high-fat diet-fed mice with skeletal muscle-specific knockout of CEPT1, systemic and muscle-based approaches demonstrated increased muscle insulin sensitivity. In CEPT1-deficient muscles, an altered SR phospholipid milieu decreased sarco/endoplasmic reticulum Ca(2+) ATPase-dependent calcium uptake, activating calcium-signaling pathways known to improve insulin sensitivity. Altered muscle SR calcium handling also rendered these mice exercise intolerant. In obese humans, surgery-induced weight loss increased insulin sensitivity and decreased skeletal muscle CEPT1 protein. In obese humans spanning a spectrum of metabolic health, muscle CEPT1 mRNA was inversely correlated with insulin sensitivity. These results suggest that high-fat feeding and obesity induce CEPT1, which remodels the SR to preserve contractile function at the expense of insulin sensitivity. PMID:26512026

  17. From Elements to Metabolism: Linking Organismal Stoichiometry to Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.

    2014-12-01

    Metabolism is an integrative metric of ecosystem function and energetics, synthesizing the relative contributions of multiple inputs, processes, and interactions. Stoichiometry is a framework based on elemental ratios for understanding how organisms interact within ecosystems. Linking the two has the potential to yield fresh insight about how ecosystems utilize elements and energy. We sought to quantify the link between the stoichiometry of ecosystem metabolism, specifically the C:N:P ratios of integrated autotrophic assimilation, and the stoichiometric tissue ratios observed in the dominant autotrophs. Using high frequency in situ nutrient sensors we estimated the assimilatory fluxes of C, N, and P in multiple spring-fed rivers of varying autotrophic species composition. We measured autotroph cover in each spring river, collected composite vegetation samples, and evaluated tissue stoichiometry; as expected, we observed large differences in C:N and N:P between algal and vascular plant taxa. We observed associations between measured tissue stoichiometry and elemental ratios at the ecosystem scale, suggesting that aggregated assimilatory fluxes may be useful for partitioning primary production and linking organismal nutrient content to the stoichiometry of ecosystem metabolism.

  18. Human Neurological Development: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Pelligra, R. (Editor)

    1978-01-01

    Neurological development is considered as the major human potential. Vision, vestibular function, intelligence, and nutrition are discussed as well as the treatment of neurological disfunctions, coma, and convulsive seizures.

  19. Voluntary exercise improves hypothalamic and metabolic function in obese mice.

    PubMed

    Laing, Brenton T; Do, Khoa; Matsubara, Tomoko; Wert, David W; Avery, Michael J; Langdon, Erin M; Zheng, Donghai; Huang, Hu

    2016-05-01

    Exercise plays a critical role in regulating glucose homeostasis and body weight. However, the mechanism of exercise on metabolic functions associated with the CNS has not been fully understood. C57BL6 male mice (n=45) were divided into three groups: normal chow diet, high-fat diet (HFD) treatment, and HFD along with voluntary running wheel exercise training for 12 weeks. Metabolic function was examined by the Comprehensive Lab Animal Monitoring System and magnetic resonance imaging; phenotypic analysis included measurements of body weight, food intake, glucose and insulin tolerance tests, as well as insulin and leptin sensitivity studies. By immunohistochemistry, the amount changes in the phosphorylation of signal transducer and activator of transcription 3, neuronal proliferative maker Ki67, apoptosis positive cells as well as pro-opiomelanocortin (POMC)-expressing neurons in the arcuate area of the hypothalamus was identified. We found that 12 weeks of voluntary exercise training partially reduced body weight gain and adiposity induced by an HFD. Insulin and leptin sensitivity were enhanced in the exercise training group verses the HFD group. Furthermore, the HFD-impaired POMC-expressing neuron is remarkably restored in the exercise training group. The restoration of POMC neuron number may be due to neuroprotective effects of exercise on POMC neurons, as evidenced by altered proliferation and apoptosis. In conclusion, our data suggest that voluntary exercise training improves metabolic symptoms induced by HFD, in part through protected POMC-expressing neuron from HFD and enhanced leptin signaling in the hypothalamus that regulates whole-body energy homeostasis. PMID:26931136

  20. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  1. Physical, metabolic and developmental functions of the seed coat

    PubMed Central

    Radchuk, Volodymyr; Borisjuk, Ljudmilla

    2014-01-01

    The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction. PMID:25346737

  2. Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation.

    PubMed

    Nagao, Masayoshi; Tanaka, Toju; Morii, Mayuko; Wakai, Shuji; Horikawa, Reiko; Kasahara, Mureo

    2013-01-01

    Despite medical therapy, patients with propionic academia (PA) still display a tendency to develop epilepsy. Patients with neonatal-onset PA who have received early living donor liver transplantation (LDLT) are limited in number, and the effect on neurologic prognosis, including epilepsy, is not clear. We report a patient with PA whose EEG findings improved dramatically after undergoing LDLT at age 7 months. The patient's neurologic development and brain MRI findings were quite satisfactory at age 2 years and 3 months. LDLT is effective not only in preventing metabolic decompensation, but also in improving neurologic function to ensure better quality of life. PMID:23151386

  3. Aflatoxicosis alters avian renal function, calcium, and vitamin D metabolism.

    PubMed

    Glahn, R P; Beers, K W; Bottje, W G; Wideman, R F; Huff, W E; Thomas, W

    1991-11-01

    Experiments were designed to determine the effects of aflatoxicosis on avian renal function, calcium (CA), inorganic phosphorous (Pi), and vitamin D metabolism, and to determine if the effects of aflatoxin are reversible upon discontinuation of toxin administration. Three-week-old male broiler chickens (n = 12 per treatment) received aflatoxin (AF; 2 mg/kg po) or an equal volume of corn oil, the AF carrier vehicle, for 10 consecutive days. After 10 d of treatment, half of the birds from each treatment group were anesthetized and prepared for renal function analysis, which included a 2-h phosphate loading period. Ten days after discontinuation of AF treatment, the remaining birds in each treatment group were anesthetized and prepared for renal function analysis. AF decreased plasma 25-hydroxy vitamin D [25(OH)D] and 1,25-dihydroxy vitamin D [1,25(OH)2D] levels after 5 d of treatment. After 10 d of treatment, urine flow rate (V), fractional sodium excretion (FENa), and fractional potassium excretion (FEK) were lower in AF-treated birds. In addition, total plasma Ca tended to be lower (p = .10) and fractional Ca excretion (FECa) tended to be higher (p = .10) in the AF-treated birds. Intravenous phosphate loading produced a sharp increase in urine hydrogen ion concentration ([H+]) in the AF-treated birds. Glomerular filtration rate (GFR) was reduced and plasma osmolality was increased in AF-treated birds 10 d after discontinuation of toxin administration. The results indicate that AF directly or indirectly affects Ca and Pi metabolism in avians. At the present time, the effects may be related to altered vitamin D and parathyroid hormone (PTH) metabolism. Aflatoxicosis may decrease endogenous PTH synthesis and the renal sensitivity to PTH. The AF-related increase in urine [H+] during phosphate loading is probably due to increased Na+/H+ counterport, suggesting that AF stimulates sodium reabsorption. Also, the decrease in GFR exhibited 10 d after toxin removal indicates

  4. Exploring Metabolic Pathways and Regulation through Functional Chemoproteomic and Metabolomic Platforms

    PubMed Central

    Medina-Cleghorn, Daniel; Nomura, Daniel K.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of uncharacterized genes, including poorly or uncharacterized metabolic enzymes, metabolites, and metabolic networks that operate in normal physiology, and also those enzymes and pathways that may be rewired under pathological conditions. Though deciphering the functions of the uncharacterized metabolic genome is a challenging prospect, it also presents an opportunity for identifying novel metabolic nodes that may be important in disease therapy. In this review, we will discuss the chemoproteomic and metabolomic platforms employed in identifying, characterizing, and targeting nodal metabolic pathways important in physiology and disease, describing an integrated workflow for functional mapping of metabolic enzymes. PMID:25237861

  5. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function.

    PubMed

    Thomsen, Karen Louise; Grønbæk, Henning; Glavind, Emilie; Hebbard, Lionel; Jessen, Niels; Clouston, Andrew; George, Jacob; Vilstrup, Hendrik

    2014-08-01

    Nonalcoholic steatohepatitis (NASH) is increasing in prevalence, yet its consequences for liver function are unknown. We studied ureagenesis, an essential metabolic liver function of importance for whole body nitrogen homeostasis, in a rodent model of diet-induced NASH. Rats were fed a high-fat, high-cholesterol diet for 4 and 16 wk, resulting in early and advanced experimental NASH, respectively. We examined the urea cycle enzyme mRNAs in liver tissue, the hepatocyte urea cycle enzyme proteins, and the in vivo capacity of urea-nitrogen synthesis (CUNS). Early NASH decreased all of the urea cycle mRNAs to an average of 60% and the ornithine transcarbamylase protein to 10%, whereas the CUNS remained unchanged. Advanced NASH further decreased the carbamoyl phosphate synthetase protein to 63% and, in addition, decreased the CUNS by 20% [from 5.65 ± 0.23 to 4.58 ± 0.30 μmol × (min × 100 g)(-1); P = 0.01]. Early NASH compromised the genes and enzyme proteins involved in ureagenesis, whereas advanced NASH resulted in a functional reduction in the capacity for ureagenesis. The pattern of urea cycle perturbations suggests a prevailing mitochondrial impairment by NASH. The decrease in CUNS has consequences for the ability of the body to adjust to changes in the requirements for nitrogen homeostasis e.g., at stressful events. NASH, thus, in terms of metabolic consequences, is not an innocuous lesion, and the manifestations of the damage seem to be a continuum with increasing disease severity. PMID:24924745

  6. The neurology of folic acid deficiency.

    PubMed

    Reynolds, E H

    2014-01-01

    The metabolism of folic acid and the metabolism of vitamin B12 are intimately linked such that deficiency of either vitamin leads to an identical megaloblastic anemia. The neurologic manifestations of folate deficiency overlap with those of vitamin B12 deficiency and include cognitive impairment, dementia, depression, and, less commonly, peripheral neuropathy and subacute combined degeneration of the spinal cord. In both deficiency states there is often dissociation between the neuropsychiatric and the hematologic complications. There is a similar overlap and dissociation between neurologic and hematologic manifestations of inborn errors of folate and vitamin B12 metabolism. Low folate and raised homocysteine levels are risk factors for dementia, including Alzheimer's disease, and depression. Even when folate deficiency is secondary to psychiatric illness due to apathy or poor diet it may eventually aggravate the underlying disorder in a vicious circle effect. Clinical responses to treatment with folates are usually slow over weeks and months, probably due to the efficient blood-brain barrier mechanism for the vitamin, perhaps in turn related to the experimentally demonstrated excitatory properties of folate derivatives. The inappropriate administration of folic acid in the presence of vitamin B12 deficiency may lead to both neurologic and, later, hematologic relapse. Impaired maternal folate intake and status increases the risk of neural tube defects. Periconceptual prophylactic administration of the vitamin reduces, but does not eliminate the risk of neural tube defects even in the absence of folate deficiency. Folates and vitamin B12 have fundamental roles in central nervous system function at all ages, especially in purine, thymidine, neucleotide, and DNA synthesis, genomic and nongenomic methylation and, therefore, in tissue growth, differentiation and repair. There is interest in the potential role of both vitamins in the prevention of disorders of central

  7. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  8. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  9. Is there more to learn about functional vitamin D metabolism?

    PubMed

    DeLuca, Hector F

    2015-04-01

    The state of information on the enzymes responsible for the conversion of vitamin D3 to 1α,25-dhydroxyvitamin D3 (1,25-(OH)2D3), the metabolic active form responsible for the well-known function of vitamin D on calcium metabolism and bone mineralization has been briefly reviewed. There remains an unidentified enzyme responsible for 25% of the 25-hydroxylation of vitamin D3, while 75% of serum 25-hydroxyvitamin D3 (25-OH-D3) arises from CYP2R1. The well-established suppression of multiple sclerosis (MS) by sunlight has been confirmed using the mouse model, experimental autoimmune encephalomyelitis (EAE). This suppression results from a narrow band of ultraviolet light (300-315nm) that does not increase serum 25-OH-D3. Thus, UV light suppresses EAE by a mechanism not involving vitamin D. Vitamin D deficiency unexpectedly suppresses the development of EAE. Further, vitamin D receptor knockout in susceptible mice also prevents the development of EAE. On the other hand, deletion of CYP2R1 and the 1α-hydroxylase, CYP27B1, does not impair the development of EAE. Thus, either vitamin D itself or a heretofore-unknown metabolite is needed for the development of a component of the immune system necessary for development of EAE. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. PMID:25194637

  10. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  11. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    SciTech Connect

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-02-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs.

  12. Neurological diseases and pain

    PubMed Central

    2012-01-01

    Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain. PMID:22067541

  13. Maternal blood metal levels and fetal markers of metabolic function

    SciTech Connect

    Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Taback, Shayne; Bouchard, Maryse F.; Monnier, Patricia; Dallaire, Renee; Fraser, William D.

    2015-01-15

    Exposure to metals commonly found in the environment has been hypothesized to be associated with measures of fetal growth but the epidemiological literature is limited. The Maternal–Infant Research on Environmental Chemicals (MIREC) study recruited 2001 women during the first trimester of pregnancy from 10 Canadian sites. Our objective was to assess the association between prenatal exposure to metals (lead, arsenic, cadmium, and mercury) and fetal metabolic function. Average maternal metal concentrations in 1st and 3rd trimester blood samples were used to represent prenatal metals exposure. Leptin and adiponectin were measured in 1363 cord blood samples and served as markers of fetal metabolic function. Polytomous logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between metals and both high (≥90%) and low (≤10%) fetal adiponectin and leptin levels. Leptin levels were significantly higher in female infants compared to males. A significant relationship between maternal blood cadmium and odds of high leptin was observed among males but not females in adjusted models. When adjusting for birth weight z-score, lead was associated with an increased odd of high leptin. No other significant associations were found at the top or bottom 10th percentile in either leptin or adiponectin models. This study supports the proposition that maternal levels of cadmium influence cord blood adipokine levels in a sex-dependent manner. Further investigation is required to confirm these findings and to determine how such findings at birth will translate into childhood anthropometric measures. - Highlights: • We determined relationships between maternal metal levels and cord blood adipokines. • Cord blood leptin levels were higher among female than male infants. • Maternal cadmium was associated with elevated leptin in male, not female infants. • No significant associations were observed between metals and

  14. PIPs in neurological diseases.

    PubMed

    Waugh, Mark G

    2015-08-01

    Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids. PMID:25680866

  15. Key sleep neurologic disorders

    PubMed Central

    St. Louis, Erik K.

    2014-01-01

    Summary Sleep disorders are frequent comorbidities in neurologic patients. This review focuses on clinical aspects and prognosis of 3 neurologic sleep disorders: narcolepsy, restless legs syndrome/Willis-Ekbom disease (RLS/WED), and REM sleep behavior disorder (RBD). Narcolepsy causes pervasive, enduring excessive daytime sleepiness, adversely affecting patients' daily functioning. RLS/WED is characterized by an uncomfortable urge to move the legs before sleep, often evolving toward augmentation and resulting in daylong bothersome symptoms. RBD causes potentially injurious dream enactment behaviors that often signify future evolution of overt synucleinopathy neurodegeneration in as many as 81% of patients. Timely recognition, referral for polysomnography, and longitudinal follow-up of narcolepsy, RLS/WED, and RBD patients are imperatives for neurologists in providing quality comprehensive patient care. PMID:24605270

  16. Cytokine Therapies in Neurological Disease.

    PubMed

    Azodi, Shila; Jacobson, Steven

    2016-07-01

    Cytokines are a heterogeneous group of glycoproteins that coordinate physiological functions. Cytokine deregulation is observed in many neurological diseases. This article reviews current research focused on human clinical trials of cytokine and anticytokine therapies in the treatment of several neurological disease including stroke, neuromuscular diseases, neuroinfectious diseases, demyelinating diseases, and neurobehavioral diseases. This research suggests that cytokine therapy applications may play an important role in offering new strategies for disease modulation and treatment. Further, this research provides insights into the causal link between cytokine deregulation and neurological diseases. PMID:27388288

  17. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  18. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome.

    PubMed

    Zhao, Hongcui; Zhao, Yue; Li, Tianjie; Li, Min; Li, Junsheng; Li, Rong; Liu, Ping; Yu, Yang; Qiao, Jie

    2015-09-01

    Classic polycystic ovary syndrome (PCOS) is a high-risk phenotype accompanied by increased risks of reproductive and metabolic abnormalities; however, the local metabolism characteristics of the ovaries and their effects on germ cell development are unclear. The present study used targeted metabolomics to detect alterations in the intermediate metabolites of follicular fluid from classic PCOS patients, and the results indicated that hyperandrogenism but not obesity induced the changed intermediate metabolites in classic PCOS patients. Regarding the direct contact, we identified mitochondrial function, redox potential, and oxidative stress in cumulus cells which were necessary to support oocyte growth before fertilization, and suggested dysfunction of mitochondria, imbalanced redox potential, and increased oxidative stress in cumulus cells of classic PCOS patients. Follicular fluid intermediary metabolic profiles provide signatures of classic PCOS ovary local metabolism and establish a close link with mitochondria dysfunction of cumulus cells, highlighting the role of metabolic signal and mitochondrial cross talk involved in the pathogenesis of classic PCOS. PMID:26057937

  19. [Child neurology and multimedia technology].

    PubMed

    Nihei, Kenji

    2002-01-01

    Methods of computer technology (intelligent technology, IT), such as multimedia and virtual reality, are utilized more and more in all medical fields including child neurology. Advances in the digitalization of individual medical data and multi-media technology have enabled patients to be able to obtain their own medical data by small media and to receive medical treatment at any hospitals even if they are located in distance place. Changes from a doctor oriented to patients oriented medicine is anticipated. It is necessary to store medical data from birth to adulthood and to accumulate epidemiological data of rare diseases such as metabolic diseases or degenerative diseases especially in child neurology, which highly require tele medicine and telecare at home. Moreover, IT may improve in the QOL of patients with neurological diseases and of their families. Cooperation of medicine and engineering is therefore necessary. Results of our experiments on telemedicine, telecare and virtual reality are described. PMID:11808201

  20. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus

  1. Neurologic manifestations of Kanzaki disease.

    PubMed

    Umehara, F; Matsumuro, K; Kurono, Y; Arimura, K; Osame, M; Kanzaki, T

    2004-05-11

    We describe the neurologic findings in a patient with alpha-N-acetylgalactosaminidase deficiency (Kanzaki disease). Clinical and electrophysiologic studies revealed sensory-motor polyneuropathy, and sural nerve pathology showed decreased density of myelinated fibers with axonal degeneration. The patient had mildly impaired intellectual function with abnormal brain MRI and sensory-neuronal hearing impairment with repeated episodes of vertigo attacks. These findings suggest that Kanzaki disease may develop neurologic complications in the CNS and peripheral nervous system. PMID:15136691

  2. Sports neurology topics in neurologic practice

    PubMed Central

    Conidi, Francis X.; Drogan, Oksana; Giza, Christopher C.; Kutcher, Jeffery S.; Alessi, Anthony G.; Crutchfield, Kevin E.

    2014-01-01

    Summary We sought to assess neurologists' interest in sports neurology and learn about their experience in treating sports-related neurologic conditions. A survey was sent to a random sample of American Academy of Neurology members. A majority of members (77%) see at least some patients with sports-related neurologic issues. Concussion is the most common sports-related condition neurologists treat. More than half of survey participants (63%) did not receive any formal or informal training in sports neurology. At least two-thirds of respondents think it is very important to address the following issues: developing evidence-based return-to-play guidelines, identifying risk factors for long-term cognitive-behavioral sequelae, and developing objective diagnostic criteria for concussion. Our findings provide an up-to-date view of the subspecialty of sports neurology and identify areas for future research. PMID:24790800

  3. Paraneoplastic neurological syndromes.

    PubMed

    Honnorat, Jérôme; Antoine, Jean-Christophe

    2007-01-01

    Paraneoplastic neurological syndromes (PNS) can be defined as remote effects of cancer that are not caused by the tumor and its metastasis, or by infection, ischemia or metabolic disruptions. PNS are rare, affecting less than 1/10,000 patients with cancer. Only the Lambert-Eaton myasthenic syndrome is relatively frequent, occurring in about 1% of patients with small cell lung cancer. PNS can affect any part of the central and peripheral nervous system, the neuromuscular junction, and muscle. They can be isolated or occur in association. In most patients, the neurological disorder develops before the cancer becomes clinically overt and the patient is referred to the neurologist who has the charge of identifying a neurological disorder as paraneoplastic. PNS are usually severely disabling. The most common PNS are Lambert-Eaton myasthenic syndrome (LEMS), subacute cerebellar ataxia, limbic encephalitis (LE), opsoclonus-myoclonus (OM), retinopathies (cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR), Stiff-Person syndrome (SPS), chronic gastrointestinal pseudoobstruction (CGP), sensory neuronopathy (SSN), encephalomyelitis (EM) and dermatomyositis. PNS are caused by autoimmune processes triggered by the cancer and directed against antigens common to both the cancer and the nervous system, designated as onconeural antigens. Due to their high specificity (> 90%), the best way to diagnose a neurological disorder as paraneoplastic is to identify one of the well-characterized anti-onconeural protein antibodies in the patient's serum. In addition, as these antibodies are associated with a restricted range of cancers, they can guide the search for the underlying tumor at a stage when it is frequently not clinically overt. This is a critical point as, to date, the best way to stabilize PNS is to treat the cancer as soon as possible. Unfortunately, about one-third of patients do not have detectable antibodies and 5% to 10% have an atypical antibody

  4. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health.

    PubMed

    Landete, J M

    2012-01-01

    Polyphenols are important constituents of food products of plant origin. Fruits, vegetables, and beverages are the main sources of phenolic compounds in the human diet. These compounds are directly related to sensory characteristics of foods such as flavor, astringency and color. Polyphenols are extensively metabolized both in tissues and by the colonic microbiota. Normally, the circulating polyphenols are glucuronidated and/or sulphated and no free aglycones are found in plasma. The presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, and vasodilating properties. The health effects of polyphenols depend on the amount consumed and their bioavailability. Moreover, polyphenols are able to kill or inhibit the growth of microorganisms such as bacteria, fungi, or protozoans. Some dietary polyphenols may have significant effects on the colonic flora providing a type of prebiotic effect. The anti-nutrient properties of polyphenols are also discussed in this paper. The antioxidant, anti-inflammatory, vasodilating, and prebiotic properties of polyphenols make them potential functional foods. PMID:22747081

  5. Functional characterization of Yersinia pestis aerobic glycerol metabolism.

    PubMed

    Willias, Stephan P; Chauhan, Sadhana; Motin, Vladimir L

    2014-11-01

    Yersinia pestis biovar Orientalis isolates have lost the capacity to ferment glycerol. Herein we provide experimental validation that a 93 bp in-frame deletion within the glpD gene encoding the glycerol-3-phosphate dehydrogenase present in all biovar Orientalis strains is sufficient to disrupt aerobic glycerol fermentation. Furthermore, the inability to ferment glycerol is often insured by a variety of additional mutations within the glpFKX operon which prevents glycerol internalization and conversion to glycerol-3-phosphate. The physiological impact of functional glpFKX in the presence of dysfunctional glpD was assessed. Results demonstrate no change in growth kinetics at 26 °C and 37 °C. Mutants deficient in glpD displayed decreased intracellular accumulation of glycerol-3-phosphate, a characterized inhibitor of cAMP receptor protein (CRP) activation. Since CRP is rigorously involved in global regulation Y. pestis virulence, we tested a possible influence of a single glpD mutation on virulence. Nonetheless, subcutaneous and intranasal murine challenge was not impacted by glycerol metabolism. As quantified by crystal violet assay, biofilm formation of the glpD-deficient KIM6+ mutant was mildly repressed; whereas, chromosomal restoration of glpD in CO92 resulted in a significant increase in biofilm formation. PMID:25220241

  6. β-cell function is associated with metabolic syndrome in Mexican subjects

    PubMed Central

    Baez-Duarte, Blanca G; Sánchez-Guillén, María Del Carmen; Pérez-Fuentes, Ricardo; Zamora-Ginez, Irma; Leon-Chavez, Bertha Alicia; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio

    2010-01-01

    Aims The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS) or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects. Material and methods This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study) with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1) control group of individuals at metabolic balance without metabolic syndrome and (2) group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out. Results Average age of the subjects in the control group (n = 254) was 35.7 ± 11.5 years and 42.0 ± 10.7 years for subjects in the metabolic syndrome group (n = 190). Subjects at metabolic balance without metabolic syndrome showed decreased IS, increased insulin resistance (IR), and altered β-cell function. Individuals with metabolic syndrome showed a high prevalence (P ≤ 0.05) of family history of type 2 diabetes (T2D). This group also showed a significant metabolic imbalance with glucose and insulin levels and lipid profile outside the ranges considered safe to prevent the development of cardiovascular disease and T2D. Conclusion The main finding in this study was the detection of altered β-cell function, decreased IS, an increased IR in subjects at metabolic balance, and the progressive deterioration of β-cell function and IS in subjects with metabolic syndrome as the number of features of metabolic syndrome increases

  7. Myocardial Function and Lipid Metabolism in the Chronic Alcoholic Animal

    PubMed Central

    Regan, Timothy J.; Khan, Mohammad I.; Ettinger, Philip O.; Haider, Bunyad; Lyons, Michael M.; Oldewurtel, Henry A.; Weber, Marilyn

    1974-01-01

    In view of the variables that obscure the pathogenesis of cardiomyopathy, a study was undertaken in mongrel dogs fed ethanol as 36% of calories for up to 22 mo. Both the experimental and control groups maintained body weight, hematocrit, plasma vitamin, and protein levels. Left ventricular function was evaluated in the intact anesthetized dog using indicator dilution for end-diastolic and stroke volume determinations. During increased afterload with angiotensin, the ethanol group exhibited a larger rise of end-diastolic pressure (P<0.01), whereas end-diastolic and stroke volume responses were significantly less than in controls. Preload increments with saline elicited a significantly higher end-diastolic pressure rise in the ethanol group (P<0.01). No hypertrophy, inflammation, or fibrosis was present and it was postulated that the enhanced diastolic stiffness was related to accumulation of Alcian Blue-positive material in the ventricular interstitium. To evaluate myocardial lipid metabolism, [1-14C]oleic acid was infused systemically. Plasma specific activity and myocardial lipid uptake were similar in both groups. There was a significantly increased incorporation of label into triglyceride, associated with a reduced 14CO2 production, considered the basis for a twofold increment of triglyceride content. In addition, diminished incorporation of [14C]oleic acid into phospholipid was observed accompanied by morphologic abnormalities of cardiac cell membranes. Potassium loss and sodium gain, like the lipid alteration, was more prominent in the subendocardium. Thus, chronic ethanol ingestion in this animal model is associated with abnormalities of ventricular function without evident malnutrition, analogous to the preclinical malfunction described in the human alcoholic. Images PMID:4368946

  8. Recovery of Neurological Function Despite Immediate Sleep Disruption Following Diffuse Brain Injury in the Mouse: Clinical Relevance to Medically Untreated Concussion

    PubMed Central

    Rowe, Rachel K.; Harrison, Jordan L.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Study Objective: We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. Design: Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either intentional sleep disruption (minimally stressful gentle handling) or no sleep disruption for 6 h following injury. Following disruption, serum corticosterone levels (enzyme-linked immunosorbent assay) and posttraumatic sleep (noninvasive piezoelectric sleep cages) were measured. For 1-7 days postinjury, sensorimotor outcome was assessed by Rotarod and a modified Neurological Severity Score (NSS). Cognitive function was measured using Novel Object Recognition (NOR) and Morris water maze (MWM) in the first week postinjury. Setting: Neurotrauma research laboratory. Measurements and Results: Disrupting posttraumatic sleep for 6 h did not affect serum corticosterone levels or functional outcome. In the hour following the first dark onset, sleep-disrupted mice exhibited a significant increase in sleep; however, this increase was not sustained and there was no rebound of lost sleep. Regardless of sleep disruption, mice showed a time-dependent improvement in Rotarod performance, with brain-injured mice having significantly shorter latencies on day 7 compared to sham. Further, brain-injured mice, regardless of sleep disruption, had significantly higher NSS scores postinjury compared with sham. Cognitive behavioral testing showed no group differences among any treatment group measured by MWM and NOR. Conclusion: Short-duration disruption of posttraumatic sleep did not affect functional outcome, measured by motor and cognitive performance. These data raise uncertainty about posttraumatic sleep as a mechanism of recovery from diffuse brain injury. Citation: Rowe RK; Harrison JL; O'Hara BF; Lifshitz J. Recovery of neurological

  9. Neurological Symptoms of Hypophosphatasia.

    PubMed

    Taketani, Takeshi

    2015-01-01

    Hypophosphatasia (HPP) is a bone metabolic disorder caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL), which encodes tissue-nonspecific alkaline phosphatase (TNAP). This disease is characterized by disrupted bone and tooth mineralization, and reduced serum AP activity. Along with bone and tooth symptoms, many neurological symptoms, seizure, encephalopathy, intracranial hypertension, mental retardation, deafness, and growth hormone deficiency (GHD), are frequently found in HPP patients. Seizure occurs in severe HPP types soon after birth, and responds to pyridoxine, but is an indicator of lethal prognosis. Encephalopathy rarely presents in severe HPP types, but has severe sequelae. Intracranial hypertension complicated in mild HPP types develops after the age of 1 year and sometimes need neurosurgical intervention. Mental retardation, deafness and GHD are more frequently found in Japanese HPP patients. Mental retardation occurs in all HPP types. Deafness in perinatal lethal type is both conductive and sensorineural. GHD develops in all but perinatal lethal type and the diagnosis tends to delay. The pathogenesis of these neural features of HPP might be due to impairment of both vitamin B6 metabolism and central nervous system development by ALPL mutations. PMID:26219717

  10. Neurologic Diseases in Special Care Patients.

    PubMed

    Robbins, Miriam R

    2016-07-01

    Neurologic diseases can have a major impact on functional capacity. Patients with neurologic disease require individualized management considerations depending on the extent of impairment and impact on functional capacity. This article reviews 4 of the more common and significant neurologic diseases (Alzheimer disease, cerebrovascular accident/stroke, multiple sclerosis, and Parkinson disease) that are likely to present to a dental office and provides suggestions on the dental management of patients with these conditions. PMID:27264859

  11. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    PubMed

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  12. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  13. Neurology and neurologic practice in China

    PubMed Central

    2011-01-01

    In the wake of dramatic economic success during the past 2 decades, the specialized field of neurology has undergone a significant transformation in China. With an increase in life expectancy, the problems of aging and cognition have grown. Lifestyle alterations have been associated with an epidemiologic transition both in the incidence and etiology of stroke. These changes, together with an array of social issues and institution of health care reform, are creating challenges for practicing neurologists throughout China. Notable problems include overcrowded, decrepit facilities, overloaded physician schedules, deteriorating physician-patient relationships, and an insufficient infrastructure to accommodate patients who need specialized neurologic care. Conversely, with the creation of large and sophisticated neurology centers in many cities across the country, tremendous opportunities exist. Developments in neurologic subspecialties enable delivery of high-quality care. Clinical and translational research based on large patient populations as well as highly sophisticated technologies are emerging in many neurologic centers and pharmaceutical companies. Child neurology and neurorehabilitation will be fast-developing subdisciplines. Given China's extensive population, the growth and progress of its neurology complex, and its ever-improving quality control, it is reasonable to anticipate that Chinese neurologists will contribute notably to unraveling the pathogenic factors causing neurologic diseases and to providing new therapeutic solutions. PMID:22123780

  14. Fly model causes neurological rethink

    PubMed Central

    Sadanandappa, Madhumala K

    2013-01-01

    A Drosophila model for a neurological disorder called type 2B Charcot-Marie-Tooth disease reveals that it has its origins in a partial loss of function, rather than a gain of function, which points to the need for a new therapeutic approach. PMID:24336781

  15. DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice

    PubMed Central

    Sosunov, Sergey A.; Williams, Jill J.; Zirpoli, Hylde; Vlasakov, Iliyan; Deckelbaum, Richard J.; Ten, Vadim S.

    2016-01-01

    Background and Purpose Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. Methods 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Results Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Conclusions Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA. PMID:27513579

  16. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages. PMID:27107678

  17. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  18. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  19. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis.

    PubMed

    Sadeghian, Mona; Mastrolia, Vincenzo; Rezaei Haddad, Ali; Mosley, Angelina; Mullali, Gizem; Schiza, Dimitra; Sajic, Marija; Hargreaves, Iain; Heales, Simon; Duchen, Michael R; Smith, Kenneth J

    2016-01-01

    Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiple sclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS. PMID:27624721

  20. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing.

    PubMed

    Chandel, Navdeep S; Jasper, Heinrich; Ho, Theodore T; Passegué, Emmanuelle

    2016-08-01

    Many tissues and organ systems in metazoans have the intrinsic capacity to regenerate, which is driven and maintained largely by tissue-resident somatic stem cell populations. Ageing is accompanied by a deregulation of stem cell function and a decline in regenerative capacity, often resulting in degenerative diseases. The identification of strategies to maintain stem cell function and regulation is therefore a promising avenue to allay a wide range of age-related diseases. Studies in various organisms have revealed a central role for metabolic pathways in the regulation of stem cell function. Ageing is associated with extensive metabolic changes, and interventions that influence cellular metabolism have long been recognized as robust lifespan-extending measures. In this Review, we discuss recent advances in our understanding of the metabolic control of stem cell function, and how stem cell metabolism relates to homeostasis and ageing. PMID:27428307

  1. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  2. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  3. Mesenchymal Stem Cells as Cellular Vectors for Pediatric Neurological Disorders

    PubMed Central

    Phinney, Donald G.; Isakova, Iryna A.

    2014-01-01

    Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders. PMID:24858930

  4. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  5. Effect of pretreatment with a tyrosine kinase inhibitor (PP1) on brain oedema and neurological function in an automated cortical cryoinjury model in mice.

    PubMed

    Turel, Mazda K; Moorthy, Ranjith K; Sam, Gift Ajay; Samuel, Prasanna; Murthy, Muthukumar; Babu, K Srinivas; Rajshekhar, Vedantam

    2013-04-01

    Cerebral oedema is a significant cause of morbidity in neurosurgical practice. To our knowledge, there is no ideal drug for prevention or treatment of brain oedema. Based on the current understanding of the pathogenesis of brain oedema, tyrosine kinase inhibitors could have a role in reducing brain oedema but preclinical studies are needed to assess their effectiveness. We evaluated the role of pretreatment with 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1), an Src tyrosine kinase inhibitor, in reducing cerebral oedema and preserving neurological function measured 24hours after an automated cortical cryoinjury in mice. Sixteen adult male Swiss albino mice were subjected to an automated cortical cryoinjury using a dry ice-acetone mixture. The experimental group (n=8) received an intraperitoneal injection of PP1 dissolved in dimethyl sulfoxide (DMSO) at a dose of 1.5mg/kg body weight 45minutes prior to the injury. The control group (n=8) received an intraperitoneal injection of DMSO alone. A further eight mice underwent sham injury. The animals were evaluated using the neurological severity score (NSS) at 24hours post-injury, after which the animals were sacrificed and their brains removed, weighed, dehydrated for 48hours and weighed again. The percentage of brain water content was calculated as: {[(wet weight - dry weight)/wet weight] × 100}. The mean (standard deviation, SD) NSS was 11.7 (1.8) in the experimental group and 10.5 (1.3) in the control group (p=0.15). The mean (SD) percentage water content of the brain was 78.6% (1.3%) in the experimental group and 77.2% (1.1%) in the control group (p=0.03). The percentage water content in the experimental and control groups were both significantly higher than in the sham injury group. The immediate pre-injury administration of PP1 neither reduced cerebral oedema (water content %) nor preserved neurological function (NSS) when compared to a control group in this model of cortical cryoinjury

  6. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    PubMed Central

    Nägele, Thomas; Fürtauer, Lisa; Nagler, Matthias; Weiszmann, Jakob; Weckwerth, Wolfram

    2016-01-01

    The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®. PMID:27014700

  7. The neurological basis of occupation.

    PubMed

    Gutman, Sharon A; Schindler, Victoria P

    2007-01-01

    The purpose of the present paper was to survey the literature about the neurological basis of human activity and its relationship to occupation and health. Activities related to neurological function were organized into three categories: those that activate the brain's reward system; those that promote the relaxation response; and those that preserve cognitive function into old age. The results from the literature review correlating neurological evidence and activities showed that purposeful and meaningful activities could counter the effects of stress-related diseases and reduce the risk for dementia. Specifically, it was found that music, drawing, meditation, reading, arts and crafts, and home repairs, for example, can stimulate the neurogical system and enhance health and well-being, Prospective research studies are needed to examine the effects of purposeful activities on reducing stress and slowing the rate of cognitive decline. PMID:17623380

  8. NEUROLOGICAL ASPECTS OF HUMAN GLYCOSYLATION DISORDERS

    PubMed Central

    Freeze, Hudson H.; Eklund, Erik A.; Ng, Bobby G.; Patterson, Marc C.

    2016-01-01

    This review will present principles of glycosylation, describe the relevant glycosylation pathways and their related disorders, and highlight some of the neurological aspects and issues that continue to challenge researchers. Over 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delay/intellectual disability, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Between these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of mis-glycosylated products afflicting a myriad of processes including cell signaling, cell-cell interaction and cell migration. This vast complexity in glycan composition and function, along with limited analytic tools has impeded the identification of key glycosylated molecules that cause pathologies, and to date few critical target proteins have been pinpointed. PMID:25840006

  9. Neurologic complications of infective endocarditis.

    PubMed

    Lerner, P I

    1985-03-01

    Neurologic complications continue to occur in approximately 30 per cent of all patients with infective endocarditis and represent a major factor associated with an increased mortality rate in that disease. Of these complications, cerebral embolism is the most common and the most important, occurring in as many as 30 per cent of all patients, most of whom ultimately die. Emboli that are infected also account for all the other complications (mycotic aneurysm, meningitis or meningoencephalitis, brain abscess) that may develop. Emboli are more common in patients with mitral valve infection and in those infected with more virulent organisms. Mycotic aneurysms (often preceded by an embolic event) occur more frequently and earlier in the course of acute endocarditis, rather than later, which is more common in the course of subacute disease. The management of a cerebral mycotic aneurysm depends on the presence or absence of hemorrhage, its anatomic location and the clinical course. Healing can occur during the course of effective antimicrobial therapy and thus will preclude the need for automatic surgery in all angiographically demonstrated aneurysms. The indication for surgical intervention must be evaluated on an individual basis. Meningitis is usually purulent when associated with virulent organisms, but the CSF may present an aseptic formula when associated with subarachnoid hemorrhage or multiple microscopic embolic lesions, infected or otherwise. Macroscopic brain abscesses are rare, but multiple microscopic abscesses are not uncommon in patients with acute endocarditis due to virulent organisms. Seizures are not uncommon in patients with infective endocarditis. Focal seizures are more commonly associated with acute emboli, whereas generalized seizures are more commonly associated with systemic metabolic factors. Penicillin neurotoxicity should be considered in seizure patients with compromised renal function who are receiving high doses of penicillin. The CSF tends

  10. Medical marijuana in neurology.

    PubMed

    Benbadis, Selim R; Sanchez-Ramos, Juan; Bozorg, Ali; Giarratano, Melissa; Kalidas, Kavita; Katzin, Lara; Robertson, Derrick; Vu, Tuan; Smith, Amanda; Zesiewicz, Theresa

    2014-12-01

    Constituents of the Cannabis plant, cannabinoids, may be of therapeutic value in neurologic diseases. The most abundant cannabinoids are Δ(9)-tetrahydrocannabinol, which possesses psychoactive properties, and cannabidiol, which has no intrinsic psychoactive effects, but exhibits neuroprotective properties in preclinical studies. A small number of high-quality clinical trials support the safety and efficacy of cannabinoids for treatment of spasticity of multiple sclerosis, pain refractory to opioids, glaucoma, nausea and vomiting. Lower level clinical evidence indicates that cannabinoids may be useful for dystonia, tics, tremors, epilepsy, migraine and weight loss. Data are also limited in regards to adverse events and safety. Common nonspecific adverse events are similar to those of other CNS 'depressants' and include weakness, mood changes and dizziness. Cannabinoids can have cardiovascular adverse events and, when smoked chronically, may affect pulmonary function. Fatalities are rare even with recreational use. There is a concern about psychological dependence, but physical dependence is less well documented. Cannabis preparations may presently offer an option for compassionate use in severe neurologic diseases, but at this point, only when standard-of-care therapy is ineffective. As more high-quality clinical data are gathered, the therapeutic application of cannabinoids will likely expand. PMID:25427150

  11. Metabolic fate and function of dietary glutamate in the gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  12. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function.

    PubMed

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M; Patel, Vickas V; Pei, Liming

    2015-04-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  13. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  14. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  15. Mechanisms Linking Energy Substrate Metabolism to the Function of the Heart

    PubMed Central

    Carley, Andrew N.; Taegtmeyer, Heinrich; Lewandowski, E. Douglas

    2015-01-01

    Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus. PMID:24526677

  16. Detecting Functional Groups of Arabidopsis Mutants by Metabolic Profiling and Evaluation of Pleiotropic Responses

    PubMed Central

    Hofmann, Jörg; Börnke, Frederik; Schmiedl, Alfred; Kleine, Tatjana; Sonnewald, Uwe

    2011-01-01

    Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydrates, phosphorylated intermediates, carboxylates, free amino acids, major antioxidants, and plastidic pigments were evaluated. Our key observations are that by multivariate statistical analysis each mutant can be separated by a unique metabolic signature. Closely related mutants come close. Thus metabolic profiles of sugar mutants are different but more similar than those of photosynthesis mutants. All mutants show pleiotropic responses mirrored in their metabolic status. These pleiotropic responses are typical and can be used for separating and grouping of the mutants. Our findings show that metabolite fingerprints can be taken to classify mutants and hence may be used to sort genes into functional groups. PMID:22639613

  17. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  18. The brown fat secretome: metabolic functions beyond thermogenesis

    PubMed Central

    Wang, Guo-Xiao; Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein 1 (UCP1)-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development. PMID:25843910

  19. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype.

    PubMed

    Raja, Vaishnavi; Greenberg, Miriam L

    2014-04-01

    The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism. PMID:24445246

  20. Neuroimaging distinction between neurological and psychiatric disorders†

    PubMed Central

    Crossley, Nicolas A.; Scott, Jessica; Ellison-Wright, Ian; Mechelli, Andrea

    2015-01-01

    Background It is unclear to what extent the traditional distinction between neurological and psychiatric disorders reflects biological differences. Aims To examine neuroimaging evidence for the distinction between neurological and psychiatric disorders. Method We performed an activation likelihood estimation meta-analysis on voxel-based morphometry studies reporting decreased grey matter in 14 neurological and 10 psychiatric disorders, and compared the regional and network-level alterations for these two classes of disease. In addition, we estimated neuroanatomical heterogeneity within and between the two classes. Results Basal ganglia, insula, sensorimotor and temporal cortex showed greater impairment in neurological disorders; whereas cingulate, medial frontal, superior frontal and occipital cortex showed greater impairment in psychiatric disorders. The two classes of disorders affected distinct functional networks. Similarity within classes was higher than between classes; furthermore, similarity within class was higher for neurological than psychiatric disorders. Conclusions From a neuroimaging perspective, neurological and psychiatric disorders represent two distinct classes of disorders. PMID:26045351

  1. Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function.

    PubMed

    Blasius, Amanda L; Brandl, Katharina; Crozat, Karine; Xia, Yu; Khovananth, Kevin; Krebs, Philippe; Smart, Nora G; Zampolli, Antonella; Ruggeri, Zaverio M; Beutler, Bruce A

    2009-02-24

    The classical recessive coat color mutation misty (m) arose spontaneously on the DBA/J background and causes generalized hypopigmentation and localized white-spotting in mice, with a lack of pigment on the belly, tail tip, and paws. Here we describe moonlight (mnlt), a second hypopigmentation and white-spotting mutation identified on the C57BL/6J background, which yields a phenotypic copy of m/m coat color traits. We demonstrate that the 2 mutations are allelic. m/m and mnlt/mnlt phenotypes both result from mutations that truncate the dedicator of cytokinesis 7 protein (DOCK7), a widely expressed Rho family guanine nucleotide exchange factor. Although Dock7 is transcribed at high levels in the developing brain and has been implicated in both axon development and myelination by in vitro studies, we find no requirement for DOCK7 in neurobehavioral function in vivo. However, DOCK7 has non-redundant role(s) related to the distribution and function of dermal and follicular melanocytes. PMID:19202056

  2. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke.

    PubMed

    Lee, Ji Yong; Kim, Eiru; Choi, Seong-Mi; Kim, Dong-Wook; Kim, Kwang Pyo; Lee, Insuk; Kim, Han-Soo

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) was reported to improve functional outcomes in a rat model of ischemic stroke, and subsequent studies suggest that MSC-derived microvesicles (MVs) can replace the beneficial effects of MSCs. Here, we evaluated three different MSC-derived MVs, including MVs from untreated MSCs (MSC-MVs), MVs from MSCs treated with normal rat brain extract (NBE-MSC-MVs), and MVs from MSCs treated with stroke-injured rat brain extract (SBE-MSC-MVs), and tested their effects on ischemic brain injury induced by permanent middle cerebral artery occlusion (pMCAO) in rats. NBE-MSC-MVs and SBE-MSC-MVs had significantly greater efficacy than MSC-MVs for ameliorating ischemic brain injury with improved functional recovery. We found similar profiles of key signalling proteins in NBE-MSC-MVs and SBE-MSC-MVs, which account for their similar therapeutic efficacies. Immunohistochemical analyses suggest that brain-extract-treated MSC-MVs reduce inflammation, enhance angiogenesis, and increase endogenous neurogenesis in the rat brain. We performed mass spectrometry proteomic analyses and found that the total proteomes of brain-extract-treated MSC-MVs are highly enriched for known vesicular proteins. Notably, MSC-MV proteins upregulated by brain extracts tend to be modular for tissue repair pathways. We suggest that MSC-MV proteins stimulated by the brain microenvironment are paracrine effectors that enhance MSC therapy for stroke injury. PMID:27609711

  3. Microvesicles from brain-extract—treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke

    PubMed Central

    Lee, Ji Yong; Kim, Eiru; Choi, Seong-Mi; Kim, Dong-Wook; Kim, Kwang Pyo; Lee, Insuk; Kim, Han-Soo

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) was reported to improve functional outcomes in a rat model of ischemic stroke, and subsequent studies suggest that MSC-derived microvesicles (MVs) can replace the beneficial effects of MSCs. Here, we evaluated three different MSC-derived MVs, including MVs from untreated MSCs (MSC-MVs), MVs from MSCs treated with normal rat brain extract (NBE-MSC-MVs), and MVs from MSCs treated with stroke-injured rat brain extract (SBE-MSC-MVs), and tested their effects on ischemic brain injury induced by permanent middle cerebral artery occlusion (pMCAO) in rats. NBE-MSC-MVs and SBE-MSC-MVs had significantly greater efficacy than MSC-MVs for ameliorating ischemic brain injury with improved functional recovery. We found similar profiles of key signalling proteins in NBE-MSC-MVs and SBE-MSC-MVs, which account for their similar therapeutic efficacies. Immunohistochemical analyses suggest that brain-extract—treated MSC-MVs reduce inflammation, enhance angiogenesis, and increase endogenous neurogenesis in the rat brain. We performed mass spectrometry proteomic analyses and found that the total proteomes of brain-extract—treated MSC-MVs are highly enriched for known vesicular proteins. Notably, MSC-MV proteins upregulated by brain extracts tend to be modular for tissue repair pathways. We suggest that MSC-MV proteins stimulated by the brain microenvironment are paracrine effectors that enhance MSC therapy for stroke injury. PMID:27609711

  4. Ketogenic diets, mitochondria, and neurological diseases

    PubMed Central

    Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.

    2014-01-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  5. Ketogenic diets, mitochondria, and neurological diseases.

    PubMed

    Gano, Lindsey B; Patel, Manisha; Rho, Jong M

    2014-11-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate "classic KD", as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  6. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  7. Genetic disorders of thyroid metabolism and brain development

    PubMed Central

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  8. Imaging vertebrate digestive function and lipid metabolism in vivo

    PubMed Central

    Otis, Jessica P.; Farber, Steven A.

    2012-01-01

    Challenges in imaging lipid-processing events in live, intact vertebrate models have historically led to reliance on cultured cell studies, thus hampering our understanding of lipid metabolism and gastrointestinal physiology. Fluorescently-labeled molecules, such as BODIPY-labeled lipids, can reveal lipid-processing events in live zebrafish (Danio rerio) and has expanded our understanding of digestive physiology. This review will cover recent advances from the past two to three years in the use of fluorescence-based imaging techniques in live zebrafish to characterize gastrointestinal physiology in health and disease and to conduct small molecule screens to discover therapeutic compounds. PMID:24187571

  9. Comparison of Neurological Function in Males and Females from Two Substrains of C57BL/6 Mice

    PubMed Central

    Ashworth, Amy; Bardgett, Mark E.; Fowler, Jocelyn; Garber, Helen; Griffith, Molly; Curran, Christine Perdan

    2016-01-01

    The C57BL/6 (B6) mouse is the background strain most frequently used for genetically-modified mice. Previous studies have found significant behavioral and genetic differences between the B6J (The Jackson Laboratory) and B6N substrains (National Institutes of Health); however, most studies employed only male mice. We performed a comprehensive battery of motor function and learning and memory tests on male and female mice from both substrains. The B6N male mice had greater improvement in the rotarod test. In contrast, B6J female mice had longer latencies to falling from the rotarod. In the Morris water maze (MWM), B6J males had significantly shorter latencies to finding the hidden platform. However, B6N females had significantly shorter path lengths in the reversal and shifted-reduced phases. In open field locomotor activity, B6J males had higher activity levels, whereas B6N females took longer to habituate. In the fear conditioning test, B6N males had a significantly longer time freezing in the new context compared with B6J males, but no significant differences were found in contextual or cued tests. In summary, our findings demonstrate the importance of testing both males and females in neurobehavioral studies. Both factors (sex and substrain) must be taken into account when designing developmental neurotoxicology studies. PMID:27081652

  10. ECT IN NEUROLOGICAL COUNDITIONS

    PubMed Central

    Girish, K.; Gangadhar, B.N.; Janakiramaiah, N.

    2002-01-01

    It is a myth that electroconvulsive therapy (ECT) produces greater side effects and worsens the neurological condition when used in neurologically ill patients. With the advancement and sophistication in ECT practice standards and modification procedures, it can be safely administered either to treat selected neurological conditions or the co-morbid psychiatric illnesses without additional risks. However ECT should be administered only after thorough evaluation of risks and benefits in such individuals. PMID:21206577

  11. [Sleep and neurological diseases].

    PubMed

    Mayer, G

    2016-06-01

    Knowledge of the physiology of sleep-wake regulation can contribute to an understanding of the pathophysiology and symptoms of neurological diseases and is helpful for initiating specific therapies for sleep-wake cycle stabilization. Based on historically important observations on the close relationship between sleep and neurological diseases, new insights and developments in selected neurological entities are presented in this review article. PMID:27167889

  12. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  13. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties

    PubMed Central

    Klancic, Teja; Woodward, Lavinia; Hofmann, Susanna M.; Fisher, Edward A.

    2016-01-01

    Background High density lipoproteins (HDLs) are thought to be atheroprotective and to reduce the risk of cardiovascular disease (CVD). Besides their antioxidant, antithrombotic, anti-inflammatory, anti-apoptotic properties in the vasculature, HDLs also improve glucose metabolism in skeletal muscle. Scope of the review Herein, we review the functional role of HDLs to improve metabolic disorders, especially those involving insulin resistance and to induce regression of CVD with a particular focus on current pharmacological treatment options as well as lifestyle interventions, particularly exercise. Major conclusions Functional properties of HDLs continue to be considered important mediators to reverse metabolic dysfunction and to regress atherosclerotic cardiovascular disease. Lifestyle changes are often recommended to reduce the risk of CVD, with exercise being one of the most important of these. Understanding how exercise improves HDL function will likely lead to new approaches to battle the expanding burden of obesity and the metabolic syndrome. PMID:27110484

  14. The Preoperative Neurological Evaluation

    PubMed Central

    Probasco, John; Sahin, Bogachan; Tran, Tung; Chung, Tae Hwan; Rosenthal, Liana Shapiro; Mari, Zoltan; Levy, Michael

    2013-01-01

    Neurological diseases are prevalent in the general population, and the neurohospitalist has an important role to play in the preoperative planning for patients with and at risk for developing neurological disease. The neurohospitalist can provide patients and their families as well as anesthesiologists, surgeons, hospitalists, and other providers guidance in particular to the patient’s neurological disease and those he or she is at risk for. Here we present considerations and guidance for the neurohospitalist providing preoperative consultation for the neurological patient with or at risk of disturbances of consciousness, cerebrovascular and carotid disease, epilepsy, neuromuscular disease, and Parkinson disease. PMID:24198903

  15. APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury.

    PubMed

    Stetler, R Anne; Gao, Yanqin; Leak, Rehana K; Weng, Zhongfang; Shi, Yejie; Zhang, Lili; Pu, Hongjian; Zhang, Feng; Hu, Xiaoming; Hassan, Sulaiman; Ferguson, Carolyn; Homanics, Gregg E; Cao, Guodong; Bennett, Michael V L; Chen, Jun

    2016-06-21

    A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury. PMID:27274063

  16. APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury

    PubMed Central

    Stetler, R. Anne; Gao, Yanqin; Leak, Rehana K.; Weng, Zhongfang; Zhang, Lili; Pu, Hongjian; Zhang, Feng; Hu, Xiaoming; Hassan, Sulaiman; Ferguson, Carolyn; Homanics, Gregg E.; Cao, Guodong; Bennett, Michael V. L.; Chen, Jun

    2016-01-01

    A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury. PMID:27274063

  17. Role of mitochondrial function in cell death and body metabolism.

    PubMed

    Lee, Myung-Shik

    2016-01-01

    Mitochondria are the key players in apoptosis and necrosis. Mitochondrial DNA (mtDNA)-depleted r0 cells were resistant to diverse apoptosis inducers such as TNF-alpha, TNFSF10, staurosporine and p53. Apoptosis resistance was accompanied by the absence of mitochondrial potential loss or cytochrome c translocation. r0 cells were also resistant to necrosis induced by reactive oxygen species (ROS) donors due to upregulation of antioxidant enzymes such as manganese superoxide dismutase. Mitochondria also has a close relationship with autophagy that plays a critical role in the turnover of senescent organelles or dysfunctional proteins and may be included in 'cell death' category. It was demonstrated that autophagy deficiency in insulin target tissues such as skeletal muscle induces mitochondrial stress response, which leads to the induction of FGF21 as a 'mitokine' and affects the whole body metabolism. These results show that mitochondria are not simply the power plants of cells generating ATP, but are closely related to several types of cell death and autophagy. Mitochondria affect various pathophysiological events related to diverse disorders such as cancer, metabolic disorders and aging. PMID:27100503

  18. Microbial community assembly and metabolic function during mammalian corpse decomposition.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations. PMID:26657285

  19. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  20. The Neurologic Manifestations of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Parikh, Sumit

    2010-01-01

    The nervous system contains some of the body's most metabolically demanding cells that are highly dependent on ATP produced via mitochondrial oxidative phosphorylation. Thus, the neurological system is consistently involved in patients with mitochondrial disease. Symptoms differ depending on the part of the nervous system affected. Although almost…

  1. Clinical neurology and executive dysfunction.

    PubMed

    Filley, C M

    2000-01-01

    Executive function is a uniquely human ability that permits an individual to plan, carry out, and monitor a sequence of actions that is intended to accomplish a goal. This crucial neurobehavioral capacity depends on the integrity of the frontal lobes, most importantly the dorsolateral prefrontal cortices and their connections. Executive dysfunction is associated with a wide range of neurologic disorders that affect these regions. In this paper, executive dysfunction is considered from the perspective of behavioral neurology, and the lesion method is employed to illustrate this impairment in a diverse group of disorders. Frontal system damage leading to disturbed executive function is common and clinically significant. Recognition of this syndrome is critical for ensuring the correct diagnosis, accurate prognosis, and appropriate treatment of affected patients. Executive dysfunction also represents an intriguing aspect of brain-behavior relationships and offers important insights into one of the highest cerebral functions. PMID:10879543

  2. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  3. Effect of Meditation on Endothelial Function in Black Americans with Metabolic Syndrome: A Randomized Trial

    PubMed Central

    Vaccarino, Viola; Kondwani, Kofi A.; Kelley, Mary E.; Murrah, Nancy V.; Boyd, Linda; Ahmed, Yusuf; Meng, Yuan X.; Gibbons, Gary H.; Hooper, W. Craig; De Staercke, Christine; Quyyumi, Arshed A.

    2013-01-01

    Objectives Psychological stress may play a role in metabolic syndrome. A consequence of metabolic syndrome is endothelial dysfunction, which is also influenced by psychological stress. We sought to compare the effect of consciously resting meditation (CRM), a sound (mantra)-based meditation, with a control intervention of health education (HE) on endothelial function in the setting of metabolic syndrome. Methods Sixty-eight black Americans with metabolic system risk factors (age 30 to 65 years) were randomized to either CRM (N=33), or to HE (N=35); interventions were matched for frequency and duration of sessions and lasted 12 months. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD%) at baseline, 6 and 12 months. Arterial elasticity, metabolic risk factors, psychosocial and behavioral variables were secondary endpoints. Results Although FMD % improved in the CRM group over 12 months, this increase was not significantly higher than in the HE group (p=0.51 for the interaction between group and time). Non-endothelium dependent dilation and arterial elasticity did not change in either group. Most metabolic syndrome risk factors showed beneficial trends in the CRM group only. A risk factor score counting the number of metabolic syndrome components decreased in the CRM group but not in the control HE group (p=0.049 for the interaction between treatment group and time). Conclusions Among black Americans with metabolic syndrome risk factors, CRM, a sound-based meditation, did not improve endothelial function significantly more than a control intervention of health education. CRM resulted in favorable trends in metabolic syndrome risk factors which were examined as secondary outcomes. PMID:23788695

  4. Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Furtak, Sharon C.; Pitman, Roger K.; Quirk, Gregory J.; Milad, Mohammed R.

    2014-01-01

    Objective Individual differences in ability to control fear have been linked to activation of dorsal anterior cingulate cortex, ventromedial prefrontal cortex, and amygdala. This study investigated whether functional variance in this network can be predicted by resting metabolism in these same regions. Methods Healthy subject volunteers were studied with positron emission tomography using [18F]-deoxyglucose to measure resting brain metabolism. This was followed by a two-day fear conditioning and extinction training paradigm in a functional magnetic resonance imaging scanner to measure brain activation during fear extinction and its recall. Skin conductance response was used to index conditioned responding. Resting metabolism in amygdala, dorsal anterior cingulate cortex and ventromedial prefrontal cortex were used to predict responses during fear extinction and extinction recall. Results During extinction training, resting amygdala metabolism positively predicted ventromedial prefrontal cortex, and negatively predicted dorsal anterior cingulate cortex, activation. In contrast, during extinction recall, resting amygdala metabolism negatively predicted ventromedial prefrontal cortex, and positively predicted dorsal anterior cingulate cortex, activation. Resting dorsal anterior cingulate cortex metabolism predicted fear expression (skin conductance response) during extinction recall. Conclusions Brain metabolism at rest predicts neuronal reactivity and skin conductance changes associated with recall of the fear extinction memory. PMID:22318762

  5. Neurologic presentations of AIDS.

    PubMed

    Singer, Elyse J; Valdes-Sueiras, Miguel; Commins, Deborah; Levine, Andrew

    2010-02-01

    The human immunodeficiency virus (HIV), the cause of AIDS, has infected an estimated 33 million individuals worldwide. HIV is associated with immunodeficiency, neoplasia, and neurologic disease. The continuing evolution of the HIV epidemic has spurred an intense interest in a hitherto neglected area of medicine, neuroinfectious diseases and their consequences. This work has broad applications for the study of central nervous system (CNS) tumors, dementias, neuropathies, and CNS disease in other immunosuppressed individuals. HIV is neuroinvasive (can enter the CNS), neurotrophic (can live in neural tissues), and neurovirulent (causes disease of the nervous system). This article reviews the HIV-associated neurologic syndromes, which can be classified as primary HIV neurologic disease (in which HIV is both necessary and sufficient to cause the illness), secondary or opportunistic neurologic disease (in which HIV interacts with other pathogens, resulting in opportunistic infections and tumors), and treatment-related neurologic disease (such as immune reconstitution inflammatory syndrome). PMID:19932385

  6. Neurology and orthopaedics

    PubMed Central

    Houlden, Henry; Charlton, Paul; Singh, Dishan

    2007-01-01

    Neurology encompasses all aspects of medicine and surgery, but is closer to orthopaedic surgery than many other specialities. Both neurological deficits and bone disorders lead to locomotor system abnormalities, joint complications and limb problems. The main neurological conditions that require the attention of an orthopaedic surgeon are disorders that affect the lower motor neurones. The most common disorders in this group include neuromuscular disorders and traumatic peripheral nerve lesions. Upper motor neurone disorders such as cerebral palsy and stroke are also frequently seen and discussed, as are chronic conditions such as poliomyelitis. The management of these neurological problems is often coordinated in the neurology clinic, and this group, probably more than any other, requires a multidisciplinary team approach. PMID:17308288

  7. [Neurological interpretation of dreams] .

    PubMed

    Pareja, J A; Gil-Nagel, A

    2000-10-01

    Cerebral cortical activity is constant throughout the entire human life, but substantially changes during the different phases of the sleep-wake cycle (wakefulness, non-REM sleep and REM sleep), as well as in relation to available information. In particular, perception of the environment is closely linked to the wake-state, while during sleep perception turns to the internal domain or endogenous cerebral activity. External and internal information are mutually exclusive. During wakefulness a neuronal mechanism allows attention to focus on the environment whereas endogenous cortical activity is ignored. The opposite process is provided during sleep. The function external attention-internal attention is coupled with the two modes of brain function during wakefulness and during sleep, providing two possible cortical status: thinking and dreaming. Several neurological processes may influence the declaration of the three states of being or may modify their orderly oscillation through the sleep-wake cycle. In addition, endogenous information and its perception (dreams) may be modified. Disturbances of dreaming may configurate in different general clinical scenarios: lack of dreaming, excess of dreaming (epic dreaming), paroxysmal dreaming (epileptic), nightmares, violent dreaming, daytime-dreaming (hallucinations), and lucid dreaming. Sensorial deprivation, as well as the emergence of internal perception may be the underlying mechanism of hallucinations. The probable isomorphism between hallucinations and dreaming is postulated, analyzed and discussed. PMID:11143502

  8. L-carnitine--metabolic functions and meaning in humans life.

    PubMed

    Pekala, Jolanta; Patkowska-Sokoła, Bozena; Bodkowski, Robert; Jamroz, Dorota; Nowakowski, Piotr; Lochyński, Stanisław; Librowski, Tadeusz

    2011-09-01

    L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects. PMID:21561431

  9. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance

    PubMed Central

    Dietrich, Christoph G; Götze, Oliver; Geier, Andreas

    2016-01-01

    Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests. PMID:26755861

  10. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    PubMed

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. PMID:26166624

  11. The effect of ozone inhalation on metabolic functioning of vascular endothelium and on ventilatory function

    SciTech Connect

    Gross, K.B.; White, H.J.; Sargent, N.E. )

    1991-06-15

    The primary purpose of this research was to determine the effect of ozone inhalation on pulmonary vascular endothelium. Male Fischer-344 rats were exposed to 0.5 or 0.7 ppm ozone, 20 hr/day for 7 days. Lungs were excised and perfused with Krebs medium containing (14C)serotonin or (14C)hippurylhistidylleucine (HHL). When compared to controls, the animals exposed to the lower ozone concentration showed no statistically significant changes in serotonin removal. In contrast, the higher ozone concentration resulted in a 32% decrease (p less than 0.0001) in serotonin removal, but had no effect on HHL. Rats similarly exposed to 0.7 ppm ozone but allowed to recover for 14 days in clean air showed no decrease in serotonin removal compared to their controls. Animals exposed sequentially to 0.5 ppm ozone for 7 days and then to 0.7 ppm for 7 days showed no alteration in serotonin metabolism, suggesting the development of tolerance initiated by the lower dose. After 7 days exposure to 0.7 ppm ozone, lung ventilatory function measurements revealed small though significant decreases in several parameters. Electron microscopic evaluation of lung capillary endothelium from animals exposed to the 0.7 ppm ozone showed no changes. Positive control animals exposed to greater than 95% oxygen, 20 hr/day for 2 days showed a 23% decrease in serotonin removal (p less than 0.03) and a 12% decrease in HHL removal (p less than 0.017). These studies indicate that inhalation of ozone can induce functional alterations in the lung endothelium, and that this effect occurs at a dosage of ozone that produces minimal ventilatory changes and no observable endothelial ultrastructural changes.

  12. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. PMID:27133021

  13. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally annotated approximately 1

  14. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  15. [Palliative care in neurology].

    PubMed

    Provinciali, Leandro; Tarquini, Daniela; De Falco, Fabrizio A; Carlini, Giulia; Zappia, Mario; Toni, Danilo

    2015-07-01

    Palliative care in neurology is characterized by the need of taking into account some distinguishing features which supplement and often differ from the general palliative approach to cancer or to severe organ failures. Such position is emphasized by a new concept of palliative assistance which is not limited to the "end of life" stage, as it was the traditional one, but is applied along the entire course of progressive, life-limiting, and disabling conditions. There are various reasons accounting for a differentiation of palliative care in neurology and for the development of specific expertise; the long duration of the advanced stages of many neurological diseases and the distinguishing features of some clinical problems (cognitive disorders, psychic disorders, etc.), in addition to the deterioration of some general aspects (nutrition, etc.), make the general criteria adopted for cancer, severe respiratory, hepatic or renal failures and heart failure inadequate. The neurological diseases which could benefit from the development of a specific palliative approach are dementia, cerebrovascular diseases, movement disorders, neuromuscular diseases, severe traumatic brain injury, brain cancers and multiple sclerosis, as well as less frequent conditions. The growing literature on palliative care in neurology provides evidence of the neurological community's increasing interest in taking care of the advanced and terminal stages of nervous system diseases, thus encouraging research, training and updating in such direction. This document aims to underline the specific neurological requirements concerning the palliative assistance. PMID:26228722

  16. Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes

    PubMed Central

    Gu, Wanjun; Wang, Zhengyuan O.; Pollock, David D.

    2008-01-01

    Background Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. Methodology/Principal Findings We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as “evolutionary redesign” because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. Conclusions/Significance The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution. PMID:18493604

  17. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    PubMed Central

    Everts, Bart; Pearce, Edward J.

    2014-01-01

    Dendritic cells (DCs) are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes. PMID:24847328

  18. Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model.

    PubMed

    Hapuarachchi, T; Scholkmann, F; Caldwell, M; Hagmann, C; Kleiser, S; Metz, A J; Pastewski, M; Wolf, M; Tachtsidis, I

    2016-01-01

    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants. PMID:26782202

  19. William Shakespeare's neurology.

    PubMed

    Paciaroni, Maurizio; Bogousslavsky, Julien

    2013-01-01

    Many of Shakespeare's plays contain characters who appear to be afflicted by neurological or psychiatric disorders. Shakespeare, in his descriptive analysis of his protagonists, was contributing to the understanding of these disorders. In fact, Charcot frequently used Shakespearean references in his neurological teaching sessions, stressing how acute objective insight is essential to achieving expert clinical diagnosis. Charcot found in Shakespeare the same rigorous observational techniques for which he himself became famous. This chapter describes many of Shakespearean characters suffering from varied neurological disorders, including Parkinsonism, epilepsy, sleeping disturbances, dementia, headache, prion disease, and paralyses. PMID:24290473

  20. Mouse Oocyte Control of Granulosa Cell Development and Function: Paracrine Regulation of Cumulus Cell Metabolism

    PubMed Central

    Su, You-Qiang; Sugiura, Koji; Eppig, John J.

    2009-01-01

    Bi-directional communication between oocytes and the companion granulosa cells is essential for the development and functions of both compartments. Oocytes are deficient in their ability to transport certain amino acids and in carrying out glycolysis and cholesterol biosynthesis, and require that cumulus cells provide them with the specific amino acids and the products in these metabolic pathways. Oocytes control metabolic activities in cumulus cells by promoting the expression of genes in cumulus cells encoding specific amino acid transporters and enzymes essential for the oocyte-deficient metabolic processes. Hence, oocytes outsource metabolic functions to cumulus cells to compensate for oocyte metabolic deficiencies. Oocyte control of granulosa cell metabolism may also participate in regulating the rate of follicular development in coordination with endocrine, paracrine and autocrine signals. Oocytes influence granulosa cell development mainly by secretion of paracrine factors although juxtacrine signals probably also participate. Key oocyte-derived paracine factors include growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) 15, and fibroblast growth factor 8B (FGF8B). PMID:19197803

  1. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. PMID:23138103

  2. Dietary Fiber Supplements: Effects in Obesity and Metabolic Syndrome and Relationship to Gastrointestinal Functions

    PubMed Central

    Papathanasopoulos, Athanasios; Camilleri, Michael

    2010-01-01

    Dietary fiber (DF) is a term that reflects to a heterogenous group of natural food sources, processed grains and commercial supplements. Several forms of DF have been used as complementary or alternative agents in the management of manifestations of the metabolic syndrome, including obesity. Not surprisingly, there is a great variation in the biological efficacy of DF in metabolic syndrome and body weight control. Diverse factors and mechanisms have been reported as mediators of the effects of DF on the metabolic syndrome and obesity. Among this array of mechanisms, the modulation of gastric sensorimotor influences appears to be crucial for the effects of DF, but also quite variable. This article focuses on the role, mechanism of action and benefits of different forms of fiber and supplements on obesity and metabolic syndrome, glycemia, dyslipidemia, cardiovascular risk, and explores the effects of DF on gastric sensorimotor function and satiety in mediating these actions of DF. PMID:19931537

  3. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  4. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease.

    PubMed

    Nakamura, Tatsufumi; Satoh, Katsuya; Fukuda, Taku; Kinoshita, Ikuo; Nishiura, Yoshihiro; Nagasato, Kunihiko; Yamauchi, Atsushi; Kataoka, Yasufumi; Nakamura, Tadahiro; Sasaki, Hitoshi; Kumagai, Kenji; Niwa, Masami; Noguchi, Mitsuru; Nakamura, Hideki; Nishida, Noriyuki; Kawakami, Atsushi

    2014-06-01

    The main therapeutic strategy against human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) characterized by lower extremity motor dysfunction is immunomodulatory treatment, with drugs such as corticosteroid hormone and interferon-α, at present. However, there are many issues in long-term treatment with these drugs, such as insufficient effects and various side effects. We now urgently need to develop other therapeutic strategies. The heparinoid, pentosan polysulfate sodium (PPS), has been safely used in Europe for the past 50 years as a thrombosis prophylaxis and for the treatment of phlebitis. We conducted a clinical trial to test the effect of subcutaneous administration of PPS in 12 patients with HAM/TSP in an open-labeled design. There was a marked improvement in lower extremity motor function, based on reduced spasticity, such as a reduced time required for walking 10 m and descending a flight of stairs. There were no significant changes in HTLV-I proviral copy numbers in peripheral blood contrary to the inhibitory effect of PPS in vitro for intercellular spread of HTLV-I. However, serum soluble vascular cell adhesion molecule (sVCAM)-1 was significantly increased without significant changes of serum level of chemokines (CXCL10 and CCL2). There was a positive correlation between increased sVCAM-1and reduced time required for walking 10 m. PPS might induce neurological improvement by inhibition of chronic inflammation in the spinal cord, through blocking the adhesion cascade by increasing serum sVCAM-1, in addition to rheological improvement of the microcirculation. PPS has the potential to be a new therapeutic tool for HAM/TSP. PMID:24671717

  5. Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level

    PubMed Central

    Obel, Linea F.; Müller, Margit S.; Walls, Anne B.; Sickmann, Helle M.; Bak, Lasse K.; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology. PMID:22403540

  6. Neurological Sequelae of Lupus

    MedlinePlus

    ... Page Synonym(s): Lupus - Neurological Sequelae, Systemic Lupus Erythematosus Table of Contents (click to jump to sections) What ... health problems and have a normal lifespan with periodic doctor visits and treatments with various drugs. What ...

  7. The neurological examination.

    PubMed

    April, R S

    1995-06-01

    This chapter describes methods of clinical history taking and examination of the PLDD candidate with lumbar radicular symptoms. It stresses features of the classical neurological examination of the back and lower extremities in a concise, systematic fashion. PMID:10150641

  8. Neurologic emergencies in pregnancy.

    PubMed

    Donaldson, J O

    1991-06-01

    Any one neurologic emergency is rare during pregnancy. As a group, neurologic disorders are a major cause of maternal mortality. Optimal management requires a multidisciplinary approach and ready access to the collective experience of other clinicians. This article discusses the management of status epilepticus, eclamptic hypertensive encephalopathy, stroke, including subarachnoid hemorrhage, myasthenic crisis, porphyric crisis, acute Guillain-Barré syndrome, autonomic hyperreflexia, malignant hyperthermia, chorea gravidarum, and Wernicke's encephalopathy. PMID:1945251

  9. Non-invasive evaluation of vasomotor and metabolic functions of microvascular endothelium in human skin.

    PubMed

    Fedorovich, Andrey A

    2012-07-01

    Correlation between metabolic and microhemodynamic processes in skin was assessed through acute pharmacological test with metabolically active Actovegin in 28 healthy volunteers. Laser Doppler flowmetry in combination with wavelet analysis of blood flow oscillations was used to identify functional state of arteriolar-venular areas of microvascular bed in the right forearm skin; capillary blood flow parameters were assessed through computer capillaroscopy in the nail bed of the right hand on the 4th finger. The metabolic effect (improved oxygen uptake and glucose disposal by tissues) was accompanied by significant increase in endothelial rhythm amplitude by 98% (p<0.00006), neurogenic rhythm amplitude by 50% (p<0.003) and myogenic rhythm amplitude by 54% (p<0.03), with capillary blood flow rate increasing by 90μm/s (p<0.04), pericapillary zone reducing by 15μm (p<0.0001) and diastolic blood pressure dropping by 4mm Hg (p<0.02). These results show close correlation between metabolic and microhemodynamic processes, which suggests that the amplitude activity within the range of endothelial rhythm (0.0095-0.021Hz) during laser Doppler flowmetry reflects not only solely vasomotor function but also metabolic function of microvascular endothelium. PMID:22497731

  10. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    PubMed Central

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2012-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebrafish (Danio rerio). The method utilizes egg yolk liposomes to deliver different chain length FA analogs (BODIPY-FL) to six day-old larvae. Following liposome incubation, larvae accumulate the analogs throughout their digestive organs, providing a comprehensive readout of organ structure and physiology. Using this assay we have observed that different chain length FAs are differentially transported and metabolized by the larval digestive system. We show that this assay can also reveal structural and metabolic defects in digestive mutants. Because this labeling technique can be used to investigate digestive organ morphology and function, we foresee its application in diverse studies of organ development and physiology. PMID:21968100

  11. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function

    PubMed Central

    Kouidhi, Soumaya; Noman, Muhammad Zaeem; Kieda, Claudine; Elgaaied, Amel Benammar; Chouaib, Salem

    2016-01-01

    It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed. PMID:27066006

  12. Wikipedia and neurological disorders.

    PubMed

    Brigo, Francesco; Igwe, Stanley C; Nardone, Raffaele; Lochner, Piergiorgio; Tezzon, Frediano; Otte, Willem M

    2015-07-01

    Our aim was to evaluate Wikipedia page visits in relation to the most common neurological disorders by determining which factors are related to peaks in Wikipedia searches for these conditions. Millions of people worldwide use the internet daily as a source of health information. Wikipedia is a popular free online encyclopedia used by patients and physicians to search for health-related information. The following Wikipedia articles were considered: Alzheimer's disease; Amyotrophic lateral sclerosis; Dementia; Epilepsy; Epileptic seizure; Migraine; Multiple sclerosis; Parkinson's disease; Stroke; Traumatic brain injury. We analyzed information regarding the total article views for 90 days and the rank of these articles among all those available in Wikipedia. We determined the highest search volume peaks to identify possible relation with online news headlines. No relation between incidence or prevalence of neurological disorders and the search volume for the related articles was found. Seven out of 10 neurological conditions showed relations in search volume peaks and news headlines. Six out of these seven peaks were related to news about famous people suffering from neurological disorders, especially those from showbusiness. Identification of discrepancies between disease burden and health seeking behavior on Wikipedia is useful in the planning of public health campaigns. Celebrities who publicly announce their neurological diagnosis might effectively promote awareness programs, increase public knowledge and reduce stigma related to diagnoses of neurological disorders. PMID:25890773

  13. Neurology in Asia.

    PubMed

    Tan, Chong-Tin

    2015-02-10

    Asia is important as it accounts for more than half of the world population. The majority of Asian countries fall into the middle income category. As for cultural traditions, Asia is highly varied, with many languages spoken. The pattern of neurologic diseases in Asia is largely similar to the West, with some disease features being specific to Asia. Whereas Asia constitutes 60% of the world's population, it contains only 20% of the world's neurologists. This disparity is particularly evident in South and South East Asia. As for neurologic care, it is highly variable depending on whether it is an urban or rural setting, the level of economic development, and the system of health care financing. To help remedy the shortage of neurologists, most counties with larger populations have established training programs in neurology. These programs are diverse, with many areas of concern. There are regional organizations serving as a vehicle for networking in neurology and various subspecialties, as well as an official journal (Neurology Asia). The Asian Epilepsy Academy, with its emphasis on workshops in various locations, EEG certification examination, and fellowships, may provide a template of effective regional networking for improving neurology care in the region. PMID:25666629

  14. Absorption, metabolism, and functions of β-cryptoxanthin.

    PubMed

    Burri, Betty J; La Frano, Michael R; Zhu, Chenghao

    2016-02-01

    β-Cryptoxanthin, a carotenoid found in fruits and vegetables such as tangerines, red peppers, and pumpkin, has several functions important for human health. Most evidence from observational, in vitro, animal model, and human studies suggests that β-cryptoxanthin has relatively high bioavailability from its common food sources, to the extent that some β-cryptoxanthin-rich foods might be equivalent to β-carotene-rich foods as sources of retinol. β-Cryptoxanthin is an antioxidant in vitro and appears to be associated with decreased risk of some cancers and degenerative diseases. In addition, many in vitro, animal model, and human studies suggest that β-cryptoxanthin-rich foods may have an anabolic effect on bone and, thus, may help delay osteoporosis. PMID:26747887

  15. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  16. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism.

    PubMed

    Zhang, LiChun; Wang, Hong-Hui

    2016-07-01

    The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte. PMID:27133206

  17. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-01-01

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals. PMID:23486107

  18. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  19. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-01-01

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files. PMID:23194418

  20. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    PubMed

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. PMID:26893133

  1. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function.

    PubMed

    Moreno-Indias, Isabel; Oliva-Olivera, Wilfredo; Omiste, Antonio; Castellano-Castillo, Daniel; Lhamyani, Said; Camargo, Antonio; Tinahones, Francisco J

    2016-06-01

    Discordant phenotypes, metabolically healthy obese and unhealthy normal-weight individuals, are always interesting to provide important insights into the mechanistic link between adipose tissue dysfunction and associated metabolic alterations. Macrophages can release factors that impair the proper activity of the adipose tissue. Thus, studying subcutaneous and visceral adipose tissues, we investigated for the first time the differences in monocyte/macrophage infiltration, inflammation, and adipogenesis of normal-weight subjects who differed in their degree of metabolic syndrome. The study included 92 normal-weight subjects who differed in their degree of metabolic syndrome. Their anthropometric and biochemical parameters were measured. RNA from subcutaneous and visceral adipose tissues was isolated, and mRNA expression of monocyte/macrophage infiltration (CD68, CD33, ITGAM, CD163, EMR-1, CD206, MerTK, CD64, ITGAX), inflammation (IL-6, tumor necrosis factor alpha [TNFα], IL-10, IL-1b, CCL2, CCL3), and adipogenic and lipogenic capacity markers (PPARgamma, FABP4) were measured. Taken together, our data provide evidence of a different degree of macrophage infiltration between the adipose tissues, with a higher monocyte/macrophage infiltration in subcutaneous adipose tissue in metabolically unhealthy normal-weight subjects, whereas visceral adipose tissue remained almost unaffected. An increased macrophage infiltration of adipose tissue and its consequences, such as a decrease in adipogenesis function, may explain why both the obese and normal-weight subjects can develop metabolic diseases or remain healthy. PMID:26829067

  2. Towards stable kinetics of large metabolic networks: Nonequilibrium potential function approach

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Cong; Yuan, Ruo-Shi; Ao, Ping; Xu, Min-Juan; Zhu, Xiao-Mei

    2016-06-01

    While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.

  3. Neutrophil lipoxygenase metabolism and adhesive function following acute thermal injury.

    PubMed

    Damtew, B; Marino, J A; Fratianne, R B; Spagnuolo, P J

    1993-02-01

    Leukotrienes, especially leukotriene B4, are important modulators of various neutrophil functions including adherence and chemotaxis. In previous work, we demonstrated that neutrophil adherence to extracellular matrixes was diminished in the acute stages of burn injury. In this study, we demonstrated that neutrophil adhesion to human and bovine endothelium in the baseline state and after stimulation with leukotriene B4 is depressed markedly after burn injury. The defect in stimulated adherence to endothelium was not specific to leukotriene B4 because impaired adhesion was observed with n-formyl-methionyl-leucyl-phenylalanine and ionophore A23187 as well. Moreover, the adherence defect correlated with 95% and 81% decreases in the release of leukotriene B4 and 5-hydroxy-(6E,87,117,147)-eicosatetraenoic acid, respectively, from burn PMN treated with A23187. Burn neutrophils also released proportionately more byproducts of leukotriene B4 omega oxidation, particularly 20-COOH-leukotriene B4, than did control neutrophils. When examined 3 1/2 weeks after injury, abnormalities in neutrophil leukotriene B4 generation and the adherence of burn neutrophils had recovered to near normal values. To determine whether the decreased release of leukotriene B4 from burn neutrophils was due to increased degradation or diminished synthesis of leukotriene B4, we examined the degradation of exogenous tritiated leukotriene B4 as well as the production of leukotriene B4 from tritiated arachidonic acid in neutrophils. Burn neutrophils converted significantly greater quantities of tritiated leukotriene B4 to tritiated 20-COOH-leukotriene B4 and synthesized markedly less tritiated leukotriene B4 from tritiated arachidonic acid than did control neutrophils, suggesting that decreased leukotriene B4 release by burn neutrophils was the result of both enhanced degradation and decreased synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8381849

  4. Metabolic status, gonadotropin secretion, and ovarian function during acute nutrient restriction of beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of acute nutritional restriction on metabolic status, gonadotropin secretion, and ovarian function of heifers was determined in 2 experiments. In Exp. 1, 14-mo-old heifers were fed a diet supplying 1.2 × maintenance energy requirements (1.2M). After 10 d, heifers were fed 1.2M or were res...

  5. Defective postreperfusion metabolic recovery directly associates with incident delayed graft function.

    PubMed

    Wijermars, Leonie G M; Schaapherder, Alexander F; de Vries, Dorottya K; Verschuren, Lars; Wüst, Rob C I; Kostidis, Sarantos; Mayboroda, Oleg A; Prins, Frans; Ringers, Jan; Bierau, Jörgen; Bakker, Jaap A; Kooistra, Teake; Lindeman, Jan H N

    2016-07-01

    Delayed graft function (DGF) following kidney transplantation affects long-term graft function and survival and is considered a manifestation of ischemia reperfusion injury. Preclinical studies characterize metabolic defects resulting from mitochondrial damage as primary driver of ischemia reperfusion injury. In a comprehensive approach that included sequential establishment of postreperfusion arteriovenous concentration differences over the human graft, metabolomic and genomic analysis in tissue biopsies taken before and after reperfusion, we tested whether the preclinical observations translate to the context of clinical DGF. This report is based on sequential studies of 66 eligible patients of which 22 experienced DGF. Grafts with no DGF immediately recovered aerobic respiration as indicated by prompt cessation of lactate release following reperfusion. In contrast, grafts with DGF failed to recover aerobic respiration and showed persistent adenosine triphosphate catabolism indicated by a significant persistently low post reperfusion tissue glucose-lactate ratio and continued significant post-reperfusion lactate and hypoxanthine release (net arteriovenous difference for lactate and hypoxanthine at 30 minutes). The metabolic data for the group with DGF point to a persistent post reperfusion mitochondrial defect, confirmed by functional (respirometry) and morphological analyses. The archetypical mitochondrial stabilizing peptide SS-31 significantly preserved mitochondrial function in human kidney biopsies following simulated ischemia reperfusion. Thus, development of DGF is preceded by a profound post-reperfusion metabolic deficit resulting from severe mitochondrial damage. Strategies aimed at preventing DGF should be focused on safeguarding a minimally required post-reperfusion metabolic competence. PMID:27188504

  6. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  7. Hydrodynamics-Based Functional Forms of Activity Metabolism: A Case for the Power-Law Polynomial Function in Animal Swimming Energetics

    PubMed Central

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined. PMID:19333397

  8. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  9. Pilot Study of Pioglitazone and Exercise Training Effects on Basal Myocardial Substrate Metabolism and Left Ventricular Function in HIV-Positive Individuals with Metabolic Complications

    PubMed Central

    Cade, W. Todd; Reeds, Dominic N.; Overton, E. Turner; Herrero, Pilar; Waggoner, Alan D.; Laciny, Erin; Bopp, Coco; Lassa-Claxton, Sherry; Gropler, Robert J.; Peterson, Linda R.; Yarasheski, Kevin E.

    2014-01-01

    Background Individuals with HIV infection and peripheral metabolic complications have impaired basal myocardial insulin sensitivity that is related to left ventricular (LV) diastolic dysfunction. It is unknown whether interventions shown to be effective in improving peripheral insulin sensitivity can improve basal myocardial insulin sensitivity and diastolic function in people with HIV and peripheral metabolic complications. Objective In a pilot study, we evaluated whether the peroxisome proliferator–activated receptor-gamma (PPAR-γ) agonist pioglitazone or combined endurance and resistance exercise training improves basal myocardial insulin sensitivity and diastolic function in HIV+ adults with peripheral metabolic complications. Design Twenty-four HIV+ adults with metabolic complications including peripheral insulin resistance were randomly assigned to 4 months of pioglitazone (PIO; 30 mg/d) or supervised, progressive endurance and resistance exercise training (EXS; 90–120 min/d, 3 d/wk). Basal myocardial substrate metabolism was quantified by radioisotope tracer methodology and positron emission tomography (PET) imaging, and LV function was measured by echocardiography. Results Twenty participants completed the study. Neither PIO nor EXS resulted in a detectable improvement in basal myocardial insulin sensitivity or diastolic function. Post hoc analyses revealed sample sizes of more than 100 participants are needed to detect significant effects of these interventions on basal myocardial insulin sensitivity and function. Conclusions PIO or EXS alone did not significantly increase basal myocardial insulin sensitivity or LV diastolic function in HIV+ individuals with peripheral metabolic complications. PMID:24334183

  10. Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy

    PubMed Central

    Goddard, Melissa A.; Mack, David L.; Czerniecki, Stefan M.; Kelly, Valerie E.; Snyder, Jessica M.; Grange, Robert W.; Lawlor, Michael W.; Smith, Barbara K.; Beggs, Alan H.

    2015-01-01

    Background Loss-of-function mutations in the myotubularin (MTM1) gene cause X-linked myotubular myopathy (XLMTM), a fatal, inherited pediatric disease that affects the entire skeletal musculature. Labrador retriever dogs carrying an MTM1 missense mutation exhibit strongly reduced synthesis of myotubularin, the founder member of a lipid phosphatase required for normal skeletal muscle function. The resulting canine phenotype resembles that of human patients with comparably severe mutations, and survival does not normally exceed 4 months. Methods We studied MTM1 mutant dogs (n=7) and their age-matched control littermates (n=6) between the ages of 10 and 25 weeks. Investigators blinded to the animal identities sequentially measured limb muscle pathology, fore- and hind limb strength, walking gait, respiratory function and neurological impairment. Results MTM1-mutant puppies display centrally-nucleated myofibers of reduced size and disrupted sarcotubular architecture progressing until the end of life, an average of 17 weeks. In-life measures of fore- and hind limb strength establish the rate at which XLMTM muscles weaken, and their corresponding decrease in gait velocity and stride length. Pulmonary function tests in affected dogs reveal a right-shifted relationship between peak inspiratory flow (PIF) and inspiratory time (TI); neurological assessments indicate that affected puppies as young as 10 weeks show early signs of neurological impairment (neurological severity score, NSS =8.6±0.9) with progressive decline (NSS =5.6±1.7 at 17 weeks-of-age). Conclusions Our findings document the rate of disease progression in a large animal model of XLMTM and lay a foundation for preclinical studies. PMID:26605308

  11. Metabolism

    MedlinePlus

    ... convert or use energy, such as: Breathing Circulating blood Controlling body temperature Contracting muscles Digesting food and nutrients Eliminating waste through urine and feces Functioning of the brain and nerves

  12. Neurology and Don Quixote.

    PubMed

    Palma, Jose-Alberto; Palma, Fermin

    2012-01-01

    Don Quixote de la Mancha, which is considered one of the most important and influential works of Western modern prose, contains many references of interest for almost all of the medical specialties. In this regard, numerous references to neurology can be found in Cervantes' immortal work. In this study, we aimed to read Don Quixote from a neurologist's point of view, describing the neurological phenomena scattered throughout the novel, including tremors, sleep disturbances, neuropsychiatric symptoms, dementia, epilepsy, paralysis, stroke, syncope, traumatic head injury, and headache; we relate these symptoms with depictions of those conditions in the medical literature of the time. We also review Cervantes' sources of neurological information, including the works by renowned Spanish authors such as Juan Huarte de San Juan, Dionisio Daza Chacón and Juan Valverde de Amusco, and we hypothesize that Don Quixote's disorder was actually a neurological condition. Although Cervantes wrote it four centuries ago, Don Quixote contains plenty of references to neurology, and many of the ideas and concepts reflected in it are still of interest. PMID:23006630

  13. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  14. Effect of short-term prednisone use on blood flow, muscle protein metabolism, and function.

    PubMed

    Short, Kevin R; Nygren, Jonas; Bigelow, Maureen L; Nair, K Sreekumaran

    2004-12-01

    Glucocorticoids can cause muscle atrophy, but the effect on muscle protein metabolism in humans has not been adequately studied to know whether protein synthesis, breakdown, or both are altered. We tested the effect of 6 d of oral prednisone (Pred, 0.5 mg/kg.d) on muscle protein metabolism and function. Six healthy subjects (three men/three women, 22-41 yr) completed two trials (randomized, double-blind, cross-over) with Pred and placebo. Fasting glucose, insulin, IGF-I, and glucagon were higher on Pred vs. placebo, whereas IGF-II and IGF binding protein-1 and -2 were lower. Whole-body amino acid fluxes, blood urea nitrogen, and urinary nitrogen loss were not statistically different between trials. Leg blood flow was 25% lower on Pred leading to 15-30% lower amino acid flux among the artery, vein, and muscle. However, amino acid net balance and rates of protein synthesis and breakdown were unchanged, as were synthesis rates of total mixed, mitochondrial, sarcoplasmic, and myosin heavy chain muscle proteins. Muscle mitochondrial function, muscle strength, and resting energy expenditure were also unchanged. These results demonstrate that a short-term moderate dose of prednisone affects glucose metabolism but has no effect on whole-body or leg muscle protein metabolism or muscle function. PMID:15579778

  15. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    SciTech Connect

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  16. Neurological complications of transplantation.

    PubMed

    Pustavoitau, Aliaksei; Bhardwaj, Anish; Stevens, Robert

    2011-01-01

    Recipients of solid organ or hematopoietic cell transplants are at risk of life-threatening neurological disorders including encephalopathy, seizures, infections and tumors of the central nervous system, stroke, central pontine myelinolysis, and neuromuscular disorders-often requiring admission to, or occurring in, the intensive care unit (ICU). Many of these complications are linked directly or indirectly to immunosuppressive therapy. However, neurological disorders may also result from graft versus host disease, or be an expression of the underlying disease which prompted transplantation, as well as injury induced during radiation, chemotherapy, surgery, and ICU stay. In rare cases, neuroinfectious pathogens may be transmitted with the transplanted tissue or organ. Diagnosis may be a challenge because clinical symptoms and findings on neuroimaging lack specificity, and a biological specimen or tissue diagnosis is often needed for definitive diagnosis. Management is centered on preventing further neurological injury, etiology-targeted therapy, and balancing the benefits and toxicities of specific immunosuppressive agents. PMID:21764765

  17. Genomics in Neurological Disorders

    PubMed Central

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder. PMID:25108264

  18. Genetic Analysis in Neurology

    PubMed Central

    Pittman, Alan; Hardy, John

    2014-01-01

    In recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare disease-causing mutations has led to the identification of new biochemical pathways and has facilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome-wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility. PMID:23571731

  19. [Neurological complications in uremia].

    PubMed

    Fong, Chin-Shih

    2008-06-01

    Neurological complications due to the uremic state or hemodialysis, contribute to the important cause of mortality in patients with uremia. Despite continuous advances in uremic treatment, many neurological complications of uremia, like uremic encephalopathy, peripheral neuropathy and myopathy fail to fully respond to hemodialysis. Moreover, hemodialysis or kidney transplantation may even induce neurological complications. Hemodialysis can directly or indirectly be associated with Wernicke's encephalopathy, dialytic dementia, dysequilibrium syndrome, cerebrovascular accidents, osmotic myelinolysis and mononeuropathy. Renal transplantation can give rise to rejection encephalopathy and acute femoral neuropathy. The use of immunosuppressive drugs after renal transplantation can cause reversible posterior leukoencephalopathy encephalopathy. The clinical, pathophysiological and therapeutical aspects of central nervous system, peripheral nervous system and myopathy complications in uremia are reviewed. PMID:18686653

  20. Genomic medicine and neurology.

    PubMed

    Vance, Jeffery M; Tekin, Demet

    2011-04-01

    The application of genetics to the understanding of neurology has been highly successful over the past several decades. During the past 10 years, tools were developed to begin genetic investigations into more common disorders such as Alzheimer disease, multiple sclerosis, autism, and Parkinson disease. The era of genomic medicine now has begun and will have an increasing effect on the daily care of common neurologic diseases. Thus it is important for neurologists to have a basic understanding of genomic medicine and how it differs from the traditional clinical genetics of the past. This article provides some basic information about genomic medicine and pharmacogenetics in neurology to help neurologists to begin to adopt these principles into their practice. PMID:22810818

  1. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works. PMID:27480780

  2. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    PubMed

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-01

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR. PMID:26802249

  3. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways.

    PubMed

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-06-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources. PMID:24829223

  4. mTOR, metabolism, and the regulation of T-cell differentiation and function

    PubMed Central

    Waickman, Adam T; Powell, Jonathan D.

    2012-01-01

    Summary Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement. PMID:22889214

  5. Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging.

    PubMed

    Motiei, Menachem; Dreifuss, Tamar; Betzer, Oshra; Panet, Hana; Popovtzer, Aron; Santana, Jordan; Abourbeh, Galith; Mishani, Eyal; Popovtzer, Rachela

    2016-03-22

    One of the main limitations of the highly used cancer imaging technique, PET-CT, is its inability to distinguish between cancerous lesions and post treatment inflammatory conditions. The reason for this lack of specificity is that [(18)F]FDG-PET is based on increased glucose metabolic activity, which characterizes both cancerous tissues and inflammatory cells. To overcome this limitation, we developed a nanoparticle-based approach, utilizing glucose-functionalized gold nanoparticles (GF-GNPs) as a metabolically targeted CT contrast agent. Our approach demonstrates specific tumor targeting and has successfully distinguished between cancer and inflammatory processes in a combined tumor-inflammation mouse model, due to dissimilarities in angiogenesis occurring under different pathologic conditions. This study provides a set of capabilities in cancer detection, staging and follow-up, and can be applicable to a wide range of cancers that exhibit high metabolic activity. PMID:26886076

  6. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways

    PubMed Central

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-01-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources. PMID:24829223

  7. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567

  8. [Renogenic neurologic disorders].

    PubMed

    Barbas, I M; Kodzaev, Iu K; Rudenko, T V; Skoromets, A A

    1985-01-01

    A total of 137 patients with chronic diseases of the kidneys were examined, including 34 without and 103 with chronic renal insufficiency. The neurologic syndromes under study included encephalomyelopathy with a predominant damage to the coordination systems, polyneuropathy and myopathy. These neurological changes were expressed irrespective of chronic renal failure, while their degree directly correlated with its severity. Stabilography and tremorography proved adequate and objective methods of assessing coordination disorders and made it possible to detect the above changes at the preclinical stage. PMID:3002077

  9. Paraneoplastic neurological syndromes

    PubMed Central

    Leypoldt, F; Wandinger, K-P

    2014-01-01

    Paraneoplastic neurological syndromes are immune-mediated erroneous attacks on the central or peripheral nervous systems, or both, directed originally against the tumour itself. They have been known for more than 40 years, but recently the discovery of new subgroups of paraneoplastic encephalitis syndromes with a remarkably good response to immune therapy has ignited new clinical and scientific interest. Knowledge of these subgroups and their associated autoantibodies is important in therapeutic decision-making. However, the abundance of new autoantibodies and syndromes can be confusing. This review paper summarizes current knowledge and new developments in the field of paraneoplastic neurological syndromes, their classification, pathophysiology and treatment. PMID:23937626

  10. Genetic neurological channelopathies: molecular genetics and clinical phenotypes

    PubMed Central

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. PMID:26558925

  11. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    PubMed

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. PMID:26558925

  12. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis

    PubMed Central

    Wei, Jun; Long, Lingyun; Yang, Kai; Guy, Cliff; Shrestha, Sharad; Chen, Zuojia; Wu, Chuan; Vogel, Peter; Neale, Geoffrey; Green, Douglas R; Chi, Hongbo

    2015-01-01

    Regulatory T (Treg) cells respond to immune and inflammatory signals to mediate immunosuppression, but how functional integrity of Treg cells is maintained under activating environments remains elusive. Here we found that autophagy was active in Treg cells and supported their lineage stability and survival fitness. Treg cell-specific deletion of the essential autophagy gene Atg7 or Atg5 led to loss of Treg cells, increased tumor resistance, and development of inflammatory disorders. Atg7-deficient Treg cells had increased apoptosis and readily lost Foxp3 expression, especially after activation. Mechanistically, autophagy deficiency upregulated mTORC1 and c-Myc function and glycolytic metabolism that contributed to defective Treg function. Therefore, autophagy couples environmental signals and metabolic homeostasis to protect lineage and survival integrity of Treg cells in activating contexts. PMID:26808230

  13. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions. PMID:26100388

  14. Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock

    PubMed Central

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.

    2015-01-01

    SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300

  15. Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe

    PubMed Central

    Heinken, Almut; Khan, M. Tanweer; Paglia, Giuseppe; Rodionov, Dmitry A.; Harmsen, Hermie J. M.

    2014-01-01

    The human gut microbiota plays a central role in human well-being and disease. In this study, we present an integrated, iterative approach of computational modeling, in vitro experiments, metabolomics, and genomic analysis to accelerate the identification of metabolic capabilities for poorly characterized (anaerobic) microorganisms. We demonstrate this approach for the beneficial human gut microbe Faecalibacterium prausnitzii strain A2-165. We generated an automated draft reconstruction, which we curated against the limited biochemical data. This reconstruction modeling was used to develop in silico and in vitro a chemically defined medium (CDM), which was validated experimentally. Subsequent metabolomic analysis of the spent medium for growth on CDM was performed. We refined our metabolic reconstruction according to in vitro observed metabolite consumption and secretion and propose improvements to the current genome annotation of F. prausnitzii A2-165. We then used the reconstruction to systematically characterize its metabolic properties. Novel carbon source utilization capabilities and inabilities were predicted based on metabolic modeling and validated experimentally. This study resulted in a functional metabolic map of F. prausnitzii, which is available for further applications. The presented workflow can be readily extended to other poorly characterized and uncharacterized organisms to yield novel biochemical insights about the target organism. PMID:25002542

  16. The function of the aerenchyma in arborescent lycopsids: evidence of an unfamiliar metabolic strategy.

    PubMed

    Green, W A

    2010-08-01

    Most species of the modern family Isoëtaceae (Quillworts) some other modern hydrophytes, use a metabolic pathway for carbon fixation that involves uptake of sedimentary carbon and enrichment of CO(2) in internal gas spaces as a carbon-concentrating mechanism. This metabolism, which is related to 'aquatic CAM', is characterized by morphological, physiological and biochemical adaptations for decreasing photorespirative loss, aerating roots and maintaining high growth rates in anoxic, oligotrophic, stressed environments. Some of the closest relatives of the Isoëtaceae were the 'arborescent lycopsids', which were among the dominant taxa in the coal swamps found in lowland ecosystems during the Carboniferous and Permian periods (approx. 300 Ma). Morphological, ecological and geochemical evidence supports the hypothesis that the arborescent lycopsids had an unusual metabolism similar to that of modern Isoëtaceae and processed a biogeochemically significant proportion of organically fixed carbon over a period of about 100 million years in the late Palaeozoic. The temporal coincidence between the dominance of plants with this metabolism and an anomalous global atmosphere (high O(2); low CO(2)) supports the idea that biosphere feedbacks are important in regulating global climatic homeostasis. The potential influence of this metabolism on the global carbon cycle and its specific adaptive function suggest that it should perhaps be considered a fourth major photosynthetic pathway. PMID:20356894

  17. PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis

    2010-01-01

    Peroxisome proliferator-activated receptors (PPAR α, β/δ and γ) play a key role in metabolic regulatory processes and gene regulation of cellular metabolism, particularly in the cardiovascular system. Moreover, PPARs have various extra metabolic roles, in circadian rhythms, inflammation and oxidative stress. In this review, we focus mainly on the effects of PPARs on some thermodynamic processes, which can behave either near equilibrium, or far-from-equilibrium. New functions of PPARs are reported in the arrhythmogenic right ventricular cardiomyopathy, a human genetic heart disease. It is now possible to link the genetic desmosomal abnormalitiy to the presence of fat in the right ventricle, partly due to an overexpression of PPARγ. Moreover, PPARs are directly or indirectly involved in cellular oscillatory processes such as the Wnt-b-catenin pathway, circadian rhythms of arterial blood pressure and cardiac frequency and glycolysis metabolic pathway. Dysfunction of clock genes and PPARγ may lead to hyperphagia, obesity, metabolic syndrome, myocardial infarction and sudden cardiac death, In pathological conditions, regulatory processes of the cardiovascular system may bifurcate towards new states, such as those encountered in hypertension, type 2 diabetes, and heart failure. Numerous of these oscillatory mechanisms, organized in time and space, behave far from equilibrium and are “dissipative structures”. PMID:20706650

  18. mTOR and metabolic pathways in T cell quiescence and functional activation

    PubMed Central

    Yang, Kai; Chi, Hongbo

    2013-01-01

    The mechanistic target of rapamycin (mTOR), an evolutionally conserved serine and threonine kinase, plays a critical role in the promotion of cell growth and proliferation via integration of cellular and environmental cues. In adaptive immunity, the mTOR pathway orchestrates multiple physiological processes including the development and homeostasis of T cells under steady state, and their subsequent activation and differentiation upon antigen recognition. Associated with such fate decisions is the dynamic reprogramming of T cell metabolic pathways, as naïve, activated and memory cells are defined by distinct bioenergetic and biosynthetic activities. Emerging evidence indicates that mTOR signaling intersects with T cell metabolism at two major levels to constitute a critical control mechanism of T cell fate decisions. First, as a central environmental sensor, mTOR links immune signaling and the availability of nutrients, especially amino acids. Second, mTOR activates specific metabolic pathways in T cells such as aerobic glycolysis (also known as the “Warburg effect”) in a process dependent upon the induction of transcription factors MYC and HIF1α. Understanding how mTOR interplays with T cell metabolism to dictate T cell fates and functions will provide fundamental insights into the mechanism of immune responses and the development of novel therapeutics against immune-mediated diseases. In this review, we summarize the current advances on mTOR signaling and T cell metabolism in the control of development, homeostasis, activation and differentiation of T cells. PMID:23375549

  19. Lung prostaglandin H synthase and mixed-function oxidase metabolism of nicotine.

    PubMed

    Mattammal, M B; Lakshmi, V M; Zenser, T V; Davis, B B

    1987-09-01

    Nicotine, a major constituent of cigarette smoke, was metabolized by lung microsomes to an aqueous soluble metabolite after addition of arachidonic acid. Similar results were observed with ram seminal vesicle microsomes. Metabolism was inhibited by indomethacin, propylthiouracil and methimazole but not glutathione. Data are consistent with metabolism being catalyzed by the hydroperoxidase activity of prostaglandin H synthase. The product was identified by mass spectrometry as 3-(2,3-dihydro-1-methyl-2-pyrrolyl)pyridine. Addition of NADPH resulted in formation of a different aqueous soluble product and also an organic extractable product. NADPH-dependent products were inhibited by 2-[(2,4-dichloro-6-phenyl)phenoxy]ethylamine, suggesting mixed-function oxidase catalyzed metabolism. The organic soluble product was identified as cotinine. Cotinine formation was inhibited by glutathione. 3-(2,3-dihydro-1-methyl-2-pyrrolyl)Pyridine was identified in urine from rabbits administered nicotine and from a male cigarette smoker. The amount of peroxidatic product in urine from rabbit and humans was 15 and 6%, respectively, that observed for cotinine. Thus, peroxidation represents a new metabolic pathway for nicotine which involves the peroxidatic activity of prostaglandin H synthase. PMID:3116198

  20. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  1. Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes.

    PubMed

    Cowan, Elaine; Burch, Kerry J; Green, Brian D; Grieve, David J

    2016-07-01

    Obestatin is a 23-amino acid C-terminally amidated gastrointestinal peptide derived from preproghrelin and which forms an α helix. Although obestatin has a short biological half-life and is rapidly degraded, it is proposed to exert wide-ranging pathophysiological actions. Whilst the precise nature of many of its effects is unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. For example, obestatin has been reported to inhibit food and water intake, body weight gain and gastrointestinal motility and also to mediate promotion of cell survival and prevention of apoptosis. Obestatin-induced increases in beta cell mass, enhanced adipogenesis and improved lipid metabolism have been noted along with up-regulation of genes associated with beta cell regeneration, insulin production and adipogenesis. Furthermore, human circulating obestatin levels generally demonstrate an inverse association with obesity and diabetes, whilst the peptide has been shown to confer protective metabolic effects in experimental diabetes, suggesting that it may hold therapeutic potential in this setting. Obestatin also appears to be involved in blood pressure regulation and to exert beneficial effects on endothelial function, with experimental studies indicating that it may also promote cardioprotective actions against, for example, ischaemia-reperfusion injury. This review will present a critical appraisal of the expanding obestatin research area and discuss the emerging therapeutic potential of this peptide for both metabolic and cardiovascular complications of diabetes. PMID:27111465

  2. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    PubMed

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  3. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing.

    PubMed

    Ye, Lin; Zhang, Tong; Wang, Taitao; Fang, Zhiwei

    2012-12-18

    The objective of this study was to explore microbial community structures, functional profiles, and metabolic pathways in a lab-scale and a full-scale wastewater treatment bioreactors. In order to do this, over 12 gigabases of metagenomic sequence data and 600,000 paired-end sequences of bacterial 16S rRNA gene were generated with the Illumina HiSeq 2000 platform, using DNA extracted from activated sludge in the two bioreactors. Three kinds of sequences (16S rRNA gene amplicons, 16S rRNA gene sequences obtained from metagenomic sequencing, and predicted proteins) were used to conduct taxonomic assignments. Specially, relative abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were analyzed. Compared with quantitative real-time PCR (qPCR), metagenomic sequencing was demonstrated to be a better approach to quantify AOA and AOB in activated sludge samples. It was found that AOB were more abundant than AOA in both reactors. Furthermore, the analysis of the metabolic profiles indicated that the overall patterns of metabolic pathways in the two reactors were quite similar (73.3% of functions shared). However, for some pathways (such as carbohydrate metabolism and membrane transport), the two reactors differed in the number of pathway-specific genes. PMID:23151157

  4. Leptin's metabolic and immune functions can be uncoupled at the ligand/receptor interaction level.

    PubMed

    Zabeau, Lennart; Jensen, Cathy J; Seeuws, Sylvie; Venken, Koen; Verhee, Annick; Catteeuw, Dominiek; van Loo, Geert; Chen, Hui; Walder, Ken; Hollis, Jacob; Foote, Simon; Morris, Margaret J; Van der Heyden, José; Peelman, Frank; Oldfield, Brian J; Rubio, Justin P; Elewaut, Dirk; Tavernier, Jan

    2015-02-01

    The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. We here provide genetic and biochemical evidence that the metabolic and immune functions of leptin can be uncoupled at the receptor level. First, homozygous mutant fatt/fatt mice carry a spontaneous splice mutation causing deletion of the leptin receptor (LR) immunoglobulin-like domain (IGD) in all LR isoforms. These mice are hyperphagic and morbidly obese, but display only minimal changes in size and cellularity of the thymus, and cellular immune responses are unaffected. These animals also displayed liver damage in response to concavalin A comparable to wild-type and heterozygous littermates. Second, treatment of healthy mice with a neutralizing nanobody targeting IGD induced weight gain and hyperinsulinaemia, but completely failed to block development of experimentally induced autoimmune diseases. These data indicate that leptin receptor deficiency or antagonism profoundly affects metabolism, with little concomitant effects on immune functions. PMID:25098352

  5. Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs.

    PubMed

    Sun, H; Huang, Y; Yin, C; Guo, J; Zhao, R; Yang, X

    2016-07-01

    Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS. PMID:26863995

  6. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity.

    PubMed

    Chételat, Gaël; Landeau, Brigitte; Salmon, Eric; Yakushev, Igor; Bahri, Mohamed Ali; Mézenge, Florence; Perrotin, Audrey; Bastin, Christine; Manrique, Alain; Scheurich, Armin; Scheckenberger, Mathias; Desgranges, Béatrice; Eustache, Francis; Fellgiebel, Andreas

    2013-08-01

    Normal aging is characterized by brain glucose metabolism decline predominantly in the prefrontal cortex. The goal of the present study was to assess whether this change was associated with age-related alteration of white matter (WM) structural integrity and/or functional connectivity. FDG-PET data from 40 young and 57 elderly healthy participants from two research centers (n=49/48 in Center 1/2) were analyzed. WM volume from T1-weighted MRI (Center 1), fractional anisotropy from diffusion-tensor imaging (Center 2), and resting-state fMRI data (Center 1) were also obtained. Group comparisons were performed within each imaging modality. Then, positive correlations were assessed, within the elderly, between metabolism in the most affected region and the other neuroimaging modalities. Metabolism decline in the elderly predominated in the left inferior frontal junction (LIFJ). LIFJ hypometabolism was significantly associated with macrostructural and microstructural WM disturbances in long association fronto-temporo-occipital fibers, while no relationship was found with functional connectivity. The findings offer new perspectives to understand normal aging processes and open avenues for future studies to explore causality between age-related metabolism and connectivity changes. PMID:23518010

  7. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota

    2012-12-01

    Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  8. Outpatients in Neurological Rehabilitation.

    ERIC Educational Resources Information Center

    Barnes, M. P.; Skeil, D. A.

    1996-01-01

    This paper describes the multidisciplinary approach used at a neurological rehabilitation clinic in England. Analysis of questionnaire responses from outpatients indicated general support for the multidisciplinary approach, though a significant minority felt intimidated by the large number of professionals seen simultaneously. Patients also…

  9. Infant neurologic assessment.

    PubMed

    Hobdell, E

    2001-08-01

    Infant neurologic assessment reflects the ongoing maturation of the central nervous system. Traditional approaches to assessment cannot be used. Key factors are accurate observation and flexibility in obtaining the data. A case example using a 4-month-old infant illustrates specific approaches to assessment. PMID:11497071

  10. Clinical neurological evaluation.

    PubMed

    Weiss, A H

    1995-06-01

    The importance of the neurological evaluation for PLDD procedures is discussed. Elements of the basic examination are outlined and the reason for specific methods of testing are offered. The physician should pay attention to patient complaints, mechanical signs, and patient capabilities. PMID:10150642

  11. Neurological Impress Method plus

    ERIC Educational Resources Information Center

    Flood, James; Lapp, Diane; Fisher, Douglas

    2005-01-01

    The purpose of these two studies was to redirect interest to the Neurological Impress Method, a multisensory approach to reading instruction that occurs between a teacher and a student, which has been largely forgotten in mainstream and special education circles over the past decades. In addition to its emphasis on oral reading, we included a…

  12. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil.

    PubMed

    Chai, Hankui; Yao, Jun; Sun, Jingjing; Zhang, Chi; Liu, Wenjuan; Zhu, Mijia; Ceccanti, Brunello

    2015-04-01

    A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining the effect of engineered nanoparticles on soil microorganisms. In this study, agricultural soil was exposed to ZnO, SiO2, TiO2 and CeO2 nanoparticles at 1 mg g(-1). The toxicity effect was evaluated by thermal metabolism, the abundance of functional bacteria and enzymatic activity. ZnO and CeO2 nanoparticles were observed to hinder thermogenic metabolism, reduce numbers of soil Azotobacter, P-solubilizing and K-solubilizing bacteria and inhibit enzymatic activities. TiO2 nanoparticles reduced the abundance of functional bacteria and enzymatic activity. SiO2 nanoparticles slightly boosted the soil microbial activity. Pearson's correlation analysis showed that thermodynamic parameters had a strong correlation with abundance of functional bacteria and enzymatic activity. These findings demonstrated that the combined approach of monitoring thermal metabolism, functional bacteria and enzymatic activity is feasible for testing the ecotoxicity of nanoparticles on agricultural soil. PMID:25636440

  13. Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk.

    PubMed

    Meyer, Katie A; Bennett, Brian J

    2016-10-01

    Over the past decade, the gut microbiome has emerged as a novel and largely unexplored source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health. PMID:27541295

  14. Microvascular function, metabolic syndrome, and novel risk factor status in women with cardiac syndrome X.

    PubMed

    Jadhav, Sachin T; Ferrell, William R; Petrie, John R; Scherbakova, Olga; Greer, Ian A; Cobbe, Stuart M; Sattar, Naveed

    2006-06-15

    To characterize microvascular function, candidate risk pathways, and metabolic syndrome prevalence in women with cardiac syndrome X, 52 nondiabetic women with angiographically normal epicardial arteries but >1 mm of planar ST depression during exercise testing (patients) and 24 healthy controls of similar age were recruited. In addition to fasting blood samples and anthropometric measurements, forearm cutaneous microvascular function after iontophoresis of acetylcholine and sodium nitroprusside was assessed by laser Doppler imaging. Despite body mass index correction and a larger proportion on statin therapy, patients had high levels of insulin (p=0.016), triglycerides (p=0.018), intercellular adhesion molecule-1 (p=0.021), von Willebrand factor (p=0.005), and leptin (p=0.005) and lower levels of high-density lipoprotein cholesterol (p=0.042) compared with controls. Consistent with these data, 30% of patients but only 8% of controls fulfilled criteria for the metabolic syndrome as defined by the National Cholesterol Education Program (p=0.015). Endothelium-dependent and -independent microvascular functions were markedly impaired in patients (p<0.001), and the odds ratio for cardiac syndrome X was 7.38 (95% confidence interval 2.2 to 24.7) if the acetylcholine response was <8,710 flux units. In conclusion, women with cardiac syndrome X more commonly have metabolic syndrome and related adiposity, metabolic, and inflammatory derangements. They also have significantly impaired skin microvascular function as assessed by laser Doppler imaging, consistent with generalized vascular dysfunction, a finding with potential diagnostic implications. PMID:16765122

  15. Astrocytes: The missing link in neurological disease?

    PubMed Central

    Lin, Chia-Ching John; Deneen, Benjamin

    2013-01-01

    The central nervous system (CNS) is comprised of numerous cell types that work in concert to facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks results in neuronal dysfunction, manifesting itself in a variety of neurological disorders. While neuronal dysregulation is causative of symptoms manifest in the clinic, the etiology of these disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in CNS physiology, therefore it stands to reason that dysregulation of normal astrocyte function contributes to the etiology and progression of varied neurological disorders. We review here some neurological disorders associated with an astrocyte factor and discuss how the related astrocyte dysfunction contributes to the etiology and/or progression of these disorders. PMID:24365571

  16. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    PubMed Central

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system. PMID:25790291

  17. Diurnal Changes in Mitochondrial Function Reveal Daily Optimization of Light and Dark Respiratory Metabolism in Arabidopsis*

    PubMed Central

    Lee, Chun Pong; Eubel, Holger; Millar, A. Harvey

    2010-01-01

    Biomass production by plants is often negatively correlated with respiratory rate, but the value of this rate changes dramatically during diurnal cycles, and hence, biomass is the cumulative result of complex environment-dependent metabolic processes. Mitochondria in photosynthetic plant tissues undertake substantially different metabolic roles during light and dark periods that are dictated by substrate availability and the functional capacity of mitochondria defined by their protein composition. We surveyed the heterogeneity of the mitochondrial proteome and its function during a typical night and day cycle in Arabidopsis shoots. This used a staged, quantitative analysis of the proteome across 10 time points covering 24 h of the life of 3-week-old Arabidopsis shoots grown under 12-h dark and 12-h light conditions. Detailed analysis of enzyme capacities and substrate-dependent respiratory processes of isolated mitochondria were also undertaken during the same time course. Together these data reveal a range of dynamic changes in mitochondrial capacity and uncover day- and night-enhanced protein components. Clear diurnal changes were evident in mitochondrial capacities to drive the TCA cycle and to undertake functions associated with nitrogen and sulfur metabolism, redox poise, and mitochondrial antioxidant defense. These data quantify the nature and nuances of a daily rhythm in Arabidopsis mitochondrial respiratory capacity. PMID:20601493

  18. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols

    PubMed Central

    Rossetti, Paola; Buscema, Massimo; Condorelli, Rosita Angela; Gullo, Giuseppe; Triolo, Onofrio

    2016-01-01

    Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS. PMID:27579037

  19. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols.

    PubMed

    Laganà, Antonio Simone; Rossetti, Paola; Buscema, Massimo; La Vignera, Sandro; Condorelli, Rosita Angela; Gullo, Giuseppe; Granese, Roberta; Triolo, Onofrio

    2016-01-01

    Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS. PMID:27579037

  20. The neurological disease ontology

    PubMed Central

    2013-01-01

    Background We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer’s disease, multiple sclerosis, and stroke. Description ND is implemented in OWL 2 and currently has more than 450 terms that refer to and describe various aspects of neurological diseases. ND directly imports the development version of OGMS, which uses BFO 2. Term development in ND has primarily extended the OGMS terms ‘disease’, ‘diagnosis’, ‘disease course’, and ‘disorder’. We have imported and utilize over 700 classes from related ontology efforts including the Foundational Model of Anatomy, Ontology for Biomedical Investigations, and Protein Ontology. ND terms are annotated with ontology metadata such as a label (term name), term editors, textual definition, definition source, curation status, and alternative terms (synonyms). Many terms have logical definitions in addition to these annotations. Current development has focused on the establishment of the upper-level structure of the ND hierarchy, as well as on the representation of Alzheimer’s disease, multiple sclerosis, and stroke. The ontology is available as a version-controlled file at http://code.google.com/p/neurological-disease-ontology along with a discussion list and an issue tracker. Conclusion ND seeks to provide a formal

  1. The functional gene composition and metabolic potential of coral-associated microbial communities

    PubMed Central

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems. PMID:26536917

  2. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    SciTech Connect

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; Jun, Se Ran; Parales, Rebecca E.; Tan, Mesa; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Schadt, Christopher Warren; Doktycz, Mitchel John; Weston, David; Pelletier, Dale A.

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.

  3. Development of an Objective Space Suit Mobility Performance Metric Using Metabolic Cost and Functional Tasks

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason

    2016-01-01

    Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.

  4. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    DOE PAGESBeta

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; Jun, Se Ran; Parales, Rebecca E.; Tan, Mesa; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Schadt, Christopher Warren; et al

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less

  5. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    PubMed Central

    Timm, Collin M.; Campbell, Alisha G.; Utturkar, Sagar M.; Jun, Se-Ran; Parales, Rebecca E.; Tan, Watumesa A.; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Brown, Steven D.; Ussery, David W.; Schadt, Christopher W.; Tuskan, Gerald A.; Doktycz, Mitchel J.; Weston, David J.; Pelletier, Dale A.

    2015-01-01

    The bacterial microbiota of plants is diverse, with 1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work, we used phenotypic analysis, comparative genomics, and metabolic models to investigate the differences between 19 sequenced Pseudomonas fluorescens strains. These isolates represent a single OTU and were collected from the rhizosphere and endosphere of Populus deltoides. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased toward endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias toward chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates. PMID:26528266

  6. Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals.

    PubMed

    Izhaky, David; Nelson, Darin A; Burgansky-Eliash, Zvia; Grinvald, Amiram

    2009-07-01

    The Retinal Function Imager (RFI; Optical Imaging, Rehovot, Israel) is a unique, noninvasive multiparameter functional imaging instrument that directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, and metabolic responses to photic activation. In addition, it allows capillary perfusion mapping without any contrast agent. These parameters of retinal function are degraded by retinal abnormalities. This review delineates the development of these parameters and demonstrates their clinical applicability for noninvasive detection of retinal function in several modalities. The results suggest multiple clinical applications for early diagnosis of retinal diseases and possible critical guidance of their treatment. PMID:19763751

  7. Post dengue neurological complication.

    PubMed

    Hasliza, A H; Tohid, H; Loh, K Y; Santhi, P

    2015-01-01

    Dengue infection is highly endemic in many tropical countries including Malaysia. However, neurological complications arising from dengue infection is not common; Gullain-Barre syndrome (GBS) is one of these infrequent complications. In this paper, we have reported a case in which a 39-year-old woman presented with a neurological complication of dengue infection without typical symptoms and signs of dengue fever. She had a history of acute gastroenteritis (AGE) followed by an upper respiratory tract infection (URTI) weeks prior to her presentation rendering GBS secondary to the post viral URTI and AGE as the most likely diagnosis. Presence of thrombocytopenia was the only clue for dengue in this case. PMID:27099661

  8. Neurology goes global

    PubMed Central

    Mateen, Farrah J.

    2014-01-01

    Summary In recent years, the need for additional neurologists and neurologic expertise in many low- and middle-income countries (LMIC) has become more apparent. Many organizations are committed to this unmet need, but the scope of the problem remains mostly underappreciated. Neurologists may be skeptical about their value in resource-limited settings, yet we are critically needed and can have a marked effect. International experiences, however, must be carried out in ethical, informed, and sustainable ways in tandem with local health care providers when possible. We present a brief overview of critical issues in global neurology, the importance of focusing on benefits to the LMIC, and options for volunteer opportunities in clinical service, education, research, and disaster relief. Finally, we offer practical pointers and resources for planning these experiences. PMID:25110621

  9. Neurology and detective writing.

    PubMed

    Kempster, Peter A; Lees, Andrew J

    2013-12-01

    When searching for clues to reach a diagnosis, neurologists often empathise with the detective who is trying to solve a case. The premise of this article is that detective stories have been part of the fabric of neurology ever since the time that it evolved into a discrete medical speciality. We will examine how this form of narrative has found expression in detective mystery fiction and popular science publications created by 20th century neurologist physician-writers. We will also investigate the power of the neurologist's alter ego, Sherlock Holmes: his relationship to founders of clinical neuroscience such as Jean-Martin Charcot, William Gowers and Sigmund Freud, and his influences on neurological practice and its literary traditions. PMID:24006370

  10. The neurologic examination.

    PubMed

    Averill, D R

    1981-08-01

    With practice, an orderly routine, and a basic understanding of neuroanatomy, the clinician should be able to tentatively localize lesions in the nervous system. Once the lesion is localized, ancillary studies are usually necessary to identify the disease process. In difficult cases when referral is impractical, an accurate description of the findings from the neurologic examination will greatly improve the value of consultation. PMID:6977917

  11. Nutrition in neurologically impaired children

    PubMed Central

    2009-01-01

    Malnutrition, either under- or overnutrition, is a common condition among neurologically impaired children. Energy needs are difficult to define in this heterogeneous population, and there is a lack of information on what normal growth should be in these children. Non-nutritional factors may influence growth, but nutritional factors such as insufficient caloric intake, excessive nutrient losses and abnormal energy metabolism also contribute to growth failure. Malnutrition is associated with significant morbidity, while nutritional rehabilitation improves overall health. Nutritional support should be an integral part of the management of neurologically impaired children, and should focus not only on improving nutritional status but also on improving quality of life for patients and their families. When considering nutritional intervention, oromotor dysfunction, gastroesophageal reflux and pulmonary aspiration must be addressed and a multidisciplinary team should be involved. Children at risk for nutrition-related problems should be identified early. An assessment of nutritional status should be performed at least yearly, and more frequently in infants and young children, or in children at risk for malnutrition. Oral intake should be optimized if safe, but enteral tube feedings should be initiated in children with oromotor dysfunction, leading to clinically significant aspiration, or in children unable to maintain an adequate nutritional status with oral intake. Nasogastric tube feeding should be used for short-term intervention, but if long-term nutritional intervention is required, a gastrostomy should be considered. Antireflux procedures should be reserved for children with significant gastroesophageal reflux. The patient’s response to nutritional intervention should be carefully monitored to avoid excessive weight gain after initiation of enteral nutrition, and paediatric formulas should be used to avoid micronutrient deficiencies. PMID:20592978

  12. Palliative care and neurology

    PubMed Central

    Boersma, Isabel; Miyasaki, Janis; Kutner, Jean

    2014-01-01

    Palliative care is an approach to the care of patients and families facing progressive and chronic illnesses that focuses on the relief of suffering due to physical symptoms, psychosocial issues, and spiritual distress. As neurologists care for patients with chronic, progressive, life-limiting, and disabling conditions, it is important that they understand and learn to apply the principles of palliative medicine. In this article, we aim to provide a practical starting point in palliative medicine for neurologists by answering the following questions: (1) What is palliative care and what is hospice care? (2) What are the palliative care needs of neurology patients? (3) Do neurology patients have unique palliative care needs? and (4) How can palliative care be integrated into neurology practice? We cover several fundamental palliative care skills relevant to neurologists, including communication of bad news, symptom assessment and management, advance care planning, caregiver assessment, and appropriate referral to hospice and other palliative care services. We conclude by suggesting areas for future educational efforts and research. PMID:24991027

  13. [Neurological Disorders and Pregnancy].

    PubMed

    Berlit, P

    2016-02-01

    Neurological disorders caused by pregnancy and puerperium include the posterior reversible encephalopathy syndrome, the amniotic fluid embolism syndrome (AFES), the postpartum angiopathy due to reversible vasoconstriction syndrome, and the Sheehan syndrome. Hypertension and proteinuria are the hallmarks of preeclampsia, seizures define eclampsia. Hemolysis, elevated liver enzymes and low platelets constitute the HELLP syndrome. Vision disturbances including cortical blindness occur in the posterior reversible encephalopathy syndrome (PRES). The Sheehan syndrome presents with panhypopituitarism post partum due to apoplexia of the pituitary gland in severe peripartal blood loss leading to longstanding hypotension. Some neurological disorders occur during pregnancy and puerperium with an increased frequency. These include stroke, sinus thrombosis, the restless legs syndrome and peripheral nerve syndromes, especially the carpal tunnel syndrome. Chronic neurologic diseases need an interdisciplinary approach during pregnancy. Some anticonvulsants double the risk of birth defects. The highest risk exists for valproic acid, the lowest for lamotrigine and levetiracetam. For MS interval treatment, glatiramer acetate and interferones seem to be safe during pregnancy. All other drugs should be avoided. PMID:26953551

  14. Simulation in neurology.

    PubMed

    Micieli, Giuseppe; Cavallini, Anna; Santalucia, Paola; Gensini, Gianfranco

    2015-10-01

    Simulation is a frontier for disseminating knowledge in almost all the fields of medicine and it is attracting growing interest because it offers a means of developing new teaching and training models, as well as of verifying what has been learned in a critical setting that simulates clinical practice. The role of simulation in neurology, until now limited by the obvious physical limitations of the dummies used to train students and learners, is now increasing since, today, it allows anamnestic data to be related to the instrumental evidence necessary for diagnosis and therapeutic decision-making, i.e., to the findings of neurophysiological investigations (EEG, carotid and vertebral echography and transcranial Doppler, for example) and neuroradiological investigations (CT, MRI imaging), as well as vital parameter monitoring (ECG, saturimetry, blood pressure, respiratory frequency, etc.). Simulation, by providing learners with opportunities to discuss, with experts, different profiles of biological parameters (both during the simulation itself and in the subsequent debriefing session), is becoming an increasingly important tool for training those involved in evaluation of critical neurological patients (stroke, Guillan Barrè syndrome, myasthenia, status epilepticus, headache, vertigo, confusional status, etc.) and complex cases. In this SIMMED (Italian Society for Simulation in Medicine) position paper, the applications (present and, possibly, future) of simulation in neurology are reported. PMID:25926070

  15. Transcriptional Control Mechanisms Associated with the Nucleotide Receptor P2X7, a Critical Regulator of Immunologic, Osteogenic and Neurologic Functions

    PubMed Central

    Lenertz, Lisa Y.; Gavala, Monica L.; Zhu, Yiming; Bertics, Paul J.

    2011-01-01

    The nucleotide receptor P2X7 is an attractive therapeutic target and potential biomarker for multiple inflammatory and neurologic disorders, and it is expressed in several immune, osteogenic and neurologic cell types. Aside from its role in the nervous system, it is activated by ATP released at sites of tissue damage, inflammation and infection. Ligand binding to P2X7 stimulates many cell responses, including calcium fluxes, MAPK activation, inflammatory mediator release, and apoptosis. Much work has centered on P2X7 action in cell death and mediator processing (e.g., pro-interleukin-1 cleavage by the inflammasome), but the contribution of P2X7 to transcriptional regulation is less well defined. In this review, we will focus on the growing evidence for the importance of nucleotide-mediated gene expression, we will highlight several animal model, human genetic, and clinical studies that support P2X7 as a therapeutic target, and we will discuss the latest developments in anti-P2X7 clinical trials. PMID:21298493

  16. Liver disease alters high-density lipoprotein composition, metabolism and function.

    PubMed

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  17. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function

    PubMed Central

    Sukumar, Madhusudhanan; Liu, Jie; Ji, Yun; Subramanian, Murugan; Crompton, Joseph G.; Yu, Zhiya; Roychoudhuri, Rahul; Palmer, Douglas C.; Muranski, Pawel; Karoly, Edward D.; Mohney, Robert P.; Klebanoff, Christopher A.; Lal, Ashish; Finkel, Toren; Restifo, Nicholas P.; Gattinoni, Luca

    2013-01-01

    Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell–based therapies against chronic infectious diseases and cancer. PMID:24091329

  18. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    PubMed Central

    2013-01-01

    Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356

  19. Adipocyte Versus Somatotrope Leptin: Regulation of Metabolic Functions in the Mouse.

    PubMed

    Odle, Angela Katherine; Allensworth-James, Melody; Haney, Anessa; Akhter, Noor; Syed, Mohsin; Childs, Gwen V

    2016-04-01

    Leptin regulates food intake and energy expenditure (EE) and is produced in adipocytes, the pituitary, and several other tissues. Animals that are leptin or leptin receptor deficient have major metabolic complications, including obesity. This study tests the hypothesis that the pituitary somatotrope may contribute a source of leptin that maintains some of these metabolic functions. We created 2 different tissue-specific leptin knockout animals: a Somatotrope-Lep-null model and an Adipocyte-Lep-null model. Metabolic analysis of both models, along with a global deletion model, was performed. The Somatotrope-Lep-null animals had fewer somatotropes, and females had a 76% decrease in serum prolactin. During the dark (feeding) phase, females had a 35% increase in ambulation coupled with a 4% increase in EE. Mutants showed no change in food intake or weight gain and EE was unchanged in males. During the light (sleep) phase, Somatotrope-Lep-null mutant males had lower EE and females continued to have higher EE. The respiratory quotients (RQs) of mutants and littermate controls were decreased in males and increased in females; all were within the range that indicates predominant carbohydrate burning. The massively obese Adipocyte-Lep-null animals, however, had significant increases in food intake, sleep, and increased EE, with decreased activity. Changes in RQ were sexually dimorphic, with female mutants having higher RQ and males having decreased RQ. We conclude that both adipocyte and somatotrope leptin contribute to the metabolic homeostasis of the mouse, and that extraadipocyte sources of leptin cannot overcome the major metabolic challenges seen in these animals. PMID:26859333

  20. Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism.

    PubMed

    Gossmann, Toni I; Ziegler, Mathias

    2014-11-01

    NAD is not only an important cofactor in redox reactions but has also received attention in recent years because of its physiological importance in metabolic regulation, DNA repair and signaling. In contrast to the redox reactions, these regulatory processes involve degradation of NAD and therefore necessitate a constant replenishment of its cellular pool. NAD biosynthetic enzymes are common to almost all species in all clades, but the number of NAD degrading enzymes varies substantially across taxa. In particular, vertebrates, including humans, have a manifold of NAD degrading enzymes which require a high turnover of NAD. As there is currently a lack of a systematic study of how natural selection has shaped enzymes involved in NAD metabolism we conducted a comprehensive evolutionary analysis based on intraspecific variation and interspecific divergence. We compare NAD biosynthetic and degrading enzymes in four eukaryotic model species and subsequently focus on human NAD metabolic enzymes and their orthologs in other vertebrates. We find that the majority of enzymes involved in NAD metabolism are subject to varying levels of purifying selection. While NAD biosynthetic enzymes appear to experience a rather high level of evolutionary constraint, there is evidence for positive selection among enzymes mediating NAD-dependent signaling. This is particularly evident for members of the PARP family, a diverse protein family involved in DNA damage repair and programmed cell death. Based on haplotype information and substitution rate analysis we pinpoint sites that are potential targets of positive selection. We also link our findings to a three dimensional structure, which suggests that positive selection occurs in domains responsible for DNA binding and polymerization rather than the NAD catalytic domain. Taken together, our results indicate that vertebrate NAD metabolism is still undergoing functional diversification. PMID:25084685

  1. Neurological Impairment: Nomenclature and Consequences.

    ERIC Educational Resources Information Center

    Spears, Catherine E.; Weber, Robert E.

    Neurological impairment as discussed includes a range of disabilities referred to as neurological impairment: minimal brain dysfunction/damage, developmental disability, perceptual handicap, learning disability, hyperkinetic behavioral syndrome, and others. Defined are causes of neurological impairment and methods of diagnosis. Symptoms…

  2. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    PubMed Central

    2012-01-01

    The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its anti-epileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage. PMID:23049588

  3. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables

    PubMed Central

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-01-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates. PMID:24987290

  4. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables.

    PubMed

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-05-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates. PMID:24987290

  5. Mitochondria in Neuroplasticity and Neurological Disorders

    PubMed Central

    Mattson, Mark P.; Gleichmann, Marc; Cheng, Aiwu

    2009-01-01

    Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse and move purposefully within axons and dendrites. An Major functions of mitochondria in neurons include the regulation of Ca2+ and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca2+ homeostasis and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer’s, Parkinson’s and Huntington’s diseases, stroke, ALS and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders. PMID:19081372

  6. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass. PMID:24793822

  7. Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism

    PubMed Central

    Pepino, Marta Yanina; Kuda, Ondrej; Samovski, Dmitri; Abumrad, Nada A

    2015-01-01

    CD36 is a scavenger receptor that functions in high affinity tissue uptake of long chain fatty acids (FA) and contributes under excessive fat supply to lipid accumulation and metabolic dysfunction. This review describes recent evidence regarding the CD36 FA binding site and a potential mechanism for FA transfer. It also presents the view that CD36 and FA signaling coordinate fat utilization based on newly identified CD36 actions that involve oral fat perception, intestinal fat absorption, secretion of the peptides cholecystokinin and secretin, regulation of hepatic lipoprotein output, activation of beta oxidation by muscle and regulation of the production of the FA derived bioactive eicosanoids. Thus abnormalities of fat metabolism and the associated pathology might involve dysfunction of CD36-mediated signal transduction in addition to the changes of FA uptake. PMID:24850384

  8. Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator.

    PubMed

    Latrasse, David; Jégu, Teddy; Meng, Pin-Hong; Mazubert, Christelle; Hudik, Elodie; Delarue, Marianne; Charon, Céline; Crespi, Martin; Hirt, Heribert; Raynaud, Cécile; Bergounioux, Catherine; Benhamed, Moussa

    2013-03-01

    Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling. PMID:23341037

  9. Mitochondrial Functional Impairment in Response to Environmental Toxins in the Cardiorenal Metabolic Syndrome

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; Martinez-Lemus, Luis A.; Sowers, James R.

    2015-01-01

    Environmental toxins can promote cardiovascular, metabolic and renal abnormalities, which characterize the cardiorenal metabolic syndrome (CRS). Heavy metals, such as mercury and arsenic, represent two of the most toxic pollutants. Exposure to these toxins is increasing due to increased industrialization throughout much of the world. Studies conducted to understand the impact of environmental toxins have shown a major impact on mitochondrial structure and function. The maladaptive adaptive stress products caused by these toxins, including aggregated proteins, damaged organelles, and intracellular pathogens, can be removed through autophagy, which is also known as mitophagy in mitochondria. Although the underlying mechanisms involved in the regulation of mitophagy in response to pollution are not well understood, accumulating evidence supports a role for maladaptive mitochondrial responses to environmental pollution in the pathogenesis of the CRS. In this review, we discuss ongoing research, which explores the mechanisms by which these toxins promote abnormalities in mitophagy and associated mitochondrial dysfunction and the CRS. PMID:25559775

  10. Limbic Metabolic Abnormalities in Remote Traumatic Brain Injury and Correlation With Psychiatric Morbidity and Social Functioning

    PubMed Central

    Capizzano, Arístides A.; Jorge, Ricardo E.; Robinson, Robert G.

    2013-01-01

    The aim of this study was to investigate limbic metabolic abnormalities in remote traumatic brain injury (TBI) and their psychiatric correlates. Twenty patients and 13 age-matched comparison subjects received complete psychiatric evaluation and brain MRI and MR spectroscopy at 3 Tesla. Patients had reduced NAA to creatine ratio in the left hippocampus relative to comparison subjects (mean=1.3 [SD=0.21] compared with mean=1.55 [SD=0.21]; F=10.73, df=1, 30, p=0.003), which correlated with the Social Functioning Examination scores (rs=−0.502, p=0.034). Furthermore, patients with mood disorders had reduced NAA to creatine ratio in the left cingulate relative to patients without mood disorders (1.47 compared with 1.68; F=3.393, df=3, 19, p=0.044). Remote TBI displays limbic metabolic abnormalities, which correlate to social outcome and psychiatric status. PMID:21037120

  11. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism.

    PubMed

    Wagner, Tristan; Bellinzoni, Marco; Wehenkel, Annemarie; O'Hare, Helen M; Alzari, Pedro M

    2011-08-26

    The α-ketoglutarate dehydrogenase (KDH) complex is a major regulatory point of aerobic energy metabolism. Mycobacterium tuberculosis was reported to lack KDH activity, and the putative KDH E1o component, α-ketoglutarate decarboxylase (KGD), was instead assigned as a decarboxylase or carboligase. Here, we show that this protein does in fact sustain KDH activity, as well as the additional two reactions, and these multifunctional properties are shared by the Escherichia coli homolog, SucA. We also show that the mycobacterial enzyme is finely regulated by an additional acyltransferase-like domain and by the action of acetyl-CoA, a powerful allosteric activator able to enhance the concerted protein motions observed during catalysis. Our results uncover the functional plasticity of a crucial node in bacterial metabolism, which may be important for M. tuberculosis during host infection. PMID:21867916

  12. Neurological complications of infantile osteopetrosis.

    PubMed

    Lehman, R A; Reeves, J D; Wilson, W B; Wesenberg, R L

    1977-11-01

    Seven cases of infantile osteopetrosis are presented. Five of these were available for detailed clinical examination and 2 for retrospective review, including autopsy slides. Neurological deficits in these patients are reviewed. Involvement of the central nervous system parenchyma was suggested by observations of delayed development, ocular abnormalities, and reflex changes as well as radiographic and autopsy findings. Cerebral atrophy was present in several of our patients as well as some reported in the literature and may account for the ventricular enlargement found in many of these patients. Though hydrocephalus may be present, it is unclear that this is frequent or that it can occur without antecedent intracranial hemorrhage. The large head size is not accounted for by calvarial thickening or by hydrocephalus. Despite our patients' small stature, pituitary function appeared to be normal. Surgical decompression may stabilize cranial nerve function, particularly when the optic nerves are involved. PMID:617576

  13. Moderate exercise increases the metabolism and immune function of lymphocytes in rats.

    PubMed

    Navarro, Francisco; Bacurau, Aline Villa Nova; Pereira, Guilherme Borges; Araújo, Ronaldo Carvalho; Almeida, Sandro Soares; Moraes, Milton Rocha; Uchida, Marco Carlos; Costa Rosa, Luis Fernando Bicudo Pereira; Navalta, James; Prestes, Jonato; Bacurau, Reury Frank Pereira

    2013-05-01

    Exercise modulates both glucose and glutamine metabolism which influences lymphocyte function. We investigated the influence of chronic moderate exercise on glucose and glutamine metabolism in lymphocytes, the associated influence on proliferation, and cytokine and immunoglobulin production. Male Wistar rats (8 weeks old) were placed in an exercise training group (N = 15, 1 h day(-1) at 60 % VO₂max, 5 days week(-1)) for 8 weeks of exercise, or a sedentary control group. Twenty-four hours following the final training session, lymphocytes were separated, and the incorporation of [U-14C]-glucose, [U-14C]-glutamine, and [2-14C]-thymidine from the supernatant was measured. The activity of glucose-6-phosphate dehydrogenase, hexokinase, and glutaminase was measured. Lymphocytes were stimulated with ConA and LPS and incubated with the Mycobacterium bovis bacille Calmette-Guerin (BCG) vaccine and plasma IgG and IgE were measured. Glutamine metabolism increased in both T and B lymphocytes in the trained group. In the trained group, proliferative capacity increased T lymphocytes under ConA stimulation, and increased B lymphocytes with LPS. There was a significant increase in IL-2 production and decrease in IL-4 in the trained group compared with sedentary controls. IL-2R and TNFR increased in trained rats while IL-4R decreased and were more pronounced in T lymphocytes compared with B lymphocytes. In both lymphocyte subsets, exercise training significantly increased the expression of CD54+ and CD30+ cell markers. Exercise training increased plasma IgG compared with the sedentary group. In conclusion, moderate exercise training improves immune function and metabolism in T and B lymphocytes, reflecting an increased ability to respond to immune challenges. PMID:23212119

  14. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism

    PubMed Central

    Li, Hong; Ma, Zheng; Jia, Lijuan; Li, Yanmin; Xu, Chunlin; Wang, Taian; Han, Ruili; Jiang, Ruirui; Li, Zhuanjian; Sun, Guirong; Kang, Xiangtao; Liu, Xiaojun

    2016-01-01

    Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism. PMID:27535581

  15. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism.

    PubMed

    Li, Hong; Ma, Zheng; Jia, Lijuan; Li, Yanmin; Xu, Chunlin; Wang, Taian; Han, Ruili; Jiang, Ruirui; Li, Zhuanjian; Sun, Guirong; Kang, Xiangtao; Liu, Xiaojun

    2016-01-01

    Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism. PMID:27535581

  16. Function of metabolic and organelle networks in crowded and organized media

    PubMed Central

    Aon, Miguel A.; Cortassa, Sonia

    2015-01-01

    (Macro)molecular crowding and the ability of the ubiquitous cytoskeleton to dynamically polymerize–depolymerize are prevalent cytoplasmic conditions in prokaryotic and eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential or in complexes - whole metabolic pathways and organelles can be affected by crowding, the type and polymeric status of cytoskeletal proteins (e.g., tubulin, actin), and their imparted organization. The self-organizing capability of the cytoskeleton can orchestrate metabolic fluxes through entire pathways while its fractal organization can frame the scaling of activities in several levels of organization. The intracellular environment dynamics (e.g., biochemical reactions) is dominated by the orderly cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence underscores the inherent capacity of intracellular organization to generate emergent global behavior. Yet unknown is the relative impact on cell function provided by organelle or functional compartmentation based on transient proteins association driven by weak interactions (quinary structures) under specific environmental challenges or functional conditions (e.g., hypoxia, division, differentiation). We propose a qualitative, integrated structural–functional model of cytoplasmic organization based on a modified version of the Sierspinsky–Menger–Mandelbrot sponge, a 3D representation of a percolation cluster, and examine its capacity to accommodate established experimental facts. PMID:25653618

  17. Relationships between Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes Mellitus

    PubMed Central

    van de Weijer, Tineke; Sparks, Lauren Marie; Phielix, Esther; Meex, Ruth Carla; van Herpen, Noud Antonius; Hesselink, Matthijs Karel C.; Schrauwen, Patrick; Schrauwen-Hinderling, Vera Bettina

    2013-01-01

    Introduction Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control subjects. Methods 49 non-insulin dependent male T2D patients and 54 male control subjects were enrolled, and a hyperinsulinemic-euglycemic clamp and indirect calorimetry were performed. A muscle biopsy was taken and intramyocellular lipid (IMCL) was measured. In vivo mitochondrial function was measured by PCr recovery in 30 T2D patients and 31 control subjects. Results Fasting NEFA levels were significantly elevated in T2D patients compared with controls, but IMCL was not different. Mitochondrial function in T2D patients was compromised by 12.5% (p<0.01). Whole body glucose disposal (WGD) was higher at baseline and lower after insulin stimulation. Metabolic flexibility (ΔRER) was lower in the type 2 diabetic patients (0.050±0.033 vs. 0.093±0.050, p<0.01). Mitochondrial function was the sole predictor of basal respiratory exchange ratio (RER) (R2 = 0.18, p<0.05); whereas WGD predicted both insulin-stimulated RER (R2 = 0.29, p<0.001) and metabolic flexibility (R2 = 0.40, p<0.001). Conclusions These results indicate that defects in skeletal muscle in vivo mitochondrial function in type 2 diabetic patients are only reflected in basal substrate oxidation and highlight the importance of glucose disposal rate as a determinant of substrate utilization in response to insulin. PMID:23418416

  18. Neurologic complications after liver transplantation

    PubMed Central

    Živković, Saša A

    2013-01-01

    Neurologic complications are relatively common after solid organ transplantation and affect 15%-30% of liver transplant recipients. Etiology is often related to immunosuppressant neurotoxicity and opportunistic infections. Most common complications include seizures and encephalopathy, and occurrence of central pontine myelinolysis is relatively specific for liver transplant recipients. Delayed allograft function may precipitate hepatic encephalopathy and neurotoxicity of calcineurin inhibitors typically manifests with tremor, headaches and encephalopathy. Reduction of neurotoxic immunosuppressants or conversion to an alternative medication usually result in clinical improvement. Standard preventive and diagnostic protocols have helped to reduce the prevalence of opportunistic central nervous system (CNS) infections, but viral and fungal CNS infections still affect 1% of liver transplant recipients, and the morbidity and mortality in the affected patients remain fairly high. Critical illness myopathy may also affect up to 7% of liver transplant recipients. Liver insufficiency is also associated with various neurologic disorders which may improve or resolve after successful liver transplantation. Accurate diagnosis and timely intervention are essential to improve outcomes, while advances in clinical management and extended post-transplant survival are increasingly shifting the focus to chronic post-transplant complications which are often encountered in a community hospital and an outpatient setting. PMID:24023979

  19. Neurologic complications after liver transplantation.

    PubMed

    Zivković, Saša A

    2013-08-27

    Neurologic complications are relatively common after solid organ transplantation and affect 15%-30% of liver transplant recipients. Etiology is often related to immunosuppressant neurotoxicity and opportunistic infections. Most common complications include seizures and encephalopathy, and occurrence of central pontine myelinolysis is relatively specific for liver transplant recipients. Delayed allograft function may precipitate hepatic encephalopathy and neurotoxicity of calcineurin inhibitors typically manifests with tremor, headaches and encephalopathy. Reduction of neurotoxic immunosuppressants or conversion to an alternative medication usually result in clinical improvement. Standard preventive and diagnostic protocols have helped to reduce the prevalence of opportunistic central nervous system (CNS) infections, but viral and fungal CNS infections still affect 1% of liver transplant recipients, and the morbidity and mortality in the affected patients remain fairly high. Critical illness myopathy may also affect up to 7% of liver transplant recipients. Liver insufficiency is also associated with various neurologic disorders which may improve or resolve after successful liver transplantation. Accurate diagnosis and timely intervention are essential to improve outcomes, while advances in clinical management and extended post-transplant survival are increasingly shifting the focus to chronic post-transplant complications which are often encountered in a community hospital and an outpatient setting. PMID:24023979

  20. Neurology and psychiatry in Babylon.

    PubMed

    Reynolds, Edward H; Wilson, James V Kinnier

    2014-09-01

    We here review Babylonian descriptions of neurological and psychiatric disorders, including epilepsy, stroke, psychoses, obsessive compulsive disorder, phobias, psychopathic behaviour, depression and anxiety. Most of these accounts date from the first Babylonian dynasty of the first half of the second millennium BC, within a millennium and a half of the origin of writing. The Babylonians were remarkably acute and objective observers of medical disorders and human behaviour. Their detailed descriptions are surprisingly similar to modern 19th and 20th century AD textbook accounts, with the exception of subjective thoughts and feelings which are more modern fields of enquiry. They had no knowledge of brain or psychological function. Some neuropsychiatric disorders, e.g. stroke or facial palsy, had a physical basis requiring the attention of a physician or asû, using a plant and mineral based pharmacology; some disorders such as epilepsy, psychoses, depression and anxiety were regarded as supernatural due to evil demons or spirits, or the anger of personal gods, and thus required the intervention of the priest or ašipu; other disorders such as obsessive compulsive disorder and psychopathic behaviour were regarded as a mystery. The Babylonians were the first to describe the clinical foundations of neurology and psychiatry. We discuss these accounts in relation to subsequent and more modern clinical descriptions. PMID:25037816

  1. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  2. Estrogen receptor alpha activation enhances mitochondrial function and systemic metabolism in high-fat-fed ovariectomized mice.

    PubMed

    Hamilton, Dale J; Minze, Laurie J; Kumar, Tanvi; Cao, Tram N; Lyon, Christopher J; Geiger, Paige C; Hsueh, Willa A; Gupte, Anisha A

    2016-09-01

    Estrogen impacts insulin action and cardiac metabolism, and menopause dramatically increases cardiometabolic risk in women. However, the mechanism(s) of cardiometabolic protection by estrogen remain incompletely understood. Here, we tested the effects of selective activation of E2 receptor alpha (ERα) on systemic metabolism, insulin action, and cardiac mitochondrial function in a mouse model of metabolic dysfunction (ovariectomy [OVX], insulin resistance, hyperlipidemia, and advanced age). Middle-aged (12-month-old) female low-density lipoprotein receptor (Ldlr)(-/-) mice were subjected to OVX or sham surgery and fed "western" high-fat diet (WHFD) for 3 months. Selective ERα activation with 4,4',4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl) (PPT), prevented weight gain, improved insulin action, and reduced visceral fat accumulation in WHFD-fed OVX mice. PPT treatment also elevated systemic metabolism, increasing oxygen consumption and core body temperature, induced expression of several metabolic genes such as peroxisome proliferator-activated receptor gamma, coactivator 1 alpha, and nuclear respiratory factor 1 in heart, liver, skeletal muscle, and adipose tissue, and increased cardiac mitochondrial function. Taken together, selective activation of ERα with PPT enhances metabolic effects including insulin resistance, whole body energy metabolism, and mitochondrial function in OVX mice with metabolic syndrome. PMID:27582063

  3. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    PubMed

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight. PMID:24198266

  4. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity

    PubMed Central

    Li, Hua-Ping; Chen, Xuan; Li, Ming-Qing

    2013-01-01

    The relative or absolute deficiency of pancreatic β-cell mass function underlies the pathogenesis of diabetes. It is necessary to alleviate the metabolic stress and reduce the demand for insulin to decrease the effects of mutations affecting β-cell expansion. Butyrate is a natural nutrient existed in food and can also be produced physiologically through the intestinal fermentation of fiber. Pregnancy and obesity model would be helpful for understanding how β-cell adapt to insulin resistance and how butyrate alleviate the metabolic impairment and protect pancreatic β cell function in pregnant mice with obesity. C57BL/6J female mice were divided into three groups and fed with high fat food (HF group, 40% energy from fat), high fat with sodium butyrate food (HSF group, 95% HF with 5% butyrate), or control food (CF group, 14% energy from fat), respectively. The feeding would last for 14 weeks before mating and throughout the gestation period. A subset of dams were sacrificed at gestational day (GD) 14.5 to evaluate the changes of metabolism and β-cell function, mass, proliferation and apoptosis, inflammatory reaction of islet from different diet. Pancreases were double immuno-labeled to assess the islet morphology, insulin expression, expression of proliferation gene PCNA and anti-apoptosis gene bcl-2. Moreover, we detected the expression of NF-κB, phosphorylated NF-κB (pNF-κB) to evaluate the islet inflammatory response with immunohistochemistry. Mice fed with HSF showed obviously changes including the decreased values of weight gain, glucose, insulin, triglyceride and total cholesterol level of blood compared with high fat diet group, and the reduced circulating maternal pro-inflammation factors at GD14.5. Mice fed with HF displayed β-cell hyperplasia with a greater β-cell size and β-cell area in pancreas. Furthermore, the higher ratio of apoptosis and inflammatory response were found in HF group compared with HSF and CF group, while the proliferation

  5. [Between neurology and psychiatry].

    PubMed

    Levine, Joseph; Toser, Doron; Zeev, Kaplan

    2014-06-01

    In this review we will discuss the broad spectrum of possible relationships between the fields of neurology and psychiatry alongside weighing the pros and cons of each alternative relationship. This is in the hope that such discussions will allow an informed decision regarding the construction of future relations between these two areas. The possible connections between the areas are discussed in light of possible relationships that exist between the two groups in the mathematical world with reference to the proposed solutions to the psychophysical mind-body problem. PMID:25095609

  6. 75 FR 22596 - Proposed Collection; Comment Request; NIH Toolbox for Assessment of Neurological and Behavioral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Assessment of Neurological and Behavioral Function SUMMARY: In compliance with the requirement of Section... Neurological and Behavioral Function. Type of Information Collection Request: New. Need and Use of Information... four domains of neurological and behavioral functioning (cognitive, emotional, motor and sensory)...

  7. Protective effects of ginseng on neurological disorders

    PubMed Central

    Ong, Wei-Yi; Farooqui, Tahira; Koh, Hwee-Ling; Farooqui, Akhlaq A.; Ling, Eng-Ang

    2015-01-01

    Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer’s disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson’s disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders. PMID:26236231

  8. Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges

    PubMed Central

    Johnson, Eric F.; Connick, J. Patrick; Reed, James R.; Backes, Wayne L.; Desai, Manoj C.; Xu, Lianhong; Estrada, D. Fernando; Laurence, Jennifer S.

    2014-01-01

    This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH–cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches. PMID:24130370

  9. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    PubMed

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-01

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state. PMID:26696396

  10. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    PubMed Central

    Drath, D B; Shorey, J M; Huber, G L

    1981-01-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke. PMID:6271676

  11. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    PubMed

    Drath, D B; Shorey, J M; Huber, G L

    1981-10-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke. PMID:6271676

  12. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas.

    PubMed

    Bertuloso, Bruno D; Podratz, Priscila L; Merlo, Eduardo; de Araújo, Julia F P; Lima, Leandro C F; de Miguel, Emilio C; de Souza, Leticia N; Gava, Agata L; de Oliveira, Miriane; Miranda-Alves, Leandro; Carneiro, Maria T W D; Nogueira, Celia R; Graceli, Jones B

    2015-05-19

    Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas. PMID:25819109

  13. Piperine metabolically regulates peritoneal resident macrophages to potentiate their functions against bacterial infection.

    PubMed

    Pan, Hao; Xu, Li-Hui; Huang, Mei-Yun; Zha, Qing-Bing; Zhao, Gao-Xiang; Hou, Xiao-Feng; Shi, Zi-Jian; Lin, Qiu-Ru; Ouyang, Dong-Yun; He, Xian-Hui

    2015-10-20

    Pepper, a daily-used seasoning for promoting appetite, is widely used in folk medicine for treating gastrointestinal diseases. Piperine is the major alkaloid in pepper and possesses a wide range of pharmacological activities. However, the mechanism for linking metabolic and medicinal activities of piperine remains unknown. Here we report that piperine robustly boosts mTORC1 activity by recruiting more system L1 amino acid transporter (SLC7A5/SLC3A2) to the cell membrane, thus promoting amino acid metabolism. Piperine-induced increase of mTORC1 activity in resident peritoneal macrophages (pMΦs) is correlated with enhanced production of IL-6 and TNF-α upon LPS stimulation. Such an enhancement of cytokine production could be abrogated by inhibitors of the mTOR signaling pathway, indicating mTOR's action in this process. Moreover, piperine treatment protected resident pMΦs from bacterium-induced apoptosis and disappearance, and increased their bacterial phagocytic ability. Consequently, piperine administration conferred mice resistance against bacterial infection and even sepsis. Our data highlight that piperine has the capacity to metabolically reprogram peritoneal resident macrophages to fortify their innate functions against bacterial infection. PMID:26439699

  14. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.

    PubMed

    Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko

    2016-02-12

    Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. PMID:26801563

  15. Metabolic Plasticity in Cancer Cells: Reconnecting Mitochondrial Function to Cancer Control

    PubMed Central

    Ramanujan, V. Krishnan

    2015-01-01

    Anomalous increase in glycolytic activity defines one of the key metabolic alterations in cancer cells. A realization of this feature has led to critical advancements in cancer detection techniques such as positron emission tomography (PET) as well as a number of therapeutic avenues targeting the key glycolytic steps within a cancer cell. A normal healthy cell’s survival relies on a sensitive balance between the primordial glycolysis and a more regulated mitochondrial bioenergetics. The salient difference between these two bioenergetics pathways is that oxygen availability is an obligatory requirement for mitochondrial pathway while glycolysis can function without oxygen. Early observations that some cancer cells up-regulate glycolytic activity even in the presence of oxygen (aerobic glycolysis) led to a hypothesis that such an altered cancer cell metabolism stems from inherent mitochondrial dysfunction. While a general validity of this hypothesis is still being debated, a number of recent research efforts have yielded clarity on the physiological origins of this aerobic glycolysis phenotype in cancer cells. Building on these recent studies, we present a generalized scheme of cancer cell metabolism and propose a novel hypothesis that might rationalize new avenues of cancer intervention. PMID:26457230

  16. Peroxisomes Are Required for Lipid Metabolism and Muscle Function in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Manisundaram, Arvind; Ivanova, Pavlina T.; Milne, Stephen B.; Summerville, James B.; Brown, H. Alex; Wangler, Michael; Stern, Michael; McNew, James A.

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology. PMID:24945818

  17. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster.

    PubMed

    Faust, Joseph E; Manisundaram, Arvind; Ivanova, Pavlina T; Milne, Stephen B; Summerville, James B; Brown, H Alex; Wangler, Michael; Stern, Michael; McNew, James A

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology. PMID:24945818

  18. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  19. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  20. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    DOE PAGESBeta

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs.more » disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.« less

  1. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    SciTech Connect

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs. disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.

  2. Functional and metabolic disorders in celiac disease: new implications for nutritional treatment.

    PubMed

    Farnetti, Sara; Zocco, Maria Assunta; Garcovich, Matteo; Gasbarrini, Antonio; Capristo, Esmeralda

    2014-11-01

    Celiac disease (CD) is a chronic disease causing the inflammation of the proximal small intestine, in genetically predisposed individuals. This is triggered by the consumption of the gluten protein and the side effects of the disease are mitigated by a lifelong gluten-free diet (GFD) treatment. The predominant consequence of CD is malnutrition due to malabsorption (with diarrhea, weight loss, nutritional deficiencies, and altered blood parameters), especially in patients who do not show strict adherence to GFD treatment. Recent evidence shows that, despite a lifelong GFD, some functional disorders persist, such as compromised gallbladder function and motility, exocrine pancreatic insufficiency, increased gut permeability, small-intestinal bowel overgrowth, nonalcoholic fatty liver disease (NAFLD), lactose intolerance, and milk allergy. These abnormalities may predispose to the occurrence of overweight and obesity even in CD patients. This review focuses on the principal functional and metabolic disorders in both treated and untreated CD, ranging from alterations of the gastrointestinal system to impaired glucose and lipid metabolism and insulin secretion with the aim of providing new implications beyond a GFD, for an ad hoc nutrition treatment in these patients. PMID:25072743

  3. The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity

    PubMed Central

    Heimbucher, Thomas; Liu, Zheng; Bossard, Carine; McCloskey, Richard; Carrano, Andrea C.; Riedel, Christian G.; Tanasa, Bogdan; Klammt, Christian; Fonslow, Bryan R.; Riera, Celine E.; Lillemeier, Bjorn F.; Kemphues, Kenneth; Yates, John R.; O'Shea, Clodagh; Hunter, Tony; Dillin, Andrew

    2015-01-01

    SUMMARY One of the major determinants of aging in organisms ranging from worms to man are FOXO family transcription factors, which are downstream effectors of Insulin/IGF-1 signaling (IIS). The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity. PMID:26154057

  4. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism

    PubMed Central

    Krueger, Sharon K.; Williams, David E.

    2005-01-01

    Flavin-containing monooxygenase (FMO) oxygenates drugs and xenobiotics containing a “soft-nucleophile”, usually nitrogen or sulfur. FMO, like cytochrome P450 (CYP), is a monooxygenase, utilizing the reducing equivalents of NADPH to reduce 1 atom of molecular oxygen to water, while the other atom is used to oxidize the substrate. FMO and CYP also exhibit similar tissue and cellular location, molecular weight, substrate specificity, and exist as multiple enzymes under developmental control. The human FMO functional gene family is much smaller (5 families each with a single member) than CYP. FMO does not require a reductase to transfer electrons from NADPH and the catalytic cycle of the 2 monooxygenases is strikingly different. Another distinction is the lack of induction of FMOs by xenobiotics. In general, CYP is the major contributor to oxidative xenobiotic metabolism. However, FMO activity may be of significance in a number of cases and should not be overlooked. FMO and CYP have overlapping substrate specificities, but often yield distinct metabolites with potentially significant toxicological/pharmacological consequences. The physiological function(s) of FMO are poorly understood. Three of the 5 expressed human FMO genes, FMO1, FMO2 and FMO3, exhibit genetic polymorphisms. The most studied of these is FMO3 (adult human liver) in which mutant alleles contribute to the disease known as trimethylaminuria. The consequences of these FMO genetic polymorphisms in drug metabolism and human health are areas of research requiring further exploration. PMID:15922018

  5. [Cognitive Function and Calcium. The link between dementia and bone and calcium metabolism disorders].

    PubMed

    Yamaguchi, Kiyoshi

    2015-02-01

    Bone and calcium metabolism disorders are closely linked with dementia. Screening for dementia is important since chronic hypercalcemia and hypocalcemia resulting from parathyroid function abnormalities can become a cause of dementia onset. In recent years, it has become clear that vitamin D deficiencies inducing cardiovascular disease and other factors are involved in the pathogenesis of various diseases that in turn become risk factors in dementia, especially Alzheimer's disease. Moreover, osteoporosis and dementia both commonly occur among the elderly. Treating dementia patients for osteoporosis is important since fragility fractures, especially femoral neck fractures, resulting from osteoporosis greatly affect the prognosis of patients with dementia. PMID:25634043

  6. Prenatal Antecedents of Newborn Neurological Maturation

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.

    2010-01-01

    Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24 to 38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the first weeks after birth…

  7. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  8. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  9. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  10. Coprophagia in neurologic disorders.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Parisi, Joseph E; Lapid, Maria I

    2016-05-01

    We report on the unusual behavior of coprophagia (eating one's own feces) in neurologic disorders. The Mayo Clinic Health Sciences-computerized clinical database was queried for all patients evaluated at our institution between 1995 and 2015 in which coprophagia was documented in the medical records. Twenty-six patients were identified of which 17 had coprophagia. Of the 17 patients, five were excluded due to age at onset less than 10 years, leaving 12 adult patients for this study. The median age at onset of coprophagia in the 12 patients was 55 years (range 20-88 years), and half were female. Additional behaviors were common including scatolia (fecal smearing), hypersexuality, aggression, and pica (eating objects of any kind). Coprophagia was associated with neurodegenerative dementia in six patients, developmental delay in two, and one each with seizures, steroid psychosis, frontal lobe tumor, and schizoaffective disorder. Brain imaging in the six patients with dementia showed moderate-to-severe medial temporal lobe atrophy, as well as mild frontal lobe atrophy. Autopsy examination was performed in one patient and revealed frontotemporal lobar degeneration pathology. Many different behavioral and pharmacologic therapies were implemented, yet only haloperidol was associated with discontinuation of the behavior. Coprophagia is associated with different neurologic disorders, particularly neurodegenerative dementias. The behavior may be related to medial temporal lobe atrophy, similar to the Klüver-Bucy syndrome. Haloperidol appears to be effective in treating the behavior, at least in some patients. PMID:27017341

  11. [Rehabilitation methods in small animal neurology].

    PubMed

    Kathmann, I; Demierre, S; Jaggy, A

    2001-10-01

    Rehabilitation is an important part of the treatment of neurological diseases. The primary goal of these methods is an optimal functional restoring of the neuro-muscular system. Massages, thermo-, hydro- and electrotherapy, as well as therapy of movement are different treatment possibilities with their own indication, which are combined in a physiotherapy program. It follows an overview of the different physiotherapeutic methods and their application in some of the most common neurological diseases, as for example intervertebral disc problems or degenerative myelopathy. PMID:11680910

  12. Neurologic autoimmunity: mechanisms revealed by animal models.

    PubMed

    Bradl, Monika; Lassmann, Hans

    2016-01-01

    Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease. PMID:27112675

  13. The SOS Pilot Study: A RCT of Routine Oxygen Supplementation Early after Acute Stroke—Effect on Recovery of Neurological Function at One Week

    PubMed Central

    Roffe, Christine; Ali, Khalid; Warusevitane, Anushka; Sills, Sheila; Pountain, Sarah; Allen, Martin; Hodsoll, John; Lally, Frank; Jones, Peter; Crome, Peter

    2011-01-01

    Mild hypoxia is common after stroke and associated with poor long-term outcome. Oxygen supplementation could prevent hypoxia and improve recovery. A previous study of routine oxygen supplementation showed no significant benefit at 7 and 12 months. This pilot study reports the effects of routine oxygen supplementation for 72 hours on oxygen saturation and neurological outcomes at 1 week after a stroke. Methods Patients with a clinical diagnosis of acute stroke were recruited within 24 h of hospital admission between October 2004 and April 2008. Participants were randomized to oxygen via nasal cannulae (72 h) or control (room air, oxygen given only if clinically indicated). Clinical outcomes were assessed by research team members at 1 week. Baseline data for oxygen (n = 148) and control (n = 141) did not differ between groups. Results The median (interquartile range) National Institutes of Health Stroke Scale (NIHSS) score for the groups at baseline was 6 (7) and 5 (7) respectively. The median Nocturnal Oxygen Saturation during treatment was 1.4% (0.3) higher in the oxygen than in the control group (p<0.001) during the intervention. At 1 week, the median NIHSS score had reduced by 2 (3) in the oxygen and by 1 (2) in the control group. 31% of participants in the oxygen group and 14% in the control group had an improvement of ≥4 NIHSS points at 1 week doubling the odds of improvement in the oxygen group (OR: 2.9). Conclusion Our data show that routine oxygen supplementation started within 24 hours of hospital admission with acute stroke led to a small, but statistically significant, improvement in neurological recovery at 1 week. However, the difference in NIHSS improvement may be due to baseline imbalance in stroke severity between the two groups and needs to be confirmed in a larger study and linked to longer-term clinical outcome. Trial Registration Controlled-Trials.com ISRCTN12362720; European Clinical Trials Database 2004-001866-41 PMID:21625533

  14. Clinical and neuroimaging features as diagnostic guides in neonatal neurology diseases with cerebellar involvement.

    PubMed

    Klein, Jessica L; Lemmon, Monica E; Northington, Frances J; Boltshauser, Eugen; Huisman, Thierry A G M; Poretti, Andrea

    2016-01-01

    Cerebellar abnormalities are encountered in a high number of neurological diseases that present in the neonatal period. These disorders can be categorized broadly as inherited (e.g. malformations, inborn errors of metabolism) or acquired (e.g. hemorrhages, infections, stroke). In some disorders such as Dandy-Walker malformation or Joubert syndrome, the main abnormalities are located within the cerebellum and brainstem. In other disorders such as Krabbe disease or sulfite oxidase deficiency, the main abnormalities are found within the supratentorial brain, but the cerebellar involvement may be helpful for diagnostic purposes. In In this article, we review neurological disorders with onset in the neonatal period and cerebellar involvement with a focus on how characterization of cerebellar involvement can facilitate accurate diagnosis and improved accuracy of neuro-functional prognosis. PMID:26770813

  15. Fellowship programs in behavioral neurology.

    PubMed

    Green, R C; Benjamin, S; Cummings, J L

    1995-03-01

    We sent a behavioral neurology fellowship questionnaire to each of the training directors of 160 neurology residency programs throughout the world, seeking information about programs offering advanced training in behavioral neurology (or similar fellowships in cognitive neurology, neurobehavior, or cognitive neuroscience). Response rate was 100%. Thirty-four respondents reported active fellowship programs in behavioral neurology, and 28 additional respondents indicated that a behavioral neurology fellowship was planned. Nine of the 34 programs (26.5%) defined themselves as exclusively or predominantly concerned with dementia and age-related neurobehavioral disorders. Directors of the 34 active fellowship programs estimated that their combined programs had graduated 199 fellows and were currently training fifty. Most fellowships concentrated on outpatient clinical training, with teaching required by 78.1% and research required by 81.8%. Specialty certification for behavioral neurology was favored by over 75% of behavioral neurology fellowship training directors but by only 30% of training directors in residency programs without behavioral neurology fellowships. Behavioral neurology training programs have grown dramatically in response to an increased recognition of the academic interest in and the clinical needs for these services. PMID:7898686

  16. Relationships Among HIV Infection, Metabolic Risk Factors, and Left Ventricular Structure and Function

    PubMed Central

    Overton, Edgar Turner; Mondy, Kristin; de las Fuentes, Lisa; Davila-Roman, Victor G.; Waggoner, Alan D.; Reeds, Dominic N.; Lassa-Claxton, Sherry; Krauss, Melissa J.; Peterson, Linda R.; Yarasheski, Kevin E.

    2013-01-01

    Abstract Our objective was to determine if the presence of metabolic complications (MC) conveyed an additional risk for left ventricular (LV) dysfunction in people with HIV. HIV+ and HIV− men and women were categorized into four groups: (1) HIV+ with MC (43±7 years, n=64), (2) HIV+ without MC (42±7 years, n=59), (3) HIV− with MC (44±8 years, n=37), or (4) HIV− controls without MC (42±8 years, n=41). All participants underwent two-dimensional (2-D), Doppler, and tissue Doppler echocardiography. Overall, the prevalence of systolic dysfunction (15 vs. 4%, p=0.02) and LV hypertrophy (9 vs. 1%, p=0.03) was greater in HIV+ than in HIV− participants. Participants with MC had a greater prevalence of LV hypertrophy (10% vs. 1%). Early mitral annular velocity during diastole was significantly (p<0.005) lower in groups with MC (HIV+/MC+: 11.6±2.3, HIV−/MC+: 12.0±2.3 vs. HIV+/MC−: 12.4±2.3, HIV−/MC−: 13.1±2.4 cm/s) and tended to be lower in groups with HIV (p=0.10). However, there was no interaction effect of HIV and MC for any systolic or diastolic variable. Regardless of HIV status, participants with MC had reduced LV diastolic function. Although both the presence of MC and HIV infection were associated with lower diastolic function, there was no additive negative effect of HIV on diastolic function beyond the effect of MC. Also, HIV was independently associated with lower systolic function. Clinical monitoring of LV function in individuals with metabolic risk factors, regardless of HIV status, is warranted. PMID:23574474

  17. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders☆

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Feingold, Kenneth R.

    2013-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a “best attempt” by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  18. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy.

    PubMed

    Dejanovic, Borislav; Djémié, Tania; Grünewald, Nora; Suls, Arvid; Kress, Vanessa; Hetsch, Florian; Craiu, Dana; Zemel, Matthew; Gormley, Padhraig; Lal, Dennis; Myers, Candace T; Mefford, Heather C; Palotie, Aarno; Helbig, Ingo; Meier, Jochen C; De Jonghe, Peter; Weckhuysen, Sarah; Schwarz, Guenter

    2015-12-01

    Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype. PMID:26613940

  19. A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism.

    PubMed

    Griffeth, Valerie E M; Blockley, Nicholas P; Simon, Aaron B; Buxton, Richard B

    2013-01-01

    Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases. PMID:23826367

  20. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.

    PubMed

    Tattikota, Sudhir G; Rathjen, Thomas; Hausser, Jean; Khedkar, Aditya; Kabra, Uma D; Pandey, Varun; Sury, Matthias; Wessels, Hans-Hermann; Mollet, Inês G; Eliasson, Lena; Selbach, Matthias; Zinzen, Robert P; Zavolan, Mihaela; Kadener, Sebastian; Tschöp, Matthias H; Jastroch, Martin; Friedländer, Marc R; Poy, Matthew N

    2015-08-14

    In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved. PMID:26152724

  1. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications

    PubMed Central

    Richard, Dawn M; Dawes, Michael A; Mathias, Charles W; Acheson, Ashley; Hill-Kapturczak, Nathalie; Dougherty, Donald M

    2009-01-01

    An essential component of the human diet, L-tryptophan is critical in a number of metabolic functions and has been widely used in numerous research and clinical trials. This review provides a brief overview of the role of L-tryptophan in protein synthesis and a number of other metabolic functions. With emphasis on L-tryptophan’s role in synthesis of brain serotonin, details are provided on the research uses of L-tryptophan, particularly L-tryptophan depletion, and on clinical trials that have been conducted using L-tryptophan supplementation. The ability to change the rates of serotonin synthesis in the brain by manipulating concentrations of serum tryptophan is the foundation of much research. As the sole precursor of serotonin, experimental research has shown that L-tryptophan’s role in brain serotonin synthesis is an important factor involved in mood, behavior, and cognition. Furthermore, clinical trials have provided some initial evidence of L-tryptophan’s efficacy for treatment of psychiatric disorders, particularly when used in combination with other therapeutic agents. PMID:20651948

  2. Effects of Diet-Induced Obesity on Metabolic Parameters and Reproductive Function in Female Ossabaw Minipigs

    PubMed Central

    Newell-Fugate, Annie E; Taibl, Jessica N; Clark, Sherrie G; Alloosh, Mouhamad; Sturek, Michael; Krisher, Rebecca L

    2014-01-01

    This study characterizes the effect of an excess-calorie, high-fat, high-cholesterol, high-fructose diet on metabolic parameters and reproductive function in female Ossabaw minipigs. Cycling sows were fed a hypercaloric, high-fat, high-cholesterol, and high-fructose diet (obese, n = 4) or a control diet (control, n = 5) for 13 mo. During the final 4 mo, ovarian ultrasonography was done, blood was collected, and weights and measures were taken. Pigs then underwent ovarian stimulation. Cycle length and androstenedione, total testosterone, progesterone, estradiol, follicle-stimulating hormone, luteinizing hormone, insulin, fructosamine, lipid, and glucose levels were measured. In addition, adipose tissue aromatase gene expression was assessed. As compared with control pigs, obese pigs were hyperglycemic and hyperinsulinemic; had elevated total cholesterol, triglyceride, and leptin levels, and demonstrated abdominal adiposity. Visceral adipose tissue of obese pigs, as compared with control pigs, showed increased aromatase gene expression. Obese pigs had longer estrous cycles, higher serum androstenedione, and higher luteal phase serum luteinizing hormone, compared with control pigs. During the luteal phase, obese pigs had more medium, ovulatory, and cystic ovarian follicles, whereas control pigs had more small ovarian follicles. When fed an excess-calorie, high-fat, high-cholesterol, high-fructose diet, female Ossabaw minipigs develop obesity, metabolic syndrome, and abnormal reproductive function. This animal model may be applicable to studies of the effects of obesity on fertility in women. PMID:24512960

  3. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    PubMed Central

    Wu, Dongmei; Qiu, Yifu; Gao, Xiang; Yuan, Xiao-Bing; Zhai, Qiwei

    2011-01-01

    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function. PMID:21738790

  4. Development of baked and extruded functional foods from metabolic syndrome specific ingredient mix.

    PubMed

    Miglani, Neetu; Bains, Kiran; Kaur, Harpreet

    2015-09-01

    The study was aimed to develop baked and extruded functional foods from Metabolic Syndrome (MS) specific designed ingredient mixes with optimum amino acid makeup using key food ingredients with functional properties such as whole cereals, legumes, skimmed milk powder, along with flaxseeds and fenugreek seeds. Two cereals viz. barley and oats and four pulses viz. mung bean, cowpea, bengal gram and soybean were blended in different proportions in order to balance the limiting amino acid lysine in the wheat flour. Three products namely bread, extruded snack and noodles prepared from twenty five ingredient mixes. Six ingredient mixes of breads and four ingredient mixes each of extruded snack and noodles specifically designed for MS patients were organoleptically at par with control wheat flour products. The acceptable products had significantly (p ≤ 0.05) higher lysine, crude protein, ash and fibre and low carbohydrates in compare control whole wheat flour products, hence appropriate for MS patients. PMID:26345000

  5. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    PubMed

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism. PMID:20563610

  6. Child neurology services in Africa.

    PubMed

    Wilmshurst, Jo M; Badoe, Eben; Wammanda, Robinson D; Mallewa, Macpherson; Kakooza-Mwesige, Angelina; Venter, Andre; Newton, Charles R

    2011-12-01

    The first African Child Neurology Association meeting identified key challenges that the continent faces to improve the health of children with neurology disorders. The capacity to diagnose common neurologic conditions and rare disorders is lacking. The burden of neurologic disease on the continent is not known, and this lack of knowledge limits the ability to lobby for better health care provision. Inability to practice in resource-limited settings has led to the migration of skilled professionals away from Africa. Referral systems from primary to tertiary are often unpredictable and chaotic. There is a lack of access to reliable supplies of basic neurology treatments such as antiepileptic drugs. Few countries have nationally accepted guidelines either for the management of epilepsy or status epilepticus. There is a great need to develop better training capacity across Africa in the recognition and management of neurologic conditions in children, from primary health care to the subspecialist level. PMID:22019842

  7. History of neurologic examination books.

    PubMed

    Boes, Christopher J

    2015-04-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word "examination" in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's "Blue Book of Neurology" ("Blue Bible") was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors). PMID:25829645

  8. Child Neurology Services in Africa

    PubMed Central

    Wilmshurst, Jo M.; Badoe, Eben; Wammanda, Robinson D.; Mallewa, Macpherson; Kakooza-Mwesige, Angelina; Venter, Andre; Newton, Charles R.

    2013-01-01

    The first African Child Neurology Association meeting identified key challenges that the continent faces to improve the health of children with neurology disorders. The capacity to diagnose common neurologic conditions and rare disorders is lacking. The burden of neurologic disease on the continent is not known, and this lack of knowledge limits the ability to lobby for better health care provision. Inability to practice in resource-limited settings has led to the migration of skilled professionals away from Africa. Referral systems from primary to tertiary are often unpredictable and chaotic. There is a lack of access to reliable supplies of basic neurology treatments such as antiepileptic drugs. Few countries have nationally accepted guidelines either for the management of epilepsy or status epilepticus. There is a great need to develop better training capacity across Africa in the recognition and management of neurologic conditions in children, from primary health care to the subspecialist level. PMID:22019842

  9. Antisense Therapy in Neurology

    PubMed Central

    Lee, Joshua J.A.; Yokota, Toshifumi

    2013-01-01

    Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology. PMID:25562650

  10. Consciousness: a neurological perspective.

    PubMed

    Cavanna, Andrea E; Shah, Sachin; Eddy, Clare M; Williams, Adrian; Rickards, Hugh

    2011-01-01

    Consciousness is a state so essentially entwined with human experience, yet so difficult to conceptually define and measure. In this article, we explore how a bidimensional model of consciousness involving both level of arousal and subjective awareness of the contents of consciousness can be used to differentiate a range of healthy and altered conscious states. These include the different sleep stages of healthy individuals and the altered states of consciousness associated with neurological conditions such as epilepsy, vegetative state and coma. In particular, we discuss how arousal and awareness are positively correlated in normal physiological states with the exception of REM sleep, while a disturbance in this relationship is characteristic of vegetative state, minimally conscious state, complex partial seizures and sleepwalking. PMID:21447904

  11. Neurology and diving.

    PubMed

    Massey, E Wayne; Moon, Richard E

    2014-01-01

    Diving exposes a person to the combined effects of increased ambient pressure and immersion. The reduction in pressure when surfacing can precipitate decompression sickness (DCS), caused by bubble formation within tissues due to inert gas supersaturation. Arterial gas embolism (AGE) can also occur due to pulmonary barotrauma as a result of breath holding during ascent or gas trapping due to disease, causing lung hyperexpansion, rupture and direct entry of alveolar gas into the blood. Bubble disease due to either DCS or AGE is collectively known as decompression illness. Tissue and intravascular bubbles can induce a cascade of events resulting in CNS injury. Manifestations of decompression illness can vary in severity, from mild (paresthesias, joint pains, fatigue) to severe (vertigo, hearing loss, paraplegia, quadriplegia). Particularly as these conditions are uncommon, early recognition is essential to provide appropriate management, consisting of first aid oxygen, targeted fluid resuscitation and hyperbaric oxygen, which is the definitive treatment. Less common neurologic conditions that do not require hyperbaric oxygen include rupture of a labyrinthine window due to inadequate equalization of middle ear pressure during descent, which can precipitate vertigo and hearing loss. Sinus and middle ear overpressurization during ascent can compress the trigeminal and facial nerves respectively, causing temporary facial hypesthesia and lower motor neuron facial weakness. Some conditions preclude safe diving, such as seizure disorders, since a convulsion underwater is likely to be fatal. Preventive measures to reduce neurologic complications of diving include exclusion of individuals with specific medical conditions and safe diving procedures, particularly related to descent and ascent. PMID:24365363

  12. Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation.

    PubMed

    Kobbe, Robin; Kolster, Manuela; Fuchs, Sebastian; Schulze-Sturm, Ulf; Jenderny, Jutta; Kochhan, Lothar; Staab, Julia; Tolosa, Eva; Grimbacher, Bodo; Meyer, Thomas

    2016-07-25

    Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms. PMID:27063510

  13. [Cannabinoids in neurology--Brazilian Academy of Neurology].

    PubMed

    Brucki, Sonia M D; Frota, Norberto Anísio; Schestatsky, Pedro; Souza, Adélia Henriques; Carvalho, Valentina Nicole; Manreza, Maria Luiza Giraldes; Mendes, Maria Fernanda; Comini-Frota, Elizabeth; Vasconcelos, Cláudia; Tumas, Vitor; Ferraz, Henrique B; Barbosa, Egberto; Jurno, Mauro Eduardo

    2015-04-01

    The use of cannabidiol in some neurological conditions was allowed by Conselho Regional de Medicina de São Paulo and by Agência Nacional de Vigilância Sanitária (ANVISA). Specialists on behalf of Academia Brasileira de Neurologia prepared a critical statement about use of cannabidiol and other cannabis derivatives in neurological diseases. PMID:25992535

  14. Chapter 17: cognitive assessment in neurology.

    PubMed

    Henderson, Victor W

    2010-01-01

    Modern interests in cognitive assessment began with Franz Gall's early 19th century theory of mental organology and Paul Broca's reports in the 1860s on patients with focal brain injury and aphemia. These workers spurred interest in assessing delimited mental abilities in relation to discrete cerebral areas. With roots in experimental and educational psychology, the intelligence testing movement added assessment tools that could be applied to neurological patients. Early- to mid-20th-century landmarks were Alfred Binet and Theodore Simon's intelligence scale, Howard Knox's nonverbal performance tests, and the intelligence quotient conceived by Lewis Terman and refined by David Wechsler. Also developed during this era were Henry Head's Serial Tests for aphasic patients and Kurt Goldstein's tests for brain-injured patients with impairments in "abstract attitude" and concept formation. Other investigators have contributed procedures for the evaluation of language functions, memory, visuospatial and visuoconstructive skills, praxis, and executive functions. A further milestone was the development of short standardized cognitive instruments for dementia assessment. Within a neurological arena, the historical emphasis has been on a flexible, process-driven approach to the service of neurological diagnosis and syndrome identification. Advances in clinical psychology, neurology, and the cognate clinical neurosciences continue to enrich assessment options. PMID:19892120

  15. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

    PubMed Central

    Nossol, Constanze; Barta-Böszörményi, Anicò; Kahlert, Stefan; Zuschratter, Werner; Faber-Zuschratter, Heidi; Reinhardt, Nicole; Ponsuksili, Siriluk; Wimmers, Klaus; Diesing, Anne-Kathrin; Rothkötter, Hermann-Josef

    2015-01-01

    The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism. PMID:26147118

  16. CEP89 is required for mitochondrial metabolism and neuronal function in man and fly.

    PubMed

    van Bon, Bregje W M; Oortveld, Merel A W; Nijtmans, Leo G; Fenckova, Michaela; Nijhof, Bonnie; Besseling, Judith; Vos, Melissa; Kramer, Jamie M; de Leeuw, Nicole; Castells-Nobau, Anna; Asztalos, Lenke; Viragh, Erika; Ruiter, Mariken; Hofmann, Falko; Eshuis, Lillian; Collavin, Licio; Huynen, Martijn A; Asztalos, Zoltan; Verstreken, Patrik; Rodenburg, Richard J; Smeitink, Jan A; de Vries, Bert B A; Schenck, Annette

    2013-08-01

    It is estimated that the human mitochondrial proteome consists of 1000-1500 distinct proteins. The majority of these support the various biochemical pathways that are active in these organelles. Individuals with an oxidative phosphorylation disorder of unknown cause provide a unique opportunity to identify novel genes implicated in mitochondrial biology. We identified a homozygous deletion of CEP89 in a patient with isolated complex IV deficiency, intellectual disability and multisystemic problems. CEP89 is a ubiquitously expressed and highly conserved gene of unknown function. Immunocytochemistry and cellular fractionation experiments showed that CEP89 is present both in the cytosol and in the mitochondrial intermembrane space. Furthermore, we ascertained in vitro that downregulation of CEP89 resulted in a severe decrease in complex IV in-gel activity and altered mobility, suggesting that the complex is aberrantly formed. Two-dimensional BN-SDS gel analysis revealed that CEP89 associates with a high-molecular weight complex. Together, these data confirm a role for CEP89 in mitochondrial metabolism. In addition, we modeled CEP89 loss of function in Drosophila. Ubiquitous knockdown of fly Cep89 decreased complex IV activity and resulted in complete lethality. Furthermore, Cep89 is required for mitochondrial integrity, membrane depolarization and synaptic transmission of photoreceptor neurons, and for (sub)synaptic organization of the larval neuromuscular junction. Finally, we tested neuronal Cep89 knockdown flies in the light-off jump reflex habituation assay, which revealed its role in learning. We conclude that CEP89 proteins play an important role in mitochondrial metabolism, especially complex IV activity, and are required for neuronal and cognitive function across evolution. PMID:23575228

  17. Protective Effects of Antioxidant Fortified Diet on Renal Function and Metabolic Profile in Obese Zucker Rat

    PubMed Central

    Slyvka, Yuriy; Inman, Sharon R.; Malgor, Ramiro; Jackson, Edwin J.; Yee, Jennifer; Oshogwemoh, Olusayo; Adame, John; Nowak, Felicia V.

    2008-01-01

    Oxidative stress contributes to the pathophysiology of type 2 diabetes mellitus and its complications, including nephropathy. The current study was designed to test the hypothesis that a diet fortified with antioxidants would be beneficial to delay or prevent the progression of this disease. Male and female Zucker fa/fa rats were fed a control or an antioxidant (AO) fortified diet starting at four weeks of age. Metabolic parameters, renal function and renal histopathology were analyzed at 6, 13 and 20 weeks of age. Females on the AO diet had significantly lower blood glucose at 6 and 13 weeks, less severe renal pathology at 20 weeks, and higher glomerular filtration rates (GFR) at 20 weeks than age matched females on the regular diet (p < 0.05). Metabolic parameters including blood glucose, insulin resistance and serum cholesterol, and mean arterial pressure (MAP), worsened with age in both males and females, as expected. GFR decreased and renal pathology also became more severe with age. Finally, females on the AO diet had higher GFRs and lower MAP at 20 weeks than males on the same diet. This may denote a protective effect of the AO diet in females, but not in males. These findings may have implications for the role of antioxidants as therapy in humans with T2DM. PMID:19051067

  18. Bisphosphorylated metabolites of glycerate, glucose, and fructose: functions, metabolism and molecular pathology.

    PubMed

    Carreras, J; Bartrons, R; Climent, F; Cusso, R

    1986-12-01

    2,3-Bisphosphoglycerate, glucose 1,6-P2 and fructose 2,6-P2 have been recognized as regulatory signals implicated in the control of metabolism, oxygen affinity of red cells and other cellular functions. The alterations of their metabolism constitute a novel area in molecular pathology. The concentration of 2,3-bisphosphoglycerate in erythrocytes changes in a number of pathological conditions. An inherited deficiency of the multifunctional enzyme involved in the synthesis and breakdown of 2,3-bisphosphoglycerate in erythrocytes has been reported. The levels of glucose 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice a decrease in the levels of glucose 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. Fructose 2,6-P2 levels are decreased in the liver of experimental diabetic mice and rats, and elevated in the liver of genetically obese animals. PMID:3555887

  19. The haemodynamic and metabolic effects of tolmesoxide with special reference to impaired myocardial function.

    PubMed Central

    Mackenzie, J. E.; Marshall, R. J.; Parratt, J. R.

    1986-01-01

    The haemodynamic, metabolic and regional blood flow effects of the vasodilator, tolmesoxide (1 mg kg-1 min-1 for 20 min by intravenous infusion) were examined in two groups of greyhound dogs anaesthetized with alpha-chloralose and mechanically ventilated. One group of dogs was thoracotomized and subjected to acute coronary artery occlusion. In these dogs tolmesoxide was infused 2.5 h after occlusion when there was evidence of impaired myocardial function. Tolmesoxide administration resulted in marked systemic hypotension which was associated with myocardial stimulation (increase in heart rate and LVdP/dtmax). These effects were less marked in thoracotomized dogs subjected to coronary artery occlusion. Cardiac stimulation was attenuated by pretreatment with the beta-adrenoceptor antagonist, atenolol. Peripheral resistance and left ventricular end-diastolic pressure (LVEDP) were reduced by tolmesoxide. In spite of the systemic hypotension, the marked reduction in LVEDP resulted in an enhanced subendocardial driving pressure and an increased blood flow to ischaemic regions of the left ventricular wall as measured with Xe133 clearance. Blood flow to normal regions of the left ventricular wall was also increased by tolmesoxide. A metabolic and respiratory acidosis may have contributed to the haemodynamic effects of tolmesoxide. Plasma renin levels were significantly elevated by the drug. Tolmesoxide administration thus resulted in cardiac stimulation, reduced both pre-load and after-load, yet maintained coronary and pulmonary perfusion. This haemodynamic profile of tolmesoxide would explain the beneficial effects obtained with this drug in the treatment of cardiac failure. PMID:3779213

  20. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function

    PubMed Central

    Sen, Supriya; Jumaa, Hassan; Webster, Nicholas J.G.

    2015-01-01

    SR family RNA binding proteins regulate splicing of nascent RNAs in vitro but their physiological role in vivo is largely unexplored, as genetic deletion of many SR protein genes results in embryonic lethality. Here we show that SRSF3HKO mice carrying a hepatocyte-specific deletion of Srsf3 (homologous to human SRSF3/SRp20) have a disrupted hepatic architecture and show pre- and postnatal growth retardation. SRSF3HKO mice exhibit impaired hepatocyte maturation with alterations in glucose and lipid homeostasis characterized by reduced glycogen storage, fasting hypoglycemia, increased insulin sensitivity and reduced cholesterol synthesis. We identify various splicing alterations in the SRSF3HKO liver that explain the in vivo phenotype. In particular, loss of SRSF3 causes aberrant splicing of Hnf1α, Ern1, Hmgcs1, Dhcr7 and Scap genes, which are critical regulators of glucose and lipid metabolism. Our study provides the first evidence for a SRSF3-driven genetic programme required for morphological and functional differentiation of hepatocytes that may have relevance for human liver disease and metabolic dysregulation. PMID:23299886

  1. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells.

    PubMed

    Cautivo, Kelly M; Molofsky, Ari B

    2016-06-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis. PMID:27120716

  2. Heat-stress-induced metabolic changes and altered male reproductive function.

    PubMed

    Hou, Yuanlong; Wang, Xiaoyan; Lei, Zhihai; Ping, Jihui; Liu, Jiajian; Ma, Zhiyu; Zhang, Zheng; Jia, Cuicui; Jin, Mengmeng; Li, Xiang; Li, Xiaoliang; Chen, Shaoqiu; Lv, Yingfang; Gao, Yingdong; Jia, Wei; Su, Juan

    2015-03-01

    Heat stress can cause systemic physiological and biochemical alterations in living organisms. In reproductive systems, heat stress induces germ cell loss and poor quality semen. However, until now, little has been known about such a complex regulation process, particularly in the perspective of metabolism. In this study, serum, hypothalamus, and epididymis samples derived from male SD (Sprague-Dawley) rats being exposed to high environmental temperature (40 °C) 2 h per day for 7 consecutive days were analyzed using metabonomics strategies based on GC/TOFMS. Differentially expressed metabolites reveal that the energy metabolism, amino acid neurotransmitters, and monoamine neurotransmitters pathways are associated with heat stress, in accordance with changes of the three upstream neuroendocrine system pathways in the SNS (sympathetic adrenergic system), hypothalamic pituitary adrenal axis (HPA), and hypothalamic pituitary testis axis (HPT) axis. Many of these metabolites, especially in the epididymis, were found to be up-regulated, presumably due to a self-preserving action to resist the environmental hot irritation to maintain normal functioning of the male reproductive system. PMID:25607524

  3. Congenital and Neurological Abnormalities in Infants with Phenylketonuria

    ERIC Educational Resources Information Center

    Johnson, Charles F.; And Others

    1978-01-01

    Examined was the occurrence of congenital and neurological abnormalities in 150 children with phenylketonuria (PKU--a metabolic disorder which may result in mental retardation) age 1 year or older, who have been treated with a restricted phenylalanine diet, according to the protocol used in a nation-wide longitudinal collaborative study.…

  4. [Sarcopenia and frailty in neurology].

    PubMed

    Maetzler, W; Drey, M; Jacobs, A H

    2015-04-01

    Sarcopenia and frailty are common geriatric syndromes and are associated with adverse health outcome and impaired health-related quality of life. Co-occurrences of these two syndromes with age-related neurological diseases are potentially high but not well investigated. Moreover, it is not well understood how these syndromes interact with neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke. This article introduces the currently most accepted concepts of sarcopenia and frailty, discusses the potential relevance of the syndromes for geriatric patients and presents examples of studies that investigated potential interactions between these geriatric and neurological syndromes and conditions. First results indicate that (i) the co-occurrence of these geriatric syndromes and age-related neurological diseases is high, (ii) sarcopenia and frailty can influence the clinical state of neurological diseases to a relevant extent and (iii) at least some common causes and pathophysiological processes confer the geriatric and neurological conditions. In conclusion, profound knowledge about the interaction of sarcopenia, frailty and age-associated neurological conditions is currently not available. Such knowledge would have an enormous potential for improved therapy of these neurological conditions. PMID:25787725

  5. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system?

    PubMed Central

    De Bock, Marijke; Kerrebrouck, Marianne; Wang, Nan; Leybaert, Luc

    2013-01-01

    The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell–cell transfer of metabolic and electric signals. GJs are formed by connexins of which Cx43 is most widespread in the human body. In the brain, Cx43 GJs are mostly found in astroglia where they coordinate the propagation of Ca2+ waves, spatial K+ buffering, and distribution of glucose. Beyond its role in direct intercellular communication, Cx43 also forms unapposed, non-junctional hemichannels in the plasma membrane of glial cells. These allow the passage of several neuro- and gliotransmitters that may, combined with downstream paracrine signaling, complement direct GJ communication among glial cells and sustain glial-neuronal signaling. Mutations in the GJA1 gene encoding Cx43 have been identified in a rare, mostly autosomal dominant syndrome called oculodentodigital dysplasia (ODDD). ODDD patients display a pleiotropic phenotype reflected by eye, hand, teeth, and foot abnormalities, as well as craniofacial and bone malformations. Remarkably, neurological symptoms such as dysarthria, neurogenic bladder (manifested as urinary incontinence), spasticity or muscle weakness, ataxia, and epilepsy are other prominent features observed in ODDD patients. Over 10 mutations detected in patients diagnosed with neurological disorders are associated with altered functionality of Cx43 GJs/hemichannels, but the link between ODDD-related abnormal channel activities and neurologic phenotype is still elusive. Here, we present an overview on the nature of the mutants conveying structural and functional changes of Cx43 channels and discuss available evidence for aberrant Cx43 GJ and hemichannel function. In a final step, we examine the possibilities of how channel dysfunction may lead to some of the neurological manifestations of ODDD. PMID:24133447

  6. Neurology of Volition

    PubMed Central

    Kranick, Sarah M.; Hallett, Mark

    2016-01-01

    Neurological disorders of volition may be characterized by deficits in willing and/or agency. When we move our bodies through space, it is the sense that we intended to move (willing) and that our actions were a consequence of this intention (self-agency) that gives us the sense of voluntariness and a general feeling of being “in control.” While it is possible to have movements that share executive machinery ordinarily used for voluntary movement but lack a sense of voluntariness, such as psychogenic movement disorders, it is also possible to claim volition for presumed involuntary movements (early chorea) or even when no movement is produced (anosognosia). The study of such patients should enlighten traditional models of how the percepts of volition are generated in the brain with regards to movement. We discuss volition and its components as multi-leveled processes with feedforward and feedback information flow, and dependence on prior expectations as well as external and internal cues. PMID:23329204

  7. Neurological manifestations of malaria.

    PubMed

    Román, G C; Senanayake, N

    1992-03-01

    The involvement of the nervous system in malaria is reviewed in this paper. Cerebral malaria, the acute encephalopathy which complicates exclusively the infection by Plasmodium falciparum commonly affects children and adolescents in hyperendemic areas. Plugging of cerebral capillaries and venules by clumped, parasitized red cells causing sludging in the capillary circulation is one hypothesis to explain its pathogenesis. The other is a humoral hypothesis which proposes nonspecific, immune-mediated, inflammatory responses with release of vasoactive substances capable of producing endothelial damage and alterations of permeability. Cerebral malaria has a mortality rate up to 50%, and also a considerable longterm morbidity, particularly in children. Hypoglycemia, largely in patients treated with quinine, may complicate the cerebral symptomatology. Other central nervous manifestations of malaria include intracranial hemorrhage, cerebral arterial occlusion, and transient extrapyramidal and neuropsychiatric manifestations. A self-limiting, isolated cerebellar ataxia, presumably caused by immunological mechanisms, in patients recovering from falciparum malaria has been recognized in Sri Lanka. Malaria is a common cause of febrile seizures in the tropics, and it also contributes to the development of epilepsy in later life. Several reports of spinal cord and peripheral nerve involvement are also available. A transient muscle paralysis resembling periodic paralysis during febrile episodes of malaria has been described in some patients. The pathogenesis of these neurological manifestations remains unexplored, but offers excellent perspectives for research at a clinical as well as experimental level. PMID:1307475

  8. Paraneoplastic neurological disorders.

    PubMed

    Blaes, Franz; Tschernatsch, Marlene

    2010-10-01

    The article provides an overview on the diagnosis and pathogenesis of paraneoplastic neurological disorders (PNDs), and subsequently the current therapeutic strategies in these patients. PNDs are nervous system dysfunctions in cancer patients, which are not due to a local effect of the tumor or its metastases. Most of these clinically defined syndromes in adults are associated with lung cancer, especially small-cell lung cancer, lymphoma and gynecological tumors. In a part of the PND, an overlapping of different clinical syndromes can be observed. Highly specific autoantibodies directed against onconeuronal antigens led to the current hypothesis of an autoimmune pathophysiology. Whereas the most central nervous PNDs are more T-cell-mediated, limbic encephalitis can be caused by pathogenic receptor autoantibodies. The PND of the neuromuscular junction and paraneoplastic autonomic neuropathy are mainly associated with receptor or ion channel autoantibodies. The childhood opsoclonus-myoclonus syndrome and the PNDs associated with receptor/ion channel autoantibodies often respond to immunosuppressive therapies, plasmapheresis and intravenous immunoglobulins. By contrast, most CNS PNDs associated with defined antineuronal antibodies directed against intracellular antigens only stabilize after tumor treatment. PMID:20925471

  9. Neurologic Itch Management.

    PubMed

    Şavk, Ekin

    2016-01-01

    Neurologic itch is defined as pruritus resulting from any dysfunction of the nervous system. Itch arising due to a neuroanatomic pathology is seen to be neuropathic. Causes of neuropathic itch range from localized entrapment of a peripheral nerve to generalized degeneration of small nerve fibers. Antipruritic medications commonly used for other types of itch such as antihistamines and corticosteroids lack efficacy in neuropathic itch. Currently there are no therapeutic options that offer relief in all types of neuropathic pruritus, and treatment strategies vary according to etiology. It is best to decide on the appropriate tests and procedures in collaboration with a neurologist during the initial work-up. Treatment of neuropathic itch includes general antipruritic measures, local or systemic pharmacotherapy, various physical modalities, and surgery. Surgical intervention is the obvious choice of therapy in cases of spinal or cerebral mass, abscess, or hemorrhagic stroke, and may provide decompression in entrapment neuropathies. Symptomatic treatment is needed in the vast majority of patients. General antipruritic measures should be encouraged. Local treatment agents with at least some antipruritic effect include capsaicin, local anesthetics, doxepin, tacrolimus, and botulinum toxin A. Current systemic therapy relies on anticonvulsants such as gabapentin and pregabalin. Phototherapy, transcutaneous electrical nerve stimulation, and physical therapy have also been of value in selected cases. Among the avenues to be explored are transcranial magnetic stimulation of the brain, new topical cannabinoid receptor agonists, various modes of acupuncture, a holistic approach with healing touch, and cell transplantation to the spinal cord. PMID:27578080

  10. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  11. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit.

    PubMed

    Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he

    2015-10-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato. PMID:26465132

  12. Blood rheology and platelet function in untreated early-stage essential hypertensives complicated with metabolic syndrome.

    PubMed

    Sugimori, Hiroko; Tomoda, Fumihiro; Koike, Tsutomu; Kinuno, Hiroyuki; Kurosaki, Hiroko; Masutani, Toshitaka; Inoue, Hiroshi

    2012-01-01

    We examined whether hemorheology and platelet function are affected in essential hypertensives (EHTs) of the World Health Organization stage I when complicated with metabolic syndrome (Mets). In 156 untreated EHTs, blood viscosity and platelet surface markers were determined. Blood viscosity was significantly elevated in 54 subjects with Mets compared with 102 subjects without Mets. Hematocrit and plasma viscosity increased in the group with Mets, although red blood cell rigidity index "k" did not differ between groups. As a whole group, blood viscosity correlated positively with hematocrit and plasma viscosity. Additionally, plasma viscosity correlated positively with plasma leptin, triglyceride, homeostasis model assessment index, C-reactive protein, and plasma fibrinogen, but negatively with high-density lipoprotein cholesterol. In contrast, no differences were seen in platelet surface markers between groups. In conclusion, EHTs of the early stage complicated with Mets are characterized by increased blood viscosity due to hemoconcentration and increased plasma viscosity. PMID:22570768

  13. Fatty acid metabolism and the basis of brown adipose tissue function.

    PubMed

    Calderon-Dominguez, María; Mir, Joan F; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  14. Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer.

    PubMed

    Cui, Peng-Fei; Xing, Lei; Qiao, Jian-Bin; Zhang, Jia-Liang; He, Yu-Jing; Zhang, Mei; Lyu, Jin-Yuan; Luo, Cheng-Qiong; Jin, Liang; Jiang, Hu-Lin

    2016-06-15

    Polyamine content, which is associated with tumor growth, can be regulated by ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMDC), two key enzymes in polyamine biosynthesis. Here we aim to develop a pH-responsive cationic poly(agmatine) based on a polyamine analogue-agmatine that can dually function as a gene delivery vector as well as an anticancer agent by inhibiting ODC after intracellular degradation. The core-shell nanoparticles, formed by poly(agmatine)/SAMDC siRNA complex as a core, were coated with bovine serum albumin for better in vivo circulation stability and tumor targeting. When the nanoparticles were taken up by tumor cells via endocytosis and degraded in endosome, the released agmatine and SAMDC siRNA can synergistically inhibit polyamines biosynthesis, inducing inhibition of tumor proliferation. Our study offered a potential way in tumor therapy based on polyamine metabolism. PMID:27102990

  15. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit*

    PubMed Central

    ZHANG, Ning; JIANG, Jing; YANG, Yan-li; WANG, Zhi-he

    2015-01-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato. PMID:26465132

  16. Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks

    PubMed Central

    Bassel, George W.; Gaudinier, Allison; Brady, Siobhan M.; Hennig, Lars; Rhee, Seung Y.; De Smet, Ive

    2012-01-01

    Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach. PMID:23110892

  17. History of neurologic examination books

    PubMed Central

    2015-01-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word “examination” in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's “Blue Book of Neurology” (“Blue Bible”) was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors). PMID:25829645

  18. Functional Polymorphisms in Xenobiotic Metabolizing Enzymes and Their Impact on the Therapy of Breast Cancer

    PubMed Central

    Vianna-Jorge, Rosane; Festa-Vasconcellos, Juliana Simões; Goulart-Citrangulo, Sheyla Maria Torres; Leite, Marcelo Sobral

    2013-01-01

    Breast cancer is the top cancer among women, and its incidence is increasing worldwide. Although the mortality tends to decrease due to early detection and treatment, there is great variability in the rates of clinical response and survival, which makes breast cancer one of the most appealing targets for pharmacogenomic studies. The recognition that functional CYP2D6 polymorphisms affect tamoxifen pharmacokinetics has motivated the attempts of using CYP2D6 genotyping for predicting breast cancer outcomes. In addition to tamoxifen, the chemotherapy of breast cancer includes combinations of cytotoxic drugs, which are substrates for various xenobiotic metabolizing enzymes. Because of these drugs’ narrow therapeutic window, it has been postulated that impaired biotransformation could lead to increased toxicity. In the present review, we performed a systematic search of all published data exploring associations between polymorphisms in xenobiotic metabolizing enzymes and clinical outcomes of breast cancer. We retrieved 43 original articles involving either tamoxifen or other chemotherapeutic protocols, and compiled all information regarding response or toxicity. The data indicate that, although CYP2D6 polymorphisms can indeed modify tamoxifen pharmacokinetics, CYP2D6 genotyping alone is not enough for predicting breast cancer outcomes. The studies involving other chemotherapeutic protocols explored a great diversity of pharmacogenetic targets, but the number of studies for each functional polymorphism is still very limited, with usually no confirmation of positive associations. In conclusion, the application of pharmacogenetics to predict breast cancer outcomes and to select one individual’s chemotherapeutic protocol is still far from clinical routine. Although some very interesting results have been produced, no clear practical recommendations are recognized yet. PMID:23346096

  19. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions.

    PubMed

    Dimeloe, Sarah; Mehling, Matthias; Frick, Corina; Loeliger, Jordan; Bantug, Glenn R; Sauder, Ursula; Fischer, Marco; Belle, Réka; Develioglu, Leyla; Tay, Savaş; Langenkamp, Anja; Hess, Christoph

    2016-01-01

    Effector memory (EM) CD4(+) T cells recirculate between normoxic blood and hypoxic tissues to screen for cognate Ag. How mitochondria of these cells, shuttling between normoxia and hypoxia, maintain bioenergetic efficiency and stably uphold antiapoptotic features is unknown. In this study, we found that human EM CD4(+) T cells had greater spare respiratory capacity (SRC) than did naive counterparts, which was immediately accessed under hypoxia. Consequently, hypoxic EM cells maintained ATP levels, survived and migrated better than did hypoxic naive cells, and hypoxia did not impair their capacity to produce IFN-γ. EM CD4(+) T cells also had more abundant cytosolic GAPDH and increased glycolytic reserve. In contrast to SRC, glycolytic reserve was not tapped under hypoxic conditions, and, under hypoxia, glucose metabolism contributed similarly to ATP production in naive and EM cells. However, both under normoxic and hypoxic conditions, glucose was critical for EM CD4(+) T cell survival. Mechanistically, in the absence of glycolysis, mitochondrial membrane potential (ΔΨm) of EM cells declined and intrinsic apoptosis was triggered. Restoring pyruvate levels, the end product of glycolysis, preserved ΔΨm and prevented apoptosis. Furthermore, reconstitution of reactive oxygen species (ROS), whose production depends on ΔΨm, also rescued viability, whereas scavenging mitochondrial ROS exacerbated apoptosis. Rapid access of SRC in hypoxia, linked with built-in, oxygen-resistant glycolytic reserve that functionally insulates ΔΨm and mitochondrial ROS production from oxygen tension changes, provides an immune-metabolic basis supporting survival, migration, and function of EM CD4(+) T cells in normoxic and hypoxic conditions. PMID:26621861

  20. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism.

    PubMed Central

    Maden, B E

    2000-01-01

    In most organisms, tetrahydrofolate (H(4)folate) is the carrier of C(1) fragments between formyl and methyl oxidation levels. The C(1) fragments are utilized in several essential biosynthetic processes. In addition, C(1) flux through H(4)folate is utilized for energy metabolism in some groups of anaerobic bacteria. In methanogens and several other Archaea, tetrahydromethanopterin (H(4)MPT) carries C(1) fragments between formyl and methyl oxidation levels. At first sight H(4)MPT appears to resemble H(4)folate at the sites where C(1) fragments are carried. However, the two carriers are functionally distinct, as discussed in the present review. In energy metabolism, H(4)MPT permits redox-flux features that are distinct from the pathway on H(4)folate. In the reductive direction, ATP is consumed in the entry of carbon from CO(2) into the H(4)folate pathway, but not in entry into the H(4)MPT pathway. In the oxidative direction, methyl groups are much more readily oxidized on H(4)MPT than on H(4)folate. Moreover, the redox reactions on H(4)MPT are coupled to more negative reductants than the pyridine nucleotides which are generally used in the H(4)folate pathway. Thermodynamics of the reactions of C(1) reduction via the two carriers differ accordingly. A major underlying cause of the thermodynamic differences is in the chemical properties of the arylamine nitrogen N(10) on the two carriers. In H(4)folate, N(10) is subject to electron withdrawal by the carbonyl group of p-aminobenzoate, but in H(4)MPT an electron-donating methylene group occurs in the corresponding position. It is also proposed that the two structural methyl groups of H(4)MPT tune the carrier's thermodynamic properties through an entropic contribution. H(4)MPT appears to be unsuited to some of the biosynthetic functions of H(4)folate, in particular the transfer of activated formyl groups, as in purine biosynthesis. Evidence bearing upon whether H(4)MPT participates in thymidylate synthesis is discussed

  1. Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review

    PubMed Central

    Kagota, Satomi; Maruyama, Kana; McGuire, John J.

    2016-01-01

    Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study. PMID:27006943

  2. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  3. Metabolic circuits in neural stem cells

    PubMed Central

    Kim, Do-Yeon; Rhee, Inmoo

    2015-01-01

    Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline. PMID:25037158

  4. Cardiac steatosis and left ventricular function in men with metabolic syndrome

    PubMed Central

    2013-01-01

    Background Ectopic accumulation of fat accompanies visceral obesity with detrimental effects. Lipid oversupply to cardiomyocytes leads to cardiac steatosis, and in animal studies lipotoxicity has been associated with impaired left ventricular (LV) function. In humans, studies have yielded inconclusive results. The aim of the study was to evaluate the role of epicardial, pericardial and myocardial fat depots on LV structure and function in male subjects with metabolic syndrome (MetS). Methods A study population of 37 men with MetS and 38 men without MetS underwent cardiovascular magnetic resonance and proton magnetic spectroscopy at 1.5 T to assess LV function, epicardial and pericardial fat area and myocardial triglyceride (TG) content. Results All three fat deposits were greater in the MetS than in the control group (p <0.001). LV diastolic dysfunction was associated with MetS as measured by absolute (471 mL/s vs. 667 mL/s, p = 0.002) and normalized (3.37 s-1 vs. 3.75 s-1, p = 0.02) LV early diastolic peak filling rate and the ratio of early diastole (68% vs. 78%, p = 0.001). The amount of epicardial and pericardial fat correlated inversely with LV diastolic function. However, myocardial TG content was not independently associated with LV diastolic dysfunction. Conclusions In MetS, accumulation of epicardial and pericardial fat is linked to the severity of structural and functional alterations of the heart. The role of increased intramyocardial TG in MetS is more complex and merits further study. PMID:24228979

  5. Effect of nitrogen dioxide, ozone, and peroxyacetyl nitrate on metabolic and pulmonary function

    SciTech Connect

    Drechsler-Parks, D.M. )

    1987-04-01

    The metabolic and pulmonary function responses were investigated in 32 non-smoking men and women (8 men and 8 women 18-26 years of age, and 8 men and 8 women 51-76 years of age) who were exposed for 2 hours to each of 8 conditions: (1) filtered air (FA), (2) 0.13 ppm peroxyacetyl nitrate (PAN), (3) 0.45 ppm ozone (O3), (4) 0.60 ppm nitrogen dioxide (NO2), (5) 0.13 ppm PAN + 0.45 ppm O3 (PAN/O3), (6) 0.13 ppm PAN + 0.60 ppm NO2 (PAN/NO2), (7) 0.60 ppm NO2 + 0.45 ppm O3 (NO2/O3), and (8) 0.13 ppm PAN + 0.60 ppm NO2 + 0.45 ppm O3 (PAN/NO2/O3). The subjects alternated 20-min periods of rest (n = 3) and cycle ergometer exercise (n = 3) at a work load predetermined to elicit a ventilatory minute volume (VE) of approximately 25 L/min (BTPS). Functional residual capacity (FRC) was determined pre- and post-exposure. Forced vital capacity (FVC) was determined before and after exposure, and 5 min after each exercise period. Heart rate was monitored throughout each exposure, and VE was measured during the last 2 min of each exercise period. Exposure to FA, PAN, NO2, and PAN/NO2 had no effect on any measure of pulmonary or metabolic function. Ozone was primarily responsible for the pulmonary function effects observed. There was no significant difference between the responses to O3 exposure and the responses to the three O3 mixtures, indicating no interactions between the pollutants. The results suggest that women may be somewhat more responsive to O3 exposure than men, and that older people (51-76 years of age) may be less responsive to O3 than younger people (18-26 years of age).

  6. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders

    PubMed Central

    van Veen, Sarah; Sørensen, Danny M.; Holemans, Tine; Holen, Henrik W.; Palmgren, Michael G.; Vangheluwe, Peter

    2014-01-01

    Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na+/K+-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases.