Science.gov

Sample records for metal alloy thin

  1. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  2. Nobel metal alloyed thin-films with optical properties on demand

    NASA Astrophysics Data System (ADS)

    Gong, Chen; Leite, Marina S.

    Metallic materials with tunable optical responses can enable the unprecedented control of optoelectronic and nanophotonic devices with enhanced performance, such as thin-film solar cells, metamaterials and metasurfaces for tunable absorbers and optical filters, among others. Here we present the alloying of noble metals, Ag, Au and Cu, to develop a novel class of material with optical response not achieved by pure metals. We fabricate binary mixtures with controlled chemical composition by co-sputtering. Ellipsometry and surface plasmon polariton coupling angle measurements are in excellent agreement when determining the real part of the dielectric function (ɛ1). Surprisingly, in some cases, a mixture provides a material with higher surface plasmon polariton quality factor than the corresponding pure metals. Our approach paves the way to implement metallic nanostructures with tunable absorption/transmission, overcoming the current limitation of the dielectric function of noble metals.

  3. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  4. Magnesium Alloy Precursor Thin Films for Efficient, Practical Fabrication of Nanoporous Metals

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Briot, Nicolas J.; Swartzentruber, Phillip D.; Balk, T. John

    2014-01-01

    An improved approach to fabrication of nanoporous (np) metals is demonstrated for several metallic systems that were successfully created by dealloying magnesium-based precursor alloys (also containing iridium, nickel, gold, or osmium-ruthenium). A significant advantage is that magnesium alloys can be dealloyed effectively using water or, if needed, dilute acetic acid. The crystal structures of magnesium-based precursor films were significantly different from those of alloys commonly used as precursors. This approach should be generally applicable to np metal synthesis.

  5. Ion-induced grain growth in multilayer and coevaporated metal alloy thin films

    SciTech Connect

    Alexander, D.E.; Was, G.S. . Dept. of Nuclear Engineering); Rehn, L.E. )

    1990-09-01

    Irradiation experiments were conducted on multilayer (ML) and coevaporated (CO) thin films in order to examine the role that the heat of mixing ({Delta}H{sub mix}) has in ion-induced grain growth. Room temperature irradiations using 1.7 MeV Xe were performed in the High Voltage Electron Microscope at Argonne National Laboratory. The alloys studied (Pt-Ti, Pt-V, Pt-Ni, Au-Co and Ni-Al) spanned a large range of {Delta}H{sub mix} values. Comparison of grain growth rates between ML and CO films of a given alloy confirmed a heat of mixing effect. Differences in grain growth rates between ML and CO films scaled according to the sign and magnitude of {Delta}H{sub mix} of the system (with exception of the Pt-V system). Substantial variations in growth rates among CO alloy films experiencing similar irradiation damage demonstrated that a purely collisional approach is inadequate for describing ion-induced grain growth and consideration must also be given to material-specific properties. Results from CO alloy films were consistent with a thermal spike model of ion-induced grain growth. The grain boundary mobility was observed to be proportional to the thermal spike-related parameter, (F{sub D}{sup 2})/({Delta}H{sub coh}{sup 3}), where F{sub D} is the deposited damage energy and {Delta}H{sub coh} is the cohesive energy.

  6. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  7. Making Thin Laminae Of Frozen Alloy Slurries

    NASA Technical Reports Server (NTRS)

    Ghosh, A. K.; Holmes, L. M.; Houston, R. B.; Ecer, G. M.

    1992-01-01

    In new technique, primary objective to develop method to distribute uniformly-thin powder-metal-alloy layers between alternate fiber layers prior to consolidation. Involves use of sheets of frozen alloy powder. These laminae, interspersed with fiber mats, used to make metal/fiber composites. In addition to aerospace applications, this technique, appropriately modified, has potential in the manufacture of future automobile engines or components including molded ceramics.

  8. The fabrication of thin-walled steel alloys through the gas carburization of reduced metal oxide extrusions

    NASA Astrophysics Data System (ADS)

    Cerully, Laura B.

    Investigations of the production of thin-walled steel alloys through the reduction and subsequent gas carburization of structures made from metal oxide powders were performed. Batch compositions, as well as the heat treatment parameters necessary for the formation of structures with the compositions of 4140 and 316 steel without carbon, were determined through the use of thermogravimetric analysis, dilatometric measurements, and microstructural investigation. Parameters for the high temperature carburization of thin tape of 250-300 mum thickness, as well as hollow metal spheres with 4140 composition, in a CO/CO2 atmosphere were determined using thermodynamic data and experimental work. The research has shown that the amount of carbon in the walls of the structures can be controlled and uniform carbon contents across the cross-sections can be achieved in less than 30 minutes. Heat treatments for carburized samples of 4140 composition were carried out using oil quench and salt bath furnaces. Mechanical property testing of heat-treated samples was carried out using Vickers microhardness testing, resulting in values similar to conventionally produced 4140 steel. Compression testing of carburized 4140 spheres was also performed, showing that crush strength of the spheres has been significantly improved through the carburization process. Studies on the decarburization behavior of similar alloys under various conditions were also performed in order to aid in the prediction of the microstructural behavior of samples during carburization and subsequent heat treatment. Low temperature gas carburization of structures with 316 steel composition without carbon, has also been performed. Hardness variations present through the cross-section of the part after carburization suggest some transfer of carbon, though contents are not as high as anticipated. Suggestions for future work in this area are presented. The results of these investigations yield a novel method for the

  9. Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors

    NASA Astrophysics Data System (ADS)

    Hughes, R. C.; Schubert, W. K.; Zipperian, T. E.; Rodriguez, J. L.; Plut, T. A.

    1987-08-01

    The addition of Ag to Pd in the gate metal of a metal-insulator-semiconductor gas sensing diode can improve the performance and change the selectivity of the sensors for a variety of reactions. Data on the response of diodes with 12 different ratios of Ag to Pd in alloys and layers of Pd and Ag to hydrogen and other gases are reported. Diodes with as much as 32% Ag respond very well to H2 gas and the films are much more durable to high hydrogen exposure than pure Pd films. Improvements in the rate of response and aging behavior are found for certain Ag combinations; others give poorer performance. The presence of Ag on the surface changes the catalytic activity in some cases and examples of H2 mixed with O2 and/or NO2, propylene oxide, ethylene, and formic acid are given. Such selectivity forms the basis for miniature chemical sensor arrays which could analyze complex gas mixtures.

  10. Punching Holes in Thin Metals

    NASA Technical Reports Server (NTRS)

    Garcia, Richard; Foster, Derrell; Miranda, Valentino

    1987-01-01

    Simple punching tool used to make holes in thin metal sheets, without burrs and edge deformations. Tool used on such materials as stainless steel, nickel alloys, beryllium, copper, and aluminum, in thicknesses of 0.002 to 0.010 in. With new punch, hole size held to tolerance of 0.025 mm. Includes rubber punch extruding into hole in top plate, pushing out exposed portion of clamped metal sheet.

  11. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  12. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  13. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  14. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  15. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    SciTech Connect

    Reade, R.P.; Mao, X.L.; Russo, R.E. )

    1991-08-05

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily {ital c}-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001) oriented YSZ intermediate layers and have {ital T}{sub {ital c}} ({ital R}=0) = 86.0 K and {ital J}{sub {ital c}} {similar to} 3{times}10{sup 3} A/cm{sup 2} at 77 K.

  16. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  17. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. Room temperature magnetism and metal to semiconducting transition in dilute Fe doped Sb1-xSex semiconducting alloy thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay

    2015-02-01

    The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.

  19. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  20. Thin-film diffusion brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  1. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  2. Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films.

    PubMed

    Hirsch, Arthur; Michaud, Hadrien O; Gerratt, Aaron P; de Mulatier, Séverine; Lacour, Stéphanie P

    2016-06-01

    Stretchable biphasic conductors are formed by physical vapor deposition of gallium onto an alloying metal film. The properties of the photolithography-compatible thin metal films are highlighted by low sheet resistance (0.5 Ω sq(-1) ) and large stretchability (400%). This novel approach to deposit and pattern liquid metals enables extremely robust, multilayer and soft circuits, sensors, and actuators. PMID:26923313

  3. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  4. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  5. Metallic alloy stability studies

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  6. Cooled thin metal liner

    NASA Technical Reports Server (NTRS)

    Liang, George P. (Inventor)

    1995-01-01

    A first metal sheet (34) has openings (46) in registration with depressions (40) in a second contacting metal sheet (36). Each depression has a downstream wall (42) at an angle of 24.degree. from the plane of the sheets. A metering hole (56) in the depression amidst cooling air in a direction to first impinge against an overlaying portion (48) of the first plate, before it diffuses along the downstream wall.

  7. Thin CVD Coating Protects Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  8. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  9. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  10. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  11. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  12. Dissociation of dilute immiscible copper alloy thin films

    NASA Astrophysics Data System (ADS)

    Barmak, K.; Lucadamo, G. A.; Cabral, C.; Lavoie, C.; Harper, J. M. E.

    2000-03-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 °C. However, in most cases, substantial reductions in resistivity of the films took place below 400 °C, at temperatures of interest to copper metallization schemes for silicon chip technology.

  13. PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1996-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy can be used for improved hydrogen detection.

  14. Thin Nanoporous Metal-Insulator-Metal Membranes.

    PubMed

    Aramesh, Morteza; Djalalian-Assl, Amir; Yajadda, Mir Massoud Aghili; Prawer, Steven; Ostrikov, Kostya Ken

    2016-02-01

    Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 10(7) V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 10(6) V/cm; sufficient for ionization of wide range of molecules. These metal-insulator-metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy. PMID:26846250

  15. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  16. Metal dusting of nickel-containing alloys

    SciTech Connect

    Baker, B.A.; Smith, G.D.

    1998-12-31

    Metal dusting is a catastrophic form of carburization which leads to pitting and grooves as the affected metal disintegrates into a mixture of powdery carbon, metallic particles, and possibly oxides and carbides. This high temperature carburization mode is not yet well understood and while relatively infrequent, can be economically disastrous when it does occur in large and complex chemical and petrochemical process streams. References in the literature show that all classes of heat resistant alloys are prone to metal dusting, given the necessary and specific environmental conditions. These same references describe the environments that plague nickel-containing alloys and are used as the basis for postulation on the probable corrosion mechanisms responsible for metal dusting. Using alloy 800 and other nickel-containing alloys and metal dusting atmospheres, an effort is made to examine the steps in the metal dusting process and the temperature ranges over which metal dusting occurs.

  17. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  18. Exchange stiffness in thin film Co alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, C.; Huttema, W.; Arora, M.; Montoya, E.; Rashidi, F.; Burrowes, C.; Kardasz, B.; Girt, E.; Heinrich, B.; Mryasov, O. N.; From, M.; Karis, O.

    2012-04-01

    The exchange stiffness (Aex) is one of the key parameters controlling magnetization reversal in magnetic materials. We used a method based on the spin spiral formation in two ferromagnetic films antiferromagnetically coupled across a non-magnetic spacer layer and Brillouin scattering to measure Aex for a series of Co1-δXδ (X = Cr, Ni, Ru, Pd, Pt) thin film alloys. The results show that Aex of Co alloys does not necessarily scale with Ms; Aex approximately decreases at the rate of 1.1%, 1.5%, 2.1%, 3.5%, and 5.6%, while Ms decreases at the rate of 1.1%, 0.5%, 1.1%, 3.7%, and 2.5% per addition of 1 at % of Pt, Ni, Pd, Cr, and Ru, respectively.

  19. Joining lead wires to thin platinum alloy films

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Claing, R. G. (Inventor)

    1983-01-01

    A two step process of joining a lead wire to .000002 m thick platinum alloy film which rests upon an equally thin alumina insulating layer which is adhered to a metal substrate is described. Typically the platinum alloy film forms part of a thermocouple for measuring the surface temperature of a gas turbine airfoil. In the first step the lead wire is deformed 30 to 60% at room temperature while the characteristic one million ohm resistance of the alumina insulating layer is monitored for degradation. In the second step the cold pressed assembly is heated at 865 to 1025 C for 4 to 75 hr in air. During the heating step any degradation of insulating layer resistance may be reversed, provided the resistance was not decreased below 100 ohm in the cold pressing.

  20. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  1. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  2. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  3. Cu(In,Ga)Se2 Thin Film Preparation from a Cu(In,Ga) Metallic Alloy and Se Nanoparticles by an Intense Pulsed Light Technique

    NASA Astrophysics Data System (ADS)

    Dhage, Sanjay R.; Kim, Hak-Sung; Hahn, H. Thomas

    2011-02-01

    The main contribution of this paper is the development of a novel process for the formation of copper indium gallium diselenide (CIGS) films. CIGS films with a thickness of 4 μm and grain size from 0.3 μm to 1 μm were prepared from a Cu(In0.7Ga0.3) (CIG) metallic alloy and Se nanoparticles by the intense pulsed light (IPL) technique. The melting of the CIG and Se nanoparticles and nucleation of CIGS occurred in a very short reaction time of 2 ms. It is believed that the Se diffuses into the CIG lattice to form the CIGS chalcopyrite crystal structure. The tetragonal chalcopyrite crystal structure was confirmed by x-ray powder diffraction (XRD), while the microstructure and composition were determined by field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDAX), and x-ray fluorescence (XRF) spectroscopy.

  4. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  5. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  6. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  7. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  8. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  9. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  10. Method and Apparatus for the Detection of Hydrogen Using a Metal Alloy

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1997-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy is deposited on a substrate and a thin film and connected across electrical circuitry to provide a sensor device that can be used for improved sensitivity and accuracy of hydrogen detection.

  11. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal... “Class II Special Controls Guidance Document: Dental Noble Metal Alloys.” The devices are exempt from...

  12. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  13. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  14. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  15. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  16. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  17. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  18. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  19. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  20. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  1. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  2. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  3. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  4. Metallic alloy targets for high Tc superconducting film deposition

    NASA Astrophysics Data System (ADS)

    Manini, P.; Nigro, A.; Romano, P.; Vaglio, R.

    1989-02-01

    Many experiments are nowadays conducting worldwide on superconducting films based on the recently developed high Tc superconductor materials (YBCO, BISCO, etc). There are different ways to produce these films, among which sputtering and evaporation are most popular. Normally, use is made of oxides, pure metals or compounds as material sources. In the present paper we describe the fabrication process and the physico-chemical characteristics of various metallic alloy components for both sputtering and evaporation processes which show various advantages in terms of stability, easiness of use, purity, flexibility in composition and shape and allow good process control. Deposition techniques and experimental results obtained on thin films of the new superconductors realized starting from these alloys are also reported.

  5. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  6. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications.

    PubMed

    Xie, L M

    2015-11-28

    Engineering electronic structure of atomically thin two-dimensional (2D) materials is of great importance to their potential applications. In comparison to numerous other approaches, such as strain and chemical functionization, alloying can continuously tune the band gaps in a wide energy range. Atomically thin 2D alloys have been prepared and studied recently due to their potential use in electronic and optoelectronic applications. In this review, we first summarize the preparation methods of 2D alloys (mainly on transition metal dichalcogenide (TMD) monolayer alloys), including mechanical exfoliation, physical vapor deposition (PVD), chemical vapor deposition (CVD) and chalcogen exchange. Then, atomic-resolution imaging, Raman and photoluminescence (PL) spectroscopy characterization of 2D alloys are reviewed, in which band gap tuning is discussed in detail based on the PL experiments and theoretical calculations. Finally, applications of 2D alloys in field-effect transistors (FETs), photocurrent generation and hydrogen evolution catalysis are reviewed. PMID:26508084

  7. Properties of test metal ceramic titanium alloys.

    PubMed

    Akagi, K; Okamoto, Y; Matsuura, T; Horibe, T

    1992-09-01

    Four test alloys were prepared using a high frequency centrifugal casting machine and a ceramic crucible for the development of titanium bonding alloys that can be cast in the ordinary atmosphere. Of these alloys, 10.06% Ti, 78.79% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir could be cast by the conventional high frequency centrifugal method; however, 89.18% Ti, 8.75% Ni, 1.03% Pd, 0.28% Sn and 89.81% Ti, 8.15% Ni, 1.01% Pd, 0.18% Sn, 0.67% Ir could be cast only by the argon are melting method. The alloys 10.06% Ti, 78.95% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed excellent physical and mechanical properties and bonding strengths, surpassing those of the commercial alloys TPW and Unimetal. Concerning the elution of component elements, the amounts of titanium eluted from these alloys were far smaller than those from pure titanium or a Ti-6Al-4V alloy, and nickel elution, which has become an issue in relation to metal allergy, was almost nil in contrast to Unimetal (Ni-Cr alloy). The alloy 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed properties that indicated its favorable use as an alloy for the bonding of dental porcelain. PMID:1432762

  8. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  9. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  10. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  11. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  12. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  13. Thermal expansion: Metallic elements and alloys. [Handbook

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  14. Overlay metallic-cermet alloy coating systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  15. Misfit stabilized embedded nanoparticles in metallic alloys.

    PubMed

    Gornostyrev, Yu N; Katsnelson, M I

    2015-11-01

    Nanoscale inhomogeneities are typical for numerous metallic alloys and crucially important for their practical applications. At the same time, stabilization mechanisms of such a state are poorly understood. We present a general overview of the problem, together with a more detailed discussion of the prototype example, namely, Guinier-Preston zones in Al-based alloys. It is shown that coherent strain due to a misfit between inclusion and host crystal lattices plays a decisive role in the emergence of the inhomogeneous state. We suggest a model explaining the formation of ultrathin plates (with the thickness of a few lattice constants) typical for Al-Cu alloys. Discreteness of the array of misfit dislocations and long-ranged elastic interactions between them are the key ingredients of the model. This opens a way for a general understanding of the nature of (meta)stable embedded nanoparticles in practically important systems. PMID:26431075

  16. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  17. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  18. Alloy metal nanoparticles for multicolor cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  19. Chemical resistance guide for metals and alloys

    SciTech Connect

    1998-12-31

    This guide contains data for 29,000 combinations of corrodents vs. metals, metal alloys, and carbon. Features and specifications include: (1) 963 liquid or dry chemicals, gases, lubricants, household fluids, foods, atmospheres, and other environments are covered; (2) 70 chemical trade names are covered; (3) 500 synonyms of covered chemicals, gases, etc. are indexed to page numbers; (4) corrodents are listed in alphabetical order; (5) data are presented in symbolic format (A, B, C, NR); (6) where known chemical resistance varies with concentration and temperature, data are presented in descending order of concentration and temperature; (7) mechanical, physical, and electrical properties data for each metal are provided; (8) a flex thumb index is provided at the right-hand margin of the right-hand pages to facilitate quick access to the desired data; (9) an electromotive or galvanic series list covering 120 metals, alloys, and carbon is included; (10) machinability ratings for most metals, including some specific S.F.M. rates, is included; (11) creep or stress relaxation rates at various levels of stress, temperature, and time are included; and (12) printed on semigloss, 70 pound, plastic-coated bond paper that last through years of reference.

  20. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  1. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  2. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  3. Deriving the Metal and Alloy Networks of Modern Technology.

    PubMed

    Ohno, Hajime; Nuss, Philip; Chen, Wei-Qiang; Graedel, Thomas E

    2016-04-01

    Metals have strongly contributed to the development of the human society. Today, large amounts of and various metals are utilized in a wide variety of products. Metals are rarely used individually but mostly together with other metals in the form of alloys and/or other combinational uses. This study reveals the intersectoral flows of metals by means of input-output (IO) based material flow analysis (MFA). Using the 2007 United States IO table, we calculate the flows of eight metals (i.e., manganese, chromium, nickel, molybdenum, niobium, vanadium, tungsten, and cobalt) and simultaneously visualize them as a network. We quantify the interrelationship of metals by means of flow path sharing. Furthermore, by looking at the flows of alloys into metal networks, the networks of the major metals iron, aluminum, and copper together with those of the eight alloying metals can be categorized into alloyed-, nonalloyed-(i.e., individual), and both mixed. The result shows that most metals are used primarily in alloy form and that functional recycling thereby requires identification, separation, and alloy-specific reprocessing if the physical properties of the alloys are to be retained for subsequent use. The quantified interrelation of metals helps us consider better metal uses and develop a sustainable cycle of metals. PMID:26927531

  4. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  5. Growth morphology of thin films on metallic and oxide surfaces.

    PubMed

    Krupski, Aleksander

    2014-02-01

    In this work we briefly review recent investigations concerning the growth morphology of thin metallic films on the Mo(110) and Ni3Al(111) surfaces, and Fe and copper phthalocyanine (C32H16N8Cu) on the Al2O3/Ni3Al(111) surface. Comparison of Ag, Au, Sn, and Pb growth on the Mo(110) surface has shown a number of similarities between these adsorption systems, except that surface alloy formation has only been observed in the case of Sn and Au. In the Pb/Mo(110) and Pb/Ni3Al(111) adsorption systems selective formation of uniform Pb island heights during metal thin film growth has been observed and interpreted in terms of quantum size effects. Furthermore, our studies showed that Al2O3 on Ni3Al(111) exhibits a large superstructure in which the unit cell has a commensurate relation with the substrate lattice. In addition, copper phthalocyanine chemisorbed weakly onto an ultra-thin Al2O3 film on Ni3Al(111) and showed a poor template effect of the Al2O3/Ni3Al(111) system. In the case of iron cluster growth on Al2O3/Ni3Al(111) the nucleation sites were independent of deposition temperature, yet the cluster shape showed a dependence. In this system, Fe clusters formed a regular hexagonal lattice on the Al2O3/Ni3Al(111). PMID:24445588

  6. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  7. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  8. Ultrahigh stability of atomically thin metallic glasses

    SciTech Connect

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  9. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    PubMed

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp(2) carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788

  10. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes

    PubMed Central

    Halpern, Jeffrey M.; Martin, Heidi B.

    2014-01-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788

  11. Tunable magnetocaloric effect in transition metal alloys.

    PubMed

    Belyea, Dustin D; Lucas, M S; Michel, E; Horwath, J; Miller, Casey W

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  12. [Alloys for metal-ceramics 3].

    PubMed

    Quintero Englembright, M A; Barceló Santana, F; Palma Calero, M

    1991-01-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:1946199

  13. Noble metal/vanadium alloy catalyst and method for making

    SciTech Connect

    Jalan, V.M.

    1980-05-13

    A novel catalyst comprises an alloy of a noble metal and vanadium. The catalyst is particularly useful in an electrochemical cell cathode electrode. The method for making the alloy involves reacting a vanadium compound with sodium dithionite to form a sol of a finely dispersed vanadium sulfite complex, and then reacting noble metal particles with the complex in a reducing environment.

  14. Full electroresistance modulation in a mixed-phase metallic alloy

    DOE PAGESBeta

    Liu, Zhiqi; Li, L.; Gai, Zheng; Clarkson, J. D.; Hsu, S. L.; Wong, Anthony T.; Fan, L. S.; Lin, Ming -Wei; Rouleau, Christopher M.; Ward, Thomas Zac; et al

    2016-03-03

    We report a giant, ~22%, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2 kV/cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh/BaTiO3 heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Furthermore, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systemsmore » with phase instability therein.« less

  15. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy.

    PubMed

    Liu, Z Q; Li, L; Gai, Z; Clarkson, J D; Hsu, S L; Wong, A T; Fan, L S; Lin, M-W; Rouleau, C M; Ward, T Z; Lee, H N; Sefat, A S; Christen, H M; Ramesh, R

    2016-03-01

    We report a giant, ∼22%, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2  kV/cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh/BaTiO_{3} heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Moreover, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systems with phase instability therein. PMID:26991197

  16. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Li, L.; Gai, Z.; Clarkson, J. D.; Hsu, S. L.; Wong, A. T.; Fan, L. S.; Lin, M.-W.; Rouleau, C. M.; Ward, T. Z.; Lee, H. N.; Sefat, A. S.; Christen, H. M.; Ramesh, R.

    2016-03-01

    We report a giant, ˜22 %, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2 kV /cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh /BaTiO3 heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Moreover, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systems with phase instability therein.

  17. The Burning of Metals and Alloys in Microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, Donald B.; Benz, Frank

    1992-01-01

    The NASA-Lewis 2.2-sec drop tower has been used to characterize the oxygen-atmosphere burning of several representative spacecraft environment metallic materials in microgravity; these included rods of 2219 Al alloy, 316 stainless steel, Fe, and Ti, as well as sheets and meshes of 316 stainless steel. The absence of buoyant forces does not preclude extinguishment of the combustion process, and the regression rate of the melting interface of the cylindrical rods is significantly greater than in normal gravity. The flammability of such sample shapes as thin sheets, which are known to extinguish in normal gravity, is enhanced. Volatile combustion products are generated, in contrast to the normal gravity regime.

  18. Bioaccessibility of metals in alloys: Evaluation of three surrogate biofluids

    PubMed Central

    Hillwalker, Wendy E.; Anderson, Kim A.

    2014-01-01

    Bioaccessibility in vitro tests measure the solubility of materials in surrogate biofluids. However, the lack of uniform methods and the effects of variable test parameters on material solubility limit interpretation. One aim of this study was to measure and compare bioaccessibility of selected economically important alloys and metals in surrogate physiologically based biofluids representing oral, inhalation and dermal exposures. A second aim was to experimentally test different biofluid formulations and residence times in vitro. A third aim was evaluation of dissolution behavior of alloys with in vitro lung and dermal biofluid surrogates. This study evaluated the bioaccessibility of sixteen elements in six alloys and 3 elemental/metal powders. We found that the alloys/metals, the chemical properties of the surrogate fluid, and residence time all had major impacts on metal solubility. The large variability of bioaccessibility indicates the relevancy of assessing alloys as toxicologically distinct relative to individual metals. PMID:24212234

  19. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  20. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  1. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  2. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  3. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  4. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  5. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling

    SciTech Connect

    2010-10-01

    BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

  6. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  7. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  8. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  9. Tunable magnetocaloric effect in transition metal alloys

    PubMed Central

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  10. Tunable magnetocaloric effect in transition metal alloys

    NASA Astrophysics Data System (ADS)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  11. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  12. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  13. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  14. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  15. Thin film reactions on alloy semiconductor substrates

    SciTech Connect

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  16. Modeling of thermodiffusion in liquid metal alloys.

    PubMed

    Eslamian, Morteza; Sabzi, Fatemeh; Saghir, M Ziad

    2010-11-01

    In this paper following the linear non-equilibrium thermodynamics approach, an expression is derived for the calculation of the thermodiffusion factor in binary liquid metal alloys. The expression is comprised of two terms; the first term accounts for the thermally driven interactions between metal ions, a phenomenon similar to that of the non-ionic binary mixtures, such as hydrocarbons; the second term is called the electronic contribution and is the mass diffusion due to an internal electric field that is induced as a result of the imposed thermal gradient. Both terms are formulated as functions of the net heats of transport. The ion-ion net heat of transport is simulated by the activation energy of viscous flow and the electronic net heat of transport is correlated with the force acting on the ions by the rearrangement of the conduction electrons and ions. A methodology is presented and used to estimate the liquid metal properties, such as the partial molar internal energies, enthalpies, volumes and the activity coefficients used for model validation. The prediction power of the proposed expression along with some other existing thermodiffusion models for liquid mixtures, such as the Haase, Kempers, Drickamer and Firoozabadi formulas are examined against available experimental data obtained on ground or in microgravity environment. The proposed model satisfactorily predicts the thermodiffusion data of mixtures that are composed of elements with comparable melting points. It is also potentially and qualitatively able to predict a sign change in thermodiffusion factor of Na-K liquid mixture. With some speculation, the sign change is attributed to an anomalous change in thermoelectric power of Na-K mixture with composition. PMID:20856973

  17. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one

  18. Reducing inadvertent alloying of metal/ceramic brazes

    SciTech Connect

    Stephens, J.J.; Hlava, P.F.

    1992-12-31

    Inadvertent alloying of Cu braze metal can compromise metal/ceramic seals. Electron microprobe analyses have quantified alloying of Cu brazes in metal/ceramic feedthroughs. Pin material and processing parameters above 1084C both affect alloying levels. Using either Kovar or Ni-plated 316L stainless steel pins limits alloying compared to Palco pins. Minimizing the time during which the braze is molten also avoids excessive alloying. The original thickness of the Ni plating on the Mo-Mn metallization of the ceramic also influences the alloying content of these brazes. Metal/ceramic brazes made with long brazing cycles, Mo-Mn metallization, and Kovar components grow a layer of Mo{sub 6}(Fe{sub 3.5}CO{sub 3.5}){sub 7} on the metallization. Layer thicknesses observed do not appear to compromise joint integrity. Ni additions of approximately 10 and 20 wt.% to Cu apparently increases the stress required for stress relaxation during cooldown. to maintain creep rates required for stress relaxation during cooldown. Relative to unalloyed Cu, this strengthening effect tends to increase as temperature is decreased.

  19. Intermolecular bonding of metals or alloys by thermochemical decomposition

    NASA Technical Reports Server (NTRS)

    Wilson, R.

    1970-01-01

    Various metals and alloys are bonded at temperatures below their recrystallization temperature with a Ni-Fe-C alloy grown by thermochemical vapor deposition from organometallic plating compounds. Process time is short, the joints are strong, and microthrowing power is good.

  20. Electroslag remelting of the metal wastes of nickel alloys

    NASA Astrophysics Data System (ADS)

    Zherebtsov, S. N.; Korostelev, A. B.

    2012-06-01

    The electroslag remelting of the metal wastes of nickel alloys is studied, and the obtained results demonstrate that the chemical composition and the physicomechanical and service properties of the ingots meet the requirements of the specifications for these alloys. The electroslag remelting ingots are then used as a charge for remelting in a vacuum induction furnace according to a standard technology.

  1. Electroslag remelting of the metal wastes of nickel alloys

    NASA Astrophysics Data System (ADS)

    Zherebtsov, S. N.; Korostelev, A. B.

    2011-12-01

    The electroslag remelting (ESR) of the metal wastes of nickel alloys is studied. It is shown that the chemical composition, physicomechanical properties, and service properties of the formed castings meet the requirements of the specifications for these alloys. ESR workpieces are used as a charge for remelting in a vacuum induction furnace according to a standard technology.

  2. Soldering of Thin Film-Metallized Glass Substrates

    SciTech Connect

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.

    1999-03-31

    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  3. Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications

    NASA Astrophysics Data System (ADS)

    Ketov, Sergey V.; Shi, Xuetao; Xie, Guoqiang; Kumashiro, Ryotaro; Churyumov, Alexander Yu.; Bazlov, Andrey I.; Chen, Na; Ishikawa, Yoshifumi; Asao, Naoki; Wu, Hongkai; Louzguine-Luzgin, Dmitri V.

    2015-01-01

    Zr-Pd metallic glassy thin films with a hierarchical nano-scale structure, produced by magnetron sputtering of the Zr and Pd powder mixture, demonstrate a unique combination of physical and biochemical properties. Thermal stability of the nano-structured glassy samples, their resistance to oxidation in dry air and phase transformation behavior are discussed in the present work. These binary alloy samples also show exceptionally high corrosion resistance and spontaneous passivation in a simulated body fluid. Experiments on the catalytic activity and biocompatibility of this nanostructured metallic glass indicate that this is a very suitable material for biochemical applications. Compared to the multicomponent alloys studied earlier this binary alloy has much simpler chemical composition, which makes preparation of the sample with defined stoichiometry easier, especially when the elements have different sputtering rates.

  4. Thin, porous metal sheets and methods for making the same

    SciTech Connect

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  5. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  6. Theoretical study on the alloying behavior of γ-uranium metal: γ-uranium alloy with 3d transition metals

    NASA Astrophysics Data System (ADS)

    Kurihara, Masayoshi; Hirata, Masaru; Sekine, Rika; Onoe, Jun; Nakamatsu, Hirohide

    2004-03-01

    We have investigated the alloying behavior of γ-uranium with 3d transition metals (TMs) using the relativistic discrete-variational Dirac-Fock-Slater (DV-DFS) method. The d-orbital energy (Md) as an alloying parameter well reproduces the alloying behavior of γ-uranium metal with TMs: (1) in the case of a large Md value (Ti, V, Cr), the solubility of these TM elements in γ-uranium becomes large; (2) in the case of a middle Md value (Mn, Fe, Co), the tendency to form a uranium intermetallic compound with these elements becomes stronger; (3) in the case of a small Md value (Cu), the alloying element is insoluble in γ-uranium. The alloying behavior of γ-uranium with TMs is also discussed in terms of other parameters such as electronegativity and metallic radius.

  7. Microstructures and Mechanical Properties of Irradiated Metals and Alloys

    SciTech Connect

    Zinkle, Steven J

    2008-01-01

    The effects of neutron irradiation on the microstructural evolution of metals and alloys are reviewed, with an emphasis on the roles of crystal structure, neutron dose and temperature. The corresponding effects of neutron irradiation on mechanical properties of metals and alloys are summarized, with particular attention on the phenomena of low temperature radiation hardening and embrittlement. The prospects of developing improved high-performance structural materials with high resistance to radiation-induced property degradation are briefly discussed.

  8. The Growth and Characterization of Germanium-Carbon Alloy Thin Films and Solid Phase Equilibria for Metal-Silicon - Ternary Systems: Magnesium, Calcium, Strontium, Barium, Scandium, Yttrium, Lanthanum, Titanium, Zirconium and Hafnium

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie

    1992-09-01

    Thin films of pure germanium-carbon alloys (Ge _{rm x}C _{rm 1-x} with 0 <=q x <=q 1) have been grown on Si and Al_2O_3 substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray 0-20 diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00 eV to 0.85 eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples have a bonding structure that is a mixture of sp^2 and sp^3 hybridizations. The presence of the sp^2 C is apparently what causes the bandgap of amorphous Ge-C alloys to decrease with increasing carbon concentration. The solidus portion of the ternary phase diagrams of the type M-Si-O, where M = Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr and Hf have been derived at 298K and 1 atm oxygen partial pressure by investigating the bulk reactions possible in these systems. These phase diagrams, which have been determined by experiments and by calculations using thermodynamic data available, can be used to predict the occurrence of the reaction products or the stability of the phases present at the interfaces between different solid materials. Hence, they provide guides in designing thin film structures and in selecting candidate materials to form chemically stable interfaces. A research effort has been made on the investigation of the growth of diamond thin films from a carbon containing solid-CI_4, using laser ablation technique. The film grown by laser ablation from CI _4 is mainly composed of carbon with very small amount of oxygen and iodine as indicated by x-ray photoelectron spectroscopy data. The Auger electron spectroscopy result shows

  9. Electrical and materials characterization of tungsten-titanium diffusion barrier layers and alloyed silver metallization

    NASA Astrophysics Data System (ADS)

    Bhagat, Shekhar Kumar

    With the constant miniaturization of semiconductor devices, research is always ongoing to obtain the best materials and/or materials systems which fulfill all the requirements of an ideal interconnect. Silver (Ag) and silver based alloys are front runners among other metals and alloys being investigated. Ag has a low electrical resistivity (1.59 micro-ohm-centimeters for bulk), very high thermal conductivity (4.25 Watt per centimeters per Kelvin), and has better electromigration resistance than aluminum (Al). In the pure form, however, it has several drawbacks (e.g., a tendency to diffuse in silicon substrate at higher temperatures, inadequate adhesion to silicon dioxide, poor corrosion resistance, and agglomeration at higher temperatures). These drawbacks can be circumvented by the addition of diffusion barrier layers and/or alloying in silver. The present study investigates both routes to make silver a legitimate interconnect material. Initially this study focuses on thermal stability and behavior of tungsten-titanium (W-Ti) barrier layers for Ag metallization. It is shown that Ag thin films are thermally stable up to 650 degrees centigrade with the presence of W-Ti under layers. The effect of a W-Ti layer on the {111} texture formation in Ag thin film is also evaluated in detail. Insertion of a thin W-Ti over layer on Ag thin films is investigated with respect to their thermal stability. This research also evaluates the diffusion of Ag into silicon dioxide and W-Ti barriers. This project shows that W-Ti is an effective barrier layer for silver metallization. Later, the study investigates the effect of Cu addition in silver metallization and its impact on electromigration resistance. It is shown that Cu addition enhances the electromigration lifetime for silver metallization.

  10. Electron impinging on metallic thin film targets

    NASA Astrophysics Data System (ADS)

    Rouabah, Z.; Bouarissa, N.; Champion, C.

    2010-03-01

    Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.

  11. Deformation behavior of metallic glass thin films

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Zhao, F.; Li, Y. L.; Chen, M. W.

    2012-09-01

    We report room-temperature deformation behavior of damage-free metallic glass films characterized by nanoindentation and atomic force microscopy. The glass films with thicknesses ranging from 5 μm down to ˜60 nm plastically deform by shear bands when subjected to both spherical and sharp Berkovich indenters. Importantly, we found that gallium contamination from focus ion beam (FIB) milling significantly suppresses shear band formation, indicating that the absence of shear bands in FIB milled samples may be caused by gallium irradiation damage, rather than sample size effect. Finite element simulation reveals that a high stress gradient at the film/substrate interface promotes the plastic deformation of the thin films but does not give rise to significant strain inhomogeneity.

  12. Exchange Stiffness in Thin-Film Cobalt Alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, Charles

    The exchange stiffness, Aex, is one of the key parameters controlling magnetization reversal in magnetic materials but is very difficult to measure, especially in thin films. We developed a new technique for measuring the exchange stiffness of a magnetic material based on the formation of a spin spiral within two antiferromagnetically coupled ferromagnetic films [1]. Using this method, I was able to measure the exchange stiffness of thin film Co alloyed with Cr, Fe, Ni, Pd, Pt and Ru. The results of this work showed that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. These measured trends have been understood by combining measurements of element specific magnetic moments obtained using X-ray magnetic circular dichroism (XMCD) and material specific modeling based on density functional theory (DFT) within the local density approximation (LDA). The experimental results also hint at significant reduction of the exchange stiffness at the interface that can account for the difference between our results and those obtained on bulk materials.

  13. Weak crystallization theory of metallic alloys

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  14. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.; Landel, R. F.

    1976-01-01

    Hildebrand-Scott (1950) solubility parameters can be obtained for metals and alloys by calculating the cohesive energy density (CED), equal to the square of the solubility parameter, and a function of the heat of sublimation and the atomic volume. It is suggested that the solubility parameter permits estimation of the hydrogen storage capacity of an alloy and that alloys with a solubility parameter approximately equal to the parameter for hydrogen will have greater hydrogen storage capacity than other alloys. Equilibrium pressure - temperature relationships for some metal hydrides are presented in conjunction with the calculated solubility parameter and correlated with characteristics which would be useful in hydrogen-powered vehicles. Alloy properties which increase the amount of nonstoichiometric reversible hydrogen absorption are discussed.

  15. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction.

    PubMed

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan; Vegge, Tejs

    2015-05-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys of Au with mixed Pt-Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions. This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen reduction. PMID:25865333

  16. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  17. Novel tribological systems using shape memory alloys and thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  18. Reversible surface morphology in shape-memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Huang, W. M.; Fu, Y. Q.; Chollet, F.; Hu, Y. Y.; Cai, M.

    2009-02-01

    Reversible surface morphology can be used for significantly changing many surface properties such as roughness, friction, reflection, surface tension, etc. However, it is not easy to realize atop metals at micron scale around ambient temperature. In this paper, we demonstrate that TiNi and TiNi based (e.g., TiNiCu) shape-memory thin films, which are sputter-deposited atop a silicon wafer, may have different types of thermally-induced reversible surface morphologies. Apart from the well-known surface relief phenomenon, irregular surface trenches may appear in the fully crystallized thin films, but disappear upon heating. On the other hand, in partially crystallized thin films, the crystalline structures (islands) appear in chrysanthemum-shape at high temperature; while at room temperature, the surface morphology within the islands changes to standard martensite striations. Both phenomena are fully repeatable upon thermal cycling. The mechanisms behind these phenomena are investigated.

  19. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  20. Mechanical properties of metallic thin films: theoretical approach

    NASA Astrophysics Data System (ADS)

    Phuong, Duong Dai; Hoa, Nguyen Thi; Van Hung, Vu; Khoa, Doan Quoc; Hieu, Ho Khac

    2016-03-01

    The statistical moment method in statistical mechanics was developed to investigate the mechanical properties of free-standing metallic thin films at ambient conditions including the anharmonicity effects of thermal lattice vibrations. Analytical expressions of isothermal areal modulus B T , Young's modulus E and shear modulus G were derived in terms of the power moments of the atomic displacements. Numerical calculations have been performed for metallic Ni, Au and Al thin films, and compared with those of bulk metals. This method is physically transparent and it successfully described the temperature effects on mechanical properties of metallic thin films.

  1. Thin-film thermomechanical sensors embedded in metallic structures

    NASA Astrophysics Data System (ADS)

    Golnas, Anastasios M.

    2000-10-01

    The ability to monitor in real time the thermo-mechanical responses of tools, equipment, and structural components has been very appealing to the aerospace, automotive, drilling, and manufacturing industries. So far, the challenge has been to instrument the tools, equipment, or structural components with a number of sensors in an economical way and also protect the sensors from the environment which the tools, etc. are exposed to. In this work, a sequence of manufacturing processes that can be used to build thin-film temperature and strain sensors on internal surfaces of metallic structures is proposed and demonstrated. The use of thin-film techniques allows the parallel fabrication of sensor arrays, whereas a layered manufacturing scheme permits the creation of sensors on the internal surfaces of metallic parts and their subsequent embedding. Thin-film sensors are deposited on an aluminum oxide film, which is grown on a stainless steel substrate. The oxide is deposited by reactive sputtering. The sensors are sputter-deposited from alloy targets, shaped via micromachining and partially covered with a passivation layer of aluminum oxide. The thin-film structure is then covered by two protective electroplated layers of copper and nickel for protection during the deposition of the embedding layers. Embedding is accomplished by using a high-power infrared laser to melt an invar powder bed on top of the protective layers. Among the issues that emerged during the definition of the fabrication sequence were: the long-term stability of reactive deposition, the presence of pinholes in the dielectric layers, the optimal combination of materials and thickness of the protective layers, the bonding at the various interfaces, and the heat input and residual stresses resulting from the high-temperature embedding process. Finally, a finite element model was constructed in order to simulate the high-temperature embedding process. The heat transfer analysis performed on the model

  2. Electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The focus of this dissertation is the electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices. The electrochemical reduction of metal oxides to metals has been studied for decades as an alternative to pyrometallurgical processes for the metallurgy industry. However, the previous work was conducted on bulk polycrystalline metal oxides. Paper I in this dissertation shows that epitaxial face-centered cubic magnetite (Fe3O4 ) thin films can be electrochemically reduced to epitaxial body-centered cubic iron (Fe) thin films in aqueous solution on single-crystalline Au substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides. Electrodeposition, like biomineralization, is a soft solution processing method which can produce functional materials with special properties onto conducting or semiconducting solid surfaces. Paper II in this dissertation presents the electrodeposition of cobalt-substituted magnetite (CoxFe3-xO4, 0 of cobalt-substituted magnetite (CoxFe3-xO4, 0thin films and superlattices on Au single-crystalline substrates, which can be potentially used in spintronics and memory devices. Paper III in this dissertation reports the electrodeposition of crystalline cobalt oxide (Co3O4) thin films on stainless steel and Au single-crystalline substrates. The crystalline Co3O4 thin films exhibit high catalytic activity towards the oxygen evolution reaction in an alkaline solution. A possible application of the electrodeposited Co 3O4 is the fabrication of highly active and low-cost photoanodes for photoelectrochemical water-splitting cells.

  3. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  4. Hydrogen storage characteristics of mechanically alloyed amorphous metals

    SciTech Connect

    Harris, J.H.; Curtin, W.A.; Schultz, L.

    1988-09-01

    The hydrogen storage properties of a series of mechanically alloyed (MA) amorphous Ni/sub 1//sub --//sub x/Zr/sub x/ alloys are studied, using both gas phase and electrochemical techniques, and are compared to H storage of rapidly quenched (RQ) amorphous Ni/sub 1-//sub x/Zr/sub x/. In the MA alloys, hydrogen resides in the Ni/sub 4-//sub n/Zr/sub n/ (n = 4,3,2) tetrahedral interstitial sites, with a maximum hydrogen-to-metal ratio of 1.9(/sup 4//sub n/)x/sup n/(1-x)/sup 4-//sup n/. These features are identical to those of the RQ alloys and indicate that the topological and chemical order of the MA and RQ materials are essentially the same. However, the typical binding energy of hydrogen in a Ni/sub 4-//sub n/Zr/sub n/ site, E/sub n/, is shifted in the MA alloys relative to the RQ alloys and the distribution of binding energies centered on E/sub n/ is significantly broader in the MA samples. Thus, the MA and RQ alloys are not identical and sample annealing does not alter this subtle distinction. The sensitivity of H storage to the presence of chemical order in binary alloys are analyzed theoretically and the data is found to be most consistent with little or no chemical order (random alloys).

  5. Functionalization of Titanium Alloy Surface by Graphene Nanoplatelets and Metal Oxides: Corrosion Inhibition.

    PubMed

    Mondal, Jayanta; Aarik, Lauri; Kozlova, Jekaterina; Niilisk, Ahti; Mändar, Hugo; Mäeorg, Uno; Simões, Alda; Sammelselg, Väino

    2015-09-01

    Corrosion inhibition of metallic substrates is an important and crucial step for great economical as well as environmental savings. In this paper, we introduce an extra thin effective corrosion inhibitive material having layered structure designed for protection and functionalization of Ti Grade 5 alloy substrates. The coating consists of a first layer made of thin graphene nanoplatelets, on top of which a multilayer Al2O3 and TiO2 films is applied by low-temperature atomic layer deposition. The amorphous structure of the metal oxide films was confirmed by micro-Raman and X-ray diffraction analysis. Corrosion inhibition ability of the prepared coatings was analyzed by open circuit potential, potentiodynamic plot and by voltammetric analysis, in aqueous potassium bromide solution. The open circuit potential of the graphene-metal oxide coated substrate showed much passive nature than bare substrate or graphene coated or only metal oxide coated substrates. The localized corrosion potential of the graphene-metal oxide coated, only metal oxide coated, and bare substrates were found 5.5, 3.0, and 1.1 V, respectively. In addition, corrosion current density values of the graphene-metal oxide and only metal oxide coated substrates showed much more passive nature than the bare and graphene coated substrates. Long immersion test in the salt solution further clarified the effective corrosion inhibition of the graphene-metal oxide coated substrate. The analyzed results reflect that the graphene-metal oxide films can be used to prepare better and effective corrosion inhibition coatings for the Ti Grade 5 alloy to increase their lifetime. PMID:26716209

  6. Multiscale theory of thin film magnetic shape memory alloy microactuators

    NASA Astrophysics Data System (ADS)

    Stoilov, Vesselin

    2007-04-01

    This paper investigates the nano-macro transition in magnetic shape memory alloy(MSMA) thin films using a recently developed sharp phase front-based three-dimensional (3D) constitutive model outlined by Stoilov (JSMS 2007), and originally proposed in the 1D context by Stoilov and Bhattacharyya (Acta Mat 2002). The key ingredient in the model is the recognition of martensitic variants as separate phases in a MSMA domain. Evolution of the interface between these phases is taken as an indicator of the process of reorientation in progress. A formulation of the Helmholtz free energy potential based on Ising model has been derived. The implications of the external magnetic field on the initiation of phase transformation are studied for various mechanical loading modes.

  7. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  8. Graded coatings for metallic implant alloys

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  9. Fine tuning of graphene-metal adhesion by surface alloying

    PubMed Central

    Alfè, D.; Pozzo, M.; Miniussi, E.; Günther, S.; Lacovig, P.; Lizzit, S.; Larciprete, R.; Burgos, B. Santos; Menteş, T. O.; Locatelli, A.; Baraldi, A.

    2013-01-01

    We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction. PMID:23938361

  10. Fine tuning of graphene-metal adhesion by surface alloying.

    PubMed

    Alfè, D; Pozzo, M; Miniussi, E; Günther, S; Lacovig, P; Lizzit, S; Larciprete, R; Santos Burgos, B; Menteş, T O; Locatelli, A; Baraldi, A

    2013-01-01

    We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction. PMID:23938361

  11. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C.; Landel, R. F.

    1976-01-01

    Certain metals and related alloys can combine with hydrogen in a reversible fashion, so that on being heated, they release a portion of the gas. Such materials may find application in the large scale storage of hydrogen. Metal and alloys which show high dissociation pressure at low temperatures, and low endothermic heat of dissociation, and are therefore desirable for hydrogen storage, give values of the Hildebrand-Scott solubility parameter that lie between 100-118 Hildebrands, (Ref. 1), close to that of dissociated hydrogen. All of the less practical storage systems give much lower values of the solubility parameter. By using the Hildebrand solubility parameter as a criterion, and applying the mixing rule to combinations of known alloys and solid solutions, correlations are made to optimize alloy compositions and maximize hydrogen storage capacity.

  12. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  13. Alloy decomposition and surface instabilities in thin films

    NASA Astrophysics Data System (ADS)

    Leonard, Francois

    1998-12-01

    We theoretically and numerically study the growth of thin alloy layers by slow deposition techniques. We propose microscopic and mesoscopic descriptions of the phenomena, from which composition modulations in the thin film emerge, coupled with surface undulations. We obtain excellent agreement between these two approaches and are able to predict analytically the wavelength of the modulation as a function of the deposition rate and the temperature, which is confirmed numerically. The important non-equilibrium nature of the growth process is shown to lead to the experimentally observed structures, the patterning of the film for device applications is discussed, and we calculate scattering functions that can be compared with experiments. We explore the effects of stress and strain on the composition modulations in lattice-matched films, when phase separation is the driving force for the composition inhomogeneities. It is found that the lamellar structures seen without elastic effects can become dynamically unstable to the formation of hexagonal structures, due to long-ranged elastic interactions. The hexagonal order is found to consist of elastically undeformed droplets of the hard component in an elastically deformed matrix of the soft component. The wavelength of the composition modulation is calculated numerically and is always smaller than the wavelength in the absence of elastic effects. We also discuss the effects of crystal anisotropy in our system. The stability of mismatched alloy layers is studied with emphasis on the non-equilibrium nature of the growth and the coupling between the surface morphology and the film composition. We consider static and growing films at temperatures and mean compositions inside and outside of the phase diagram miscibility gap. Stability diagram are presented in terms of the mismatch between the film and the substrate and the growth velocity. It is shown that the experimentally observed difference in stability between tensile and

  14. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  15. Electrochemical characteristics of encapsulated metal-hydride-alloy electrodes

    SciTech Connect

    Zhu, W.H.; Zhang, D.J.; Ke, J.J.

    1996-06-01

    Metal hydride electrodes with copper-encapsulated alloys and non-coated alloys were fabricated using suitable conductive and binding agents. The charge-discharge characteristics of three kinds of hydride electrodes were comparatively investigated. The encapsulated alloy electrode is remarkably superior to the non-coated LaNi{sub 5}-based one, discharging at a high rate and exhibiting a smaller capacity decay at the stage of cycle tests. The hydride alloy quality of hydride electrodes can be effectively determined by measuring rate capability. The results of vented cell experiments confirm that the capacity decay of non-coated alloy electrodes in sealed cells is not due to the oxidation of oxygen from the nickel hydroxide positive electrodes. The relationship between the equilibrium potential of hydride electrode and the equilibrium hydrogen pressure has been deduced by a succinct thermodynamic method, without consideration of the unknown activity of water and fugacity coefficient of hydrogen.

  16. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  17. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W.; Fernando, G.W.; Bennett, L.H.

    1992-10-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions & band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund`s rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  18. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W. ); Fernando, G.W. . Dept. of Physics); Bennett, L.H. . Metallurgy Div.)

    1992-01-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund's rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  19. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  20. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.

    PubMed

    Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Pan, Daocheng

    2016-03-01

    Alkali metal doping plays a crucial role in fabricating high-performance Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this study, we report the first experimental observation and characterizations of the alloyed Li(x)Cu(2-x)ZnSn(S,Se)4 thin films. It is found that Cu(+) ions in Cu2ZnSn(S,Se)4 thin films can be substituted with Li(+) ions, forming homogeneous Li(x)Cu(2-x)ZnSn(S,Se)4 (0 ≤ x ≤ 0.29) alloyed thin films. Consequently, the band gap, conduction band minimum, and valence band maximum of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films are profoundly affected by Li/Cu ratios. The band alignment at the Li(x)Cu(2-x)ZnSn(S,Se)4/CdS interface can be tuned by changing the Li/Cu ratio. We found that the photovoltaic parameters of the Li(x)Cu(2-x)ZnSn(S,Se)4 solar cell devices are strongly influenced by the Li/Cu ratios. Besides, the lattice constant, carrier concentration, and crystal growth of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films were studied in detail. PMID:26837657

  1. New Alloy for Glass-to-Metal Seals

    NASA Technical Reports Server (NTRS)

    Schmuck, A. J.

    1986-01-01

    Coefficient of thermal expansion approximates that of glass more closely. Alloy composed of about 60 percent iron, 40 percent nickel, and traces of six other elements. Developed as replacement for Kovar Fe/Ni/Co alloy in ferrule-and-tube assembly, new alloy has same strength, solderability, and compatibility with fuel as does Kovar. Used in glass-to-metal seals without excessive residual stresses. Potential for other applications in which low thermal expansion important; mechanical measuring devices and precise sliding parts that must function over wide temperature ranges.

  2. Corrosion behaviour of dental metals and alloys in different media.

    PubMed

    Kedici, S P; Aksüt, A A; Kílíçarslan, M A; Bayramoğlu, G; Gökdemir, K

    1998-10-01

    The corrosion tendencies of metals are related with their position in the electromotive series. These electrode potential degrees may change due to the compositions of the alloys, the surrounding media, or due to alterations in the composition because of recurrent casting. Therefore in this research, the electrode potentials and their changes over a period of time were measured in different pH media simulating the oral electrochemical conditions in vitro. The surface structure of the first and second castings of 29 different dental metals and alloys were examined under a scanning electron microscope and their composition in percentage weight was calculated by the Energy-dispersive X-ray Analysor system. Further the current-potential curves of the dental alloys were found by the potentiodynamic method in three different solutions and, in addition, the changes of corrosion potentials over time were also determined. The corrosion rates, corrosion potentials, their changes over time and their cathodic Tafel slopes were determined. All alloys tested showed ion leakage in corrosive media. Titanium exhibited the least, but alloys with tin and cobalt content displayed the greatest corrosion tendencies. Alloys with iron and copper corroded in the acid media, conversely alloys containing chromium, nichel and molybdenum proved to be resistant to corrosion. The recurrent castings were also corrosion resistant. PMID:9802590

  3. Quantum Chemistry for Surface Segregation in Metal Alloys

    SciTech Connect

    Sholl, David

    2006-08-31

    Metal alloys are vital materials for the fabrication of high-flux, high-selectivity hydrogen separation membranes. A phenomenon that occurs in alloys that does not arise in pure metals is surface segregation, where the composition of the surface differs from the bulk composition. Little is known about the strength of surface segregation in the alloys usually considered for hydrogen membranes. Despite this lack of knowledge, surface segregation may play a decisive role in the ability of appropriately chosen alloys to be resistant to chemical poisoning, since membrane poisoning is controlled by surface chemistry. The aim of this Phase I project is to develop quantum chemistry approaches to assess surface segregation in a prototypical hydrogen membrane alloy, fcc Pd{sub 75}Cu{sub 25}. This alloy is known experimentally to have favorable surface properties as a poison resistant H{sub 2} purification membrane (Kamakoti et al., Science 307 (2005) 569-573), but previous efforts at modeling surfaces of this alloy have ignored the possible role of surface segregation (Alfonso et al., Surf. Sci. 546 (2003) 12-26).

  4. In vitro cytotoxicity of metallic ions released from dental alloys.

    PubMed

    Milheiro, Ana; Nozaki, Kosuke; Kleverlaan, Cornelis J; Muris, Joris; Miura, Hiroyuki; Feilzer, Albert J

    2016-05-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions. PMID:25549610

  5. Developing gradient metal alloys through radial deposition additive manufacturing.

    PubMed

    Hofmann, Douglas C; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R Peter; Suh, Jong-ook; Shapiro, Andrew A; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  6. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  7. Method for low temperature preparation of a noble metal alloy

    DOEpatents

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  8. Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature

    DOE PAGESBeta

    Rouaix-Vande Put, Aurelie; Unocic, Kinga A.; Brady, Michael P.; Pint, Bruce A.

    2015-11-18

    Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H2–CO–CO2–H2O environment, the increase in temperature from 550 to 750 °C generally decreased metal dusting. When H2O was added to a H2–CO–CO2 environment at 650 °C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H2O, the higher alloyed specimens retained a thin protective oxide. Lastly, for gas mixtures containing little or no H2O, the Fe-base alloys were less resistant to metal dustingmore » than Ni-base alloys.« less

  9. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  10. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  11. Electromagnetic characterization of metallic sensory alloy

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Wallace, Terryl; Newman, Andy; Leser, Paul; Lahue, Rob

    2013-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  12. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  13. Laser-induced diffusion decomposition in Fe-V thin-film alloys

    NASA Astrophysics Data System (ADS)

    Polushkin, N. I.; Duarte, A. C.; Conde, O.; Alves, E.; Barradas, N. P.; García-García, A.; Kakazei, G. N.; Ventura, J. O.; Araujo, J. P.; Oliveira, V.; Vilar, R.

    2015-05-01

    We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe-V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼103 s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  14. Processing of Refractory Metal Alloys for JOYO Irradiations

    SciTech Connect

    RF Luther; ME Petrichek

    2006-02-21

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

  15. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed

    NASA Astrophysics Data System (ADS)

    Sekhar, J. A.; Mantri, A. S.; Yamjala, S.; Saha, Sabyasachi; Balamuralikrishnan, R.; Rao, P. Rama

    2015-12-01

    This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral `clusters' within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.

  16. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  17. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  18. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  19. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  20. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  1. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P. Subraya; Picciolo, John J.; Emerson, James E.; Dusek, Joseph T.; Balachandran, Uthamalingam

    1998-01-01

    For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.

  2. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.

    1998-03-10

    For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.

  3. Molybdenum-A Key Component of Metal Alloys

    USGS Publications Warehouse

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  4. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  5. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  6. Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    NASA Technical Reports Server (NTRS)

    Brillhart, D. C.; Burt, W. R.; Karasek, F. J.; Mayfield, R. M.

    1968-01-01

    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions.

  7. Metal Alloy Compositions And Process Background Of The Invention

    DOEpatents

    Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.

    2003-11-11

    A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.

  8. The Effect of Boronizing on Metallic Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Petrova, Roumiana S.; Suwattananont, Naruemon; Samardzic, Veljko

    2008-06-01

    In this study the wear resistance, corrosion resistance, and oxidation resistance of boronized metallic alloys were investigated. Thermochemical treatment was performed by powder pack boronizing process at temperature 850-950 °C for 4 h. Saw-tooth morphology and smooth interface microstructures were observed with an optical microscope; microhardness was measured across the coating depth. The phases present in the boron coatings depend on the substrate material. High-temperature oxidation resistance was investigated and it was found that boron coating on ferrous alloys can resist temperatures up to 800 °C. The corrosion resistance of the boronized samples was improved and the corrosion rate was calculated for boronized and plain specimens. Wear testing was conducted by following the procedures of ASTM G99, ASTM D2526, and ASTM D4060. The obtained experimental results revealed that boronizing significantly improves the wear-resistance, corrosion-resistance, and oxidation resistance of metallic alloys.

  9. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  10. Alloy perovskite oxide thin film as resistance switching non-volatile memory

    NASA Astrophysics Data System (ADS)

    Wang, Yudi

    Nonvolatile memory that permanently stores data is indispensable for computers and hand-held devices. In the last few years, resistance memory (RRAM) has emerged as an intriguing possibility that might replace flash memory one day, which is widely used in hand-held and portable-storage devices. The newest, rapidly growing interest in resistance switching is focused on semiconducting oxides and other related materials. In this dissertation, a novel material system for oxide RRAM that offers unique advantages over all the other existing oxide RRAM materials was designed and systematically investigated. The primary aim of these studies is to obtain a material system with the intrinsic property that allows electrically-induced metal-insulator transition, which is regulated by electron trapping and release at some interval sites. A series of alloy perovskite oxides thin film systems were designed by combining a wide band gap insulator (CaZrO3 or LaAlO3) and a conductor with a narrow bandwidth (SrRuO3 or LaNiO3 ), with the conductor concentration near the percolation threshold. These alloy perovskite oxides thin films are almost atomically flat without any defects, such as cracks or crosshatches, which is achieved using well controlled deposition conditions that favor domain-boundary relaxation of the large misfit strain. The bottom electrode is a single crystalline SrRuO 3 thin film, deposited on a single crystal substrate of SrTiO3 which exhibits high conductivity and ferromagnetic transition at ˜150K. The alloy thin films manifest an anisotropic percolation phenomenon: below a critical thickness a metallic conducting path always exists across the film thickness direction but not along the in-plane direction, which ensures electrical isolation between neighboring memory cells. These initially conducting films present excellent resistance switching properties: low switching voltages (1-3 V), high switching ratio (˜100), fast switching speed (50 ns), good switching

  11. Method for locating metallic nitride inclusions in metallic alloy ingots

    SciTech Connect

    White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  12. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  13. Sputter deposition of metallic thin film and directpatterning

    SciTech Connect

    Ji, L.; Chen, Y.; Jiang, X.; Ji, Q.; Leung, K.-N.

    2005-09-09

    A compact apparatus is developed for deposition of metal thin film. The system employs an RF discharge plasma source with a straight RF antenna, which is made of or covered with deposition material, serving as sputtering target at the same time. The average deposition rate of copper thin film is as high as 450nm/min. By properly allocating the metal materials on the sputtering antenna, mixture deposition of multiple metal species is achieved. Using an ion beam imprinting scheme also taking advantage of ion beam focusing technique, two different schemes of direct patterning deposition process are developed: direct depositing patterned metallic thin film and resistless ion beam sputter patterning. Preliminary experiments have demonstrated direct pattern transfer from a template with feature size of micro scale; patterns with more than 10x reduction are achieved by sputtering patterning method.

  14. Metal redox processes for the controlled synthesis of metal alloy nanoparticles.

    PubMed

    Kirkeminde, Alec; Spurlin, Stan; Draxler-Sixta, Laura; Cooper, Jamie; Ren, Shenqiang

    2015-03-27

    Nanocrystalline metals have received widespread interest and found various applications owing to their magnetic and catalytic properties and in energy-related fields. A flexible approach for the growth of nanoalloys with controlled properties and well-defined structures on the atomic scale is thus greatly desired. A new synthetic method that avoids incompatible reduction potentials and rates would be critical to grow metal nanostructures with high purities and the desired stoichiometries. A metal-redox strategy that employs spontaneous oxidation/reduction reactions to grow nanocrystalline alloys using molecular-scale zerovalent metal precursors is now described. The selection of suitable zerovalent metal species allows for thermodynamic control of the compositional stoichiometry during the temperature-dependent formation of the metal alloy nanoparticles. A practical and scalable strategy for nanoalloy growth that can potentially produce key metal components of superior metallurgical quality for catalytic and magnetic systems has thus been developed. PMID:25651105

  15. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  16. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  17. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X.; Adzic, Radoslav R.

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  18. Measurement of Crystallization Temperature Using Thermography for Thin Film Amorphous Alloy Samples

    NASA Astrophysics Data System (ADS)

    Hata, Seiichi; Aono, Yuko; Sakurai, Junpei; Shimokohbe, Akira

    2009-03-01

    This report describes a new non-contact measurement method for the crystallization temperature (Tx) of a thin film amorphous alloy. The thermal emissivity of the amorphous alloy sample is predicted to be modified when it crystallizes. It was attempted to relate this modification to changes in the apparent temperature by thermography. Thin film amorphous alloys of Pt67Si33 and Pt73Si27 were sputtered onto an Al2O3 substrate and then heated at 20 K/min in vacuum, and the film temperature was monitored by thermography. The Tx indicated by the proposed method coincided with the temperature measured by conventional differential scanning calorimeter within 8 K.

  19. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    DOEpatents

    Hovis, V.M. Jr.; Northcutt, W.G. Jr.

    The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  20. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1982-01-01

    The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  1. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  2. Superior metallic alloys through rapid solidification processing (RSP) by design

    SciTech Connect

    Flinn, J.E.

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  3. Controlling Surface Chemistry of Gallium Liquid Metal Alloys to Enhance their Fluidic Properties

    NASA Astrophysics Data System (ADS)

    Ilyas, Nahid; Cumby, Brad; Cook, Alexander; Durstock, Michael; Tabor, Christopher; Materials; Manufacturing Directorate Team

    Gallium liquid metal alloys (GaLMAs) are one of the key components of emerging technologies in reconfigurable electronics, such as tunable radio frequency antennas and electronic switches. Reversible flow of GaLMA in microchannels of these types of devices is hindered by the instantaneous formation of its oxide skin in ambient environment. The oxide film sticks to most surfaces leaving unwanted metallic residues that can cause undesired electronic properties. In this report, residue-free reversible flow of a binary alloy of gallium (eutectic gallium indium) is demonstrated via two types of surface modifications where the oxide film is either protected by an organic thin film or chemically removed. An interface modification layer (alkyl phosphonic acids) was introduced into the microfluidic system to modify the liquid metal surface and protect its oxide layer. Alternatively, an ion exchange membrane was utilized as a 'sponge-like' channel material to store and slowly release small amounts of HCl to react with the surface oxide of the liquid metal. Characterization of these interfaces at molecular level by surface spectroscopy and microscopy provided with mechanistic details for the interfacial interactions between the liquid metal surface and the channel materials.

  4. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-01

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity. PMID:16262333

  5. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  6. Alloy with metallic glass and quasi-crystalline properties

    DOEpatents

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  7. Titanium and Magnesium Co-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting

    SciTech Connect

    Tang, H.; Yin, W. J.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M. M.; Turner, J. A.; Yan, Y.

    2012-04-01

    Using a combination of density functional theory calculation and materials synthesis and characterization we examine the properties of charge-compensated Ti and Mg co-alloyed hematite thin films for the application of photoelectrochemical (PEC) water splitting. We find that the charge-compensated co-alloying results in the following effects: (1) It enhances the solubility of Mg and Ti, which leads to reduced electron effective mass and therefore increased electron mobility; (2) It tunes the carrier density and therefore allows the optimization of electrical conductivity; and (3) It reduces the density of charged defects and therefore reduces carrier recombination. As a result, the Ti and Mg co-alloyed hematite thin films exhibit improved water oxidation photocurrent magnitudes as compared to pure hematite thin films. Our results suggest that charge-compensated co-alloying is a plausible approach for engineering hematite for the application of PEC water splitting.

  8. Structural, Optical and Electrical Properties of Sputtered InGaN Alloy Thin Films.

    NASA Astrophysics Data System (ADS)

    Ebdah, Mohammad; Hoy, Daniel; Vaughn, Joel; Kordesch, Martin

    2009-03-01

    Amorphous and polycrystalline InGaN alloy thin films were successfully fabricated using rf sputtering technique with a sputtering targets of metal In and Ga in pure Nitrogen. Films were deposited on Si and quartz substrates, with the ratio of In to Ga being varied from 0 to 1 in the alloy. Growth under different sputtering conditions has been examined, such as different temperatures, pressures, and substrate-target distances. The corresponding obtained structures have been studied using the x-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The compositions have been verified by means of energy dispersive x-rays (EDX) spectroscopy and Rutherford back scattering (RBS). Multiple crystallographic phases have been investigated upon growth at different temperatures, and the existence of Gallium Nitride (GaN) and Indium Nitride (InN) phases were investigated. Hall effect measurements were made in 0.55 T magnetic field for characterizing the electrical resistivity at room temperature and 77 K, the free carrier concentration, and mobility. The optical bandgap and optical properties were studied by spectrophotometric and spectroscopic ellipsometric (SE) techniques.

  9. Coating with overlay metallic-cermet alloy systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  10. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  11. [Should metal alloy discs be used for patch testing in suspected metal implant intolerance reaction?].

    PubMed

    Thomas, P; Geier, J; Dickel, H; Diepgen, T; Hillen, U; Kreft, B; Schnuch, A; Szliska, C; Mahler, V

    2015-11-01

    Intolerance reactions to metal implants may be caused by metal allergy. However, prior to implantation, patch testing should not be done in a prophylactic-prophetic approach. Pre-implant patch testing should only be performed to verify or exclude metal allergy in patients with a reported respective history. In the case of implant-in particular arthroplasty-related complications like, for example, pain, effusion, skin changes, reduced range of motion, or loosening, orthopedic-surgical differential diagnostics should be performed first. Allergological workup of suspected metal implant allergy should be done with the DKG baseline series which contains nickel-, cobalt- and chromium-preparations. Various studies assessing the usefulness of metal alloy discs for patch testing proved that this approach does not give reliable information about metal allergy. Positive patch test reactions to the discs cannot be assigned to a specific metal within the disc alloy components. Furthermore, availability of such metal discs might be an invitation to uncritical testing. Accordingly, due to lack of benefit in comparison to patch testing with standardized metal salt preparations, we do not recommend patch testing with metal alloy discs. PMID:26438196

  12. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  13. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  14. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  15. Dealloying NiCo and NiCoCu Alloy Thin Films Using Linear Sweep Voltammetry

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    When electrodeposited into thin films, metals have well-known electrochemical potentials at which they will be removed from the film. These potential differences can be utilized to re-oxidize only certain metals in an alloy, altering the film's structure and composition. Here we discuss NiCo and NiCoCu thin films' response to linear sweep voltammetry (LSV) as a means of electrochemical dealloying. For each of four different metal ratios, films were dealloyed to various potentials in order to gain insight into the evolution of the film over the course of the LSV. Capacitance, topography, and composition were examined for each sample before and after linear sweep voltammetry was performed. For NiCo films with high percentages of Ni, dealloying resulted in almost no change in composition, but did result in an increased capacitance, with greater increases occurring at higher LSV potentials. Dealloying also resulted in the appearance of large (100-1000 nm) pores on the surface of the film. For NiCoCu films with high percentages of Ni, Cu was almost completely removed from the film at LSV potentials greater than 500 mV. The LSV first removed larger copper-rich dendrites from the film's surface before creating numerous nano-pores, resulting in a net increase in area. This work is supported by an Award to Hope College from the HHMI Undergraduate Science Education Program, the Hope College Department of Physics Frissel Research Fund, and the National Science Foundation under Grants RUI-DMR-1104725 and MRI-CHE-0959282.

  16. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation

    SciTech Connect

    Devaraj, A.; Ramanan, S.; Walvekar, S.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Kurtz, R. J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxy (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However, the presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation, it is very challenging to characterize by conventional techniques. Therefore, laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr{sub 0.61}Mo{sub 0.39}, Cr{sub 0.77}Mo{sub 0.23}, and Cr{sub 0.32}V{sub 0.68} alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus, the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were confirmed.

  17. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography. Comparison Of Experiments And Simulation

    SciTech Connect

    Devaraj, Arun; Kaspar, Tiffany C.; Ramanan, Sathvik; Walvekar, Sarita K.; Bowden, Mark E.; Shutthanandan, V.; Kurtz, Richard J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxial (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it is very challenging to characterize by conventional techniques. Therefor laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr0.61Mo0.39, Cr0.77Mo0.23, and Cr0.32V0.68 alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were thus confirmed.

  18. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials. PMID:26256042

  19. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  20. High performance Zr-based metal hydride alloys for nickel metal hydride batteries

    SciTech Connect

    Young, R.C.; Ovshinsky, S.R.; Huang, B.; Chao, B.S.; Li, Y.

    2000-07-01

    Based upon Ovonic's multi-element, atomic engineering approach, two families of alloys are being used in commercial Nickel Metal Hydride (NiMH) rechargeable batteries, i.e., the mischmetal (Mm) based AB{sub 5} and Zr based AB{sub 2} alloys. While Mm based alloys are faster to activate, they are limited by a discharge capacity of only 320--340 mAh/g. The Zr based alloy, although slightly slower to activate, provides a much higher discharge capacity. In this paper, the authors first discuss the use of Ovonic's multi-element approach to generate a spectrum of disordered local environments. They then present experimental data to illustrate that through these atomically engineered local environments, they are able to control the hydrogen site occupancy, discharge capacity, kinetics, and surface states. The Zr based alloy with a specific discharge capacity of 465 mAh/g and excellent rate capability has been demonstrated.

  1. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1976-01-01

    Calculations are presented for the thermodynamic functions and phase separation boundaries of solid metallic hydrogen helium alloys at temperatures between 0 K and 19,000 K and at pressures between 15 and 90 megabars. Expressions for the band structure energy of a randomly disordered alloy (including third order in the electron ion interaction) are derived and evaluated. Short and long range order are included by the quasi-chemical method, and lattice dynamics in the virtual crystal harmonic approximation. We conclude that at temperatures below 4,000 K there is complete phase separation of hydrogen helium alloys, and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  2. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  3. High Precision Metal Thin Film Liftoff Technique

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)

    2015-01-01

    A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.

  4. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures. PMID:27244596

  5. Environmental and alloying effects on corrosion of metals and alloys

    NASA Astrophysics Data System (ADS)

    Liang, Dong

    2009-12-01

    In the first part of this project, corrosion studies were carried out on 304L stainless steel samples welded with Cr-free consumables, which were developed to minimize the concentration of chromate species in the weld fume. The corrosion properties of Ni-Cu and Ni-Cu-Pd Gas Tungsten Arc (GTA) welds and Shielded Metal Arc (SMA) welds are comparable to those of welds fabricated with SS308L consumable, which is the standard consumable for welding 304L. Although the breakdown potentials of the new welds from both welding processes are lower than that of the SS308L weld, the repassivation potential of these new welds is much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Our studies showed that the Ni-Cu and Ni-Cu-Pd welds are more resistant to crevice corrosion than SS308L welds, which is related to the high repassivation potential. Also, addition of Pd improved the corrosion resistance of the new welds, which is consistent with previous studies from button samples and bead-on-plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni-Cu-Pd welds can be a qualified substitute for SS308 weld. In the second part of this project, efforts are put on the connection between lab and field exposure tests because sometimes the correspondence between lab atmospheric corrosion tests (ASTM B117) and field exposures is poor as a result of differences in the critical conditions controlling chemical and electrochemical reactions on surfaces. Recent studies in atmospheric chemistry revealed the formation of extremely reactive species from interactions between UV light, chloride aerosols above oceans and oxidizing agents such as ozone or peroxide. Atmospheric corrosion of metals can be affected by these species which might be transported long distances in the atmosphere to locations far from oceans. However, these

  6. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  7. Understanding organic film behavior on alloy and metal oxides.

    PubMed

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash; Gawalt, Ellen S

    2010-02-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel, chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy, and matrix-assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  8. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  9. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  10. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  11. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  12. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  13. Dental devices; dental noble metal alloys and dental base metal alloys; designation of special controls. Final rule.

    PubMed

    2004-08-23

    The Food and Drug Administration is amending the identification and classification regulations of gold-based alloys and precious metal alloys for clinical use and base alloys devices in order to designate a special control for these devices. FDA is also exempting these devices from premarket notification requirements. The agency is taking this action on its own initiative. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 (SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the draft guidance documents that would serve as special controls for these devices. PMID:15329980

  14. On the initial stage of plastic deformation of metal alloys

    SciTech Connect

    Zuev, L.B.; Danilov, V.I.; Zavodchikov, S.Y.

    2000-04-01

    Plastic deformation has been studied for a range of metal alloys using speckle interferometry. It has been found that, in the initial stage, the process of plastic flow occurs by the propagation of a deformation front, which divides the deforming material into two regions differing with respect to the material's state. The flow exhibits regular features that can be described in terms of a self-excited wave process manifesting itself in an active medium under external mechanical action.

  15. The temperature variation of hydrogen diffusion coefficients in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  16. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  17. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  18. Excimer laser ceramic and metal surface alloying applications

    NASA Astrophysics Data System (ADS)

    Hontzopoulos, E.; Zervaki, A.; Zergioti, Y.; Hourdakis, G.; Raptakis, E.; Giannacopoulos, A.; Fotakis, C.

    1991-02-01

    Recent excimer laser based deposition and surface modification techniques for ceramic and metallurgical engineering applications are reported. These include the improvement of the anti-corrosion and erosion properties and wear resistance of metal alloys and the formation of surface conducting patterns on ceramic materials. Excimer laser chemical vapour deposition (LCVD) applications B, AI and Hf or multielement combinations are discussed together with studies which aim at a better understanding of the fundamental processes governing the deposition process.

  19. Plating on some difficult-to-plate metals and alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests.

  20. The effect of weldability of alloy JBK-75 with various filler metal wire additions

    SciTech Connect

    Taylor, C.L.

    1991-04-01

    The purpose of this study was to investigate the compositional factors that affect the weldability of alloy JBK-75. This study was accomplished by using a variety of different commercial filler materials to systematically evaluate the weldability in the compositional range surrounding alloy JBK-75. The experimental design included varestraint testing, scanning electron microscopy, and phase diagram analysis. The varestraint testing demonstrated that the weldability of alloy JBK-75 could be improved with the use of other commercially available filler metals. The best improvement to weldability of alloy JBK-75 was with type 308L stainless steel and Hastelloy W filler metals. Adequate improvement to the weldability of alloy JBK-75 was obtained when utilizing types 309L and 310 stainless steel filler metals. Alloy 320LR, alloy 650 (NiCrFe-1), Incoloy 901, and Inconel 92 (NiCrFe-6) filler metals only marginally improved the weldability of alloy JBK-75. 59 refs., 27 figs., 24 tabs.

  1. Refractory metal alloys and composites for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Stephens, J.R.; Petrasek, D.W.

    1988-01-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wire for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites will be discussed. 20 refs., 27 figs., 1 tab.

  2. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  3. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  4. In situ purification, alloying and casting methodology for metallic plutonium

    NASA Astrophysics Data System (ADS)

    Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

    Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750°C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the δ phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100°C/min. A microstructure examination of the specimen showed 10 × 25 μm acicular grains with a density of 15.938 g/cm 3 (±0.002 g/cm 3).

  5. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  6. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  7. Simulation of metal transfer and weld pool development in gas metal arc welding of thin sheet metals

    NASA Astrophysics Data System (ADS)

    Wang, Fang

    Gas metal arc welding (GMAW) is the most commonly used arc welding method in industry for joining steels and aluminum alloys. But due to the mathematical difficulties associated with the free surface motion of the molten droplet and the weld pool, the process is not well understood and the development of new welding procedures in the manufacturing industry highly depends on expensive, time-consuming and experience-based trial and error. In this dissertation, numerical methods are developed to overcome the difficulties and to simulate the metal transfer and weld pool development in the GMAW of sheet metals. The simulations are validated by experiments and used to study an industrial welding process. A numerical procedure is first developed to model the free surface motion in fusion welding processes. Thermal and electromagnetic models are integrated with the fluid models. Recommendations are made on the selection and improvement of publicly available numerical algorithms, while alternative methods are also reviewed. A model combining the enthalpy, effective-viscosity and volume-of-fluid methods is then developed to simulate the metal transfer process in globular, spray and short-circuiting transfer modes. The model not only describes the influence of gravity, electromagnetic force and surface tension on droplet profile and transfer frequency, but also models the nonisothermal phenomena such as heat transfer and phase change. The melting front motion, the droplet detachment and oscillation, the satellite formation and the fluid convection within the droplet are analyzed. It has been found that the taper formation in spray transfer is closely related to the heat input on the unmelted portion of the welding wire, and the taper formation affects the globular-spray transition by decelerating the transfer process. Experiments with a high-speed motion analyzer validate the simulation results. The model is then extended to simulate the initiation, development and

  8. Method of bonding metals to ceramics

    DOEpatents

    Maroni, Victor A.

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  9. Method of bonding metals to ceramics

    DOEpatents

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  10. Thermal emf generated by laser emission along thin metal films

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.

    1991-07-01

    Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.

  11. Metal-organic frameworks: A thin film opening

    NASA Astrophysics Data System (ADS)

    Sumby, Christopher J.

    2016-04-01

    The properties of metal-organic frameworks -- promising for a myriad of applications -- can be commonly tuned by judicious choice of the building blocks used to prepare the material. Now, simply downsizing a rigid, non-porous MOF to a thin film has been shown to endow it with dynamic, gate-opening-type guest uptake behaviour.

  12. Shape memory in nanostructured metallic alloys

    NASA Astrophysics Data System (ADS)

    Guda Vishnu, Karthik

    Materials with nanoscale dimensions show mechanical and structural properties different to those at the macro scale and engineering their nanostructure opens up potential avenues for designing materials tailored for a specific application. This work is focused on shape memory materials, an important class of active materials with wide variety of applications in medical, aerospace and automobile industries, due to their two important properties of super-elasticity and shape memory. These unique properties originate from a solid-solid transformation called martensite transformation and the main objectives of this research are to i) study the atomic mechanisms of the martensite transformation, ii) study the effect of nano-structure on shape memory behavior and iii) computationally explore avenues through which their performance is optimized. A combination of density functional theory (DFT) and molecular dynamics (MD) simulations is used to achieve this. This approach gives an atomic level description and the effects of size, surfaces and interfaces are explicitly described. Detailed analysis of the atomic mechanisms of the martensite transformation in NiTi using DFT revealed a new phase transformation (B19'-B19'') that sheds light on why the theoretically predicted ground state (BCO) is not observed experimentally and that the experimentally observed martensite phase (B19') can be stabilized by internal stresses. This finding is very important as the theoretically predicted ground state does not allow for shape memory in nanoscale NiTi samples. The size effects caused by the presence of free surfaces and the role of nanostructure in martensite transformation have been investigated in thin NiTi slabs. Surface energies of B2 phase (austenite), B19 (orthorhombic), B19' (martensite) and the body centered orthorhombic phase (BCO) are calculated using DFT. (110)B2 surfaces with in-plane atomic displacements stabilize the austenite phase with respect to B19' and BCO, thus

  13. Micromagnetic studies of thin metallic films (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Gang; Bertram, H. Neal

    1988-04-01

    A computer simulation model has been developed to conduct micromagnetic studies of thin magnetic films. Thin-film media are modeled as a planar hexagonal array of hexagonally shaped grains. Each grain is a single domain particle whose magnetization reverses by coherent rotation. The computation utilizes coupled gyromagnetic dynamic equations with phenomenological Landau-Lifshitz damping. In particular, the effects of particle interactions are investigated. The effect of media microstructure on magnetic hysteresis is examined as well as the effect of intergranular exchange coupling. The difference between planar and completely random orientation of the crystalline anisotropy axes is discussed. Recorded transitions are simulated by allowing a pair of perfect transitions to relax. With no intergranular exchange coupling, the transitions show profound irregularity and zig-zag structure. Intergranular exchange coupling produces more uniform transitions with increased zig-zag structure amplitude. For a closely spaced transition pair, the equilibrium configuration yields percolated transition boundaries with stable reverse island domains. The effect of gyromagnetic precession also has been examined.

  14. Metal Compression Forming of aluminum alloys and metal matrix composites

    SciTech Connect

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  15. Versatile method for template-free synthesis of single crystalline metal and metal alloy nanowires

    NASA Astrophysics Data System (ADS)

    Scott, John A.; Totonjian, Daniel; Martin, Aiden A.; Tran, Toan Trong; Fang, Jinghua; Toth, Milos; McDonagh, Andrew M.; Aharonovich, Igor; Lobo, Charlene J.

    2016-01-01

    Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 °C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates.Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 °C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates. Electronic supplementary information (ESI) available

  16. Variation of local atomic structure due to devitrification of Ni-Zr alloy thin films probed by EXAFS measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Tiwari, Nidhi; Bhattacharyya, Dibyendu; Jha, S. N.; Basu, S.

    2016-05-01

    Thin film metallic glasses (TFMGs) exhibit properties superior to their bulk counterparts allowing them to be potentially useful in many practical applications. Apart from their technological interest, when converted to crystallized state (devitrification) TFMGs can also act as precursors for partially crystallized or fully crystallized forms. Such devitrified forms are attractive due to their novel structural and magnetic properties. The amorphous-to-crystalline transformation of co-sputtered Ni-Zr alloy thin films through annealing was studied using EXAFS (Extended X-ray Absorption Fine Structure) measurements. Investigation through an atomic probe gives a better insight into the local environment of the atomic species, rendering a deeper understanding of thermal evolution of such materials.

  17. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  18. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  19. X-ray reflectivity studies of liquid metal and alloy surfaces

    SciTech Connect

    Regan, M.J.; Pershan, P.S.; Magnussen, O.M.; Ocko, B.M.; Deutsch, M.; Berman, L.E.

    1997-06-01

    Surface-induced atomic layering at the liquid/vapor interface in liquid metals has been observed using x-ray reflectivity on sputtered clean surfaces under ultrahigh vacuum conditions. A well-defined quasi-Bragg peak is obtained for surfaces of elemental Ga and a Ga-In alloy at large wave vectors q{sub z}{approximately}2.3{endash}2.5 {Angstrom}{sup {minus}1}. These results are an unambiguous indication of atomic layering with an interlayer spacing d{approximately}2{pi}/q{sub z}=2.5{endash}2.7 {Angstrom}. For liquid Ga, the amplitude of the electron-density oscillations, which is significantly underestimated by existing theory and molecular simulation, decays with a characteristic length of 6 {Angstrom}, which is twice that of Hg. Results on the alloy show a clear enrichment of indium at the topmost surface layer, consistent with the Gibbs adsorption rule. The enrichment consists of a single monolayer, with subsequent layers at the bulk eutectic composition. In order to suppress mechanically excited surface waves, the measurements were performed on thin liquid metal films ({lt}0.5 mm deep), which leads to a macroscopically curved surface due to the large surface tensions in liquid metals. The experimental challenges posed by measurements on curved surfaces and the techniques that were developed are discussed in detail. {copyright} {ital 1997} {ital The American Physical Society}

  20. Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films

    SciTech Connect

    Sun, Y. T.; Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-08-04

    The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for the much better GFA of the ZrCuAl metallic glass.

  1. In vitro biocompatibility response of Ti-Zr-Si thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Ke, J. L.; Huang, C. H.; Chen, Y. H.; Tsai, W. Y.; Wei, T. Y.; Huang, J. C.

    2014-12-01

    In this study, the bio-electrochemical response of the Ti-Zr-Si thin film metallic glasses (TFMGs) in simulated body fluid with different contents of titanium is measured via potentiostat. According to the results of bio-corrosion potential and current, as well as the polarization resistance, it is concluded that the Ti66Zr25Si9 TFMGs possess the highest bio-electrochemical resistance. With increasing content of titanium, the corrosion resistance becomes progressively higher. The passive current results reveal that amorphous alloys can form a more protective and denser passive film on the metallic glass surface than the crystalline materials. In addition, the mechanical performance of the Ti-Zr-Si TFMGs is better than the crystalline counterparts. As a result, the Ti-based TFMGs are considered to be potential materials for bio-coating applications.

  2. Alloyed Noble Metal Nanoparticles with Tunable Optical Properties

    NASA Astrophysics Data System (ADS)

    Wessler, Garrett C.; Gong, Chen; Rebello de Sousa Dias, Mariama; Tailon, Joshua A.; Salamanca-Riba, Lourdes G.; Leite, Marina S.

    Noble metal nanoparticles (NPs) have been widely used in sensing, optics, and catalysis applications by taking advantage of surface plasmon resonance (SPR). This response is slightly tuned by varying the size and shape of the NPs; however, a method to obtain truly on-demand plasmonic responses is still lacking due to the intrinsic nature of a metal's dielectric function. Here, we fabricate size and composition controlled metal alloy NP arrays by deposit-and-anneal methods and through-template depositions. We control the composition of the metal NPs by co-sputtering and by alternating electron-beam evaporation of the Ag and Au targets. To characterize the NPs, macroscopic transmission measurements are combined with spectrally dependent near-field scanning optical microscopy to show the local optical properties around the NPs. By varying the atomic fraction of Ag and Au in the alloys, we modulate the optical properties of the NPs for different applications. For example, hot carrier plasmonic devices necessitate high absorption in the visible range, while photovoltaic applications require low absorption by the NPs.

  3. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section. PMID:22933085

  4. Comparison of Tophet-A and Evanohm-R alloys for producing thin film nichrome resistors. Final report

    SciTech Connect

    Egert, C.M.; Boatman, J.

    1995-02-28

    The purported advantages of the Evanohm alloy were not observed in this preliminary study. Under the deposition conditions, the Evanohm alloy produced a greater variation in resistance of the as-deposited thin films than the Tophet alloy currently in use for producing resistors. A broader screening experiment for optimum operating conditions for the Evanohm wire is recommended.

  5. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  6. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  7. Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin

    PubMed Central

    Choo, Seung-Sik; Huh, Yoon-Hyuk; Cho, Lee-Ra

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (P<.05). However, in Ti alloy, there was no significant difference between Alloy Primer and MAC-Bond II. Tarnished Co-Cr and Au-Ag-Pd alloy surfaces presented significantly decreased shear bond strength. CONCLUSION Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys. PMID:26576256

  8. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  9. Fatigue Characterization of Functionally Graded Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Silva, F. S.

    2008-02-01

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.

  10. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  11. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  12. Erosion of mylar and protection by thin metal films

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Lindstrom, D.; Sandford, S.; Swan, P.; Walker, R.; Zinner, E.; Pailer, N.

    1983-01-01

    Mylar strips, 2.5 microns thick, uncoated and coated with 50A, 100A and 200A of Al, Pd, and Au/Pd were exposed on STS-5 in order to measure the erosion of mylar and to test means of protecting thin plastic foils commonly used for space experiments in low earth orbit. Analysis by optical microscopy, SEM and STEM investigation, EDX measurements, FTIR spectroscopy and weight loss measurements showed that while up to 75 percent of the uncoated mylar was eroded during exposure, thin coatings of the above metals can protect mylar for integrated oxygen-fluxes of at least 10 to the 21st atoms/sq cm.

  13. Versatile method for template-free synthesis of single crystalline metal and metal alloy nanowires.

    PubMed

    Scott, John A; Totonjian, Daniel; Martin, Aiden A; Tran, Toan Trong; Fang, Jinghua; Toth, Milos; McDonagh, Andrew M; Aharonovich, Igor; Lobo, Charlene J

    2016-02-01

    Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 °C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates. PMID:26763153

  14. Half-metallic alloys: electronic structure, magnetism and spin polarization.

    PubMed

    Dederichs, P H; Galanakis, I; Mavropoulos, Ph

    2005-01-01

    Using the state-of-the-art screened Korringa-Kohn-Rostoker Green function method we study the electronic and magnetic properties of NiMnSb and similar Heusler alloys. We show that all these compounds are half-metals, e.g. the minority-spin band is semiconducting and the Fermi level falls within this gap resulting in 100% spin polarization at the Fermi level. The total spin moment M(t) shows the so-called Slater-Pauling behaviour and scales with the total valence charge Z(t) following the rule M(t) = Z(t) - 18 for half and M(t) = Z(t) - 24 for full Heusler alloys. These rules are connected to the origin of the gap. Finally we show that the inclusion of the spin-orbit interaction in our calculations kills the half-metallic gap but the spin-polarization at the Fermi level can be still very high, approximately 99% for NiMnSb, but much lower for a half-metallic compound like zinc-blende MnBi (77%). PMID:16157642

  15. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  16. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  17. Localized corrosion of high performance metal alloys in an acid/salt environment

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  18. Direct Solid-State Conversion of Recyclable Metals and Alloys

    SciTech Connect

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  19. Friction stir welding of thin-sheet, age-hardenable aluminum alloys: A study of process/structure/property relationships

    NASA Astrophysics Data System (ADS)

    Shukla, Alpesh Khushalchand

    Friction Stir Welding (FSW) is a relatively new joining process that, as a solid-state process, offers several advantages over conventional fusion welding. Although FSW has been used extensively for the joining of age-hardenable aluminum alloys, the detailed effects of process parameters on the microstructures and mechanical properties of these welds have not been studied, especially for thin-sheet alloys. The present study investigated the FSW of thin-sheet, age-hardenable aluminum alloys, including: the development and optimization of welding process parameters that produce high-integrity, defect-free welds; the systematic evaluation of the effect of the base metal microstructure, FSW process parameters, and corresponding weld zone thermal conditions on microstructure evolution across the weld zone; the analysis of FSW mechanical properties and fracture behavior; and the development of relationships between the process parameters, microstructure, properties, and fracture that allow the optimization of weld performance. Two alloy systems, viz., Al-Cu-Mg (2024) and Al-Cu-Li (2195) in naturally-aged and artificially-aged conditions, respectively, were studied. Process optimization in 1 mm thick 2024-T3 sheet resulted in superior properties versus those of FS welds in thick sheet and plate, and nearly 100% joint efficiency. Microstructures, hardness and tensile properties of FS welds in 2024-T3 exhibited a strong dependency on process parameters. The heat of welding promoted various weld zone microstructures that were produced via the dissolution of base metal GPB zones, the nucleation of GBP and GPB II, and the nucleation and coarsening of S phase. SZ hardness for 2024-T3 welds exhibited a strong, but unusual dependency on the FSW process parameters, which was related to different mechanisms related to GPB zone formation. The microstructures of FS welds in 1 mm thick 2195-T8 were generally insensitive to the FSW process parameters. For all weld heat inputs, FSW

  20. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  1. Fracture Toughness Measurements and Assessment of Thin Walled Conduit Alloys in a Cicc Application

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; Han, K.; Toplosky, V. J.

    2008-03-01

    The Series-Connected Hybrid Magnets under construction at the NHMFL use Cable-in-Conduct-Conductor (CICC) technology. The 4 K mechanical properties of the conduit are extremely important to the performance and reliability of the magnets. We have measured tensile and fracture toughness of two candidate conduit alloys (Haynes 242 and modified 316LN) in various metallurgical states, with emphasis on the final state of production. To assess the material in its final production state, non-standard specimens are removed directly from the round-corner rectangular conduit and tested after exposure to a simulated Nb3Sn reaction heat treatment. Non-standard middle-tension (MT) fracture toughness specimens enable toughness evaluation of the base metal, welds and weld/base transitional region in the as-fabricated conduit with final dimensions not suitable for conventional fracture toughness specimens. Although fracture toughness tests of the thin walled conduit fail to meet ASTM test validity requirements they provide a qualitative evaluation and estimate of the fracture toughness of the conduit and the welds.

  2. FRACTURE TOUGHNESS MEASUREMENTS AND ASSESSMENT OF THIN WALLED CONDUIT ALLOYS IN A CICC APPLICATION

    SciTech Connect

    Walsh, R. P.; Han, K.; Toplosky, V. J.

    2008-03-03

    The Series-Connected Hybrid Magnets under construction at the NHMFL use Cable-in-Conduct-Conductor (CICC) technology. The 4 K mechanical properties of the conduit are extremely important to the performance and reliability of the magnets. We have measured tensile and fracture toughness of two candidate conduit alloys (Haynes 242 and modified 316LN) in various metallurgical states, with emphasis on the final state of production. To assess the material in its final production state, non-standard specimens are removed directly from the round-corner rectangular conduit and tested after exposure to a simulated Nb{sub 3}Sn reaction heat treatment. Non-standard middle-tension (MT) fracture toughness specimens enable toughness evaluation of the base metal, welds and weld/base transitional region in the as-fabricated conduit with final dimensions not suitable for conventional fracture toughness specimens. Although fracture toughness tests of the thin walled conduit fail to meet ASTM test validity requirements they provide a qualitative evaluation and estimate of the fracture toughness of the conduit and the welds.

  3. Synthesis and Characterization of Titanium-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting

    SciTech Connect

    Tang, H.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M.; Turner, J.; Yan, Y.

    2011-12-15

    We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

  4. Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting

    SciTech Connect

    Tang Houwen; Matin, M. A.; Wang, Heli; Deutsch, Todd; Al-Jassim, Mowafak; Turner, John; Yan, Yanfa

    2011-12-15

    We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

  5. Homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1-x O alloy thin films by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Hullavarad, S. S.; Hullavarad, N. V.; Pugel, D. E.; Dhar, S.; Takeuchi, I.; Venkatesan, T.; Vispute, R. D.

    2007-08-01

    In this work, we describe the homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1-xO thin films on lattice matched substrates of c-Al2O3, ZnO, MgO and SrTiO3. The crystalline quality, composition and epitaxial nature of the alloy films are obtained by x-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques. The RBS channeling yields are in the range 3-8% for homoepitaxial and hetero-epitaxial thin films. The metal-semiconductor-metal and ultraviolet detectors were fabricated on hexagonal and cubic MgxZn1-xO thin films and the leakage current and UV-visible rejection ratio are correlated with the epitaxial relationship between the film and substrates.

  6. Stress Evolution Behavior in CoCrPt Alloy Thin Films with varying Pt Concentration

    SciTech Connect

    Im, M.-Y.; Jeong, J.-R.; Shin, S.-C.

    2007-11-01

    CoCrPt alloy thin film is one of the most promising candidates for ultrahigh density magnetic recording media. One of interesting issues for an application of ferromagnetic thin film to high density magnetic recording media is to investigate growth stress, since stress inevitably generated during thin film fabrication drastically alters magnetic properties as well as mechanical properties due to film fracture and buckling [1]. However, sufficient studies have not been addressed on in situ experimental investigation on stress evolution during film growth of magnetic thin film and its correlation with directly observed film growth structure. We have investigated in situ stress evolution of 400-{angstrom} (Co{sub 82}Cr{sub 18}){sub 100-x}Pt{sub x}/1100-{angstrom} Ti alloy films with varying Pt concentration by means of an ultrahigh vacuum (UHV) chamber equipped with a highly sensitive optical deflection-detecting system [2]. Interestingly enough, the stress evolution patterns during the film deposition are remarkably changed with varying the Pt concentration. CoCrPt alloy films with lower Pt concentration (6 {le} x {le} 13) grow through compressive, tensile, and again compressive stress during film deposition, while CoCrPt alloy films with higher Pt concentration (21 {le} x {le} 28) develop with compressive and relaxed compressive stress without tensile stress generation. In situ stress-evolution behavior for 400-{angstrom} (Co{sub 82}Cr{sub 18}){sub 100-x}Pt{sub x}/1100-{angstrom} Ti alloy films with the Pt concentrations of (a) 6, (b) 13, (c) 21, and (d) 28 at.% are demonstrated in Fig.1. Here, the positive slope corresponds to tensile stress, while the negative slope implies compressive stress. The microstructural studies at the stress transition region reveal that film growth structure plays a major role in considerable change of stress evolution pattern in CoCrPt alloy films with the increase of Pt concentration.

  7. Metallic and ceramic thin film thermocouples for gas turbine engines.

    PubMed

    Tougas, Ian M; Amani, Matin; Gregory, Otto J

    2013-01-01

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples. PMID:24217356

  8. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    PubMed Central

    Tougas, Ian M.; Amani, Matin; Gregory, Otto J.

    2013-01-01

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples. PMID:24217356

  9. Surface-polaritonlike waves guided by thin, lossy metal films

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.; Hall, D. G.

    1983-01-01

    Surface-plasmon polaritons guided by thin, lossy metallic films bounded by dissimilar dielectric media are investigated. New solutions to the dispersion relation are found, representing waves that are leaky (radiative) in one of the dielectrics. The new waves are interpreted in terms of the coupling of a damped surface plasmon at one interface with continuum modes at the other. Their excitation by end-fire coupling techniques is suggested.

  10. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  11. Structural evaluation of a nickel base super alloy metal foam via NDE and finite element

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Abumeri, G.; Garg, Mohit; Young, P. G.

    2008-03-01

    Cellular materials are known to be useful in the application of designing light but stiff structures. This applies to various components used in various industries such as rotorcraft blades, car bodies or portable electronic devices. Structural application of the metal foam is typically confined to light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. The face sheets carry the applied in-plane and bending loads and the role of the foam core is separate the face sheets to carry some of the shear stresses, while remaining integral with the face sheet. Many challenges relating to the fabrication and testing of these metal foam panels continue to exist due to some mechanical properties falling short of their theoretical potential. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans, on Haynes 25 metal foam. Series of the 2D images are utilized to construct a high precision solid model including all the fine details within the metal foam as detected by the CT scanning technique. Subsequently, a finite element analysis is then performed on an as fabricated metal foam microstructures to evaluate the foam structural durability and behavior under tensile and compressive loading conditions. The analysis includes a progressive failure analysis (PFA) using GENOA code to further assess the damage initiation, propagation, and failure. The open cell metal foam material is a cobalt-nickel-chromium-tungsten alloy that combines excellent high-temperature strength with good resistance to oxidizing environments up to 1800 °F (980 °C) for prolonged exposures. The foam is formed by a powder metallurgy process with an approximate 100 pores per inch (PPI).

  12. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  13. Displacement cascades in metals and ordered alloys. Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Doan, N. V.; Vascon, R.

    1998-02-01

    The aim of the present Molecular Dynamics (MD) simulations is a better understanding of the mechanisms associated with defect production and atomic mixing occurring in displacement cascades in irradiated metals and alloys. The cascades of energy up to 30 keV were investigated by parallel MD simulations in crystals with a reasonably large size of the simulation box, containing up to 2 millions of atoms. In order to separate the effect of the mass of atoms from the chemical effect on the defect production and the disordering in alloys, cascades were generated in Ni 3Al and NiAl compounds where the Al atoms were artificially given the Ni mass. A series of artificial alloys FeAl, FeSb, FeAu, FeU were also investigated. Large interstitial clusters were found to be very mobile and a glide mechanism was pointed out. A sub-cascade formation mechanism was observed from cascades of energy equal to or higher than 5 keV and related to the quasi-channeling phenomenon.

  14. Optimization of Forming Processes with Different Sheet Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sousa, Luísa C.; Castro, Catarina F.; António, Carlos C.

    2007-05-01

    Over the past decades relatively heavy components made of steel alloys comprise the majority of many manufactured parts due to steel's low cost, high formability and good strength. The desire to produce lightweight parts has led to studies searching for lighter and stronger materials such as aluminum alloys. However, they exhibit lower elastic stiffness than steel resulting in higher elastic strains causing known distortions such as spring-back and so decreasing accuracy of manufactured net-shape components. This paper presents a developed computational method to optimize the design of sheet metal processes using genetic algorithms. An inverse approach is considered so that the final geometry of the bended blank closely follows a prescribed one. The developed computational method couples a finite element forming simulation and an evolutionary algorithm searching the optimal design parameters of the process. The developed method searches the optimal parameters that ensure a perfect net-shape part. Different aluminum alloys candidates for automotive structural applications are considered and the optimal solutions are analyzed.

  15. Surface oxidability of pure liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Arato, E.; Bernardi, M.; Giuranno, D.; Ricci, E.

    2012-01-01

    The analysis of the oxygen-liquid metal interaction is a topic of particular technological interest. A deep knowledge of the kinetics and transport mechanisms involved in the oxidation phenomena is necessary: the effect of oxidation reactions taking place in the gas phase and the evaporation of oxides must be considered. This paper aims to review our works in order to provide a systematic analysis of the oxidation of pure metals and determine the most likely to keeping oxygen-free the surface in a binary alloy. In addition, the upgrading of this theoretical approach, here briefly described, is addressed to give a contribution to a better understanding of the evolution of oxidation phenomena close to the solid-liquid-gas interfaces.

  16. Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications

    PubMed Central

    Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.

    2008-01-01

    This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285

  17. Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications.

    PubMed

    Klepper, C C; Williams, J M; Truhan, J J; Qu, J; Riester, L; Hazelton, R C; Moschella, J J; Blau, P J; Anderson, J P; Popoola, O O; Keitz, M D

    2008-03-31

    This paper presents experimental evidence that thin (< approximately 200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 degrees C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285

  18. Directed light fabrication of refractory metals and alloys

    SciTech Connect

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-05-30

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

  19. Directed Light Fabrication of Refractory Metals and Alloys

    SciTech Connect

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-05-14

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

  20. Ultrashort pulse laser machining of metals and alloys

    DOEpatents

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  1. The Surface Structure of Liquid Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Pershan, Peter

    2004-03-01

    X-ray scattering of the surface structure of liquid metals and liquid metal alloys will be discussed. We will report observations of the theoretically predicted surface induced atomic layering; however, quantitative interpretation of the local surface structure factor requires that the Debye-Waller effect associated with thermal capillary waves be accounted for. We will explain how that is done. Results that will be described for surfaces that exhibit simple layering , such as Ga, In and K, will be contrasted with anomalous layering that is observed for Sn. In addition data on the surfaces of alloys such as GaBi, InBi, AuGe and AuSi will be presented This work is supported by DE-FG02-88-ER45379 and DMR-0124936. Experiments at BNL and CMC-Cat at the APS are supported by DE-AC02-98CH10886. Experiments at ChemMatCars at the APS are supported by NSF/DOE grant CHE0087817.

  2. Jacques Friedel and the physics of metals and alloys

    NASA Astrophysics Data System (ADS)

    Villain, Jacques; Lavagna, Mireille; Bruno, Patrick

    2016-03-01

    This is an introduction to the theoretical physics of metals for students and physicists from other specialities. Certain simple consequences of the Fermi statistics in pure metals are first addressed, namely the Peierls distortion, Kohn anomalies and the Labbé-Friedel distortion. Then the physics of dilute alloys is discussed. The analogy with nuclear collisions was a fruitful starting point, which suggested one should analyze the effects of impurities in terms of a scattering problem with the introduction of phase shifts. Starting from these concepts, Friedel derived a theory of the resistivity of alloys, and a celebrated sum rule relating the phase shifts at the Fermi level to the number of electrons in the impurity, which turned out to play a prominent role later in the context of correlated impurities, as for instance in the Kondo effect. Friedel oscillations are also an important result, related to incommensurate magnetic structures. It is shown how they can be derived in various ways: from collision theory, perturbation theory, self-consistent approximations and Green's function methods. While collision theory does not permit to take the crystal structure into account, which is responsible for electronic bands, those effects can be included in other descriptions, using for instance the tight binding approximation. xml:lang="fr"

  3. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1979-01-01

    Crystal nucleation behavior in metallic alloys known to form glasses in melt quenching was characterized and from this characterization the possibility that massive amounts of certain alloys could be slow cooled to the glass state was assessed. Crystal nucleation behavior of pure liquid metals was examined experimentally, under containerless conditions, and theoretically.

  4. Optical properties and emissivities of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Nordine, Paul C.

    1993-01-01

    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated.

  5. Transition-metal-nitride-based thin films as novel energy harvesting materials

    PubMed Central

    Kerdsongpanya, Sit; Alling, Björn

    2016-01-01

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN- and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical–experimental approaches. PMID:27358737

  6. Disorder dependent half-metallicity in Mn{sub 2}CoSi inverse Heusler alloy

    SciTech Connect

    Singh, Mukhtiyar; Saini, Hardev S.; Thakur, Jyoti; Reshak, Ali H.; Kashyap, Manish K.

    2013-12-15

    Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disorders in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.

  7. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    SciTech Connect

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.

  8. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    SciTech Connect

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  9. Investigation of the kinetics of surface-limited thin film growth of SiGe alloys

    SciTech Connect

    Sharp, J.W. . Dept. of Physics and Astronomy); Eres, G. )

    1992-11-01

    The kinetics of surface-limited thin film growth of SiGe alloys was investigated by time-resolved surface differential reflectometry. The source gas, mixtures of disilane and digermane in ratios from 1:1 to 6:1 in helium carrier gas, was delivered to a heated substrate by a fast-acting pulsed molecular jet valve. The adsorption and desorption kinetics were determined from the surface differential reflectance signal obtained using a polarized, high-stability HeNe probe laser. Thin film growth was studied in the temperature range of 400--600[degrees]C on Si(001) substrates. Preferential incorporation of digermane into the film produces an alloy composition that depends upon but does not mirror the gas composition. For all gas mixtures, there is a strong temperature dependence of the rate at which the adsorption layer decomposes into film plus by-product. The kinetic data and the alloy compositions provide a basis for deducing some of the characteristics of the reaction sequence that leads to SiGe alloy thin film growth.

  10. Investigation of the kinetics of surface-limited thin film growth of SiGe alloys

    SciTech Connect

    Sharp, J.W.; Eres, G.

    1992-11-01

    The kinetics of surface-limited thin film growth of SiGe alloys was investigated by time-resolved surface differential reflectometry. The source gas, mixtures of disilane and digermane in ratios from 1:1 to 6:1 in helium carrier gas, was delivered to a heated substrate by a fast-acting pulsed molecular jet valve. The adsorption and desorption kinetics were determined from the surface differential reflectance signal obtained using a polarized, high-stability HeNe probe laser. Thin film growth was studied in the temperature range of 400--600{degrees}C on Si(001) substrates. Preferential incorporation of digermane into the film produces an alloy composition that depends upon but does not mirror the gas composition. For all gas mixtures, there is a strong temperature dependence of the rate at which the adsorption layer decomposes into film plus by-product. The kinetic data and the alloy compositions provide a basis for deducing some of the characteristics of the reaction sequence that leads to SiGe alloy thin film growth.

  11. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  12. XPS study on the weakest zone in the adhesion structure between resin containing 4-META and precious metal alloys treated with different surface modification methods.

    PubMed

    Ohno, H; Endo, K; Yamane, Y; Kawashima, I

    2001-03-01

    Three precious metal alloys, Type IV gold alloy, 14 K gold alloy, and silver-based alloy, were treated with different surface modifications including a metal primer (VBATDT) application, a SiOx coating method, high-temperature oxidation, modification method with a liquid Ga-Sn alloy, and tin electroplating. Then thin PMMA films were bonded with a resin containing 4-META. Water durability at the adhesion interface was evaluated after water immersion, followed by thermal cycling used liquid nitrogen. The weakest zone at the interface was investigated using XPS only for the Ag-Pd alloy specimens that had been surface-treated with as-polishing, adhesive primer, and the SiOx coating method, since peeling of the PMMA film on the surface of specimens surface-treated by other methods was not observed. Metal elements were detected from the resin side at the adhesion interface. The chemical states of Cu in the resin before argon ion etching were characterized as metal oxides and/or states of chemical interaction with 4-META, VBATDT, or SiOx. PMID:11441491

  13. Addressing aquatic hazard classification for metals, metal compounds and alloys in marine systems.

    PubMed

    Huntsman-Mapila, P; Skeaff, J M; Pawlak, M; Beaudoin, R

    2016-08-15

    New International Maritime Organization regulations require shippers to classify all solid bulk cargo to indicate whether they are Harmful to the Marine Environment (HME). The objective of this work was to adapt the freshwater Transformation/Dissolution Protocol (T/DP) to marine water to provide a method to determine, when compared with marine Ecotoxicity Reference Values (ERVs), whether a metal-bearing substance is HME. The substances examined were: Cu2O powder; Ni metal powder; Co3O4 powder; and a Ni-Co-Fe alloy, as wire cuttings, which were the same substances examined in the freshwater T/D validation study and afforded comparisons of the reactivity, or measure of the rate and extent of metal release from the metal-bearing substances in freshwater versus marine conditions. The marine T/D method is suitable for conducting examinations of metal-bearing substances with a wide range of reactivities, from the relatively reactive Cu2O powder and the alloy to the Co3O4 powder, which was the least reactive. PMID:27289283

  14. Acid Strength and Bifunctional Catalytic Behavior of Alloys Comprised of Noble Metals and Oxophilic Metal Promoters

    SciTech Connect

    Hibbitts, David D.; Tan, Qiaohua; Neurock, Matthew

    2014-06-01

    The promotion of metal catalysts with partially oxidized oxophilic MOx species, such as ReOx-promoted Rh, has been demonstrated to produce Brønsted acid sites that can promote hydrogenolysis of oxygenate intermediates such as those found in biomass-derived species. A wide variety of alloy compositions and structures are examined in this work to investigate strongly acidic promoters by using DFT-calculated deprotonation energies (DPE) as a measure of acid strength. Sites with the highest acid strength had DPE less than 1100 kJ mol-1, similar to DPE values of heteropolyacids or acid-containing zeolites, and were found on alloys composed of an oxophilic metal (such as Re or W) with a noble metal (such as Rh or Pt). NH3 adsorbs more strongly to sites with increasing acid strength and the activation barriers for acid-catalyzed ring opening of a furan ring decrease with increasing acid strength, which was also shown to be stronger for OH acid sites bound to multiple oxophilic metal atoms in a three-fold configuration rather than OH sites adsorbed in an atop configuration on one oxophilic metal, indicating that small MOx clusters may yield sites with the highest acid strength.

  15. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Recloux, Isaline; Mouanga, Maixent; Druart, Marie-Eve; Paint, Yoann; Olivier, Marie-Georges

    2015-08-01

    This work contributes to the development of a new environmentally friendly alternative pretreatment for 2024 aluminium alloys to replace hexavalent chromium based conversion layers in the aeronautical field. A silica mesoporous thin film, synthesized through the evaporation induced self-assembly process, was doped with benzotriazole to obtain active corrosion protection. Inhibitor loading contents were correlated with pore characteristics. The release kinetics was studied as function of pH. The application of the doped mesoporous film on 2024 aluminium alloy revealed a slowing down of corrosion processes, demonstrating its potential as an active inhibitor storage layer.

  16. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-09-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  17. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  18. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  19. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  20. Critical thickness for the agglomeration of thin metal films

    SciTech Connect

    Boragno, C.; Buatier de Mongeot, F.; Felici, R.; Robinson, I.K.

    2009-09-15

    A thin metal film can exist in a metastable state with respect to breaking into small clusters. In this paper we report on grazing incidence small-angle x-ray scattering studies carried out in situ during the annealing of thin Ni films, between 2 and 10 nm thick, deposited on an amorphous SiO{sub 2} substrate. Our results show the presence of two different regimes which depend on the initial film thickness. For thicknesses less than 5 nm the annealing results in the formation of small, compact clusters on top of a residual Ni wetting layer. For thicknesses greater than 5 nm the film breaks into large, well-separated clusters and the substrate shows an uncovered clean surface.

  1. Emissivity of freestanding membranes with thin metal coatings

    SciTech Connect

    Zwol, P. J. van Vles, D. F.; Voorthuijzen, W. P.; Péter, M.; Vermeulen, H.; Zande, W. J. van der; Sturm, J. M.; Kruijs, R. W. E. van de; Bijkerk, F.

    2015-12-07

    Freestanding silicon nitride membranes with thicknesses down to a few tens of nanometers find use as TEM windows or soft X-ray spectral purity filters. As the thickness of a membrane decreases, emissivity vanishes, which limits radiative heat emission and resistance to heat loads. We show that thin metal layers with thicknesses in the order of 1 nm enhance the emissivity of thin membranes by two to three orders of magnitude close to the theoretical limit of 0.5. This considerably increases thermal load capacity of membranes in vacuum environments. Our experimental results are in line with classical theory in which we adapt thickness dependent scattering terms in the Drude and Lorentz oscillators.

  2. Resistive switching based on filaments in metal/PMMA/metal thin film devices

    NASA Astrophysics Data System (ADS)

    Wolf, Christoph; Nau, Sebastian; Sax, Stefan; Busby, Yan; Pireaux, Jean-Jacques; List-Kratochvil, Emil J. W.

    2015-12-01

    The working mechanism of unipolar organic resistive switching thin-film devices is investigated. On the basis of a metal/poly(methyl methacrylate)/metal model system, direct spectroscopic evidence for filament formation is obtained by three-dimensional (3D) imaging with time-of-flight secondary ion mass spectrometry. By means of alternative fabrication methods the claimed influence of metal implantation in the organic layer during fabrication is ruled out. Further, the stability of the resistive switches under oxygen and humidity is investigated leading to a deeper understanding of the processes governing the formation and rupture of filaments.

  3. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  4. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  5. The unexpected role of metal nanoparticles and nanonetworks in alloy degradation.

    SciTech Connect

    Zeng, Z.; Natesan, K.; Cai, Z.; Darling, S. B.

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  6. Colored thin films for specific metal ion detection.

    PubMed

    Schauer, Caroline L; Chen, Mu-San; Price, Ronald R; Schoen, Paul E; Ligler, Frances S

    2004-08-15

    This paper describes the investigation of chitosan and poly(allylamine) (PAH) for the creation of a multi-film, color-based dipstick for the detection of metal ions in solution. Thin, colored films of chitosan and PAH cross-linked with hexamethylene 1,6-di(aminocarboxysulfonate) (HDACS) are created where color is due to film thickness and optical interference effects. The films are investigated for their ability to selectively detect aqueous metal ions via changes in thickness and/or color. Chitosan-HDACS films were selective for Cr(VI) over all other metal ions tested including Cr(acac)3 and Cr(NO3)3 x 9H2O, and PAH-HDACS films were selective for Cu(II) and Cu(I) salts over all other metal ions tested. The irreversible, selective changes due to metal ion solutions were not caused by varying the pH. Potomac River water was also tested using the two films, with results indicating the presence of Cu(II) in the aqueous sample. PMID:15382871

  7. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.

  8. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    SciTech Connect

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  9. Refractory metal alloys and composites for space power systems

    SciTech Connect

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-09-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900`s and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed.

  10. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  11. Elastoplastic properties of microand submicrocrystalline metals and alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Betekhtin, V. I.; Narykova, M. V.

    2015-12-01

    The problem of application of physical acoustic methods to studying the mechanisms that control plastic deformation and fracture is considered using micro- and submicrocrystalline materials (Be, Al, Ti, Al-Sc alloy, Cu-Nb laminated material) as examples. The influence of grain boundaries on the acoustic (elastic, inelastic) properties of polycrystalline micro- and nanostructured metallic materials is analyzed. Experimental results are presented for a wide oscillating-stress amplitude range, from 0.2 to 50 MPa. The experimental data are discussed in terms of the theoretical concepts of oscillatory dislocation mobility, which depends on both the short-range stress fields around point defects and the long-range fields of internal stresses. It is shown that various types of discontinuities, such as pores and microcracks, noticeably influence the acoustic properties. The aspects of the relation, similarity, and difference between acoustic and mechanical (plasticity, strength) tests of polycrystalline materials with micro- and nanosized structural elements are discussed.

  12. Testing metals and alloys for use in oxygen systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.

    1986-01-01

    When oxygen is present in high concentrations or large quantities, as in oxygen-based life-support systems, the likelihood of combustion and the probable intensity of a conflagration increase, together with the severity of the damage caused. Even stainless steel will burn vigorously when ignited in a 1000-psi oxygen environment. The hazards involved in the use of oxygen increase with system operation at the elevated temperatures typical of propulsion systems. Fires in oxygen systems are generally catastrophic, causing a threat to life in manned vehicles. When mechanical components of a mechanism generate friction heat in the presence of oxygen, many commonly used metal alloys ignite and burn. Attention is presently given to frictional heating, particle impact, and flame propagation tests conducted in oxygen environments.

  13. Refractory metal alloys and composites for space power systems

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary source to meet these high levels of electrical demand. One way to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites is discussed.

  14. Laser-induced metallic nanograined thin films processing

    SciTech Connect

    Tosa, Nicoleta E-mail: florin.toadere@itim-cj.ro; Toadere, Florin E-mail: florin.toadere@itim-cj.ro; Hojbota, Calin E-mail: florin.toadere@itim-cj.ro; Tosa, Valer E-mail: florin.toadere@itim-cj.ro

    2013-11-13

    A direct laser writing method for designing metallic nanograined thin films is presented. This method takes advantage of photon conversion within a chemical process localized at the focal point. A computer controlled positioning system allows the control of experimental parameters and spatial resolution of the pattern. Spectroscopic investigations reveal variable attenuation of the optical properties in UV-visible range and a spectral imaging processing algorithm simulated the functionality of these films in visible light. This could be an important step for obtaining neutral density attenuators.

  15. Promising HE for explosive welding of thin metallic foils

    NASA Astrophysics Data System (ADS)

    Deribas, A. A.; Mikhaylov, A. L.; Titova, N. N.; Zocher, Marvin A.

    2012-03-01

    Experimental results are presented on the development of a high explosive (HE) suitable for the welding of thin metallic foils. The explosive is formed from a mixture of brisant HE (RDX or PETN) and an inert material, namely sodium bicarbonate. Sodium bicarbonate releases a rather large quantity of gas during decomposition, the effects of which are discussed. Measurements of detonation velocity and critical thickness for specific mixture combinations are presented. It is shown that particle size (of the RDX or PETN component) has a significant effect upon detonation velocity and critical thickness. Compositions were developed which have a stable detonation velocity ~2 km/s with a layer thickness ~ 2 mm.

  16. Detection of crevice corrosion of metallic alloys by optical interferometry

    SciTech Connect

    Habib, K.

    1999-11-01

    In the present investigation, an optical corrosion-meter has been developed for materials testing and evaluation of different corrosion phenomena. The idea of the optical corrosion-meter was established based on principles of 3D-holographic interferometry for measuring microsurface dissolution, i.e. mass loss, and on those of electrochemistry for measuring the bulk electronic current, i.e. corrosion current of metallic samples in aqueous solutions. In the present work, an early stage of crevice corrosion of a titanium alloy, a carbon steel and a pure aluminum in seawater was monitored in situ by the optical corrosion-meter during the cyclic polarization test. The observations of crevice corrosion were basically interferometric perturbations detected only on the surface of the titanium alloy and the carbon steel underneath a crevice assembly, made of Teflon bolt, Teflon nut, and Teflon washer. The crevice assembly used on all tested samples to create a differential aeration cell between the surface of the sample and areas underneath the crevice assembly in seawater. Each Teflon washer contained radial grooves and had 20 plateaus which formed crevices ( shield areas) when pressed against the surface of the sample. The interferometric perturbations interpreted as a localized corrosion in a form of an early crevice corrosion of a depth ranged between 0.3 pm to several micrometers. Consequently, results of the present work indicate that holographic interferometry is very useful technique as a 3D-interferometric microscope for monitoring crevice corrosion at the initiation stage of the phenomenon for different metallic samples in aqueous solutions.

  17. Electrochemical deposition and characterization of Ni-P alloy thin films

    SciTech Connect

    Mahalingam, T. . E-mail: maha51@rediffmail.com; Raja, M.; Thanikaikarasan, S.; Sanjeeviraja, C.; Velumani, S.; Moon, Hosun; Kim, Yong Deak

    2007-08-15

    Nickel phosphorus (Ni-P) alloy thin films were prepared by electrodeposition on pre-cleaned copper substrates using a potentiostatic cathodic electrodeposition method from sulfate electrolyte baths at various sodium hypophosphite (NaH{sub 2}PO{sub 2}) concentrations. X-ray diffraction studies reveal polycrystalline cubic alloys at low concentrations of phosphorus (< 13.5 at.%) and these transformed into amorphous alloys at higher concentrations. X-ray photoelectron spectra show the presence of Ni{sub 2}p and P{sub 2}p lines corresponding to their binding energies. Scanning electron microscopic studies reveal spherical shaped grains at low phosphorus contents and modules of cauliflower type morphology at higher phosphorus concentrations. The effects of phosphorus concentration on the crystal structure, composition and morphology are studied and discussed.

  18. Tailoring magnetic skyrmions in ultra-thin transition metal films.

    PubMed

    Dupé, Bertrand; Hoffmann, Markus; Paillard, Charles; Heinze, Stefan

    2014-01-01

    Skyrmions in magnetic materials offer attractive perspectives for future spintronic applications since they are topologically stabilized spin structures on the nanometre scale, which can be manipulated with electric current densities that are by orders of magnitude lower than those required for moving domain walls. So far, they were restricted to bulk magnets with a particular chiral crystal symmetry greatly limiting the number of available systems and the adjustability of their properties. Recently, it has been experimentally discovered that magnetic skyrmion phases can also occur in ultra-thin transition metal films at surfaces. Here we present an understanding of skyrmions in such systems based on first-principles electronic structure theory. We demonstrate that the properties of magnetic skyrmions at transition metal interfaces such as their diameter and their stability can be tuned by the structure and composition of the interface and that a description beyond a micromagnetic model is required in such systems. PMID:24893652

  19. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  20. Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals.

    PubMed

    Reclaru, Lucien; Lüthy, Heinz; Eschler, Pierre-Yves; Blatter, Andreas; Susz, Christian

    2005-07-01

    Precious metal based dental alloys generally exhibit a superior corrosion resistance, in particular enhanced resistance to pitting and crevice corrosion, compared to non-precious metal based alloys such as CoCr alloys. A new generation of Co-Cr alloys enriched with precious metals (Au, Pt, Ru) have now appeared on the market. The goal of this study was to clarify the effect of the precious metals additions on the corrosion behaviour of such alloys. Various commercial alloys with different doping levels were tested by electrochemical techniques in two different milieus based on the Fusayama artificial saliva and an electrolyte containing NaCl. Open circuit potentials, corrosion currents, polarization resistances, and crevices potentials were determined for the various alloys and completed by a coulometric analysis of the potentiodynamic curves. In addition, the microstructures were characterised by metallography and phase compositions analysed by EDX. The results show that the presence of precious metals can deteriorate the corrosion behaviour of Co-Cr alloys in a significant way. Gold doping, in particular, produces heterogeneous microstructures that are vulnerable to corrosive attack. PMID:15701364

  1. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  2. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  3. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  4. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  5. Solidification mechanism of highly undercooled metal alloys. [tin-lead and nickel-tin alloys

    NASA Technical Reports Server (NTRS)

    Shiohara, Y.; Chu, M. G.; Macisaac, D. G.; Flemings, M. C.

    1982-01-01

    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation.

  6. Dissociations and friction forces in metals and alloys

    NASA Astrophysics Data System (ADS)

    Couret, A.; Caillard, D.

    1991-06-01

    50 years after the first basic idea of Peierls, a review is made on the different aspects of friction forces in metals and alloys. Different approachs are compared, and it is shown that all lead to similar results, corresponding to different behaviours in two stress ranges. Experimental results in BCC, HCP, and FCC metals, are in good agreement with these theoretical developments. In a second part, an extension of the Peierls model, called locking-unlocking, is developed on the basis of experimental results in the prismatic planes of beryllium. It applies to many other situations, such as prismatic glide in magnesium and titanium, cube and octahedral glide in LI2 nickel-based ordered alloys, and possibly some BCC metals. The relation between locking-unlocking and Peierls mechanisms is discussed, as the role of locking-unlocking in the formation of strength anomalies. 50 ans après la première idée de base de Peierls, nous faisons une revue des différents aspects des forces de friction dans les métaux et les alliages. Les diverses approches sont comparées, et nous montrons que toutes conduisent à des résultats semblables, correspondant à deux comportements différents dans deux domaines de température. Les résultats expérimentaux dans les métaux CC, HC et CFC sont en bon accord avec ces développements théoriques. Dans une seconde partie, nous développons une extension du modèle de Peierls, appelée blocage-déblocage, sur la base de résultats expérimentaux obtenus dans les plans prismatiques du béryllium. Elle s'applique à de nombreuses autres situations, telles que le glissement prismatique du magnésium et du titane, le glissement cubique et octaédrique des alliages ordonnés LI2 à base nickel, et peut-être quelques métaux CC. Nous discutons la relation entre les mécanismes de blocage-déblocage et de Peierls, ainsi que le rôle du blocage-déblocage dans la formation des anomalies de limite élastique.

  7. Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature

    SciTech Connect

    Rouaix-Vande Put, Aurelie; Unocic, Kinga A.; Brady, Michael P.; Pint, Bruce A.

    2015-11-18

    Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H2–CO–CO2–H2O environment, the increase in temperature from 550 to 750 °C generally decreased metal dusting. When H2O was added to a H2–CO–CO2 environment at 650 °C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H2O, the higher alloyed specimens retained a thin protective oxide. Lastly, for gas mixtures containing little or no H2O, the Fe-base alloys were less resistant to metal dusting than Ni-base alloys.

  8. Study of potentially half-metallic cobalt-chromium-iron-aluminum Heusler alloys

    NASA Astrophysics Data System (ADS)

    Kelekar, Rajesh

    2006-12-01

    In the new class of materials known as half-metallic ferromagnets, all of the conduction electrons have the same spin at low temperature. This high spin polarization makes half-metals promising candidates for magnetoelectronic applications. In this work we study the Heusler alloy family of compounds Co2 Cr1-xFe xAl, predicted to be half-metallic for low Fe concentrations. Using DC magnetron sputtering, we have grown for the first time epitaxial thin films of these compounds. Basic characterization shows that the films crystallize in the B2 crystal structure, and that their magnetic and transport properties vary significantly with Fe concentration. We incorporate these thin films into epitaxial superlattices with Cr and simple spin valve trilayers with Cu and Co90Fe10. Though we do not observe evidence for antiferromagnetic coupling in the superlattices, we find large giant magnetoresistances in the spin valves of up to 7% for intermediate Fe concentrations, the highest to date for any material predicted to be half-metallic. We then measure the spin polarization of CO2Cr 0.6Fe0.4Al with point contact Andreev reflection spectroscopy, finding a value of 50%, lower than the 100% expected for a half-metal. We use x-ray magnetic circular dichroism to investigate the deficit in the saturation magnetic moments as compared to theory for films with low Fe concentrations. We develop a modified sum rule analysis for the extraction of the spin and orbital moments of Cr, Fe, and Co from the dichroism spectra. The average Cr spin moment has a value approximately 10% of the theoretical value; features of the Cr dichroism spectra suggest that the films may be composed of ordered B2 regions and disordered regions. We use tight binding theory to calculate the minority spin energy bands, finding a dominance of Co d states near the energy gap. This result, supported by more accurate calculations, suggests that the half-metallicity of these compounds may be especially sensitive to

  9. Fatigue properties of NiTi shape-memory alloy thin plates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Saito, Makoto

    2013-04-01

    The mechanical and fatigue characteristics of superelastic NiTi thin plates in the large strain area were obtained by tensile and pulsating 4-point bending tests to establish the design guidelines for the ferromagnetic shape memory alloy (FSMA) composite actuator and its fatigue life. The stress-strain curves of NiTi thin plates were found to be strain rate dependent. The finite element analysis (FEA) result using the stress-strain curve measured by tensile test is in good agreement with the experimental results of the 4-point bending tests. The relationship between the maximum bending strain and the number of cycles to failure in pulsating 4-point bending fatigue tests was obtained as well as an analysis of the fatigue fracture surfaces of NiTi thin plates.

  10. Effects of thermomechanical processing on strength and toughness of iron - 12-percent-nickel - reactive metal alloys at -196 C

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1978-01-01

    Thermomechanical processing (TMP) was evaluated as a method of strengthening normally tough iron-12-nickel-reactive metal alloys at cryogenic temperatures. Five iron-12 nickel alloys with reactive metal additions of aluminum, niobium, titanium, vanadium, and aluminum plus niobium were investigated. Primary evaluation was based on the yield strength and fracture toughness of the thermomechanically processed alloys at -196 C.

  11. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. PMID:21684682

  12. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  13. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  14. Surface plasmon polaritons on thin-slab metal gratings

    NASA Astrophysics Data System (ADS)

    Hooper, I. R.; Sambles, J. R.

    2003-06-01

    In a recently published paper [U. Schröter and D. Heitmann, Phys. Rev. B 60, 4992 (1999)] an unexpected result occurred when light was incident upon a periodically corrugated thin metal film when the corrugations on the two interfaces were identical and in phase with each other. It was observed that it was not possible to excite the surface plasmon polariton on the metal surface facing away from the incoming light, and they ascribed this to the lack of a thickness variation within the metal. In this paper a somewhat different interpretation of their results is presented, which shows that the surface plasmon polariton (SSP) is in fact very weakly excited on the transmission side of such structures. It is explained why this coupling is so weak in terms of the cancellation of the evanescent diffracted orders from the two diffractive surfaces and how, by changing the phase between the grating on either surface, this coupling becomes much stronger. An explanation for the observation that SPP excitation on such structures may lead to either transmission maxima or minima is also presented.

  15. Thin film metal surface micromachining: a new enabling foundry technology

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Andringa, Toon; Attenborough, K.; Eisenberg, Martin; Meeuws, P.

    2003-01-01

    A new generation of products has been developed at research institutes needing a combination of thin film metal processing and surface micromachining. Especially RF MEMS switches and related products are now entering the market. These products are not only complex in architecture, they also feature relative thick metal layers. The thicknesses of the metal layers give rise to problems in the field of step coverage, dimension control and limited resistance to etching agents. Reliability and yield in production is therefore a major concern. To make robust, compact and reliable structures, combinations of electroplating and Chemical Mechanical Polishing are used. The combinations are not only new in this area; they are rather different from the standards in the semiconductor industry, where the technology was developed. The process modules are used in RF MEMS to create the thick signal lines, as well as the delicate switch and varactor structures. The basic processes, tried and tested in the production of magnetic heads, had to be modified to meet the special demands of RF MEMS. Also new processes had to be introduced to create free hanging membranes. Due to the fragility of the structures, a special technology is being developed in the backend processing: wafer scale packaging. This article gives an overview of the processes, the challenges met and the results of the work on RF MEMS at the OnStream MST foundry.

  16. Plasmonic sensing using metallic nano-sculptured thin films.

    PubMed

    Abdulhalim, Ibrahim

    2014-09-10

    Nano-sculptured thin films (nSTFs) is a group of meterials prepared by the oblique or the glancing angle deposition technique. They take the form of rods having different shapes such as nanocolumns, nanoscrews, nanozigzags and many other nanoshapes. Their potential for biosensing is highlighted in this review particularly the metallic ones due to their remarkable plasmonic properties. The techniques that have been shown so far to be of high potential are: extended surface plasmon resonance (SPR), localised SPR, surface enhanced flourescence (SEF) and Raman scattering (SERS). The use of metal nSTFs in SPR biosensors with Kretschmann-Raether configuration enhances both the angular and the spectral sensitivities due to the porosity and adds more degrees of freedom in designing evanescent waves based techniques. The metallic nSTFs, exhibit remarkable localised plasmonic properties that make them a promising substrate for enhanced spectroscopies. Their long term stability in water environment makes them suitable candidates for biosensing in water as it is already demonstrated for several water pollutants. The influences of the nanostructures' size, topology, the substrate features, and the preparation conditions on the enhancement of SEF and SERS are highlighted with emphases on the unresolved issues and future trends. PMID:24616387

  17. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  18. Formation of Fe-Nb-X (X=Zr, Ti) amorphous alloys from pure metal elements by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Tang, Cuiyong; Leo Ngai, Tungwai; Yang, Chao; Li, Yuanyuan

    2012-01-01

    Fe-based amorphous powders of Fe 56Nb 6Zr 38 and Fe 60Nb 6Ti 34 based on binary eutectic were prepared by mechanical alloying starting from mixtures of pure metal powders. The amorphization behavior and thermal stability were examined by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. Results show that Fe 56Nb 6Zr 38 alloy has a better glass forming ability and a relatively lower thermal stability comparing with Fe 60Nb 6Ti 34 alloy. The prepared amorphous powders have homogeneous element distribution and no obvious contaminants coming from mechanical alloying. The synthesized amorphous powders offer the potential for consolidation to full density with desirable mechanical properties through the powder metallurgy methods.

  19. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  20. Material Behavior Based Hybrid Process for Sheet Draw-Forging Thin Walled Magnesium Alloys

    SciTech Connect

    Sheng, Z.Q.; Shivpuri, R.

    2005-08-05

    Magnesium alloys are conventionally formed at the elevated temperatures. The thermally improved formability is sensitive to the temperature and strain rate. Due to limitations in forming speeds, tooling strength and narrow processing windows, complex thin walled parts cannot be made by traditional warm drawing or hot forging processes. A hybrid process, which is based on the deformation mechanism of magnesium alloys at the elevated temperature, is proposed that combines warm drawing and hot forging modes to produce an aggressive geometry at acceptable forming speed. The process parameters, such as temperatures, forming speeds etc. are determined by the FEM modeling and simulation. Sensitivity analysis under the constraint of forming limits of Mg alloy sheet material and strength of tooling material is carried out. The proposed approach is demonstrated on a conical geometry with thin walls and with bottom features. Results show that designed geometry can be formed in about 8 seconds, this cannot be formed by conventional forging while around 1000s is required for warm drawing. This process is being further investigated through controlled experiments.

  1. Deposition and Characterization of Thin Films on Metallic Substrates

    NASA Technical Reports Server (NTRS)

    Gatica, Jorge E.

    2005-01-01

    A CVD method was successfully developed to produce conversion coatings on aluminum alloys surfaces with reproducible results with a variety of precursors. A well defined protocol to prepare the precursor solutions formulated in a previous research was extended to other additives. It was demonstrated that solutions prepared following such a protocol could be used to systematically generate protective coatings onto aluminum surfaces. Experiments with a variety of formulations revealed that a refined deposition protocol yields reproducible conversion coatings of controlled composition. A preliminary correlation between solution formulations and successful precursors was derived. Coatings were tested for adhesion properties enhancement for commercial paints. A standard testing method was followed and clear trends were identified. Only one precursors was tested systematically. Anticipated work on other precursors should allow a better characterization of the effect of intermetallics on the production of conversion/protective coatings on metals and ceramics. The significance of this work was the practical demonstration that chemical vapor deposition (CVD) techniques can be used to systematically generate protective/conversion coating on non-ferrous surfaces. In order to become an effective approach to replace chromate-based pre- treatment processes, namely in the aerospace or automobile industry, the process parameters must be defined more precisely. Moreover, the feasibility of scale-up designs necessitates a more comprehensive characterization of the fluid flow, transport phenomena, and chemical kinetics interacting in the process. Kinetic characterization showed a significantly different effect of magnesium-based precursors when compared to iron-based precursors. Future work will concentrate on refining the process through computer simulations and further experimental studies on the effect of other transition metals to induce deposition of conversion/protective films

  2. Enhanced half-metallicity of off-stoichiometric quaternary Heusler alloy C o2(Mn ,Fe )Si investigated through saturation magnetization and tunneling magnetoresistance

    NASA Astrophysics Data System (ADS)

    Moges, Kidist; Honda, Yusuke; Liu, Hong-xi; Uemura, Tetsuya; Yamamoto, Masafumi; Miura, Yoshio; Shirai, Masafumi

    2016-04-01

    We investigated the factors that critically affect the half-metallicity of the quaternary Heusler alloy C o2(Mn ,Fe )Si (CMFS) by examining the film composition dependence of the saturation magnetization per formula unit, μs, of CMFS thin films and the tunneling magnetoresistance (TMR) ratio of CMFS/MgO/CMFS magnetic tunnel junctions (MTJs). We also investigated the origin of the giant TMR ratio of up to 2610% at 4.2 K (429% at 290 K) obtained for CMFS MTJs with Mn-rich, lightly Fe-doped CMFS electrodes. Co antisites at the nominal Mn/Fe sites (C oMn /Fe antisites) can consistently explain the μs for (Mn + Fe)-deficient CMFS thin films being lower than the half-metallic Zt-24 value and the TMR ratio for MTJs with (Mn + Fe)-deficient CMFS electrodes being lower than that for MTJs with (Mn + Fe)-rich CMFS electrodes. It was revealed that the C oMn /Fe antisite is detrimental to the half-metallicity of the CMFS quaternary alloy, as it is in the Co2MnSi (CMS) ternary alloy. It was also shown that (Mn +Fe ) -rich compositions are critical to suppressing these harmful antisites and to retaining the half-metallic electronic state. In addition, a relatively small Fe ratio, rather than a large one, in the total (Mn +Fe ) composition led to a more complete half-metallic electronic state. Half-metallicity was more strongly enhanced by increasing the Mn composition in Mn-rich, lightly Fe-doped CMFS than in Mn-rich CMS. This phenomenon is the cause of the giant TMR ratio recently reported for CMFS MTJs. Our findings indicate that the approach to controlling off-stoichiometry and film composition is promising for fully utilizing the half-metallicity of quaternary CMFS thin films as spin source materials.

  3. Influence of thin oxide layers on tribological properties of E110 alloy tubular specimens under dry friction conditions

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.

    2016-04-01

    Experiments to simulate wear process of fuel cladding in case its contact with spacing grid. System «sphere-plane» selected as friction pair. Tubular parts of fuel claddings from E110 alloy diameter of 9.15 mm and length of 50 mm (wall thickness 1 mm) were used for investigations. Some claddings were subjected to ion cleaning and polishing under the influence of Ar+ ion beam with average energy of 3 keV. Samples were oxidized in steam- water conditions (T=300° C, p=17 MPa, time up to 100 h) to create thin oxide layers with a thickness of 1 mkm on the tubes surface. It is found that wear of the metallic samples takes place in elastically plastic deformation conditions at initial stage (2-5 min). Presenceof thin oxide layer (of thickness up to 200 nm) on the samples surface contributes to reduce wear due to the uniform redistribution its fragments on the friction track, and wear also samples takes place in elastically plastic deformation conditions. Presence of oxide layer with thickness of 700 nm on the samples surface increases wear in conditions of abrasion friction.

  4. Thin-film silicon for flexible metal-air batteries.

    PubMed

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. PMID:25251223

  5. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  6. The use of cold sprayed alloys for metallic stents

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar

    With the invention of the coronary stent, which is a wire metal mesh tube designed to keep the arteries open in the treatment of heart diseases, promising clinical outcomes were generated. However, the long term successes of stents have been delayed by significant in-stent restenosis (blockages) and stent fracture. In this research work, it has been proposed to use Cold Gas Dynamic Spraying (CGDS) coating material as an alternative choice to manufacture metallic stent. In CGDS, fine particles are accelerated to a high velocity and undergo solid-state plastic deformation upon impact on the substrate, which leads to particle-particle bonding. The feature of CGDS distinct from other thermal spray techniques is that the processing gas temperature is below the melting point of the feedstock. Therefore, unwanted effects of high temperatures, such as oxidation, grain growth and thermal stresses, are absent. In response to the fact that the majority of stents are made from stainless steel (316L) or Co-Cr alloy (L605), this study specifically addresses the development and characterization of 316L and 316L mixed with L605 coatings produced by the CGDS process. Scanning electron microscopy and electron backscatter diffraction were used to investigate the microstructural changes of these coatings before and after annealing. The effect of gas type on the microstructure of 316L coatings and the role of post-heat treatment in the microstructure and properties are also studied. Of particular interest are grain refinement, heat treatment, mechanical properties and corrosion behavior of the cold sprayed material.

  7. CRACK GROWTH RESPONSE OF ALLOY 152 AND 52 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The crack growth response of alloy 152 and 52 weld metals has been measured in simulated PWR primary water at both high (325-350 C) and low (50 C) temperatures. Tests were performed on samples machined from alloy 152 or 52 mockup welds. Propagation rates under cycle + hold and constant K conditions at high temperatures show stable, but extremely low SCC growth rates. The most significant intergranular cracking occurred during cycling at 50 C, particularly for the alloy 152 weld metal at high stress intensity.

  8. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  9. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers.

    PubMed

    Wang, Gang; Robert, Cedric; Suslu, Aslihan; Chen, Bin; Yang, Sijie; Alamdari, Sarah; Gerber, Iann C; Amand, Thierry; Marie, Xavier; Tongay, Sefaattin; Urbaszek, Bernhard

    2015-01-01

    Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4-300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. PMID:26657930

  10. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers

    PubMed Central

    Wang, Gang; Robert, Cedric; Suslu, Aslihan; Chen, Bin; Yang, Sijie; Alamdari, Sarah; Gerber, Iann C.; Amand, Thierry; Marie, Xavier; Tongay, Sefaattin; Urbaszek, Bernhard

    2015-01-01

    Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1−x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. PMID:26657930

  11. Burn propagation rates of metals and alloys in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Shaw, R. C.; Homa, J. M.

    1986-01-01

    The average burn rates of several metals and alloys were determined at oxygen pressures between 3.45 and 68.91 MPa (500 and 10,000 psig) and ambient temperature. Several materials were tested at elevated sample temperatures. The test materials were fabricated into solid cylindrical rods and mounted vertically in the test chamber. A magnesium igniter was positioned at the bottom end of each test specimen to promote upward burn propagations. Nickel 200 and copper 102 could not be ignited at all oxygen pressures tested whereas Monel 400 appeared to ignite but quickly self-extinguished. The other materials tested burned the entire length of the test sample. Aluminum 6061 exhibited the fastest burn propagation rate. Inconel 718 burned slower than aluminum but faster than the stainless steels (types 304 and 316). Increasing oxygen pressure generally increased the burn propagation rate of the materials. Increasing the ambient temperature of the test specimens for several materials to approximately 850 K (1070 F) had little effect upon the ignition or burn properties of nickel 200 or Monel 400. Type 316 stainless steel exhibited an increase in its burn propagation rate at this higher temperature.

  12. Cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, Thomas D.

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  13. Improved cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, T.D.

    1984-03-30

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  14. DKG statement on the use of metal alloy discs for patch testing in suspected intolerance to metal implants.

    PubMed

    Thomas, Peter; Geier, Johannes; Dickel, Heinrich; Diepgen, Thomas; Hillen, Uwe; Kreft, Burkhard; Schnuch, Axel; Szliska, Christiane; Mahler, Vera

    2015-10-01

    Intolerance reactions to metal implants may be caused by metal allergy. However, prior to implantation, 'prophetic'/prophylactic patch testing should not be performed. Pre-implant patch testing should only be done to verify or exclude metal allergy in patients with a corresponding history. In case of implant-related complications - in particular following replacement arthroplasty - such as pain, effusion, skin lesions, reduced range of motion or implant loosening, orthopedic causes should be ruled out first. Workup of suspected metal implant allergy should then be done using the DKG standard series, which includes nickel, cobalt, and chromium preparations. Various studies assessing the usefulness of metal alloy discs for patch testing have shown this particular approach to be ineffective with respect to providing reliable information on metal allergy. Any positive reaction in such tests cannot be assigned to a specific metal contained within the alloy. Furthermore, there is a risk of broad and indiscriminate use of these readily available discs. Accordingly, given the lack of additional benefit compared to patch testing with standardized metal salt preparations, we do not recommend patch testing with metal alloy discs. PMID:26408461

  15. Sputtering deposition of aluminium molybdenum alloy thin film anodes for thin film microbatteries

    NASA Astrophysics Data System (ADS)

    Thirumoolam, Mani Chandran; Sivaramakrishnan, Balaji; Devarajan, Mutharasu

    2015-05-01

    Al5Mo thin film anodes for Li-ion batteries were prepared using DC sputtering under different conditions, the latter being specified as deposition at room temperature (S0), deposition at 300°C (S1), and deposition at room temperature followed by thermal annealing at 300°C (S2). The thin films were deposited using an aluminum target tiled with molybdenum discs at a ratio calculated based on the theoretical sputtering yields. The structural and compositional analyses performed with x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDX) confirmed the Al5Mo compound formation and the Al/Mo elemental ratio, respectively. The compound formation was observed to be evident only for the thin films subjected to heat treatment during or after deposition. Scanning electron micrographs reveal a higher porosity of approximately 23% for sample S0 and a lower porosity of around 18% for sample S1. The chronopotentiometry results show a higher volumetric specific capacity of approximately 197 mAh/cm3 for sample S1. Capacity increments have been observed for all samples upon charge-discharge cycles, whose values after 25 cycles for samples S0, S1, and S2 were 41.2%, 20.4%, and 21.1%, respectively. [Figure not available: see fulltext.

  16. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    SciTech Connect

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

  17. Promising antimicrobial capability of thin film metallic glasses.

    PubMed

    Chu, Y Y; Lin, Y S; Chang, C M; Liu, J-K; Chen, C H; Huang, J C

    2014-03-01

    Thin film metallic glasses (TFMGs) are demonstrated to exhibit excellent surface flatness, high corrosion resistance and satisfactory hydrophobic properties. Moreover, the antimicrobial and biocompatibility abilities of TFMGs are examined and the results are compared with the behavior of pure Ag and 316L stainless steel. Three TFMGs, Al48Ag37Ti15, Zr54Ti35Si11, and Zr59Ti22Ag19, are prepared by sputtering to assess the antimicrobial performance against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, which are the most common nosocomial infection pathogens. Experimental results show that the antimicrobial effect of the Al- or Ag-containing AlAgTi and ZrTiAg TFMGs is similar to that of the pure Ag coating. The ZrTiSi TFMG with no Ag or Al shows poor antimicrobial capability. The physical properties of highly smooth surface and hydrophobic nature alone are not sufficient to result in promising antimicrobial ability. The chemical metal ion release still plays a major role, which should be born in mind in designing biomedical devices. PMID:24433907

  18. Size and rate dependent necking in thin metallic films

    NASA Astrophysics Data System (ADS)

    Pardoen, T.

    2014-01-01

    The control of the ductility of thin metallic films is a major issue in a variety of technologies involving flexible electronics, MEMS and deformable coatings. An enhanced closed form 1D imperfection based localization analysis is developed in order to investigate the mechanics of diffuse necking in metallic films. The model relies on a description of the localization process in a finite length specimen using either a 2- or 3-zone model, under plane stress or plane strain tension conditions. A strain gradient plasticity contribution to the stabilization of the localization process is taken into account in the hardening response through a simple estimate of the deformation gradient inside the necking zone. The model, with gradient plasticity effects, is validated towards 2D finite element simulations. The response of the material involves both strain-hardening and rate sensitivity, as well as possible creep relaxation. The plastic flow parameters are related to the grain size and film thickness. The model shows, in agreement with experiments, that the ductility can either drop to small values for very small grain sizes and/or film thickness due to the high strength and to the presence of imperfections, or can remain constant or even increase owing to an increased rate sensitivity resulting from thermally activated mechanisms. This last stabilization effect can be reinforced by gradient plasticity effects if allowed by the dominant deformation mechanism.

  19. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  20. Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices.

    PubMed

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; Hu, Xianyi; Stach, Eric A; Handwerker, Carol A; Agrawal, Rakesh

    2016-04-11

    Bulk metals and metal chalcogenides are found to dissolve in primary amine-dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(S(x),Se(1-x))3, and Cu2ZnSn(S(x)Se(1-x))4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Cu2ZnSn(S(x)Se(1-x))4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively. PMID:26981781

  1. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  2. Thin films by metal-organic precursor plasma spray

    SciTech Connect

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-07-15

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd){sub 3}), triethylsilane (HSi(C{sub 2}H{sub 5}){sub 3} or HSiEt{sub 3}), and titanium tetrakisdiethylamide (Ti(N(C{sub 2}H{sub 5}){sub 2}){sub 4} or Ti(NEt{sub 2}){sub 4}) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt{sub 3} showed the formation of SiC phase but Al(hd){sub 3}-derived films were amorphous. The Ti(NEt{sub 2}){sub 4} precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO{sub 2} anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  3. Cold rolling induced alloying behaviors in metallic multilayers

    NASA Astrophysics Data System (ADS)

    Wang, Zhe

    Phase transformation and atomic scale intermixing induced by deformation are important and fundamental issues in the mechanical alloying processes. Repeated cold rolling and folding experiments were performed on the metallic multilayers in order to study the deformation driven behaviors. Various binary systems such as isomorphous, eutectic and thermodynamically immiscible systems were studied. Moreover, monometallic Pd, Pt and Fe were selected in order to study the deformation driven recrystallization behavior. In Cu/Ni multilayers, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which is also in contrast to the thermal diffusion behavior. During the cold rolling of multilayers of Ni and V, deformation induces phase transformation and an interfacial mixing with suppression of nucleation of intermetallic phases. The results also demonstrate that between pure Ni and V layers a metastable fcc solid solution phase forms in Ni70V30, a metastable bcc solid solution phase forms in Ni30V70 and metastable fcc and bcc solid solution phases form in Ni57V43. Compared to the stored energy due to dislocation and interfaces, the excess chemical free energy from the interfacial mixing is the largest portion of total stored energy from deformation, which represents a form of mechanochemical transduction. The difference in the intermixing behaviors between Cu/Ni and Ni/V systems is due to that the systems have different heat of mixing and interface characters. Deformation of Cu/Fe multilayers yields a smooth and monotonic variation in the composition profile. From the local composition consumption it is revealed that that Fe mixes into Cu preferentially than Cu mixing into Fe. The room temperature deformation driven recrystallization was

  4. Influence of zirconium on microstructure and toughness of low-alloy steel weld metals

    NASA Astrophysics Data System (ADS)

    Trindade, V. B.; Mello, R. S. T.; Payão, J. C.; Paranhos, R. P. R.

    2006-06-01

    The influence of zirconium on microstructure and toughness of low-alloy steel weld metal was studied. Weld metals with different zirconium contents were obtained adding iron-zirconium alloy in the welding flux formulation. Weld metal chemical composition proved that zirconium was able to be transferred from the flux to the weld metal. The addition of zirconium refined the weld metal microstructure, increasing the acicular ferrite content. Weld metal toughness, determined by means of impact Charpy-V tests, showed that the zirconium addition is beneficial up to a content of 0.005 wt.%. Above this level, zirconium was not able to produce further microstructure refinement, although the toughness was reduced, possibly due to the formation of microconstituent such as the martensite-austenite constituent (M-A), which is considered to be deleterious to the weld metal toughness.

  5. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured

  6. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  7. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  8. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  9. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  10. Effects of d-band shape on the surface reactivity of transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Vojvodic, Aleksandra; Voss, Johannes; Nørskov, Jens K.; Abild-Pedersen, Frank

    2014-03-01

    The d-band shape of a metal site, governed by the local geometry and composition of materials, plays an important role in determining trends of the surface reactivity of transition-metal alloys. We discuss this phenomenon using the chemisorption of various adsorbates such as C, N, O, and their hydrogenated species on Pd bimetallic alloys as an example. For many alloys, the d-band center, even with consideration of the d-band width and sp electrons, can not describe variations in reactivity from one surface to another. We investigate the effect of the d-band shape, represented by higher moments of the d band, on the local electronic structure of adsorbates, e.g., energy and filling of adsorbate-metal antibonding states. The upper d-band edge ɛu, defined as the highest peak position of the Hilbert transform of the density of states projected onto d orbitals of an active metal site, is identified as an electronic descriptor for the surface reactivity of transition metals and their alloys, regardless of variations in the d-band shape. The utilization of the upper d-band edge with scaling relations enables a considerable reduction of the parameter space in search of improved alloy catalysts and further extends our understanding of the relationship between the electronic structure and chemical reactivity of metal surfaces.

  11. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium–indium binary alloy (EGaIn) and gallium–indium–tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  12. Osteoconductive Properties Of Metal/Metal Alloy Coated Silicon Dioxide Nanosprings

    NASA Astrophysics Data System (ADS)

    Hass, Jamie L.

    This dissertation focuses on the potential of silicon dioxide nanosprings as an osteoconductive nanobiomaterial. The use of nanomaterials as substrates for tissue engineering has recently been considered and the remarkable similarity of the nanosprings and the amorphic mat to collagen fiber type 1 and woven bone, respectively, makes this nanobiomaterial a promising substrate for bone growth. The nanosprings are easily grown on many materials such as glass and orthopedic metals. In addition, there is a unique ability to coat the nanospring surface with both osteogenic metal/metal alloys and proteins. In-vitro bone tissue culture studies, surface science evaluation of osteoblast and protein attachment, and nanomechanical characterization are protocols to determine if nanosprings exhibits promise as an osteoconductive nanomaterial. Firstly, osteoblast cell behaviors on nanosprings are assessed, which were found to display a greater magnitude of proliferation, differentiation, and calcium deposition as a function of the metal/metal alloy when compared to the controls. All the nanospring substrates proved to be biocompatible and durable in the tissue culture environment for an entire 36-day incubation. Secondly, a protocol was developed to evaluate different wettable surface characteristics of the nanospring substrates and relate these to osteoblast attachment, as well as the adsorption of the serum proteins albumin and fibronectin. Fourier transform infrared spectroscopy (FTIR) and x-ray photoemission spectroscopy (XPS) elucidated the surface stoichiometry of the nanospring substrates and after attachment of the proteins. The surface examination exposed preference for albumin to hydrophobic nanospring substrate and fibronectin to dynamically hydrophilic nanospring substrate. Lastly, nanoindentation testing of nanospring substrates before and after bone growth was performed. The hardness, stiffness and reduced elastic moduli values of the nanospring-bone matrix that

  13. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  14. A Quasi-Containerless Pendant Drop Method for Surface Tension Measurements of Molten Metals and Alloys

    NASA Technical Reports Server (NTRS)

    Thiessen, David B.; Man, Kin F.

    1994-01-01

    A quasi-containerless pendant drop method for measuring the surface tension of molten metals and alloys is being developed. The technique involves melting the end of a high-purity metal rod by bombardment with an electron beam to form a pendant drop under ultra-high vacuum conditions to minimize surface contamination.

  15. The thermodynamics of latent fingerprint corrosion of metal elements and alloys.

    PubMed

    Bond, John W

    2008-11-01

    Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques. PMID:18717752

  16. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.

  17. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  18. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  19. Half-metallic Chromium dioxide thin films for spintronic applications

    NASA Astrophysics Data System (ADS)

    Pathak, Manjit

    2011-12-01

    CrO2 is a well-established half-metallic oxide with near perfect spin polarization -- known to have the highest spin polarization among all known materials theoretically as well as experimentally. This means that the conduction electrons in CrO2 have only one kind of spin i.e. conduction is due only to the majority spin electrons. Because of its high spin polarization, CrO2 stands as an ideal and one of the most attractive candidates for spin-electronic applications as well as of fundamental interests. The enormous potential of CrO2 is still untapped since thin film growth modes, interface/surface properties and various factors affecting them are not very well understood or, relatively unknown. Reported works confirm strained growth of (100) CrO2 films and strain free growth of (110) CrO2 films on iso-structural TiO 2 substrates investigated using X-ray diffraction. Superconducting quantum interference device (SQUID) and element specific X-ray magnetic circular dichroism (XMCD) techniques were employed to investigate the effect of this substrate-induced strain on the magnetic properties of the films. Magnetic tunnel junctions (MTJ) were fabricated with CrO2, Cr2O3 [natural oxide of Cr] as the thin insulating barrier and Co as the other ferromagnetic electrode using photolithography. I..V characteristics of this spin-electronic device are reported. Also, results on the low pressure chemical vapor deposition (CVD) growth of CrO2 and its comparison with standard growth technique under atmospheric pressure are reported.

  20. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  1. Aurum and Platinum as Metal Contact to Amorphous Carbon Thin Films

    NASA Astrophysics Data System (ADS)

    Mohamad, F.; Suriani, A. B.; Noor, U. M.; Rusop, M.

    2010-07-01

    Amorphous carbon (a-C) thin films have been deposited on quartz substrates at different deposition temperatures ranging from 700 °C-800 °C. The objective of this work is to investigate several electrical contacts on a-C thin films and to find the suitable method to fabricate ohmic contact on a-C thin films that prepared from a natural product, camphor (C10H16O). The a-C thin films were prepared with a simple thermal CVD method. In this study, Aurum (Au) and Platinum (Pt) were selected as the metal contact to a-C thin films. I-V characteristics measurement was carried out to study the contact between metal and a-C thin films. It was found that increasing deposition temperature also contributes to the variation I-V characteristics of a-C thin films.

  2. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  3. In situ oxidation studies on /001/ copper-nickel alloy thin films

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1977-01-01

    High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.

  4. Pulse laser processing of metal thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Mikheev, Gennady M.; Zonov, Ruslan G.; Kaluzhny, Dmitry G.

    2004-04-01

    The possibility of the pulse laser radiation treatment of thin metal films on glass substrates has been studied experimentally. On the glass substrates with sprayed coating the diffraction structures were obtained due to the selective evaporation of metal at the interference of the powerful pulse laser radiation. The experiments were conducted using copper, aluminum films and films from titanium oxides. The thickness of the films on the glass substrates was 0.1 - 0.12 μm. The regimes normally used during the film treatment with a laser beam were as follows: the wavelength was 1.06 μm, the pulse duration was 10 ns, and the enegy density of the beam was 10 mJ/mm2. To obtain an interference pattern on the treated surface the beam of the coherent radiation was preliminary split into two. In dependence on the convergence angle of the interference beams, the diffraction gratings had the lattice spacing in the range of 1 - 6 μm. They were used to produce diffraction lenses. These lenses are a plane device with a ring-shape zone of concentric grating grooves capable to focus a certain part of incident radiation. In dependence on the wavelength, the radiation is collected on the optic axis at different distances from the diffraction lens. This fact makes it possible to use the lens in production of a simple monochromator. The structure of the diffraction gratings obtained has been studied, and their main characteristics and main spheres of their application have been determined.

  5. Beam-Induced Deposition of Thin Metallic Films.

    NASA Astrophysics Data System (ADS)

    Funsten, Herbert Oliver, III

    1990-01-01

    Ion and electron beam induced deposition (BID) of thin (1 μm), conductive films is accomplished by dissociating and removing the nonmetallic components of an adsorbed, metal-based, molecular gas. Current research has focused primarily on room temperature (monolayer adsorption) BID using electrons and slow, heavy ions. This study investigates low temperature (50 to 200 K) BID in which the condensation of the precursor gases (SnCl _4 and (CH_3) _4Sn) maximizes the efficiency of the incident radiation which can create and remove nonmetallic fragments located several monolayers below the film surface. The desired properties of the residual metallic films are produced by using as incident radiation either nuclear (35 keV Ar ^+) or electronic (2 keV electrons, 25 keV H^+, or 50 keV H ^+) energy loss mechanisms. Residual films are analyzed ex situ by Scanning Electron Microscopy (SEM), thickness measurements, resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), and infrared spectroscopy. Low temperature BID film growth models, which are derived from both a computer simulation and a mathematical analysis, closely agree. Both the fragmentation and sputtering cross sections for a particular ion and energy are derived for films created from (CH_3) _4Sn. The fragmentation cross section, which corresponds to film growth, is roughly related to the electronic stopping power by the 1.9 power. The loss of carbon in films which were created from (CH_3) _4Sn is strongly dependent on the nuclear stopping power. Film growth rates for low temperature BID have been found to be 10 times those of room temperature BID.

  6. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-05-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  7. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    PubMed

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692

  8. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    PubMed Central

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692

  9. Corrosion of selected metal alloys in Utah geothermal waters

    SciTech Connect

    Hong, Y.K.; Pitt, C.H.

    1983-09-01

    A potentiodynamic polarization technique has been applied to characterize the corrosion behavior of AISI 316L stainless steel, an iron-based alloy (9Cr-1Mo), a nickel-based alloy (INCONEL/SUP R/ alloy 625), and mild steel ASTM A-36. Corrosion rate was affected greatly by temperature. The pitting potentials decreased with increasing temperature. The nickel-based alloywas resistant to the geothermal water and did not undergo pitting corrosion. All measurements of corrosion--corrosion rate, pit density, maximum pit depth, charge consumed, and polarization resistance--corroborate the decrease in corrosion rate at tested temperatures.

  10. Study of the embedded atom method of atomistic calculations for metals and alloys

    SciTech Connect

    Johnson, R.A.

    1990-10-01

    Two projects were completed in the past year. The stability of a series of binary alloys was calculated using the embedded-atom method (EAM) with an analytic form for two-body potentials derived previously. Both disordered alloys and intermetallic compounds with the L1{sub 0} and L1{sub 2} structures were studied. The calculated heats of solution of alloys of Cu, Ag, Au, Ni, and Pt were satisfactory, while results for alloys containing Pd were too high. Atomistic calculations using the EAM were also carried out for point defects in hcp metals. By comparison with results in the literature, it was found that many body effects from the EAM significantly alter predicted physical properties of hcp metals. For example, the EAM calculations yield anisotropic vacancy diffusion with greater vacancy mobility in the basal plane, and imply that diffusion will start at a lower fraction of the melting temperature.

  11. Fabrication and properties of tungsten heavy metal alloys containing 30% to 90% tungsten

    SciTech Connect

    Gurwell, W.E.; Nelson, R.G.; Dudder, G.B.; Davis, N.C.

    1984-09-01

    In 1983, Pacific Northwest Laboratory conducted a survey of tungsten heavy metal alloys having lower-than-normal (<90%) tungsten content. The purpose of the work was to develop tougher, more impact-resistant high-density alloys for applications benefitting from improved mechanical properties. Tungsten heavy metal alloys of 30 to 90% tungsten content were fabricated and their mechanical properties measured. Although ultimate strength was essentially independent of tungsten content, lower tungsten-content alloys had lower yield stress, hardness, and density, and decidedly higher elongations and impact energies. Cold work was effective in raising strength and hardness but detrimental to elongation and impact energies. Precipitation hardening and strain aging raised hardness effectively but had less influence on other mechanical properties. 34 figures, 7 tables.

  12. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys

    PubMed Central

    Calabro, Joshua D.; Huang, Xu; Lewis, Brian G.; Ramirez, Ainissa G.

    2010-01-01

    Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely manipulated by magnetic fields to create vertical geometries and thus enable novel three-dimensional assemblies. These iron dispersions enhance the mechanical properties needed for strong, reliable interconnects without significantly altering the electrical properties of the alloys. Additionally, these iron dispersions act as susceptors for magnetic induction heating, allowing the rapid melting of these novel alloys at temperatures lower than those usually reported for conventional metal alloys. By localizing high temperatures and by reducing temperature excursions, the materials and methods described have potential in a variety of device fabrication applications. PMID:20194786

  13. Quantum capacitance in thin film vanadium dioxide metal insulator transition

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Knighton, Talbot; Tarquini, Vinicio; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Huang, Jian

    We present capacitance measurements of the electronic density of states performed in high quality vanadium dioxide (VO2) thin films on sapphire (Al2O3) substrate. These films show the expected metal insulator transition near 60 °C with resistivity changing by 3 orders of magnitude with a hysteresis of 10 °C. To make a capacitive probe, a gate is suspended above the film surface using a flip-chip method with microfabricated supports. The geometric capacitance per-area reached is 40 pF/mm2. Such a large capacitance can be significantly modified by electron interaction and band charging/discharging which appear as an extra term known as the quantum capacitance (Cq). An AC signal applied to the gate allows measurement of the changing density of states (DOS) across the MIT. The DOS abruptly increases as the sample is heated through the transition point. Conversely the low temperature drop of d μ / d n is consistent with an energy gap opening in the insulating phase. These parameters shed light on the transition mechanism. NSF DMR-1105183, NSF ECCS 1306311.

  14. Thermographic imaging of cracks in thin metal sheets

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Winfree, William P.; Howell, Patricia A.; Syed, Hazari; Renouard, Keith A.

    1992-01-01

    The presence of cracks significantly decreases the structural integrity of thin metal sheets used in aerospace applications. Thermographic detection of surface temperature variations due to these cracks is possible after external heating. An approximate line source of heat is used to produce an inplane flow of heat in the sheet. A crack in the sheet perturbs the inplane flow of heat and can be seen in an image of the surface temperature of the sheet. An effective technique for locating these perturbations is presented which reduces the surface temperature image to an image of variations in the inplane heat flow. This technique is shown to greatly increase the detectability of the cracks. This thermographic method has advantages over other techniques in that it is able to remotely inspect a large area in a short period of time. The effectiveness of this technique depends on the shape, position and orientation of the heat source with respect to the cracks as well as the extent to which the crack perturbs the surface heat flow. The relationship between these parameters and the variation in the heat flow is determined both by experimental and computational techniques. Experimental data is presented for through-the-thickness, subsurface and surface EDM notches. Data for through-the-thickness fatigue cracks are also presented.

  15. Nanoindentation of functionally graded hybrid polymer/metal thin films

    NASA Astrophysics Data System (ADS)

    Nunes, J.; Piedade, A. P.

    2013-11-01

    Hybrid functionally graded coatings (2D-FGC) were deposited by magnetron co-sputtering from poly(tetrafluoroethylene) (PTFE) and AISI 316L stainless steel (316L) targets. The carbon and fluorine content varied from 7.3 to 23.7 at.% and from 0 to 57 at.%, respectively. The surface modification was developed to change the surface of 316L vascular stents in order to improve the biocompatibility of the outmost layer of the metallic biomaterial. In-depth XPS analysis revealed the presence of a graded chemical composition accompanied by the variation of the film structure. These results were complemented by those of transmission electron microscopy (TEM) analysis that highlighted the nanocomposite nature of the coatings. The nanomechanical characterization of 2D-FGC was performed by nanoindentation at several loads on the thin films deposited onto two different steel substrates: 316L and AISI M2. The study allowed establishing 0.7 mN as the load that characterized the coatings without substrate influence. Both hardness and Young modulus decrease with the increase of fluorine content due to the evolution in chemical composition, chemical bonds and structure.

  16. Mn in misch-metal based superlattice metal hydride alloy - Part 2 Ni/MH battery performance and failure mechanism

    NASA Astrophysics Data System (ADS)

    Young, K.; Koch, J.; Yasuoka, S.; Shen, H.; Bendersky, L. A.

    2015-03-01

    The performance and failure mode of Ni/MH batteries made from a series of Mn-modified A2B7 superlattice and a commercially available AB5 metal hydride alloys were studied and reported. Cells with the Mn-free A2B7 alloy generally show improved low-temperature, higher peak power, and similar charge-retention behavior over those with a conventional AB5 alloy. As Mn-additive amount increased, cell voltage and high-rate capacity improved, low temperature, charge retention, and cycle life first improved, but then deteriorated, and peak power and high temperature voltage stand deteriorated. Analysis of battery performance test results show the use of a superlattice alloy containing 2.3% Mn as the best overall alloy composition. Failure analysis of the highly cycled AB5 alloy containing cells indicate a balanced degradation in negative, positive, separator, and a moderate loss of electrolyte. Same analysis on cells containing the various superlattice alloys suffered from a high degree of pulverization and oxidation of its negative electrode (with the 9.3% Mn content experiencing the worst amount of pulverization/oxidation) and a high degree of electrolyte loss.

  17. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  18. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  19. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect

    Rice, M.

    1993-12-01

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

  20. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  1. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  2. Laser-induced metal plasmas for pulsed laser deposition of metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Wagenaars, Erik; Colgan, James; Rajendiran, Sudha; Rossall, Andrew

    2015-09-01

    Metal and metal-oxide thin films, e.g. ZnO, MgO, Al2O3 and TiO2, are widely used in e.g. microelectronics, catalysts, photonics and displays. Pulsed Laser Deposition (PLD) is a plasma-based thin-film deposition technique that is highly versatile and fast, however it suffers from limitations in control of film quality due to a lack of fundamental understanding of the underlying physical processes. We present experimental and modelling studies of the initial phases of PLD: laser ablation and plume expansion. A 2D hydrodynamic code, POLLUX, is used to model the laser-solid interaction of a Zn ablation with a Nd:YAG laser. In this early phase of PLD, the plasma plume has temperatures of about 10 eV, is highly ionized, and travels with a velocity of about 10-100 km/sec away from the target. Subsequently, the plasma enters the plume expansion phase in which the plasma cools down and collision chemistry changes the composition of the plume. Time-integrated optical emission spectroscopy shows that Zn I and Zn II emission lines dominate the visible range of the light emission. Comparison with the Los Alamos plasma kinetics code ATOMIC shows an average temperature around 1 eV, indicating a significant drop in plasma temperature during the expansion phase. We acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant EP/K018388/1.

  3. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  4. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation

    SciTech Connect

    Zhang, Jian; Liu, Wei

    2011-04-01

    This paper reports preparation and separation testing results of water-selective zeolite membrane, such as NaA (or 4A-type), supported on a robust, porous metal sheet of 50um thickness. The thin sheet support is of large potential for development of a low-cost, inorganic membrane module of high surface area packing density. The porous Ni alloy sheet of micrometer or sub-micrometer mean pore size, which was prepared by a proprietary process, is used to evaluate different zeolite membrane deposition methods and conditions. The membranes are characterized by SEM, XRD and water/ethanol separation tests. Quality NaA zeolite membrane at thickness <2um is obtained with the secondary hydrothermal growth method. This membrane shows water/ethanol separation factor of >10,000 and water permeation flux of about 4 kg/(m2•h) at 75ºC with a feed of 10wt% water in ethanol. The membrane is also demonstrated with good stability in 66-hour continuous testing at 75ºC and 90ºC.

  5. Production and investigation of thin films of metal actinides (Pu, Am, Cm, Bk, Cf)

    NASA Astrophysics Data System (ADS)

    Radchenko, V. M.; Ryabinin, M. A.; Stupin, V. A.

    2010-03-01

    Under limited availability of transplutonium metals some special techniques and methods of their production have been developed that combine the process of metal reduction from a chemical compound and preparation of a sample for examination. In this situation the evaporation and condensation of metal onto a substrate becomes the only possible technology. Thin film samples of metallic 244Cm, 248Cm and 249Bk were produced by thermal reduction of oxides with thorium followed by deposition of the metals in the form of thin layers on tantalum substrates. For the production of 249Cf metal in the form of a thin layer the method of thermal reduction of oxide with lanthanum was used. 238Pu and 239Pu samples in the form of films were prepared by direct high temperature evaporation and condensation of the metal onto a substrate. For the production of 241Am films a gram sample of plutonium-241 metal was used containing about 18 % of americium at the time of production. Thermal decomposition of Pt5Am intermetallics in vacuum was used to produce americium metal with about 80% yield. Resistivity of the metallic 249Cf film samples was found to decrease exponentially with increasing temperature. The 249Cf metal demonstrated a tendency to form preferably a DHCP structure with the sample mass increasing. An effect of high specific activity on the crystal structure of 238Pu nuclide thin layers was studied either.

  6. Mn in misch-metal based superlattice metal hydride alloy - Part 1 structural, hydrogen storage and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Young, K.; Wong, D. F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S.

    2015-03-01

    The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of Mn-modified misch-metal based superlattice metal hydride alloys were investigated in part one of this two-part series of papers. X-ray diffraction analysis showed that these alloys are all multi-phased compositions with different abundances of AB2, AB3, A2B7, AB4, and AB5 phases. Substitution of Ni in the B-site by Mn promotes AB5 phase formation and decreases both gaseous phase and electrochemical capacities due to the reduction in the abundance of main hexagonal A2B7 phase. AC impedance and magnetic susceptibility measurement were employed to characterize the surface of Mn-free and Mn-modified alloys and show deterioration in surface catalytic ability as the Mn-content increases. Mn-modification adversely affected misch-metal based superlattice metal hydride alloy properties such as phase homogeneity, capacity, cycle stability, high-rate performance, and surface reaction.

  7. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  8. Long range ordered alloys modified by group IV-B metals

    DOEpatents

    Liu, Chain T.; Inouye, Henry; Schaffhauser, Anthony C.

    1983-01-01

    Ductile long range ordered alloys having high critical ordering temperatures exist in the (V,M)(Fe,Ni,Co).sub.3 system having the composition comprising by weight 20.6%-22.6% V, 14-50% Fe, 0-64% Co, and 0-40% Ni, and 0.4-1.4% M, where M is a metal selected from the group consisting of Ti, Zr, Hf, and their mixtures. These modified alloys have an electron density no greater than 8.00 and exhibit marked increases at elevated temperature in ductility and other mechanical properties over previously known ordered alloys.

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  10. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  11. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  12. Examination of Galvanic Action between Fe-Based Bulk Metallic Glass and Crystalline Alloys

    NASA Astrophysics Data System (ADS)

    Ha, Hung M.; Payer, Joe H.

    2009-06-01

    Fe-based bulk metallic glasses (amorphous metals) have been developed, and several compositions are shown to have excellent corrosion resistance in chloride solutions. Further, thermal-spray amorphous metals are being developed for use as a barrier coating layer, to protect substrate materials from corrosion. Galvanic action between dissimilar metals and the coating/substrate for the amorphous-alloy coatings is of practical interest for a number of applications. The mixed-potential theory provides a useful approach for examining the corrosion behavior of the component materials in the galvanic couple and is applied in this study. Galvanic action was studied for an Fe-based structurally amorphous metal (SAM) 1651 and several crystalline alloys that included 1018 C-steel, stainless steel (SS) 316L, and alloy 22. Anodic and cathodic polarization curves of each of the metals were measured by potentiodynamic polarization. Based on the mixed-potential theory, the behavior of the component materials in a galvanic cell was predicted. The predictions are compared to the measured behavior of galvanic couples with the crystalline alloys.

  13. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  14. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    SciTech Connect

    Schempp, Philipp; Tang, Z.; Cross, Carl E.; Seefeld, T.; Pittner, A.; Rethmeier, M.

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  15. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    NASA Astrophysics Data System (ADS)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  16. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wiśniewski, R.; Kitowski, K.; Kulikauskas, V.; Wilczynska, T.; Hofman, A.; Shiryaev, A. A.; Zubavichus, Ya. V.

    2012-01-01

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25-keV deuterium ions at fluences in the range (1.2-2.3) × 1022 m-2. The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation by using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed us to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions in V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium.

  17. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  18. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  19. Electronic structure and mechanical properties of ternary ZrTaN alloys studied by ab initio calculations and thin-film growth experiments

    NASA Astrophysics Data System (ADS)

    Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.

    2014-10-01

    The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].

  20. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer. PMID:26135943

  1. High-temperature corrosion of metallic alloys in an oxidizing atmosphere containing NaCl

    SciTech Connect

    Federer, J.I.

    1989-02-01

    A particular heat-exchanger application involved metallic alloys exposed to flue gases of an aluminum remelt furnace. Because the flue gases might contain NaCl and other halides, the corrosion behavior of the alloys was to be investigated. Planned direct exposure of candidate alloys to the flue gases, however, was not conducted because of premature termination of the project. Complementary laboratory testing was conducted on seven commercially available alloys and two nickel aluminides. These materials were exposed to an oxidizing atmosphere containing 0.06 wt % NaCl for 1100 h at 1000/degree/C. Most of the alloy exhibited grain-boundary attack, which resulted in complete oxidation of enveloped grains. The alloys Incoloy MA-956, Incoloy 800, Inconel 625, Inconel 601, Hastelloy X, Haynes 188, and nickel aluminide IC-50 were substantially more corroded than Alloy 214 and nickel aluminide IC-221. The latter two alloys, therefore, would probably be superior to the others in application involving flue gases containing NaCl. Strength fabricability, and weldability, which are briefly discussed, would also affect selection of materials. 8 refs., 12 figs., 5 tabs.

  2. Phase transformations in alloy and bilayer thin films of vanadium and silicon

    NASA Astrophysics Data System (ADS)

    Nava, F.; Psaras, P. A.; Takai, H.; Tu, K. N.

    1986-04-01

    Phase transformations in coevaporated amorphous vanadium-silicon thin alloy films and bilayer vandium/silicon films have been studied as a function of heat treatment by in situ electrical resistivity measurement together with Rutherford backscattering spectrometry, Seeman-Bohlin glancing angle incidence x-ray diffraction, and scanning and transmission electron microscopy. In the as-deposited state the amorphous alloy films were silicon rich, having an atomic ratio of 1:3 for vanadium and silicon, respectively. Upon heat treatment a sharp decrease in resistivity occurs at approximately 250 °C, which has been determined to be a transformation from the amorphous to crystalline VSi2 phase. The kinetics of the transformation have been obtained by isothermal treatment over the temperature range of 184-220 °C. The transformation is described by a Johnson-Mehl-Avrami-type equation with an apparent activation energy of 1.30±0.06 eV. Subsequent heat treatment causes a gradual decrease in resistivity up to 850 °C. Upon cooling, a monotonic decrease in resistivity was observed. Heat treatment at high temperatures (900 °C) promotes the growth of nonuniformly distributed silicon grains. For the bilayer vanadium/silicon films, the sheet resistance increases gradually upon heat treatment up to 500 °C, then a sharp decrease is observed, which is due to the formation of VSi2. Further heat treatment at higher temperatures (850 °C) promotes a monotonical decrease in the resistance. The cooling behavior is similar to that of the crystallized alloy specimens except for having a slightly lower resistivity value. In a model for the two thin films connected electrically in parallel, the growth kinetics of VSi2 in the bilayer films has been found to be linear in time over the temperature range of 500-535 °C with an activation energy of 2.23±0.09 eV. The microstructure of films at various stages of annealing have been studied by x-ray diffraction and transmission electron microscopy

  3. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    NASA Astrophysics Data System (ADS)

    Hebler, Birgit; Hassdenteufel, Alexander; Reinhardt, Patrick; Karl, Helmut; Albrecht, Manfred

    2016-02-01

    Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm) on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an “effective” composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  4. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  5. Experimental determination of systems suitable for study as monotectic binary metallic alloy solidification models

    NASA Technical Reports Server (NTRS)

    Smith, J. E., Jr.

    1985-01-01

    Transparent binary metallic alloy solidification models are important in attempts to understand the processes causing liquid-liquid and solid-liquid phase transformations in metallic alloy systems. These models permit visual observation of the phase transformation and the processes proceding solidification. The number of these transparent monotectic binary models needs to be expanded to distinguish between the unique and general phenomena observed. The expansion of the number of accurately determined monotectic phase diagrams of model systems, and contribution to a data base for eventual use with UNIFAC group contribution methods is examined.

  6. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  7. Base metal alloys with self-healing native conductive oxides for electrical contact materials

    NASA Astrophysics Data System (ADS)

    Aindow, M.; Alpay, S. P.; Liu, Y.; Mantese, J. V.; Senturk, B. S.

    2010-10-01

    Base metals for electrical contacts exhibit high bulk conductivities but form low-conductivity native oxide scales in air, leading to unacceptably high contact resistances. Here we show that alloying base metals can lead to higher conductivity native scales by: doping to enhance carrier concentration; inducing mixed oxidation states to give electron/polaron hopping; and/or phase separation for conducting pathways. Data from Cu-La, Fe-V, and Ni-Ru alloys demonstrate the viability of these approaches, yielding contact resistances up to 106 times lower than that for oxidized Cu.

  8. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  9. The carbon-tolerance mechanism of Ni-based alloy with coinage metals

    NASA Astrophysics Data System (ADS)

    Wang, Mingyang; Fu, Zhaoming; Yang, Zongxian

    2013-11-01

    Using the first-principles calculations, we investigate the successive dehydrogenation of CH4, as well as the diffusion of CH (the most important carbon-containing intermediate), on the Ni(111) surfaces doped with coinage metals. It is found that, although alloying of Ni with coinage metals can to some extent affect the CH4 dehydrogenation, the coking inhibition on the alloy surface mainly roots in the large diffusion barrier of CH, as well as the reduction of the number of active adsorption sites for CHx. These results give a clue for designing new catalyst with higher coking resistance.

  10. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    SciTech Connect

    Mundra, K.; DebRoy, T.; Babu, S.S.; David, S.A.

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  11. Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material

    SciTech Connect

    Shacklette, L.W.; Jow, T.R.; Toth, E.; Maxfield, M.

    1987-05-26

    A battery is described comprising: an anode comprising as the anode active materials one or more conjugated backbone polymers and one or more electroactive materials selected from the group consisting of metals which alloy with alkali metals and alkali metal cation inserting materials; an electrolyte comprising an organic solvent and an alkali-metal salt, and a cathode. The alkali-metal cations from the electrolyte are inserted into the anode as a metal alloy or as an inserted ion in the alkali metal cation inserting material during the charging of the battery.

  12. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell.

  13. Structural properties of molten dilute aluminium-transition metal alloys.

    PubMed

    Pozdnyakova, I; Hennet, L; Mathiak, G; Brillo, J; Zanghi, D; Brun, J-F; Brassamin, S; Bytchkov, A; Cristiglio, V; Véron, E; Matzen, G; Geandier, G; Thiaudière, D; Moss, S C; Spaepen, F; Egry, I; Price, D L

    2006-07-19

    The short-range order in liquid binary Al-rich alloys (Al-Fe, Al-Ti) was studied by x-ray diffraction. The measurements were performed using a novel containerless technique which combines aerodynamic levitation with inductive heating. The average structure factors, S(Q), have been determined for various temperatures and compositions in the stable liquid state. From S(Q), the pair correlation functions, g(r), have been calculated. The first interatomic distance is nearly temperature-independent, whereas the first-shell coordination number decreases with increasing temperature for all the alloys investigated. For the Al-Fe alloys, room-temperature scanning electron microscropy (SEM) studies show the formation of a microstructure, namely the existence of Al(13)Fe(4) inclusions in the Al matrix. PMID:21690847

  14. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  15. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  16. InAs quantum dot morphology after capping with In, N, Sb alloyed thin films

    SciTech Connect

    Keizer, J. G.; Koenraad, P. M.; Ulloa, J. M.; Utrilla, A. D.

    2014-02-03

    Using a thin capping layer to engineer the structural and optical properties of InAs/GaAs quantum dots (QDs) has become common practice in the last decade. Traditionally, the main parameter considered has been the strain in the QD/capping layer system. With the advent of more exotic alloys, it has become clear that other mechanisms significantly alter the QD size and shape as well. Larger bond strengths, surfactants, and phase separation are known to act on QD properties but are far from being fully understood. In this study, we investigate at the atomic scale the influence of these effects on the morphology of capped QDs with cross-sectional scanning tunneling microscopy. A broad range of capping materials (InGaAs, GaAsSb, GaAsN, InGaAsN, and GaAsSbN) are compared. The QD morphology is related to photoluminescence characteristics.

  17. Static and dynamic magnetic properties of epitaxial Co2FeAl Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Gabor, M. S.; Petrisor, T., Jr.; Boust, F.; Issac, F.; Tiusan, C.; Hehn, M.; Bobo, J. F.

    2011-04-01

    Structural and magnetic properties of epitaxial Co2FeAl Heusler alloy thin films were investigated. Films were deposited on single crystal MgO (001XS) substrates at room temperature, followed by an annealing process at 600 °C. MgO and Cr buffer layers were introduced in order to enhance crystalline quality, and improve magnetic properties. Structural analyses indicate that samples have grown in the B2 ordered epitaxial structure. VSM measures show that the MgO buffered sample displays a magnetization saturation of 1010 ± 30 emu/cm3, and Cr buffered sample displays a magnetization saturation of 1032 ± 40 emu/cm3. Damping factor was studied by strip-line ferromagnetic resonance measures. We observed a maximum value for the MgO buffered sample of about 8.5 × 10-3, and a minimum value of 3.8 × 10-3 for the Cr buffered one.

  18. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  19. Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels

    NASA Astrophysics Data System (ADS)

    Mehrara, H.; Santillana, B.; Eskin, D. G.; Boom, R.; Katgerman, L.; Abbel, G.

    2012-01-01

    Solidification structure of a High Strength Low Alloy (HSLA) steel, in terms of dendrite arm spacing distribution across the shell thickness, is studied in a breakout shell from a thin-slab caster at Tata Steel in IJmuiden. Columnar dendrites were found to be the predominant morphology throughout the shell with size variations across the shell thickness. Primary Dendrite Arm Spacing (PDAS) increases by increasing the distance from meniscus or slab surface. Subsequently, a model is proposed to describe the variation of the PDAS with the shell thickness (the distance from slab surface) under solidifiction conditions experienced in the primary cooling zone of thin-slab casting. The proposed relationship related the PDAS to the shell thickness and, hence, can be used as a tool for predicting solidifcation structure and optimizing the thin-slab casting of low alloy steels.

  20. Forming a perfect cubic texture in thin copper-yttrium alloy strips during cold rolling and annealing

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Khlebnikova, Yu. V.; Akshentsev, Yu. N.; Egorova, L. Yu.; Suaridze, T. R.

    2016-03-01

    The structure of strips produced from the Cu-1 wt % Y binary alloy using cold deformation by rolling to the degree of deformation of 99%, followed by recrystallization annealing, as well as the process of texture formation in these strips, is studied. The possibility of forming a perfect cubic texture in a thin strip made of a binary yttrium-modified copper-based alloy has been shown in principle, which opens the prospect of the use of this alloy to produce substrates for strip high-temperature superconductors of the second generation. The optimum conditions of annealing have been determined, which make it possible to form a perfect biaxial texture in the Cu-1 wt % Y alloy with a content of cubic grains {001}<100> ± 10° on the surface of the textured strip of over 95%.

  1. In vitro corrosion of pure magnesium and AZ91 alloy-the influence of thin electrolyte layer thickness.

    PubMed

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-03-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  2. First-principles study of alloying effect of transition metals on He in titanium ditritide

    NASA Astrophysics Data System (ADS)

    Wu, Y. X.; Yang, R.; Zheng, H.; Wang, Y. M.

    2006-08-01

    Due to its inert reactivity with almost elements, 3He produced from tritium decay has extremely detrimental effects on the tritide. To refrain from this 3He-induced damage, an efficient way is to increase the stability of 3He in metal tritide by alloying. Using a first-principles discrete variational method in two cluster models, one for a low 3He concentration and the other for a high 3He concentration, the authors study the alloying effect of 3d and 4d transition metals on the stability of 3He in TiT 2 system. It is found that the preferring and metastable sites of 3He are affected by 3He concentration: 3He prefers to stay at original tetrahedral interstitial site when 3He concentration is low but moves to octahedral site when 3He concentration is high enough. A criterion of alloying effect is proposed, according to which Nb, Y, Zr, Pd, Ru, Tc, Rh, Cr, Mo and Ag are suggested to be the beneficial alloying elements for increasing the stability of 3He in the alloyed TiT 2 with a low 3He concentration and Y, Nb, Mo, Zr, Cr, Tc, Ru, Rh and Cu for that with a high 3He concentration. Our results of alloying effect are supported by the positron annihilation spectroscopy (PAS) measurements for He-implanted Ti, TiMoYAl and TiZrYAl films.

  3. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  4. Phase transformations in alloy and bilayer thin films of vanadium and silicon

    SciTech Connect

    Nava, F.; Psaras, P.A.; Takai, H.; Tu, K.N.

    1986-04-01

    Phase transformations in coevaporated amorphous vanadium-silicon thin alloy films and bilayer vandium/silicon films have been studied as a function of heat treatment by in situ electrical resistivity measurement together with Rutherford backscattering spectrometry, Seeman--Bohlin glancing angle incidence x-ray diffraction, and scanning and transmission electron microscopy. In the as-deposited state the amorphous alloy films were silicon rich, having an atomic ratio of 1:3 for vanadium and silicon, respectively. Upon heat treatment a sharp decrease in resistivity occurs at approximately 250/sup 0/C, which has been determined to be a transformation from the amorphous to crystalline VSi/sub 2/ phase. The kinetics of the transformation have been obtained by isothermal treatment over the temperature range of 184-220/sup 0/C. The transformation is described by a Johnson-Mehl-Avrami-type equation with an apparent activation energy of 1.30 +- 0.06 eV. Subsequent heat treatment causes a gradual decrease in resistivity up to 850/sup 0/C. Upon cooling, a monotonic decrease in resistivity was observed. Heat treatment at high temperatures (900/sup 0/C) promotes the growth of nonuniformly distributed silicon grains. For the bilayer vanadium/silicon films, the sheet resistance increases gradually upon heat treatment up to 500/sup 0/C, then a sharp decrease is observed, which is due to the formation of VSi/sub 2/. Further heat treatment at higher temperatures (850/sup 0/C) promotes a monotonical decrease in the resistance. The cooling behavior is similar to that of the crystallized alloy specimens except for having a slightly lower resistivity value.

  5. ALLOYING-DRIVEN PHASE STABILITY IN GROUP-VB TRANSITION METALS UNDER COMPRESSION

    SciTech Connect

    Landa, A; Soderlind, P

    2011-04-11

    The change in phase stability of Group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse acoustic phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series.

  6. Structural clues to the origin of refractory metal alloys as condensates of the solar nebula

    NASA Astrophysics Data System (ADS)

    Harries, Dennis; Berg, Thomas; Langenhorst, Falko; Palme, Herbert

    2012-12-01

    Alloys of the refractory metals Re, Os, W, Ir, Ru, Mo, Pt, and Rh with small amounts of Fe and Ni are predicted to be one of the very first high-temperature condensates in a cooling gas of solar composition. Recently, such alloy grains were found in acid-resistant residues of the Murchison CM2 chondrite. We used focused ion beam (FIB) preparation to obtain electron-transparent sections of 15 submicrometer-sized refractory metal nuggets (RMNs) from the original Murchison residue. We studied their crystallography, microstructures, and internal compositional variations using transmission electron microscopy (TEM). Our results show that all RMNs studied have hexagonal close-packed (hcp) crystal structures despite considerable variations of their bulk compositions. Crystallographic superstructures or signs of spinodal decomposition are absent and defect microstructures are scarce. Internally, RMNs are compositionally homogeneous, with no evidence for zoning patterns or heterogeneities due to exsolution. Many RMNs show well-defined euhedral crystal shapes and all are nearly perfect single crystal. Our findings are consistent with a direct (near-) equilibrium condensation of refractory metals into a single alloy at high temperature in the solar nebula as predicted by current condensation models. We suggest that this alloy is generally hcp structured due to an extended ɛ-phase field in the relevant multicomponent alloy system. The high degree of structural perfection and compositional homogeneity is attributed to high defect energies, high formation temperatures, slow cooling rates, small grain sizes, and rapid internal diffusion.

  7. Continuum studies of microstructure formation in metallic and organic thin films

    NASA Astrophysics Data System (ADS)

    Muralidharan, Srevatsan

    In this dissertation, microstructure formation processes in binary metallic ultra-thin films and organic polycrystalline thin films are studied through a combination of theoretical model development, analysis, and numerical simulations. In binary metallic films, to investigate compositional patterning and misfit dislocation formation, a quantitative approach based on the so called phase-field crystal method is developed. Both through analysis and simulations of the model, a number of generic and limiting cases of surface alloy epitaxial systems are investigated to examine the effects of lattice mismatch, adlayer-substrate interaction potential, and line tension on equilibrium compositional domain size. A procedure is developed to quantitatively relate the parameters of the model to a specific system [CoAg/Ru(0001)], and it is demonstrated that simulations capture experimentally observed morphologies. Then, the model is employed to investigate the effects of misfit strain fields in the substrate on both heterogeneous nucleation behavior and anisotropic growth of islands at submonolayer coverages and compositional patterning at complete monolayer coverage via simulations. In particular, in the case of binary systems at complete monolayer coverage, strain-stabilized compositional domains emerge at low line tension values for both substrates. Interestingly, the compositional domains on the QC substrate inherit their symmetries at sufficiently low line tension values, while at larger line tension values, the domain structure begins to resemble the classical spinodal microstructure. These studies will enable physically-based design of nanoscale features for a broad range of applications, such as catalysis. In organic polycrystalline films, our focus is on determining the effects of additives and substrate templating on nucleation and grain growth behavior of solution processed triethylsilylethynyl anthradithiophene films. Through a mean-field approach, it is demonstrated

  8. Robust half-metallic properties in inverse Heusler alloys composed of 4d transition metal elements: Zr2RhZ (Z=Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Wang, X. T.; Lin, T. T.; Rozale, H.; Dai, X. F.; Liu, G. D.

    2016-03-01

    A first-principles approach is used to study the electronic and magnetic properties of Zr2RhZ (Z=Al, Ga, In) alloys in the Hg2CuTi-type structure. The Zr2RhZ (Z=Al, Ga, In) alloys are found to be half-metallic ferrimagnets. The half-metallicity is quite robust against hydrostatic strain and tetragonal deformation in Zr2RhZ (Z=Al, Ga, In) alloys. The magnetization of Zr2RhZ (Z=Al, Ga, In) alloys mainly originates from the 4d electrons of Zr atoms and follows the rule: Mt=Zt-18. Zr2Rh-based alloys do not contain any 3d transition metal element, which implies a wider field to search for new half-metallic materials.

  9. Ductility of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Skripnyak, Nataliya V.; Skripnyak, Evgeniya G.

    Ductility of ultrafine grained (UFG) metal alloys with a distribution of grain size was investigated in wide loading conditions by numerical simulation. The multiscale models with a unimodal and a bimodal grain size distributions were developed using the data of structure research of hexagonal close packed and face center cubic UFG alloys. Macroscopic fracture is considered as a result of the formation of percolation clusters of damage at the mesoscopic level. The critical fracture strain of UFG alloys on the mesoscale level depends on the relative volumes of coarse grains. The nucleation of damages at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. The concentration of damages arise in the vicinity of the boundaries of coarse and ultrafine grains. The occurrence of a bimodal grain size distributions causes the increase of UFG alloys' ductility, but decrease of their tensile strength. Linkoping University, Sweden.

  10. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    PubMed

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors 'alloy" and 'casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property. PMID:22641437

  11. New vistas in the determination of hydrogen in aerospace engine metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  12. Structures of Thin Sheet Metal, Their Design and Construction

    NASA Technical Reports Server (NTRS)

    Wagner, Herbert

    1928-01-01

    This report presents a brief survey of the uses of sheet-metal coverings in conjunction with the inner structure. A method of construction is presented as well as a discussion on the strength of sheet metal.

  13. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    SciTech Connect

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  14. Corrosion behavior of metals and alloys in marine-industrial environment

    NASA Astrophysics Data System (ADS)

    Natesan, Mariappan; Selvaraj, Subbiah; Manickam, Tharmakkannu; Venkatachari, Gopalachari

    2008-12-01

    This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu-Zn alloys (Cu-27Zn, Cu-30Zn and Cu-37Zn), were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu-Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  15. Self-Formed Barrier with Cu-Mn alloy Metallization and its Effects on Reliability

    SciTech Connect

    Koike, J.; Wada, M.; Usui, T.; Nasu, H.; Takahashi, S.; Shimizu, N.; Yoshimaru, M.; Shibata, H.

    2006-02-07

    Advancement of semiconductor devices requires the realization of an ultra-thin (less than 5 nm thick) diffusion barrier layer between Cu interconnect and insulating layers. Self-forming barrier layers have been considered as an alternative barrier structure to the conventional Ta/TaN barrier layers. The present work investigated the possibility of the self-forming barrier layer using Cu-Mn alloy thin films deposited directly on SiO2. After annealing at 450 deg. C for 30 min, an amorphous oxide layer of 3-4 nm in thickness was formed uniformly at the interface. The oxide formation was accompanied by complete expulsion of Mn atoms from the Cu-Mn alloy, leading to a drastic decrease in resistivity of the film. No interdiffusion was observed between Cu and SiO2, indicating an excellent diffusion-barrier property of the interface oxide.

  16. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  17. Discontinuity in heat capacity of Fe0.5Co0.5(110) alloy thin films

    NASA Astrophysics Data System (ADS)

    Ramírez-Dámaso, G.; Castillo-Alvarado, F.-L.; Cruz-Torres, A.; Rójas-Hernández, E.

    2016-07-01

    In this work we calculate heat capacity of alloy thin films of FeCo on the surface of the plane (110), using three parameters, the concentration x(i), the lattice long range order parameter t(i) and the magnetic order parameter σ(i), being i the number of layers of the thin film. The formulations reported by Hill [1] in the context of small particles and Valenta's model [2] can be applied to the film structure when we treat a thin film as a system divided into subsystems equivalent to two-dimensional parallel layers. The FeCo bulk alloy is completely homogeneous while a thin film have spatial discontinuities in their surfaces. We consider three ferromagnetic thin films formed by 11, 15 and 19 layers in the Helmholtz's free energy, which is minimized applying their first partial derivatives with respect to chemical composition, long range order parameter and magnetic order parameter. We calculate internal energy and heat capacity as a function of temperature and we verify that have two jumps as are reported in literature for the bulk; there are many results of bulk or surface effects of FeCo, but no enough results about ferromagnetic FeCo thin films and this fact does this work interesting.

  18. Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting

    DOE PAGESBeta

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.

    2016-01-11

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less

  19. Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting

    NASA Astrophysics Data System (ADS)

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.

    2016-03-01

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.

  20. Plastic shoe facilitates ultrasonic inspection of thin wall metal tubing

    NASA Technical Reports Server (NTRS)

    Lambermeyer, D. J.; Peterson, R. M.

    1967-01-01

    Plastic shoe aids inspection of thin walled stainless steel welded tubing to locate voids or other material defects in critical component equipment. Incorporated in available ultrasonic inspection equipment, it couples the transducer to the tube at desired incident angles.

  1. Voids in neutron-irradiated metals and alloys

    SciTech Connect

    Hendricks, R.W.

    1980-01-01

    Small-angle x-ray and neutron scattering are powerful analytical tools for investigating long-range fluctuations in electron (x-rays) or magnetic moment (neutrons) densities in materials. In recent years they have yielded valuable information about voids, void size distributions, and swelling in aluminum, aluminum alloys, copper, molybdenum, nickel, nickel-aluminum, niobium and niobium alloys, stainless steels, graphite and silicon carbide. In the case of aluminum, information concerning the shape of the voids and the ratio of specific surface energies was obtained. The technique of small-angle scattering and its application to the study of voids is reviewed in the paper. Emphasis is placed on the conditions which limit the applicability of the technique, on the interpretation of the data, and on a comparison of the results obtained with companion techniques such as transmission electron microscopy and bulk density. 8 figures, 41 references.

  2. Degradation of TATP, TNT, and RDX using mechanically alloyed metals

    NASA Technical Reports Server (NTRS)

    Clausen, Christian (Inventor); Geiger, Cherie (Inventor); Sigman, Michael (Inventor); Fidler, Rebecca (Inventor)

    2012-01-01

    Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.

  3. Kinetics of hydrogen desorption in surface-limited thin-film growth of SiGe alloys

    SciTech Connect

    Sharp, J.W. ); Eres, G. )

    1993-05-31

    The kinetics of hydrogen desorption in surface-limited thin-film growth of SiGe alloys from binary mixtures of disilane and digermane was investigated by surface differential reflectance. The hydrogen desorption process from the alloy surface was found to consist of two components. Both components are thermally activated, but the activation energies appear to equal neither the hydrogen desorption energy from pure silicon nor that from pure germanium surfaces. We suggest that the two components represent Ge- and Si-mediated hydrogen desorption, with the former being more rapid than the latter.

  4. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, T.D.

    1996-07-16

    A method of making a negative electrode is described, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell. 7 figs.

  5. New Li-alloy electrode for Li-alloy/metal sulfide cells

    SciTech Connect

    Kaun, T.D.

    1994-12-31

    The present invention relates to electrodes for use in secondary electrochemical cells. More particularly, it concerns a method of making a negative electrode composition, the electrode composition made thereby and the secondary electrochemical cell containing the electrode, wherein the negative electrode composition includes a lithium alloy including silicon and nickel.

  6. Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects

    PubMed Central

    2014-01-01

    Background Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. Methods The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of children to metals such as lead while mouthing metallic objects. The surrogate saliva medium was composed of: 150 mM NaCl, 0.16% porcine Mucin and 5 mM buffer MOPS, adjusted to pH 7.2. Alloys samples, in the form of polished metallic disc of known surface area, were subjected to an eight hours test. Results Two whitemetal alloys Sn/Pb/Sb/Cu and three brass alloys Cu/Zn/Pb were tested using the saliva migration protocol. In the case of the whitemetal alloys, first order release kinetics resulting in the release of 0.03 and 0.51 μg lead/cm2 after 8 hours of tests were observed, for lead contents of 0.05-0.07% and 5.5%, respectively. Brasses exhibited linear incremental release rates of 0.043, 0.175 and 0.243 μg lead/cm2h for lead contents of 0.1-0.2%, 1.7-2.2% and 3.1-3.5%, respectively. The linear regression analysis of lead release rates relative to Pb content in brasses yielded a slope of 0.08 μg lead/cm2h%Pb (r2 = 0.92). Lead release rates were used to estimate the mean daily mouthing exposure of a child to lead, according to age-specific estimates of mouthing time behavior. Calculated daily intakes were used as oral inputs for the IEUBK toxicokinetic model, predicting only marginal changes in blood lead levels (0.2 μg lead/dL or less) for children aged 0.5 to 1 years old exposed to either class of alloy. Conclusions The results of this study as a whole support the use of migration data of metal ions, rather than total metal content, to estimate health risk

  7. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  8. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  9. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.

    PubMed

    Gordin, D M; Ion, R; Vasilescu, C; Drob, S I; Cimpean, A; Gloriant, T

    2014-11-01

    In this study, the "Gum Metal" titanium-based alloy (Ti-23Nb-0.7Ta-2Zr-1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the "Gum Metal" titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. PMID:25280716

  10. Properties of open-cell porous metals and alloys for orthopaedic applications.

    PubMed

    Lewis, Gladius

    2013-10-01

    One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior. PMID:23851927

  11. Theoretical study of surface plasmons coupling in transition metallic alloy 2D binary grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-05-01

    The excitation of a surface plasmon polariton (SPP) wave on a metal-air interface by a 2D diffraction grating is numerically investigated. The grating consists of homogeneous alloys of two metals of a formula AxB1-x, or three metals of a formula AxByCz, where A, B and C could be silver (Ag), copper (Cu), gold (Au) or aluminum (Al). It is observed that all the alloys of two metals present a very small change of surface plasmon resonance (SPR) irrespective of composition x. Moreover, the addition of 25% of Al to two metals alloy is insufficient to change the SPR curves. The influence of the different grating parameters is discussed in details using rigorous coupled-wave analysis (RCWA) method. Furthermore, the SPR is highly dependent on grating periods (dx and dy) and the height of the grating h. The results reveal that dx= dy= 700 nm, h=40 nm and duty cycle w=0.5 are the optimal parameters for exciting SPP.

  12. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  13. CO2 laser beam welding of 6061-T6 aluminum alloy thin plate

    NASA Astrophysics Data System (ADS)

    Hirose, Akio; Kobayashi, Kojiro F.; Todaka, Hirotaka

    1997-12-01

    Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.

  14. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  15. Test methods for determining the suitability of metal alloys for use in oxygen-enriched environments

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gunaji, Mohan V.

    1991-01-01

    Materials are more flammable in oxygen rich environments than in air. When the structural elements of a system containing oxygen ignite and burn, the results are often catastrophic, causing loss of equipment and perhaps even human lives. Therefore, selection of the proper metallic and non-metallic materials for use in oxygen systems is extremely important. While test methods for the selection of non-metallic materials have been available for years, test methods for the selection of alloys have not been available until recently. Presented here are several test methods that were developed recently at NASA's White Sands Test Facility (WSTF) to study the ignition and combustion of alloys, including the supersonic and subsonic speed particle impact tests, the frictional heating and coefficient of friction tests, and the promoted combustion test. These test methods are available for commercial use.

  16. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  17. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    PubMed

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  18. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas H

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  19. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  20. The Effect of Novel Mercapto Silane Systems on Resin Bond Strength to Dental Noble Metal Alloys.

    PubMed

    Lee, Yangho; Kim, Kyo-Han; Kim, Young Kyung; Son, Jun Sik; Lee, Eunkyung; Kwon, Tae-Yub

    2015-07-01

    Self-assembled monolayers of thiols (RSH), which are key elements in nanoscience and nanotechnology, have been used to link a range of materials to planar gold surfaces or gold nanoparticles. In this study, the adhesive performance of mercapto silane systems to dental noble metal alloys was evaluated in vitro and compared with that of commercial dental primers. Dental gold-palladium-platinum (Au-Pd-Pt), gold-palladium-silver (Au-Pd-Ag), and palladium-silver (Pd-Ag) alloys were used as the bonding substrates after air-abrasion (sandblasting). One of the following primers was applied to each alloy: (1) no primer treatment (control), (2) three commer- cial primers: V-Primer, Metal Primer II, and M.L. Primer, and (3) two experimental silane primer systems: 2-step application with 3-mercaptopropyltrimethoxysilane (SPS) (1.0 wt%) and then 3-methacryloxypropyltrimethoxysilane (MPS) (1.0 wt%), and a silane blend consisting of SPS and MPS (both 1.0 wt%). Composite resin cylinders with a diameter of 2.38 mm were bonded to the surfaces and irradiated for 40 sec using a curing light. After storage in water at 37 °C for 24 h, all the bonded specimens were thermocycled 5000 times before the shear bond strength test. Regardless of the alloy type, the mercapto silane systems (both the 2-step and blend systems) consistently showed superior bonding performance than the commercial primers. Contact angle analysis of the primed surfaces indicated that higher resin bond strengths were produced on more hydrophilic alloy surfaces. These novel mercapto silane systems are a promising alternative for improving resin bonding to dental noble metal alloys. PMID:26373046