Science.gov

Sample records for metal fluoridesindium fluoride-based

  1. New routes to polymetallic clusters: fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic properties.

    PubMed

    Jones, Leigh F; Rajaraman, Gopalan; Brockman, Jonathon; Murugesu, Muralee; Sanudo, E Carolina; Raftery, Jim; Teat, Simon J; Wernsdorfer, Wolfgang; Christou, George; Brechin, Euan K; Collison, David

    2004-10-11

    The syntheses, structures and magnetic properties of three new MnIII clusters, [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1), [Mn(0O6(OH)2(bta)8(py)8F8] (2) and [NHEt3]2[Mn3O(bta)6F3] (3), are reported (bta=anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degrees C) between MnF(3) and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P1, and consists of a complicated array of metal tetrahedra linked by mu3-O2- ions, mu3- and mu2-OH- ions, mu2-MeO- ions and mu2-bta- ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degrees C) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)2(bta)8(py)8F8] (2) is produced. Complex 2 crystallizes in the triclinic space group P1 and consists of a "supertetrahedral" [Mn(III)10] core bridged by six mu3-O2- ions, two mu3-OH- ions, four mu2-F- ions and eight mu2-bta- ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3]2[Mn3O(bta)6F3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)6L3]0/+, which consists of an oxo-centred metal triangle with mu2-bta- ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) K mol(-1) and fitting of

  2. Hydrophobic sodium fluoride-based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes.

    PubMed

    Sojka, Bartlomiej; Kuricova, Miroslava; Liskova, Aurelia; Bartusova, Maria; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Jahnova, Eva; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2014-11-01

    In vitro immunotoxicity of hydrophobic sodium fluoride-based nanocrystals (NCs) doped with lanthanide ions was examined in this study. Although there is already a significant amount of optical and structural data on NaYF4 NCs, data on safety assessment are missing. Therefore, peripheral whole blood from human volunteers was used to evaluate the effect of 25 and 30 nm hydrophobic NaYF4 NCs dissolved in cyclohexane (CH) on lymphocytes, and of 10 nm NaYF4 NCs on phagocytes. In the concentration range 0.12-75 µg cm(-2) (0.17-106 µg ml(-1) ), both 25 and 30nm NaYF4 NCs did not induce cytotoxicity when measured as incorporation of [(3) H]-thymidine into DNA. Assessment of lymphocyte function showed significant suppression of the proliferative activity of T-lymphocytes and T-dependent B-cell response in peripheral blood cultures (n = 7) stimulated in vitro with mitogens phytohemagglutinin (PHA) and pokeweed (PWM) (PHA > PWM). No clear dose-response effect was observed. Phagocytic activity and respiratory burst of leukocytes (n = 5-8) were generally less affected. A dose-dependent suppression of phagocytic activity of granulocytes in cultures treated with 25 nm NCs was observed (vs. medium control). A decrease in phagocytic activity of monocytes was found in cells exposed to higher doses of 10 and 30 nm NCs. The respiratory burst of phagocytes was significantly decreased by exposure to the middle dose of 30 nm NCs only. In conclusion, our results demonstrate immunotoxic effects of hydrophobic NaYF4 NCs doped with lanthanide ions to lymphocytes and to lesser extent to phagocytes. Further research needs to be done, particularly faze transfer of hydrophobic NCs to hydrophilic ones, to eliminate the solvent effect. PMID:25179008

  3. Formation of lithium fluoride/metal nanocomposites for energy storage through solid state reduction of metal fluorides

    SciTech Connect

    Amatucci, GG; Pereira, N; Badway, F; Sina, M; Cosandey, F; Ruotolo, M; Cao, C

    2011-12-01

    In order to utilize high energy metal fluoride electrode materials as direct replacement electrode materials for lithium ion batteries in the future, a methodology to prelithiate the cathode or anode must be developed. Herein, we introduce the use of a solid state Li(3)N route to achieve the lithiation and mechanoreduction of metal fluoride based nanocomposites. The resulting prelithiation was found to be effective with the formation of xLiF:Me structures of very fine nanodimensions analogous to what is found by electrochemical lithiation. Physical and electrochemical properties of these nanocomposites for the bismuth and iron lithium fluoride systems are reported. (C) 2011 Elsevier B.V. All rights reserved.

  4. Different corrosive effects on hydroxyapatite nanocrystals and amine fluoride-based mouthwashes on dental titanium brackets: a comparative in vitro study

    PubMed Central

    Lelli, Marco; Marchisio, Olivia; Foltran, Ismaela; Genovesi, Annamaria; Montebugnoli, Giulia; Marcaccio, Massimo; Covani, Ugo; Roveri, Norberto

    2013-01-01

    Titanium plates treated in vitro with a mouthwash containing amine fluoride (100 ppm F−) and another containing zinc-substituted carbonate–hydroxyapatite have been analyzed by scanning electron microscopy and atomic force microscopy to evaluate the modification of the surface roughness induced by treatment with these two different mouthwashes. The treatment with F−-based mouthwash produces a roughness characterized by higher peaks and deeper valleys in the streaks on the titanium bracket surface compared with those observed in the reference polished titanium plates. This effect causes a mechanical weakness in the metallic dental implant causing bacterial growth and therefore promotes infection and prosthesis contamination. However, the in vitro treatment with a mouthwash containing zinc-substituted carbonate–hydroxyapatite reduced the surface roughness by filling the streaks with an apatitic phase. This treatment counteracts the surface oxidative process that can affect the mechanical behavior of the titanium dental implant, which inhibits the bacterial growth contaminating prostheses. PMID:23355777

  5. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  6. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  7. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  8. Metal inks

    DOEpatents

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  9. Metallization failures

    NASA Technical Reports Server (NTRS)

    Beatty, R.

    1971-01-01

    Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.

  10. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  11. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  12. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  13. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  14. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  15. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  16. Metals 2000

    SciTech Connect

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  17. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  18. Metal nanoshells.

    PubMed

    Hirsch, Leon R; Gobin, Andre M; Lowery, Amanda R; Tam, Felicia; Drezek, Rebekah A; Halas, Naomi J; West, Jennifer L

    2006-01-01

    Metal nanoshells are a new class of nanoparticles with highly tunable optical properties. Metal nanoshells consist of a dielectric core nanoparticle such as silica surrounded by an ultrathin metal shell, often composed of gold for biomedical applications. Depending on the size and composition of each layer of the nanoshell, particles can be designed to either absorb or scatter light over much of the visible and infrared regions of the electromagnetic spectrum, including the near infrared region where penetration of light through tissue is maximal. These particles are also effective substrates for surface-enhanced Raman scattering (SERS) and are easily conjugated to antibodies and other biomolecules. One can envision a myriad of potential applications of such tunable particles. Several potential biomedical applications are under development, including immunoassays, modulated drug delivery, photothermal cancer therapy, and imaging contrast agents. PMID:16528617

  19. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  20. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  1. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  2. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  3. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  4. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  5. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  6. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  8. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  9. Neurotoxicity of metals.

    PubMed

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity. PMID:26563789

  10. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  11. Metal treatment

    SciTech Connect

    Carlson, R.; Johnson, P.M.; Pierce, J.R.

    1993-07-13

    A process is described for increasing the corrosion resistance of a metal object bearing a preexisting protective conversion coating, said process comprising steps of: (A) contacting the pre-existing coating with a composition having a pH from about 5 to about 12 and consisting essentially of: (1) water, (2) from 25-5,000 ppm of triazole molecules selected from the group consisting of aryl triazoles containing from 6 to about 10 carbon atoms and alkyl triazoles containing from 1 to about 6 carbon atoms, and, optionally, (3) at least partially substituted poly(vinylphenol) polymer or copolymer including substituents on at least some of the phenol rings: wherein each of R[sub 5] through R[sub 12] is selected from hydrogen, an alkyl, an aryl, an aryl, a hydroxy-alkyl, an amino-alkyl, a mercapto-alkyl, or a phospho-alkyl moiety, except that R[sub 12] can also be [minus]O[sup [minus]1] or [minus]OH and that at least one of R[sub 9] and R[sub 10] must include a polyhydroxy functionality resulting from the condensation of an amine or ammonia with a ketose, aldose, or other polyhydroxyl compound having from about 3 to about 8 carbon atoms, followed by reduction from imino to amino, and, optionally, (4) polar organic solvents; and (B) drying the object completion of step (A).

  12. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  13. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  14. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  15. Fabrication of metal nanoshells

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, Jr., James R. (Inventor)

    2012-01-01

    Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.

  16. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  17. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  18. Predicting dietborne metal toxicity from metal influxes.

    PubMed

    Croteau, Marie-Noële; Luoma, Samuel N

    2009-07-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (k(uf)) were, respectively, 3.3 and 2.3 times higher than thatfor Cu. Detoxification rate constants (k(detox)) were similar among metals and appeared 100 times higher than efflux rate constants (K(e)). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity, i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g(-1) day(-1). L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed. PMID:19673285

  19. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  20. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  1. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  2. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  3. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  4. Metal cleaner poisoning

    MedlinePlus

    Metal cleaners are very strong chemical products that contain acids. This article discusses poisoning from swallowing or ... Metal cleaners contain organic compounds called hydrocarbons, including: 1,2-butylene oxide Boric acid Cocoyl sarcosine Dicarboxylic ...

  5. "Gloster" metal construction

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This report details the methods of construction employed by the Gloster Company in their fabrication of metal aircraft parts. Ribs, spars, wings, and metal treatments to prevent oxidation are all discussed.

  6. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  7. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  8. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  9. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  10. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  11. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  12. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  13. TOXICOLOGY OF METALS. VOLUME III

    EPA Science Inventory

    ;Contents: General chemistry of metals; Sampling and analytical methods; Sources, transport, and transformation of metals in the environment; Effects - general principles underlying the toxic action of metals; Factors influencing effects and dose-response relationships of metals;...

  14. Metal-ligand cooperation.

    PubMed

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  15. Metals and Breast Cancer

    PubMed Central

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2014-01-01

    Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer. PMID:23338949

  16. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  17. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  18. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  19. FORMING PROTECTIVE FILMS ON METAL

    DOEpatents

    Gurinsky, D.H.; Kammerer, O.F.; Sadofsky, J.; Weeks, J.R.

    1958-12-16

    Methods are described of inhibiting the corrosion of ferrous metal by contact with heavy liquid metals such as bismuth and gallium at temperatures above 500 icient laborato C generally by bringing nltrogen and either the metal zirconium, hafnium, or titanium into reactlve contact with the ferrous metal to form a thin adherent layer of the nitride of the metal and thereafter maintaining a fractional percentage of the metal absorbed in the heavy liquid metal in contact with the ferrous metal container. The general purpose for uslng such high boiling liquid metals in ferrous contalners would be as heat transfer agents in liquid-metal-fueled nuclear reactors.

  20. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  1. Metal Foam Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2006-01-01

    This paper compares the ballistic performance of metallic foam sandwich structures with honeycomb structures. Honeycomb sandwich structures, consisting of metallic or composite facesheets and honeycomb cores, are often used in spacecraft construction due to their light-weight and structural stiffness. Honeycomb panels, however, are considered rather poor candidates for protection from micrometeoroid orbital debris (MMOD) particles because the honeycomb channels the debris cloud from MMOD impacts on outer facesheet causing a concentrated load on the second facesheet. Sandwich structures with light-weight, open-cell metallic cores and metal or composite facesheets provide improved MMOD protection because channeling does not occur and because the core is more effective at disrupting hypervelocity impacts then honeycomb. This paper describes hypervelocity impact tests on metallic foam sandwich structures (aluminum and titanium) with metallic facesheets, compare them to equivalent mass and thickness honeycomb panels, based on the results of hypervelocity impact tests.

  2. Photoactivated metal removal

    SciTech Connect

    Nimlos, M.R.; Filley, J.; Ibrahim, M.A.; Watt, A.S.; Blake, D.M.

    1999-07-01

    The authors propose the use of photochromic dyes as light activated switches to bind and release metal ions. This process, which can be driven by solar energy, can be used in environmental and industrial processes to remove metals from organic and aqueous solutions. Because the metals can be released from the ligands when irradiated with visible light, regeneration of the ligands and concentration of the metals may be easier than with conventional ion exchange resins. Thus, the process has the potential to be less expensive than currently used metal extraction techniques. In this paper, the authors report on their studies of the metal binding of spirogyran dyes and the hydrolytic stability of these dyes. They have prepared a number of spirogyrans and measured their binding constants for calcium and magnesium. They discuss the relationship of the structure of the dyes to their binding strengths. These studies are necessary towards determining the viability of this technique.

  3. A near-Infrared Fluorescent Chemodosimeter for Ratiometric Detecting Fluoride Based on Desilylation Reaction.

    PubMed

    Xie, Puhui; Guo, Fengqi; Gao, Guangqin; Fan, Wei; Yang, Guoyu; Xie, Lixia

    2016-09-01

    A new chemodosimeter based on dicyanomethylene-4H-chromene chromophore (probe 1) was developed as a ratiometric fluorescent probe in near-infrared range for F(-) with good selectivity in acetonitrile. Probe 1 could be used to directly visualize F(-) by the naked eye and showed more than 621-fold fluorescence enhancement at 715 nm upon reaction with F(-) upon excitation at 625 nm. The recognition of probe 1 to fluoride was featured by F(-)-induced red-shifts of both absorption (185 nm) and fluorescence peaks (132 nm) based on internal charge transfer (ICT) in acetonitrile. The desilylation reaction of 1 by F(-) was proposed for its dual absorption and emission ratiometric detection of fluoride. PMID:27365125

  4. Novel electroactive poly(vinylidene fluoride)-based polymer systems and their applications

    NASA Astrophysics Data System (ADS)

    Li, Zhimin

    Electroactive polymers (EAPs) are widely used in many areas, such as actuators, sensors and transducers. This research focused on developing new electroactive polymer systems and exploiting applications of EAPs in biosensors. Research objectives were: (1) studying the recrystallization of irradiated P(VDF-TrFE) copolymer to deepen our understanding of EAPs; (2) developing a series of novel high performance and inexpensive EAP systems---P(VDF-TrFE)-based copolymer blends; and (3) exploring new EAP in biosensor applications. The structure and morphology of recrystallized P(VDF-TrFE) with 65/35 mol% copolymer samples that had previously been irradiated were studied using X-ray, FTIR and DSC techniques. The crystalline structure and morphology, as well as the conformation of the polymer chains, were determined by X-ray and FTIR. Their thermal behaviors, including phase transition, were characterized by DSC. It was found that in samples irradiated with doses of less than 60 Mrad, the recrystallized copolymers exhibited similar behaviors to unirradiated samples except for having a lower level of crystallinity. However, for samples irradiated with higher doses, such as 60, 85 and 100 Mrad, the X-ray diffraction results indicated that the crystalline structure of the recrystallized copolymers were completely different than unirradiated samples. A systematic study of the crystalline structure and phase transition behavior of these recrystallized P(VDF-TrFE) 65/35 mol% samples is reported here. In order to create inexpensive EAPs, a blending between P(VDF-TrFE) and P(VDF-CTFE) copolymers was developed, both of which are commercially available in their semi-crystalline form is reported. First, the composition effects on miscibility, crystalline structure, and phase transition behavior were evaluated with DSC, X-ray and hysteresis loop measurements. The experimental results showed that stretching the polymer before annealing increases the polarization response. This improved treatment made the VDF segments of both copolymers in the blend co-crystallize and generate rich TrFE and CTFE regions. These regions served as boundary layers located near the VDF crystalline regions. The ordering degree of these boundary layers may be changed by an electric field, which results in a high polarization response. Finally, the feasibility study of microelectronic mechanical diaphragm (MEMD) using polymers is presented. First, diaphragms with diameters in the mm scale and thickness in the mum scale were fabricated using conventional methods. Their resonance frequencies and quality merit factors (Q value) in liquid were then demonstrated. The Q values in liquid medium were found to be the same or better than that measured in air. A microfabrication process flow chart based on current silicon technology has been designed and established. While using the current microelectronic fabrication processes, which are stressful to many materials, the polymer film showed great resilience and remained unchanged, flat and affixed to the Si wafer. (Abstract shortened by UMI.)

  5. Light-Activated Rapid-Response Polyvinylidene-Fluoride-Based Flexible Films.

    PubMed

    Tai, Yanlong; Lubineau, Gilles; Yang, Zhenguo

    2016-06-01

    The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated. PMID:27061392

  6. Instability of Polyvinylidene Fluoride-Based Polymeric Binder in Lithium-Ion Cells: Final Report

    SciTech Connect

    Garcia, M.; Nagasubramanian, G.; Tallant, D.R.; Roth, E.P.

    1999-05-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 degree C involving the solid electrolyte interface (SEI) layer and the LiPF(6) salt in the electrolyte (EC-PC:DEC/IM LiPF(6)). These reactions could account for the thermal runaway observed in these cells beginning at 100 degree C. Exothermic reactions were also observed in the 200 degree C to 300 degree C region between the intercalated lithium anodes, the LiPF(6) salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 degree C to 400 degree C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 degree C and increased with the state of charge (decreasing Li content). The stability of the PVDF binder as a function of electrochemical cycling was studied using FTIR. The infrared spectra from the extracts of both electrodes indicate that PVDF is chemically modified by exposure to the lithium cell electrolyte (as well as electrochemical cycling) in conjunction with NMP extraction. Preconditioning of PVDF to dehydrohalogenation, which may be occurring by reaction with LiPf(6), makes the PVDF susceptible to attack by a range of nucleophiles.

  7. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  8. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    SciTech Connect

    Ranjan, V.; Yu, L.; Nakhmanson, S.; Bernholc, J.; Nardelli, M. B.; Materials Science Division; North Carolina State Univ.; ORNL

    2010-01-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar {alpha} and polar {beta} phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the {beta} phase, whereas the {alpha} phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations ({le} 12%) undergo a transition from the {alpha} to the {beta} phase until a breakdown field of {approx}600 MV m{sup -1} is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  9. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.; Kattelus, H.; So, F.

    1984-01-01

    The general objective was to determine the potential of amorphous metallic thin films as a means of improving the stability of metallic contacts to a silicon substrate. The specific objective pursued was to determine the role of nitrogen in the formation and the resulting properties of amorphous thin-film diffusion barriers. Amorphous metallic films are attractive as diffusion barriers because of the low atomic diffusivity in these materials. Previous investigations revealed that in meeting this condition alone, good diffusion barriers are not necessarily obtained, because amorphous films can react with an adjacent medium (e.g., Si, Al) before they recrystallize. In the case of a silicon single-crystalline substrate, correlation exists between the temperature at which an amorphous metallic binary thin film reacts and the temperatures at which the films made of the same two metallic elements react individually. Amorphous binary films made of Zr and W were investigated. Both react with Si individually only at elevated temperatures. It was confirmed that such films react with Si only above 700 C when annealed in vacuum for 30 min. Amorphous W-N films were also investigated. They are more stable as barriers between Al and Si than polycrystalline W. Nitrogen effectively prevents the W-Al reaction that sets in at 500 C with polycrystalline W.

  10. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  11. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  12. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  13. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  14. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  15. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  16. Nanomoulding with amorphous metals.

    PubMed

    Kumar, Golden; Tang, Hong X; Schroers, Jan

    2009-02-12

    Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials. PMID:19212407

  17. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  18. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. PMID:20877898

  19. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K.

    1988-04-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). The present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  20. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  1. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  2. Metal-Metal Bonds in Biology

    PubMed Central

    Lindahl, Paul A.

    2011-01-01

    Nickel-containing carbon monoxide dehydrogenases, acetyl-CoA synthases, nickel-iron hydrogenases, and diron hydrogenases are distinct metalloenzymes yet they share a number of important characteristics. All are O2-sensitive, with active-sites composed of iron and/or nickel ions coordinated primarily by sulfur ligands. In each case, two metals are juxtaposed at the “heart” of the active site, within range of forming metal-metal bonds. These active-site clusters exhibit multielectron redox abilities and must be reductively activated for catalysis. Reduction potentials are milder than expected based on formal oxidation state changes. When reductively activated, each cluster attacks an electrophilic substrate via an oxidative addition reaction. This affords a two-electron-reduced substrate bound to one or both metals of an oxidized cluster. M-M bonds have been established in hydrogenases where they serve to initiate the oxidative addition of protons and perhaps stabilize active sites in multiple redox states. The same may be true of the CODH and ACS active sites – Ni-Fe and Ni-Ni bonds in these sites may play critical roles in catalysis, stabilizing low-valence states and initiating oxidative addition of CO2 and methyl group cations, respectively. In this article, the structural and functional commonalities of these metalloenzyme active sites are described, and the case is made for the formation and use of metal-metal bonds in each enzyme mentioned. As a post-script, the importance of Fe-Fe bonds in the nitrogenase FeMoco active site is discussed. PMID:22119810

  3. Metal-on-Metal Hip Resurfacing Arthroplasty

    PubMed Central

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  4. Metal pad instabilities in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg

    2015-12-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current, and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  5. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  6. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  7. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  8. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  9. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  10. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  11. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  12. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  13. Metals Fact Sheet: Yttrium

    SciTech Connect

    1992-09-01

    Yttrium is a metallic element usually included among the rare earth metals, which it resembles chemically and with which it usually occurs in minerals. Yttrium was named after the village of Ytterby in Sweden---the element was discovered in a quarry near the village. This article discusses sources of the element, the world market for the element, and various applications of the material.

  14. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  15. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  16. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  17. Biosorption of heavy metals

    SciTech Connect

    Volesky, B. |; Holan, Z.R.

    1995-05-01

    Only within the past decade has the potential of metal biosorption by biomass materials been well established. For economic reasons, of particular interest are abundant biomass types generated as a waste byproduct of large-scale industrial fermentations or certain metal-binding algae found in large quantities in the sea. These biomass types serve as a basis for newly developed metal biosorption processes foreseen particularly as a very competitive means for the detoxification of metal-bearing industrial effluents. The assessment of the metal-building capacity of some new biosorbents is discussed. Lead and cadmium, for instance, have been effectively removed from very dilute solutions by the dried biomass of some ubiquitous species of brown marine algae such as Ascophyllum and Sargassum, which accumulate more than 30% of biomass dry weight in the metal. Mycelia of the industrial steroid-transforming fungi Rhizopus and Absidia are excellent biosorbents for lead, cadmium, copper, zinc, and uranium and also bind other heavy metals up to 25% of the biomass dry weight. Biosorption isotherm curves, derived from equilibrium batch sorption experiments, are used in the evaluation of metal uptake by different biosorbents. Further studies are focusing on the assessment of biosorbent performance in dynamic continuous-flow sorption systems. In the course of this work, new methodologies are being developed that are aimed at mathematical modeling of biosorption systems and their effective optimization. 115 refs., 7 figs., 3 tabs.

  18. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  19. Increasing Metal Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Wood, W. H.; Sandefur, P. G. J.

    1982-01-01

    In technique developed at Langley Research Center several thin sheets of metal are diffusion-brazed together in vacuum furnace to create thick piece of metal that retains much of fracture toughness of its thin components. Technique is expected to make many of high-strength stainless steels, not currently suitable, usable at cryogenic temperatures.

  20. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  1. Metallized polymeric foam material

    NASA Technical Reports Server (NTRS)

    Birnbaum, B. A.; Bilow, N.

    1974-01-01

    Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.

  2. Metal Airplane Construction

    NASA Technical Reports Server (NTRS)

    1926-01-01

    It has long been thought that metal construction of airplanes would involve an increase in weight as compared with wood construction. Recent experience has shown that such is not the case. This report describes the materials used, treatment of, and characteristics of metal airplane construction.

  3. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  4. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  5. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  6. Metal hydride heat pump

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1983-12-27

    A metal hydride heat pump is disclosed comprising a first and a second heat medium receptacle having heat media flowing therein and a plurality of closed vessels each containing a hydrogen gas atmosphere and divided into a first chamber having a first metal hydride filled therein and a second chamber having a second metal hydride filled therein. The first and second chambers of each closed vessel are made to communicate with each other so that hydrogen gas passes from one chamber to the other but the metal hydrides do not, and a group of the first chambers of the closed vessels being located within the first heat medium receptacle and a group of the second chambers of the closed vessels being located within the second heat medium receptacle, whereby heat exchange is carried out between the heat media in the first and second heat medium receptacles and the first and second metal hydrides through the external walls of the closed vessels.

  7. Metals and Neurodegeneration

    PubMed Central

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  8. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  9. The hard metal diseases.

    PubMed

    Cugell, D W

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure. PMID:1511554

  10. Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites have found selected application in areas that can cost-effectively capitalize on improvements in specific stiffness, specific strength, fatigue resistance, wear resistance, and coefficient of thermal expansion. Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored, including aluminum, beryllium, magnesium, titanium, iron, nickel, cobalt, and silver. However, aluminum is by far the most preferred. For reinforcements, the materials are typically ceramics, which provide a very beneficial combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, metallic materials such as tungsten and steel fibers have been considered.

  11. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  12. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K. )

    1988-05-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, on plants and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). Though the rec assay with Bacillus subtilis and the reversion assay with Escherichia coli were used to assess the mutagenicity of some heavy metals, the present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  13. Metallization of electronic insulators

    DOEpatents

    Gottesfeld, Shimshon; Uribe, Francisco A.

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  14. Active Metal-Insulator-Metal Plasmonic Devices

    NASA Astrophysics Data System (ADS)

    Diest, Kenneth Alexander

    As the field of photonics constantly strives for ever smaller devices, the diffraction limit of light emerges as a fundamental limitation in this pursuit. A growing number of applications for optical "systems on a chip" have inspired new ways of circumventing this issue. One such solution to this problem is active plasmonics. Active plasmonics is an emerging field that enables light compression into nano-structures based on plasmon resonances at a metal-dielectric interface and active modulation of these plasmons with an applied external field. One area of active plasmonics has focused on replacing the dielectric layer in these waveguides with an electro-optic material and designing the resulting structures in such a way that the transmitted light can be modulated. These structures can be utilized to design a wide range of devices including optical logic gates, modulators, and filters. This thesis focuses on replacing the dielectric layer within a metal-insulator-metal plasmonic waveguide with a range of electrically active materials. By applying an electric field between the metal layers, we take advantage of the electro-optic effect in lithium niobate, and modulating the carrier density distribution across the structure in n-type silicon and indium tin oxide. The first part of this thesis looks at fabricating metal-insulator-metal waveguides with ion-implantation induced layer transferred lithium niobate. The process is analyzed from a thermodynamic standpoint and the ion-implantation conditions required for layer transfer are determined. The possible failure mechanisms that can occur during this process are analyzed from a thin-film mechanics standpoint, and a metal-bonding method to improve successful layer transfer is proposed and analyzed. Finally, these devices are shown to naturally filter white light into individual colors based on the interference of the different optical modes within the dielectric layer. Full-field electromagnetic simulations show that

  15. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  16. Nitrogen in chondritic metal

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Marti, K.; Kim, Y.

    2005-02-01

    We report new nitrogen isotopic data in metals of H-, L- and one LL -chondrites, with N abundances in the range of ˜0.3 to 3.3 ppm and half of these <1 ppm. Nitrogen isotopic signatures in metals with low indigenous N concentrations are modified by cosmic ray spallation components; corrections are required to determine the indigenous N signatures. The metals of type 4 and 5 show uniform indigenous nitrogen (δ 15N = -6.8 ± 0.5 ‰) and confirm a reported possible genetic association of chondritic metal with metal in IIE and IVA iron meteorites. Distinct isotopic signatures are observed in two metal samples of the Portales Valley (H6) meteorite which both are inconsistent with signatures in H4 and H5 chondrites, but possibly reveal a record of impact-induced melting and metamorphism on the parent asteroid. Anomalous nitrogen signatures in metals of type 3 chondrites, on the other hand, may reflect residues of surviving presolar isotopic signatures.

  17. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  18. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  19. Metal nanodisks using bicellar templates

    DOEpatents

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  20. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  1. Method for producing metallic microparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  2. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  3. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  4. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  5. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  6. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  7. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  8. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  9. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1991-04-05

    This invention is comprised of a process of converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  10. Metallized gelled monopropellants

    NASA Technical Reports Server (NTRS)

    Nieder, Erin G.; Harrod, Charles E.; Rodgers, Frederick C.; Rapp, Douglas C.; Palaszewski, Bryan A.

    1992-01-01

    Thermochemical calculations of seven metallized monopropellants were conducted to quantify theoretical specific impulse and density specific impulse performance. On the basis of theoretical performance, commercial availability of formulation constituents, and anticipated viscometric behavior, two metallized monopropellants were selected for formulation characterization: triethylene glycol dinitrate, ammonium perchlorate, aluminum and hydrogen peroxide, aluminum. Formulation goals were established, and monopropellant formulation compatibility and hazard sensitivity were experimentally determined. These experimental results indicate that the friction sensitivity, detonation susceptibility, and material handling difficulties of the elevated monopropellant formulations and their constituents pose formidable barriers to their future application as metallized monopropellants.

  11. Homochiral metal phosphonate nanotubes.

    PubMed

    Liu, Xun-Gao; Bao, Song-Song; Huang, Jian; Otsubo, Kazuya; Feng, Jian-Shen; Ren, Min; Hu, Feng-Chun; Sun, Zhihu; Zheng, Li-Min; Wei, Shiqiang; Kitagawa, Hiroshi

    2015-10-21

    A new type of homochiral metal-organic nanotubular structures based on metal phosphonates are reported, namely, (R)- or (S)-[M(pemp)(H2O)2][M = Co(II) (1), Ni(II) (2)] [pemp(2-) = (R)- or (S)-(1-phenylethylamino)methylphosphonate]. In these compounds, the tube-walls are purely inorganic, composed of metal ions and O-P-O bridges. The cavity of the nanotube is hydrophilic with one coordination water pointing towards the center, while the outer periphery of the nanotube is hydrophobic, decorated by the phenylethyl groups of pemp(2-). The thermal stabilities, adsorption and proton conductivity properties are investigated. PMID:26324662

  12. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  13. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  14. Thin Nanoporous Metal-Insulator-Metal Membranes.

    PubMed

    Aramesh, Morteza; Djalalian-Assl, Amir; Yajadda, Mir Massoud Aghili; Prawer, Steven; Ostrikov, Kostya Ken

    2016-02-01

    Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 10(7) V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 10(6) V/cm; sufficient for ionization of wide range of molecules. These metal-insulator-metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy. PMID:26846250

  15. Metal pad instabilities in liquid metal batteries.

    PubMed

    Zikanov, Oleg

    2015-12-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current, and the current perturbations caused by the local variations of the thickness of the electrolyte layer. PMID:26764818

  16. Prosthetic metal implants and airport metal detectors

    PubMed Central

    Dancey, A; Titley, OG

    2013-01-01

    Introduction Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. Methods A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. Results No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Conclusions Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination. PMID:23827294

  17. Metal stocks and sustainability

    PubMed Central

    Gordon, R. B.; Bertram, M.; Graedel, T. E.

    2006-01-01

    The relative proportions of metal residing in ore in the lithosphere, in use in products providing services, and in waste deposits measure our progress from exclusive use of virgin ore toward full dependence on sustained use of recycled metal. In the U.S. at present, the copper contents of these three repositories are roughly equivalent, but metal in service continues to increase. Providing today's developed-country level of services for copper worldwide (as well as for zinc and, perhaps, platinum) would appear to require conversion of essentially all of the ore in the lithosphere to stock-in-use plus near-complete recycling of the metals from that point forward. PMID:16432205

  18. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Metal cleaner poisoning

    MedlinePlus

    Metal cleaners contain organic compounds called hydrocarbons, including: 1,2-butylene oxide Boric acid Cocoyl sarcosine Dicarboxylic fatty acid Dimethoxymethane Dodecanedioic acid N-propyl bromide Sodium hydroxide T-butanol

  20. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  1. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    There is a wide variety of situations wherein metals are in solid state contact with dielectric materials. The paper reviews some of the factors that influence solid state interactions for metals in contact with dielectric surfaces. Since surfaces play an important part in these reactions, the use of analytical tools in characterizing surfaces is discussed. Adhesion, friction, and wear are utilized as indicators of the nature of interfacial bonding between metals and dielectrics can be effectively determined with adhesion and friction force measurements. Films present on the surface, such as oxygen or water vapor, markedly alter adhesive bond strength which in turn affects friction force and interfacial fracture when attempts are made to separate the contact regions. Analytical surface tools such as the field ion microscope, Auger emission spectroscopy, and X-ray photoelectron spectroscopy are very effective in providing insight into the effect of contact on the surfaces of metals and dielectrics.

  2. Triple Point Topological Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Ziming; Winkler, Georg W.; Wu, QuanSheng; Li, Ju; Soluyanov, Alexey A.

    2016-07-01

    Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  3. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  4. All-Metal Tires

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Sword, Lee F.; Lindemann, Randel A.

    1994-01-01

    Tires used where elastomeric and pneumatic tires would not function. Metal tires withstand extreme temperatures. Used on Earth for vehicles and robots that fight fires or clean up dangerous chemicals.

  5. Molten metal reactors

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  6. Cooled thin metal liner

    NASA Technical Reports Server (NTRS)

    Liang, George P. (Inventor)

    1995-01-01

    A first metal sheet (34) has openings (46) in registration with depressions (40) in a second contacting metal sheet (36). Each depression has a downstream wall (42) at an angle of 24.degree. from the plane of the sheets. A metering hole (56) in the depression amidst cooling air in a direction to first impinge against an overlaying portion (48) of the first plate, before it diffuses along the downstream wall.

  7. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  8. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  9. PRODUCTION OF HAFNIUM METAL

    DOEpatents

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  10. HAZARD ASSESSMENT OF METALS AND METAL COMPOUNDS IN TERRESTRIAL SYSTEMS

    EPA Science Inventory

    Metal accumulation in soil can result in adverse effects on soil biota, and may concentrate metals in food chains to levels detrimental to humans and wildlife. A SETAC Pellston Workshop entitled " Hazard Identification Approach For Metals And Inorganic Metal Substances" examined...

  11. Porous metallic bodies

    DOEpatents

    Landingham, Richard L.

    1985-01-01

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides are heated in a confining container at a controlled rate to a temperature of about greater than the temperature at which the hydride decomposes. Hydrogen is removed from the container and the remaining metal is heated during a second stage to a temperature greater than the temperature at which it was previously heated but not greater than the temperature of 1/2 to 2/3 the temperature at which the metal melts at a controlled rate. The resulting porous metallic body produced has a density less than about 25 percent theoretical and a pore size of less than about 200 microns. The metallic particles of the present invention have high inner surface area and possess minimum resistance to gas flow.

  12. Ototoxicity of Divalent Metals.

    PubMed

    Roth, Jerome A; Salvi, Richard

    2016-08-01

    Excess exposure to both essential and non-essential heavy metals can lead to a variety of adverse clinical conditions which selectively affect a variety of organs and cells in the body. The diverse, but highly specific nature of the symptoms produced by each metal indicates that they can interact with a restricted population of cellular targets ultimately resulting in unique clinical manifestations. The symptoms, which can be reversible or irreversible, often present with different patterns and outcomes depending on the net accumulated dose of any given metal. There are some common pathological conditions that result from excess exposure to heavy metals which unfortunately have not received widespread recognition and thus, have not been extensively investigated. For example, chronic exposure to several heavy metals such as Co, Mn, Cd, Pb, and Hg has the potential to affect hearing in humans and experimental animals based on previous studies including case reports and ex vivo studies. Understanding exactly how these metals induce hearing deficits is complicated by the fact that the inner ear is an extremely complex system that composed of a diverse collection of sensory, neural, and supporting cells which must act in synchrony to produce a neurophysiological signal terminating in the central auditory system. This review will focus on the anatomical, cellular, and functional changes that occur in the cochlea, the sensory organ for hearing, due to excessive exposure to manganese, cadmium, cobalt, lead, and mercury. PMID:27142062

  13. Metal-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nicolais, Luigi; Carotenuto, Gianfranco

    2004-09-01

    A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to their special characteristics and suitability for a number of advanced applications. As technology becomes more refined-including the ability to effectively manipulate and stabilize metals at the nanoscale-these materials present ever-more workable solutions to a growing range of problems. Metal-Polymer Nanocomposites provides the first guide solely devoted to the unique properties and applications of this essential area of nanoscience. It offers a truly multidisciplinary approach, making the text accessible to readers in physical, chemical, and materials science as well as areas such as engineering and topology. The thorough coverage includes: * The chemical and physical properties of nano-sized metals * Different approaches to the synthesis of metal-polymer nanocomposites (MPN) * Advanced characterization techniques and methods for study of MPN * Real-world applications, including color filters, polarizers, optical sensors, nonlinear optical devices, and more * An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanoscience development, Metal-Polymer Nanocomposites is an invaluable text for students and practitioners of materials science, engineering, polymer science, chemical engineering, electrical engineering, and optics.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  16. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  17. TOXICOLOGY OF METALS. VOLUME II

    EPA Science Inventory

    The report on metal toxicology contains reviews on twenty-three metals. These have been written for inclusion in a Handbook on the Toxicology of Metals: Environmental and Occupational Aspects which is being prepared by the Scientific Committee on the Toxicology of Metals of the P...

  18. Standardized Curriculum for Metal Trades.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for the metal trades was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all metal trades programs in the state. The guide contains objectives for Metal Trades I and II courses. Units in Metal Trades I cover the…

  19. Metal vapor Raman frequency shifter

    SciTech Connect

    Feldman, D.W.; Liu, C.; Weaver, L.A.

    1980-12-16

    Shifted Raman radiation for an all-hot Raman discharge cell is produced by external laser pumping of a metal halide medium in the cell during an afterglow period following dissociation of the metal halide medium into metal atoms and before recombination to form the original species of the metal halide medium.

  20. Electrochemical nitridation of metal surfaces

    SciTech Connect

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  1. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  2. Metal interactions with boron clusters

    SciTech Connect

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B/sub 3/H/sub 8/; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds.

  3. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  4. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  5. Peroxotitanates for Biodelivery of Metals

    SciTech Connect

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  6. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  7. Method for forming metal contacts

    SciTech Connect

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  8. Metallicity and Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Zhou, Hongyan; Yuan, Weimin; Wang, Tinggui

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  9. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  10. Ultralight metal foams

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  11. Ultralight metal foams.

    PubMed

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-01-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory. PMID:26349002

  12. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  13. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  14. Ultralight metal foams

    PubMed Central

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-01-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory. PMID:26349002

  15. Separations chemistry of toxic metals

    SciTech Connect

    Smith, P.; Barr, M.; Barrans, R.

    1996-04-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects.

  16. metal-insulator-metal (MIM) devices

    NASA Astrophysics Data System (ADS)

    Khaldi, O.; Jomni, F.; Gonon, P.; Mannequin, C.; Yangui, B.

    2014-09-01

    This paper is devoted to the study of the electrical properties of Au/HfO2/TiN metal-insulator-metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C- f), (2) dynamic regime [thermally stimulated currents, TSCs I( T)] and (3) static mode [ I( V)]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency C- f characteristic possesses a low-frequency dispersion that arises for high temperature ( T > 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C ( E a ~ 1 eV) is in agreement with impedance spectroscopy ( C- f). On the other hand, when the MIM structures are analyzed in static mode, the I- V plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.

  17. Metal-on-metal total hip arthroplasty: the concerns.

    PubMed

    MacDonald, S J

    2004-12-01

    The metal-on-metal bearing couple is having a resurgence in clinical applications seen in total hip and hip resurfacing technologies. The most noteworthy advantage of a metal-on-metal implant is the improved wear characteristics seen in vitro on wear simulators and in vivo with retrieved implants. All bearings have disadvantages, and a metal-on-metal bearing is no exception. Concerns exist regarding the generation of metal ions seen in the blood and urine of patients with metal-on-metal implants. These elevated metal ions have theoretical, although not proven, risks related to carcinogenic and biologic concerns. Additionally, concerns exist regarding hypersensitivity, increased incidence of instability and increased costs. Specific patient selection issues arise with metal-on-metal implants. The current generation of implants has only early and mid-term results available, with no long-term series yet published. Therefore, although a metal-on-metal bearing may be considered a viable alternative to either polyethylene or ceramic implants, outstanding and unresolved issues continue to exist with this bearing, as they do with the alternatives. PMID:15577471

  18. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  19. Thermohydraulics in liquid metals

    NASA Astrophysics Data System (ADS)

    Kottowski, H. M.

    Heat transfer problems in single-phase and two-phase liquid metal forced convection flow are reviewed. Liquid metal boiling heat transfer in pool flow; and dry out heat fluxes are considered. It is shown that in technological plants working with liquid metals, superheating up to 150 C occurs, and can lead to nonstationary hydraulic transition between the single-phase and established two-phase flows. Boiling phases relative to subcooled boiling and bubble boiling have no importance for technological processes. Piston, slug and annular flow patterns dominate. On the basis of the flow patterns observed during boiling, the separate flow model principle is the only one suitable for calculating the two-phase flow pressure drop. Using this model and total pressure drop measurements, a relationship for the two-phase frictional pressure characteristic, valid for tubular and annular geometry, can be determined.

  20. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  1. Metallization of fluid hydrogen

    SciTech Connect

    Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.

    1997-05-14

    The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.

  2. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  3. PREFACE: Half Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  4. Get the metal out

    SciTech Connect

    Fries, W. . Research and Development Lab.); Chew, D.

    1993-02-01

    Wet processes for producing printed circuit boards lead to large volumes of wastewater containing low, but unacceptable, levels of copper ions. This water is usually treated with conventional precipitation technology, which produces hazardous metal hydroxide sludge and an effluent in the low ppm range. These treatment systems are becoming inadequate for printed wiring board (PWB) manufacturers because of the high operating costs, high cost of sludge disposal, and the worldwide trend toward reducing heavy metal discharge limits. Kinetico Engineered Systems, Inc., has developed a treatment for this waste based on ion exchange resin and electrowinning technologies. The program meets copper discharge limits below 1 ppm, recovers copper in a salable metallic form, and recylces 60 to 80 % of the copper-bearing wastes. The process has led to reduced operating costs while meeting regulatory compliance levels reliably.

  5. Method for locating metallic nitride inclusions in metallic alloy ingots

    SciTech Connect

    White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  6. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; Toops, Todd J; More, Karren Leslie; Meyer III, Harry M; Vitek, John Michael; Wang, Heli; Turner, John; Wilson, Mahlon; Garzon, Fernando; Rockward, Tommy; Connors, Dan; Rakowski, Jim; Gervasio, Don

    2008-01-01

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  7. Moving belt metal detector

    NASA Astrophysics Data System (ADS)

    Nelson, Carl V.; Mendat, Deborah P.; Huynh, Toan B.

    2006-05-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed a prototype metal detection survey system that will increase the search speed of conventional technology while maintaining high sensitivity. Higher search speeds will reduce the time to clear roads of landmines and improvised explosive devices (IED) and to locate unexploded ordnance (UXO) at Base Realignment and Closure (BRAC) sites, thus reducing remediation costs. The new survey sensor system is called the moving belt metal detector (MBMD) and operates by both increasing sensor speed over the ground while maintaining adequate sensor dwell time over the target for good signal-to-noise ratio (SNR) and reducing motion-induced sensor noise. The MBMD uses an array of metal detection sensors mounted on a flexible belt similar to a tank track. The belt motion is synchronized with the forward survey speed so individual sensor elements remain stationary relative to the ground. A single pulsed transmitter coil is configured to provide a uniform magnetic field along the length of the receivers in ground contact. Individual time-domain electromagnetic induction (EMI) receivers are designed to sense a single time-gate measurement of the total metal content. Each sensor module consists of a receiver coil, amplifier, digitizing electronics and a low power UHF wireless transmitter. This paper presents the survey system design concepts and metal detection data from various targets at several survey speeds. Although the laboratory prototype is designed to demonstrate metal detection survey speeds up to 10 m/s, higher speeds are achievable with a larger sensor array. In addition, the concept can be adapted to work with other sensor technologies not previously considered for moving platforms.

  8. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  9. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  10. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  11. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  12. Metals in Finnish liqueurs.

    PubMed

    Harju, K; Ronkainen, P

    1984-05-01

    The metal content of some representative Finnish berry liqueurs was determined by atomic absorption spectrometry. The berry liqueurs were prepared from cloudberry (Rubus chamaemorus), arctic bramble (Rubus arcticus), cranberry (Vaccinum oxycoccus), lingonberry (Vaccinum vitis-idaea) and sea buckthorn (Hippophae rhamnoides). In addition some other Finnish berry, fruit and herbal liqueurs were analyzed. The trace elements studied were Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, and Zn. The level of poisonous metals in all the samples was very low: As less than 0.1, Cd less than 0.005 and Pb less than or equal to 0.1 mg/l. PMID:6464557

  13. Metal-smelting facility

    SciTech Connect

    Kellogg, D.R.; Mack, J.E.; Thompson, W.T.; Williams, L.C.

    1982-01-01

    Currently there are 90,000 tons of contaminated ferrous and nonferrous scrap metal stored in aboveground scrap yards at the Department of Energy's Uranium Enrichment Facilities in Tennessee, Kentucky, and Ohio. This scrap is primarily contaminated with 100 to 500 ppM uranium at an average enrichment of 1 to 1.5% /sup 235/U. A study was performed that evaluated smelting of the ORGDP metal in a reference facility located at Oak Ridge. The study defined the process systems and baseline requirements, evaluated alternatives to smelting, and provided capital and operating costs for the reference facility. A review of the results and recommendations of this study are presented.

  14. Metallic carbon materials

    DOEpatents

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  15. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  17. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  18. Skylab experiments on metals

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The Skylab Materials Processing Facility is described. Eight experiments on metal processing under near-zero-gravity conditions were performed in this facility. Three of these involved metals and procedures of potential application to fabrication in space. A Multipurpose electric furnace within the Materials Processing Facility was employed to heat three ampoules of samples for each of the other five experiments. These five investigations cover diffusion versus convection rates in molten zinc, several immiscible alloy compositions, a whisker-reinforced silver-based composite, heat treating of porous silver samples, and a copper-aluminum eutectic.

  19. Nutrient metal elements in plants.

    PubMed

    DalCorso, Giovanni; Manara, Anna; Piasentin, Silvia; Furini, Antonella

    2014-10-01

    Plants need many different metal elements for growth, development and reproduction, which must be mobilized from the soil matrix and absorbed by the roots as metal ions. Once taken up by the roots, metal ions are allocated to different parts of the plant by the vascular tissues. Metals are naturally present in the soil, but human activities, ranging from mining and agriculture to sewage processing and heavy industry, have increased the amount of metal pollution in the environment. Plants are challenged by environmental metal ion concentrations that fluctuate from low to high toxic levels, and have therefore evolved mechanisms to cope with such phenomena. In this review, we focus on recent data that provide insight into the molecular mechanisms of metal absorption and transport by plants, also considering the effect of metal deficiency and toxicity. We also highlight the positive effects of some non-essential metals on plant fitness. PMID:25144607

  20. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  1. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  2. Wick for metal vapor laser

    DOEpatents

    Duncan, David B.

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  3. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  4. Development of metallization process

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    A non lead frit paste is evaluated. A two step process is discussed where the bulk of the metallization is Mo/Sn but a small ohmic pad is silver. A new matrix of paste formulations is developed. A variety of tests are performed on paste samples to determine electrical, thermal and structural properties.

  5. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  6. Precision metal molding

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Method provides precise alignment for metal-forming dies while permitting minimal thermal expansion without die warpage or cavity space restriction. The interfacing dowel bars and die side facings are arranged so the dies are restrained in one orthogonal angle and permitted to thermally expand in the opposite orthogonal angle.

  7. Memories in Metal

    ERIC Educational Resources Information Center

    Knepper, Claire A.

    2008-01-01

    In this article, the author shares a classroom project that she introduced to her students. The project involved decorating photographs with some metal materials. The project was inspired by "The Frame," a painting by the artist Frida Kahlo. This project aims to make students think critically and connect art to their lives.

  8. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  9. Metal analysis of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven varieties of cotton were investigated for 8 metal ions (K, Na, Mg, Ca, Fe, Cu, Zn, and Mn) using Inductively Coupled Plasma-Optical Emission Spectroscopy. All of the varieties were grown at the same location. Half of the samples were dry (rain fed only) and the other were well-watered (irrigat...

  10. Metal allergy in Singapore.

    PubMed

    Goon, Anthony T J; Goh, C L

    2005-03-01

    This is a clinical epidemiologic study to determine the frequency of metal allergy among patch-tested patients in the years 2001-2003. The results are compared with those of previous studies. All patients diagnosed as having allergic contact dermatitis in the National Skin Centre, Singapore, from January 2001 to December 2003 were studied retrospectively. The frequency of positive patch tests to the following metals were nickel 19.9%, chromate 5.6%, cobalt 8.2% and gold 8.3%. The frequency of nickel allergy has been steadily rising over the last 20 years. The most common sources of nickel allergy are costume jewelry, belt buckles, wrist watches and spectacle frames. After declining from 1984 to 1990, chromate and cobalt allergies have also been steadily increasing subsequently. The most common sources of chromate allergy were cement, leather and metal objects. Most positive patch tests to cobalt are regarded as co-sensitization due to primary nickel or chromate allergies. There has been a steep increase in positive patch tests to gold from 2001 to 2003, which is difficult to explain because the relevance and sources of such positive patch tests can rarely be determined with certainty. There has been an overall rise in the frequency of metal allergy in the last 20 years. PMID:15811025

  11. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  12. Metal sorption on kaolinite

    SciTech Connect

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-03-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs{sup +}, Sr{sup 2+}, and Ba{sup 2+}) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba{sup 2+} to Sr{sup 2+} to Cs{sup +}, with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs{sup +} also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs{sup +} is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals.

  13. Wings of Stretched Metal

    ERIC Educational Resources Information Center

    Nelken, Miranda

    2010-01-01

    This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…

  14. PLATINUM-GROUP METALS

    EPA Science Inventory

    The document assembles, organizes, and evaluates all pertinent information (up to April 1976) about the effects on man and his environment that result either directly or indirectly from pollution by platinum-group metals: iridium (Ir), osmium (Os), palladium (Pd), platinum (Pt), ...

  15. Memory Metals (Marchon Eyewear)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Another commercial application of memory metal technology is found in a "smart" eyeglass frame that remembers its shape and its wearer's fit. A patented "memory encoding process" makes this possible. Heat is not required to return the glasses to shape. A large commercial market is anticipated.

  16. Metal halogen electrochemical cell

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  17. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  18. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  19. STRIPPING METAL COATINGS

    DOEpatents

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  20. Metal Trades Technology Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This curriculum guide provides materials for a metal trades technology course of study at the high school level. Its stated purpose is to help students acquire the trade knowledge necessary to function effectively in the shipfitting, welding, and piping trades. Contents include: a course description, a list of general objectives; lists of…

  1. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  2. Serpentine metal gasket

    DOEpatents

    Rothgeb, Timothy Moore; Reece, Charles Edwin

    2009-06-02

    A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

  3. Metals demand in telecommunications

    SciTech Connect

    Key, P.L.; Schlabach, T.D.

    1986-01-01

    Consumption of metals by Western economies appears to have begun a decline in the mid 1970s which has gone largely unnoticed or explained. Although this period is close to a period of recession, initial analysis of the decline indicated that it could not be explained by general economic factors alone. The authors examined data from various sources on the usage of metals in telecommunications and, in general, find a declining trend in metal usage in recent years but the timing of the decline varies with different metals and does not, in general, coincide with the noted general decline. In addition to economic factors, they propose several technological factors believed to contribute to this trend. These factors can be grouped into two broad categories; evolutionary and revolutionary. Evolutionary factors are those that occur within a given technology as it matures and are associated with a learning-curve type of model as an industry becomes more familiar with a technology. Examples include such things as cost-reduction programs leading to reduced gold use on contacts of miniaturization trends leading to decreased use of materials in general. Revolutionary factors are associated with major, rapid replacement of an existing technology by a new one. Examples include the replacement of lead for cable sheathing by polyethylene and copper wire by optical fibers. 29 references, 13 figures, 7 tables.

  4. Metal detector system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Signal voltage resulting from the disturbance of an electromagnetic field within the volume of a sensitive area is compared with a reference ac voltage for polarity information, which identifies the material. System output amplitude and polarity indicate approximate size and type of metal, respectively.

  5. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  6. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  7. Metal hydride heat pump system

    SciTech Connect

    Nishizaki, T.; Miyamoto, K.; Miyamoto, M.; Nakata, Y.; Yamaji, K.; Yoshida, K.

    1985-06-18

    A metal hydride heat pump system has a plurality of operating units, the metal hydride heat exchange medium of each operating unit be a combination of a first metal hydride having a lower equilibrium dissociation pressure at the operating temperature and a second metal hydride having a higher equilibrium dissociation pressure at the opening temperature and the metal hydrides being such that hydrogen can flow freely between the two metal hydrides, wherein the equilibrium dissociation pressure characteristics of one or both of the first and second metal hydrides in a given operating unit differ from those of one or both of the first and second metal hydrides in at least one other operating unit.

  8. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  9. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  10. SOIL METAL BINDING AND PHYTOAVAILABILITY

    EPA Science Inventory

    This study combines plant uptake studies, metal adsorption studies and metal characterization studies using state-of-the art surface and structure sensitive spectroscopies (XAS, XPS,) and high resolution microscopies (SEM, TEM) to determine the mechanisms, and the reaction produc...

  11. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  12. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  13. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  14. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  15. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  16. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  17. Electroless metal plating of plastics

    DOEpatents

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  18. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  19. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  20. Metal-on-metal: history, state of the art (2010)

    PubMed Central

    2011-01-01

    The history of metal-on-metal bearing began with K. Mc Kee. Several "episodes" have marked the history of metal-on-metal articulations, and each has contributed to a better understanding of this type of tribology. But to date the indications for this bearing are debated and are subject to reservations because of the existence of permanently elevated levels of circulating metal ions. It therefore appears that the monitoring of our patients, the documentation of our revisions and the collaboration with our industry partners as well as communicating with our biology and pathology colleagues is necessary to help us solve these problems. PMID:21234564

  1. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  2. Metal-on-metal joint bearings and hematopoetic malignancy

    PubMed Central

    2012-01-01

    Abstract This is a review of the hip arthroplasty era. We concentrate on new metal bearings, surface replacements, and the lessons not learned, and we highlight recent reports on malignancies and joint implants. A low incidence of blood malignancies has been found in bone marrow taken at prosthetic surgery. The incidence is increased after replacement with knee implants that release very low systemic levels of metal ions. A carcinogenic effect of the high levels of metal ions released by large metal-on-metal implants cannot be excluded. Ongoing Swedish implant registry studies going back to 1975 can serve as a basis for evaluation of this risk. PMID:23140092

  3. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  4. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  5. Metal Fabricating Specialist (AFSC 55252).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This seven-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for metal fabricating specialists. Covered in the individual volumes are general subjects (career progression, management of activities and resources, shop mathematics, and characteristics of metals); sheet metal tools and equipment…

  6. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  7. METHOD OF PURIFYING URANIUM METAL

    DOEpatents

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  8. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  9. Fabrication of metallic glass structures

    DOEpatents

    Cline, Carl F.

    1986-01-01

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.

  10. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  11. METAL SPECIATION BY DONNAN DIALYSIS

    EPA Science Inventory

    In Donnan dialysis aqueous samples are separated from receiver electrolytes by an ion exchange membrane. The present work demonstrates that the dialysis of metals into salt solutions occurs in proportion to the sum of the concentrations of the free metal and the metal held in the...

  12. Bonding Elastomers To Metal Substrates

    NASA Technical Reports Server (NTRS)

    Dickerson, George E.; Kelley, Henry L.

    1990-01-01

    Improved, economical method for bonding elastomers to metals prevents failures caused by debonding. In new technique, vulcanization and curing occur simultaneously in specially designed mold that acts as form for desired shape of elastomer and as container that positions and supports metal parts. Increases interface adhesion between metal, adhesive, and elastomer.

  13. Metal species involved in long distance metal transport in plants

    PubMed Central

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  14. Subcutaneous infusion: non-metal cannulae vs metal butterfly needles.

    PubMed

    Torre, Maria Carrion

    2002-07-01

    This review aimed to evaluate the effectiveness of non-metal cannulae compared to metal butterfly needles in maintaining subcutaneous infusion sites in patients receiving palliative care. The Cochrane Library, Medline, Pre-Medline, Embase, CINAHL, Amed and Cancerlit were searched for relevant studies. Controlled trials comparing non-metal cannulae with metal butterfly needles for giving subcutaneous infusion to palliative care patients were included. The outcome considered was site duration in terms of hours of patency or until change was required. Four trials met the inclusion criteria although overall quality was poor due to low follow-up. Studies examined either Teflon or Vialon-coated catheters. All studies showed non-metal cannulae to be superior to metal. In individual studies estimates in mean increase in duration of the site range from 21 to 159 hours. It seems that non-metal cannulae are more effective in maintaining the duration of subcutaneous infusion sites than butterfly needles. Both types of non-metal catheter showed clear benefits. This review has not examined other outcomes but in general adverse effects lead to the removal of the catheter and so would be reflected in the outcome of considered. Although historically non-metal cannulae have been considerably more expensive there is now little difference between metal and Teflon-coated catheters. This review recommends the use of non-metal cannulae in preference to butterfly needles. PMID:12131852

  15. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    PubMed

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  16. Invisible metallic mesh

    PubMed Central

    Ye, Dexin; Lu, Ling; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2016-01-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  17. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  18. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  19. Noninvasive Metallic State

    NASA Astrophysics Data System (ADS)

    Imura, Ken-Ichiro; Takane, Yositake

    Topological insulator is a newly established exotic state of matter that has been intensively discussed in the field of condensed-matter nanophysics since the last couple of years. Though it is undistinguishable from ordinary band insulators in the bulk, in the sense it has a gapped spectrum with its Fermi energy lying in that gap, on the surface (if the sample has a surface) it exhibits a "protected" gapless state, i.e., it behaves like a metal on its surface. The central issue that has been discussed so far was on the existence of such a metallic surface state protected by the topological non-triviality of the (gapped) bulk spectrum. Here, in this article we attempt to quantify the remaining question, "why does such a protected gapless state appear only on the surface?" in the language of the surface Dirac theory.

  20. Invisible metallic mesh.

    PubMed

    Ye, Dexin; Lu, Ling; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin

    2016-03-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  1. Fragmentation properties of metals

    SciTech Connect

    Grady, D.E.; Kipp, M.E.

    1996-06-01

    In the present study we are developing an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests, both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  2. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  3. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  4. Noble metals in oncology

    PubMed Central

    Markowska, Anna; Jaszczyńska-Nowinka, Karolina; Lubin, Jolanta; Markowska, Janina

    2015-01-01

    Worldwide research groups are searching for anticancer compounds, many of them are organometalic complexes having platinum group metals as their active centers. Most commonly used cytostatics from this group are cisplatin, carboplatin and oxaliplatin. Cisplatin was used fot the first time in 1978, from this time many platinum derivatives were created. In this review we present biological properties and probable future clinical use of platinum, gold, silver, iridium and ruthenium derivatives. Gold derivative Auranofin has been studied extensively. Action of silver nanoparticles on different cell lines was analysed. Iridium isotopes are commonly used in brachyterapy. Ruthenium compound new anti-tumour metastasis inhibitor (NAMI-A) is used in managing lung cancer metastases. Electroporation of another ruthenium based compound KP1339 was also studied. Most of described complexes have antiproliferative and proapoptotic properties. Further studies need to be made. Nevertheless noble metal based chemotherapheutics and compounds seem to be an interesting direction of research. PMID:26557773

  5. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  6. Development of metallization process

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    Solar cells were produced using a Mo/Sn/TiH screen printed paste with a lead/borosilicate frit that are electrically comparable to control silver cells. The process is currently unsuccessful because the soldering of interconnects to these cells has proved difficult. Future work will investigate using CO instead of H2 as the reducing gas and putting an ITO coating on the cell prior to metallization.

  7. Development of metallization process

    NASA Astrophysics Data System (ADS)

    Garcia, A., III

    1983-04-01

    Solar cells were produced using a Mo/Sn/TiH screen printed paste with a lead/borosilicate frit that are electrically comparable to control silver cells. The process is currently unsuccessful because the soldering of interconnects to these cells has proved difficult. Future work will investigate using CO instead of H2 as the reducing gas and putting an ITO coating on the cell prior to metallization.

  8. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  9. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  10. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  11. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  12. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  13. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  14. Hard Metal Disease

    PubMed Central

    Bech, A. O.; Kipling, M. D.; Heather, J. C.

    1962-01-01

    In Great Britain there have been no published reports of respiratory disease occurring amongst workers in the hard metal (tungsten carbide) industry. In this paper the clinical and radiological findings in six cases and the pathological findings in one are described. In two cases physiological studies indicated mild alveolar diffusion defects. Histological examination in a fatal case revealed diffuse pulmonary interstitial fibrosis with marked peribronchial and perivascular fibrosis and bronchial epithelial hyperplasia and metaplasia. Radiological surveys revealed the sporadic occurrence and low incidence of the disease. The alterations in respiratory mechanics which occurred in two workers following a day's exposure to dust are described. Airborne dust concentrations are given. The industrial process is outlined and the literature is reviewed. The toxicity of the metals is discussed, and our findings are compared with those reported from Europe and the United States. We are of the opinion that the changes which we would describe as hard metal disease are caused by the inhalation of dust at work and that the component responsible may be cobalt. Images PMID:13970036

  15. Electron energies in metals

    SciTech Connect

    Mahan, G.D. Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy)

    1991-07-10

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m{sub e}. This should be compared to the band mass found from optical conductivity m*/m{sub e} = 1.01 {plus minus} 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs.

  16. Dynamics of Metal Cyanides

    NASA Astrophysics Data System (ADS)

    Weidinger, Daniel; Brown, Douglas J.; Houchins, Cassidy; Owrutsky, Jeffrey C.

    2010-06-01

    Time resolved IR spectroscopy was used to characterize the vibrational energy relaxation (VER) dynamics of the CN stretching bands of aqueous molecular metal cyanides and networked metal cyanides, such as Prussain Blue, in reverse micelles. The vibrational and rotational relaxation dynamics of the CN stretching bands near 2000 cm-1 for aqueous molecular cyanides Au(CN)2-, Ni(CN)42-, Pt(CN)42-, Co(CN)63-, Mn(CN)42-, and Ru(CN)64- have been investigated using ultrafast pump-probe spectroscopy. While the spectra and dynamics of Ru(CN)64- are similar to those previously reported for ferrocyanide, VER times are significantly longer (>30 ps) in the other molecules. Mn(CN)63- represents an intermediate case with a relaxation time of about 15 ps in water. The VER dynamics extend and reinforce the established trends of metal cyanide CN band frequencies and intensities. Prussian Blue and its ruthenium analog were also studied using visible pump-IR probe and IR pump-IR probe spectroscopy. The VER dynamics are similar to the monometal cyanides and there is evidence for CN band excitation following back electron transfer based on the comparison of visible and infrared pump results.

  17. Environmental epigenetics in metal exposure

    PubMed Central

    Martinez-Zamudio, Ricardo

    2011-01-01

    Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324

  18. Spray casting of metallic preforms

    DOEpatents

    Flinn, John E.; Burch, Joseph V.; Sears, James W.

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  19. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  20. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  1. Coated metal fiber coalescing cell

    SciTech Connect

    Rutz, W.D.; Swain, R.J.

    1980-12-23

    A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

  2. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  3. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  4. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  5. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  6. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  7. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  8. Graphitic Tribological Layers in Metal-on-Metal Hip Replacements

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Pourzal, R.; Wimmer, M. A.; Jacobs, J. J.; Fischer, A.; Marks, L. D.

    2011-12-01

    Arthritis is a leading cause of disability, and when nonoperative methods have failed, a prosthetic implant is a cost-effective and clinically successful treatment. Metal-on-metal replacements are an attractive implant technology, a lower-wear alternative to metal-on-polyethylene devices. Relatively little is known about how sliding occurs in these implants, except that proteins play a critical role and that there is a tribological layer on the metal surface. We report evidence for graphitic material in the tribological layer in metal-on-metal hip replacements retrieved from patients. As graphite is a solid lubricant, its presence helps to explain why these components exhibit low wear and suggests methods of improving their performance; simultaneously, this raises the issue of the physiological effects of graphitic wear debris.

  9. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  10. The interaction of a metal deactivator with metal surfaces

    SciTech Connect

    Schreifels, J.A. ); Morris, R.E.; Turner, N.H.; Mowery, R.L. )

    1990-01-01

    In modern aircraft fuel systems, the fuel is used as a heat transfer medium to dissipate heat from the avionics and hydraulic systems. Under these conditions, the fuel can undergo autooxidations. Autooxidations of net fuel can result in the formation of insoluble gum and sediment which can impair operation of the jet engine. Metal deactivator additives (MDA) were developed to counteract the catalytic activity of dissolved metals. The authors have directed their efforts at ascertaining the various mechanisms by which MDA can act, particularly in accelerated stability testing. One objective of this study was to determine to what extent interactions with metal surfaces of the test apparent govern the effectiveness of metal deactivators. This paper describes an examination of metal surfaces exposed to MDA solutions to determine under what, if any, conditions metal passivation can occur.

  11. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  12. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  13. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  14. Metal nanowire grating patterns.

    PubMed

    Kulkarni, G U; Radha, B

    2010-10-01

    Metal nanowire patterning in the form of grating structures has been carried out using a wide range of lithography techniques, and many hybrid methods derived from them. The challenge is to achieve sub-100 nm linewidths with controllable spacing and thickness over large areas of substrates with high throughput. In particular, the patterns with linewidth and spacing of a few tens of nm offer properties of great interest in optoelectronics and plasmonics. Crossbar grating structures--two gratings patterned perpendicular to each other--will play an important role as ultra-high density electrode grids in memristive devices for non-volatile memory. PMID:20945550

  15. Metal nanoparticle inks

    DOEpatents

    Lewis, Jennifer A.; Ahn, Bok Yeop; Duoss, Eric B.

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  16. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  17. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  18. Fluorescent noble metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Zheng, Jie

    Water-soluble fluorescent metallic clusters at sizes comparable to the Fermi wavelength of an electron (˜0.5 nm for gold and silver) were created and their photophysical properties were investigated at the bulk and single molecule levels. We employed biocompatible dendrimer and peptide to prepare a series of strong fluorescent gold and silver clusters with chemical or photo reduction methods. Facilitated by the well-defined dendrimer size, electrospray ionization mass spectrometry indicates that the fluorescent silver nanocluster size ranges from 2 to 8 Ag atoms. The correlation of emission energy with the number of atoms, N, in each gold nanocluster is quantitatively fit for the smallest nanoclusters with no adjustable parameters by the simple scaling relation of EFermi/N1/3, in which EFermi is the Fermi energy of bulk gold. The transition energy scaling inversely with cluster radius indicates that electronic structure can be well described with the spherical jellium model and further demonstrates that these nanomaterials are "multi-electron artificial atoms". Fluorescence from these small metal clusters can be considered protoplasmonic, molecular transitions of the free conduction electrons before the onset of collective dipole oscillations occurring when a continuous density of states is reached. In addition, very strong single molecular Stokes and anti-Stokes Raman enhancement by fluorescent silver clusters was observed. Pushing to larger sizes, we also created ˜2nm diameter glutathione encapsulated luminescent gold nanoparticles. Distinct from similarly sized but nonluminescent gold nanoparticles, these 2 nm gold nanoparticles show bright, long lifetime emission but no plasmon absorption. The emission might arise from charge transfer between gold atoms and the thiol ligand. Providing the "missing link" between atomic and nanoparticle behavior in noble metals, these highly fluorescent, water-soluble gold and silver nanoclusters offer complementary transition

  19. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  20. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  1. Photoelectrochemical detection of metal ions.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-07-21

    Depending on the situation, metal ions may either play beneficial roles or be harmful to human health and ecosystems. Sensitive and accurate detection of metal ions is thus a critical issue in the field of analytical sciences and great efforts have been devoted to the development of various metal ion sensors. Photoelectrochemical (PEC) detection is an emerging technique for the bio/chemical detection of metal ions, and features a fast response, low cost and high sensitivity. Using representative examples, this review will first introduce the fundamentals and summarize recent progress in the PEC detection of metal ions. In addition, interesting strategies for the design of particular PEC metal ion sensors are discussed. Challenges and opportunities in this field are also presented. PMID:27297834

  2. Recent Development of Metallic Materials

    SciTech Connect

    Liu, C.T.; Nieh, T.G.

    1999-07-02

    Metallic materials play a vital role in the development of advanced engineering systems for industrial applications. In this paper, the recent development of two metallic alloy families will be briefly reviewed: (1) ordered intermetallics, and (2) bulk metallic glasses. Ordered intermetallic alloys based on aluminides and silicides possess many promising properties for structural use at elevated temperatures in hostile environments. This is because these alloys have excellent oxidation and corrosion resistance, high temperature strength, and relatively low material density. Bulk metallic glasses containing multiple alloying elements constitute a new and exciting class of metallic materials with attractive mechanical, chemical, and magnetic properties for structural and functional use. Recent development indicates that bulk metallic glasses with high glass forming ability can be readily produced by conventional melting and casting techniques.

  3. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  4. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  5. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  6. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  7. Metal thickness measurements using radiography

    NASA Astrophysics Data System (ADS)

    Achrekar, P. M.

    1986-04-01

    The present invention relates broadly to a radiographic inspection technique, and in particular to a metal thickness measurement method using radiography. The localized areas wherein the effective metal thickness is less than the minimum that is required for radiation shielding and which can render a shielding enclosure functionless, is readily determined. The invention comprises a process for assuring metal thickness in small regions. The actual metal thickness of small regions can be verified by comparing the optical densities of sections of the metal i.e., stepwedge. A comparator microphotometer, which compares optical densities of spectrum lines from spectrophotometers, compares the optical density of spectrum lines on an exposed spectrum plate (metal under test) with a standard plate (stepwedge).

  8. Metal speciation by Donnan dialysis

    SciTech Connect

    Cox, J.A.; Slonawska, K.; Gatchell, D.K.; Hiebert, A.G.

    1984-04-01

    In Donnan dialysis aqueous samples are separated from receiver electrolytes by an ion exchange membrane. The present work demonstrates that the dialysis of metals into salt solutions occurs in proportion to the sum of the concentrations of the free metal and the metal held in the form of labile complexes; however, with strongly acidic or chelating receivers, the dialysis occurs in proportion to the total soluble metal. Hence, Donnan dialysis provides the basis for a rapid estimation of the total soluble (i.e., free plus labile complexed) metal and nonlabile-complexed metal. The method is demonstrated with Pb, Zn, Cu, and Cd complexes of glycine, humic acid, and nitrilotriacetic acid and is applied to a lake water sample. The results are compared to values obtained from an established approach that utilizes stripping voltammetry and separations with a chelating ion exchange resin.

  9. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  10. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  11. Metal silicide nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann; Wu, Wen-Wei

    2015-07-01

    The growth, properties and applications of metal silicide nanowires (NWs) have been extensively investigated. The investigations have led to significant advance in the understanding of one-dimensional (1D) metal silicide systems. For example, CoSi is paramagnetic in bulk form, but ferromagnetic in NW geometry. In addition, the helimagnetic phase and skyrmion state in MnSi are stabilized by NW morphology. The influencing factors on the growth of silicide phase have been elucidated for Ni-Si, Pt-Si, and Mn-Si systems. Promising results were obtained for spintronics, non-volatile memories, field emitter, magnetoresistive sensor, thermoelectric generator and solar cells. However, the main thrust has been in microelectronic devices and integrated circuits. Transistors of world-record small size have been fabricated. Reconfigurable Si NW transistors, dually active Si NW transistors and circuits with equal electron and hole transport have been demonstrated. Furthermore, multifunctional devices and logic gates with undoped Si NWs were reported. It is foreseen that practical applications will be realized in the near future.

  12. Lanthanides: New life metals?

    PubMed

    Chistoserdova, Ludmila

    2016-08-01

    Lanthanides (Ln(3+)) that are Rare Earth Elements, until recently thought to be biologically inert, have recently emerged as essential metals for activity and expression of a special type of methanol dehydrogenase, XoxF. As XoxF enzyme homologs are encoded in a wide variety of microbes, including microbes active in important environmental processes such as methane and methanol metabolism, Ln(3+) may represent some of the key biogeochemical drivers in cycling of carbon and other elements. However, significant gaps in understanding the role of Ln(3+) in biological systems remain as the functions of most of the proteins potentially dependent of Ln(3+) and their roles in specific metabolic networks/respective biogeochemical cycles remain unknown. Moreover, enzymes dependent on Ln(3+) but not related to XoxF enzymes may exist, and these so far have not been recognized. Through connecting the recently uncovered genetic divergence and phylogenetic distribution of XoxF-like enzymes and through elucidation of their activities, metal and substrate specificities, along with the biological contexts of respective biochemical pathways, most parsimonious scenarios for their evolution could be uncovered. Generation of such data will firmly establish the role of Ln(3+) in the biochemistry of Life inhabiting this planet. PMID:27357406

  13. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  14. Twisting of sheet metals

    NASA Astrophysics Data System (ADS)

    Pham, C. H.; Thuillier, S.; Manach, P. Y.

    2013-12-01

    Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. In this study, a dedicated device for drawing of elongated part with a U-shaped section has been designed on purpose, in order to obtain reproducible data. Very thin metallic sheet, of thickness 0.15 mm, has been used, so that the maximum length of the part is 100 mm. Two different orientations of the part with respect to the tools have been chosen: either aligned with the tools, or purposefully misaligned by 2°. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a significant one can be measured for the second one. In a second step, 2D and 3D numerical simulations within the implicit framework for drawing and springback were carried out. A mixed hardening law associated to von Mises yield criterion represents accurately the mechanical behavior of the material. This paper highlights a comparison of numerical predictions with experiments, e.g. the final shape of the part and the twisting parameter.

  15. Magnetic metallic multilayers

    SciTech Connect

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  16. Metallic threaded composite fastener

    NASA Technical Reports Server (NTRS)

    Dunn, Thomas J. (Inventor)

    1992-01-01

    A metallic threaded composite fastener, particularly suited for high temperature applications, has a body member made of high temperature resistant composite material with a ceramic coating. The body member has a head portion configured to be installed in a countersunk hole and a shank portion which is noncircular and tapered. One part of the shank may be noncircular and the other part tapered, or the two types of surface could be combined into a frustum of a noncircular cone. A split collar member made of high strength, high temperature tolerant metal alloy is split into two halves and the interior of the halves are configured to engage the shank. The exterior of the collar has a circumferential groove which receives a lock ring to secure the collar halves to the shank. In the assembled condition torque may be transmitted from the body to the split collar by the engaged noncircular portions to install and remove the fastener assembly into or from a threaded aperture and shear loads in the collar threads are transferred to the shank tapered portion as a combination of radial compression and axial tension loads. Thus, tension loads may be applied to the fastener shank without damaging the ceramic coating.

  17. First pentahaptofullerene metal complexes

    SciTech Connect

    Masaya, Sawamura; Iikura, Hitoshi; Nakamura, Eiichi

    1996-12-18

    Cyclopentadienyl metal complexes have played important roles in chemistry owing to their unique structures and functional activities. Here we report the synthesis and characterization of an entirely new class of cyclopentadienyl (Cp) metal complexes ({eta}{sup 5}-C{sub 60}Ph{sub 5})MLn (MLn = Li, K, Tl, and Cu.PEt{sub 3}). In these molecules, the five Cp carbons represent one pentagon of C{sub 60}, isolated from the remaining 50 sp{sup 2} carbon atoms by five surrounding sp{sup 3} carbon atoms each bearing a phenyl group. The X-ray crystal structure analysis of the thallium complex Tl({eta}{sup 5}-C{sub 60}Ph{sub 5}).2.5THF revealed its unique and esthetically pleasing C{sub 5} symmetrical molecular structure with the phenyl groups forming a chiral propeller array. The thallium atom is deeply buried in the cavity created by the phenyl groups, bonding to the five Cp carbons ({eta}{sup 5}-coordination) with an averaged Tl-C distance of 2.87 A. The key finding that we made in this research was a remarkable 5-fold addition of an organocopper reagent to C{sub 60}, which stands in contrast to the monoaddition reaction of Grignard or organolithium reagents. 10 refs., 1 fig.

  18. Metallic glass velocity sensor

    SciTech Connect

    Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}

  19. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  20. ``Towards Strange Metallic Holography'

    SciTech Connect

    Hartnoll, Sean A.; Polchinski, Joseph; Silverstein, Eva; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  1. No superiority of cemented metal-on-metal vs metal-on-polyethylene THA at 5-year follow-up.

    PubMed

    Zijlstra, Wierd P; Cheung, John; Sietsma, Maurits S; van Raay, Jos Jam; Deutman, Robert

    2009-07-01

    A randomized controlled trial was performed to compare the cemented Stanmore metal-on-metal (Biomet, Warsaw, Indiana) total hip arthroplasty (THA; 102 hips) to the cemented Stanmore metal-on-polyethylene (Biomet) THA (98 hips). The primary outcome was clinical performance. Radiological performance, serum cobalt analysis, and prosthetic survival were secondary outcome measures. At a mean follow-up of 5.6 years, 5 patients were lost to follow-up, 18 died, and 4 were revised (3 metal-on- metal, 1 metal-on-polyethylene). Harris Hip Scores improved from 48 to 90 in the metal-on-metal patients (P<.001) and from 46 to 87 in the metal-on-polyethylene patients (P<.001). Oxford Hip Scores changed from 40 to 19 in the metal-on-metal group (P<.001) and from 40 to 18 in the metal-on-polyethylene group (P<.001). For both Harris and Oxford Hip Scores, there was no significant difference between the 2 groups. Five-year survival with revision for any reason was 97% (95% CI 93%-100%) in the metal-on-metal group and 99% (95% CI 97%-100%) in the metal-on-polyethylene group. All revisions were indicated for aseptic loosening (metal-on-metal: 3 cup revisions; metal-on-polyethylene: 1 total revision). At 5-year follow-up, cemented metal-on-metal THA showed no clinical superiority over metal-on-polyethylene THA. PMID:19634856

  2. Environmental transformation of toxic metals.

    PubMed

    Wade, M J; Davis, B K; Carlisle, J S; Klein, A K; Valoppi, L M

    1993-01-01

    Because toxicity varies enormously with the chemical state of metals, transformations in the environment control the level of the human health hazard. Important transformation processes include adsorption and desorption from soils and sediments, oxidation and reduction (redox) reactions, biotic metabolism, formation of organic metal compounds, and bioaccumulation. The six metals detailed in this chapter--arsenic, cadmium, chromium, lead, mercury, and selenium--were chosen because of their toxicity, frequency of occurrence at hazardous waste sites, and involvement in environmental contamination. PMID:8272980

  3. Electronic structure of metallic glasses

    SciTech Connect

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  4. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  5. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  6. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  7. Liquid metal heat transfer issues

    SciTech Connect

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept.

  8. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  9. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  10. The biogeochemistry of metal cycling

    NASA Technical Reports Server (NTRS)

    Nealson, Kenneth H. (Editor); Nealson, Molly (Editor); Dutcher, F. Ronald (Editor)

    1990-01-01

    The results of the Planetary Biology and Microbial Ecology's summer 1987 program are summarized. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The 1987 program examined various aspects of the biogeochemistry of metal cycling, and included such areas as limnology, metal chemistry, metal geochemistry, microbial ecology, and interactions with metals. A particular area of focus was the use of remote sensing in the study of biogeochemistry. Abstracts and bibliographies of the lectures and reports of the laboratory projects are presented.

  11. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  12. Submicron, unbacked, shaped metal foils

    SciTech Connect

    Duchane, D.V.; Barthell, B.L.

    1983-01-01

    A method was developed to produce unbacked, shaped metal foils in sub-micron thicknesses. This process utilizes a temporary substrate consisting of a water-soluble polymer film as a base for the electron-beam deposition of the metal layer. After formation of the metal foil, the polymer is removed by immersion of the assembly in water. Unbacked metal-foil cylinders as thin as 0.17 ..mu..m with extremely smooth, wrinkle-free surfaces have been produced by this technique. Polyvinyl alcohol was an excellent substrate. Aluminum foils were produced.

  13. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  14. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  15. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  16. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  17. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  18. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  19. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  20. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  1. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  2. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  3. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  4. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  5. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  6. Ultralight Metallic Microlattices

    NASA Astrophysics Data System (ADS)

    Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B.

    2011-11-01

    Ultralight (<10 milligrams per cubic centimeter) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. We present ultralight materials based on periodic hollow-tube microlattices. These materials are fabricated by starting with a template formed by self-propagating photopolymer waveguide prototyping, coating the template by electroless nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young’s modulus E scales with density as E ~ ρ2, in contrast to the E ~ ρ3 scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.

  7. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  8. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  9. Evolution of Metals

    NASA Astrophysics Data System (ADS)

    Shull, J. M.

    1998-05-01

    This review will cover a mystery story. Actually, two mysteries of the Structure and Evolution of the Universe involving the history of the baryons and the chemical elements synthesized in the first stars. When did the gas and metals first form? How did they evolve to their current distribution? The original crime scene is unknown, but evidence has been collected in the diffuse intergalactic medium and in hot intracluster gas. In these scattered locales, large amounts of gas has accumulated, contaminated by heavy elements from the first stars. Unfortunately, some of the evidence has been destroyed by gravity. Also, the earliest quasars, massive stars, and supernovae altered the physical state of the gas and transported the elements far from the original scene. I will briefly review current observations and theories relevant to these processes and suggest ways in which future NASA missions could constrain the many speculative ideas on this subject.

  10. Metal-carbon nanostructures

    SciTech Connect

    Puretzky, A.A.; Hettich, R.L.; Jin, Changming; Haufler, R.E.; Compton, R.N.; Tuinman, A.A.

    1993-12-31

    Ultrafine particles formed by XeCl laser photolysis of M(CO){sub 6}, M = V, Cr, Mo, and W, have been analyzed by Fourier transform mass spectrometry and other techniques. Novel metal carbide clusters, (MoC{sub 4}){sub n}, n = 1 {minus} 4 and (WC{sub 4}){sub m}, m = 1 {minus} 8, were detected and studied. The material produced by photolysis of V(CO){sub 6} shows a series of vanadium-oxygen clusters, V{sub x}O{sub 2x+2}, x = 2 {minus} 10. No clusters of any type were detected in the photolysis product of Cr(CO){sub 6}. Structures based on the experimental evidence are proposed and discussed in light of their chemical reactivity.

  11. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B.; Imrich, Kenneth J.

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  12. Metallic nanoparticles meet metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, L.; Rossi, K.; Baletto, F.

    2015-11-01

    Metadynamics coupled with classical molecular dynamics has been successfully applied to sample the configuration space of metallic and bimetallic nanoclusters. We implement a new set of collective variables related to the pair distance distribution function of the nanoparticle to achieve an exhaustive isomer sampling. As paradigmatic examples, we apply our methodology to Ag147, Pt147, and their alloy AgshellPtcore at 2:1 and 1:1 chemical compositions. The proposed scheme is able to reproduce the known solid-solid structural transformation pathways, based on the Lipscomb's diamond-square-diamond mechanisms, both in mono and bimetallic nanoparticles. A discussion of the free energy barriers involved in these processes is provided.

  13. Ultralight metallic microlattices.

    PubMed

    Schaedler, T A; Jacobsen, A J; Torrents, A; Sorensen, A E; Lian, J; Greer, J R; Valdevit, L; Carter, W B

    2011-11-18

    Ultralight (<10 milligrams per cubic centimeter) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. We present ultralight materials based on periodic hollow-tube microlattices. These materials are fabricated by starting with a template formed by self-propagating photopolymer waveguide prototyping, coating the template by electroless nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales. PMID:22096194

  14. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  15. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  16. Shape-Controlled Metal-Metal and Metal-Polymer Janus Structures by Thermoplastic Embossing.

    PubMed

    Hasan, Molla; Kahler, Niloofar; Kumar, Golden

    2016-05-01

    We report the fabrication of metal-metal and metal-polymer Janus structures by embossing of thermoplastic metallic glasses and polymers. Hybrid structures with controllable shapes and interfaces are synthesized by template-assisted embossing. Different manufacturing strategies such as co-embossing and additive embossing are demonstrated for joining the materials with diverse compositions and functionalities. Structures with distinct combinations of properties such as hydrophobic-hydrophilic, opaque-transparent, insulator-conductor, and nonmagnetic-ferromagnetic are produced using this approach. These anisotropic properties are further utilized for selective functionalization of Janus structures. PMID:27064306

  17. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  18. BEHAVIOR OF METALS IN SOILS

    EPA Science Inventory

    Metals added to soil will normally be retained at the soil surface. ovement of metals into other environmental compartments, i.e. groundwater, surface water, or the atmosphere, should be minimal as long as the retention capacity of the soil is not exceeded. he extent of movement ...

  19. Structural basis of metal hypersensitivity

    PubMed Central

    Wang, Yang

    2014-01-01

    Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells. PMID:22983897

  20. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  1. Structural basis of metal hypersensitivity.

    PubMed

    Wang, Yang; Dai, Shaodong

    2013-03-01

    Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells. PMID:22983897

  2. In vacuo interfacial tetrapyrrole metallation.

    PubMed

    Diller, Katharina; Papageorgiou, Anthoula C; Klappenberger, Florian; Allegretti, Francesco; Barth, Johannes V; Auwärter, Willi

    2016-03-21

    The metallation of tetrapyrroles at well-defined surfaces under ultra-high vacuum conditions represents an unconventional synthesis approach to achieve tetrapyrrole-based metal-organic complexes and architectures. Different protocols, pioneered over the last decade, and now widely applied in several fields, provide an elegant route to metallo-tetrapyrrole systems often elusive to conventional procedures and give access and exquisite insight into on-surface tetrapyrrole chemistry. As highlighted by the functionality of metallo-porphyrins in biological or other environments and by the eminent role of metallo-phthalocyanines in synthetic materials, the control on the metal centres incorporated into the macrocycle is of utmost importance to achieve tailored properties in tetrapyrrole-based nanosystems. In the on-surface scenario, precise metallation pathways were developed, including reactions of tetrapyrroles with metals supplied by physical vapour deposition, chemical vapour deposition or the tip of a scanning tunnelling microscope, and self-metallation by atoms of an underlying support. Herein, we provide a comprehensive overview of in vacuo tetrapyrrole metallation, addressing two-dimensional as well as three-dimensional systems. Furthermore, we comparatively assess the available library of on-surface metallation protocols and elaborate on the state-of-the-art methodology. PMID:26781034

  3. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  4. HEAVY METAL PUMPS IN PLANTS

    EPA Science Inventory

    Plants have been proposed as a bioremediation tool to help remove toxic heavy metals from contaminated land and water. However, little is known about how plants take up heavy metals from the soil and transport them to different parts of the plant. An important long term goal is t...

  5. SULFIDE PRECIPITATION OF HEAVY METALS

    EPA Science Inventory

    The research program was initiated with the objective of evaluating a new process, the sulfide precipitation of heavy metals from industrial wastewaters. The process was expected to effect a more complete removal of heavy metals than conventional lime processing because of the mu...

  6. Alzheimer's disease & metals: therapeutic opportunities

    PubMed Central

    Kenche, Vijaya B; Barnham, Kevin J

    2011-01-01

    Alzheimer's disease (AD) is the most common age related neurodegenerative disease. Currently, there are no disease modifying drugs, existing therapies only offer short-term symptomatic relief. Two of the pathognomonic indicators of AD are the presence of extracellular protein aggregates consisting primarily of the Aβ peptide and oxidative stress. Both of these phenomena can potentially be explained by the interactions of Aβ with metal ions. In addition, metal ions play a pivotal role in synaptic function and their homeostasis is tightly regulated. A breakdown in this metal homeostasis and the generation of toxic Aβ oligomers are likely to be responsible for the synaptic dysfunction associated with AD. Therefore, approaches that are designed to prevent Aβ metal interactions, inhibiting the formation of toxic Aβ species as well as restoring metal homeostasis may have potential as disease modifying strategies for treating AD. This review summarizes the physiological and pathological interactions that metal ions play in synaptic function with particular emphasis placed on interactions with Aβ. A variety of therapeutic strategies designed to address these pathological processes are also described. The most advanced of these strategies is the so-called ‘metal protein attenuating compound’ approach, with the lead molecule PBT2 having successfully completed early phase clinical trials. The success of these various strategies suggests that manipulating metal ion interactions offers multiple opportunities to develop disease modifying therapies for AD. PMID:21232050

  7. Metal Working and Welding Operations.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  8. GROUND WATER SAMPLING FOR METALS

    EPA Science Inventory

    The collection of groundwater samples for metals, including metalloids such as arsenic and selenium, is primarily complicated by the fact that many of the target metal contaminants are also part of the immobile geologic matrix through which groundwater flows. istorically, filtrat...

  9. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  10. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  11. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  12. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  13. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  14. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  15. RECOVERY OF METALS USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  16. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  17. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  18. Cyclic strength of hard metals

    SciTech Connect

    Sereda, N.N.; Gerikhanov, A.K.; Koval'chenko, M.S.; Pedanov, L.G.; Tsyban', V.A.

    1986-02-01

    The authors study the strength of hard-metal specimens and structural elements under conditions of cyclic loading since many elements of processing plants, equipment, and machines are made of hard metals. Fatigue tests were conducted on KTS-1N, KTSL-1, and KTNKh-70 materials, which are titanium carbide hard metals cemented with nickel-molybdenum, nickelcobalt-chromium, and nickel-chromium alloys, respectively. As a basis of comparison, the standard VK-15 (WC+15% Co) alloy was used. Some key physicomechanical characteristics of the materials investigated are presented. On time bases not exceeding 10/sup 6/ cycles, titanium carbide hard metals are comparable in fatigue resistance to the standard tungstencontaining hard metals.

  19. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA... joint metal/metal or metal/polymer constrained cemented prosthesis shall have an approved PMA or...

  20. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA... joint metal/metal or metal/polymer constrained cemented prosthesis shall have an approved PMA or...

  1. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  2. CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2012-01-01

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in-vivo and in-vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair. PMID:23196425

  3. CoCrMo metal-on-metal hip replacements.

    PubMed

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2013-01-21

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in vivo and in vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair. PMID:23196425

  4. How to build a Bad Metal from good metal components

    NASA Astrophysics Data System (ADS)

    Arnason, Stephen; Hebard, Arthur

    1998-03-01

    One of the most fascinating sub-fields of contemporary condensed matter physics is the study of bad metals. A distinguishing characteristic of a bad metal is that its resistivity as a function of temperature increases linearly past the scale where one wou ld infer a scattering length comparable to the inter-atomic spacing (at this range the Boltzmann transport theory ceases to be self consistent). By contrast, good metals exhibit resistive saturation when the resistivity approaches this scale. We have grow n thin films composed of a good metal, Ag, that mimic the characteristics of bad metals, very high resistivities and lack of resistive saturation. We have characterised the microstructure that leads to this behavior with a novel application of electrostat ic force microscopy, EFM. This microstructure leads to an anomalous negative magnetoresistance, which is quadratic in the applied field.. Finally, we have identified a criterion which can be used to distinguish this mimicry from intrinsic bad metallicity, a criterion that is met by A_3C_60 (A=K,Rb), indicating that caution should be exercised before classifying these materials as bad metals.

  5. Alkali-metal azides interacting with metal-organic frameworks.

    PubMed

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored. PMID:23161861

  6. Surface polaritons of a metal-insulator-metal curved slab

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-09-01

    The properties of s- and p-polarized surface polariton modes propagating circumferentially around a portion of a cylindrical metal-insulator-metal structure are studied, theoretically. By using the Maxwell equations in conjunction with the Drude model for the dielectric function of the metals and applying the appropriate boundary conditions, the dispersion relations of surface waves for two types of modes, are derived and numerically solved. The effects of the slab curvature and insulator thickness on the propagation of electromagnetic modes are investigated. The differences of the s- and p-polarized surface modes are also shown.

  7. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  8. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  9. Monopoles in ferromagnetic metals

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Takeuchi, Akihito; Nakabayashi, Noriyuki; Taguchi, Katsuhisa

    2012-11-01

    The aim of this short review is to give an introduction to monopoles and to present theoretical derivation of two particular monopoles in ferromagnetic metals, a hedgehog monopole and a spin-damping monopole. In electromagnetism in the vacuum, described by Maxwell's equations, the magnetic field and the electric field are not symmetric, because there is no monopole, a particle having a finite magnetic charge. Still the monopole has been an exciting object for a long time and was discussed on phenomenological grounds by Dirac in 1931. A theoretical possibility of monopole generation was first given by' t Hooft and Polyakov in 1974 in the context of symmetry breaking in a grand unified theory (GUT), but a GUT monopole has not been discovered in experiments so far. In contrast to in the vacuum, several kinds of monopoles are expected to emerge in solids associated with various symmetry-breaking mechanisms. Of particular interest is metallic ferromagnetic systems, because a breaking of the symmetry of conduction electron spin, described by an SU(2) algebra, can give rise to monopoles. Indeed, two monopoles are theoretically predicted in ferromagnets; one is a hedgehog monopole arising from a topological spin structure, and the other is a spin-damping monopole arising from spin damping in the presence of the spin-orbit interaction. In this paper, we focus on these monopoles, while other objects similar to monopoles, but not coupled to effective electromagnetic fields, such as spin ice monopoles, are touched only briefly in the introduction. These monopoles are extended objects coupled to effective electromagnetic fields that are described by Maxwell's equations with a monopole contribution. The effective fields are the ones coupled to the spin of a particle such as an electron, muon and neutron; the two monopoles are, thus, detectable by electric measurements. Spin-damping monopoles can be generated in simple systems such as junctions of ferromagnets and heavy elements

  10. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  11. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  12. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  13. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/metal constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal...

  14. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/metal constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal...

  15. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/metal constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3210 Finger joint metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal...

  16. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOEpatents

    Park, Jong-Hee

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  17. Method for controlled hydrogen charging of metals

    DOEpatents

    Cheng, Bo-Ching; Adamson, Ronald B.

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  18. REMOVAL OF METALS IN COMBINED TREATMENT SYSTEMS

    EPA Science Inventory

    This project assessed the variables influencing the removal of eight metals through combined industrial-municipal treatment plants. The eight metals investigated were: aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc. The metals were studied at subtoxic influent ...

  19. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base.

    PubMed

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N'-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl(-), Br(-), I(-), AcO(-), H2PO4(-), HSO4(-), ClO4(-), CN(-) and SCN(-)) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F(-) through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F(-) anion to the two Ar-OH groups. The detection limit was 5.78×10(-7)M of F(-), which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F(-) test kit to detect F(-) for "in-the-field" measurement. PMID:27262660

  20. Scope and Limitations of 3-Iodo-Kdo Fluoride-Based Glycosylation Chemistry using N-Acetyl Glucosamine Acceptors.

    PubMed

    Pokorny, Barbara; Kosma, Paul

    2015-12-01

    The ketosidic linkage of 3-deoxy-d-manno-octulosonic acid (Kdo) to lipid A constitutes a general structural feature of the bacterial lipopolysaccharide core. Glycosylation reactions of Kdo donors, however, are challenging due to the absence of a directing group at C-3 and elimination reactions resulting in low yields and anomeric selectivities of the glycosides. While 3-iodo-Kdo fluoride donors showed excellent glycosyl donor properties for the assembly of Kdo oligomers, glycosylation of N-acetyl-glucosamine derivatives was not straightforward. Specifically, oxazoline formation of a β-anomeric methyl glycoside, as well as iodonium ion transfer to an allylic aglycon was found. In addition, dehalogenation of the directing group by hydrogen atom transfer proved to be incompatible with free hydroxyl groups next to benzyl groups. In contrast, glycosylation of a suitably protected methyl 2-acetamido-2-deoxy-α-d-glucopyranoside derivative and subsequent deiodination proceeded in excellent yields and α-specificity, and allowed for subsequent 4-O-phosphorylation. This way, the disaccharides α-Kdo-(2→6)-α-GlcNAcOMe and α-Kdo-(2→6)-α-GlcNAcOMe-4-phosphate were obtained in good overall yields. PMID:27308198

  1. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems

    NASA Astrophysics Data System (ADS)

    Costa, C. M.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Appetecchi, G. B.; Scrosati, B.

    2014-01-01

    In the present paper we report and discuss the physicochemical properties of novel electrolyte membranes, based on poly(vinylidenefluoride-co-trifluoroethylene), PVdF-TrFE, and poly(vinylidenefluoride-co-hexafluoropropylene), PVdF-HFP, co-polymer hosts and the PVdF-TrFE/poly(ethylene oxide (PEO) blend as separators for lithium battery systems. The results have shown that the examined separator membranes, particularly those based on the PVdF co-polymers, are able to uptake large liquid amounts leading to high ionic conductivity values. Tests performed on Li/LiFePO4 and Li/Sn-C cells have revealed very good cycling performance even at high current rates and 100% of DOD, approaching the results achieved in liquid electrolytes. A capacity fading lower than 0.002% per cycle was observed. Particularly, the Li/LiFePO4 cathode cells have exhibited excellent rate capability, being still able to deliver at 2C above 89% of the capacity discharged at 0.1C. These results, in conjunction with the about 100% coulombic efficiency, suggest very good electrolyte/electrode compatibility, which results from the high purity and stability of the electrolyte and electrode materials and the cell manufacturing.

  2. In vitro evaluation of remineralization efficacy of different calcium- and fluoride-based delivery systems on artificially demineralized enamel surface

    PubMed Central

    Gangrade, Aparajita; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar; Chandhok, Deepika; Thakur, Deepa

    2016-01-01

    Background: Caries is the most common dental disease facing the world population. Caries can be prevented by remineralizing early enamel lesions. Aim: To evaluate remineralization efficacy of stannous fluoride (SnF2), casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) and calcium sucrose phosphate (CaSP). Materials and Methods: Fifty enamel samples were taken; they were divided into five groups (n = 10). Demineralization was carried out with Groups A, B, C, and E. Remineralization was carried out with Groups A, B, and C for 7 days using SnF2, CPP-ACPF, and CaSP, respectively. In Group D, no surface treatment was carried out, to mark as positive control whereas Group E was kept as negative control with only surface demineralization of enamel. Enamel microhardness was tested using Vickers's microhardness tester after 7 day remineralization regime. Statistical Analysis: One-way analysis of variance and post hoc Tukey tests were performed. Results: The mean microhardness values in descending order: Positive control > SnF2> CaSP > CPP-ACPF > negative control. Conclusion: All remineralizing agents showed improved surface remineralization. However, complete remineralization did not occur within 7 days. SnF2 showed the highest potential for remineralization followed by CaSP and CPP-ACPF. PMID:27563180

  3. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  4. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  5. Thermal conductivity of metals

    NASA Technical Reports Server (NTRS)

    Kazem, Sayyed M.

    1990-01-01

    The objective is to familiarize students with steady and unsteady heat transfer by conduction and with the effect of thermal conductivity upon temperature distribution through a homogeneous substance. The elementary heat conduction experiment presented is designed for associate degree technology students in a simple manner to enhance their intuition and to clarify many confusing concepts such as temperature, thermal energy, thermal conductivity, heat, transient and steady flows. The equipment set is safe, small, portable (10 kg) and relatively cheap (about $1200): the electric hot plate 2 kg (4.4 lb) for $175: the 24 channel selector and Thermocouple Digital Readout (Trendicator) 4.5 kg (10 lb) for about $1000; the three metal specimens (each of 2.5 cm diameter and 11 cm length), base plate and the bucket all about 3 kg (7 lb) for about $25. The experiment may take from 60 to 70 minutes. Although the hot plate surface temperature could be set from 90 to 370 C (maximum of 750 watts) it is a good practice to work with temperatures of 180 to 200 C (about 400 watts). They may experiment in squads of 2, 3 or even 4, or the instructor may demonstrate it for the whole class.

  6. Metallic Glass Cooling

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (354KB JPEG, 2700 x 2038 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300189.html.

  7. Mixed valent metals.

    PubMed

    Riseborough, P S; Lawrence, J M

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc. PMID:27376888

  8. Laser generating metallic components

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-04-01

    Recent developments in rapid prototyping have led to the concept of laser generating, the first additive manufacturing technology. This paper presents an innovative process of depositing multi-layer tracks, by fusing successive powder tracks, to generate three dimensional components, thereby offering an alternative to casting for small metal component manufacture. A coaxial nozzle assembly has been designed and manufactured enabling consistent omni-directional multi-layer deposition. In conjunction with this the software route from a CAD drawing to machine code generation has been established. The part is manufactured on a six axes machining center incorporating a 1.8 kW carbon-dioxide laser, providing an integrated opto-mechanical workstation. The part build-up program is controlled by a P150 host computer, linked directly to the DNC machining center. The direct manufacturing route is shown, including initial examples of simple objects (primitives -- cube, cylinder, cone) leading to more complex turbine blade generation, incorporating build-up techniques and the associated mechanical properties.

  9. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  10. Metallic quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Brando, M.; Belitz, D.; Grosche, F. M.; Kirkpatrick, T. R.

    2016-04-01

    An overview of quantum phase transitions (QPTs) in metallic ferromagnets, discussing both experimental and theoretical aspects, is given. These QPTs can be classified with respect to the presence and strength of quenched disorder: Clean systems generically show a discontinuous, or first-order, QPT from a ferromagnetic to a paramagnetic state as a function of some control parameter, as predicted by theory. Disordered systems are much more complicated, depending on the disorder strength and the distance from the QPT. In many disordered materials the QPT is continuous, or second order, and Griffiths-phase effects coexist with QPT singularities near the transition. In other systems the transition from the ferromagnetic state at low temperatures is to a different type of long-range order, such as an antiferromagnetic or a spin-density-wave state. In still other materials a transition to a state with glasslike spin dynamics is suspected. The review provides a comprehensive discussion of the current understanding of these various transitions and of the relation between experiment and theory.

  11. Hydrogen permeation through metals

    SciTech Connect

    Huhn, D.K.

    1985-01-01

    The permeation of hydrogen through metals was studied both theoretically and experimentally. Gas phase permeation experiments with nickel, iron, and iron-titanium alloys were done at low temperatures, 270 to 343 K, and high temperatures, 751 to 384 K, with hydrogen pressures ranging from 10/sup 3/ to 10/sup 5/ Pa. Experiments at low temperatures used an electrochemical cell to detect the permeating hydrogen, deuterium, or hydrogen-deuterium flux. At high temperatures a vacuum system equipped with a mass spectrometer measured the permeating hydrogen flux. The permeability and diffusivity of hydrogen through nickel membranes, 10/sup -4/ to 10/sup -5/ m in thickness, was measured in the temperature range of 580 to 270 K. The experimental results did not exhibit postulated surface effects; however, trapping of hydrogen was observed with a trap density of 2.5 x 10/sup 23/ sites/m/sup 3/ and a binding energy of 33 kJ/mole. The permeability of hydrogen through iron-titanium alloys increased with titanium concentration with a maximum increase of approximately 10% for a Fe-3.04 wt% Ti alloy compared to pure iron. High temperature diffusivity measurements showed a small decrease in diffusivity with titanium concentration; therefore, the solubility increased.

  12. Introduction to metallic nanoparticles.

    PubMed

    Mody, Vicky V; Siwale, Rodney; Singh, Ajay; Mody, Hardik R

    2010-10-01

    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe(3)O(4)), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe(3)O(4)), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459

  13. Introduction to metallic nanoparticles

    PubMed Central

    Mody, Vicky V.; Siwale, Rodney; Singh, Ajay; Mody, Hardik R.

    2010-01-01

    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459

  14. Quench Crucibles Reinforced with Metal

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Carrasquillo, Edgar; O'Dell, J. Scott; McKehnie, N.

    2008-01-01

    Improved crucibles consisting mainly of metal-reinforced ceramic ampules have been developed for use in experiments in which material specimens are heated in the crucibles to various high temperatures, then quenched by, for example, plunging the crucibles into water at room temperature. In a traditional quench crucible, the gap between the ampule and the metal cartridge impedes the transfer of heat to such a degree that the quench rate (the rate of cooling of the specimen) can be too low to produce the desired effect in the specimen. One can increase the quench rate by eliminating the metal cartridge to enable direct quenching of the ampule, but then the thermal shock of direct quenching causes cracking of the ampule. In a quench crucible of the present improved type, there is no gap and no metal cartridge in the traditional sense. Instead, there is an overlay of metal in direct contact with the ampule, as shown on the right side of the figure. Because there is no gap between the metal overlay and the ampule, the heat-transfer rate can be much greater than it is in a traditional quench crucible. The metal overlay also reinforces the ampule against cracking.

  15. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  16. Metal removal by natural glauconite

    SciTech Connect

    Lu, W.; Smith, E.H.

    1995-12-31

    Removal of cadmium, lead, zinc copper, and chromium by a natural clay mineral, glauconite, was studied using potentiometric titrations, continuous flow-through column reactors, and batch adsorption-desorption experiments and successfully modeled by surface complexation models (SCM). Potentiometric titration data were modeled using a simple single-site non-electrostatic model and a multi-site constant capacitance model. Important model parameters, such as surface site density and surface protonation-deprotonation constants, were also derived by fitting the titration data to SCMs. The metals compete effectively with protons for the surface sites, and bind strongly onto the surface of the mineral as shown by the significant shift in the potentiometric titration curves with or without these metals in glauconite suspension. Metal removal is primarily controlled by pH and can be modeled successfully by a single-site triple layer model along with the pH speciation of the metals. The successful application of SCMs in modeling titration and adsorption data of glauconite indicates that surface complexation is the primary mechanism in metal removal. Therefore, the theory of surface complexation can be used in predicting metal removal under different conditions such as pH, ionic strength, sorbent/sorbate ratio, and surface site density. The high metal removal capacities of glauconite are considered to be promising in treating some waste water.

  17. Mycobacteria, Metals, and the Macrophage

    PubMed Central

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  18. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  19. A dynamic inert metal anode.

    SciTech Connect

    Hryn, J. N.

    1998-11-09

    A new concept for a stable anode for aluminum electrowinning is described. The anode consists of a cup-shaped metal alloy container filled with a molten salt that contains dissolved aluminum. The metal alloy can be any of a number of alloys, but it must contain aluminum as a secondary alloying metal. A possible alloy composition is copper with 5 to 15 weight percent aluminum. In the presence of oxygen, aluminum on the metal anode's exterior surface forms a continuous alumina film that is thick enough to protect the anode from chemical attack by cryolite during electrolysis and thin enough to maintain electrical conductivity. However, the alumina film is soluble in cryolite, so it must be regenerated in situ. Film regeneration is achieved by the transport of aluminum metal from the anode's molten salt interior through the metal wall to the anode's exterior surface, where the transported aluminum oxidizes to alumina in the presence of evolving oxygen to maintain the protective alumina film. Periodic addition of aluminum metal to the anode's interior keeps the aluminum activity in the molten salt at the desired level. This concept for an inert anode is viable as long as the amount of aluminum produced at the cathode greatly exceeds the amount of aluminum required to maintain the anode's protective film.

  20. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  1. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  3. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  4. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  5. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  6. PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1996-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy can be used for improved hydrogen detection.

  7. Metal nanoparticles functionalized with metal-ligand covalent bonds

    NASA Astrophysics Data System (ADS)

    Kang, Xiongwu

    Metal-organic contact has been recognized to play important roles in regulation of optical and electronic properties of nanoparticles. In this thesis, significant efforts have been devoted into synthesis of ruthenium nanoparticles with various metal-ligand interfacial linkages and investigation of their electronic and optical properties. Ruthenium nanoparticles were prepared by the self-assembly of functional group onto bare Ru colloid surface. As to Ru-alkyne nanoparticles, the formation of a Ru-vinylidene (Ru=C=CH--R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives and olefin at the metal-ligand interface, as manifested in NMR, photoluminescence, and electrochemical measurements. Interestingly, it was found the electronic coupling coefficient (beta)for strongly depend upon such metal-ligand interfacial bonding. Next, such metal-ligand interfacial bonding was extended to ruthenium-nitrene pi bonds on ruthenium colloids, which were investigated by XPS. The nanoparticles exhibited a 1:1 atomic ratio of nitrogen to sulfur, consistent with that of sulfonyl nitrene fragments. In addition, the nanoparticle-bound nitrene moieties behaved analogously to azo derivatives, as manifested in UV-vis and fluorescence measurements. Further testimony of the formation of Ru=N interfacial linkages was highlighted in the unique reactivity of the nanoparticles with alkenes by imido transfer. Extensive conjugation between metal-ligand interfacial bond results in remarkable intraparticle charge delocalization on Ru-alkynide nanoparticles, which was manipulated by simple chemical reduction or oxidation. Charging of extra electrons into the nanoparticle cores led to an electron-rich metal core and hence red-shift of the triple bond stretching mode, lower binding energy of sp hybridized C 1s and dimmed fluorescence of nanoparticles. Instead, chemical oxidation resulted in the opposite impacts on these properties. By taking

  8. Physicochemical processes on the solid metal-molten metal interface

    SciTech Connect

    Eremenko, V.N.; Dybkov, V.I.; Natanzon, Y.V.

    1985-05-01

    The authors present a method of dissolution by which bimetalspecimens of St3 and 45 steels, 12Kh18N1OT stainless steel with A995 aluminum, ADl and silumin were obtained. Tests showed high mechanical strength of the bimetals and good resistance under thermal shock conditions. The authors further conclude that the method of creation of permanent joints of metals by holding the solid, more refractory metal with a liquid low-melting one is most suitable for the production of cylindrical bimetal blanks since in this case it is easy to agitate the molten metal by rotation of the original blank of the solid metal in it. By simple machining from such a bimetal, it is possible to obtain tubes, butt joints or concentric two- and three-layer sleeves.

  9. Self-Healing Metals and Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Schultz, Benjamin F.; Rohatgi, Pradeep K.

    2014-06-01

    Self-healing in inorganic materials is a relatively new area in materials science and engineering that draws inspiration from biological systems that can self-repair damage. This article reviews the preliminary attempts to impart self-healing behavior to metals. Several challenges yet exist in the development of metallic alloys that can self-repair damage, including surface bonding issues, such as liquid/solid contact angle (wetting) and oxidation, and practical issues, such as capillary pressure for delivery of a liquid metal to a damaged area or crack, and the overall mechanical properties of a composite system. Although the applied research approaches reviewed have obtained marginal success, the development of self-healing metallic systems has the potential to benefit a wide range of industrial applications and thus deserves greater investment in fundamental research.

  10. Stability of metal particle and metal particulate media

    NASA Technical Reports Server (NTRS)

    Okamoto, Kazuhiro

    1992-01-01

    Metal particulate (MP) video tape was launched for 8 mm video tape in 1985. Since then MP tapes have been applied to several consumer formats and instrumental formats because of its superior electrical performance. Recently data storage media, such as DDS and D-8, have started employing MP tape. However, there are serious concerns with archival stability of MP tape particularly in the case of data storage use, as metal particles essentially have problems with chemical instability and are susceptible to oxidation and corrosion. Although there were some studies about the archival stability of metal particles or MP tapes, a clear understanding has yet to be reached. In this paper, we report the stability of magnetic properties of current metal particles, and then discuss the new technologies to improve the stability further.

  11. Leak Stopper For Metal-To-Metal Tube Fittings

    NASA Technical Reports Server (NTRS)

    Trevathan, Joseph R.

    1992-01-01

    Plastic-coated steel device is conformal and strong. Washerlike seal stops leakage at Dynatube(TM) joints between metal tubes. Made to resist corrosion, seal aligns itself in joint for maximum effectiveness.

  12. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  13. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  14. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  15. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  16. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  17. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  18. Metal-Matrix Composite Parts With Metal Inserts

    NASA Technical Reports Server (NTRS)

    Majkowski, T.; Kashalikar, U.

    1995-01-01

    Developmental fabrication process produces metal-matrix composite (MMC) parts with integral metal inserts. With inserts, MMC parts readily joined to similar parts by use of brazing, welding, or mechanical fasteners. Process conceived to make strong, lightweight components of structures erected in outer space. Also useful on Earth, in such automotive parts as rocker arms, cylinder liners, and pistons. Potential industrial applications include parts subjected to high stresses at high temperatures, as in power-generation, mining, and oil-drilling equipment.

  19. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  20. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcaddo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1994-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  1. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcadoo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1995-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  2. Ceramic-metal composite formation by reactive metal penetration

    SciTech Connect

    Loehman, R.E.; Ewsuk, K.G.; Fahrenholtz, W.G.; Lakshman, B.B.

    1996-11-01

    Ceramic-metal composites can be made to near-net-shape by reactive penetration of dense ceramic preforms by molten metals. Reactive metal penetration is driven by a strongly negative Gibbs energy for reaction. For Al, the general form of the reaction is (x+2) Al + (3/y) MO[sub y] yields Al[sub 2]O[sub 3] + M[sub 3/y]Al[sub x], where MO[sub y] is an oxide that is wet by molten Al. In low PO[sub 2] atmospheres and at temperatures above about 900 degrees C, molten Al reduces mullite to produce Al[sub 2]O[sub 3] and Si. The Al/mullite reaction has a delta G[sub r] degree(927 degrees C) of -338 per mole of mullite and, for fully dense mullite, the theoretical volume change on reaction is less than 1%. Experiments with commercial mullite containing a silicate grain boundary phase average less than 2% volume change on reaction. In the Al/mullite system, reactive metal penetration produces a fine-grained alumina skeleton with an interspersed metal phase. With > or =15 vol.% excess aluminum, mutually interpenetrating ceramic-metal composites are produced. Properties measurements show that ceramic-metal composites produced by reactive metal penetration of mullite by Al have a Young`s modulus and hardness similar to that of Al[sub 2]O[sub 3], with improved fracture toughness. Other compositions also are candidates for in- situ reaction synthesis, but they exhibit differences in reaction kinetics, most probably due to different wetting behavior.

  3. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  4. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  5. Metal seal for wellhead apparatus

    SciTech Connect

    Boecker, R.A.

    1987-03-03

    A method is described of effecting a fluid-tight seal between a surface of an oil and/or gas well tubing or casing and a wellhead member, wherein the surface has been unprepared to form the seal, comprising the steps of: positioning the wellhead member circumferentially about a stub of the tubing or casing; positioning a metal-to-metal fluid-tight sealing means of the wellhead member adjacent the unprepared surface of the tubing or casing, the sealing means having at least one metallic projection positioned to extend toward the unprepared surface of the tubing or casing; and forcing the metallic projection into and penetrating the unprepared surface of the tubing or casing to form a seal therebetween.

  6. Method of producing metallic materials

    DOEpatents

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  7. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  8. Metallization problems with concentrator cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.

    1983-01-01

    Cells used with concentrators have similar contact requirements to other cells, but operation at high intensity imposes more than the usual demands on the metallization. Overall contact requirements are listed and concentrator cell requirements are discussed.

  9. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  10. Transition metal contacts to graphene

    SciTech Connect

    Politou, Maria De Gendt, Stefan; Heyns, Marc; Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt; Lee, Chang Seung; Sayan, Safak

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  11. Electrography: A Metal Detective Story.

    ERIC Educational Resources Information Center

    Parrott, Sister Mary Ethel

    1983-01-01

    Electrography is a technique in which unknown metals are identified by the precipitates they form with known electrolytes. The technique illustrates both electrochemistry and precipitation reactions. Describes the technique, suggesting its use in science and forensic science classes. (JN)

  12. Chapter 4 embedded metal fragments.

    PubMed

    Kalinich, John F; Vane, Elizabeth A; Centeno, Jose A; Gaitens, Joanna M; Squibb, Katherine S; McDiarmid, Melissa A; Kasper, Christine E

    2014-01-01

    The continued evolution of military munitions and armor on the battlefield, as well as the insurgent use of improvised explosive devices, has led to embedded fragment wounds containing metal and metal mixtures whose long-term toxicologic and carcinogenic properties are not as yet known. Advances in medical care have greatly increased the survival from these types of injuries. Standard surgical guidelines suggest leaving embedded fragments in place, thus individuals may carry these retained metal fragments for the rest of their lives. Nursing professionals will be at the forefront in caring for these wounded individuals, both immediately after the trauma and during the healing and rehabilitation process. Therefore, an understanding of the potential health effects of embedded metal fragment wounds is essential. This review will explore the history of embedded fragment wounds, current research in the field, and Department of Defense and Department of Veterans Affairs guidelines for the identification and long-term monitoring of individuals with embedded fragments. PMID:25222538

  13. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  14. Technique for joining metal tubing

    NASA Technical Reports Server (NTRS)

    Wright, H. W.

    1976-01-01

    Uniform wall thickness and uninterrupted heat transfer is achieved by using shaped metal insert as wall material for joint. Insert acts as support during brazing, after which excess material is ground away to bring joint to original tubing size.

  15. Organic Superconductor, Made without Metals.

    ERIC Educational Resources Information Center

    Science News, 1980

    1980-01-01

    The discovery of a superconducting organic compound is reported. The compound, (TMTSF)-2, has no metal in its composition, and the author believes that it is the precursor of a family of superconducting organics. (Author/SA)

  16. Time domain electromagnetic metal detectors

    SciTech Connect

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  17. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  18. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    PubMed

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  19. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  20. Punching Holes in Thin Metals

    NASA Technical Reports Server (NTRS)

    Garcia, Richard; Foster, Derrell; Miranda, Valentino

    1987-01-01

    Simple punching tool used to make holes in thin metal sheets, without burrs and edge deformations. Tool used on such materials as stainless steel, nickel alloys, beryllium, copper, and aluminum, in thicknesses of 0.002 to 0.010 in. With new punch, hole size held to tolerance of 0.025 mm. Includes rubber punch extruding into hole in top plate, pushing out exposed portion of clamped metal sheet.

  1. Fractography handbook of spaceflight metals

    NASA Technical Reports Server (NTRS)

    Derro, Rebecca J.

    1993-01-01

    This handbook was produced with the intention of providing failure analysts who work with space flight metals a reference of scanning electron microscope (SEM) fractographs of fracture surfaces produced under known condition. The metals and the fracture conditions were chosen to simulate situations that are encountered in spaceflight applications. This includes tensile overload at both room temperature and liquid nitrogen temperature, and fatigue at room temperature.

  2. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  3. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  4. Metallic umbilicals for dynamic application

    SciTech Connect

    Holen, P.T.; Roenningen, K.

    1995-12-01

    Coming subsea field developments have increase in water depth, in the use of satellite well developments, and in the use of floating production systems. Metallic umbilicals have several advantages over the traditional hose umbilicals with respect to permeation, fluid compatibility, hydraulic and mechanical properties. The introduction of the metallic umbilical for dynamic applications is a cost effective solution for better dynamic umbilicals for future developments.

  5. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  6. Metallization of Large Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1978-01-01

    A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.

  7. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  8. PRETREATING URANIUM FOR METAL PLATING

    DOEpatents

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  9. The effect of solid metal composition on solid metal/ liquid metal partitioning of trace elements

    NASA Astrophysics Data System (ADS)

    Rai, N.; van Westrenen, W.

    2010-12-01

    Fundamental understanding of the partitioning behaviour of elements between different core and/or mantle phases is needed to constrain processes of planetary differentiation and evolution. The partitioning behaviour of elements between solid metal and liquid metal in the Fe-S system, of relevance to core crystallisation in planetesimals and the terrestrial planets, has been investigated by several workers [1-6], most of whom [1-5] conclude that variations in partition coefficients can be explained by variations in melt composition. However, recently Stewart et al. [6] showed that the crystal-lattice strain model commonly used to describe silicate mineral - silicate melt partitioning can be applied to partially molten metallic systems. This suggests the structure of the solid metal also plays a role in determining solid metal / molten metal partitioning. Here, we investigate the effect of the structure of the solid metal in the Fe-S system on solid/liquid metal partitioning by obtaining new element partitioning data at pressures between 0.5 and 3 GPa. The effect of the solid metal is isolated from pressure-temperature-melt composition effects by performing experiments at constant P and T with two Fe-S bulk compositions on either side of the eutectic composition. In addition to the effect of solid metal composition we investigate the effects of pressure and S content on trace element partitioning behaviour and the application of the lattice strain model to our results. Starting mixtures were doped with several hundred ppm levels of trace elements Ni, Co, W, Mo, V, Nb, Ta, Sn, Cu, Pb, Zn, Cr, Mn, P, Ge,. Experiments were performed using a QUICKPress piston cylinder apparatus at the VU University, Amsterdam using alumina capsules. Experiments were heated to 1073 K at pressure and allowed to sinter for a duration of 10 hours before the temperature was raised at a rate of 50 K / min to the target value. Preliminary EPMA data for a 1 GPa experiment with FeS as the solid

  10. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  11. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  12. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 m diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 m diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands from the thermal black body radiation. Recorded flame images were digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparison were employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishment as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  13. Criticality of metals and metalloids

    PubMed Central

    Graedel, T. E.; Harper, E. M.; Nassar, N. T.; Nuss, Philip; Reck, Barbara K.

    2015-01-01

    Imbalances between metal supply and demand, real or anticipated, have inspired the concept of metal criticality. We here characterize the criticality of 62 metals and metalloids in a 3D “criticality space” consisting of supply risk, environmental implications, and vulnerability to supply restriction. Contributing factors that lead to extreme values include high geopolitical concentration of primary production, lack of available suitable substitutes, and political instability. The results show that the limitations for many metals important in emerging electronics (e.g., gallium and selenium) are largely those related to supply risk; those of platinum group metals, gold, and mercury, to environmental implications; and steel alloying elements (e.g., chromium and niobium) as well as elements used in high-temperature alloys (e.g., tungsten and molybdenum), to vulnerability to supply restriction. The metals of most concern tend to be those available largely or entirely as byproducts, used in small quantities for highly specialized applications, and possessing no effective substitutes. PMID:25831527

  14. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  15. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  16. The structure of metallic complexes of polyacetylene with alkali metals

    NASA Astrophysics Data System (ADS)

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  17. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  18. Metallic carbon nanotubes with metal contacts: electronic structure and transport

    NASA Astrophysics Data System (ADS)

    Zienert, A.; Schuster, J.; Gessner, T.

    2014-10-01

    We study quasi-ballistic electron transport in metallic (6,0) carbon nanotubes (CNTs) of variable length in contact with Al, Cu, Pd, Pt, Ag, and Au electrodes by using the non-equilibrium Green's function formalism in combination with either density functional theory or self-consistent extended Hückel theory. We find good agreement between both. Visualizing the local device density of states of the systems gives a descriptive link between electronic structure and transport properties. In comparison with bare finite and infinite tubes, we show that the electronic structure of short metallic CNTs is strongly modified by the presence of the metallic electrodes, which leads to pronounced size effects in the conductance. The mean conductances and linear response currents allow a ranking of the metals regarding their ability to form low-Ohmic contacts with the nanotube: Ag≲ Au\\lt Cu\\ll Pt≈ Pd\\ll Al. These findings are contrasted with similar trends in contact distance, binding energy, calculated work function of the metal surfaces, and various results from literature.

  19. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2015-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  20. Plated Metal Powders for Electrode Pastes

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1984-01-01

    Metal grains to be sintered precoated with frit metal. Coated metal powders used to make ink-like electrode pastes for printing and sintering electrode-fabrication process. Grains of base metal coated with lowmelting-point--, lead or tin-- by electroless deposition.

  1. BIOMETHYLATION AND ENVIRONMENTAL TRANSPORT OF METALS

    EPA Science Inventory

    Toxic heavy metals are ubiquitous in the environment. They are found as metal or oxide dust in air, metal ions attached to humic substances in surface and ground water, and as metal ions bound to soils and sediments. The transformations, mobilization, transport, and bioaccumulati...

  2. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  3. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  4. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, Ganapati R.; Kneisel, Peter

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  5. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  6. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  7. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  8. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  9. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  10. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  11. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  12. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  13. BIOAVAILABILITY OF METALS IN ENVIRONMENTAL MEDIA

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  14. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  15. FRAMEWORK FOR INORGANIC METALS RISK ASSESSMENT

    EPA Science Inventory

    The EPA has prepared a framework to guide risk assessors in assessing human and ecological risks of inorganic metals. Metals and metal compounds have properties not generally encountered with organic chemicals. For example, metals are neither created nor destroyed by biological a...

  16. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  17. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  18. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  19. Metal nanoparticles as a conductive catalyst

    DOEpatents

    Coker, Eric N.

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  20. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.